Browsing by Author "Conrad, Christopher"
Now showing 1 - 9 of 9
Results Per Page
Sort Options
Item Open Access An advanced path planning and UAV relay system: enhancing connectivity in rural environments(MDPI, 2024-03-06) El Debeiki, Mostafa; Al-Rubaye, Saba; Perrusquía, Adolfo; Conrad, Christopher; Flores Campos, Juan AlejandroThe use of unmanned aerial vehicles (UAVs) is increasing in transportation applications due to their high versatility and maneuverability in complex environments. Search and rescue is one of the most challenging applications of UAVs due to the non-homogeneous nature of the environmental and communication landscapes. In particular, mountainous areas pose difficulties due to the loss of connectivity caused by large valleys and the volumes of hazardous weather. In this paper, the connectivity issue in mountainous areas is addressed using a path planning algorithm for UAV relay. The approach is based on two main phases: (1) the detection of areas of interest where the connectivity signal is poor, and (2) an energy-aware and resilient path planning algorithm that maximizes the coverage links. The approach uses a viewshed analysis to identify areas of visibility between the areas of interest and the cell-towers. This allows the construction of a blockage map that prevents the UAV from passing through areas with no coverage, whilst maximizing the coverage area under energy constraints and hazardous weather. The proposed approach is validated under open-access datasets of mountainous zones, and the obtained results confirm the benefits of the proposed approach for communication networks in remote and challenging environments.Item Open Access Co-simulation digital twin framework for testing future advanced air mobility concepts: a study with BlueSky and AirSim(IEEE, 2023-11-10) Zhao, Junjie; Conrad, Christopher; Fremond, Rodolphe; Mukherjee, Anurag; Delezenne, Quentin; Su, Yu; Xu, Yan; Tsourdos, AntoniosThe UK Future Flight Vision and Roadmap outlines the anticipated development of aviation in the UK by 2030. As part of the Future Flight demonstration segment, project HADO (High-intensity Autonomous Drone Operations) will develop, test, and deploy fully automated unmanned aircraft system (UAS) operations at London Heathrow Airport. Cranfield University is leading the synthetic test environment development within the HADO project, and a digital twin (DT) prototype was developed to enable mixed-reality tests for autonomous UAS operations. This paper enhances the existing DT by introducing new co-simulation capacities. Specifically, a co-simulation DT framework for autonomous UAS operations is proposed and tested through a demonstrative use case based on BlueSky and AirSim. This prototype integrates the traffic simulation capabilities of BlueSky with the 3D simulation capabilities of Airsim, to efficiently enhance the simulation capacities of the DT. Notably, the co-simulation framework can leverage the 3D visualization modules, UAS dynamics, and sensor models within external simulation tools to support a more realistic and high-fidelity simulation environment. Overall, the proposed co-simulation method can interface several simulation tools within a DT, thereby incorporating different communication protocols and realistic visualization capabilities. This creates unprecedented opportunities to combine different software applications and leverage the benefits of each tool.Item Open Access Communication network architecture with 6G capabilities for urban air mobility(IEEE, 2024-02-28) Al-Rubaye, Saba; Conrad, Christopher; Tsourdos, AntoniosAs the demand for urban air mobility (UAM) increases, a robust communication, navigation, and surveillance (CNS) network architecture is needed to support the integration of sustainable UAM vehicles and technologies. Specifically, a new digital communication infrastructure is imperative to support increased levels of digitisation and autonomy within the aviation industry. This infrastructure must remain compatible with existing technologies, while enabling the integration of future 6G systems. This paper thereby discusses the communication challenges and opportunities associated with UAM integration. Potential communication technologies and standards needed to support UAM operations are presented and consolidated into a unified communication architecture with ground-, air-, and satellite-based infrastructure. The functional requirements of this architecture are also discussed, to enable seamless communication between UAM vehicles, air traffic control, and other ground- or air-based systems. Notably, 6G is highlighted as a key enabler of dense and sustainable UAM operations with high data traffic demands. A simple link budget analysis for a 6G air-to-ground data link in a green urban environment is thereby performed, em-phasising the infrastructural development necessary to support 6G roll-out. These findings pave the way for