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In this paper we propose a constrained optimal control architecture for combined velocity,
yaw and sideslip regulation for stabilization of the vehicle near the limit of lateral acceleration
using the rear axle electric torque vectoring configuration of an electric vehicle. A nonlinear
vehicle and tyre model are used to find reference steady-state cornering conditions and design
two Model Predictive Control (MPC) strategies of different levels of fidelity: one that uses
a linearized version of the full vehicle model with the rear wheels’ torques as the input, and
another one that neglects the wheel dynamics and uses the rear wheels’ slips as the input
instead. After analysing the relative trade-offs between performance and computational effort,
we compare the two MPC strategies against each other and against an unconstrained optimal
control strategy in Simulink and Carsim environment.
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Notation

α Tyre slip angle
β Vehicle sideslip angle at its centre of mass
δ Steering angle
ǫ Slack variable
µx, µy Longitudinal and lateral tyre force coefficient
µmax Tyre/road friction coefficient
ψ Vehicle yaw angle at its centre of mass
ω Wheel angular rate
ax, ay Vehicle longitudinal and lateral acceleration at its centre of mass
fx, fy, fz Longitudinal, lateral and normal tyre force
g Constant of gravitational acceleration
i, j Subscripts i = F,R (front, rear), j = L,R (left, right)
ℓF , ℓR Longitudinal distance of centre of mass from the front and the rear track
m Mass of the vehicle
r Wheel radius
s, sx, sy Total, longitudinal and lateral slip
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wL, wR Lateral distance of centre of mass from the left and right wheels
B Pacejka’s Magic Formula stiffness factor
C Pacejka’s Magic Formula shape factor
D Pacejka’s Magic Formula peak value
Iw Wheel moment of inertia of each wheel about its axis of rotation
Iz Vehicle moment of inertia
N Horizon
Np Prediction horizon
Nu Control horizon
R Vehicle path radius
T Torque
Ts Sampling time
Tsim Simulation time
V Vehicle velocity at its centre of mass

1. Introduction

In the past few years it has been recognised that active control of the vehicle’s velocity
is not only a very effective strategy in the limits of lateral acceleration but also crucial
in cases of terminal understeer behaviour [22]. The necessity for velocity regulation in
such cases is already mentioned by van Zanten et al. [24] who points out that especially
in the case of J-turns, where the turning radius is reduced continuously along the trajec-
tory (a scenario typical on highway exits), the Electronic Stability Control (ESC) yaw
moment correction on the lateral dynamics alone is not sufficient. This early remark on
the importance of longitudinal control was later realised as one of the ESC new functions
in [17], where correction of terminal understeer behaviour is achieved by superimposing
individual braking of all four wheels on the standard ESC intervention. Similar solutions
applied on a Four Wheel Drive (4WD) Electic Vehicle (EV) can be found in [15, 16]. In
[15] the torque request from the driver is reduced when the lateral acceleration exceeds
a specific threshold, while in [16] a velocity limit is set as a function of the desired yaw
rate. In [12] a controller providing decoupled longitudinal force and yaw moment inputs
at the higher level is combined with a static control allocation scheme to calculate forces
and actuator inputs. In [22] a multivariable control architecture to address velocity, yaw
and sideslip regulation in terminal understeer is presented. Simulation results using a
driver model in a U-turn scenario show that the controller not only keeps the vehicle
within the road boundaries, but also allows for a smoother negotiation of the corner with
less steering effort from the driver.
In this paper we propose a constrained optimal control architecture that stabilizes

the vehicle near the limits of lateral acceleration while accounting for the important in
such cases system constraints. MPC, a control strategy tracing its origins in the chemi-
cal processes industry [19], has been increasingly popular in the industry and academia
due to its ability to naturally handle multivariable system constraints. Looking in the
automotive active system applications, a variety of MPC solutions can be found. For
example, in [4] we find a Linear Time Varying MPC (LTV-MPC) strategy for control-
ling the lateral dynamics of the vehicle using independent braking of the four wheels.
Simulation results show that the LTV-MPC controller successfully completes the sine
and dwell test but with a considerable decrease in speed due to the braking strategy

2



used. An example of an MPC application for active lateral dynamics control utilizing
the steer-by-wire system of a Rear Wheel Drive prototype vehicle can be found in [5].
For the MPC formulation velocity dependent bounds are imposed on the yaw rate and
sideslip angle in a way similar to the envelope control concept from the aerospace in-
dustry. Simulation and experimental results using a slalom manoeuvre show that the
controller restricts the steering command from the driver when the envelope bounds are
violated. In [7] two explicit MPC formulations for a yaw stability controller using Active
Front Steering (AFS) and differential wheel braking are presented. Experimental results
using the less computationally expensive switched MPC strategy show that the controller
can successfully stabilize the vehicle in a fast double lane change on a slippery road by
constraining the tyre slip angles within their limits. Another example of an explicit MPC
law can be found in [6], where a yaw control strategy using a rear active differential is
presented. Here the Nonlinear MPC (NMPC) problem is solved offline using the near-
est point approach. Simulation results show a good agreement between the proposed
approach and a nominal NMPC controller but with some chattering, which could be
potentially corrected with higher number of offline computed points but at the expense
of higher memory and computational requirements. A different approach can be found in
[10], where an MPC strategy for roadway departure prevention using AFS and braking
utilizes future road information and a driver model to ensure that the current vehicle
state belongs to the set of states that will evolve to a desired final set [8]. For the MPC
formulation the cost function penalizes only the control effort, while the road boundaries
are set as constraints. Simulation tests show that the controller can successfully keep the
vehicle within the lane boundaries in the case of overspeeding through a curve.
In this work we propose an MPC strategy for combined velocity, yaw and sideslip

