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Abstract

Lean burn in spark-ignition engines offers a significant efficiency advantage compared

with stoichiometric operation. The lean operation is restricted by increasing cyclic

fluctuation in torque. In order to make use of the efficiency advantage and meet the

mandatory emission standards the lean operation limit has to be further extended. This

requires particular control of the mixing of fuel and air.

To study the effect of mixture formation on cyclic variability and to provide

quantitative information on the mixing of air and fuel planar laser-induced fluorescence

(PLIF) was developed and applied to an operating SI engine. The method is based on

imaging the fluorescence of a fluorescent marker (3-pentanone) mixed with the fuel

(iso-octane). 3-pentanone was found to have similar vaporisation characteristics to

those of iso-octane as well as low absorption and suitable spectral properties.

The technique was applied to an one-cylinder SI engine with a cylinder head

configuration based on the Honda VTEC-E lean burn system. The mixture formation

process during the inlet and compression stroke could be described by measuring the

average fuel concentration in four planes, between 0.7 and 15.2 mm below the spark

plug, in a section of the cylinder orthogonal to the cylinder axis. The results showed

that for 4-valve pent-roof cylinder head systems with swirl inlet flows, fuel impinging

on the cylinder wall opposite to the inlet valves has a major influence on the mixture

formation process.

In order to quantify the cyclic variability in the mixture formation process and its

contribution to cyclic variability in combustion the fuel concentration in a plane near

the spark plug was measured on a large number of cycles. It could be shown, that the

fuel concentration in a small region close to the spark plug has a dominating effect on

the subsequent pressure development for lean mixtures. Variations in the mixture

concentration in the vicinity of the spark plug contribute significantly to cyclic

variations in combustion.

In order to address the issue of nonuniformity in residual gas concentration prior to

ignition a laser induced fluorescence method was developed to measure nitric oxide

(NO) concentrations in the unburned charge in the same one-cylinder research engine.

Measurements of average and instantaneous NO concentrations revealed, that the

residual gas is not homogeneously mixed with the air and that significant cyclic

variations in the local residual gas concentration exist.
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Chapter 1

Introduction

In this chapter the basic concept of lean burn in spark-ignition engine combustion is

introduced and the challenge of utilising its potential for improved efficiency and at the

same time meeting the legislated emission standards is described. First a brief review of

the combustion fundamentals relevant to lean burn is given. This is followed by a

literature review of the problem of cyclic variability in combustion. Current theories of

the causes of cyclic variability are highlighted and areas of limited understanding are

identified. An overview of current implementations of lean burn concepts in

automotive engines is given. The objectives and an outline of the work of this thesis

completes the chapter.

1.1 Emissions & Legislation

Automotive engines are a major source of air pollution, particular in urban areas. The

spark-ignition engine exhaust gases contain mainly carbon dioxide (CO 2), water (H20)

together with small amounts of oxides of nitrogen (N0x), carbon monoxide (CO) and

unburned hydrocarbons (HC). Legislation addressed this problem as early as 1970 in

the USA limiting CO and HC emissions only because of their known impact on air

quality and the toxicity for the human. Later the attention focused on the NOx which

forms smog by interaction with sunlight and HC. This lead to NOx emission limits

which could be met with a system using exhaust gas after treatment by a 3-way

catalyst in conjunction with closed loop control of the mixture strength. In recent years

the emission of CO 2 has been considered as an increasingly serious problem, due to its

contribution to the greenhouse effect. The reduction of motor vehicle fuel

consumption is seen as one of the most effective means of reducing CO 2 emissions in

the medium term.

1.2 Combustion & Emission Basics

Amongst the methods to reduce the fuel consumption of spark-ignition engines (SI

engines), lean burn is considered to be the most effective approach. Although, lean

burn combustion achieves low primary exhaust emissions it is more difficult to reduce

7
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Fig. 1.1: Conversion efficiency for NO, CO and HC for a three way catalyst as a function of air/fuel

ratio (from Heywood 1988)

NOx emissions to the mandatory level because exhaust gases from lean combustion

generate an oxygen-rich condition in which a three-way catalyst does not work

efficiently.

Operating a spark-ignition engine with a 3-way catalyst at optimum conversion

efficiency requires a stoichiometric mixture strength where, by definition, the exact

amount of air is supplied to burn the fuel completely. In theory there would be no HC

or CO emissions, only water and CO 2. In practise combustion may not be quite

finished when the exhaust valve(s) opens, particularly under transient conditions,

quenching of the flame in the low pressure part of the expansion stroke is a source of

unburned hydrocarbon and carbon monoxide. Another source of HC emission is fuel

trapped in crevices, which are too narrow for the flame to enter, escaping unburned

into the exhaust. Also at very high combustion temperatures, above 2000 K, high

thermal energy leads to dissociation of the 02 , CO2 and H20 molecules to 0, CO and

H2. The molecular oxygen in the burnt gas reacts with the nitrogen of the air and forms

small quantities of nitrogen oxides. These are mainly nitric oxide (NO) and small

amounts of nitrogen dioxide (NO2). The higher the burnt gas temperature, the higher

the rate of formation of NO. With catalytic converters NO can be removed by

reduction using CO and Hz, while CO and hydrocarbons can be oxidised to CO 2 and

water. If an engine is operated with a stoichiometric mixture, then both NO reduction

and CO and HC oxidation can be achieved simultaneously in a 3-way catalyst (Fig.

1.1). In order to achieve optimum conversion efficiency the mixture strength is

controlled around stoichiometric using systems such as closed loop control by an

oxygen sensor in the exhaust. If the mixture is lean, a 3-way catalyst works perfectly

well as an oxidising catalyst - but does little or nothing to reduce NOx.

8
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Figure 1.2 shows typical responses of CO, HC and NOx to mixture strength. The NOx

formation is strongly temperature dependent. The highest burnt gas temperatures

occur in an operating regime with slightly rich mixtures (AFR 12 - 13), where engine

power peaks; however at this air/fuel ratio oxygen concentrations are low. As the

mixture is leaned out, increasing oxygen concentrations initially offset the falling gas

temperatures and NOx emissions peak around an AFR of 15.5. For minimum NOx it

would be advantageous to run very lean, with say an AFR of 24 or more. Although

this would result in engine powers being reduced by about 40 % this has advantages

because if, say 60 % of maximum power is required for motor way cruising, this can be

achieved at nearly full throttle with a consequent reducing of throttle pumping losses.

This is the major reason why lean burn can provide a significant advantage in fuel

efficiency compared to stoichiometric running. Also with a full charge of air in the

cylinder the combustion temperature is greatly reduced and this is why the NOx

emissions decline. Carbon monoxide forms during the combustion process. With rich

mixtures there is insufficient oxygen to burn fully all the carbon in the fuel to CO 2 ; also

in the high temperature products even with lean mixtures, dissociation ensures there

are significant CO levels. Hydrocarbon emissions, on the other hand, increase at some

point on the lean side because of irregular combustion such as misfire or partial

burning. This upturn in emissions of HC's can be postponed by speeding up the rate of

combustion with the further benefit of improving fuel efficiency; burning more fuel

early in the expansion stroke results in energy release at a higher expansion ratio.

1.3 Lean Burn Combustion in Spark-Ignition Engines

1.3.1 The Lean Operation Limit - Fundamentals

Operating a spark-ignition engine with a lean air/fuel mixture is limited to the air/fuel

ratio, where further dilution leads to large cycle-by-cycle fluctuations in torque and

subsequently to unacceptable levels of performance and hydrocarbon emissions and

poor driveability - the lean operation limit.

Cyclic variations in torque are caused by cycle-by-cycle variations in the combustion.

Variations of mixture strength and air motion in the combustion chamber lead to cyclic

fluctuations in the burning rate. As the mixture in a SI engine is leaned out, the flame

development period (the time to establish a flame kernel), the flame propagation period

(the time to burn the bulk of the combustion gas) and the cyclic fluctuations in imep all

increase (Young 1981). For slow burning cycles, where combustion is not completed

before the exhaust valve(s) opens, the HC-emissions and the fuel consumption increase

due to partial burning (Quader 1976). Further dilution of the mixture leads to misfire

where the mixture fails to ignite altogether. Thus the slowest burning cycles determine

the lean operation limit. For a fixed ignition timing, the slower-than-average burning

cycle will be retarded, while the faster-than-average burning cycle will be over-

advanced. Both will reduce torque and therefore high cyclic fluctuations not only affect

engine driveability and smoothness but also reduce engine power.

10



Faster burning combustion chambers reduce the impact of cyclic variability, since a

larger fraction of the heat release occurs near TDC when the chamber volume is

changing slowly. Pressure variations are therefore mainly due to combustion variation.

For slow-burning engines the effect of combustion variations on pressure is enhanced

by the effect of volume change (Young 1981). This explains why dilute mixtures,

which lead to reduced flame speeds, show higher cyclic fluctuations in pressure.

Fluctuations in combustion are caused by variations in gas velocity and turbulence

during combustion and variations in mixture composition within a cylinder and

between the cylinders of multi-cylinder engines (Heywood 1988). During the

developed flame propagation process the average condition in the bulk gas will be the

dominating factor, averaging local fluctuations. Variations in the overall flow pattern,

turbulence intensity, length scale and variations in the amount of fuel fed into the

cylinder from cycle-to-cycle are therefore important for the flame propagation

(Heywood 1988). The mean flow influences the initial motion of the flame as it grows

from the early flame kernel created by the spark. Cyclic fluctuations in the velocity of

the overall flow field will influence the interaction between the flame and the cylinder

walls and the spark plug (Gatowski 1984, Pischinger 1990). This will influence the

flame surface area and the heat transfer and therefore the flame propagation rate (Keck

1987). The flame initiation is accelerated if the initial flame kernel is convected away

from the spark plug due to the reduced heat loss (Le Coz 1992). In contrast the early

interaction of the flame front with the cylinder wall increases the flame propagation

period due to a reduced flame surface area (Witze 1982).

Variations in the flame development process will also influence the bulk combustion

since the overall flow pattern will vary with time and the turbulence intensities decay

with time (Liou 1983). Variations in the turbulence level will affect the development of

the laminar-like flame kernel into the established turbulent flame. Studies of flame

photographs (Gatowski 1985) and studies with a fibre optic instrumented spark plug

(Witze 1988) have verified that there are substantial variations in the initial rate of

flame growth and these variations are linked to dispersion in overall cycle performance

(Swords 1982, Keck 1987, Witze 1988, Le Coz 1992). The flame initiation and

development process will be determined by the local condition near the spark plug. In

the early stages of combustion the flame is only weakly wrinkled and the flame growth

is dominantly determined by the laminar flame speed (Tagalian 1986, Pischinger 1988).

Laminar flame speed is a function of the mixture composition and gas temperature

(Metghalchi 1982, Gilder 1984). Thus, if the inlet mixture is nonuniform, one may

expect cycle-by-cycle variations in the gas composition near the spark electrodes at the

time of spark, with corresponding variations in the flame development period and

hence overall cycle performance.
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1.3.2 Extending the Lean Operation Limit - Concepts

Cyclic variability increases with more dilute mixtures due to slower burning and the

slowest burning cycles determine the lean operation limit. This explains why factors

which accelerate flame development and propagation will extend the lean operation

limit. These factors are compression ratio, spark location, mixture formation and

turbulence level.

Increasing the compression ratio increases the charge temperature and thus aids

combustion and extends the lean operation limit. Higher compression also reduces the

fraction of residual gases which may affect the lean limit (Quader 1974). The

compression ratio, however, can only be increased to the knock limit which is

determined by the combustion chamber geometry and fuel quality (e.g. octane

number). Short flame propagation distance will aid rapid combustion and extend the

lean limit. This can be achieved either by locating the spark plug in a more central

position (e.g. 4-valve head) or by dual spark location (Quader 1974). The effect of the

spark location on burning rate is also influenced by the swirl level. For very high swirl,

double ignition has been shown to be advantageous compared to central spark location

(Witze 1982).

Higher turbulence levels lead to faster burning rates and therefore to a more stable

combustion, provided that the initial flame is not extinguished due to excessive

stretching or heat transfer. Small-scale turbulence is subject to dissipation (Liou 1983).

Turbulence can be conserved by introducing kinetic energy to the cylinder during the

intake process by large-scale vortices, which convert their energy into turbulence

during compression. Swirl, or air which rotates horizontally round the cylinder axis, is

effectively a large-scale vortex which will result in turbulence generation throughout

the cycle (Liou 1983, Hall 1987). Swirl can be generated by helical inlet ports or

shrouded valves. Inlet-generated turbulence is often gained at the expense of

volumetric efficiency, especially with increasing engine speed. [These are the reasons

why Honda and Toyota both employ a variable inlet system in their lean burn engine

designs to increase swirl at low engine speeds in the lean operating regime whilst

retaining high volumetric efficiency at high engine speeds (see Section 1.4)]. Tumble

vortices are a large scale vertical rotational air motion; they are linked to improved

flame burn by generating turbulence during their break-down in the second half of the

compression stroke (Haddad 1991, Kiyota 1992). 4-valve configurations aid the

generation of tumble, because strong tumble requires that the inlet port should be

located as close as possible to the plane passing through the centre of the inlet and

exhaust valves (Arcoumanis 1990). Turbulence may also be generated during

compression by squish. Squish flow can only be generated in a few combustion

chamber geometries (e.g. squish corner on the piston), they aid the flame development

only when the spark plug is located directly in the squish flow (Gatowski 1985).

Since turbulence is a function of engine speed (Liou 1983, Hall 1987), adequate

turbulence levels at low engine speeds leads to excessive turbulence levels at high

12



engine speeds. The turbulence intensities however are limited to levels where the

stretch imposed by high fluctuations and strong mean flow causes local flame

extinction (Bradley 1988), this is particularly important during ignition (Quader 1976,

Pischinger 1988). Flame stretch can extinguish the flame when local velocity

fluctuations exceed the local rate of chemical reaction. This phenomenon is not yet

well documented and may affect the local burning velocity of slow-burning lean

mixtures (Daneshyar 1983, Le Coz 1992). This effect may be important in 4-valve

engines where high turbulence is readily generated by tumble and this will be

detrimental to driveability and will increase HC emissions (Hu 1992). Iwamoto (1992)

found that tumble ratios above 2.5 tended to increase misfire frequency and imep

fluctuations for part load, ultra lean combustion (AFR 27). Inoue (1993) confirmed

that swirl promotes turbulence, but found that above a certain level increasing

turbulence did not result in a significant improvement to the lean limit; the effect of

turbulence tended to saturate. Therefore, in a real engine, interaction of different

effects limits the scope for improvement by a single parameter.

Several investigations have examined the contribution to combustion variability arising

from nonuniformity of in cylinder fuel-air mixture. In-cylinder gas sampling showed

that cyclic fluctuations in mixture strength in the vicinity of the spark plug exist

(Matsui 1979), and that there is a linear relationship between cyclic variation in

combustion and cyclic variation in mixture strength (Hamai 1986, Collings 1988,

Sleightholme 1990). This is consistent with results from exhaust gas analysis by Pundir

(1981) which also showed a linear correlation between cyclic variability and the level

of mixture nonhomogeneity. To the contrary exhaust gas analyses made by

Sztenderowicz (1990) showed that for increasing mixture uniformity, there was no

significant impact on the statistics of the main combustion phase, nor on variation in

imep. Also measurements of mixture strength by CARS showed no correlation

between combustion variability and cyclic variations in the charge mixture near the

spark plug (Williams 1991). Although these works indicate that there is a substantial

variation in local fuel concentration at the spark electrodes and that differences in

mixture preparation can be important to engine behaviour, the contribution to cyclic

combustion variability due purely to mixture nonuniformity has, to date, not been

clearly established.

The preceding review showed that the flame development period influences the

subsequent in-cylinder pressure development. Ignition was found to be a function of

mixture strength (Pischinger 1988, Le Coz 1992) and variations in the laminar flame

speed to be the main reason for variations in the flame development period (Keck

1987). Since the laminar flame speed is a function of mixture strength, this gave rise to

the concept of stratified charge to improve lean combustion. Stratifying the fuel in the

combustion chamber such that it creates a potentially good mixture for ignition around

the spark plug at the time of ignition extends partial burning and misfire limits. The

potential advantages, in terms of igniteability through local charge stratification for

overall air fuel ratios in excess of 50, has been demonstrated in a constant volume

13



combustion chamber by Arcoumanis (1994). Matsushita (1985) reported that a richer

mixture near the spark plug extended the lean misfire limit; however local rich pockets,

particularly near the spark gap, drastically increased the NOx emissions. He concluded,

that the air/fuel ratio should be as homogeneous as possible to minimise NOx

emissions.	 .

Gas sampling analyses made by Quader (1982) has shown, that the top of the

combustion chamber can be made leaner or richer than average, dependent on whether

the fuel enters the cylinder early or late in the intake stroke. This result was confirmed

by Matsushita (1985). Both authors found fuel injection, synchronised with the intake

stroke of each cylinder, to extend the lean burn limit at part load conditions. The crank

angle of injection during the inlet valve open period was found to be influential on

cyclic variation in imep and NOx emissions under part load conditions. It was found

that injection end should be between 60° - 110 0 after TDC of induction for reduced

fluctuations in imep, but should be before inlet open for minimised NOx emissions

(Matsushita 1985, Mikulic 1990, Hone 1992). The coefficient of variation of imep

varied considerably with the injection timing during induction. Gas sampling at the

spark plug location revealed richer than average mixture for low fluctuation in imep

and the inverse for high fluctuations in imep (Matsushita 1985, Hardalupas 1995).

Swirl increases the turbulence level and therefore it is not surprising that the misfire

limit could be extended by introducing swirl to the charge (Matsushita 1985, Hone

1993, Inoue 1993). Less clear is the influence of swirl on mixing. Quader (1982)

observed that axial stratification by injection phasing only occurs with swirl. Gas

samples showed no difference between studies with injection before and during inlet

valve open period and studies of a premixed charge without swirl. This was again

confirmed by Matsushita (1985) who found no improvement of the lean limit by

injection phasing without swirl. Mikulic (1990) found that injection phasing with the

inlet stroke increased cyclic variability and fuel consumption in absence of swirl, while

the presence of swirl caused the inverse effect. On the other hand Quader (1974) and

Ayusawa (1978) found that increasing mixture homogeneity extended the lean misfire

limit in zero or low swirl configurations (though swirl is not mentioned in these papers,

it is implicit that there was zero or little swirl since Quader used a Ricardo CFR engine

and Ayusawa a side-valve engine). This implies that swirl tends to reduce mixing along

the cylinder axis. If swirl is applied together with fuel injection during the inlet valve

open period a positive axial fuel stratification can be achieved. In a non-swirl case

inhomogeneties due to imperfect mixture preparation can have the opposite effect and

therefore more homogeneous mixture can aid the flame initiation.

Also, increased tumble seems to have an adverse effect on mixing, as charge

stratification was observed in a no-swirl high tumble configuration (Kiyota 1992).

Baritaud (1992) reported that injection phasing influenced the mixture formation in a

plane parallel to the cylinder head but found the effect depended on the flow field

pattern. The mixture was found to be less homogeneous in swirling flows than in

tumble flows for injection during inlet closed period, while for injection through the

14



open inlet valve there was little difference in the homogeneity of the mixture between

the two flow fields.

These results and interpretations suggest that injection phasing can lead to charge

stratification and can benefit the lean operation limit. However, there is little

understanding of the mixing process and the role of swirl and injection phasing. Also

the influence of charge stratification on cyclic variability has not been quantified.

1.3.3 Impact of Residuals on the Lean Operation Limit

The influence of residual gas or combustion products from the previous cycle on the

lean operation is not very well documented. However, it is well known that the laminar

flame speed is reduced by dilution wish residuals (Metghalchi 1982, Rhodes 1985).

Therefore variations in the mixing of residual gases with fresh charge and variations in

the residual concentration and composition from cycle-to-cycle will affect the

combustion process. Gas samples of the unburned gas taken with a rapid sampling

valve just before spark discharge revealed an inverse relationship between the

hydrocarbon concentration and the CO 2 concentration - the CO2 concentration is a

measure of the burned gas fraction in the unburned sample. There was a substantial

fluctuation in the CO2 concentration at a given fuel fraction, indicating significant

fluctuations in the mixing of fresh gas and residual gas cycle-by-cycle (Matsui 1979).

Galliot (1990) used gas sampling to measure the hydrocarbon concentrations in an

engine charged with a homogeneous mixture of gaseous fuel and air. The residual gas

concentration was calculated by comparing hydrocarbon concentrations between

combusting and motored cycles. The residual gas fraction was found to decrease with

load, and for high valve overlap, also decrease with speed. It was also found that fresh

gas and residual gas appear to be well mixed. The fluctuations in hydrocarbon

concentrations due to charge nonuniformity within the cycle were estimated to be less

than one percent. The imep fluctuation did not correlate to residual concentration in

the vicinity of the spark plug at high engine load but had an inverse correlationship for

low load. Sztenderowicz (1990) analysed pressure data of a SI engine operated at light

load and low speed with a stoichiometric mixture of fuel and air. Eliminating fresh

charge nonuniformity was found to have no noticeable effect on fluctuations in either

flame development angle (0 - 10 % mass fraction burned) or flame propagation angle

(10 - 90 % mass fraction burned). Since skip firing did not lead to any reduction in

flame development fluctuations, it was concluded that the residual gas and the fresh

charge were well mixed and the residual fraction did not vary significantly from cycle-

to-cycle. Keck (1987) observed significant cycle-by-cycle fluctuations in the early

burning rate through analysis of Schlieren photographs. Since the laminar flame speed

is a function of mixture strength, and fluctuations in the equivalence ratio were not

expected because fuel and air were premixed, these fluctuations were attributed to

incomplete mixing of fresh charge and residual gas. Early flame development studies,

using a fibre optic instrumented spark plug, by Witze (1988), showed lower peak

pressure later in the cycle with larger dispersion for unscavenged cycles compared with
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completely scavenged cycles. Both of these features were also reflected in the flame

velocity data, indicating variations in the residual concentration in the vicinity of the

spark plug. Lebel (1992) made CO 2 and N2 concentration measurements by CARS in a

SI engine. High residual fractions were found to slow down the flame initiation but to

aid fast combustion. It was concluded, that because an equivalence ratio of 1.1 was

used where the laminar flame speed is not sensitive to small variations in mixture

strength (which depends on residual gas fraction) but is strongly dependent on

temperature, increased residuals lead to faster combustion. However Metghalchi

(1982) and Rhodes (1985) found the laminar flame speed of iso-octane (the fuel used

in Lebel's study) to be a strong function of the diluent fraction even at equivalence

ratios of 1 and 1.2. This data seems to suggest that the effect of temperature increase

due to higher residual fraction on the laminar flame speed is of the same order as the

inverse effect due to dilution.

These results suggest that the influence of the residual fraction on the flame initiation

and flame development process is dependent on engine characteristics and operating

conditions. Under lean operation low load conditions with stratified charge inlet

configuration, the mixing of fresh charge with residuals may well have a significant

influence on cyclic variability and hence on the lean operation limit.

1.4 Lean Burn Spark-Ignition Engines

The problem in designing lean burn systems has been to extend the lean misfire limit

sufficient to realise low NOx emission levels which achieve the mandatory emission

standards whilst maintaining satisfactory driveability. This requires swirl or another

means to improve or stabilise combustion; unfortunately this decreases the rated

output power due to the low flow coefficient of swirl intake ports.

There are numerous concepts of lean burn engines; perhaps the ultimate expression of

the lean burn stratified charge principle is the Diesel engine. The Diesel concept can be

adapted to run on gasoline by combining direct injection and spark ignition as shown in

the VW Futura concept engine (Emmenthal 1989). A SI engine with direct injection

and such heterogeneous mixture composition can operate with equivalence ratios

similar to those of diesel engines ((i) > 0.2) (Wurster 1988). The adaptation of this

concept to a production engine has to date been prevented by the high cost for the

mixture preparation system and it is limited in speed range.

In a concept which has been adopted in production engines at present by three

Japanese manufacturers, the lean operation range is limited in order to meet the NOx

emission standards. At low power, low speed when combustion temperature is low -

and hence NOx output is naturally low - they operate as a lean burn engine for

maximum fuel economy and then revert to controlled stoichiometric running for the

high power condition. In the low power mode the catalyst just oxidises HC and CO

while in the high power mode it also reduces NOx.
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This is the basis of the Honda VTEC-E engine which is used in the Civic model; it also

complies with the present European and Japanese emission regulations. The VTEC-E

engine runs typically at AFR 22 below 3000 rpm at low power (below 75 % of max.

inlet pressure). At high load and above 3000 rpm the engine reverts to a stoichiometric

mixture (near full load to a rich mixture). The engine has a 4-valve pent-roof cylinder

head with one centrally placed spark plug. One of the two inlet valves controls a high

swirl port to ensure high turbulence for fast burning velocity. In the lean operating

regime only this inlet valve opens fully, while the second opens only briefly about I

mm to disperse unwanted fuel build up. At full load above 2500 rpm and at part load

above 3200 rpm both inlet valves open fully for good volumetric efficiency and

stoichiometric or rich running conditions. It is claimed for the lean operation mode,

that by sequential injection during the inlet stroke the charge is stratified such that a

rich mixture is present near the spark plug at ignition (Hone 1993, Hardalupas 1995,

this work).

The Toyota lean burn engine follows a similar concept. It operates with an AFR of >20

below 4800 rpm and below 75 % of max. torque. At higher load and higher speed it

reverts back to a stoichiometric mixture and at full load operates with an AFR of 12.5.

Like the VTEC-E engine it also features a 4-valve pent-roof cylinder head with

separated dual intake ports, one with a swirl control valve (SCV) and the other with a

helical port shape for swirling inlet flow. In order to increase the volumetric efficiency,

a small passage between the two ports allows a small air flow to the straight port when

the SCV is closed at low load and low speed operation. By injecting into both ports at

the appropriate time during the inlet stroke with a twin spray fuel injector, it is claimed

that the fuel is finely atomised by the swirling bulk flow in the helical port and the high

speed flow in the straight port resulting in a homogeneous charge (Inoue 1993).

It is noteworthy that though Honda and Toyota apparently follow the same strategy

(swirl intake and sequential injection during inlet), the former's engine is claimed to be

a stratified charge engine and the latter a homogeneous charge type.

The Mitsubishi MVV lean burn engine makes use of tumble instead of swirl to enhance

turbulence and thereby reduces pumping losses. The fuel is injected through one port

during the inlet stroke, with the second inlet port passing air only, therefore stratifying

the charge. Due to tumble and the absence of swirl, it is claimed that the stratification

is maintained during compression. In order to utilise the axial fuel stratification, the

exhaust valve opposite the inlet valve which supplies the rich charge is replaced by the

spark plug (Iwamoto 1992, Kiyota 1992).