a more sustainable and accessible UAM transportation system, backed by a secure and reliable communication infrastructure.Item Open Access Developing a digital twin for testing multi-agent systems in advanced air mobility: a case study of Cranfield University and airport(IEEE, 2023-11-10) Conrad, Christopher; Delezenne, Quentin; Mukherjee, Anurag; Mhowwala, Ali Asgher; Ahmed, Mohammad; Zhao, Junjie; Xu, Yan; Tsourdos, AntoniosEmerging unmanned aircraft system (UAS) and advanced air mobility (AAM) ecosystems rely on the development, certification and deployment of new and potentially intelligent technologies and algorithms. To promote a more efficient development life cycle, this work presents a digital twin architecture and environment to support the rapid prototyping and testing of multi-agent solutions for UAS and AAM applications. It leverages the capabilities of Microsoft AirSim and Cesium as plugins within the Unreal Engine 3D visualisation tool, and consolidates the digital environment with a flexible and scalable Python-based architecture. Moreover, the architecture supports hardware-in-the-loop (HIL) and mixed-reality features for enhanced testing capabilities. The system is comprehensively documented and demonstrated through a series of use cases, deployed within a custom digital environment, comprising both indoor and outdoor areas at Cranfield University and Airport. These include collaborative surveillance, UTM flight authorisation and UTM conformance monitoring experiments, that showcase the modularity, scalability and functionality of the proposed architecture. All 3D models and experimental observations are critically evaluated and shown to exhibit promising results. This thereby represents a critical step forward in the development of a robust digital twin for UAS and AAM applications.Item Open Access Developing a stackable programme based on the advanced air mobility systems MSc course(Elsevier BV, 2024-09-05) Zhao, Junjie; Gong, Tingyu; Nnamani, Christantus; Conrad, Christopher; Fremond, Rodolphe; Tang, Yiwen; Xu, Yan; Tsourdos, AntoniosThis study proposes the development of content and materials for a stackable programme that aligns with the existing Cranfield University Advanced Air Mobility Systems (AAMS) MSc Course and integrates with ongoing Future Flight Challenge (FFC) projects, emerging research and development (R&D) capacities, and the growing demand for skilled professionals in the sector. The programme is structured into four phases: enhancement of taught modules through technology-enhanced teaching (TET), enrichment of project-based learning, bolstering of student experience and career development, and a stackable approach adaptable to various educational levels. This approach was evaluated using courses from the 2022/23 and 2023/24 academic years.Item Open Access A digital twin mixed-reality system for testing future advanced air mobility concepts: a prototype(IEEE, 2023-05-15) Zhao, Junjie; Conrad, Christopher; Delezenne, Quentin; Xu, Yan; Tsourdos, AntoniosThe UK Future Flight Vision and Roadmap defines how aviation in the UK is envisioned to develop by 2030. As part of the Future Flight demonstration segment, project HADO (High-intensity Autonomous Drone Operations) will develop, test, and deploy fully automated Unmanned Aircraft System (UAS) operations at London Heathrow airport. The resource-demanding nature of real-world tests, however, suggests that developing and improving the reliability and efficiency of virtual environment-based testing methods is indispensable for the evolution of such operations. Nonetheless, developing a high-fidelity and real-time virtual environment that enables the safe, scalable, and sustainable development, verification, and validation of UAS operations remains a daunting task. Notably, the need to integrate physical and virtual elements with a high degree of correlation presents a significant challenge. Consequently, as part of the synthetic test environment work package within the HADO project, this paper proposes a Digital Twin (DT) system to enable mixed-reality tests in the context of autonomous UAS operations. This connects a physical world to its digital counterpart made up of five distinct layers and several digital elements to support enhanced mixed-reality functionality. The paper highlights how the static layers of the synthetic test environment are built, and presents a DT prototype that supports mixed-reality test capabilities. In particular, the ability to inject virtual obstacles into physical test environments is demonstrated, highlighting how the sharp boundaries between virtual environments and reality can be blurred for safe, flexible, efficient, and effective testing of UAS operations.Item Open Access Intelligent embedded systems platform for vehicular cyber-physical systems(MDPI, 2023-07-02) Conrad, Christopher; Al-Rubaye, Saba; Tsourdos, AntoniosIntelligent vehicular cyber-physical