regulation for stabilization of the vehicle near the limits of lateral acceleration using the
rear axle electric torque vectoring configuration of an electric vehicle. While using an
MPC strategy has obvious advantages for the specific application at hand, it also has
distinct disadvantages, which are mainly connected to the computational time needed to
construct and solve the resulting optimization problem. Based on this observation, the
goal of this paper is not only to develop an appropriate MPC strategy for the demanding
task of stabilizing the vehicle near the limits of handling in the best possible way, but also
one that can be implemented in real time. The structure of the paper is as follows: after
introducing the nonlinear vehicle and tyre models along with the steady-state cornering
analysis used to generate the reference for the controller to follow, the basic MPC problem
is explained. Since the main disadvantage of using an MPC strategy is the computational
effort attached to it, two MPC strategies of different complexity are then constructed:
1) one using the full vehicle model and 2) a simpler one that neglects the wheel speed
dynamics. The effect of varying the sampling time and the horizon on the performance
and the computational load of each strategy are then analysed. Finally, the two strategies
are compared against each other in Simulink environment and against a Linear Quadratic
Regulator (LQR) strategy [22] in CarSim environment.

2. Vehicle Model and Reference Generation

In this section we introduce the vehicle and tyre models used in this paper. The formu-
lation is similar to the one found in [22, 26], where the interested reader can refer to for
more details.
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2.1. Vehicle Model
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Figure 1. The four-wheel vehicle model.

The Equations Of Motion (EOM) for the four-wheel vehicle model with front wheel
steering (Fig. 1) are

mV̇ = (fFLx + fFRx) cos(δ − β)− (fFLy + fFRy) sin(δ − β) (1a)

+ (fRLx + fRRx) cos β + (fRLy + fRRy) sinβ,

β̇ =
1

mV
[(fFLx + fFRx) sin(δ − β) + (fFLy + fFRy) cos(δ − β) (1b)

− (fRLx + fRRx) sin β + (fRLy + fRRy) cos β]− ψ̇,

Izψ̈ = ℓF [(fFLy + fFRy) cos δ + (fFLx + fFRx) sin δ] − ℓR (fRLy + fRRy) (1c)

+ wL (fFLy sin δ − fFLx cos δ − fRLx) + wR (fFRx cos δ − fFRy sin δ + fRRx)

Iwω̇ij = Tij − fijxr, i = F,R, j = L,R. (1d)

where the relevant variables and parameters are as defined under the Notation section
at the beginning of the paper.
The tyre forces fijx and fijy in the above EOM are found as functions of the tyre slip

using Pacejka’s Magic Formula (MF) [3]. In particular, we obtain the resultant tyre force
coefficient as a function of the resultant slip at each tyre from the MF:

µij(sij) = MF(sij) = D sin(Catan(Bsij)),

where sij =
√
s2ijx + s2ijy is the resultant tyre slip with sijx and sijy the theoretical

longitudinal and lateral slip quantities respectively [3], and D = µmax is the tyre/road
friction coefficient. Then using the friction circle equations

µijx = −
sijx
sij

µij(sij), µijy = −
sijy
sij

µij(sij),
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we obtain the tyre force coefficients µijx and µijy in the longitudinal and lateral direction.
Neglecting the pitch and roll rotation along with the vertical motion of the sprung

mass of the vehicle, the vertical force fijz on each of the four wheels can be calculated
using the static load distribution and the longitudinal/lateral weight transfers under
longitudinal/lateral acceleration [26]. The longitudinal and lateral tyre forces are then
given by

fijx = µijxfijz, fijy = µijyfijz.

The values for the above vehicle and tyre parameters used in this paper correspond to
a compact family car and can be found in Table 1.

Table 1. Vehicle and tyre parameters.
Parameter Value Parameter Value
m (kg) 1420 ℓF (m) 1.01

Iz (kgm2) 1027.8 ℓR (m) 1.452
Iw (kgm2) 0.6 r (m) 0.3
wL (m) 0.81 B 24
wR (m) 0.81 C 1.5
h (m) 0.55 D 0.9

2.2. Reference Generation

In order to derive feasible targets for the controller to follow, steady-state cornering
analysis of the four-wheel vehicle model (1) is used. Neglecting the wheel speed dynamics
and enforcing the steady-state cornering conditions

V̇ = 0, β̇ = 0, ψ̈ = 0,

we obtain three algebraic equations with six unknowns, namely the equilibrium state
(V ss, βss, Rss = V ss/ψ̇ss) and input (δss, sssRLx, s

ss
RRx). Providing three of the six unknowns

(in this work the triplet (V ss, Rss, δss)), we can then solve the steady-state equations using
the fsolve function in MATLAB (a nonlinear equation solver) to obtain the rest of the
unknowns.
Based on the above steady-state analysis, we next examine the feasibility of the vehicle

path radius as requested by the driver. Similar to common practice in vehicle stability
control [21] we obtain an estimate of the driver’s intended path using a neutral steer
linear bicycle model under steady-state cornering. We therefore set

Rkin = (ℓF + ℓR)/tan(δ
ss).

