Browsing by Author "Chong, William Woei Fong"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Adhesive and molecular friction in tribological conjunctions(Cranfield University, 2012-01) Chong, William Woei Fong; Teodorescu, Mircea S.; Vaughan, N. D.This thesis investigates the underlying causes of friction and ine ciency within an internal combustion engine, focusing on the ring-liner conjunction in the vicinity of the power-stroke top dead centre reversal. In such lubricated contacts, friction is the result of the interplay between numerous kinetics, with those at micro- and nano-scale interactions being signi cantly di erent than the ones at larger scales. A modi ed Elrod's cavitation algorithm is developed to determine the microscopic tribological characteristics of the piston ring-liner contact. Predicting lubricant tran- sient behaviour is critical when the inlet reversal leads to thin lms and inherent metal-to-metal interaction. The model clearly shows that cavitation at the trailing edge of the ring-liner contact generated pre-reversal, persists after reversal and pro- motes starvation and depletion of the oil lm. Hence, this will lead to boundary friction. A fractal based boundary friction model is developed for lightly loaded asperity con- tacts, separated by diminishing small lms, usually wetted by a layer of molecules adsorbed to the tips of the asperities. In nano-scale conjunctions, a lubricant layering e ect often takes place due to the smoothness of surfaces, which is governed by the surface and lubricant properties. A molecularly thin layer of lubricant molecules can adhere to the asperities, being the last barrier against direct surface contact. As a result, boundary friction (prevailing in such diminishing gaps) is actually determined by a combination of shearing of a thin adsorbed lm, adhesion of approaching as- perities and their plastic deformation. A model for physio-chemical hydrodynamic mechanism is successfully established, describing the formation of thin adsorbed lms between asperities. This model is e ectively integrated with separately devel- oped models that predict the adhesive and plastic contact of asperities.Item Open Access Cavitation induced starvation for piston-ring/liner tribological conjunction.(Elsevier, 2011-04) Chong, William Woei Fong; Teodorescu, M.; Vaughan, Nicholas D.The study investigates the mechanism of ring-liner lubrication in the vicinity of the top and bottom dead centres of an internal combustion engine. Predicting lubricant transient behaviour is critical when the inlet reversal leads to thin films and inherent metal-to-metal interaction. It was found that the cavitation, which is located at the trailing edge of the contact before reversal, briefly survives after reversal as a confined bubble at the leading edge. This depletes the film promoting starvation. Several algorithms were compared. It is concluded that the lubricant film is thinner than initially thought.