systems (ICPSs) increase the reliability, efficiency and adaptability of urban mobility systems. Notably, ICPSs enable autonomous transportation in smart cities, exemplified by the emerging fields of self-driving cars and advanced air mobility. Nonetheless, the deployment of ICPSs raises legitimate concerns surrounding safety assurance, cybersecurity threats, communication reliability, and data management. Addressing these issues often necessitates specialised platforms to cater to the heterogeneity and complexity of ICPSs. To address this challenge, this paper presents a comprehensive CPS to explore, develop and test ICPSs and intelligent vehicular algorithms. A customisable embedded system is realised using a field programmable gate array, which is connected to a supervisory computer to enable networked operations and support advanced multi-agent algorithms. The platform remains compatible with multiple vehicular sensors, communication protocols and human–machine interfaces, essential for a vehicle to perceive its surroundings, communicate with collaborative systems, and interact with its occupants. The proposed CPS thereby offers a practical resource to advance ICPS development, comprehension, and experimentation in both educational and research settings. By bridging the gap between theory and practice, this tool empowers users to overcome the complexities of ICPSs and contribute to the emerging fields of autonomous transportation and intelligent vehicular systems.Item Open Access Intelligent vertiport traffic flow management for scalable advanced air mobility operations(IEEE, 2023-11-10) Conrad, Christopher; Xu, Yan; Panda, Deepak; Tsourdos, AntoniosAdvanced air mobility (AAM) operations will pose new challenges that require innovative air traffic management (ATM) and uncrewed aircraft system (UAS) traffic management (UTM) solutions. Notably, emerging vertiports must support vertical take-off and landing (VTOL) vehicles, on-demand AAM services, denser airspace volumes, and dynamic airspace structures. Additionally, traffic flow management systems must cater for stricter flight envelopes, micro-weather variations, small uncooperative aerial objects, limited vertiport occupancy, and battery restrictions of electric vehicles. This requires large volumes of unlabelled data that conventional algorithms cannot effectively process in a timely manner. This work thereby proposes a data model for vertiport traffic management, and investigates intelligent solutions to leverage this vast data infrastructure. It considers on-demand vertiport flight authorisation as a demonstrative use-case of emerging AAM requirements, and proposes a data model aligned with safety-layers and corridor-based airspace proposals in several global AAM concept of operations (ConOps). On-demand scheduling of electric VTOL (eVTOL) aircraft is first formulated as a constrained optimisation problem, and solved using mixed-integer linear programming techniques. The limitations of this approach are subsequently addressed through a deep reinforcement learning (DRL) solution that is quicker and more robust to system uncertainty. This investigation thereby proposes a pathway towards scalable, intelligent and multi-agent systems for AAM resource management and optimisation.Item Open Access Simulating enhanced vertiport management in a multimodal transportation ecosystem(IEEE, 2024-05-13) Conrad, Christopher; Xu, Yan; Panda, Deepak; Tsourdos, AntoniosThe advanced air mobility (AAM) industry envisions a transformative transportation ecosystem for passengers and cargo deliveries. Nonetheless, coordinating large volumes of new aerial vehicles necessitates innovative unmanned aircraft system (UAS) traffic management (UTM) solutions, supported by a robust vertiport infrastructure. Moreover, AAM will form part of a broader multimodal ecosystem, posing additional technical, procedural and operational challenges. This work thereby presents a simulation tool in AnyLogic for deploying, training and testing collaborative and intelligent AAM decision-making frameworks within a multimodal transportation system. The platform integrates multiple vertiports with diverse resource constraints, and offers a flexible solution to investigate the impact of different vertiport designs, layouts and procedures. AAM-specific influences are also introduced, including electric vehicle batteries, heterogeneous vehicle specifications, stricter flight envelopes, and hyper-local micro-weather variations. The model further acknowledges the complex inter-dependencies within a multimodal environment to capture fluctuating travel demands and dynamic passenger flows within transportation terminals. This scalable simulation tool thereby enables the development of enhanced vertiport management and AAM traffic coordination solutions, and facilitates exploratory research on multimodal coordination amongst air, ground, rail and sea transportation systems.