The desired path radius may or may not be feasible depending on the vehicle’s velocity.
Consider for example the steady-state conditions for a fixed δss and a range of V ss

in Fig. 2. In all three cases the desired Rss = Rkin is around 14m, according to the
steering command of δss = 10deg. Then, for a vehicle velocity of V ss = 10.75m/s (green
curve) the vertical red dashed line corresponding to Rkin intersects the curve of the
calculated steady-state conditions, hence the requested Rkin is feasible. On the other
hand, if the vehicle velocity is V ss = 11.25m/s (purple curve) the Rkin is smaller than
the minimum achievable Rss and not longer feasible. In this case the controller will select
a steady-state condition such that the desired Rkin becomes feasible by reducing the
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vehicle velocity. Taking into consideration the driver’s intention, this velocity reduction
will have to be minimal. To this end we select a steady-state velocity such that Rkin

coincides with the minimum Rss, which in the above example corresponds to a vehicle
velocity of V ss = 11m/s (blue line).
In summary, the target steady-state condition for the controller to follow is determined

using the current steering command from the driver (δss), the corresponding kinematic
radius (Rss = Rkin), and either the current or maximum vehicle velocity (V ss) as dis-
cussed above.
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Figure 2. Selection of target steady-state according to the driver’s steering angle command: (a) Rkin feasible at
V ss = 10.75m/s; (b) Rkin not feasible at V ss = 11.25m/s; (c) Rkin coincides with the minimum calculated Rss

at V ss = 11m/s.

3. MPC Formulation

We now design the sampled-data MPC strategy by discretizing the continuous-time plant
and the associated quadratic cost function. For the nonlinear continuous-time system
with state vector x, input vector u and output vector y

ẋ = f(x, u), y = g(x, u),

linearized about the equilibrium point (xss, uss, yss)

˙̃x = Acx̃+Bcũ, ỹ = Ccx̃+Dcũ,

with associated cost function state and input weighting matrices Qc and Lc respectively
and cross-weighting matrix Mc, the discrete-time model using an exact discretization [2]
and sampling time Ts is

x̃k+1 = Adx̃k +Bdũk, ỹk = Cdx̃k +Ddũk.

In the above equations, x̃ = x− xss, ũ = u− uss and ỹ = y− yss are the state, input and
output errors from the equilibrium point, Ac, Bc, Cc and Dc are the Jacobian matrices
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from linearization and Ad, Bd, Cd and Dd are the discretized equivalents.
Then, assuming Dd = Dc = 0 (no feedthrough term) and Cd = In (full state feedback),

the MPC regulation problem with horizon N = Np = Nu is

minimize x̃TNPx̃N +

N−1∑

i=0

(x̃Ti Qx̃i + ũTi Lũi + 2x̃Ti Mũi), (2a)

subject to x̃0 = x̃cur, (2b)

x̃i+1 = Adx̃i +Bdũi, i = 0, 1, ..., N − 1 (2c)

ũmin
i ≤ ũi ≤ ũmax

i , i = 0, 1, ..., N − 1 (2d)

x̃min
i ≤ x̃i ≤ x̃max

i , i = 1, 2, ..., N (2e)

where (2a) is the cost function [2], (2b) sets the initial state error x̃0 equal to the current
one, (2c) are the discrete system dynamics and (2d)-(2e) are the state and input inequality
constraints. The positive (semi-)definite matrix Q and positive definite matrix L are the
weighting matrices on the state error and control effort respectively, and the positive
definite matrix M is the cross-weighting matrix. The inclusion of the terminal penalty
x̃TNPx̃N in (2a) ensures closed-loop stability [18], with the matrix P selected as the
solution of the Discrete Algebraic Riccati Equation

P = AT
c PAc +Q(BT

c PAc +MT )T (L+BT
c PBc)

−1(BT
c PAc +MT ).

Based on the standard MPC problem (2) a dense MPC formulation using soft con-
straints on the state [18] is used in this paper, with the necessary Ac, Bc, Cc and Dc

matrices updated at each time step according to the current steering command from
the driver and the current vehicle velocity using the analysis of section 2.2. The result-
ing Quadratic Program (QP) problem is then solved using the active-set method [20]
available through the quadprog command in MATLAB.
The main disadvantage of using an MPC strategy is its computational burden, which

is directly related to the time that is needed to construct and solve the MPC problem.
Many factors have a decisive role in this: the number of optimization variables and the
number of constraints, along with the selected sampling time and horizon, can result in
a large optimization problem that is too difficult to solve in real time. Based on these
observations, in this following sections we present two MPC strategies using internal
models of different complexity. In the first MPC strategy, called hereafter ‘MPCt’ (where
“t” stands for “torque” input), we use the full four-wheel model (1) hence both the vehicle
dynamics and the much faster wheel speed dynamics are included in the internal model,
and the input is set as the two torques on the rear wheels. In the second MPC strategy,
called hereafter ‘MPCs’ (where “s” stands for “slip” input), we use a smaller internal
model which neglects the wheel speed dynamics, while the input is set as the longitudinal
slips at the rear wheels. Then a Sliding Mode Slip Controller is used to calculate the
necessary torques on the rear wheels according to the requested longitudinal slips.

3.1. MPCt: MPC using Wheel Torque Inputs

For the MPCt the full four-wheel model (1) is used, hence (neglecting the free-rolling
front wheels) we set x = [V β ψ̇ ωRL ωRR]

T , and u = [TRL TRR]
T (Fig. 3).

When defining the optimal control problem, the cross-weighting matrix Mc is set to
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Figure 3. MPCt control structure.

zero (note that after discretization of the system, M in (2a) will usually not be zero),
while the weighting matrices Qc and Lc are updated at each time step according to

Qc = diag

{
qV

(
1

Vmax

)2

,

(
1

βmax

)2

,

(
1

ψ̇max

)2

,

(
1

ωRLmax

)2

,

(
1

ωRRmax

)2
}
, (3a)

Lc = diag

{(
1

TRLmax

)2

,

(
1

TRRmax

)2
}
, (3b)

where the maximum values are set according to the steering input from the driver and
the steady-state cornering analysis of section (2.2), along with the electric motor char-
acteristics. In this way, the Qc and Lc matrices are normalized with respect to the state
and input vectors, and the only tuning parameter is qV .

