Browsing by Author "Atkinson, Helen"
Now showing 1 - 2 of 2
Results Per Page
Sort Options
Item Open Access Getting the strain under control: Trans-Varestraint tests for hot cracking susceptibility(Springer Verlag, 2019-02-12) Statharas, Dimitrios; Atkinson, Helen; Thornton, Rob; Marsden, John; Dong, Hongbiao; Wen, ShuwenA new method for conducting Trans-Varestraint tests for assessing hot cracking susceptibility is proposed. Experiments were carried out, to validate the new method, with an industrial scale rig using tungsten inert gas welding. The hot cracking susceptibility of API-5L X65 and EN3B steel was compared. The results indicated that, by using the new method, the strain applied to the welding bead and consequently to the solidification front was controlled in a repeatable and reliable way. The results also indicated that EN3B has a maximum crack length (a parameter in the test) higher than X65 and it is reached at lower augmented strain thus demonstrating it is more susceptible to hot cracking, while also indicating that there is a capability of predicting the initiation position of hot cracks during welding. By using the method proposed, the capability of setting standardized test procedures for Trans-Varestraint tests is improved. It is recommended that future tests for assessing hot cracking susceptibility should employ the proposed method in order for the results to be comparable and to also study the effect of strain rate in hot cracking of materials.Item Open Access Revealing internal flow behaviour in arc welding and additive manufacturing of metals(Nature Publishing Group, 2018-12-21) Aucott, Lee; Dong, Hongbiao; Mirihanage, Wajira; Atwood, Robert; Kidess, Anton; Gao, Shian; Wen, Shuwen; Marsden, John; Feng, Shuo; Tong, Mingming; Connolley, Thomas; Drakopoulos, Michael; Kleijn, Chris R.; Richardson, Ian M.; Browne, David J.; Mathiesen, Ragnvald H.; Atkinson, HelenInternal flow behaviour during melt-pool-based metal manufacturing remains unclear and hinders progression to process optimisation. In this contribution, we present direct time-resolved imaging of melt pool flow dynamics from a high-energy synchrotron radiation experiment. We track internal flow streams during arc welding of steel and measure instantaneous flow velocities ranging from 0.1 m s−1 to 0.5 m s−1. When the temperature-dependent surface tension coefficient is negative, bulk turbulence is the main flow mechanism and the critical velocity for surface turbulence is below the limits identified in previous theoretical studies. When the alloy exhibits a positive temperature-dependent surface tension coefficient, surface turbulence occurs and derisory oxides can be entrapped within the subsequent solid as result of higher flow velocities. The widely used arc welding and the emerging arc additive manufacturing routes can be optimised by controlling internal melt flow through adjusting surface active elements.