CERES
Library Services
  • Communities & Collections
  • Browse CERES
  • Library Staff Log In
    Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Dawes, W. N."

Now showing 1 - 1 of 1
Results Per Page
Sort Options
  • Loading...
    Thumbnail Image
    ItemOpen Access
    An unsteady, moving mesh CFD simulation for Harrier hot-gas ingestion control analysis
    (Royal Aeronautical Society, 2007-03-01T00:00:00Z) Richardson, G. A.; Dawes, W. N.; Savill, Mark A.
    Hot gas ingestion (HGI) can be a problematic feature of short take-off vertical landing (STOVL) aircraft during the descent phase of landing, or while on the ground. The hot exhaust gases from the downwards pointing nozzles can be re- ingested into the engine intakes, causing power degradation or reduced engine surge margin. The flow-fields that characterise this phenomenon are complex, with supersonic impinging jets and cross-flows creating large ground vortices and fountain up-wash flows. A flow solver has been developed to include a suitable linear mesh deformation technique for the descending aircraft configuration. The code has been applied to predict the occurrence of HGI, by simulating experimental results from a 1/15th scale model of a descending Harrier. This has enabled an understanding of the aerodynamic mechanisms that govern HGI, in terms of the near-field and far-field effects and their impact on the magnitude of temperatures at the engine intake. This paper presents three sets of CFD results. First a validation exercise shows predicted results from the twin-jet with intake in crossflow test-case. This is an unsteady Reynolds averaged Navier Stokes (URANS) solution for a static geometry (there is no moving mesh). This allows comparison with experiment. Secondly, a full descent phase URANS Spalart-Allmaras (SA) turbulence model calculation is done on an 8⋅5m cell mesh for half the flow domain of the Harrier model and test-rig without dams/strakes. This shows how the HGI flow mechanisms affect the engine intake temperature profiles, for the case where there are no flow control methods on the underside of the aircraft. Thirdly, the full descent phase URANS SA turbulence model calculation is done on a 22⋅4m cell mesh for the full flow domain of the Harrier model and test-rig, with the dam/strake geometry included in the structured mesh region. NOMENCLATURE ADF advanced data format ATV advanced technology viewer CFD computational fluid dynamics DARP Defence Aerospace Research Partnership DTI Department of Trade and Industry FOD foreign object debris hexa hexahedral HGI hot-gas ingestion HPCx high performance comp

Quick Links

  • About our Libraries
  • Cranfield Research Support
  • Cranfield University

Useful Links

  • Accessibility Statement
  • CERES Takedown Policy

Contacts-TwitterFacebookInstagramBlogs

Cranfield Campus
Cranfield, MK43 0AL
United Kingdom
T: +44 (0) 1234 750111
  • Cranfield University at Shrivenham
  • Shrivenham, SN6 8LA
  • United Kingdom
  • Email us: researchsupport@cranfield.ac.uk for REF Compliance or Open Access queries

Cranfield University copyright © 2002-2025
Cookie settings | Privacy policy | End User Agreement | Send Feedback