3.1.1. State Constraints

In order to avoid large yaw rate values, a yaw rate constraint according to the current
velocity Vcur is imposed at the beginning of the optimization and fixed throughout the
prediction horizon. This constraint is based on the lateral acceleration limit for the
current velocity and is coupled to the tyre/road friction coefficient µmax [21]:

|ψ̇| ≤ µmaxg/Vcur (4)

Following [4, 14], a constraint on the maximum sideslip angle is also set according to
the current velocity:

|β| =





2
k1 − k2
V 3
ch

V 3
cur − 3

k1 − k2
V 2
ch

V 2
cur + k1, if Vcur < Vch

k2, if Vcur ≥ Vch

, (5)

where Vch is the characteristic velocity of the vehicle defined under steady-state cornering
conditions as the velocity at which a steering angle double the Ackerman angle is required
for the vehicle to maintain the same turning radius [9]. The positive constants k1 and
k2 are tuning parameters, chosen at 10π/180 and 3π/180 respectively. No constraints on
the velocity or the rear wheel speeds are imposed.
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3.1.2. Input Constraints

For the MPCt the use of the two torques on the rear wheels as input of the internal
model gives us the opportunity to set constraints on them based on the static torque
map of the motor used.
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f(ω) = aω+b

g(ω) = cω+d

Figure 4. The static torque map and its approximation using affine functions of ω.

The maximum torque achievable on each of the two rear wheels of the car is a nonlinear
function of the corresponding wheel speed. Since the MPC problem (2) is formulated
as a convex optimization problem that allows only for affine inequality constraints, the
static torque map is approximated by two affine functions of ω as seen in Fig. 4. Taking
for example the line f = aω + b in Fig. 4, we want

Tij ≤ aωij + b,

and since for the MPC problem the system is linearized about the equilibrium point
(xss, uss), for T = T ss + T̃ and ω = ωss + ω̃ the above inequality gives

T ss
ij + T̃ij ≤ a(ωss

ij + ω̃ij) + b⇒ T̃ij − aω̃ij ≤ aωss
ij + b− T ss

ij .

Expanding then to both the rear wheels’ torques with V = V ss + Ṽ , β = βss + β̃ and

ψ̇ = ψ̇ss +
˜̇
ψ we get

[
0 0 0 −a 0
0 0 0 0 −a

]




Ṽ

β̃
˜̇ψ
ω̃RL

ω̃RR



+

[
T̃RL

T̃RR

]
≤

[
aωss

RL + b− T ss
RL

aωss
RR + b− T ss

RR

]
.

A similar procedure can be followed for line g = cω+d. The resulting polyhedron, as seen
in Fig. 4, is convex and can be therefore used to define the input inequality constraints
in (2).
In this paper, the above piecewise linear approximation of the static torque map is

chosen in such way so that the error from the nonlinear constraint is minimized at a
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realistic range of wheel speeds. To this end, we choose c and d so that g(ω) coincides
with the constant torque line (note that in this case c = 0), and a and b so that f(ω)
is tangent to the constant power curve and meets the longitudinal line at a high wheel
speed.

3.1.3. Longitudinal Slip Constraints

Since, for stability reasons, it is deemed necessary to constrain the longitudinal slips on
the rear wheels, another constraint on the state is also constructed for the MPCt to
address this. Through the longitudinal slip definition

sijx =
Vijx − ωijr

ωijr
(6)

we can impose a constraint on the relative wheel speed

slijx ≤ sijx ≤ shijx ⇒

{
sijx ≤ shijx

−sijx ≤ −slijx
⇒






Vijx − ωijr

ωijr
≤ shijx

−
Vijx − ωijr

ωijr
≤ −slijx

. (7)

Then, linearizing the longitudinal tyre velocity about the equilibrium point, the above
double inequality (7) can be expressed in terms of the state [V β ψ̇]T to be used in the
optimization problem. Taking for example the upper bound, we have

(V ss
ijx +

ϑVijx
ϑV

Ṽ +
ϑVijx
ϑβ

β̃ +
ϑVijx

ϑψ̇

˜̇
ψ)− (1 + shijx)r(ω

ss
ij + ω̃ij) ≤ 0,

and expanding to both the rear wheels, we get




ϑVRLx

ϑV

ϑVRLx

ϑβ

ϑVRLx

ϑψ̇
−qRL 0

ϑVRRx

ϑV

ϑVRRx

ϑβ

ϑVRRx

ϑψ̇
0 −qRR







Ṽ

β̃
˜̇ψ
ω̃RL

ω̃RR



≤

[
−V ss

RLx + qRLω
ss
RL

−V ss
RRx + qRLω

ss
RR

]
,

where

qRL = (1 + shRLx)r, qRR = (1 + shRRx)r.

3.2. MPCs: MPC Neglecting the Wheel Speed Dynamics

The second MPC strategy neglects the fast wheel speed dynamics, so that a simpler in-
ternal model is used with x = [V β ψ̇]T and u = [sRLx sRRx]

T . Then a Sliding Mode Slip
Controller computes the necessary torques on the rear wheels based on the requested lon-
gitudinal slips (Fig. 5). When defining the optimal control problem, the cross-weighting
matrix Mc is set again to zero, while the weighting matrices Qc and Lc are set in a way
similar to the MPCt strategy.
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3.2.1. State, Input and Torque Constraints

For the MPCs we use the same yaw rate and sideslip angle constraints (4)-(5) as with
the MPCt, while no constraint is set on the vehicle velocity.
Constraints are also set for the input u = [sRLx sRRx]

T so that the longitudinal slips
on the rear wheels never exceed the maximum allowable slip for safe operation of the
vehicle. Using the tyre parameters as found in Table 1 in the simplified MF [3] we set
the constraint

|sRjx| ≤ 0.07. (8)

