CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Gregory, J."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    A review of floc strength and breakage
    (Elsevier, 2005-09) Jarvis, Peter; Jefferson, Bruce; Gregory, J.; Parsons, Simon A.
    The main focus of the paper is to review current understanding of floc structure and strength. This has been done by reviewing current theoretical understanding of floc growth and breakage and an analysis of different techniques used for measuring floc strength. An overview has also been made of the general trends seen in floc strength analysis. The rate of floc formation is a balance between breakage and aggregation with flocs eventually reaching a steady-state size for a given shear rate. The steady-state floc size for a particular shear rate can, therefore, be a good indicator of floc strength. This has resulted in the development of a range of techniques to measure floc size at different applied shear levels using a combination of one or more of the following tools: light scattering and transmission; microscopy; photography; video and image analysis software. Floc strength may be simply quantified using the initial floc size for a given shear rate and the floc strength factor. More complex techniques have used theoretical modelling to determine whether flocs break by large-scale fragmentation or smaller-scale surface erosion effects, although this interpretation is open to debate. Impeller-based mixing, ultrasound and vibrating columns have all been used to provide a uniform, accurate and controllable dissipation of energy onto a floc suspension to determine floc strength. Other more recent techniques have used sensitive micromanipulators to measure the force required to break or compress individual flocs, although these techniques have been limited to the measurement of only a few hundred flocs. General trends emerge showing that smaller flocs tend to have greater strength than larger flocs, whilst the use of polymer seems to give increased strength to only some types of floc. Finally, a comparison of the strength of different types of floc (activated sludge flocs, organic matter flocs, sweep flocs and charge neutralised flocs) has been made highlighting differences in relative floc strength.

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback