Self-assembled films for molecular rectification

Show simple item record

dc.contributor.advisor Ashwell, G. J.
dc.contributor.author Tyrrell, Wayne David.
dc.date.accessioned 2016-08-25T08:34:36Z
dc.date.available 2016-08-25T08:34:36Z
dc.date.issued 2004-10
dc.identifier.uri http://dspace.lib.cranfield.ac.uk/handle/1826/10443
dc.description.abstract The original model for molecular rectification was proposed by Aviram and Ratner (Chemical Physics Letters, 1974, 29, 277-284.), who suggested that donor-electron bridge-acceptor molecules could be organic counterparts of the inorganic p-n junction. Experimental verification was difficult and the first unambiguous study was reported only three years ago. However, other researchers were still sceptical of the data, but results in this thesis now confirm that molecular rectification is a real effect. Thirteen compounds have been studied of which seven have shown Aviram-Ratner type rectifying behaviour. Self-assembled monolayer films were studied by scanning tunnelling spectroscopy (STS) which provided their current-voltage characteristics. The principal group of materials studied that exhibited electrical asymmetry, involved hemicyanine dyes where the length of the group that connected the chromophore to the gold-coated substrate was varied from S-C3H6 to S-C10H20. Interestingly, the different alkyl analogues showed almost indistinguishable current-voltage characteristics. This suggested that recent theoretical models were incorrect. Furthermore, the chromophore is readily protonated resulting in disruption of the donor-acceptor combination, and it was found that exposure to acid switched the rectification off, which was reversible by subsequent exposure to base. This provided proof that the electrical asymmetry resulted from the donor-bridge-acceptor chromophore and not from any extrinsic effect. It is believed that this is the first conclusive study of molecular rectification. en_UK
dc.language.iso en en_UK
dc.publisher Cranfield University en_UK
dc.rights © Cranfield University, 2004. All rights reserved. No part of this publication may be reproduced without the written permission of the copyright holder. en_UK
dc.title Self-assembled films for molecular rectification en_UK
dc.type Thesis or dissertation en_UK
dc.type.qualificationlevel Doctoral en_UK
dc.type.qualificationname PhD en_UK


Files in this item

This item appears in the following Collection(s)

Show simple item record

Search CERES


Browse

My Account

Statistics