For the MPCs we can not directly account for the motor limits in the form of its
static torque map as was the case with the MPCt. We therefore construct an additional
constraint on the state and input in order to avoid excessive torque requests from the
two motors. Neglecting the wheel speed dynamics, the longitudinal tyre force on each of
the rear wheels can be bounded by the maximum and minimum allowable torques

T l
ij ≤ fijxr ≤ T h

ij , (9)

where T l
ij and T h

ij are calculated as a function of the current wheel speed according to
the static torque map at the beginning of each time step and fixed for the rest of the
prediction horizon. Then, linearizing the longitudinal tyre force about the equilibrium
point, the above double inequality (9) can be expressed in terms of the state [V β ψ̇]T

and input [sRLx sRRx]
T to be used in the optimization problem. Taking for example the

upper bound

f ssijx +
ϑfijx
ϑsijx

s̃ijx +
ϑfijx
ϑV

Ṽ +
ϑfijx
ϑβ

β̃ +
ϑfijx

ϑψ̇

˜̇
ψ ≤

T h
ij

r
,

and expanding to both rear wheels




ϑfRLx

ϑV

ϑfRLx

ϑβ

ϑfRLx

ϑψ̇
ϑfRRx

ϑV

ϑfRRx

ϑβ

ϑfRRx

ϑψ̇






Ṽ

β̃
˜̇ψ


+




ϑfRLx

ϑsRLx

ϑfRLx

ϑsRRx

ϑfRRx

ϑsRLx

ϑfRRx

ϑsRRx




[
s̃RLx

s̃RRx

]
≤




T h
RL

r
− f ssRLx

T h
RR

r
− f ssRRx


 .
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3.2.2. Sliding Mode Slip Controller

The torque demand on the two electric motors according to the longitudinal slip requests
are then calculated using a Sliding Mode Slip Controller, constructed in a way similar to
[11, 25].
From the longitudinal slip definition (6) the slip dynamics are

ṡijx =
d

dt

(
Vijx − ωijr

ωijr

)
=
V̇ijxωijr − Vijxω̇ijr

ω2
ijr

2
=
V̇ijx
ωijr

−
Vijxω̇ij

ω2
ijr

,

and using (6) and (1d),

ṡijx = (sijx + 1)
V̇ijx
Vijx

− (sijx + 1)2
r

IwVijx
(Tij − fijxr).

Setting the sliding surface as e = sijx − sdesijx and using L = (1/2)e2 as a Lyapunov

function candidate with ė = ṡijx (assuming that sdesijx remains constant), we have [13]

L̇ = eė = eṡijx = e

(
(sijx + 1)

V̇ijx
Vijx

− (sijx + 1)2
r

IwVijx
(Tij − fijxr)

)

= e

(
(sijx + 1)

V̇ijx
Vijx

− (sijx + 1)2
r

IwVijx
Tij + (sijx + 1)2

r

IwVijx
fijxr)

)
,

and taking

Tij = −
IwVijx

(sijx + 1)2r

(
−(sijx + 1)

V̇ijx
Vijx

− (sijx + 1)2
R

IwVijx
fijxr − ηsgn(e)

)

=
IwV̇ijx

(sijx + 1)r
+ rfijx +

IwVijx
(sijx + 1)2R

ηsgn(e),

with η a small positive number yields

L̇ = −eηsgn(e) = −η|e| < 0.

Then defining κ =
IwVijx

(sijx + 1)2r
η, the control law is

Tij =
IwV̇ijx

(sijx + 1)2r
+ rfijx + κsgn(e),

or to reduce chattering we can use instead

Tij =
IwV̇ijx

(sijx + 1)2r
+ rfijx + κsat

( e
∆

)
,

12



where sat(·) the saturation function

sat(y) =

{
y, if |y| ≤ 1
sgn(y), if |y| > 1

and ∆ a positive constant [13].
Remark : While some of the signals needed for both the MPCt and MPCs strate-

gies can be measured using standard equipment in modern vehicles (yaw rate, wheel
speeds, steering angle), others need to be estimated (velocity, sideslip angle, tyre slips
and torques).This is indeed possible, as shown in [1, 23] and is part of the on-going work
before implementing the controller on a prototype vehicle.

4. Tuning of the two MPC Strategies

After choosing the internal model for the MPC problem (2), two are the most impor-
tant parameters affecting both the performance and computational burden for an MPC
formulation: the sampling time Ts and the horizon N . For the evaluation of the perfor-
mance of the two different MPC strategies we use the closed-loop cost, defined as the
summation of the running cost

Jcl =

⌈

Tsim−Ts

Ts

⌉

∑

k=0

(xk
TQxk + uk

TLuk + 2xk
TMuk),

where Tsim is the chosen simulation time and ⌈·⌉ is the ceiling function, which maps a real
number to the smallest following integer. The above expression is the summation of the
weighted square of the state error and the control effort for the duration of the simulation,
hence the cost that the MPC tries to minimize at the first place, and can be therefore
used as a metric of the controller’s performance. For the evaluation of the computational
effort, the mean time Tcomp required from the quadprog solver in MATLAB to construct
and solve the MPC problem is used.
First we investigate the effect of varying the sampling time on the performance and

the computational time of the two MPC strategies for a range of sampling times and a
horizon equal to the simulation time of Tsim = 10s. Next we check the effect of choosing
a horizon that is smaller than the simulation time of Tsim = 10s. In this way, we will
select the best sampling time and horizon combination for the two MPC strategies that
provides the best compromise between performance and computational time. A set of
simple simulation scenarios is used, whereas the vehicle is going straight and a step steer
input is applied after 2s. It is assumed at this point that no acceleration or braking
requests come from the driver. For each simulation, the initial vehicle velocity is chosen
so that it is 1m/s higher from the maximum velocity allowable for the applied step
steering input hence both MPC strategies will regulate the velocity, sideslip angle and
yaw rate of the vehicle according to the analysis presented in section 2.2.

4.1. Impact of Varying the Sampling Time in the MPCt

For the MPCt, using a sampling time above 0.035s results in a controller that cannot be
stabilizing anymore. This is the direct result of including the fast wheel speed dynamics

13



in the internal model, and reveals the main disadvantage of this strategy: consideration
of the wheel speed dynamics in the MPC problem increases the number of optimization
variables while at the same time calls for faster sampling times.
Using the set of test scenarios described above, Fig. 6(a) shows the closed-loop cost

for a range of step steering inputs and sampling times between 0.01-0.035s. No major
variations are noticed for this range of sampling times. Looking more closely in the
test results for a step steering input of 6deg, in Fig. 6(b) we observe that for sampling
times below 0.02s, the time needed to construct and solve the QP problem increases
exponentially. The pareto frontier in Fig. 6(c) shows a similar trend, with computational
times increasing rapidly with only small gains in the closed-loop cost.
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Figure 6. Variation of closed-loop cost with sampling time Ts = 0.01 − 0.035s is minimal for a range of step
steering inputs δ (a), but computational time increases with lower sampling times (b) or costs (c) in the MPCt.

4.2. Impact of Varying the Sampling Time in the MPCs

Using the same set of test scenarios as in the case of the MPCt, Fig. 7(a) shows the
variation of the closed-loop cost with sampling time for a range of step steer inputs for
the MPCs. No considerable changes in performance for sampling times below 0.07s can
be noticed. Looking at the test results for a step steering input of 6deg, in Fig. 7(b) we
observe that the computational time increases rapidly for sampling times below 0.05s, so
there is a clear trade-off between closed-loop cost and computational time with changes
in the sampling time, while a similar increase in computational time can be noticed for
small reductions in the closed-loop cost below 1 (Fig. 7(c)).
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Figure 7. Variation of closed-loop cost with sampling time is minimal for sampling times below Ts = 0.07s across
a range of step steering inputs δ (a), but computational time increases rapidly with sampling times lower than
0.05s (b), or costs lower than 1 (c) in the MPCs.

4.3. Impact of Varying the Horizon in the MPCt and MPCs

The horizon length of 10s in combination with the short sampling times used in the
above sections resulted in long computational times, a large portion of which was spend
in constructing the matrices for the dense MPC problem. The increase in construction
time with longer horizons in the MPCt and MPCs can be seen in Fig. 8. We also note
that the relevant increase in construction time for the MPCs is lower to the one for
the MPCt, a result of the smaller number of optimization variables used in the MPCs.
However, in both strategies the construction time drops to values as low as 0.005s for
horizons less than 1s.
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Figure 8. Construction time needed from the two MPC strategies with longer horizons. A larger grow rate is
observed in the MPCt case, a direct result of the larger number of optimization variables used in this strategy
when compared to the MPCs.
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5. Comparison of the two MPC Strategies

In the section to follow we compare the two MPC strategies against each other and
against a LQR strategy [22] under different scenarios using the full four-wheel model (1)
in Simulink environment. We also investigate the changes in tracking performance and
computational time when a control horizon that is shorter than the prediction horizon
is used. Based on the analysis presented in the previous section for the MPCt we set
Ts = 0.035s and N = 1s, and for the MPCs we set Ts = 0.05s and N = 1s.

5.1. Single Step Steering Input Scenario
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Figure 9. Simulation results for a step steering input of δ = 6deg and an initial velocity which is 5m/s higher
than the maximum possible. A similar tighter trajectory (a) and velocity regulation (b) for the MPCt, the MPCs
and the LQR is observed, but at the expense of larger sideslip angle and yaw rate overshoots (c)-(d) for the LQR
case.

The two MPC strategies are first evaluated under a single step steering input. The
scenario under consideration is similar to the one used in section 4 but this time we
set the initial velocity much higher, at 5m/s above the maximum possible steady-state
velocity for the given step steering input. We assume again that no acceleration or braking
commands come from the driver.
As we can see from Fig. 9(a), the uncontrolled vehicle traces a trajectory with a

larger radius than the three controllers while exhibiting oscillations in both the sideslip
angle and yaw rate responses (Fig. 9(c)-9(d)). Both the MPC strategies and the LQR
show a tighter trajectory, but with some distinctive differences. While the velocity time
histories for all three strategies look similar (Fig. 9(b)), the LQR exhibits a larger yaw
rate overshoot (Fig. 9(d)) and a subsequent increase in sideslip angle (Fig. 9(c)). The
two MPC strategies on the other hand restrict the yaw rate grow according to the yaw
rate constraint (4) and achieve smaller overall sideslip angles along with reduced sideslip
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angle rates for the first couple of seconds after applying the step steering input. Note
that, since the velocity time histories for the MPCt and MPCs are similar (Fig. 9(b))
and therefore the two velocity dependent yaw rate and sideslip angle constraints (4)-(5)
propagate in time in a similar way for both the MPCt and the MPCs, for clarity reasons
we choose to show in Fig 9(c)-9(d) only the constraints that correspond to the MPCt
results.

5.2. Double-Lane Change Scenario
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Figure 10. Open-loop steering input used in the double-lane change scenario.

As a second simulation scenario we use a fast double-lane change, whereas the steering
input is set as a sinusoidal function of time (Fig. 10). This time the uncontrolled vehicle
becomes unstable in the first part of the manoeuvre while the LQR shows an equally
unstable behaviour (Fig. 11(a)). Both MPCt and MPCs keep the vehicle stable, with
small yaw rate overshoots (Fig. 11(d)) and sideslip angle values well within their max-
imum values (Fig. 11(c)). Note that the sideslip angle and yaw rate constraints shown
correspond again to the MPCt results.
Looking at the longitudinal slip time histories on the rear wheels in Fig. 11(e)-11(f),

we see that the two MPC strategies keep the slip within the bound (8). It is interesting to
note that the longitudinal slips on the rear wheels for the LQR case hit saturation levels
only for the second part of the manoeuvre where the vehicle is already unstable, hence the
source of instability in this scenario is the large yaw rate and sideslip angle values. The
high frequency oscillations noticed for the LQR are the result of the switching strategy
used in this case to keep the controller active only within the maximum longitudinal slip
threshold [22].

5.3. Impact of Varying the Control Horizon on the MPC Performance

and Computational Time

Up until now the control horizon in MPCt and MPCs was set equal to the prediction
horizon, Nu = Np = 1s. In this section we examine the effect of reducing the control
horizon while keeping the prediction horizon fixed at Np = 1s so that the computational
time is always below the sampling time. For this, we choose a very aggressive double step
steering input scenario, whereas the vehicle is going straight and a step steering of -6deg
is applied at 2s followed by a step steering of 6deg at 3s, with an initial velocity of 3m/s
higher than the maximum possible steady-state velocity.
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Figure 11. Both the MPCt and MPCs strategies successfully negotiate the manoeuvre with small sideslip angle
and yaw rate values (c)-(d). The LQR on the other hand can not keep the vehicle stable due to large sideslip
angle and yaw rate values (c)-(d) despite the switching strategy used in this case to keep the controller active only
within the maximum longitudinal slip threshold (e)-(f).

5.3.1. Impact of Varying the Control Horizon in the MPCt

As we can see from Fig. 12, in order to drop the computational time at levels below
the sampling time of Ts = 0.035s the control horizon needs to be reduced to Nu = 0.28s
(Fig. 12(b)). From Fig. 12(c) we observe that using the shorter horizon results in a slower
drop in velocity after the first step steering input but a faster drop after the second step
steering input (constraints shown only for the shorter horizon case), a result of the
higher sideslip angle values experienced for this part of the manoeuvre (Fig. 12(d)).
We can conclude that using the shorter control horizon has a noticeable performance
degradation in the controller performance in the case of the MPCt.

5.3.2. Impact of Varying the Control Horizon in the MPCs

In the case of the MPCs, the relatively higher sampling time of Ts = 0.05s allows for
a longer control horizon and a smaller loss in performance. Fig. 13(a)-13(b) show that
reducing the control horizon to Nu = 0.5s reduces the computational time without af-
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Figure 12. Use of a shorter control horizon of Nu = 0.28s in the MPCt in order to keep the computational time

below the sampling time (b) leads to performance degradation (c)-(e).

fecting the vehicle trajectory. From Fig. 13(b) it is also interesting to note that, apart
from the two spikes at 2s and 3s, the computational time is already lower than the sam-
pling time even without the shorter control horizon. The smaller impact in performance
in the case of the MPCs can also be confirmed by the velocity, sideslip angle and yaw
rate time histories (Fig. 13(c)-13(e)) which show no major differences when the shorter
control horizon is used (constraints shown only for the shorter horizon case).

6. Parameter Sensitivity Analysis

Using a simple step steering input scenario in Simulink, in this section we check the
robustness of the MPCs controller under variations of the vehicle’s mass m and mass
moment of inertia Iz, along with variations in the parameter D = µmax of the MF which
represents the maximum value of the friction coefficient for a given road condition. In
the driving scenario considered here, the vehicle is initially going straight with a speed of
14m/s and a step steer input of 10deg is applied after 2s (note that the initial velocity is
5m/s higher than the maximum velocity allowable for this applied step steering input).
For this test we set µmax = 0.6 which corresponds to wet road conditions, while both m
and Iz are kept to their nominal values according to Table 1.
As we can see from Fig.14(a)-14(c), variations in the vehicle’s mass results in small

steady state errors, while also causes sideslip angle and yaw rate oscillations in the case of
the heavier vehicle. From Fig.14(d)-14(f) we can see that variations in the vehicle’s mass
moment of inertia seem to have minimal impact on the response. The same cannot be
said however for variations in the tyre/road friction coefficient, as seen in Fig.14(g)-14(i).
While small steady state errors are again observed, a drop of 0.2 in the value of µmax

results also in rather large oscillations in the yaw rate response.
We can conclude that the MPCs controller is robust against variations in m, Iz and
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Figure 13. No observable performance degradation can be noticed (c)-(e) when a shorter control horizon of
Nu = 0.5s is used in the MPCs in order to keep the computational time below the sampling time (b).

µmax although the importance of good measurement and/or estimation is emphasised,
especially in the case of estimating the road conditions.

7. Validation with a High Fidelity Vehicle Model

In the following section we compare the more efficient MPCs strategy against the LQR
[22] and a vehicle without torque vectoring intervention in CarSim environment. The
scenarios under consideration are similar to the ones presented in the previous section
but with two important differences: 1) the use of the high fidelity vehicle model available
in CarSim, and 2) the availability of a driver model in CarSim for defining the steering
input in a closed-loop form.
Based on the results of sections 4-5, for the MPCs we set Ts = 0.05s, Np = 1s and

Nu = 0.5s. We assume again that no acceleration or braking commands come from the
driver.

7.1. U-turn Scenario

For the U-turn scenario, we use the driver model in CarSim to steer the vehicle through
a turn of 56m radius. The road is 5.6m wide and dry (µ = 0.9), while the entry speed is
85km/h.
In Fig. 15(a) we see the trajectory of the vehicle using the MPCs in blue, the vehicle

using the LQR in green and the vehicle without torque vectoring intervention in red. Both
the MPCs and the LQR keep the vehicle within the road limits while the uncontrolled
vehicle exits the road. Apart from keeping the vehicle within the road limits, the early
velocity drop from the MPC and LQR (Fig. 15(c)) allows also for smaller wheel steering
inputs from the driver (Fig. 15(b)). In Fig. 15(d) we observe that, while the MPC keeps
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Figure 14. Vehicle’s response remains largely unchanged with variations in the mass moment of inertia (d)-(f), but
exhibits steady state errors and oscillations with variations in the vehicle’s mass (a)-(c) and the tyre/road friction
coefficient (g)-(i), however we can conclude that the controller is robust against variations in these parameters.

the sideslip angle values to levels comparable to the ones experienced by the uncontrolled
vehicle, the vehicle using the LQR shows much larger values, a direct result of the inability
of the LQR strategy to constrain the vehicle state.
From Fig. 15(f)-15(g) we see that for this scenario the longitudinal slip values for both

the MPCs and the LQR stay in the linear region of the tyre. The small oscillations
after 8s for the MPCs case are related to the torque regulation from this strategy at
this point. Finally, from Fig. 15(h)-15(i) we observe that the MPCs keeps for the most
part the torque requests within the static torque map. Note here that, considering the
power limitations of the electric motors, the actual torques applied on the rear wheels
are always saturated according to the static torque map (Fig. 4).
From the U-turn scenario as analysed above, one could say that the MPCs gives a

similar response to the simpler LQR. However the yaw rate regulation and most impor-
tantly the smaller sideslip angle values in the MPCs case show that the same performance
can be achieved without having to compromise the stability of the vehicle, a point that
becomes important in a fast manoeuvre as the double-lane change presented next.
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7.2. Double-Lane Change Scenario

For the double-lane change scenario we use again the driver model available in CarSim,
but this time to follow a predefined path corresponding to a double-lane change manoeu-
ver as denoted by a dashed line in Fig. 16(a). The road is assumed wet (µ = 0.4), and
the entry speed is set to 60km/h.
Fig. 16(a) shows the trajectory of the vehicle using the MPCs in blue, the vehicle using

the LQR in green and the vehicle without torque vectoring intervention in red. Both the
uncontrolled vehicle and the vehicle with the LQR become unstable towards the end of
the manoeuvre and spin out of control. While the wheel steering input (Fig. 16(b)) and
the velocity time histories (Fig. 16(c)) for the MPCs and the LQR look similar for the
first 5s, the large yaw rate and sideslip angle values in the case of the LQR result in an
unstable condition from which the driver cannot recover. Finally, from Fig. 16(f)-16(i) we
see that the MPCs keeps the longitudinal slips within the bounds (8). The high frequency
oscillations noticed for the LQR are again the result of the switching strategy.
From the double-lane change scenario as analysed above, we see that the MPCs can

stabilize the vehicle under a fast manoeuvre on a slippery road. The uncontrolled vehicle
does not complete the test successfully while the use of the LQR results in an equally
unstable behaviour due to the excessive yaw rate and sideslip angle values.

8. Conclusions

Two MPC strategies of different complexity for combined yaw, sideslip and velocity
regulation have been presented. The first strategy, called MPCt, uses an internal model
that includes both the vehicle dynamics and the much faster wheel speed dynamics as
the state and the torque on the rear wheels as the input. The second strategy, called
MPCs, neglects the wheel speed dynamics, hence uses only the vehicle dynamics as the
state and the longitudinal slip on the rear wheels as the input for the internal model. A
comparison of the two MPC strategies shows that, while inclusion of the wheel dynamics
in the MPCt formulation results in a bigger optimization problem and requires for faster
sampling times, no noticeable advantages in performance over the MPCs are observed.
Another point to notice is that including both the longitudinal slip constraints and the
torque constraints in the MPC formulation (something that was implemented in one
way or another in both MPC strategies) gives a better knowledge of the system to the
controller and results in more effective control actions.
Simulations in a high fidelity environment confirm the effectiveness of the controller

in correcting terminal understeer behaviour and the importance of constraining both
the state and the input of the system for improved stability. While similar trajectories
are followed from both the MPCs and the LQR in the case of a U-turn scenario, the
MPCs achieves this with much lower sideslip angle and yaw rate values. The importance
of accounting for the system constraints becomes crucial in the case of a double-lane
change scenario, where the MPCs keeps the vehicle stable by enforcing the state and
input constraints. Finally, both scenarios show that the strategy is implementable in real
time even when a generic QP solver is used.
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Figure 15. Both the MPCs and LQR achieve a tighter trajectory (a) while allowing for smaller steering inputs
from the driver (b), but at the expense of large sideslip angle and yaw rate overshoots (d)-(e) for the LQR case.
The rear wheel torque requests from the MPCs are largely kept within the torque map limits (h)-(i) while the
computational time remains below the sampling time for the duration of the simulation (j).
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(d) Sideslip angle
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(f) Rear-left wheel long. slip
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(g) Rear-right wheel long. slip

40 45 50 55 60 65 70

−600

−400

−200

0

200

400

600

ω
RL

 (rad/s)

T
R

L (
N

m
)

 

 
MPCs
Torque map limits

(h) Rear-left wheel torque
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(i) Rear-right wheel torque
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Figure 16. While the MPCs strategy successfully negotiates the double-lane change by enforcing the sideslip angle,
yaw rate and tyre slip constraints (d)-(g), the LQR strategy can not keep the vehicle stable despite the switching
strategy used in this case to keep the controller active only within the maximum longitudinal slip threshold (f)-(g).
The rear wheel torque requests from the MPCs are largely kept within the torque map limits (h)-(i) while the
computational time remains below the sampling time for the duration of the simulation (j).
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