In practice, under low load and low speed running conditions, all these engine designs

offer an advantage in fuel consumption of about 5 - 10 % compared with their

conventional counterparts. This brings them close to similar EDI-Diesel engines in

terms of fuel efficiency. However, with an increasing proportion of high load and high

speed running this advantage is reduced. Also low speed flexibility and refinement are

below standard (AUTOCAR 17/06/1992, 26/04/1995).
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Mitsubishi has announced that it will introduce a direct-injection petrol engine for the

Japanese market in 1996. This engine operates with AFRs ranging from 30 to 40 at

part load which allows operation with nearly unthrottled intake air, reducing pumping

losses and improving fuel efficiency. The fuel is injected during the compression stroke

with 50 bar pressure into a piston cavity. The piston cavity is claimed to direct the

tumble air flow from a straight inlet port towards the centrally placed spark plug,

generating a stratified charge with a rich mixture near the spark plug at the time of

ignition. At medium and high load operation the fuel is injected during the inlet stroke.

The high pressure swirl injector together with the intense tumble air motion are

believed to generate a homogeneous charge. At medium load the engine is operated

with an air-fuel ratio from 20 to 25 for improved fuel efficiency. In the lean operation

mode EGR is used to minimise NOx. During high load operation the engine reverts to

a stoichiometric mixture. This gives a conventional specific power output without

turbo-charging and allows reduction of the NOx emission with a 3-way catalyst in the

critical high power, high combustion temperature mode (Yamaguchi 1995, Kume

1996).

1.5 Summary

Operating a spark-ignition engine with a lean mixture can significantly improve

efficiency compared with stoichiometric combustion. Although this type of engine

offers low primary emissions of nitrogen oxides, its future success will primarily

depend on its ability to meet the emission regulations on NOx without compromising

performance or losing its advantage of efficiency. This involves reducing the cyclic

variability of the lean combustion process and extending the lean operation limit. In

order to meet even stricter future regulations, like those proposed for California, it

might be necessary to use additional NOx reduction measures outside the combustion

chamber.

The previous review showed the importance of cycle-by-cycle variations in combustion

for the lean operation limit of spark ignition engines. The concept of stratified charge

has been introduced as a means to reduce cyclic variability and to extend the lean

operation limit. However, the contribution of mixture formation to cyclic variability in

performance is not well established. There is only a limited understanding of the

mechanism of in-cylinder mixture formation and to what extent stratification is

generated and how this affects cyclic variability. Furthermore, the issue of residual gas

concentration has not been considered in depth. It is not clear to what extent spatial

variations in the residual gas concentration exist and how they affect the lean operation

limit.

1.6 Aims of this Study

The primary aims of this study were to quantify the effect of mixture formation on

cyclic variability and to provide quantitative information on the mixing of air and fuel.
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The mixture formation evolution in a spark-ignition engine was to be characterised in

order to provide an insight into the mechanism(s) influencing the fuel motion and

mixing. For this purpose, it was intended to provide two-dimensional measurements of

the average fuel concentrations at various crank-angle positions during inlet and

compression stroke. To investigate the possible correlation between variations in the

air-to-fuel ratio close to the spark plug and the variations in combustion, it was

intended to provide sets of instantaneous two-dimensional fuel concentration

measurements, close to the spark plug at the time of ignition, for different operating

conditions. At the same time, by measuring simultaneously the in-cylinder pressure, the

influence of the stoichiometry adjacent to the spark plug on engine performance could

be studied in order to quantify some of the effects of charge stratification.

Another aim was to address separately mixture nonuniformity arising from potentially

imperfect mixing between burned residual gases and incoming fresh charge and spatial

variations in the residual gas concentration within the cylinder. Therefore it was

intended to identify a method which could provide measurements of the spatial

distribution and cyclic variation in residual gas concentration close to the spark plug at

the time of ignition and apply it to an operating engine.

In order to achieve the above goals, laser fluorescence imaging has been developed to

estimate air/fuel ratio distributions and residual distributions in a firing spark-ignition

research engine which was based on the Honda VTEC-E lean burn concept.

1.7 Outline of this Thesis

This thesis is organised in 4 parts. Part I includes Chapters 1 and 2 and provides

background information to SI engine combustion and diagnostic methods applied in

engine combustion research. Part II (Chapters 3 - 5) is concerned with fuel

visualisation studies in an operating spark-ignition engine. The residual gas

visualisation is described in Part III (Chapters 6 - 8). A summary of this work,

references and acknowledgements are contained in Part IV.

Chapter 2 reviews diagnostic tools suitable for the study of the combustion and

pollutant formation process in spark-ignition engines and gives examples of

applications. The advantages and limitations of the most applicable techniques are

discussed leading to an extended discussion of laser-induced fluorescence imaging for

fuel visualisation studies in Chapter 3. A strategy is developed to quantify the

measurements, resulting in equivalence ratio images. The experimental set-up,

apparatus and procedures for the fuel visualisation are discussed in Chapter 4. The

results of the fuel visualisation are presented in Chapter 5 in two Sections. Section one

describes the mixture formation process, while section two concentrates on the

influence of stoichiometry on engine performance and cyclic variability. Finally the

impact of the results on engine design is discussed. The strategy adopted to visualise

residual gases at the time of ignition is described in Chapter 6. Apart from the engine,

the experimental equipment and procedures of the residual gas visualisation study
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differ from the fuel visualisation study and are described in Chapter 7. Chapter 8
contains the results, discussion and conclusions of the residual gas study. Chapter 9
(Part IV) summarises the work contained in this thesis and the principal conclusions.
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Chapter 2

Combustion Diagnostics in Spark-Ignition Engines

A review of the diagnostic tools used to gain information on the mixing, combustion

and pollutant formation processes in SI engines is given in this chapter. Examples of

applications, the advantages and limitations of the most common techniques are

presented.

2.1 Introduction

Traditionally engine configurations have been mainly developed by empirical methods.

Therefore there is only limited understanding why one particular design is better than

another. In order to optimise the balance between performance and efficiency whilst

complying with the ever increasing demands for cleaner combustion, more specific

insights into key phenomena such as mixing and combustion are required. The

influence of fluid dynamics on the combustion process is seen as the primary target in

developing and optimising spark ignition engine combustion. Therefore measurements

of velocities and species concentration are essential if one is to gain a better

knowledge, both of combustion fundamentals and of the design of a particular engine.

In order to obtain a better understanding of the mixing, ignition and combustion

processes in the spark ignition engine, information on mixture strength and

distribution, temperature, velocities, residual gas concentration, burning rate and their

respective correlations to engine performance, as characterised by emissions, fuel

efficiency and cycle-by-cycle fluctuations, is required. Particular problems for such

measurements in the cylinder of a spark ignition engine are the high pressure and

temperature fluctuations. Access to the combustion chamber is normally limited,

particularly in modern 4-valve cylinder head configurations, and small clearance

volumes render it difficult to introduce probes without perturbing the flow. High

engine speeds for realistic running conditions require a high dynamic range of the data

acquisition system if instantaneous cycle-resolved measurements are attempted.

Traditional engine diagnostics (reviewed by Amann 1985) have been expanded and

supplemented by the application of optical (primarily laser based) diagnostic techniques

(reviewed by Dyer 1985) for in-cylinder engine studies. With the introduction and
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availability of reliable lasers, laser methods are assuming an increasingly important role

in in-cylinder combustion diagnostics. Laser-based techniques supply the capability for

remote, non-intrusive, in-situ, spatially and temporally precise in-cylinder

measurements of properties. However, changes to the design of the engine required for

optical access are often intrusive and influence the engine characteristics and

performance.

2.2 Pressure Measurements

Piezoelectric transducers built into the engine head are commonly used for measuring

the in-cylinder pressure. The transducer contains a quartz crystal which is exposed to

the cylinder pressure by a diaphragm. An electrical charge proportional to the in-

cylinder pressure is induced by the compression of the crystal and fed into a charge

amplifier.

Pressure histories are a major source of information about the combustion

characteristics. They directly measure peak pressure and the crank angle at which peak

pressure occurs. The work per cycle may be calculated by integrating around a closed

curve on a p-V diagram. This can be translated into the indicated mean effective

pressure (imep) by dividing by the swept volume (Heywood 1988). Imep is a direct

measure of the performance and efficiency of the combustion cycle. By making similar

measurements over many cycles, the cycle-by-cycle fluctuations can be determined.

The piezoelectric pressure transducer is also the most useful monitoring device for

knock. During knocking combustion, high frequency pressure fluctuations are

observed whose amplitude decays with time (Heywood 1988). Once knock occurs, the

pressure distribution across the cylinder is no longer uniform. Transducers located at

different points in the chamber will record different pressure levels at a given time, thus

allowing under certain circumstances location of the knock centre (Earp 1994).

It is also possible to extract approximate mass burning rates from the pressure curves

(Heywood 1988). Sztenderowicz (1990) deduced flame development angle (0 - 10 %

mass fraction burned) and flame propagation angle (10 - 90 % mass fraction burned)

from pressure traces and compared them to fuel/air and residual gas nonuniformities.

2.3 Non Optical In-Cylinder Measurements

Cylinder composition information has been obtained by gas sampling directly from the

combustion chamber through a fast-acting sampling valve built into the cylinder head

and subsequent analysis of the sample. Most such valves use an electromagnetically or

electrohydraulically controlled reciprocating needle to extract a small gas sample into

an evacuated sampling chamber where a rapid drop in temperature and pressure

quenches the combustion process. Sampling times are typically 1 ms for fast-acting

valves. The sample can be analysed using conventional techniques, usually a flame

ionisation detector (FID) for hydrocarbons, a non-dispersive infrared (NDIR) gas
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analyser for CO, CO 2, NO, a chemiluminescent analyser for NO, a paramagnetic or a

polarographic analyser for oxygen and a Bosch smoke meter for particulates.

With many sampling systems there are considerable uncertainties in where the gas

sample originated and whether it is representative of the bulk composition. Even where

the probe and lines are cooled to quench further reaction there remains considerable

uncertainty due to potential chemical reaction after sample withdrawal from the

combustion chamber. If the valve protrudes into the chamber, it also affects the in-

cylinder gas behaviour.

Collings (1988) developed a fast response FID system by introducing the sample

directly into the detector's hydrogen flame via short, small-diameter tubes. This

enables frequency response of up to 500 Hz, but because of the pressure dependence

of the transient time it cannot be used to continuously sample over a whole cycle. By

introducing the sample tube into the spark plug Collings was able to correlate the local

hydrocarbon concentration to the subsequent in-cylinder pressure at TDC.

Sleightholme (1990) used the Collings technique to correlate hydrocarbon

concentration to cyclic pressure fluctuations.

Galliot (1990) used the same gas sampling technique to measure the residual gas

concentration in a SI engine. Using propane fuel premixed with air, the hydrocarbon

concentrations near the spark plug were measured. By comparing the hydrocarbon

concentrations of combusting and motored cycles, the residual gas concentration was

estimated - the use of premixed gaseous fuel has the advantage of separating the issues

of evaporation and mixing of a liquid fuel.

2.4 Optical Fibre Techniques

Optical fibres built into the cylinder head, piston or the spark plug give optical access

to the combustion chamber requiring only minor modification to the engine. An optical

fibre is a light guide with extremely high transmission efficiencies. The fibre itself

consists of two concentric silica regions, called the 'core' and the 'cladding'. Light

rays entering the fibre at angles within its acceptance cone are reflected by the

core/cladding interface and thus are guided by the fibre. Contrasting light rays outside

the fibre's acceptance cone are absorbed by the cladding. The light is usually guided to

some sort of photodetector.

By building several separate fibres into the cylinder head the direction of the flame

development can be determined (Haagensen 1991). A tool which allows detection of

the early flame development on every spark ignition engine without modification was

developed by Witze (1988). He installed eight optical fibres in a ring at the base of the

threaded region of a standard spark plug. The effects on flame kernel development

caused by differences in residual gas scavenging, differences in the ground electrode

orientation and differences in swirl and turbulence levels were detected. This tool may

also be used to investigate the cause and effect relationship between early flame
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development and engine performance. Ohyama (1990) built an optical fibre bundle into

the centre electrode of a spark plug. This enables detection of knock using the effect of

the pressure fluctuation on the intensity of the combustion gas light emissions. By

building several fibres into the piston, the knock onset location could be detected

(Spiecher 1990). Detecting the light intensity of CH (450 nm) and C2 (750 nm) radicals

after the spark discharge cycle-by-cycle, allows the fluctuation of the air/fuel ratio near

the spark plug to be monitored (Ohyama 1990) - though no quantitative results have

been reported.

2.5 Laser Schlieren Photography

While direct flame photographs show the location and the shape of the actual reaction

zone which radiates in the blue region of the visible spectrum (Bates 1989), Schlieren

photography can give insight into the structure of the flame. It allows the gross

features of the flame to be illustrated. The Schlieren technique makes use of the fact

that when a collimated beam of light is passed through a gas of nonuniform density,

individual rays are deflected through different angles. If the rays are focused by a lens

after they pass through the chamber section, a deflected ray misses the focal point and

can be blocked by an aperture. Regions responsible for ray deflection appear darker

when subsequently refocused onto film.

Gatowski (1984) used Schlieren photography to illustrate various stages of

combustion in a SI engine with a square-piston. The influence of bulk gas motion on

variations in cycle by cycle convection of the flame centre, the influence of turbulence

and of the spark location on the early flame development could be illustrated. In the

same engine Gatowski (1985) investigated the flame development phase and its cyclic

fluctuation for swirl and squish flows by Schlieren photography.

Keck (1987) used a model to perform a more detailed analysis of the flame from

successive time resolved Schlieren images. Based on the assumption of a spherical

flame kernel, the flame front radius was determined according to the spherical surface

which best fitted the silhouette observed in the photograph, and subsequently the flame

frontal area and flame volume could be calculated. Assuming that early in the

combustion process the rate of growth of the burnt volume is proportional to the rate

of growth of the flame front as observed in the frames, the early burning velocities

could be determined solely from the Schlieren film - in a phase of combustion where

pressure data do not yield much information. This analysis of Schlieren film

complemented by analysis of pressure data for the developed flame propagation was

used to examine the influence of swirl and squish on combustion and the influence of

the location and growth rate of the early flame kernel on cyclic variability.

Pischinger (1988) used a Schlieren system which provided two orthogonal views of the

developing flame to define the initial flame growth process. The influence of different

breakdown ignition systems on the initial flame development period for swirling and

non-swirling combustion chambers were investigated.
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2.6 Rayleigh & Raman Scattering

The scattering techniques are based on an incident high-energy laser beam interacting

with the molecules along its path, resulting in light scattering at incident wavelength

(elastic process) or other wavelength (inelastic process). The scattered light is

collected and its intensity and spectral characteristics measured with a spectrometer.

Species concentrations are usually inferred from the intensity of the incident scattering

and temperatures from the spectral distribution.

Rayleigh scattering is an elastic process and as such is not specific to any species in a

spectral sense. It can be used to measure mixing of gases with significantly different

Rayleigh cross sections. Temperature measurements can be made in constant pressure

environments. Rayleigh scattering suffers from Mie (scattering from particles or

droplets) interference and scattered laser light (Long 1993).

Raman scattering is an inelastic process. The frequency shift of the Raman spectrum is

species specific and proportional to number density. Temperature measurements can

be made from the distribution of the scattering. Raman scattering is very weak due to

small scattering cross sections and is usually limited to single point measurements of

major species or mean measurements over many laser pulses.

Rayleigh scattering was applied to measurement of the local gas temperatures in a

methane-fuelled spark ignition engine (Kadota 1991). These measurements were

performed in a low compression ratio (4:1), L-head, side-valve type engine

configuration in order to minimise Mie and laser scattering.

Arcoumanis (1991) has made Rayleigh scattering measurements from fuel simulated

with gaseous Freon-12 in a port-injected model engine. The engine was fabricated

from acrylic with a low compression ratio (3.5:1) and a flat cylinder head with a single

valve used for inlet and exhaust. It was motored, with no combustion taking place,

running at 200 rpm. Spatial and temporal information about the fuel/air mixing was

obtained by mean point measurements in a plane. Similarly Kadota (1989) made

vapour concentration measurements in a transparent cylinder via Rayleigh scattering.

An engine cylinder head was mounted on a cylinder made from acrylic resin. Air was

supplied by a compressor and fuel (Freon) injected continuously. Time-averaged

measurements at more than 100 points and two planes were made and extrapolation

between the measurement points allowed determination of contours of fuel

concentration.

Vapour concentration measurements using Rayleigh scattering under more realistic

conditions were performed by Kadota (1991) in a motored (n = 650- 850 rpm), non-

combusting 4-valve engine with a compression ratio of 3.1:1. Time-averaged

measurements during the inlet and compression stroke were performed with n-pentane,

n-hexane and gasoline as fuel at a point close to the spark plug. There was a good

resemblance among the time histories of vapour concentration for the different fuels.
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The Rayleigh scattering technique was compromised by the need to use a fuel marker

with a large Rayleigh cross section in order to achieve an adequate signal-to-noise

ratio. Freon-12 is gaseous and its molecules large, so it may not be representative of

the true fuel distribution in a production engine - Kadota's (1991) work showed

similar time histories comparing gaseous fuels and gasoline, but did not compare the

vapour distribution. Since the method relies on a weak elastic scattering process, all

other sources of scattering need to be minimised. This imposes constraints on the

design of a suitable experimental engine, hence the simplified cylinder head geometry

in a non-firing engine.

Raman spectroscopy was used by A. 0. zur Loye (1983) to make cycle-averaged

spatially and temporally resolved measurements of the gas temperature, using the

spectra of nitrogen, and CO concentrations in the post-flame gases in a skip-fired SI

engine. Johnston (1979) used laser Raman spectroscopy to measure fuel-air

distribution in a motored (n = 456 rpm) research engine using propane as fuel. The

engine had a flat fused silica cylinder head and radially mounted and pushrod operated

valves. Time-averaged point measurements along a line across the cylinder were taken

for pentane and nitrogen concentrations during the inlet and compression stroke. The

mixing process was described on an equivalence ratio scale and compared to flow

visualisation photographs.

The major short-coming of the spontaneous Raman technique is an inherently low

signal level. This is especially problematic at low pressure and in environments with

high background luminosities. This makes cycle-by-cycle single-shot measurements

difficult.

2.7 Laser-Doppler Anemometry (LDA) & Phase-Doppler
Anemornetry (PDA)

LDA and PDA are based on the same principle. They make use of the interference

fringes generated by incident coherent laser beams of equal intensity. A particle

moving through the interference fringe planes scatters intensity-modulated light which

is detected with a photodetector. LDA measures the rate of intensity variation of the

scattered light, which is proportional to the velocity normal to the fringes. By

generating three orthogonal interference fringes of different wavelength in the same

measurement volume, all three velocity components can be obtained (3D-LDA). PDA

makes use of three photodetectors which are spaced at different angles to the

measurement volume. Each detector will see the same modulated signal as in the LDA

case, but with a time delay. This time delay is effectively a phase shift which is

proportional to the particle diameter. Because the instrument is based on the LDA

principle, it also gives the droplet velocity vector normal to the fringes and hence

droplet size, velocity and position simultaneously (Heitor 1993). Understanding

droplet size and trajectory is particularly important for good fuel/air mixing because

large droplets contain higher fuel mass than small ones and tend to follow the air flow
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less faithfully. PDAJLDA is therefore a good instrument for droplet velocity/size

measurement in Diesel or SI engine fuel injector sprays. LDA is also widely used for

in-cylinder three-dimensional air velocity measurements by seeding particles into the

flow. By making average point measurements over a grid in a plane, spatial mean flow

characteristics can be obtained.

LDA/PDA is a very well established technique and is now widely used in the

combustion and flow diagnostics community. First applications of LDA in firing SI

engines were reported as early as 1979 by Rask and Asanuma. More recently Vafidis

(1987) studied the effect of intake port and combustion chamber geometry on in-

cylinder turbulence in a motored engine. Foster (1987) used a SI engine with a

transparent cylinder head and side-wall located valves and spark plug to measure the

velocity and turbulence profile in a fired engine. They made these measurements in the

boundary layer and quantified the increase in boundary layer thickness for low and high

swirl. Arcoumanis (1990) showed, that tumbling motion is a mechanism for turbulence

enhancement using LDA. This was done by rotating the inlet port such that in a plane

passing through the centre of the inlet and exhaust valves, either only tumble, or only

swirl, or both tumble and swirl were generated. Hadded (1991) used scanning LDA

measurements to obtain a spatial turbulence characterisation of a pent-roof 4-valve

engine for four different inlet configurations with differing tumble magnitudes. Le Coz

(1992) measured the local flow field in the spark gap by two-component LDA and

compared it with the combustion initiation duration. Hardalupas (1995) reports on

droplet characteristics and air velocity in an engine of similar design to the one

examined here. The results and conclusions to be drawn from this work are

incorporated in Chapter 5.

2.8 Particle Image Velocimetry (PIV)

While LDA is limited to point measurements, PIV is used to extract 2-dimensional

velocity fields. PIV is based on small tracer particles introduced to the flow and

subjected to intensive multiple-illumination by a laser sheet. The light scattered from

seed particles is recorded photographically or electronically, with one image for each

laser pulse. Due to the short laser pulse duration each image contains the instantaneous

position of the particles. The local velocity in the flow is measured by determining the

displacement of a particle between two laser pulses (images). If the seeding density is

sufficiently high, a two-dimensional velocity map of the illuminated region can be

generated. [Up-to-date reviews of PIV can be found in Buchhave (1994) and Farrugia

(1996).]

PIV was first applied to in-cylinder measurements by Reuss (1989) in a motored

engine. The velocity of the swirling bulk flow could be measured in a portion of the

engine cylinder, parallel to the piston crown. Vorticity structures and strain rates with

>1 mm resolution were derived from instantaneous flow fields. It was suggested, that

the magnitude of the observed strain rates and the random distribution of high strain
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regions could affect the early flame growth and therefore contribute to cyclic variations

in engine performance. Nino (1993) demonstrated PIV in a fired two-stroke engine

with high swirl inlet configuration. Instantaneous and ensemble averaged velocity fields

parallel to the piston crown and velocity fluctuations could be obtained in the unburned

gas. Reeves (1994) measured the instantaneous velocity field in a motored 4-valve

engine. Illumination of a plane parallel to the cylinder axis through a piston window

allowed the study of large scale tumble vortices.

2.9 Coherent Anti-Stokes Raman Spectroscopy (CARS)

CARS is used for temperature and species concentration measurements. It makes use

of two lasers of different wavelength (pump and Stokes beams) to stimulate a non-

linear interaction with the gas molecules contained in the measurement volume. An

anti-Stokes shifted laser-like (coherent) signal beam is generated by this interaction

which is directed into a spectrometer for measurement of intensity and spectral

structure. By comparing the measured spectrum of a species with a calculated

spectrum, the temperature in the measurement volume can be determined. The

concentration of the measured species in the measurement volume can be obtained

from the signal intensity. [Complete reviews of CARS theory can be found in Eckbreth

(1988) and Greenhalgh (1988).] Advantages of CARS in engine combustion

applications are that the laser-like signal beam allows for efficient collection with

limited optical access and the spatial rejection of the combustion luminosity and laser

scattering. Since CARS is a point measurement technique, spatial information can only

be obtained by measuring the mean signal at several locations in the cylinder.

CARS has been applied to temperature and species concentration measurements in the

internal combustion engine. Lucht (1987) measured the cylinder temperature in the

unburned gas of a fired SI engine with an accuracy of better than 10 %. Marie (1987)

performed temperature measurements for light load, full load and knocking engine

running conditions and analysed dispersions due to cycle-by-cycle variations. Williams

(1991) used CARS for simultaneous measurement of HC and 0 2 in the unburned gas

of a firing SI engine. Quantitative results of the local APR in the vicinity of the spark

plug were presented and correlated to engine performance. Lebel (1992) studied the

influence of the mixing between fresh gas and residual gas in the vicinity of the spark

plug on engine performance by simultaneous measurement of CO2 concentrations and

temperature in a firing SI engine.

2.10 Planar Laser-Induced Fluorescence (PLIF)

PLIF involves exciting certain molecules from a specific initial stage to an excited

electronic state and then collecting the resulting fluorescence as they relax radiatively.

In an uniform quenching environment, the PLIF signal is proportional to species

concentration. LIF scattering cross sections for one photon transitions are sufficiently

large that minor species can be detected. The signal can be spectrally filtered from laser
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light scattering, since the fluorescence wavelength is often shifted compared to the

excitation wavelength.

The feasibility of observing the flame front in a SI engine by PLIF from OH radicals

has been demonstrated by Felton (1988) and Suntz (1988). Qualitative information

about the turbulent flame structure was obtained with this method in a square-piston

engine simulator by Becker (1990). Acetaldehyde mixed into the fuel was used as a

fluorescence dopant for two-dimensional imaging of the flame front in the same engine

simulator by Arnold (1990). It was demonstrated that in this way the flame front could

be marked by mapping regions of unburned fuel. Andresen (1990) imaged NO, OH

and fuel distribution in an optical 4-cylinder Volkswagen engine. Quartz windows in

the engines flat 2-valve cylinder head (parallel inlet and exhaust valves) allowed an 18

mm wide laser sheet. Broad band fluorescence attributed to iso-octane was used to

describe the gross fuel distribution in a qualitative manner. It was also demonstrated

that the distribution of nitrogen oxide could be imaged with LT at 193 nm during the

exhaust stroke (200° after TDC). During the combustion stroke no fluorescence of NO

could be detected. This was attributed to absorption by an unspecified species.

Baritaud (1992) made fuel concentration measurements in a motored model engine by

PLIF of biacetyle mixed with iso-octane. Quantitative comparisons of the fuel

concentration fluctuations in the measurement plane for different fuel injection timings,

engine speeds, swirl and tumble inlet were presented. Lawrenz (1992) made

quantitative 2D LIF measurements of air/fuel ratios during the intake stroke in a

motored square-piston model engine. Single images taken at different crank angle

positions in subsequent cycles showed that appreciable inhomogeneities existed until

ignition timing for injection at 30° CA after inlet TDC. Arnold (1993) imaged

simultaneously fuel and OH radicals in a realistic SI engine. The fuel was iso-octane

doped with acetone as fluorescence marker. The start and propagation of combustion

were studied for different AFRs in a ribbon 10 mm below the spark plug from both the

fuel and the OH images. This work also gave a qualitative description of the fuel inlet

process over 6° crank angle after the inlet valve opened for different AFRs.

2.11 Other In-Cylinder Combustion Diagnostic Approaches

Swords (1982) described a high resolution optical flame-speed detector and its

application to a SI engine. The attenuation of two parallel He/Ne laser beams, each

focused on an optical detector, was used to mark the arrival of the flame front. From

the time delay between the attenuation of each beam by the flame front, and the

spacing of the beams, the flame speed was calculated. With this method correlations

between the flame speed of the early flame kernel, engine speed and stoichiometry

could be described. The technique was also used together with LDA for multi-

sampling of combustion variables such as early flame speed, mean flow and turbulence

levels and allowed the correlation with engine performance.
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Winkelhofer (1992) described a method for observation of the vaporised fuel in the

cylinder of a motored IC engine, based on absorption of infra-red laser light radiation

by hydrocarbon molecules. An IR beam is focused through the combustion chamber

and its transmitted intensity is measured by a photo sensor. Variations in the

transmitted radiation intensity are produced by the presence of fuel vapour and can be

scaled for fuel vapour concentration levels. The technique is limited to the line-of-sight

integral of the fuel concentration along the optical path. The cycle-by-cycle variations

in fuel concentration levels and the mapping of the temporal development of the in-

cylinder fuel distribution with some limited degree of spatial resolution could be

demonstrated.

Shoji (1992) studied the behaviour of the OH, CH and C2 radicals by means of

emission and absorption spectroscopy in a research SI engine. The combustion

luminosity is introduced into a polychromator through an optical fibre. The light is then

dispersed by a diffraction grating and transmitted to four optical detectors by four

fibres at positions corresponding to the desired wavelengths. In the emission mode, the

combustion luminosity was detected, whereas in the absorption mode, a xenon lamp

was used and the absorption of the light at the wavelength of the corresponding

species was detected. The apparatus was used to study the behaviour of the radical

emissions during normal and knocking combustion.

2.12 Summary

A limited review of diagnostic tools for combustion research in SI engines showed that

the measurements most often sought have involved cylinder-gas pressure, temperature

and composition, and in-cylinder fluid motions such as bulk gas velocity, turbulence

and flame travel. Measurement of the in-cylinder pressure development with

piezoelectric transducer is the major source of information about combustion

characteristics. Laser based diagnostic tools enabled in-cylinder studies of velocities

and species concentration. LDA has been widely used for point measurements of air

velocity and turbulence. More recently PIV has been applied to operating engines for

measurement of 2-dimensional velocity fields. Concentration measurements, laser

based (CARS, Rayleigh) or traditional (gas-sampling), are often limited to a single

point. However, the laser techniques offer the potential to get some spatial information

by measuring the mean concentration of several points in a grid and assembling 2D-

maps of average concentrations. In the same way velocity maps can be assembled

using LDA. Few such measurements have been reported so far, probably due to the

long measurement time required for collecting sufficient data points. A technique

which is effective enough to allow instantaneous planar (2D) measurements of species

concentration, is LIF. Planar LIF offers therefore great potential for real time in-

cylinder concentration measurements which might have an impact on engine design.

Tut there is much to be done in turning promises into reality. This can only happen by

careful design of critical experiments - those that answer important questions - and the

application of diagnostic techniques that will lead to those answers'(T. M. Dyer 1985).
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PART II

FUEL VISUALISATION STUDIES
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Chapter 3

Strategy for Fuel Visualisation

Planar LIF is presented as the means of visualising the fuel distribution in an operating

SI engine. The criteria for the selection of the fuel and a suitable fuel marker are shown

and the issue of fuel vaporisation and mixing is discussed. A strategy to quantify the

measurements, resulting in maps of equivalence ratios, is described.

3.1 Introduction

Quantitative measurement of the mixture formation process and the influence of cycle-

by-cycle fluctuation in fuel concentration on engine performance requires a measuring

technique which is both instantaneous and two-dimensional. Probe sampling and

CARS can be instantaneous, but they are limited to a single measurement point. The

previous review showed that planar laser-induced fluorescence is an effective

diagnostic method for species concentration measurements in operating SI engines.
PLIF is attractive because, unlike other planar laser diagnostics, such as Raman or

Rayleigh scattering, it is a relatively efficient scattering process. Raman or Rayleigh

possess small scattering cross sections and are therefore very susceptible to

contamination from laser scattering from windows or particles in the flow. This makes

them unsuitable for applications in "real" engines. Fluorescence scattering cross

sections are large enough to allow instantaneous 2D imaging of species concentration

with pulsed lasers, generating 10 - 40 ns pulses. By analysing instantaneous images it is

not only possible to obtain average concentrations, but also the fluctuating

concentration as say a standard deviation. This is a particularly important feature

because cycle resolved measurements can be related to the performance of an

individual engine cycle. For these reasons, the experiments discussed in this thesis are

based on laser-induced fluorescence.

3.2 Concept of Quantitative Measurements by PLIF

L1F is a well-established, sensitive technique for detecting population densities of

atoms and molecules in specific quantum states. The principles of L1F are well known

and up to date reviews can be found in Eckbreth (1988), Seitzman (1988) and
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Greenhalgh (1994). The principle of LIF is illustrated in Figure 3.1. After the laser has

raised a proportion of the probed molecules to an excited electronic state, there are

several possible relaxation routes from the upper to the lower level. If the energy is

emitted in the form of a photon as the excited species returns to the ground state, it is

called fluorescence. But there are other important competing processes. One is

relaxation to the ground state stimulated by the laser, and the second is excitation by

the laser to higher electronic levels. High laser intensities can lead to ionisation, where

the molecules acquire sufficient energy to allow one or more electrons to escape.

Collision with other molecules can lead to radiationless energy transfer (quenching).

Interaction between separate atoms of the molecule can produce internal energy

transfers, called dissociation. These internal collisions or interactions with the bath gas

can also lead to relaxation and energy exchange processes in the vibrational and

rotational levels in the upper state. This, plus the opportunity to relax to other

rotational and vibrational levels in the lower state, causes the fluorescence to be broad

band and, normally, shifted to longer wavelength. For practical purposes quenching

and rotational and vibrational relaxation are the most important because they are

environment specific and therefore a function of the local gas composition, pressure

and temperature.

The quenching rate depends on the molecule probed and the available collision partner.

Some molecules are better than others in carrying away the excess energy after

absorption of laser light. This gives rise to differing quenching rates for different gas

compositions. If the quenching rate is the dominant form of relaxation then the

fluorescence quantum yield will also be composition dependent. Oxygen is often found

to be a good quencher. For fuel visualisation, the quenching effect due to oxygen is

most important, since for an inhomogeneous fuel/air mixture the quenching

Higher Electronic &

Ionising States
Energy Transfer to
Lower Excited State

Excited
State

Laser Dissociative

State
Fluorescence Energy Loss due to

Collisions with other
Molecules - Quenching

Ground
State

Fig. 3.1: Schematic diagram of the primary energy transfer processes in fluorescence.
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Fig. 3.2: Schematic of Planar Laser Induced Fluorescence (PLIF), (from Greenhalgh 1994).
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environment for the fluorescence marker varies.

The fluorescence is proportional to the number of molecules in the measurement
volume, the laser intensity and, if the transition is not saturated, inversely proportional
to the quenching rate. If the laser intensity is very large, absorption and stimulated
emission dominate the energy transfer such that the quenching does not significantly
decrease the population in the upper level. Thus, if the laser intensity is significantly
above the saturation intensity, fluorescence becomes independent of both quenching
and laser intensity. Saturated fluorescence is not without problems however. Many
hydrocarbons do not saturate at laser intensities available at absorption wavelengths.
Furthermore, it is difficult to achieve saturation during the entire laser pulse due to the
temporal variation in the laser intensity. It is also difficult to maintain saturation over
the whole sheet profile (Eckbreth 1988).

In order to allow quantitative concentration measurements, the photo-physical
properties of the species under investigation and its sensitivity to the quenching
environment has to be known. Ideally the probed species should be insensitive to
quenching and it should yield a strong fluorescence signal independent of temperature
and pressure. Alternatively the temperature and pressure dependence of the
fluorescence as well as the quenching cross sections of the most important quenching
partner have to be measured and the measured images corrected for these effects.
However any ambiguity in the precise magnitude of the conditions in the probed
volume will affect the accuracy of the measurement. Unfortunately most commonly
used fuels are not suitable for detection by LIF since they either do not have a
sufficiently strong absorption at an accessible wavelength or they dissociate in
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preference to fluorescing. Natural markers, such as aromatics can be problematic and

produce weak signals at high pressures; also these are very sensitive to oxygen

quenching. For such fuels a carefully chosen fuel marker must be used. This can be

added to the fuel or, if it is physically and chemically similar to the normal fuel, used

instead.

The basic layout of a PLIF experiment is shown in Figure 3.2. The laser beam, which is

tuned to a molecular absorption, is formed into a sheet by a set of cylindrical lenses

and focused onto the measurement volume by a spherical lens. The fluorescence is

typically detected at right angles to the incident laser light with a CCD (charge-coupled

device) camera in conjunction with a gated signal intensifier. Short gate durations (50-

100 ns) of the intensifier allow weak images to be recorded against bright background

e.g. flames or roomlight. Since CCDs are digital devices, recorded images can be

transferred on line to a PC for instant display, storage or processing. In most PLIF

applications pulsed lasers are used for their short pulse duration of typically 10-30 ns

which, along with short intensifier gate-times, enable instantaneous imaging of species

concentrations.

3.3 Choice of a Fluorescence Marker

Commercial-grade gasoline emits very strong fluorescence signals when excited at 308

nm. However, since gasoline consists of many components, this fluorescence is not

specific, and may vary for different fuels. The influence of pressure and temperature on

the fluorescence signal is difficult to quantify. Nevertheless, qualitative information can

be gained from these unspecific signals (Fansler 1995). In this investigation, iso-octane

was used as the fuel since it consists of only one component. Although iso-octane will

fluoresce when excited at 248 nm it tends to be heavily quenched at pressure.

Andresen (1990) detected broad band fluorescence emissions which were attributed to

iso-octane. This broad band emission was probably predominantly from polycyclic

aromatic hydrocarbons (PAH) formed during combustion and not iso-octane. The

quantum efficiencies of fluorescence for PAHs tend to be several orders of magnitude

larger and give rise to similar spectra (Tait 1994). For this reason, a dopant with a well

defined fluorescence and chemical behaviour had to be chosen and mixed into iso-

octane. The choice of a possible tracer is limited by the requirement that it must not

only have suitable fluorescence properties, but must also be soluble in iso-octane and

have similar combustion and molecular transport characteristics. These conditions can

be met by choosing a low molecular weight hydrocarbon, like a ketone or an aldehyde,

as a fluorescence marker.

A further limitation to the choice of a fuel marker is that it must absorb at an available

laser wavelength. If a planar image is to be obtained covering a substantial part of the

cylinder cross section, then typically 50-200 m,T of excitation energy is required. The

only laser sources available for this study which could obtain this power were KrF and
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Fig. 3.3: Gas phase absorption spectra of
acetone, 3-pentanone, 2,4-dimethyI-3-penta-
none, and 2,2,4,4-tetramethy1-3-pentanone
(from Hansen et al 1975).

Fig. 3.4: Fluorescence emission spectra of
acetone, 3-pentanone, 2,4-dimethy1-3-penta-
none, and 2,2,4,4-tetramethy1-3-pentanone
(from Hansen et al 1975)

XeC1 Excimer lasers which lase at 248 and 308 nm respectively and Nd:YAG (third
harmonic) at 266 nm. Excitation at 248 nm gives rise to large background signals from
traces of oils absorbed into engine surfaces and may result in contamination of the
fluorescence signal by PAHs formed during combustion. To minimise this problem the
308 nm radiation of the XeClExcimer laser was the preferred choice.

Ketones and aldehydes have been used as fluorescence markers for hydrocarbon fuels.
Becker (1990) and Tait (1992) used Acetaldehyde in combustion while Lozano (1992)
and Tait (1993) used Acetone in cold-flow situations. Ketones and aldehydes have
similar absorption and fluorescence spectra. The ketones acetone and pentanone have
absorption bands ranging from 230 to 320 nm with a maximum near 280 nm (Fig. 3.3),
which is very similar to the absorption band of acetaldehyde (Tait 1994). This allows
efficient excitation with large planar sheets using UV Excimer lasers operating at 308
nm (XeC1) or 248 nm (KrF). The fluorescence, after excitation with 308 nm exhibits a
featureless broadband structure from 330 to 600 nm, with the maximum around 430
nm (Fig. 3.4). The shift towards longer wavelength of the fluorescence compared with
the excitation is important from a spectroscopy stand point, since it permits
discrimination between the laser light and the fluorescence signal. This discrimination
can be easily achieved without a special UV-filter by using standard glass optics for the
detection system, because the peak emission at about 430 nm is in the visible range and
308 nm radiation is not transmitted by standard glass.

The fluorescence properties of acetone have been subject to numerous investigations
over the years and have been shown to be favourable. Acetone fluorescence was found
to be linear with laser fluence (Lozano 1992, Tait 1994). Experiments established that
the self quenching of acetone is negligible and the fluorescence intensity is directly
proportional to concentration (Lawrenz 1992, Lozano 1992, Tait 1994). Tait (1994)

37



...	
..	 I	 ,.. ,,,,,i	

!

i	 i	 1	 I
1	 i	 ,

4c .	 '11143E9c123 lin —	 •	
.

i

Impooll mom=

I	 li	 I ° 0 00 ‘0 etoco oextedoo o01	 1
I •

0.0 	
250 300 350 400 450 500 550 600 650 700 750 800 850 900

Temperature [Kelvin]

IID 
4-Methyl.Pent-2 .one
	 A Acetone	 o Acetaldehyde	 + Butanone	 X Pentanone	 0 Valaldehyde

Fig. 3.5: Relative fluorescence of various carbonyl compounds with temperature (from Tait et al 1992).

showed that different carrier gases (nitrogen and air) did not change the fluorescence
behaviour between 300 and 700 K at atmospheric pressure. This suggests that the
fluorescence from acetone is insensitive to quenching by oxygen over this range of
conditions. Studies by Lawrenz (1992) and Bryce (1996) revealed only a small
pressure dependence of the fluorescence from acetone up to 10 bar when excited with
308 nm at room temperature. The temperature dependence of the acetone fluorescence

was found to be linear at atmospheric pressure (Fig. 3.5). The effect of temperature on
fluorescence at elevated pressures has not yet been studied, due to the complex nature
of such an experiment (Bryce 1996). It is unlikely that the temperature dependency of
the fluorescence is significantly different at pressures up to 2 bar (the maximum
cylinder pressure during measurements in the current work) compared to ambient
pressure. However this remains an area of slight uncertainty until quantitative data is

available.

The fluorescence properties of acetaldehyde has been less intensively studied. Lawrenz
(1992) found fluorescence intensities from acetaldehyde to be directly proportional to
concentration. The fluorescence of acetaldehyde was found to be almost independent
of pressure at room temperature (Bryce 1996) and independent of temperature at
atmospheric pressure (Fig. 3.5) when excited with 308 nm.

Both acetaldehyde and acetone are soluble in iso-octane. However, acetaldehyde was
rejected as a fuel marker because of a large difference in vaporisation characteristics
compared with iso-octane. Acetaldehyde has a vapour pressure of 1 bar at 21 °C
whereas iso-octane attains this pressure at 99 °C. Fuel injection into an inlet port,
where the fuel is allowed to vaporise and mix with the intake air, would lead to a
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Table 1: Physical properties of various fuel marker

Fuel Marker Molecular
Weight

[g/mole]

Boiling
Point

[°C]

Density

[g/cm3]

Vapour Phase
Mass Diffusionl)

[10-6 m2/s]

Iso-Octane 114.23 99.2 0.6919 10.0

Acetaldehyde 44.05 20.8 0.7831 18.3

Acetone 58.08 56.2 0.7899 15.6

Butanone 72.12 79.6 0.8054

3-Pentanone 86.14 101.7 0.8138 12.4

1) .
	 air

.
in 	 at a pressure of 1 bar and a temperature of 373 K.

separation of the iso-octane and the doped acetaldehyde (Harding 1996). It is also
doubtful whether acetone (b.p. 56 °C) would be likely to follow the iso-octane
sufficiently closely, due to the difference in vaporisation characteristics (see Table 1).

One species with an almost perfect match of its rate of vaporisation to that of iso-
octane is 3-pentanone, also known as diethyl-ketone. The absorption and fluorescence
spectra of 3-pentanone are displayed in Figure 3.3 and 3.4 respectively. The emission
spectrum is identical to that of acetone, i. e. broadband emission from 330 nm to 600
nm with a maximum at 430 nm. The fluorescence intensity of 3-pentanone, is like
acetone, proportional to temperature at atmospheric pressure (Fig. 3.5) and essentially
independent of pressure at room temperature when excited at 308 nm (Lawrenz 1992,
Bryce 1996). Bryce (1996) also found that like acetone 3-pentanone is insensitive to
quenching by oxygen. Neij (1994) and Johansson (1995) reported that the fluorescence
intensity is directly proportional to the laser intensity for excitation energies from 10 to
100 mJ. They also established a linear relationship between the fluorescence intensity
and pentanone concentration when excited at 248 nm. The close spectral similarity of
pentanone to acetone fluorescence is most likely due to the chemical similarity;
effectively the methyl group in acetone is substituted by an ethyl group in pentanone.

The rate of vaporisation of 3-pentanone (b.p. 101.7 °C) almost perfectly matches that
of iso-octane (b.p. 99.7 °C). Also the vapour phase mass diffusion in air is similar to
iso-octane. Therefore 3-pentanone was chosen as fuel marker in preference to acetone.
By experiment it was found that a mixture of 75 vol% of iso-octane and 25 vol% of 3-
pentanone gives a good signal to noise ratio, was optically thin and produced stable
combustion.
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3.4 Influence of Vaporisation Characteristics on Mixing

Measurements with two different markers, butanone and acetone, were compared to

evaluate the influence of the vaporisation characteristics of different fuel markers on

apparent fuel distribution. Sets of 20 single shot fluorescence images were recorded

and subsequently averaged for both butanone and acetone as fuel markers. The fuel

was a blend of three parts of iso-octane and one part of seed. The measurements were

taken in the Honda Mk 1 research engine (see Chapter 4.1), operated with 1500 rpm,

with ignition at 680° CA ATDC and an AFR of 16.

The resulting images for both fuel markers were corrected for background contribution

and flatfielded against the same calibration image, which used butanone as seed.

Figures 3.6 shows the mean fuel distribution for both fuel markers. Both images were

normalised by their respective mean and multiplied by the factor 100 in order to

correct for the difference in the fluorescence yield between the two seeds. The

apparent fuel distribution is very similar. Normalising the acetone image by the

butanone image and multiplication with the factor 100 results in the percentage

difference in the fuel concentration between the two seeds (Fig. 3.7). On average the

fuel concentration varies by 2.7 % between the two seeds. This reflects approximately

the repeatability of the measurement of 2.9 %, as observed in the difference of

subsequent normalising images (Fig. 3.8).

These measurements suggest that the different volatilities of the seeds with a boiling

point range between 56 - 80 °C result in only very small differences in the observed

fuel distribution. However, this conclusion might not hold for species with substantially

differing volatilities, such as fractions of a commercial grade gasoline near the lower

end and near the upper end of the gasoline boiling range (b.p. ,-- 20 - 200 °C). The

effect on mixing of low and high boiling fuels was observed by Harding (1996) in a gas

turbine. By imaging the vapour concentration in the duct of a gas turbine combuster,

S. Harding (1996) found that acetaldehyde (b.p. 21 °C) followed the airflow in the

centre of the duct, whereas kerosene (b.p. range 150 - 260 °C) exhibited a near

uniform distribution over the whole duct area. It was concluded that the low boiling

acetaldehyde will vaporise instantaneously after injection and the vapour phase will

follow the air stream parallel to the injector axis. Since gas-gas mixing is slow, the

mixture remains heterogeneous. In the case of kerosene, after injection the droplets

will traject throughout the air stream and gradually vaporise, leading to a near

homogeneous mixture. For IC engines with concentric swirling inlet flows with little

mixing orthogonal to the flow direction the effect as observed by Harding (1996) could

be important. Therefore, by using 3-pentanone (b.p. 101.7 °C) as fuel marker which

has a boiling point close to the middle of the boiling range of a typical commercial-

grade gasoline, the fuel marker will not only represent the distribution of iso-octane

(b.p. 99.2 °C) but is also likely to give a realistic picture of the fuel distribution of a

typical pump-fuel.
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Fig. 3.6: Mean fuel concentration in a plane parallel to the piston with acetone (left) and butanone
(right) as fluorescence marker as measured in the Mk 1 engine under the same conditions. Mean fuel
concentrations were normalised to 100.

Fig. 3.7: Fractional difference between ace-
tone distribution and butanone distribution
multiplied by the factor 100. The mean
variation across the image is 2.7 %.

Fig. 3.8: Fluctuation around the mean signal
of 10 successive calibration images. On
average the fluctuation is 2.9 %.
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3.5 Image Processing

The raw images of the fuel distributions have to be post-processed in order to generate

quantitative data.

3.5.1 Noise and Laser Profile Inhomogeneity

The signal collected at each pixel of the camera is formed from several contributions; a

part of it is proportional to the fuel concentration, laser intensity and collection

efficiency and a second part arises from laser-generated background fluorescence,

intensifier noise, thermal CCD noise and CCD electronic offset.

Spatial variations in the laser sheet profile, intensifier gain profile, CCD sensitivity and

collection optics efficiency result in a scalar factor to be multiplied to the signal arising

from the fluorescence of the seed. This causes the effective gain of the detection

system to vary from pixel-to-pixel. Thus the data images need to be corrected for these

spatial variations by normalising against a calibration image. A calibration image can be

obtained from a uniform concentration of the fuel marker homogeneously mixed across

the cylinder of the engine.

When the image is read from the CCD chip, a constant offset is added to each pixel to

prevent amplifier noise causing any of the signal integrations becoming negative. The

finite dark current, even at the temperature of the thermo-electrically or water-cooled

CCD's adds a random contribution to each pixel - thermal noise. Scattered laser light

gives rise to fluorescence of species absorbed on surrounding engine surfaces. All
these effects add an unwanted contribution which is independent of fuel concentration.

This can be corrected for by subtracting a background image from each of the images

of interest. An exposure, taken while the engine is motored, provides a suitable

background image. Ideally several background images should be averaged, this reduces

errors due to shot noise and thermal noise.

The calibration and background corrections are made on the basis of mean laser sheet

characteristics. This introduces an error due to shot noise and pulse-to-pulse

fluctuations in the laser sheet. This error was found by measurement using calibration

images to be usually between 2 - 3% (see also Chapter 5). On some of the images it

resulted in a slight linear modulation orthogonal to the laser propagation direction.

The corrected fuel fraction image intensity, 'Final, is given by:

haw — IBack

ICalib — IBack

where IRaw is the raw image intensity collected whilst running the engine, /caw) is the

calibration image intensity and Mack is the background image intensity. The processed

image 'Final therefore displays a relative fuel concentration distribution at the

measurement condition.

IFinal (3.1)
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Fig 3.9: Image processing

3.5.2 Density and Temperature Normalisation

With 3-pentanone as seed, the fluorescence signal is proportional to number density
and temperature in the measurement volume (see section 3.3):

IFnai cc if •(a+b•T)	 (3.2)
V

where nf is the number of seed molecules per unit volume (V); a and b are coefficients
which account for the temperature (7) dependence and have been estimated from the
data in Figure 3.5. Equation 3.2 shows that at a given temperature the fluorescence
signal is proportional to the number density. However, the most important parameter is
the ratio of fuel-to-air, not the density of the fuel molecules. Since pressure is
constantly changing in an IC engine, images must be corrected for density effects in
order to represent fuel-to-air ratios. The following describes a procedure which
corrects the images for pressure and temperature to give estimates of fuel-to-air ratios.

Images taken during Compression Stroke

During compression, after the inlet valve has closed, the number density of fuel
molecules in the cylinder increases and the fluorescence signal increases
correspondingly. However, the number density of air molecules also increases during
compression. Therefore the ratio of the number of fuel molecules to the number of air
molecules remains constant and the apparent increase in fluorescence signal does not
indicate an increase in the fuel-to-air ratio. To create an AFR image, this effect must be
taken into account.
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Consider an equation for intensity Ii normalised to a reference condition intensity Io

I,	 nfi .Vo ( a +b •T, )

nf2 • VI (a + b •To )

Using the ideal gas law, number density can be expressed in terms of pressure p and

temperature T by,

n	 p
= 	

V R•T

and relation 3.3 can be rewritten:

= Pfi *To ( a +b • 7; ) 

10	 pfo •T, ( a + b •To )

where pi- is the partial pressure of the fuel vapour. The total pressure in the cylinder

will be the sum of the partial pressures of air and fuel vapour. With

P1 = P1 1 = Pal I

Po Pf 0 Pa°

the normaDs)ng lacIor can then be written as:

f,„	 = 
p i - To (a+b-T1) 

10 PO .I ( a+b -To)

pi and po can be taken from the indicated cylinder pressure. This will also take the

effect of blow-by into account.

The air/fuel ratio (AFR) is defined as the ratio of the mass (m) of air and fuel:

(3.3)

where the suffix a denotes air, f the fuel vapour and M is the molecular mass. According to the ideal
gas law

	

pf •V

•	

•T	 and	 p„ -V =n„•1?•T.

Equating:	 nf = 1

	

P„	 n„ k

The total pressure p is the sum of the partial pressures of fuel vapour Nand air p„:

p=pf +p„=p1 +k-pf =pi— (1+ k )

Equating:	 pi = p1-(1+k)

P2	 P12.(1±k)

With AFR I = AFR2:	 = Pp = Pal

P2 P12 Pa2
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Images taken during Inlet Stroke

During the inlet stroke (inlet valve open) air and fuel enter the cylinder and therefore

the AFR is not constant. The inlet stroke can be separated into two independent

processes. Consider first the change in cylinder volume. If the mass of the charge

remains constant (n11 = n12 ) during the volume change, the signal intensity is reduced

due to a reduction in the number density of fuel molecules. Yet the AFR remains

constant. To account for this effect, the normalising factor fl can be written as:

A	 = vo (a+b•Ti)

Io	 (a+b•To)•

In the second process, fuel and air are introduced to the cylinder charge through the

inlet valve. The additional fuel increases the number density of molecules and the

fluorescence signal increases proportionally. Thus the decrease in AFR has to be

accounted for by the signal intensity. Adding air to the cylinder charge increases the

APR, whilst maintaining a constant signal intensity. This is accounted for by a

normalising factorf2:

(3.8)

f2
na,

_= (3.9)

nao

where nu is the number of air molecules. According to the ideal gas law the number of

molecules can be expressed as

Pa •V
n =	 .

R • T

Therefore equation 3.9 can be rewritten as:

J 2
Pal ' VI 'To 

2	 Pao ' Vo •

(3.10)

(3.11)

The normalising factor for both change in volume (eq. 3.8) and change in air mass (eq.

3.11) is therefore:

fN = J., • f2	 Pal •To a+ b • T,

Pao • T, a+b•To
(3.12)

where p„ I and p„2 can be obtained from the indicated cylinder pressure. This will

introduce an error, since the measured pressure is the sum of the partial pressure of air

and the partial (vapour) pressure of the fuel and the AFR is not constant during the

inlet stroke. However, this error is expected to be small, because of the order of

magnitude difference between the partial pressures of air and fuel vapour.

The images were normalised by the factor fN to give relative fuel concentration

distributions at a reference condition (po, To).
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X Calib

X Data
'Final 

oc (3.14)

X Data
•'Final •= fN fF v	 •

Calib

(3.15)

P Calib • TData c + d Tculib

P= Data • TCatib a +b 
fN (3.16)

• (3.17)

3.6 Calibration of Images

Following the initial post-processing, as outlined above, the images represent the

actual LW signal from the doped fuel at a certain condition (density, temperature).

This signal can be converted into absolute fuel concentration by relating it to the signal

level of a known fuel concentration field. In conjunction with every measurement

sequence in the engine, measurements of homogeneous fuel distributions were

recorded. These calibration images have already been used to normalise the laser

profile and the intensifier gain profile as described in the previous section. If the

concentration of the seed for the calibration images is known, the measured images can

be converted to images of absolute fuel concentration distributions.

3.6.1 Seed Concentration in Fluorescence Image

The processed image represents a ratio of a data image and a calibration image as

shown in relation (3.1):

Final = 
"Data 
	

(3.13)

Calib

Since the fluorescence signal is proportional to the concentration of the species in the

measurement volume probed it follows that

where XData is the seed concentration as represented by the data image and Xcaiin the

seed concentration represented by the calibration image. The fluorescence signal

intensity also depends on the temperature and pressure conditions and the actual seed

used for the data and calibration images. By introducing factors of proportionality, the

relation (3.14) can be re-arranged as

The factor fN corrects for the difference in temperature and pressure between the data

and calibration condition (see 3.5.2).

If different fluorescence markers are used for the calibration and the fuel visualisation,

the difference in the fluorescence yield of the two seeds at the calibration condition has

also to be accounted for and the factor fF is:

Fluorescence Yield	 ( p,T )
Seed Data 

f F = 
Fluorescence Yield

Seed Calibration ( 	
T)
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X Cali!) 
X Data = ' Final

fN • fP [

moll

m3

3
(3.19)

1

X Fuel = 2.962 . X pen,

[

moll

M3

Where the seed concentration in the calibration gas is known and the measurement

conditions in both calibration and fuel visualisation are well defined, the seed

concentration can be obtained from the signal intensity in the processed data image.

(3.18)

3.6.2 Fuel Concentration as Function of Seed Concentration

In this investigation a mixture of three parts of iso-octane and one part of 3-pentanone

by volume was used as fuel.

V Oct  , 3

V Pent	 1

The volume V can be expressed in terms of number of molecules n, molar Mass M and

density p by

m V • p
n = — =

M M

Using the above expressions it follows that:

n	 -//Oct  ,  Oct 
M0  • P Pent 

V Pent	 n Pent • M Pent • P Oct

V = n • — .

and the number of iso-octane molecules can be expressed as a function of the number

of 3-pentanone molecules:

M •P_
—	

pent 	Oct nn 0,,	 3 Pent

M Oct • P Pent

With M and p from Table 1:

86 • 7025

n
Oct 

3 	  n, = 1 .962- nPent
114 • 8103	 ' ent

and the number of fuel molecules becomes:

(3.20)

(3.21)

n Fuel = n Oct n Pent = 1.962 • npent	 n Pent = 2.962 nPent	 [mon, (3.22)

or, expressed as concentrations;

(3.23)

The concentration of the fuel can be calculated from the concentration of the seed as

obtained from the data images (eq. 3.18), if the fuel composition is known.
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X A .r = 0.8 •  P Calib 	 2.962• X pm,

i? • TCalib Lm3

3.6.3 Air Concentration in the Engine Cylinder

The total number of molecules per unit volume in the cylinder can be expressed as:

X Tom! X Air + X Fuel + X Residual = X Air ± 2.962 • X pen , + X Remd„ai	
[M01 

M
3 •

Using the ideal gas law, the total concentration can be expressed in terms of

temperature T and pressure p:

nTotal	 [ mol
X •

[ mol
•

(3.25)

(3.26)

(3.27)

3Total	
V	 i? • T

Relation 3.24 can be rewritten:

X Air	 Total — 2.962 • X pen , — X
Re sidual

and introducing eq. 3.25 results in

X	 2.962 • X— XMr	 — P	 Pent	 Residual
R • T in

3

The 3-pentanone concentration Xpe01 can be obtained from equation (3.18) for the

calibration condition. Therefore, pressure p and temperature T in eq. (3.27) are as

measured during calibration. The residual concentration XResidual can so far only be

estimated. Galliot (1990) measured residual gas fractions of between 5 and 10 % at full

load and about 20 % at part load condition (0.45 bar inlet pressure) in an engine with a

compression ratio of 8.3:1 and a valve overlap of 3° CA operating at 1500 rpm. These

engine parameter and operation conditions match very closely those used for this

investigation (see Chapter 4.1 and 5). Using Galliot's residual gas concentration

measurement as an approximation, the air concentration X Air can be expressed as a

function of seed concentration Xpent:

(3.24)

(3.28)

3.6.4 Equivalence Ratio as Function of Seed Concentration

The air/fuel ratio is defined as:

•

	

AFR = 
mAir	 n	 MAir 	Air 

	

mFuel	 n Fuel M Fuel

(3.29)

where m denotes the mass, n the number of molecules and M the molar mass. Since

pressure and temperature in the cylinder are the same for air and fuel, the AFR can also

be written in terms of concentrations:
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0.8 _PC"lib 	 2.962 X pen, • 28.74
R • TCala)

2.962• X pe„, • 104.55
AFR =

AFRStoichionietry 	 14— 	
AFR	 AFR.

AFR = X Air • MAir 
	

(3.30)
X Fuel • M Fuel

Introducing eq. 3.23 and 3.28 and the molar mass of air and fuel', eq. 3.30 becomes

(3.31)

and the AFR can be expressed as a function of the 3-pentanone concentration as
observed in the fluorescence image (eq. 3.18). The AFR can easily be converted to an
equivalence ratio:

(3.32)

Data images converted using relations 3.31 and 3.32 will display absolute equivalence
ratio maps.

3.7 Gas Temperature during Inlet and Compression Stroke

As explained in the previous section, fluorescence and density are temperature and
pressure dependent. In order to normalise fluorescence images such that they display
absolute fuel concentrations, the temperature and pressure in the cylinder at the
measurement time have to be known. Pressure can readily be obtained from a pressure
transducer mounted in the cylinder head (see Chapter 4.2). Unfortunately there is no
simple way to measure bulk temperature in a firing SI engine. Thermocouples do not
have the frequency response to deliver a meaningful temperature profile. Hot wire
probes which would give a sufficiently fast response, will not survive in the hostile
conditions encountered in a firing SI engine. The only way to measure an

instantaneous temperature profile is by CARS (Lucht 1987, Marie 1987) and possibly
LIF (Seitzman 1985, Chang 1991, McMillin 1991). However, such measurements are
complex and were beyond the scope of this study.

1
The molar mass M of the fuel used in this investigation (0.75 Vol% iso-octane + 0.25 Vol% 3-

pentanone):

nFud • M Fuel = no:1 • Mod -En"'Fuel = mOct + "'Pent	 Pent Mpg

M F„H-

n	

Mocf + -un	Mp,n1

n Fuel

1.962 • n i„,„,	 „	 „,
M Fu,1	 114 + 	  86= 	  

2.962 . n„,„„	 2.962. M Furl = 104.55 Kg / Kmol
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mu, • h,„ = W12 -F 17/ 2 u2	m l ul (3.33)

i. e. hi„ CPin Tilde!

P2 V2 
= M 1 min

R2 • T2

M =
1

= 	
p

2 
• V

2
-	 R2 • (m in ± m1)

(3.35)

An alternative approach is to calculate the temperature. Therefore a very simplified

model for the treatment of the inlet and compression strokes was considered.

The process was assumed to be reversible and adiabatic. Initially the inlet valve was

considered to open and the cylinder pressure fall to that of the inlet. Since the pressure

in the inlet was less than atmospheric some of the residual gases enter the manifold.

These residual gases were assumed to re-enter the cylinder at the start of the intake

stroke, prior to entry of fresh charge. The inlet manifold was assumed to have an

infinitely large area and pressure was not increased when the inlet valve opened. No

valve overlap was allowed to occur, as mass flowrates through the valves would than

have to be considered; valve overlap is indeed negligible on the engine used in this

work (Fig. 4.2). Exhaust valve closing and inlet valve opening were assumed to occur

at TDC.

The inlet process was considered in 20 0 crank angle increments. The temperature of

the fresh charge was assumed to be 300 K. The cylinder pressure was taken from the

indicated pressure curve as measured in the engine. The temperature of the residual

gas was estimated to be 1100 K from calculations using the LEEDS ENGINE

SIMULATION MODEL (Merdjani 1993), and the internal energy of the residual

charge was calculated at this temperature. The fresh charge and residual fraction were

then considered to mix. The process is adiabatic i. e. Q = 0, hence the energy balance

can be expressed as:

The temperature of the mixture in the inlet manifold is constant throughout the stroke,

and using the caloric equations the mass induced can be calculated:

W12 -I- M2 Cv 2 • 7; — m 1 	• T,
(3.34)

In	

CPin Tintet

where the work done is given by the mean pressure during the increment times the

swept volume i. e. WI2 = (p i + p2 ) I 2 . (V2 — vi ) and the mass of the charge at the

beginning and the end of the increment is given by:

Knowing the induced mass, the temperature at the end of the increment can be

calculated using the following expression:

Since the specific heat cv2 is a function of temperature and mixture composition and the

gas constant R2 a function of mixture composition the temperature T2 at the end of the

increment was found by an iterative procedure. First the specific heat cv 2 and the

specific gas constant R2 were calculated for the conditions (mixture composition and
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temperature) at the beginning of the increment using the empirical equations and
coefficients of McBride (1993). The induced mass and the temperature were then
calculated using Equations 3.34 and 3.35. For the next iteration step the specific heat
cv2 and the gas constant R2 were calculated from this new approximation. This process
was repeated until the specific heat changed by less than 0.05% between iteration
steps. The next increment was then considered.

When the piston reached the crank angle of inlet valve closing an isentropic
compression was assumed and an isentropic exponent y was estimated so as to closely
match the measured pressure curve up until ignition.

In this model heat transfer between the cylinder walls and the gas was neglected and a
gaseous fuel assumed. More elaborate models taking into account the heat transfer and
heat of vaporisation may be used in future studies. However, given the precision
required for the temperature it was considered that these estimates of temperature
would be sufficient to give sizeable estimates of AFR. Estimating the temperature with
an accuracy of 50 K causes an uncertainty of approximately 10 % in estimating the
AFR represented by the image intensity at the time of ignition. The error in estimating
the relative temperature sequence during the important compression stroke is expected
to be small since the temperature estimates are based on the measured pressure profile;
blow-by and heat transfer will be reflected in the cylinder pressure.

3.8 Summary

Planar LIF has the potential for real time in-cylinder fuel concentration measurements
in an operating SI engine. However, LIP measurements require the species which is to
be probed, to have suitable fluorescence properties. Unfortunately, multi-component
commercial-grade gasoline is unsuitable for fluorescence measurements and therefore
had to be replaced by a blend of a single component fuel, iso-octane, and a
fluorescence marker, 3-pentanone; 3-pentanone has favourable spectroscopic
properties and is chemically and physically similar to iso-octane. The in-cylinder
distribution of 3-pentanone will also give a good estimate of the distribution of a pump
fuel, since the boiling point of the fluorescence marker is in the middle of the boiling
range of a commercial-grade gasoline. In order to provide quantitative results,
fluorescence images require post-processing, i.e. removing of background signal and
normalising of laser-sheet inhomogeneities. Fluorescence images can be calibrated by
comparison with an image of known fuel concentration. This requires measurement
and calibration conditions to be well defined.
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Chapter 4

Experimental Set-Up for Fuel Visualisation

The equipment used for the planar LIF measurements of fuel concentration in this
work is described; the research engine, the laser system with the sheet-forming optics
and the fluorescence detection system. Additionally, the timing and synchronisation of
the experimental equipment and the measurement and calibration procedure for fuel
visualisation are described.

4.1 Introduction

A schematic of the experimental set-up for planar LW fuel concentration
measurements in the cylinder of an optical research engine is shown in Figure 4.1. A
laser beam was formed into a sheet using spherical and cylindrical lenses and passed
through the windows in the cylinder of the research engine, illuminating a plane parallel
to the piston crown. Fluorescence from the fuel molecules was collected at right angles
via a window in the piston and a 45° mirror with an intensified CCD camera.. The
resulting instantaneous concentration images were transferred on-line to a Personal
Computer for instant display and storage. Simultaneously in-cylinder pressure may be
recorded.

Fig. 4.1: Schematic of Experimental Set-Up.
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Table 2: Engine Parameters

Optical Engine
BKR-E-0003

Production Engine
Honda VTEC-E

Number of Cylinders 1 4 in line

Displacement (ccm) 360 1493

Bore x Stroke (mm) 75 x 81.5 75 x 84.5

Compression Ratio Mk 1: 9.1

Mk 2: 7.6

9.3

Valve Mechanism sohc VTEC-E sohc VTEC-E

Number of Valves 4 4

Valve Diameter (mm)

Inlet
Exhaust

27.5

23.5

27.5

23.5

4.2 Engine Configuration

A single-cylinder research engine with optical access was used and it is shown in

Figure 4.3 - 4.6. The engine was designed specifically for this project by Honda R&D,

Japan, to give good optical access while retaining most of the engine characteristics of

a typical production engine.

A notable feature of this particular engine is the valve train which is based on the

Honda sohc VTEC-E valve deactivation mechanism. This mechanism has been

previously described by Hone (1993). The engine has a 4-valve pent-roof cylinder

head with high-swirl and non-swirl inlet ports. In the VTEC-E mode, only the valve

controlling the high-swirl inlet port (referred to as primary inlet valve) opens to its

maximum lift of 8 mm. This generates the high in-cylinder swirl required for stable lean

burn operation. The VTEC-E mechanism reduces the lift of the valve on the non-swirl

inlet port (secondary inlet valve) to 0.65 mm. This valve is not fully closed so as to

permit drainage of the fuel that would otherwise remain trapped in the secondary port.

In the production engine, to achieve good volumetric efficiency, the secondary valve

opens fully to 8 mm at engine speeds above 2500 and 3200 rpm, depending on the load

condition (see also 1.4). For this study the engine was only operated in the VTEC-E

mode with a speed of 1500 rpm. The corresponding primary and secondary valve lifts

are shown in Figure 4.2. The resulting swirl ratio' at this running condition is about 2.1

1 In an operating engine the swirl and tumble ratio are defined as the angular velocity of a solid body
rotational flow (Ws, (dr), devided by the crankshaft angular rotational speed 27rN (Heywood 1988).
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Fig. 4.2: Valve lift in the VTEC-E mode for the exhaust, primary inlet and secondary inlet valves.

and the tumble ratio' 1.9. Table 2 provides the principal parameters of the research
engine and compares these with the equivalent for the production version which is
used in the Honda Civic.

Two types of engines, offering differing optical access to the combustion chamber,
were employed in this study. Both engines had a spacer placed between the cylinder
head and the engine block with a 45° mirror mounted inside the spacer on the cylinder
block. The piston was elongated and hollow, with the inlet and exhaust side walls
removed, such that the fixed 45° mirror could be positioned directly under the cylinder
axis. These modifications permitted a view of the combustion chamber through a fused
silica window of 54 mm diameter, located in the piston top (Fig. 4.3). The visible area
of the combustion chamber through the piston window is displayed in Figure 4.4.

In the engine referred to as Mk 1, a fused silica cylinder was mounted in the spacer

directly beneath the head gasket (Fig. 4.3, 4.6). Window ports of 50 mm width, placed
in the inlet and exhaust side of the cylinder spacer, enabled a UV laser sheet to pass
across the combustion chamber and exit at the opposite side of the cylinder. This
allowed, depending on the piston position, laser illumination of planes between 10 and
30 mm below the spark plug perpendicular to the pent-roof gable.

The engine referred to as Mk 2 had two fused silica window inserts on opposite sides
in the elongated cylinder head providing a view along the pent-roof axis (Fig. 4.5).
This allowed laser illumination of planes between the gable of the pent roof and a plane
15 mm below the spark plug (again depending on piston position). The cylinder head
of the Mk 2 engine was made of cast iron instead of aluminium, but had otherwise the
same geometries as the Mk 1 version. The elongated cylinder head of the Mk 2 version
required the piston rings to be repositioned lower on the piston in order to avoid
contact with the cylinder head gasket. This increased the crevice volume which in turn
reduced the compression ratio from 9.1 to 7.6.

The production engine has a piston bowl providing a squish area 0.75 mm thick and 55
mm in diameter. A similar bowl was created in the optical engine, by receding the 55
mm diameter quartz window by 3 mm from the piston crown, thus providing a
combustion chamber shape closely matching that of the production engine.
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Fig. 4.3: Honda one-cylinder optical research
engine (Mk 1).

?Amu Vabe	 Sec...lav We Vive

Fnm Inlet V.:ve

Fig. 4.5: Optical access to Mk 2 one-cylinder
research engine for laser from timing side.

Fused Silica Sleeve

Fig. 4.4: Plan view of valve layout and visible
area of the combustion chamber in the Honda
VTEC-E research engine.

Fig. 4.6: Optical access to Mk 1 one-cylinder
research engine for laser and camera from inlet
side
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To avoid fouling of the windows, oil had to be prevented from entering the
combustion chamber. Therefore the cylinder liner in the spacer, connecting engine
block and cylinder head, and the piston rings located near the piston crown were
coated so as to allow unlubricated operation of this part of the engine. A vacuum
pump attached to the sump and the cylinder head, removed oil vapour which otherwise
could have passed the piston rings located at the bottom of the piston, which seal the
engine block. Oil passing these rings could have misted up the 45 0 mirror and the
lower surface of the piston window.

Air entered the engine through a throttle body and passed via an inlet plenum chamber;
the manifold depression was measured in the inlet plenum. Fuel was drawn from the
fuel tank by an electrical pump and supplied to the injector. Excess fuel returned via a
pressure regulator to the fuel tank. This ensured a continuous supply of cool fuel to the
injector. However, like all ketones, pentanone attacks rubber and since fuel pumps,
regulators and injectors contain rubber components - mostly 0-rings for sealing
purposes - the fuel supply system of the engine had to be modified. The standard fuel
lines, which are made of rubber, were replaced with copper lines and a PTFE ring was
substituted for the 0-ring on the inlet manifold. The only ketone-resistant fuel pumps
available were of a diaphragm type. Since diaphragm pumps supply a pulsating flow,
two accumulators were required to dampen out fluctuations in the fuel pressure. A
modified Hoke ball and spring pressure regulator maintained a constant pressure of 2.5
bar. In a commercial gasoline fuel injector (Keihin 16450-PD5-A000) a rubber 0-ring
protects the solenoid from the fuel. This 0-ring was replaced with a Teflon version
which is ketone-resistant. Continuous operation for several hours was therefore
possible using fuels seeded with ketones.

Crank angle was measured by a 10 resolution encoder attached to the crankshaft
pulley. The encoder generated signals to trigger the custom-built engine controller
which allowed to set the crank angle at which injection started, the duration of
injection, the crank angle of ignition and the ignition duration. Ignition was pre-set for
all experiments to 40° CA before TDC and 4 ms duration. The injection timing was the
principal parameter for the measurements presented here. The injection duration
controlled the value of the air-to-fuel ratio supplied to the engine. The stoichiometry of
the charge entering the cylinder was continuously monitored by a heated, linear air-to-
fuel (LAF) ratio zirconia-based high-speed sensor, which was mounted in the exhaust
pipe. The exhaust sensor used was a calibrated version of the same type as described
by Yamada (1992). The output voltage of the LAF sensor was displayed by a digital
voltmeter and could be converted to AFR by means of a corresponding calibration
curve. The fluctuations in the output voltage of the LAF sensor lead to an uncertainty
of about 0.5 AFR in adjusting the injector pulse width.

The engine was mounted on an English Electric dynamometer regulated by a
Saftronics controller to provide constant speed, which was 1500 rpm for the fuel
visualisation experiments and 1200 rpm for the residual imaging experiments. The
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engine was water cooled and the coolant preheated to 58 °C before operation. During

firing operation the water temperature was controlled around 78 °C.

4.3 Pressure Measurements

In-cylinder pressures were recorded using an uncooled Kistler pressure-transducer

(6121A1), which was fitted into the cylinder head. A Kistler charge amplifier (5011A1)

converted the transducer signal into a voltage proportional to pressure. The pressure

data was recorded by a Tektronix 2224 digital oscilloscope, connected to a PC via an

IEEE bus. The oscilloscope had an 8 bit A-D converter and recorded single traces with

either 1024 or 4096 data-points. The oscilloscope recorded the pressure of just over a

full cycle plus a TDC mark as reference. The trigger point, corresponding to ignition,

was set to be in the middle of the trace. The TDC signal was provided from the engine

controller. The resolution of the pressure trace was calculated from the

correspondence between ignition and TDC.

The piezoelectric pressure transducer only measures relative pressures. The pressure

traces were corrected to absolute pressures on the assumption that the cylinder

pressure at the end of the exhaust stroke is equal to the atmospheric pressure. In reality

the pressure will be slightly higher than atmospheric, owing to the back pressure of the

exhaust system.

Limited access to the combustion chamber did not permit the use of a cooling adapter

for the pressure transducer. The pressure transducer was exposed to combustion gases

reaching temperatures of more than 1500 K. This short term heating in the range of

milliseconds provides a measuring error due to thermal stress in the sensor - short term

drift. This short-term drift is less than 1 bar for the transducer used (Kuratle 1992).

The short-term drift mainly affects the low pressure part of the cycle. In this study the

engine was operated heavily throttled (inlet manifold depression Pb = 450 mmHg) with

the initial part of the compression stroke occurring below atmospheric pressure.

Therefore the indicated mean effective pressure, calculated from the indicated

pressure, contains a systematic error. Figure 4.7 illustrates this point. It shows the

mean indicated pressure of 200 fired cycles and a motored cycle for the same inlet

depression of 450 mmHg in a p-V diagram. The difference between the pressure in the

exhaust and the inlet stroke should be the same in both cases. The measurement error

in the low pressure part of the cycle also affects the slope of the compression curve,

which will modify the imep. Comparison of the indicated pressure of 200 fired cycles

showed only small variations in the low pressure part of the cycle. However, it is

considered reasonable to use the measured imep for comparison of individual cycles

taken under the same operating conditions, bearing in mind of course that the real imep

will be higher than that indicated. Values derived from the pressure traces were gross

imep, peak pressure and the crank angle of peak pressure.
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Fig. 4.7: Averaged indicated in-cylinder pressure of 200 fired cycles and 20 motored cycles. Inlet
manifold depression 430 mmHg.

4.4 Laser and Sheet Forming Optics

A Lambda Physic EMG 150 MSC XeC1 Excimer laser was used as the illumination
source. It produces about 150 mJ of 308 nm radiation in 17 ns pulses. The laser can be
triggered externally or from an internal clock at a pulse repetition rate of up to 80 Hz.

The laser output beam had the shape of a rectangular block. In order to match its
geometry to that of the required sheet, the laser beam was rotated through 90 0 by two
050 mm steering mirrors. The rotated beam was then directed towards the engine by
another two 050 mm 45° steering mirrors before passing through the sheet forming
optics. The laser sheet was formed using three fused silica lenses. A spherical lens of 1
m focal length thinned the beam to below 0.5 mm. Two cylindrical lenses with a focal
length of -75 mm and 150 mm acted as a Galilean telescope, expanding the beam in
one direction to give a sheet of approximately 5 cm width.

For the measurements in the Mk 1 engine the laser sheet was directed by a 45° mirror
so that it passed from the inlet side, 5 mm below the cylinder head gasket, through the
quartz cylinder, exiting the combustion chamber on the exhaust side (Fig. 4.8a).

For the measurements in the Mk 2 version of the engine the laser sheet was directed by
two 45° mirrors to the appropriate height to pass from the timing side (front) of the
engine through the quartz window into the combustion chamber and exit on the
gearbox side. The second of the two 45° mirrors was mounted on a vertical traverse,
which enabled the height of the laser sheet to be set precisely to the required value
with a micrometer screw (Fig. 4.8b).
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Cylindrical Lens fl 150 mm

Cylindrical Lens fl -75 mm
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Optical Engine (Mk 1)

Fig. 4.8a: Optical set-up for planar LIF measurements in the Mk 1 engine.
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Fig. 4.8b: Optical set-up for planar LIF measurements in the Mk 2 engine.
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The quartz-window in both engines was a 50 mm wide annulus with an inner diameter

equivalent to the cylinder-bore. The window in the Mk 1 engine was recessed by 12.5

mm from the outer cylinder surface and the window in the Mk 2 engine was flush with

the cylinder surface. Therefore, the window in the Mk 2 engine had double the width

compared to the window in the Mk 1 engine. The spherical surface of the window

caused a refraction of the laser sheet. Because of the wider window in the Mk 2

engine, this caused the laser sheet to be narrower compared to the Mk I engine.

Reflections of laser light from the exit window affected LIF images on the exhaust side

of the combustion chamber for measurements below a plane 5 mm from the spark

plug. This required the laser sheet to be masked, compromising the viewed area in this

part of the combustion chamber.

4.5 Fluorescence Detection System

The fluorescence signal was imaged using a 15-bit CCD-camera (Wright Instruments)

coupled to a gated image intensifier (Princeton Instruments) with two front-to-front

mounted Pentax f 1.2 50 mm lenses. The intensifier was synchronised with the laser

and gated for approximately 200 ns to discriminate against room light and combustion

luminosity. The signal was focused with a Nikon f 1.2 50 mm lens onto the image

intensifier.

All camera focusing adjustments were made while the engine was stationary. The

cylinder was filled with nitrogen and pentanone vapour and a 1 mm wide wire was

used to obscure part of the laser sheet. The camera could then be focused on the laser

sheet by maximising the sharpness of the edge that is generated by the wire in the

fluorescence image. Typically the sharp edge spread over approximately two pixels for

an optimal focus.

The CCD camera has a framing rate of 1 Hz which did not permit the recording of

images from consecutive cycles. The CCD was controlled by a PC and the images

were read out and stored on this computer. The use of 2 x 2 binning of the images

reduced the image size from 500 Kbytes to 125 Kbytes, also by reading only the part

of the image of interest from the chip onto the PC, the size of single images could be

reduced to 80 Kbytes. This reduced the readout time by a factor of 5 and allowed

more images to be taken during one measurement campaign.

4.6 Hardware Limitations on Image Quality

Resolution

An area of approximately 15 x 10 cm was focused onto the 600 x 400 pixel CCD chip.

Hence, each pixel corresponds to a measurement volume of 0.25 x 0.25 x 0.25 mm -

the sheet is approximately 0.25 mm thick. However a photon incident on the intensifier

phosphor screen does not excite a single pixel. Due to blooming of the intensifier
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Fig.  4.9: Intensifier blooming results in a point-spread function' of signal intensities for a single
photon event. Only events which are at least 2 pixel apart can be resolved.

phosphor, adjacent pixels will also be excited. Instead of a delta function, the real
signal will be a point-spread function' (Fig. 4.9). Therefore, only structures which are

at least two pixels apart can be resolved. In addition, the lens coupling between the
intensifier and the camera was not able to focus on a single pixel. It spreads the signal
over about four pixels (intensifier crosstalk) and the blooming from the phosphor
screen of the intensifier will be amplified on the CCD chip. As a result, the true
resolution will be less than 0.5 x 0.5 mm when one also considers the distortions
caused by viewing through the heterogeneous charge. For these reasons 2 x 2 binning
of the images resulted in no measurable loss of resolution. The true resolution was
estimated to be better than 1 mm.

Intensifier Gain and Noise

There are several sources of noise on the camera/intensifier system:

• shot noise from the intensifier

• shot noise from the CCD

• readout noise from the CCD

• thermal noise from the CCD

The total noise on the system is:

Noise = li(gain • shotmt ) 2 ± shot= 2 	CCD2 th+ readout	 + ermalCCD
2

The readout noise is constant (20 counts) and the thermal noise is a function of
temperature. Not every photon event on the CCD chip or intensifier cathode will lead
to an electron event. The resulting error is called shot noise and has a Poisson

Also the finite accuracy of the focusing optics will lead to a point-spread function of a point light
source. However, this effect is very small (typical resolution of a f1.2, 50 mm lens is about 25 1.1m)
compared to the intensifier blooming and can therefore be neglected in this considerations.

(4.1)
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Intensifier

Gain = 50
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distribution. Therefore the shot noise is proportional to the square root of the number
of counts on the CCD chip/intensifier cathode (IN , where X is the number of
counts).

Shot noise on the Intensifier: 	 VT(

Shot noise on the CCD: 	 V50. X

The total shot noise of the system consists of shot noise on the intensifier x the gain
and shot noise on the CCD:

V(50 ITC )2 +(J50 . X )2

Shot noise is random. Blooming and intensifier crosstalk average the signal over
several pixels and random noise is cancelled out. Binning the image by 2 x 2 increases
the signal per pixel by a factor of four. This effectively doubles the signal-to-noise
ratio, since the shot noise is proportional to the square-root of the number of counts.

4.7 Timing and Synchronising of the Experimental Equipment

A schematic of the instrumentation used for single exposure LIP measurements is
shown in Fig. 4.10. The Controller of the dynamometer kept the engine speed constant
at a pre-set value, which was 1500 rpm for this work. This required that the engine had
to act as master in the timing sequence of the experiment. An optical sensor generated
timing pulses of 10 crank angle resolution from a slotted disk fitted to the crank shaft
pulley. TDC was marked by the absence of a slot. The engine management translated
this signal into TTL pulses and provided a 360° pulse/revolution and a 1 pulse/2-
revolution (TDC) output. A crank-angle counter used the TDC pulse as reference and
counted the one degree pulses to give a TTL output pulse at every previously selected
crank angle. This allowed the experiment to be triggered at every desired crank angle
between 10 and 720° after combustion TDC with 10 crank angle resolution. The
trigger signal was fed to a timing controller which gave a 12 V output to trigger the
laser and a TTL output to trigger the digital oscilloscope only after it had been armed
by the computer controlling the camera. This sequence ensured that the laser was
triggered only once per exposure.
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Fig. 4.10: Schematic of instrumentation used to measure the fuel concentration in the single-cylinder

research engine.
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For single shot imaging the sequence of events was (Fig. 4.11):

I. The computer controlling the camera initiates a new exposure of shutter duration

0.5 ms.

2. 5 ms later the software sends a TTL pulse from the output bus of the computer.

(This time delay allows the mechanical camera shutter to open fully before the laser

fires)

3. The TTL pulse is used to arm the timing controller.

4. The timing controller waits until it receives a trigger from the crank angle counter

(occurring at a pre-set crank angle position) before it sends a trigger pulse to the

laser power supply and the digital oscilloscope.

5. The timing controller resets itself and stays dormant until the next exposure.

6. The laser power supply triggers the intensifier controller. After an adjustable delay

of typically 900 ns, the intensifier gate is opened for 200 ns.

7. After the camera shutter closes, the camera controller sends a signal to the

computer and subsequently the chip is read out and the image saved onto the hard

disk.

8. After an adjustable delay, the computer initiates a new exposure and the sequence

is repeated.

The Excimer laser has a 3 [is delay between when it receives a triggering pulse and

when it lases. Approximately 1 !is before the laser pulse a TTL output signal is

generated by the laser power supply. This TTL pulse was used to trigger the intensifier

rather than the input trigger from the timing controller since it provided a cleaner (less

noisy) signal. The intensifier power supply allows the user to set a precise delay

between the input pulse and the output gate. This delay was set to 900 ns and the gate

length to 200 ns to ensure that the 20 ns laser pulse occurred in the centre of the gate

and that non-laser generated signals such as room light were strongly discriminated

against.

The digital oscilloscope recorded the pressure traces. It was controlled by a PC via an

IEEE bus. The computer software arms the oscilloscope which then waits until it

receives a trigger from the timing controller. After receiving the trigger pulse it stores

the 512 data points before and after the trigger which are subsequently read out by the

computer and saved in a file. The software then re-arms the oscilloscope. Because the

data transfer from the oscilloscope is much quicker than the readout of the images

from the CCD chip, it was not necessary to synchronise both PCs and the acquisition

of pressure traces did not reduce the framing rate of the camera.

To record average images of the fuel concentration the camera exposure was set to 10

seconds and the laser was directly triggered by the engine timing controller. This

resulted in the averaging of 125 consecutive cycles onto the CCD chip before the

images were transferred to the computer (with the engine operating at 1500 rpm). This
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allowed the acquisition of large sample averaged data sets in a short period of time.
Pressure traces were not recorded in this mode.
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Fig. 4.11: Sequence of timing events for single exposure LIF measurements.
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4.8 Measurement Procedure

The procedure of a typical test run for taking single shot images, was as follows:

• Warm the engine cooling water to 58 °C using a heater in the coolant system.

• Switch on the fuel pump, to allow the accumulator to be filled and the fuel pressure

to settle to a constant 2.5 bar.

• Check the laser sheet alignment - adjust if necessary.

• Alter the timing set-up to allow the camera to trigger the laser directly.

• Crank the engine to inlet valve open position and connect calibration gas tank to the

inlet plenum chamber. Fill the engine with calibration gas.

• Obscure part of the laser beam with a fine wire. Re-focus the camera and remove

the wire.

• Take a series of at least 10 images of this uniform seed concentration - these are the

raw calibration images. Adjust the intensifier gain so that these images make the

best use of the camera's dynamic range, while ensuring that the intensifier is not

saturating.

• Flush the engine with nitrogen without cranking.

• Take a second series of at least 10 images - these contain the background signal

which is subtracted from the raw calibration images. If the background signal is too

high, the laser sheet must be altered to minimise the background noise level and the

calibration images repeated.

• Change the timing set-up so that the laser is triggered once per exposure.

• Dial the desired crank angle into the timing controller.

• Switch on the vacuum pump and exhaust sensor heater.

• Open the throttle on the inlet plenum chamber.

• Start the engine. Switch on the engine controller and bring the engine speed up to

1500 rpm (check speed with oscilloscope using TDC signal from engine controller).

• Check that ignition and injection occur on the compression stroke - switch TDC

mark if necessary. Set the injection timing for the first test condition.

• Take a series of background images (pressure traces are also taken).

• Close the throttle on the inlet plenum chamber and adjust the inlet manifold

depression

• Switch on injection, adjust the injection pulse length to desired AFR (as measured

by the exhaust sensor).

• Fire the engine until it has settled down (approximately 2 minutes). Re-adjust the

injection pulse width and the inlet manifold depression if necessary.
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Seed Concentration in Data Image

• Take a series of images and pressure traces.

• Switch the injection off and open the throttle.

• Take a series of background images.

• Repeat for other conditions.

• Stop the engine and switch off the engine controller.

• Crank the engine to the same position as for the previous calibration images. Take
another set of calibration background images.

• Fill the engine with calibration gas. Take a further set of calibration images.

4.9 Calibration Procedure

In order to yield images proportional to fuel concentration the fluorescence images
have to be corrected for spatial variations in the laser intensity and the collection
efficiency of the detection system / (see Chapter 3.5). These spatial variations in the
effective gain of the system are reflected in the signal obtained when the engine is filled
with a uniform concentration of the fuel marker (Fig. 3.9). Therefore a homogeneous
mixture of fluorescence marker and nitrogen was filled through the inlet port into the
cylinder of the stationary engine. Several images (usually 20) were recorded and
subsequently averaged. This minimises errors due to noise and temporal laser intensity
fluctuations. The calibration image was corrected for background contributions;
background images were obtained before filling the cylinder with calibration gas.

The intensity of the data images normalised by the such obtained calibration image is
proportional to the fuel concentration (Chapter 3.5) and can be written as:

f
ICalth 

=

Seed Concentration in Calibration Image

where f is a factor for the pressure and temperature difference between measurement
and calibration.

It follows that if temperature and pressure during measurement and calibration were
known, the seed concentration and hence the equivalence ratio in the data image could
be calculated from the seed concentration represented in the calibration image (see
Chapter 3.6). Two different attempts were made to quantify the seed concentration of
the calibration gas.

1 The overall collection efficiency of the detection system includes vignetting, aberration,
transmission losses and inefficiencies of intensifier and CCD camera.

IData

/Final =
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a + b • Tia

Seeder Method

In order to obtain a calibration gas of known composition, nitrogen was passed

through a sealed vessel filled with pentanone so as to cause the exit gas to contain a

vapour pressure of the seed. The nitrogen passed through a fine wire mesh sprayer

which distributes its flow as small bubbles through the pentanone. The nitrogen carrier

gas then became saturated with pentanone vapour. This procedure ensured a

homogeneous mixture of nitrogen and seed. For safety reasons nitrogen was chosen as

the carrier gas, as this ensures that a flammable pentanone/air mixture was never

present in the system. The temperature in the seeder was measured with a

thermocouple and the pressure was monitored with a pressure gauge.

However, the calculated seed concentrations of the calibration gas turned out to be too

low compared to the signal obtained and did not lead to sensible results in the

conversion of the fuel images. This result suggested that more pentanone entered the

cylinder than expected for a saturated vapour. Further investigations indicated, that a

fine aerosol was probably being created, causing higher seed concentrations in the

cylinder compared to the calculation based on saturated vapour. As a result, images

corrected by calibration images obtained using the seeder method could not be placed

on an absolute scale. Therefore, an alternative calibration method was sought.

Premixed Calibration Gas

In order to obtain a well-defined seed concentration for the calibration images the

calibration gas was premixed to a known concentration in a 61 litre tank. This tank

was evacuated with a vacuum pump. 27 ml of liquid acetaldehyde was metered into the

tank, which was then filled to 7 bar with nitrogen. The resulting acetaldehyde

concentration of 2.73 Vol% was chosen to give a similar fluorescence signal strength

as the fuel-air mixture in the engine. The tank had to be large enough to hold the

calibration gas for a whole measurement campaign. It is also noted that the bigger the

tank, the higher the accuracy with which the seed can be metered.

Acetaldehyde was chosen as calibration seed in preference to 3-pentanone because of

its lower boiling point (20.8 °C vs. 101.7 °C) which makes it more volatile and as

such, gives better mixing with the nitrogen. The calibration gas composition was

confirmed by a spectral analysis of a sample at the beginning and the end of the

measurement campaign using a mass spectrometer. The difference in fluorescence yield

of acetaldehyde and 3-pentanone can be accounted for by the following correction

factor:

fr = fret	
1

where f ia rel i s the difference in absolute fluorescence yield of 3-pentanone and

acetaldehyde at 293 K. The coefficients a and b are taken from Figure 3.5 for 3-

pentanone. The fluorescence yield from acetaldehyde is independent of temperature

(Fig. 3.5).

(4.2)
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Chapter 5

Engine Application of Fuel Visualisation - Results

Results from the visualisation of the mixture formation process in the one-cylinder
research engine are presented, as well as correlations of pressure variations to image
data. The impact of the results on engine design and possible future extensions are
discussed. The first part of this chapter concerns the mixture formation process whilst
the second concentrates on the influence of the mixture distribution on cyclic variability
in performance.

5.1 Mixture Formation Process

5.1.1 Measurements

To study the evolution of the mixture formation in the one-cylinder research engine
measurements of the fuel concentration during the inlet and compression stroke were
needed. However, the framing rate of the CCD camera (1 Hz) did not permit
instantaneous imaging of the mixture formation process during a single cycle.
Therefore the average fuel concentration at different crank-angle positions was
measured on several cycles in both the Mk 1 and Mk 2 Honda research engines.

The measurements taken in the Mk 1 engine comprised 31 sets of 20 single shot planar
LIE images each taken at a different crank-angle during the inlet and compression
strokes between 468° CA and 680° CA ATDC in a plane approximately 13 mm below
the spark plug. Injection begin was set to 405° CA ATDC. The 20 instantaneous LIE
images of each crank-angle position were subsequently averaged in order to give a
picture of the mean mixture formation evolution.

Two further data sets (Data Set 2 and 3) were acquired in the Mk 2 engine. For these
data sets, the images of 125 consecutive cycles were averaged on the chip of the CCD
camera before the data was transferred to the PC. Because the readout time limits the
framing rate of the CCD camera, this strategy reduced the measurement time required
for the acquisition of average fuel concentration images by a factor of 10 compared
with reading each instantaneous image onto the PC, for subsequent averaging.
Therefore bigger data sets could be accumulated in the same period of time. In this
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Table 3: Experimental conditions

Data Set 1

[Fig.: 5.2]

Data Set 2

[Fig.: 5.3a, b]

Data Set 3

[Fig.: 5.4a, b]

Engine Type Mk 1 Mk 2 Mk 2

Engine Speed [rpm] 1500 1500 1500

Inlet Depression [mmHg] 450 430 430

Ignition	 [° CA ATDC] 680 680 680

Injection [° CA ATDC] 405 405 0

AFR 20 19 19

Fuel 3 parts of Iso-octane	 +	 1 part of 3-Pentanone

Measurement Plane
[in mm below spark plug]

13 0.7, 5.2, 10.2, 15.2 0.3, 5.2, 10.2, 15.2

Calibration Method Seeder Premixed Premixed

Calibration Gas 3-Pentanone/N2 Acetaldehyde/N2 Acetaldehyde/1\12

way the average fuel concentration was measured in 20 0 crank-angle steps during the
inlet and compression strokes between 360° CA and 740° CA ATDC, for injection at
combustion TDC (0°) and 405° ATDC. These measurements were taken in different
planes, 0.7 (0.3) mm, 5.2 mm, 11.2 mm and 15.2 mm below the ground electrode of
the spark plug, thus giving a quasi 3-dimensional picture of the mixture flow during the
cycle. For this experiment, a 45° turning mirror was mounted on a vertical traverse
which could be adjusted by a micrometer screw, thus allowing precise setting of the
height at which the laser sheet entered the combustion chamber. Background images
and calibration images were taken at the same height of laser sheet as the
corresponding data images. The background images were also taken at the same crank-
angle as for the corresponding data images. The engine operation and experimental
conditions for all three data sets are given in Table 3.

5.1.2 Image Processing

Each image was corrected for background contribution, mean laser and intensifier
structure by subtracting a mean background image and dividing by a mean calibration
image. The LIF images processed in this way represent seed densities at the relevant
measurement condition. In order to display relative fuel/air ratios the images had to be
corrected for temperature and density. Therefore all images were normalised to the
calibration condition employing equation 3.15:

PData TC lib	 0.51+ 0.001683 . TD,"

fN = 
P Calib TDataTCalib0.51+ 0.001683.

The coefficients which account for the temperature difference were estimated from the
data in Figure 3.5. The denominator of the second term becomes unity when
acetaldehyde was used as the calibration gas because the fluorescence yield of

(5.1)
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Fig. 5.1: Temperature and pressure with the resulting correction factor for normalising the crank-
angle resolved data.

acetaldehyde is independent of temperature (Fig. 3.5). In order to make these
corrections, it is necessary to know the temperature and the pressure throughout the
inlet and compression strokes. The cylinder pressure was measured by a Kistler
pressure transducer and the temperature was calculated using a model which assumed
adiabatic mixing between air and residuals (see Chapter 3.7 for more detail). Figure
5.1 shows the pressure and temperature together with the resulting normalising factor
calculated with equation 5.1.

5.1.3 Image Calibration

The images flatfielded with calibration images obtained from a premixed calibration gas
should display the same image intensity for the same conditions. However, this was not
the case. The signal intensity in the calibration images varied substantially between the
different data sets. An explanation for this initially mysterious result could be the fact
that acetaldehyde is absorbed by gasket material used in the engine cylinder.
Discussion of this problem with N. Tait from Shell Research (Thornton) revealed a
similar problem in a combustion cell. In the evacuated, heated (150 °C) cell, injection
seeding of toluene (b.p. 110 °C) and methanol (b.p. 60 °C) did not yield the expected
vapour pressure. It was found that the gasket material used in the cell absorbed the
seeded species. The cylinder head gasket on the research engines used for this
investigation is made of the same material as the gaskets employed in the combustion
cell at Shell and acetaldehyde, like toluene and methanol, is also polar. These facts may
explain the unreliable results of the calibration procedure.

73



X p ( AFR 19)
4

[moymi

Count
f= (5.4)

[

mol

m3 (5.5)X Pent	 'Data

Inspite of this limitation in the calibration the images can still provide quantitative

information on the mixture formation process. The main limitation is that images taken

under different conditions and flatfielded against different calibration images can only

be compared qualitatively. In order to allow semi-quantitative comparisons, the images

were calibrated on the basis of the exhaust sensor reading.

The Data Sets 2 and 3 contain averaged images taken in four different planes of the

cylinder during inlet and compression. At 680° CA ATDC, the piston has reached a

position just below the lowest measurement plane. Therefore, at this crank-angle, the

images represent four slices through the remaining cylinder volume. If it is assumed

that there are no step changes in the axial fuel distribution, the averaged signal of all

four planes should correspond to the overall air/fuel ratio as indicated by the exhaust

sensor. Although the images cover only a part of the cylinder cross section, the

average fuel concentration outside the measurement plane is not expected to differ

significantly from that displayed by the images. On this basis the images were

converted to equivalence ratios by the following procedure.

Using equation 3.31, the pentanone concentration can be expressed as a function of the

air/fuel ratio:

23 —Pcarib 

R • TCa lib 

X Pent — 309.7 . AFR+ 85.1

With the calibration conditions (n,-calib = 1 bar and Tcaub = 331 K) and for an indicated

air/fuel ratio of 19 the above equation yields:

(5.2)

X pent ( AFR 19 ) = 0.14

The intensity 1 of the sum of the four images taken at 680° CA ATDC and normalised

to calibration conditions is proportional to the pentanone concentration expected for
AFR 19:

4

oc X pent ( AFR 19)
	

(5.3)
i=1

and the factor of proportionality can be expressed as:

With f from equation 5.4 the signal intensities of each image can be converted to
pentanone concentrations:
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The images can now be further converted to display equivalence ratios by using
equations 3.31 and 3.32.

5.1.4 Results

The results are displayed in Figures 5.2 to 5.6. Figure 5.2 shows the ensemble average
of 20 single shot images (previously referred to as Data Set 1) for a range of different
crank-angles taken in the Mk 1 engine with start of injection set to 405° CA ATDC.
The laser sheet entered from the inlet side 13 mm below the spark plug and exited on
the exhaust side. The four recessed areas on the circumference of the images are
caused by the locking nut which holds the piston window in place and extends into the
viewing area. These images were normalised by calibration images obtained using the
seeder method and could only be displayed on a relative scale since the seed
concentration in the calibration image was not well defined. The arbitrary scale is based
on the mean fuel concentration of the ensemble-averaged image taken at 680° CA

which corresponds to 100 on this scale.

Figures 5.3a, b and 5.4a, b show the crank-angle resolved 3D data for injection
beginning at 405° and 0° CA (TDC) respectively, as measured in the Mk 2 engine. The
laser sheet entered from the primary side (top) and exited on the secondary side
(bottom). At crank-angles 380°, 400° and 700° the laser sheet in the lower
measurement planes was clipped by the descending/ascending piston, and subsequently
no image could be taken. The images in the top plane (0.7, 0.3 mm) from 380° to 540°
CA and for the second plane (5.2 mm) from 400° to 520° CA were clipped by the open
inlet valve. The focusing effect of the cylindrical entrance window reduced the width of

the laser sheet, leading to a smaller imaged area compared to Data Set 1 (Fig. 5.2)
obtained in the Mk 1 engine. In order to partly compensate for this, the laser sheet was
made slightly diverging. The images in the top plane (0.7, 0.3 mm) view the pent-roof
combustion chamber and are therefore smaller. The measurement planes 5 to 15 mm
below the spark plug were affected by scattered laser light in a region near the exhaust
side of the cylinder. Therefore, the laser sheet had to be masked, compromising the
field of view. The 3D data was converted to an equivalence ratio scale as described in
Section 5.1.3. The average equivalence ratio as measured by the exhaust sensor was
0.72. The mean equivalence ratio in each image in Figures 5.3a, b and 5.4a, b is
displayed in Figures 5.5 and 5.6.

Some of the images have stripes perpendicular to the laser propagation direction.
These have resulted from fluctuations in the laser profile and need to be disregarded
when interpreting the images. Tait (1994) showed that such artificial features can be
removed with a Fourier filter. For the current set of images, such image enhancement
was discarded on grounds of the risk of distorting the true profile and the fact that the
observed modulations are very small (< 1 %).

Included in Figures 5.2 to 5.4 is a colour bar showing the correspondence between the
false colour scale and the data values. In the schematic displayed together with the
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images the crossed valve indicates the inlet valve with the reduced lift referred to as the

secondary inlet valve. The fully-opening main inlet valve will be referred to as the

primary inlet valve in the following discussion. The exhaust valves will be accordingly

dubbed primary and secondary exhaust valves.

The primary inlet valve opens at 360° CA ATDC. Subsequently the pressure in the

cylinder drops to that present in the inlet manifold (Fig. 5.5, 5.6). Thus, at 380° the

flow is from the cylinder into the manifold and unburned hydrocarbons sucked from

the long piston crevices lead to an increase in signal. The descending piston then

reverses the flow and in the case of injection at 405° CA air enters the cylinder

between 400° CA and 420° CA, together with fuel vapour, left from the previous cycle

in the manifold (Fig. 5.3a). This mixture is then diluted with air between 440° CA and

460° CA. At the same time the secondary inlet valve opens and fuel vapour trapped

behind the valve from the previous cycle enters the cylinder. This can clearly be seen in

the 0.7 mm and 5.2 mm planes at 460° CA and 10.2 and 15.2 mm planes at 480° CA,

where the two primary quadrants are leaner than the two secondary quadrants due to

the air flow through the main inlet valve.

Between 460° and 480° CA, fuel injected at 405° CA reaches the 0.7 mm plane

through the primary inlet valve. Most of it moves down outside the measurement

plane, near the cylinder wall and only a little of it can be seen in the exhaust half in

lower planes. Between 480° CA and 500° CA, the fuel injected at 405° CA enters the

top plane through the secondary inlet valve. Here as well, most of the fuel is actually

outside the measurement plane, near the cylinder wall. While the fuel pocket which

entered the cylinder via the primary valve is carried quickly down the cylinder by the

incoming air flow, the fuel stemming from the secondary inlet valve stays in the top of

the cylinder, and is carried by the swirl motion in a clockwise direction (images 500° to

600° CA).

After 580° CA the primary inlet valve lift is less than 1 mm and no further dilution with

air occurs. During the compression stroke vapour stemming from the secondary valve,

sitting outside the viewed area, mixes into the measurement planes (Fig. 5.3b) which

leads to an increased mixture strength (Fig. 5.5). Between 640° CA and 680° CA a

fuel-rich cloud appears in the secondary exhaust quadrant, and in the secondary inlet

quadrant the secondary vapour cloud becomes diluted. At 700° CA ATDC the flame

kernel reaches the top measurement plane. The flame burns to the lean primary exhaust

side rather than towards the rich secondary exhaust quadrant of the cylinder.

For injection beginning at 0° CA ATDC, the fuel enters the cylinder through the main

inlet valve as soon as the cylinder pressure has fallen to the manifold pressure, between

380° and 400° CA (Fig. 5.4a and Fig. 5.6). The second charge of air-fuel mixture

enters the cylinder through the secondary inlet valve between 440° and 520° CA. The

subsequent development is much the same as for injection 405°. The mixture which

entered through the main valve moves down the cylinder with the air flow, while the

mixture from the second inlet valve stays in the top of the cylinder. The mixture is also
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influenced by the clockwise swirl motion. Again between 640 0 and 680° CA a fuel rich
cloud appears opposite the secondary inlet valve (Fig. 5.4b). The final fuel distribution
at 680° CA is very similar for injection 00 and 405° CA. Also, in this case the flame
growth in the direction of the lean primary exhaust quadrant can be observed at 700°
CA.

In the ensemble-averaged crank-angle resolved images taken in the Mk 1 engine (Fig.
5.2) a bigger area of the cylinder was imaged. These images show that most of the fuel
actually sits close to the cylinder wall. The first fuel trace can be observed between the
inlet valves moving to the exhaust side along the two secondary quadrants between
468° and 480° CA. This fuel stems from the back of the primary inlet valve. The bulk
of the fuel appears near the cylinder wall between the two exhaust valves 480° CA
ATDC. In the subsequent images the fuel cloud moves through the measurement
plane, with the tail just disappearing at 588° CA. At 528° CA, a second fuel cloud
becomes visible in the secondary exhaust quadrant. Conversely to the primary cloud,
this cloud remains in the measurement plane which can be observed in the subsequent
images and is highlighted by the separation of the two clouds. This fuel cloud must
stem from the secondary valve as observed in the 3D images. The primary fuel cloud is
convected by the onset of a clockwise swirl motion at bottom dead centre (BDC). The
difference in the convection angle between the primary and the secondary cloud is
evidence for the fact that the former is moving axially and the latter is stationary in the
plane. These measurements also show the mixing of the vapour of the secondary cloud
from outside the viewed area into the measurement plane. At the end of compression a
fuel-rich cloud appears in the secondary exhaust quadrant and the inlet half is leaned
out in the same way as observed in the 3D images.

5.1.5 Interpretation of Results

The results identified two mechanisms which influence the mixture formation process:

1. the fuel entering through the secondary inlet valve stays in the top of the cylinder.

2. the fuel entering the cylinder through the primary inlet valve strikes the opposite
cylinder wall and remains in the vicinity of the wall.

The 3D crank-angle resolved data show the previously unrecognised effect of the
secondary inlet valve on the fuel distribution. Due to the small lift of the secondary
inlet valve, the air flow velocity is very small compared with the main valve. Therefore,
the fuel entering the cylinder through the secondary valve tends to stay in the top of
the cylinder, whereas the fuel coming through the primary inlet valve follows the air
motion along the exhaust side cylinder wall, down the cylinder. This, together with the
different phasing of the opening of the two inlet valves, leads to two distinct rich
clouds of fuel in the cylinder. The fuel stemming from the primary inlet valve is carried
across the cylinder by the air flow and thereby impinges onto the opposite cylinder
wall. Particular fuel droplets which are likely to follow a more or less ballistic path will
hit the cylinder wall. This causes a film of liquid fuel to form on the exhaust side

77



cylinder wall. Vaporising of liquid fuel from the cylinder walls would explain the

appearance of a rich mixture below the secondary exhaust valve during compression.

Previously it was thought that injection synchronised with the inlet stroke is the major

source of fuel stratification and that fuel injection before inlet open will lead to a

homogeneous fuel distribution (Hone 1993, Hardalupas 1995). The current study

showed that injection timing does indeed influence the above described mechanisms.

Fuel injection at 405° or 0° CA has only a small effect on the stratification pattern of

the fuel in the measurement planes at the time of ignition, however it affects the degree

of axial stratification. Fuel injection during the inlet stroke will cause fuel droplets to

enter the combustion chamber through the primary inlet valve and impinge on the

opposite cylinder wall. Fuel injected at combustion TDC hits the hot inlet valve and has

approximately 2 ms to evaporate. Therefore more fuel in vapour form will enter the

cylinder through the primary inlet valve and fewer droplets will strike the opposite

cylinder wall. This is reflected in the stronger signal during the inlet stroke for injection

at 0° CA, since droplets yield a weaker signal than vapour. Hardalupas (1995) found

that the spray motion in the port is determined mainly by the speed of the spray

generated by the injector, rather than by the air speed in the ports. This implies that the

droplet velocity for injection at 0° CA is lower than for injection at 405° CA and

therefore fewer droplets will impinge on the opposite cylinder wall. This explains the

fact that the fuel-rich mixture observed during compression below the secondary

exhaust valve is weaker in the case of injection at 0° CA. The injection timing also

affects the quantity of fuel entering through the secondary inlet valve. Fuel injected

behind the secondary valve at TDC has time to evaporate and as soon as the primary

inlet valve opens will be drawn by the air flow into the cylinder. This effect is reflected

in the leaner secondary cloud present in the images taken with injection at 0° CA

compared to those taken with injection at 405° CA. Since the mixture in the rich cloud

near the exhaust side cylinder wall is also leaner, the rest of the cylinder contains a

richer mixture, which is reflected in the smaller degree of axial stratification.

With the fuel concentrated in the cylinder head and near the cylinder wall of the

exhaust side, the rest of the cylinder must contain a very lean air-fuel mixture.

Consequently the ascending piston pushes lean air-fuel mixture up and compresses the

fuel into the upper regions of the cylinder, thus creating the stratification along the

cylinder axis. The axial stratification is more pronounced when the fuel is injected

during the inlet stroke, but the mixture is far from homogeneous when injecting at

combustion TDC. On average the difference between the top and bottom plane at the

time of ignition is 0.32 and 0.21 equivalence ratio for injection at 405° CA and at 0°

CA respectively (Fig 5.5, 5.6). The top plane is 4.8 % richer when the fuel is injected

through the open inlet valve rather than behind the closed valve. However, 20° CA

before ignition the top plane for injection at 405° CA was 8.4 % richer. This is caused

by the ascending piston pushing leaner mixture from lower in the cylinder into the

measurement planes. Up to 20° CA before ignition, this is offset by mixing with fuel

from the rich clouds outside the measurement plane. From 660° CA on, the leaning of
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the mixture due to the piston movement becomes dominant. The effect is less
pronounced in the case of fuel injection at TDC since the degree of axial stratification
is smaller. This implies that for more retarded ignition the mixture in the plane closest
to the spark plug will become leaner and the difference in the mixture concentration
between the two injection strategies will be further reduced.

Following Pages:

Fig. 5.2: Fuel concentrations in a plane 13 mm below the spark plug during inlet and compression
stroke in the Mk 1 engine with fuel injection at 405° CA (Data Set 1). Each image is the ensemble-
average of 20 single images. The images are scaled according to the mean fuel concentration at
ignition (680° CA) which was set to 100. 360° CA is inlet TDC and 720°/0° CA is combustion 'TDC.

The laser direction is from left to right.

Fig. 5.3a, b: Fuel concentrations in four planes during inlet (5.4a) and compression (5.4b) stroke in
the Mk 2 engine with fuel injection at 405° CA (Data Set 2). Each image is the mean of 125
consecutive cycles. The images are displayed on an equivalence ratio scale. The laser direction is from
top to bottom.

Fig. 5.4a, b: Ditto except for fuel injection at 0° CA after TDC (Data Set 3).
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5.1.6 Comparison of Spray Characteristics and Air Velocities with Fuel Vapour
Concentrations

A research group at Imperial College (London) and Honda R&D (Japan) studied spray

characteristics and air velocities in similar engines under similar conditions to those of

the current study. The results were jointly published in the SAE paper 950507

(Hardalupas 1995). The spray characteristics were studied using high-speed cine

equipment. Droplet arrival time and droplet density were thus measured by illuminating

a plane 16 mm below the spark plug with a pulsed laser sheet. In the same

measurement plane 2D grids of mean droplet size and velocity were measured with

PDA and 3 dimensional air velocities by LDA. Since the results of Hardalupas (1995)

are complementary to the results of this study they are presented here and are

compared with the PLIF results.

PDA measurements of droplet size and velocities obtained from a measurement grid 16

mm below the spark plug are summarised in terms of liquid volume flux and liquid

droplet concentration averaged over the whole inlet stroke in Fig. 5.7 (Hardalupas

1995). The contours show a maximum droplet concentration near the sleeve in the

primary exhaust quadrant, extending into the secondary exhaust quadrants. This is

where the PUT images of vapour concentrations (Fig. 5.2) show the bulk of the fuel

for crank-angle between 480° - 528° CA. The fuel concentration images in Figure 5.2

also show a second fuel cloud appearing near the sleeve in the secondary exhaust

quadrant at 516° and 528° CA. The droplet concentrations in this region is very small

as shown in Figure 5.7, suggesting that the fuel entering through the secondary inlet

valve is mainly in vapour phase.
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Fig. 5.7: Spray characteristics for injection at 420° CA in a plane 16 mm below the spark plug
(Hardalupas et al 1995).
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Figure 5.8 shows maps of in-cylinder gas velocities measured by LDA in a grid 16 mm

below the spark plug averaged over ±10° CA. The flow pattern in the LDA data at

450° CA is reflected in the fuel motion as observed in the PLIF data. The images in

Figure 5.2 at 468° CA and 480° CA show a fuel stream from between the inlet valves

and the secondary inlet quadrant, where the velocity vectors, as indicated in the LDA

images (Fig. 5.8), are directed downwards and towards the secondary exhaust

quadrant. In the primary exhaust quadrant, where the velocity vectors are directed

towards the head, and in the primary inlet quadrant, the fuel images show a very lean

mixture i. e. mainly air. The same flow pattern is observed in the 3D LIF data (Fig.

5.3a, 5.4a) between 440° and 500° CA where an air stream dilutes the near

homogeneous vapour concentration followed in the case of injection 405° CA by a fuel

stream.

The PUT data images in Figure 5.2 show the fuel cloud which stemmed from the

primary inlet valve, moving through the measurement plane and disappearing by 600°

CA, whereas the cloud originating from the secondary inlet valve stays in the

measurement plane. The air velocity data in Figure 5.8 shows an axial velocity of 10

m/s towards the piston crown in the quadrant of the primary cloud at 540° CA,

whereas the quadrant of the secondary cloud has zero or slightly negative axial velocity

vectors. The primary cloud is carried by the air flow from the primary inlet valve along

the exhaust side towards the piston, while the secondary cloud sits in an area of low

axial flow, since it is not followed by a significant air flow through the secondary inlet

valve. This is also reflected in the droplet measurements of Figure 5.7. The contours

averaged over the whole inlet stroke show a maximum droplet volume flux near the

primary exhaust sleeve. During compression, at 660° CA, the axial velocity vectors of

-5 to -10 m/s are directed towards the cylinder head in the two secondary quadrants

(Fig. 5.8). This is consistent with the vapour cloud appearing in the secondary exhaust

quadrant between 640° and 680° CA (Fig. 5.2 - 5.4). This cloud stems from the fuel

film evaporating from the exhaust side cylinder wall pushed back into the measurement

planes by the ascending piston.

The formation of a clockwise swirl motion at bottom dead centre as shown by the

LDA measurements is reflected in a clockwise displacement of the fuel vapour clouds

beginning at 540° CA after TDC. According to Figure 5.8 the swirl motion is

maintained during compression up to 660° CA. However, the effect of the swirl on the

fuel-rich clouds seems to decay slowly during compression and appears to be

terminated after 600° CA. Hardalupas (1995) does not give the magnitude of the swirl

velocities, but the PLIF data suggests a gradual decay during compression. The swirl

pattern in Figure 5.8 is very concentric with little flow orthogonal to the swirl. This

explains the slow mixing of the rich patches near the cylinder wall with the rest of the

cylinder charge (Fig. 5.2 - 5.4) and implies that swirl might be important for

maintaining both the axial and cross-bore stratification.

There is very good agreement between the PLIF results and the results of Hardalupas
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600 CA

Fig. 5.8: Contours of averaged air velocity measured by LDA in a plane 16 mm below the spark plug
gap in a Mk 1 type engine (Hardalupas et al 1995).
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(1995). The vapour phase shows an identical distribution as the droplets during the

inlet stroke and follows the air flow as indicated in the LDA measurements.

5.1.7 Fuel Vapour Motion during Inlet and Compression Strokes

On the basis of the crank-angle resolved PUY fuel concentration images and the PDA

and LDA data published by Hardalupas (1995), the motion of the fuel entering the

cylinder through the primary inlet valve is described in (Fig. 5.9 a, b).

Assuming the axial air velocity of 10 m/s (Fig. 5.8) to be constant throughout the inlet

and compression strokes, the fuel vapour from the primary inlet valve is moving down

the cylinder at a rate of 10 mm/ms. Based on this assumption, the head of the vapour

cloud which appears at 480° CA in the plane 15 mm below the spark plug should have

moved 66 mm down the cylinder along the exhaust side cylinder wall by the time the

piston reaches BDC. At 580° CA ATDC the last traces of vapour move through the

top measurement plane and the leading part of the vapour cloud should be convected

to the inlet side. According to Figure 5.8, at 620° CA ATDC the head of the vapour

stream moves upwards to the cylinder head while the tail is still on the move down at

about 30 mm below the 15 mm plane. Between 620° and 660° CA the tumble vortex

will break down (Fig. 5.8) and, as well, the part of the vapour stream which still

remains in the exhaust half of the cylinder is pushed upwards by the ascending piston.

Also by this crank angle, the swirl motion will have deflected the fuel vapour cloud

such that the head of the fuel cloud is likely to reappear between the inlet valves, while

the tail should be in the secondary exhaust quadrant. The fuel vapour cloud will lean

out during the inlet and compression strokes due to turbulent mixing with both, the air

and the residuals in the cylinder. By the time it reaches the cylinder head the remaining

fuel cloud it actually leaner than the rich cloud from the secondary valve which is

sitting in the upper and inlet half of the cylinder. This explains the dilution of the

mixture in the inlet half of the cylinder head during compression (Fig. 5.3b).

Based on an air flow path estimated by Hardalupas (1995) fuel droplets entering the

cylinder through the primary inlet port will hit the cylinder wall at the exhaust side

between 10 and 20 mm below the 15 mm measurement plane where they probably

form a fuel film. During compression the fuel film will gradually vaporise and this

vapour will be gradually convected towards the piston due to the now slower moving

air and hence form an axially-stratified richer mixture near the exhaust cylinder wall.

Between 620° and 660° CA, after the break down of the tumble vortex, this fuel-rich

mixture will be pushed upwards by the ascending piston. This is consistent with the

enrichment of the secondary exhaust quadrant during the later stages of compression

(Fig. 5.3b, 5.4b). The measured reduction in mixture strength between 660° CA and

680° CA suggests that the fuel vaporised from the cylinder wall is axially stratified and

that a leaner mixture exists lower in the cylinder. Near the end of the compression

stroke, this leaner mixture dilutes the bulk of the mixture in the upper part of the

cylinder.
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5.1.8 The Toyota Lean Burn Engine

The review of lean burn SI engines in Chapter 1.4 revealed that Toyota uses a very

similar strategy to Honda's VTEC-E engine for the mixture preparation in their 3rd

generation lean burn engine. Both engine concepts have 4-valve pent-roof cylinder-

head configurations. They make use of one high-swirl inlet port with a swirl ratio of

2.05 (Honda) and 2.4 (Toyota) to supply the bulk of the mixture and utilise a second

inlet port to supply the richer mixture. In the Honda engine this is controlled by the

VTEC-E valve and in the Toyota engine by the SCV valve. The SCV valve is located

in the inlet port and is closed in the lean operation mode thus preventing any air

entering through the non-swirl inlet port. A small passage between the swirl inlet port

and the non-swirl inlet port permits a small airflow to enter with high velocity through

the second inlet valve. The fuel entering through the non-swirl inlet port is therefore

accompanied only by a small quantity of air, just as in the VTEC-E mode of the Honda

engine. Both engine concepts use sequential injection during inlet open period at about

400° CA ATDC (Hone 1992, Inoue 1993). However, Toyota claim that their engine is

a homogeneous charge engine (Inoue 1993) whereas the results of this work identified

a strong axial stratification in the Honda lean burn engine.

Toyota supports its view of the mixture distribution with crank-angle resolved LIF

measurements of fuel concentration in a single plane parallel to the piston and 23 mm

below the spark plug (Shimizu 1992). The engine was operated at 1200 rpm with

ignition at 690° CA ATDC. It was found that at ignition the mean fuel concentration in

this plane was almost equal to the overall equivalence ratio and it was concluded that

the fuel and air are homogeneously mixed.

The Toyota research workers used N,N-dimethylaniline (DMA) as the fluorescence

tracer and mixed it with gasoline. The boiling point of DMA is 193 °C which

corresponds to the upper end of the gasoline range (b.p. range 20 - 215 °C). As

discussed in Chapter 3.3, it is doubtful whether a fuel marker with such different

vaporisation characteristics from the bulk of the gasoline will be representative of the

fuel distribution. Shimizu et al (1992) do not provide any detailed specification about

the gasoline used for the experiment. However, commercial-grade gasoline is known to

exhibit strong fluorescence when excited at 308 nm. It is not clear how the

fluorescence of DMA and gasoline was distinguished.

Also, measurements in only one plane can be very deceptive. For example, the 3D

images in Figure 5.5 show that at 680° CA ATDC in the plane 5 mm below the spark

plug the mixture is slightly richer than the average, whereas that in the plane 10 mm

below the spark plug is slightly leaner. If the fuel concentration is measured only in one

plane between 5 and 10 mm below the spark plug, the result may not be typical for the

whole cylinder.
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5.1.9 Further Implications and Recommendations

In the Honda VTEC-E engine, the formation of a fuel film on the exhaust side cylinder

wall opposite to the inlet valve was found to play a major role in the mixing process.

Even for fuel injection behind the closed inlet valve, fuel wetting the cylinder wall was

found to be important. The mixture formation for injection earlier or later than the

405° CA chosen in this study will mainly be affected by the valve lift. At injection 405°

CA the bulk of the fuel enters the cylinder in a period around maximum valve lift. For

earlier or later injection timing more fuel droplets will impinge on the back of the inlet

valve as it opens or closes. This will tend to scatter more of the fuel droplets and will

subsequently reduce the amount of fuel hitting i.e. the opposite cylinder wall. The

resulting mixture distribution is therefore expected to be between the two cases studied

here. For injection late in the induction stroke, where only part of the injected fuel is

able to enter the combustion chamber, the picture might be very different. The fuel

remaining in the inlet port will behave in the same way as we observed for the fuel

injected at 0° CA. The fuel entering late in the induction stroke will almost certainly

remain in the exhaust half of the cylinder and will therefore increase the axial and radial

stratification.

To allow the fuel to impinge on the exhaust side wall a tumbling inlet flow directed

towards the exhaust side is required. Such a flow is readily produced in pent-roof 4-

valve cylinder head configurations. Flat 2-valve cylinder head designs, which are still

commonly used, will produce low tumble and a flow directed towards the piston. In

this case injection timing is likely to have a different effect on the mixture formation

process compared to the observations of this study. It is likely to follow the concept

proposed by A. Quader (1982). For fuel injection before the inlet valve opens, the

mixture formation will initially follow the same pattern as observed in this study for

fuel injection at 0° CA through the primary valve. A rich mixture of fuel and air enters

the cylinder after the inlet opens. This is followed by gradually leaner mixture until the

end of induction. With an inlet port directed towards the piston, the fuel will not hit the

exhaust side cylinder wall and will follow the flow straight down the cylinder, possibly

wetting the piston crown. In the absence of tumble, the rich mixture is likely to stay

close to the piston, which will lead to negative axial stratification at the end of

compression. For the same reasons, injection timing during inlet open can lead to a

positive axial stratification.

In Quader's (1982) study it was also observed that fuel stratification occurs only in the

presence of swirl, which suggests that swirl inhibits mixing. The current study seems to

support this view, since radial mixing is slow and axial mixing is dominated by

compression by the ascending piston. However, whether no swirl leads to a more

homogeneous mixture in pent-roof combustion chamber geometries will not be seen

with the current experiment. To answer this question, a similar study on a cylinder

head with non-swirl inlet ports would be necessary.
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The important effect of the secondary inlet valve on mixture formation is evident from

the data presented here. Operation in 4-valve mode will change the mixture formation

process significantly. The second inlet port imposes no swirl on the air which will

change the flow field in the engine substantially. Due to the larger effective inlet area,

the air velocity will be reduced during 4-valve operation. This makes it difficult to

estimate from the available data the mixture formation in 4-valve operation. PLIF

measurements in the 4-valve mode with swirl and non swirl second inlet ports would

allow the picture of the mixture formation process in pent-roof cylinder-head

configurations to be completed.

5.1.10 Conclusions on the Mixture Formation Process

• The mixture formation process in a research engine with 4-valve pent-roof cylinder-

head could be described quantitatively by means of quasi 3-dimensional crank-angle

resolved PLIF images.

• Two major causes of fuel stratification could be identified:

— fuel forming a film on the exhaust side cylinder wall

(vaporising of fuel wall film during compression causes locally richer mixture),

— fuel entering the cylinder through the secondary inlet valve

(low axial flow behind secondary inlet valve causes fuel to stay at top of the

combustion space).

• Injection timing is an important parameter for mixture formation:

— injection phasing during the inlet open period causes more droplets to strike the

opposite cylinder wall where they form a fuel film,

— injection timing influences the quantity of fuel entering through the secondary

inlet valve.

• Swirl motion determines the location of richer mixture clouds.

• Fuel vapour motion measurements are consistent with air velocity and droplet

measurements.

• The implication is that swirl is important for maintaining fuel/air stratification.

• Further studies of non-swirling engine configurations are required.
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5.2 Mixture Formation and Cyclic Variability

In this chapter the correlation between engine performance and the mixture distribution

at ignition, its cyclic variability and the early flame growth are investigated.

5.2.1 Measurements

This study is based on four data sets. Two data sets of 200 (189) single fuel

concentration images together with corresponding in-cylinder pressure traces were

taken at ignition in a plane 0.7 mm below the spark plug for injection at 405° and 0°

CA ATDC. In order to image the early flame kernel, two further data sets of 200 (186)

single images each were taken 20° after ignition together with corresponding in-

cylinder pressure traces. The same conditions as for the images taken at ignition were

used. The engine operation and experimental conditions for all four data sets are given

in Table 4.

5.2.2 Image Processing and Calibration

Each image was corrected for mean background contribution and mean laser and

intensifier structure by subtracting a background image and dividing by a

calibration/normalising image. The signal intensity in the calibration images could not

Table 4: Experimental conditions

Data Set 1 Data Set 2 Data Set 3 Data Set 4

Engine Type Mk 2 Mk 2 Mk 2 Mk 2

Engine Speed [rpm] 1500 1500 1500 1500

Inlet Depression [mmHg] 430 430 430 430

Ignition	 [° CA ATDC] 680 680 680 680

Injection	 [° CA ATDC] 405 405 0 0

AFR 20 20 20 20

Fuel 3 parts of Iso-octane +	 1 part of 3-Pentanone

Measurement Plane
[mm below spark plug]

0.7 0.7 0.7 0.7

Measurement Crank-angle
[cp CA ATDC]

680 700 680 700

No. of Images 200 200 189 186

Indicated Cylinder Pressure yes yes yes yes

Calibration Method/Gas Premixed Acetaldehyde/N2
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be related to the known composition of the premixed calibration gas, probably due to

absorption of seed material by the cylinder head gasket (see Section 5.1.3). This

prevented the image intensity from being correlated to an absolute seed concentration:

However, all four data sets were normalised by the same calibration image, thus

allowing a quantitative intercomparison between the images for the two different

injection timings.

5.2.3 Results

Mixture Distribution and Variation
On average, the fuel distribution between injection 0° CA and 405° CA is near

identical (Fig. 5.11, 5.12). However, injection during the inlet stroke causes the plane

0.7 mm below the spark plug to be richer, on average by 4.3 %. This corresponds

closely with the images from the 3D-data sets, taken at ignition, which show on

average a difference of 4.7 % between injection at 0° CA and 405° CA (Fig. 5.13,

5.14). The 3D data corresponds to an average of 125 consecutive cycles and they were

converted to an equivalence-ratio scale as described in Section 5.1.3. The average

mixture concentration in the centre of the cylinder, near the spark plug, is 4 % higher

for injection at 405° CA compared to injection at 0° CA. However, there is also a

small region close to the spark plug where the mixture is about 2 % leaner than with

injection at 0° CA. The difference in fuel concentration between the two injection

strategies is largest in the exhaust half of the cylinder where the mixture is 8 to 10 %

richer for fuel injection synchronised with the inlet stroke (Fig. 5.15).

On a single cycle basis the mixture concentration distribution varies substantially. This

point is illustrated by Figure 5.17 which shows 49 single images of the 200

measurements taken at ignition for injection 405°. Both the overall fuel concentration

and the fuel distribution in the measurement plane vary from cycle to cycle. The mean

fluctuation of the fuel concentration around the mean value of the 200 (189) single

shot images is 10.9 % for injection 405° compared to 8.6 % for injection 0° CA (Fig.

5.18 and 5.19). This is a difference of 26 % in the cyclic dispersion of the overall fuel

concentration between the two injection strategies. Locally the fluctuations can be

considerably higher. They are particularly large around the spark plug; 10.5 % (0°) and

12.9 % (405'). The highest fluctuations are observed in the secondary inlet quadrant

with 15 % and 13 % for injection at 405° CA and 0° CA respectively.

The repeatability of the measurements can be estimated from a set of 20 calibration

images which, on average, show a fluctuation of 2.3 % (Fig.: 5.16). Because this value

is small (2.3 %) compared to the fluctuations present due to cycle-by-cycle variability

(8 - 11 %), subtracting it in quadrature hardly affects the result (see Section 5.2.5).

The small error in repeatability within the calibration images is due to errors of shot

noise, intensifier noise and fluctuations in the laser power and profile. This represents

the lower limit of the possible error associated with a single laser pulse measurement.

The true error may be larger than this due to systematic errors particularly introduced
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during the calibration measurements. Additional error sources which are not accounted

for may include effects due to engine vibration (calibration images were taken with the

engine stationary) or distortions of the images due to viewing through a heterogeneous

charge.

The sets of 200 (189) images taken at ignition were classified according to peak

pressure pn. in "good" (p „. � 7 bar), "fair" (7 bar > pn. > 5 bar) and "bad" (Th. 5

bar) cycles and the images within each group were subsequently averaged. The overall

fuel distribution for all cycles is shown in Figure 5.11 and 5.12 for the different

injection periods. To highlight the important characteristics in the fuel distribution

between "good" and "bad" cycles, each image was normalised by the mean of all

images at the relevant injection timing. This allows the factors which distinguish

between a "good" and a "bad" cycle to be analysed.

The resulting images from this analysis show the importance of having a richer mixture

near the spark plug for the subsequent pressure development (Fig. 5.24 - 5.27). The

average "bad" cycle is overall 5.8 % (405°), 4.4 % (0°) leaner than an average cycle.

However, in the centre of the cylinder, near the spark plug, the "bad" cycle is up to 12

% (405°), 8 % (0°) leaner than the average. This contrasts with the fuel concentration

for "good" cycles, which are on average 5.6 % (405°), 4.4 % (0°) richer than an

average cycle, but are up to 12 % richer in the vicinity of the spark plug.

In Figure 5.22 and 5.23 the average peak pressure for "good", "fair" and "bad" cycles

is compared with the relative fuel concentration in the whole image and in a circle

centred on the spark plug, with a radii covering half the image width. On average

differences in fuel concentration in the vicinity of the spark plug of ± 7 % (6 %) from

the average cycle mark a difference in peak pressure of about ± 25 %. This sensitivity

in the relationship between fuel concentration and peak pressure is reflected in the

higher fluctuations in peak pressure of 19.3 % and 17.7 % for injection at 405° and 0°

CA respectively (Fig. 5.20, 5.21) compared to the observed fluctuations in the fuel

concentration.

Figures 5.20 and 5.21 illustrate the relationship between peak pressure and the crank-

angle location of its occurrence for all 200 (189) measurements at injection 405° CA

and 0° CA. The fastest burning cycles reach peak pressure between 10° and 12° CA

ATDC. Slower burning cycles reach a lower peak pressure later in the expansion

stroke, up to a point where the expansion due to the downwards moving piston

exceeds the pressure rise caused by combustion. Cycles with very slow burning

velocities will gradually approach the peak pressure of the non-combusting cycle,

closer to TDC. In order to illustrate the relationship between the fuel concentration in

the vicinity of the spark plug and the mass burning rate of the bulk combustion, the

fuel concentration images for which peak pressure was above 7 bar in a range between

9.3° and 15.9° CA after TDC were averaged and normalised by the mean fuel

concentration image of all cycles (Fig. 28, 29). Overall the fast burning cycles are 7 %

(405°), 5.5 % (0°) richer than an average cycle. In the centre, near the spark plug, they
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are up to 20 % (405°), 16 % (0°) richer than an average cycle. That is about 6 %

richer than the average of all cycles with a peak pressure above 7 bar.

Despite these correlations between local mixture strength and peak pressure and the

overall richer mixture in the vicinity of the spark plug for injection during the inlet

stroke compared to injection at TDC, the corresponding average peak pressures are

almost identical for both injection strategies (Fig. 5.20, 5.21). Also, the "good" cycles

for both injection strategies have on average the same peak pressure, notwithstanding a

difference of 6 % in fuel concentration in the vicinity of the spark plug.

The correlation between the fuel concentration in a particular region of the image and

the peak of the in-cylinder pressure curve can be estimated by calculation of the sample

correlation coefficient between each pixel value and the corresponding peak pressure.

The sample correlation coefficient is the quotient of the sample covariance and the

product of the sample standard deviations'. Its value approaches a maximum of one for

a linear correlation of the two parameters.

The correlation between fuel concentration and peak pressure as shown in Figures 5.30

and 5.31 is highest, between 0.6 and 0.7, in the centre of the image in the vicinity of

the spark plug. The correlation in the primary half (top) of the image is only 0.1 - 0.3,

while it is 0.3 - 0.4 in the secondary half (bottom) of the image. The higher correlation

between the fuel concentration in the secondary half of the cylinder and the peak

pressure can be explained by the mixture distribution in the cylinder, where a fuel-rich

cloud is located in the secondary exhaust quadrant. (Fig. 5.11, 5.12, 5.17). The richer

the cloud is, the further it extends towards the centre of the image; thus the fuel

concentration in the vicinity of the spark plug is correlated to the mixture strength in

the secondary half of the cylinder. Overall, the results demonstrate the importance of

the mixture strength near the spark plug for both injection timings.

I Sample Correlation Coefficient

Sample Correlation Coefficient is defined as:

Sxy 
rxy=

Jx•Jy

where S t and Sy are in this case the standard deviations of the fuel concentration and peak pressure
respectively:

S. 11-1	( Xi	 S =—
1	 --

Y
, 2

I	 Y	 n--i-i

S 	 the sample covariance of the variables fuel concentration and peak pressure:

1 v,"
S

Y

 —(xi— x)(y.—

X n-1

For each pixel of the 200 (405°), 189 (0°) images the sample correlation coefficient rx 3, between fuel
concentration and peak pressure was calculated. Figure 5.30 and 5.31 are contour plots of the sample
correlation coefficient.
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An important measure for engine performance is the indicated mean effective pressure.

No correlation was found between gross imep, derived from the indicated pressure

traces, and the fuel concentration in the measurement plane (Fig. 5.32, 5.33). This

results from use of an ignition timing of 40° CA BTDC which was chosen as a

compromise to fit the average cycle. For faster-than-average burning cycles ignition is

too early, while for slower-than-average burning cycles it is too late. Both, faster and

slower than average burning cycles will have an adverse effect on the work done

during the cycle; for the faster-burning cycles this is due to the pressure rise during the

compression stroke and increased heat transfer caused by the higher temperature and

for the slower-burning cycles this is due to the increased volume change caused by the

descending piston.

The effect on engine performance due to variations in fuel concentration is illustrated

in Figures 5.34 and 5.35, where the pressure development and the corresponding fuel

concentration for three individual cycles is displayed. Cycle A, with a peak pressure of

9.5 bar at 10° CA after TDC, shows a rich mixture near the spark plug at the time of

ignition, while Cycle C, with an initial pressure development similar to a motored

cycle, shows a lean mixture near the spark plug. For the fast-burning Cycle A, ignition

is clearly over-advanced, leading to a strong pressure rise during compression which

has an adverse effect on imep. Conversely for the slow-burning Cycle C, ignition is not

sufficiently advanced, leading to combustion late in the expansion stroke, at a low

expansion ratio causing a low imep. The pressure development of Cycle B, with peak

pressure of 7.9 bar 17° CA after TDC, indicates an ignition phasing close to optimum

which is reflected in a high imep. The fuel concentration for this cycle is similar to the

average fuel concentration which is indicating that the chosen spark timing is

appropriately close to MBT timing.

In Figures 5.36 and 5.37, the imep is displayed against the crank-angle at which peak

pressure occurred. It is evident that slow-burning cycles (O ma, > 20° CA), which are

associated with low peak pressure (Fig. 5.20, 5.21) reach the same if not higher imep

values as fast burning, but not overadvanced cycles (12° < Om„, < 20° CA) with high

peak pressure. The vertical spread in imep for peak angles over 10° CA is normally

associated with a variation in the total amount of fuel in the cylinder (Heywood 1988).

However, the vertical spread observed here is larger than variations in fuel-charging

would suggest. These results are believed to be caused by abnormally high heat losses

in the optical research engine. An increased surface area due to a large crevice volume

and the recessed piston window, a high heat capacity of the elongated piston and the

large window areas will lead to a enhanced heat transfer compared to a production

engine. Since the heat transfer rate is governed by the temperature difference between

the gas and the solid structures, the hotter fast-burning cycle will generate a bigger

heat loss than the cooler slow-combusting cycle, leading to a reduced difference in

imep. This is illustrated in Figures 5.38 and 5.39, where a fast and a slow burning cycle

are displayed. The corresponding peak pressures are 8.3 bar and 4.7 bar respectively at

14° CA after TDC. Despite the different peak pressure, both cycles produce the same
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imep. This result could be explained by either a higher heat transfer rate of the fast-

burning cycle, fuel charging variations or a combination of both. If fuel charging

differences were solely responsible, then a reduced or even negative axial fuel

stratification would be required in the slow-burning cycle case, because the top

measurement plane was found to he 3 % leaner compared with the fast cycle (Fig.

5.39).

Early Flame Kernel

Figures 5.40 and 5.41 show the average of the images taken 20° CA after ignition for

each injection strategy. The region of low signal intensity indicates the area of burnt

gas. This can be determined from individual images and used to estimate the size of the

flame in the measurement plane. The results, given in Figures 5.42 and 5.43, show the

flame area, as a percentage of the image area, plotted against peak pressure of the

corresponding cycle for both injection timings. In spite of the 2-dimensional

measurement of a 3-dimensional flame kernel there is a good correlation of the flame

area in the measurement plane to peak pressure. Cycles which have a high peak

pressure despite having a small flame kernel suggest either flame growth away from

the measurement plane, e.g. into the pent-roof, or a more rapid bulk combustion.

Differences in the bulk combustion phase can be caused by cyclic variations in the

amount of fuel delivered to the cylinder.

Classifying the images taken 20° CA after ignition into "bad", "fair" and "good" cycles

in the same way as those taken at ignition, demonstrated that, on average, the pressure

development and the flame-kernel size are linked (Fig. 5.44, 5.45). The richer mixtures

for injection during the inlet stroke rather than at TDC result, on average, in a larger

flame area in the measurement plane 20° CA after ignition (Fig. 5.44, 5.45). This is

consistent with a strong correlation between the fuel concentration in the vicinity of

the spark plug and the pressure development.

Just as in the case of measurements at ignition, the average peak pressure for both

injection strategies is nearly identical, despite a smaller average flame area in the case

of injection at TDC. This is also consistent with a number of cycles with no flame in

the measurement plane 20° CA after ignition which still result in "fair" peak pressure

values in the case of injection at TDC.

The mean images in Figures 5.40 and 5.41 show an average flame convection towards

the primary exhaust side. Also the centroid of the individual flames is, in all but a few

cycles, displaced from the spark plug towards the fuel-lean primary exhaust side,

independent of the injection strategy employed (Fig. 5.46). The implication from these

plots is that once the flame is established, factors other than the fuel concentration

influence the direction of flame growth.
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5.2.4 Interpretation of the Results

These results show that the fuel concentration in the vicinity of the spark plug

influences the subsequent pressure development. The pressure development is mainly a

function of the mass burning rate. In the initial phase of the combustion process, the

mass burning rate will be dependent on the laminar flame speed, which is in turn a

function of mixture strength. Therefore, the strong correlation found between peak

pressure and the fuel concentration in the vicinity of the spark plug shows that the

early stages of combustion have a strong influence on the phasing of the subsequent

bulk combustion. The richer mixtures near the spark plug result in faster combustion,

leading to a higher pressure peak early in the expansion stroke. During the propagation

of the developed flame, the overall amount of fuel in the cylinder will be important,

since the turbulent flame grows to consume fuel in nearly all parts of the cylinder,

thereby in effect averaging out the local fluctuations in fuel concentration. Therefore,

these results give experimental support to the hypothesis (Young 1981, Gatowski

1985, Keck 1987, Witze 1988, Pischinger 1990, Le Coz 1992) that cyclic variability

has its origin very early in the cycle.

The speeding up of the combustion process by a richer mixture in the vicinity of the

spark plug shows that charge stratification can indeed extend the lean operation limit.

However, whether this benefits the engine performance depends on the extent of the

cyclic variation in combustion, since both faster and slower than average burning

cycles will reduce imep at a given static ignition advance. Both the correlation

calculations between peak pressure and fuel concentration and the difference in fuel

distribution between "good" and "bad" cycles indicate that fluctuations of the fuel

concentration in the vicinity of the spark plug are a major cause of the cyclic variations

in combustion for lean mixtures.

The injection strategy influences both the charge stratification and the cyclic variation

in the fuel distribution. Higher fuel concentrations near the spark plug for injection

phasing during the inlet stroke compared with injection at combustion TDC are linked

with a higher cyclic dispersion in the mixture distribution. The lower fluctuations in

fuel concentration for injection at 0° CA compared to injection at 405° CA do not

result in a substantial reduction in the cyclic dispersion in peak pressure. The leaner

mixture near the spark plug for injection at 0° CA leads on average to a slower flame

development and hence a slower combustion. This will lead to enhanced variations in

pressure due to an enhanced effect of the volume change caused by the descending

piston late in the cycle.

Note that the longer flame development period when the fuel is injected at TDC is
supported by the measurement of a smaller flame area 20° CA after ignition. The

strong correlation between the size of the early flame kernel and the subsequent

pressure development is again indicative of the fact that cyclic dispersion has its origin

early in the combustion process. The stoichiometry in the vicinity of the spark plug is

an important factor establishing the flame. Once the flame kernel is established, the
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mixture formation is less important for the flame development. This is clearly

demonstrated by the fact that the flame develops towards the leaner rather than the

richer side of the combustion chamber. This is probably caused by convection of the

flame kernel by a mean flow field directed towards the primary exhaust valve and/or by

the temperature distribution in the cylinder. Temperature is well known to have a

strong influence on laminar flame speed (Metaghalchi 1982, Rhodes 1985) and this will

be particularly important during the early stages of combustion. The temperature will

be higher near the exhaust side due to the radiation and conduction from the hot

valves. On the richer side of the cylinder, the heat of vaporisation of the fuel will have

a slight cooling effect. Subsequently the temperature is likely to be highest on the lean

exhaust side. Also, the residual gas distribution will influence the temperature profile in

the cylinder and this is discussed in more detail in Part 3 of this thesis.

The above results show two clear points; a strong correlation between the pressure

development and the fuel concentration at ignition in the vicinity of the spark plug and

a similar correlation with the flame size 20° CA after ignition. These conclusions are

true for both of the injection strategies. Also, in line with the lower fuel concentration,

the flame area for injection at TDC was smaller than in the case of injection during

inlet. However, for injection at TDC, neither the lower fuel concentration nor the

resulting slower flame development, produced lower peak pressures. This suggests

that the developed flame propagation must be faster for TDC injection compared to

injection at 405° CA. The developed flame propagation will be governed by the mean

flow, the overall turbulence level and the overall stoichiometry. The mean flow is the

same for both injection strategies. Also the turbulence level should be virtually

identical for both injection strategies; variations from cycle-to-cycle will be averaged to

close to zero for 200 cycles. The mean fuel concentration was measured using an

oxygen sensor in the exhaust system. The fluctuation of the output voltage on the

display can lead to an error of about 0.5 AFR in adjusting the injector pulse width (see

Chapter 4.2). Therefore, it is conceivable, that the amount of fuel injected could be up

to 2.5 % different for each measurement run. At ignition the measurement plane was

found to be on average 4.3 % leaner for fuel injection at TDC which was consistent

with the smaller flame size 20° CA after ignition. This is due to a stronger axial

stratification in the fuel concentration when injecting during the inlet stroke (see

Chapter 5.1). Therefore, in the case of fuel injection at TDC, the top plane can still be

leaner despite an overall richer mixture. Data from Metaghalchi (1982) suggests that

for an iso-octane air mixture of equivalence ratio (1) = 0.8 at atmospheric pressure and

room temperature, a difference of 2.5 % in mixture strength can lead to a difference of

10 % in the laminar burning velocity and this difference is likely to be larger for leaner

mixtures. The difference in axial stratification between the two injection strategies is

not expected to influence the flame speed of the well developed flame significantly,

because by the time the piston reaches TDC, most of the stratification will have been

mixed out.
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5.2.5 Error Analysis of Single Exposure Data

Each of the final fuel concentration images (F) was formed from four separate images:

— a raw data image (R),

— a background taken with the engine motoring (B),

— a calibration image (C)

— and a background for the calibration image (13 cal).

Each of these can potentially add to the total noise on the final fuel image. The errors
that will arise from the background images and the calibration image can be evaluated
by measuring the fluctuation in sets of these images (denoted o) and comparing them
to the mean values. The fractional error in the raw data image is harder to estimate but
will be at least as large as for the calibration image. The final fuel image was calculated
as:

The expected fractional

EF

F

R — B
F (5.6)

(5.7)

C	 Bca,

error in measuring F will be:

2	 2

SR	
G

B

•N

c
2	 \

CY Beal

2

— B)	 (R — B) C —13 cal (C —Bcal

200 Single Shot Fuel Images at Injection 405° ATDC

The data set comprises of 200 single shot data images and 20 single shot images each
for background, calibration and calibration background. Below are the mean and the
fluctuation around the mean for each of the data sets:

CCD Counts

- Mean raw data image intensity (R)	 7134

- Mean background intensity (B) 	 288

- Mean calibration image intensity (C) 	 16736

- Mean calibration background intensity (Bcal)	 522

Fluctuation in raw images ( E -estimated as 2.5% of R) 	 178

- Fluctuation in background images (GB)	
17

- Fluctuation in calibration images (oc) 	 398

- Fluctuation in calibration background images ( °Beal)	 33

With the above values, equation 5.7 gives an expected fractional error of 3.6% for
the final images. The resulting values for the final image F (calculated from eq. 5.6)
are:
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CCD Counts

- Mean final image intensity (F) 	 4273

- Fluctuation in final images (OF)	 466 (10.9%)

- Uncertainty in final images (E F) 	 154 (3.6%)

Therefore, the actual fluctuation in fuel concentration within the signal F will be:

CY = VG F
2 

— £ F
2	 (5.8)

With the above values, equation 5.8 gives an expected cyclic fluctuation of 10.3 %
for the fuel concentration around the mean value.

189 Single Shot Fuel Images taken at Injection 00 ATDC
The data set comprises of 189 single shot data images and 20 single shot images each

for background, calibration and calibration background. Below are the mean and the

fluctuation around that mean for each of the data sets:

CCD Counts

- Mean raw data image intensity (R)	 6857

- Mean background intensity (B)	 214

- Mean calibration image intensity (C) 	 16736

- Mean calibration background intensity ( B cat)	 522

- Fluctuation in raw images (E-estimated as 2.5% of R) 	 172

- Fluctuation in background images (GB)	 14

- Fluctuation in calibration images (0C)	 398

- Fluctuation in calibration background images (,OBcal)	 33

With the above values, equation 5.7 gives an expected error of 3.6 % for the final

images. The resulting values for the final image F (calculated from eq. 5.6) are:

CCD Counts

- Mean final image intensity (F) 	 4101

- Fluctuation in final images (OF)	 353 (8.6%)

- Uncertainty in final images (EF)	 148 (3.6%)

With the above values, equation 5.8 gives an expected cyclic fluctuation of 7.8 % for

the fuel concentration around the mean value.

The uncertainty in the measurement of a single image is 3.6 % for both strategies. If all

the uncertainty is only due to the single measurement, in other words it is random and

no systematic error occurs, the error in measuring the mean of a set of 200 images is:

3.6%
a =

 
=0.25%

However, not all the uncertainty is due to random error. There are systematic errors

caused for example by viewing through an inhomogeneous charge, reading the AFR
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meter, engine vibration, background correction and laser sheet normalisation on the
basis of mean characteristics etc. Therefore the uncertainty in measuring mean
characteristics will be between 3.6 % (all the error is systematic) and 0.25 % (all the
error is random). The difference in the mean fuel concentration between the two data
sets of 4.3 % is bigger than the expected uncertainty and it can be concluded that the
measurement plane is richer in the case of injection phasing with the inlet stroke
compared to injecting at TDC.

5.2.6 Conclusions on Mixture Formation and Cyclic Variability

• The correlation between fluctuations in mixture formation and the pressure
development could be described quantitatively.

• Strong cycle-by-cycle variations in fuel distribution exist.

• Cycle-by-cycle variations in mixture distribution are a dependent on injection
timing.

• Mixture fluctuations near the spark plug are a major cause for cyclic variability in
combustion.

• Fuel stratification can extend the lean operation limit.

• Cyclic variations in mixture formation limit lean operation.

• Fuel concentration in the vicinity of the spark plug has a dominating effect on the
subsequent pressure development for lean mixtures.

• The concept of "early flame development to determine the subsequent pressure
development" is supported by the results of this study.

• The results also support the hypothesis that cyclic variability in combustion has its
origin early in the cycle.

• The flame propagation data suggests that heating of the mixture by exhaust valves
could be important.
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Fig. 5.10: Location and image size in relation to cylinder head configuration. Solid lines indicate the
pent-roof area 0.7 mm below the spark plug in proportion to image size. Dashed outer circle
represents bore diameter. The crossed valve marks "inactive" (secondary) inlet valve. The image
width is limited due to focusing of the laser sheet by the curved entrance window in the cylinder head.
In order to partly offset the focusing effect, the laser sheet was made diverging. The diameter of the
image is limited by the diameter of the piston window. Bore and spark plug diameter are in scale with
image size (scale: 1:1). Valves are not in scale due to the pent-roof shape of the combustion chamber.

112



	  ABOVE	 125
120 - 125
115- 120
110 - 115
105- 110
100 - 105

▪ 95 - 100
90- 95

▪ 85- 90
▪ BELOW 85

1

ABOVE 125
120 - 125
115- 120
110- 115
105- 110
100 - 105
95 - 100
90- 95
85 - 90

BELOW	 85

L_J

Fig. 5.11: Mean fuel concentration of 200 single images taken at the time of ignition (680° CA after
combustion TDC) 0.7 mm below the spark plug with injection 405° CA after combustion TDC. The
fuel concentration is displayed on the basis of the mean concentration in the image of Fig. 5.12 which
was set to 100.

Fig. 5.12: Mean fuel concentration of 189 single images taken at the time of ignition (680° CA after
combustion TDC) 0.7 mm below the spark plug with injection 0° CA after combustion TDC. The
average fuel concentration in the image was set to 100.
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fia equivalence ratio

ril ABOVE 1.05
= 1.00 -	 1.05
ED 0.95 -	 1.00

0.90 0.95
MO 0.85 - 0.90
1.1 0.80 - 0.85
MN 0.75 - 0.80
MI 0.70 - 0.75
IN	 0.65 0.70
MI BELOW 0.65

mean = 0.85

Fig. 5.13: Fuel concentration averaged over 125 consecutive cycle at the time of ignition (680° CA)
0.7 mm below the spark plug with injection 405° CA ATDC.

t/a equivalence ratio

El ABOVE 1.05
Eli 1.00 -	 1.05
=Il 0.95 -	 1.00
= 0.90 - 0.95
Mffil 0.85 - 0.90
NM 0.80 - 0.85
In 0.75 - 0.80
IIIIII 0.70 - 0.75
NM 0.65 - 0.70
111111 BELOW 0.65

Fig. 5.14: Fuel concentration averaged over 125 consecutive cycle at the time of ignition (680° CA)
0.7 mm below the spark plug with injection 0° CA ATDC.
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mean = 4.3 %

mean = 2.3 %

10.0I	 I	 ABOVE %

[	 I	 8.0 - 10.0

6.0 - 8.0

BM	 4.0 - 6.0

I•11	 2.0 - 4.0

IIII	 0.0 - 2.0

IN	 -2.0 - 0.0

IN BELOW % -2.0

Fig. 5.15: Fractional difference between mean fuel distribution for injection at 405° CA and 0° CA.
Fuel injection at 405° CA results on average in a 4.3 % higher fuel concentration in a plane 0.7 mm

below the spark plug.

ABOVE % 6.0I	 l
I	 1 5.0 - 6.0

4.0 - 5.0

MI 3.0 - 4.0

MI 2.0 - 3.0

NM 1.0 - 2.0

NM 0.0 -	 1.0

NM BELOW % 0.0

Fig. 5.16: Percentage fluctuation around the mean signal of 20 calibration images. The mean
fluctuation is 2.3 %.

115



Following Page:

Fig. 5.17: Cycle-by-Cycle mixture fluctuations illustrated on 49 out of the 200 single exposure fuel
concentration images taken at ignition (680° CA) in a plane 0.7 m blow the spark plug with fuel
injection at 405° CA after combustion TDC. The average fuel concentration of 200 cycles is 100 in
the measurement plane. First number in top row below images refers to the mean fuel concentration
in the respective image. The second number represents the mean fuel concentration in a circle centred
on the spark plug with a radius of half the image width. The numbers in the bottom row show the
corresponding peak pressure p,,,,,, and peak c'angle 0„,„„.
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Fig. 5.18: Percentage fluctuation in fuel concentration around the mean of 200 single images for
injection 405° CA. The average fluctuation across the image is 10.9 %.

Fig. 5.19: Percentage fluctuation in fuel concentration around the mean of 189 single images for
injection 0° CA. The average fluctuation across the image is 8.6 %.
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Fig. 5.20: Peak pressure versus crank angle for injection 405° CA. There are 54 "good" (p„,„, 7 bar)
and 44 "bad" (p. 5 bar) cycles out of 200 measurements. The peak pressure fluctuates by 19.3 %
around the average of 6.18 bar.
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Fig. 5.21: Peak pressure versus crank angle for injection 0° CA. There are 39 "good" (p. � 7 bar)
and 44 "bad" (p. 5 5 bar) cycles out of 189 measurements. The peak pressure fluctuates by 17.6 %
around the average of 5.94 bar.
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Fig. 5.22: Average peak pressure versus average fuel concentration of "good" (p „,„x 7 bar), "bad"
5 bar), "fair" (5 p.„,S 7 bar) cycles and the mean of all cycles for injection 405° CA. The

fuel concentration is measured over the whole image and in a circle (radii = half width of image)
centred on the spark plug.
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Fig. 5.23: Average peak pressure versus average fuel concentration of "good" (p,,,„x � 7 bar), "bad"
(p„,„, 5 bar), "fair" (5 p„,,„ 7 bar) cycles and the mean of all cycles for injection 0° CA. The fuel
concentration is measured over the whole image and in a circle (radii = half width of image) centred
on the spark plug.
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Fig. 5.24: Fractional difference of "good cycles" (p. 7 bar) from the mean fuel concentration of all

200 measurements for injection 405° CA. The average "good cycle" is 5.6 % richer than an average

cycle.

Fig. 5.25: Fractional difference of "bad cycles" (p. � 5 bar) from the mean fuel concentration of all

200 measurements for injection 405° CA. The average "bad cycle" is 5.8 % leaner than an average

cycle.
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Fig. 5.26: Fractional difference of "good cycles" (p„,„, � 7 bar) from the mean fuel concentration of all
189 measurements for injection 0° CA. The average "good cycle" is 4.4 % richer than an average
cycle.

Fig. 5.27: Fractional difference of "bad cycles" 5 5 bar) from the mean fuel concentration of all
189 measurements for injection 0° CA. The average "bad cycle" is 4.3 % leaner than an average
cycle.
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Fig. 5.28: Fractional difference of "good cycles" (pmax 7 bar between 9° and 16° CA ATDC) from
the mean fuel concentration of all 200 measurements for injection 405° CA. The average "good
cycle" is 7 % richer than an average cycle.
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Fig. 5.29: Fractional difference of "good cycles" (p„,„, � 7 bar between 9° and 16° CA ATDC) from
the mean fuel concentration of all 189 measurements for injection 0° CA. The average "good cycle"
is 5.5 % richer than an average cycle.
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Fig. 5.30: Sample correlation coefficient between peak pressure and fuel concentration for injection

405° CA.

Fig. 5.31: Sample correlation coefficient between peak pressure and fuel concentration for injection

0° CA.
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Fig. 5.32: Sample correlation coefficient between imep and fuel concentration for injection 405° CA.
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Fig. 5.33: Sample correlation coefficient between imep and fuel concentration for injection 0° CA.
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Fig. 5.34: p-V diagram of a fast (Cycle A), normal (Cycle B) and slow (Cycle C) burning cycle with
resulting gross imep.

Fig. 5.35: Mixture concentration 0.7 mm below the spark plug of Cycle A, B and C (from left)
corresponding to p-V diagram in Figure 5.34. Mixture concentration of 100 corresponds to the
average fuel concentration of 200 cycles.
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Fig. 5.37: Gross imep against crank angle of peak pressure from 189 in-cylinder pressure
measurements corresponding to the fuel concentration measurements with fuel injection at 0° CA.
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Fig. 5.39: Mixture concentration 0.7 mm below the spark plug of Cycle D and E (from left)
corresponding to p-V diagram in Figure 5.38. Mixture concentration of 100 corresponds to the
average fuel concentration of 200 cycles.
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Fig. 5.40: Average of 200 images taken 20° CA after ignition (680° CA after TDC) for injection
405° CA after combustion TDC in a plane 0.7 mm below the spark plug. Low fuel concentration in
image centre indicates the burned area. The average fuel concentration outside the burned area was
set to 100.

Fig. 5.41: Average of 186 images taken 20° CA after ignition (680° CA after TDC) for injection 0°
CA after combustion TDC in a plane 0.7 mm below the spark plug. Low fuel concentration in image
centre indicates the burned area. The average fuel concentration outside the burned area was set to
100.
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Fig. 5.42: Peak pressure versus flame area of images taken 20° CA after ignition (680° CA) in a plane
0.7 mm below the spark plug for injection 405° CA. The flame area is expressed as a percentile of
the image area. The linear regression has a correlation coefficient of 0.68 and a standard deviation of
0.79 bar.
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Fig. 5.43: Peak pressure versus flame area of images taken 20° CA after ignition (680° CA) in a plane
0.7 mm below the spark plug for injection 0° CA. The flame area is expressed as a percentile of the
image area. The linear regression has a correlation coefficient of 0.63 and a standard deviation of 0.80
bar.
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Fig. 5.45: Average peak pressure versus average flame area as percentage of image area of "good"
(p„,a, � 7 bar), "bad" (pn,„, 5 5 bar), "fair" (5 p„,,„ 5 7 bar) cycles and the mean of all cycles for
injection 0° CA.
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Fig. 5.46: Displacement of the centroid of the flame area relative to the spark plug for both injection
timings (405° CA and 0° CA).
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5.3 Implications for Engine Design

The objective of the design of the Honda lean burn engine was to extend the lean

operation limit (Hone 1992). Introducing swirl was found to stabilise the combustion

process. In order to avoid compromising performance due to the low volumetric

efficiency of swirl inlet ports at high load and high speed operation, the second inlet

port was specified without swirl. This required prevention of the air from entering

through the non-swirling port during the lean operation mode. Therefore, the VTEC-E

valve mechanism was utilised to reduce the valve lift during lean operation (Hone

1992). Injection phasing during the inlet valve open period was found to further extend

the lean operation limit. Gas sampling near the spark gap revealed that, depending on

when the fuel was injected, the mixture could be made leaner or richer (Matsushita

1985, Hone 1992, Hardalupas 1995). It was concluded that injection through the open

inlet valve lead to axial fuel stratification (Hone 1992, Hardalupas 1995). Thus, the

aim was not to generate a homogeneous fuel-air mixture but a stratified mixture. This

objective has been achieved, as the results of this work clearly demonstrate. However,

these results revealed some surprising and significant points for the engine designer.

First, the influence of the reduced lift of the VTEC-E valve on charge stratification has

not been previously considered. Second, the main mechanism governing the mixture

distribution was found to be liquid fuel which formed a film on the exhaust-side

cylinder wall. Injection timing influences the amount of liquid phase depositing on the

cylinder wall and therefore the degree of axial stratification. However, contrasting to

the previous understanding, even for fuel injection at combustion TDC the mixture was

far from homogeneous. It remains unclear, whether tumbling inlet flows directed

towards the cylinder wall, as generated in 4-valve pent-roof configurations, will in

general lead to an inhomogeneous mixture, or if swirl prevents the fuel from mixing

with the air. This aspect needs further investigation.

These results show the importance of the mixture strength in the vicinity of the spark

plug. However the fuel images also revealed that the richest mixture sits opposite the

secondary inlet valve on the exhaust side. As clearly shown by the correlation results in

Chapter 5.2, it would be beneficial to the performance of the engine to position this

cloud closer to the spark plug. This should reduce cycle-by-cycle variations in

performance, since ignition and early flame development will be less sensitive to cyclic

fluctuations in an "ignition happy" rich mixture, rather than in a mixture closer to the

lean ignition limit (as shown in Chapter 5.2).

One possible strategy for achieving this goal might be to inject more of the fuel into the

inlet port of the secondary inlet valve. By doing so, more of the fuel will remain in the

top of the cylinder in the inlet half and less droplets will impinge on the exhaust

cylinder wall. This would move the rich cloud from the side opposite the secondary

inlet valve to the side beneath it. By increasing the swirl ratio from the present 2 to

about 3, this fuel-rich cloud should move towards a position between the two inlet

valves and extend more towards the middle of the cylinder. This is because the pent
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roof head is not symmetrical - the width of the combustion chamber at a plane close to

the spark plug is less between the exhaust and the inlet side than between the windows.

However, an increased swirl ratio might compromise the engine performance at higher

engine speeds. Also the effect of non-symmetric fuel injection on performance and

emissions in the four-valve mode is not clear.

An alternative, more promising strategy would be to move the spark location towards

the fuel-rich cloud. In order to avoid excessively long flame paths which would

compromise high speed operation and could lead to a lower knock limit, a smaller

second spark plug could be placed at the edge of the cylinder head between the

secondary inlet valve and the exhaust valve. This might yield a further advantage. The

locally rich mixture is not likely to benefit low NOx emissions. By moving the spark

plug to the rich mixture it would be possible to reduce the level of inhomogeneity

without compromising the combustion stability. Since the mixture between the inlet

and exhaust valve is considerably richer than in the centre of the combustion chamber,

injection during the inlet-valve-closed period might be possible and this should reduce

NOx emissions (Hardalupas 1995).

5.4 Improvement of Fuel Visualisation Strategy

The previous section showed that with laser induced fluorescence imaging of a

fluorescence marker, quantitative information on mixture formation and its influence

on engine performance can be obtained. However the calibration of the fluorescence

signal to an absolute equivalence ratio proved to be difficult. Despite preparation of a

calibration gas of known concentration, the fluorescence signal of the calibration

images could not be reliably related to the known concentration. A possible cause for

this is absorption of seed material by gaskets used in the engine. Replacement of the

cylinder head and window gaskets with metal gaskets would be a possible solution, but

this requires re-engineering of certain parts of the engine.

Due to the problems incurred with the current method, a different approach to

calibration of fluorescence images may be considered. Calibration images can be

obtained in a firing engine supplied with a homogenous premixed air-and-fuel mixture.

The mixture strength can be monitored using the exhaust gas sensor. If the calibration

images are taken at the same crank-angle as the data images, using the same fuel,

density and temperature effects are automatically accounted for. There will be an error

due to imperfect mixing of the residual gas with the fresh charge (see Part 3 of this

thesis). By taking an image of premixed fuel and air in a motored (non-combusting)

engine the calibration image can be corrected for incomplete mixing of residual gas.

This requires the collection of several calibration images to average out cyclic

fluctuations in residual distribution. In order to obtain a good premix of fuel and air, it

is suggested that the fuel is injected upstream of the inlet port into an elongated and

heated inlet pipe. If necessary a large inlet plenum chamber can be used to further

promote mixing.
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PART III

RESIDUAL GAS VISUALISATION STUDIES
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Chapter 6

Strategy for Residual Gas Visualisation

The potential for detection of major combustion products by planar L1F and their

suitability as residual markers is reviewed. Problems and limitations associated with the

chosen strategy are discussed. The criteria for selecting an excitation line are

described.

6.1 Introduction

Information on residual gas fraction and fluctuation has been previously obtained by

the use of probe-sampling (Matsui 1979, Galliot 1990) or CARS (L,ebel 1992). Probe-

sampling is advantageous since it possesses a low detection limit, is easy to use and is

less expensive than laser-based techniques. Problems with probe-sampling can arise,

however, if the sample probe interferes with the flow and if the sampling period is long

compared to the mixing time scale of the in-cylinder flow. Gas sampling as well as

CARS allow only point measurements with considerable uncertainty as to whether they

are representative of the bulk composition. Precise spatial resolution can be achieved

with the planar laser-induced fluorescence technique. Compared to other planar

imaging techniques such as Raman or Rayleigh, LIF should be sufficiently sensitive to

allow imaging of species naturally present in the residual gas. Typical exhaust gas

concentrations of the major species formed in spark ignition engine combustion are

shown as a function of equivalence ratio/air-fuel ratio in Figure 6.1. The concentration

at the time of ignition will depend on the amount of residual gas remaining in the

cylinder, which in turn is a function of compression ratio, valve overlap, engine load

and speed. Galliot (1990) measured residual gas fractions of between 5 - 10 % at full

load and about 20 % at part load (0.4 bar inlet pressure) in an engine with a

compression ratio of 8.3:1 operating at 1500 rpm. Thus, at the time of ignition, the

concentrations of residual species are at least an order of magnitude lower than given

in Figure 6.1.

For this study lean combustion is of particular interest: There is no obvious reason why

the residual distribution and fluctuation should be significantly different in a rich

environment. However, if there is an influence of the residuals on the combustion
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Fig. 6.1: Wet exhaust gas species concentrations as function of fuel/air equivalence ratio (Heywood
1988).

process on a cycle-to-cycle basis it is expected to be more pronounced for lean

mixtures. This is because, as mixture strength is reduced from stoichiometric, flame

speed becomes increasingly sensitive to the precise mixture strength (Metaghalchi

1982, Rhodes 1985). Therefore, residual imaging is of great potential importance in

the study of lean combustion. [There is an important side aspect in that the windows of

the optical engine tend to foul more quickly during rich combustion.]

6.2 Choice of a Residual Gas Marker

There are primarily six species in the combustion gas which could, potentially, be used

as residual markers. Oxygen is obviously discarded since it is a major constituent of the

intake air and is a reactant, not a product. Because of its high concentration in the

exhaust gas the most promising species is CO 2 , but there have been no reports in the

literature on laser-induced fluorescence of CO 2 . The next obvious choice from a

concentration point of view is water vapour. Water vapour concentrations in the

combustion gas are expected to be about 10 % which translates into about 1 % at the

time of ignition. However the natural water content in the intake air at 300 K is of the

same order. The use of dry air was regarded as impractical with our facilities due to

the large air capacity required for operating an engine. CO and H2 concentrations will

be below 100 ppm at ignition for lean combustion. LIF detection of CO is possible

with two photon excitation (Seitzman 1987). The detection limit for CO at flame

temperatures and atmospheric pressure was estimated to be 100 ppm for 2 mJ pulse

energy (Seitzman 1987). The lower temperatures in the unburned gas of an SI engine

would improve that limit. The increase in number density due to the higher pressure at

engine conditions will probably be offset by increased quenching. The application of a

multi-pass cell, as used by Seitzman (1987), to an engine might be difficult from a
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stability and alignment point of view. Focusing using cylindrical lenses could lead to a

signal decline of about an order of magnitude. Additionally the probability of excitation

for two-photon absorption is not linearly proportional to laser intensity. Therefore,

normalisation of laser fluctuations and sheet inhomogeneities is very difficult. Another

problem is photochemistry which may occur when using a short wavelength UV laser

with power levels strong enough to induce two photon transition. It might be possible

to overcome these problems. However, the concentrations in the unburned gas will be

close to or less than the detection limit and therefore CO is not an attractive choice as

a residual marker for lean combustion. Like CO, LIF detection of H2 is possible with

two photon excitation (Lempert 1991) and faces therefore, similar difficulties as LLF of

CO when applied under engine running conditions. In addition, the temperature and

pressure dependence, and the species dependent quenching of the H2 fluorescence are

not well documented.

This leaves nitric oxide (NO) and nitric dioxide (NO2) as potential residual gas

markers. The use of LIF for measuring of NO2 has been reported frequently in the

literature (Cole 1980, Cattolica 1986, Cattolica 1987). The concentration level of NO2

in the combustion gas is about two orders of magnitude below that of NO and below

the detection level associated with planar LIF measurements in an operating engine at

the time of ignition (Figure 6.2a). On these grounds, NO 2 had to be discarded as a

practical residual marker.

LIF has been widely used for measurement of NO concentration in flames (Morley

1982, Kychakoff 1984, Reisel 1993). At flame temperatures and atmospheric pressure

the detection limit for NO has been estimated between 1 and 10 ppm (Reisel 1993,

Kychakoff 1984). In a SI engine the NO concentration level will range from 4000-
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5000 ppm (full load) to 500-1000 ppm (idle), which is well within the detection limit

associated with LIF, even after dilution with the fresh charge.

The NO production in combustion is temperature dependent. Therefore the amount of

NO in the exhaust gas will depend on the combustion temperature of that particular

cycle. Since cycle-to-cycle fluctuations in combustion exist, the NO concentration in

the exhaust gas will vary. Fluctuations in NO concentrations will therefore contain

contributions due to fluctuations in the residual gas concentration and fluctuations due

to the amount of NO generated in the previous cycle. This effect can be minimised by

choosing a stable operation condition with low cycle-by-cycle variation in combustion.

Chen (1976) showed that the NO production is approximately proportional to peak

pressure of the corresponding cycle. This allows fluctuations in peak pressure to be

used as a measure for cycle-by-cycle fluctuations in NO production. The nitric oxide

concentration in a SI engine exhaust peaks at about AFR 16 (see Chapter 1.2). The

absolute concentrations are depending on load condition and spark timing. Reducing

the load on an SI engine, reduces the amount of mixture in the cylinder leading to a

lower combustion temperature and therefore lower NO concentrations in the burnt

gas. The further ignition is retarded from MBT timing the lower the combustion

temperature and hence the NO concentration in the exhaust.

Planar imaging of the NO concentration can potentially provide a picture of the

residual gas distribution and a measure of the cycle-by-cycle variation in residual

concentration. Therefore nitric oxide has been chosen from the combustion products as

a marker for the residual gas, because of its potential for giving the most accurate

picture of the distribution and fluctuation at realistic engine operating conditions.

6.3 Laser Induced Fluorescence of Nitric Oxide

LIE on NO was previously used to study the kinetics of NO formation in flames

(Morley 1982, Reisel 1993). Reisel (1993) excited a temperature independent line from

the X2 H to the A2 I state near 226 nm. The resulting fluorescence was detected

between 234 and 238 nm. The detection limit was estimated to be 1 ppm at flame

temperatures and atmospheric pressure. The same transition was used by Kychakoff

(1984) and Paul (1989) for two-dimensional LIE measurement of Nitric Oxide. In an

athmospheric methane-air burner the detection limit was estimated to 10 ppm

(Kychakoff 1984). In operating IC engines LIE was used to image the NO distribution

during expansion and exhaust strokes by Andresen (1990), Arnold (1992) and

Burgman (1993). All three workers used the D 2 I (v' = 0) f-- X2 II (v" = 0) transition

in the (0,1) band near 193 nm for fluorescence imaging of NO. Andresen (1990)

imaged the average distribution of NO at 200° CA after combustion TDC (exhaust

stroke) in a 18 mm wide ribbon below the spark plug in a SI engine. Arnold (1992)

used LIE to image the NO distribution during the expansion stroke in a DI Diesel

engine. The average distribution of NO could be obtained at 47° and 65° CA after

combustion TDC in a narrow ribbon in the centre of the combustion chamber.
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Burgman (1993) used 2D-LIF to image the in-cylinder NO distribution in a Diesel

engine. Averaged NO distributions and typical single snapshots as a function of crank

angle, engine load and fuel were presented for the expansion and exhaust strokes. The

images presented by Andresen (1990), Arnold (1992) and Burgman (1993) give only

qualitative information due to the effect of collision quenching of the D 2 I state and

the effect of laser sheet inhomogeneity which has not been accounted for.

Linear fluorescence is complicated by the dependence of the signal on both the laser

power and the quenching environment in the cylinder. The influence of laser sheet

inhomogeneity can be quantitatively corrected using laser energy normalisation. The

collision quenching will be dependent on pressure and temperature. For comparison of

NO images taken at different conditions, the quenching rate coefficient must be

determined to allow for collisional effects. Drake (1993) measured the quenching cross

sections for laser induced fluorescence from NO for the most important combustion

species and products as a function of temperature between 300 and 1750 K. NO is

efficiently quenched by 0 2 , H20, CO2 and is also an efficient self-quencher. 02

quenching cross sections were found to decrease with increasing temperature, whereas

the self-quenching cross section of NO was independent of temperature. With this

data-base, quantitative measurements of NO concentrations in engines should be

feasible. Cell measurements showed that at room temperature the NO fluorescence is

independent of iso-octane concentrations, but is heavily quenched by 3-pentanone.

This might cause a problem in future attempts to simultaneously image fuel (marked by

3-Pentanone) and residuals (marked by NO).

One way to avoid the dependence on laser power and quenching rate is to employ

saturated laser induced fluorescence. To achieve saturation of the NO transition of

interest, the laser fluence must be large enough to ensure that the laser excitation rate

is much greater than the collisional quenching rate. When this condition is met, the

population in the excited state is equal to that in the ground state to within the ratio of

the degeneracies of the two states. A drawback of saturated LIE is that saturation can

not be maintained in the wings of the laser beam where the fluence is low. This,

together with the fact that it is not possible to achieve complete saturation during the

entire duration of the laser pulse, results in simultaneous generation of saturated and

non-saturated fluorescence. Previously, saturated laser-induced fluorescence has been

used for successful quantitative point measurements of NO in flames by Reisel (1993).

Planar saturated laser-induced fluorescence measurements would be difficult to

quantify, because the partially saturated wings of the sheet will cover a substantial

proportion of the measurement volume.

6.4 Choice of an Excitation Line

Previous NO fluorescence studies in IC engines excited the D2 I (v' = 0) <-- X2 II (v"
= 0) transition in the (0,1) band near 193 nm (Andresen 1990, Arnold 1992, Burgman

1993). This wavelength is readily produced by an Argon-Fluoride (ArF) Excimer laser.
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UV laser light at power levels strong enough to produce fluorescence signals may

induce photochemical reactions. The species being probed might then be created

through photo-dissociation of other molecules. Also ionisation might occur. These

processes become more important in the short wavelength UV. In addition absorption

of the UV laser by oxygen increases with shorter wavelength. For these reasons the A2

E (v" = 0) X2 FT (v' = 0) transition in the 7(0,0) band near 226 nm was chosen for

this work in preference to excitation from the D 2 E to the X2 IT state (193 nm).

The temperature in the combustion chamber will be dependent on the residual

distribution. This requires the use of a NO excitation line which has a temperature

independent ground state population. The energy-level equations from Engleman

(1970) were used to calculate the rotational energy levels for the 2E and 211 states of

the NO. Population level for temperatures between 300 and 700 Kelvin were

calculated using Boltzmann's distribution law. The Q 2 (22.5) transition (225.967 nm) in

the 7(0,0) band was found to have a ground state population which varies by only 2%

over a temperature range from 350 to 700 K.

In order to identify the Q2(22.5) transition, a fluorescence spectrum was measured

between the excitation wavelength of 225.9 nm and 226.1 nm in 0.04 nm steps in a test

cell containing 1000 ppm NO in Nitrogen at room temperature. The obtained LrF
excitation spectrum was compared with a significant part of the complete spectrum in

Engleman (1970). In Figure 6.3, the relevant rotational transitions as given by

Engleman (1970) are indicated by vertical lines. All lines in the measured spectrum

could be identified. Because the population of the different rotational levels in the

ground state is strongly temperature dependent, one must be careful in drawing

conclusions from the intensity differences of individual lines at room temperature, to

the likely signal level at elevated temperatures in an engine. Figure 6.3 shows the

results of an excitation scan between 225.955 and 225.975 nm (around the Q2(22.5)

line) in 0.001 nm steps. The Q2(22.5) line is well separated from nearby main branch

transitions. The results of an excitation scan between 225.5 and 225.6 nm are

presented in Figure 6.4. Background images were taken by tuning-off resonance to

225.55 nm.
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Chapter 7

Experimental Set-Up for Residual Gas Visualisation

The equipment used for the planar LIE measurements of NO concentration in this

thesis is described, including the laser system with the sheet-forming optics and the

fluorescence detection system. Additionally, the timing and synchronisation of the

experimental equipment and the measurement procedure for NO visualisation are

described.

7.1 Laser and Sheet Forming Optics

The Q2 (22.5) line of the y(0,0) band (A, -. 225.967 nm) was used for excitation of NO.

The laser system producing this wavelength comprised a Quanta-Ray GCR-200

Nd:YAG laser, with a Lambda Physik Scanmate dye laser and a Lambda Physik

doubling crystal. The third harmonic (X, = 355 nm) of the Nd:YAG laser was used to

pump the dye laser, which was configured for transverse pumping of the oscillator and

both the first and second amplifier. The dye laser output at A, = 440 - 484 nm, with a

peak conversion efficiency of the dye (Coumarin 47) at A, = 456 nm, was frequency-

doubled, producing an output beam with a tuning range between X, = 220 - 242 nm.

The laser system was purchased just prior to these experiments and unfortunately did

not operate to specification. The maximum energy obtained for the frequency-doubled

beam (A,-a 226 nm) was 4 mJ/pulse with a corresponding pump beam (X, = 355 nm)

energy of -- 400 mJ/pulse. Improvements on the laser since have more than doubled

the conversion efficiency so that now 10 mJ of energy at 226 nm are available.

Doubling the laser energy will double the fluorescence signal, but will also increase the

background signal. In spite of this, the signal-to -noise ratio will slightly improve, since

the background signal will not rise proportionally with laser energy.

The dye laser grating was calibrated against a NO spectrum from Dodge (1980) by

comparison with a NO spectrum obtained between 226.5 and 226.7 nm. Figure 7.1

shows that the measured spectrum matches the one from Dodge (1980) when it is

shifted by 0.031 nm. However this shift is temperature-dependent and retuning using

the Q2(22.5) line was required on a daily basis.
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Dodge (1980) when shifted by 0.031 nm.

The laser sheet was formed using two fused silica cylindrical lenses (-25 and 300 mm)
which formed a Galilean telescope, expanding the beam such that the resulting laser
sheet was approximately 50 mm wide and a. 2 mm thick when passing through the
combustion chamber. This allowed averaged planar NO distributions to be obtained.
For measurements of the fluctuating part in the NO concentration, the laser beam was
expanded to only 10 mm width using a -50 mm instead of the -25 mm concave lens.
The higher energy density of the 10 mm compared to the 50 mm wide laser sheet
increased the signal-to-noise ratio and improved the accuracy of the single exposure
images. The laser sheet was used unfocused in order that partial saturation was
avoided. This, however, was at the expense of spatial resolution. Two 050 mm 45°
steering mirror directed the sheet to the entrance window of the Mk 2 engine. The
mirrors were oxide coated and had a reflection efficiency of over 99 % at 226 nm. The
back reflection of one of the cylindrical lenses was directed towards a UV-sensitive
photodiode which was used to monitor the relative beam energy for every exposure.

7.2 Fluorescence Detection System

The fluorescence signal was imaged with a fibre-optic coupled intensified CCD-camera
(Princeton Instruments). The intensifier was synchronised with the laser and gated for
approximately 100 ns to discriminate against room light and combustion luminosity.
The image was focused onto the intensifier with a Nikon f4.5 UV lens. The camera has
a 15-bit dynamic range and a chip size of 578 x 384 pixels. Fluorescence from the

T(O2) band of NO at 238 - 258 nm was collected at a 90° angle to the incident laser
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radiation. A 45° mirror acted as a band-pass filter to discriminate laser radiation. The

mirror had a reflection efficiency of above 90 % at 248 nm with a bandwidth of 10 nm.

7.3 Timing and Engine Control

The engine speed was regulated to a pre-set value by the controller of the

dynamometer on which the engine was mounted. Therefore, the engine had to act as

the master in the timing sequence. The ignition pulse from the engine controller was

used to trigger the Nd:YAG laser. Since the Nd:YAG laser operated with minimum

pulse-to-pulse fluctuations with a rep-rate of 10 Hz, the speed of the 4-stroke engine

was set to 1200 rpm (20 Hz) for this experiment. The intensified CCD camera has no

mechanical shutter. The intensifier which acts as a shutter was triggered at 10 Hz by

the engine controller at ignition to synchronise with the laser. In order to prevent

gating of the intensifier during readout, the camera controller was programmed to send

an inhibit pulse to the intensifier at the end of the exposure time. The exposure time

was set on the PC controlling the camera. The intensifier controller allows a precise

delay to be set between the input pulse and the output gate. The delay was adjusted so

that the laser pulse occurred in the centre of the 100 ns gate.

For ensemble-average imaging the sequence of events was:

1. The computer controlling the camera initiates a new exposure of shutter duration

10 s.

2. The camera controller sends a pulse to the intensifier enabling it to be triggered.

3. The intensifier is triggered at 10 Hz from the engine controller and gated 100 times

during the 10 s exposure.

4. The camera controller sends a pulse to the intensifier to inhibit gating and

subsequently the chip is read out and the image saved onto the hard disk.

5. The computer initiates a new exposure and the sequence is repeated.

7.4 Measurement Procedure

The procedure of a typical test run taking single shot images was as follows:

• Warm the engine cooling water to 58 °C using a heater in the coolant system.

• Switch on the fuel pump, to allow the accumulator to be filled and the fuel pressure

to settle to a constant 2.5 bar.

• Re-align the dye laser until it delivers 3-4 mJ/pulse output energy.

• Check the laser sheet alignment - adjust if necessary.

• Crank the engine to inlet valve open position and fill the engine with calibration gas

(N2 with 1000 ppm NO).
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• Fire the Nd:YAG laser from the internal trigger at 10 Hz.

• Tune dye laser to 225.970 nm wavelength (on resonance). Fine-tune to maximum

signal in 0.001 nm steps (this allows for the temperature drift of the dye laser on a

day-to-day basis).

• Obscure part of the laser beam with a fine wire. Re-focus camera and remove wire.

• Take a series of at least 10 images of this uniform seed concentration - these are the

raw calibration images. Adjust the intensifier gain so that these images make the

best use of the camera's dynamic range, while ensuring that the intensifier is not

saturating.

• Tune the dye laser off resonance of NO (225.55 nm).

• Take a second series of at least 10 images - these contain the background signal

which is subtracted from the raw calibration images. If the background signal is too

high, the laser sheet must be altered to minimise the background noise level and the

calibration images repeated.

• Switch on the vacuum pump and exhaust sensor heater.

• Open the throttle on the inlet plenum chamber.

• Start the engine. Switch on the engine controller and bring engine speed up to 1200

rpm (check speed with oscilloscope using TDC signal from engine controller).

• Check that ignition and injection occur on the compression stroke - switch TDC

mark on engine controller if necessary. Set the injection timing for the first test

condition.

• Switch Nd:YAG to external trigger (from engine controller).

• Take a series of background images.

• Close the throttle on the inlet plenum chamber and adjust the inlet manifold

depression.

• Switch on injection, adjust the injection pulse length to AFR 16 (as measured by the

exhaust sensor).

• Fire the engine until it has settled down (approximately 2 minutes). Re-adjust the

injection pulse width and the inlet manifold depression if necessary.

• Tune the laser to resonance wavelength of NO.

• Take a series of images.

• Switch the injection off and open the throttle.

• Tune the laser off resonance wavelength of NO and take a series of background

images.

• Repeat for other conditions.
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• Switch Nd:YAG to internal trigger.

• Stop the engine and switch off engine controller.

• Crank the engine to the same position as for the previous calibration images. Take
another set of calibration background images.

• Tune the laser on resonance of NO. Fill the engine with calibration gas. Take a
further set of calibration images.
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Chapter 8

Engine Application of NO LIF - Results

Results from the visualisation of the Nitric Oxide distribution in the SI research engine

at ignition are presented. They comprise of ensemble-averaged two-dimensional NO

concentrations and cyclic fluctuations in NO concentration. Improvements and possible

future extensions of the measurement technique are discussed.

8.1 Measurements

In order to obtain a measure of the distribution and fluctuation of the residual gas

concentration at the time of ignition, laser induced fluorescence (LIF) measurements of

NO were performed in the cylinder of the Mk 2 one-cylinder research engine using a

transition at 226 nm and collecting fluorescence between 238 nm and 258 nm.

The maximum NO level generated in an SI engine peaks at approximately APR 16

which results at low load to about 500 to 1000 ppm. At APR 20 the NO concentration

will be lower by a factor of four to five (Heywood 1988). During the inlet stroke the

residuals are diluted with the fresh charge by about 10 to 1. This will leave NO

concentrations of between 50 and 100 ppm for APR 16 at the time of ignition, where

the measurements were taken. At such concentration levels the signal-to-noise ratio

proved to be too low to be meaningful for single exposure imaging with the laser sheet

expanded to 50 mm width. In order to obtain spatial information of the NO

distribution, 100 single 2-dimensional images were accumulated on the chip of the

CCD for successive cycles in a plane 5 mm below the spark plug. Ten of these

accumulated images were taken at ignition (680° CA ATDC) for injection at 0° and

405° CA ATDC and at an APR of 16 at low load (inlet depression 415 mmHg).

In order to measure the fluctuation of the residual gas concentration, cycle-resolved

information on the NO concentration had to be obtained. Therefore, to increase the

power density, the laser beam was expanded to a 10 mm wide ribbon, thus improving

the signal-to-noise ratio. 58 single exposure images, centred about 5 mm below the

spark plug, were taken at the time of ignition (680° CA ATDC) with injection at 405°

CA ATDC at the same AFR and load condition as for the 2D measurements.
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The engine was operated for all measurements with a speed of 1200 rpm in order to

minimise the laser pulse-to-pulse fluctuations (see 7.3) and pure iso-octane was used

as the fuel.

These operating conditions are slightly different compared to the fuel concentration

measurements in Part 2 (AFR 20, 1500 rpm). Operation at AFR 16 compared to APR

20 did, beside maximising the NO concentration in the residual gas, reduce the cyclic

fluctuation in peak pressure from 20 % to 5 % and therefore reduce cyclic variations of

the NO concentration in the burnt gas due to variations in combustion temperature.

The effect of engine speed on the burnt gas fraction remaining in the cylinder is

dependent on the valve-overlap. For small valve-overlap periods, as for the engine

used in this work (Fig. 4.2), the residual gas fraction is not very sensitive to engine

speed (Galliot 1990).

8.2 Image Processing

All images obtained were corrected for mean background by subtracting a background

image obtained in the motored engine by tuning the laser off-resonance. The mean

laser structure and the non-uniform collection efficiency of the intensified CCD camera

was normalised with a calibration image obtained from a uniform NO/N 2 concentration

in the stationary engine.

The 10 multiple exposure fluorescence images, each consisting of 100 accumulated

images, were averaged. The resulting image effectively represents the mean of 1000

single images. The 58 single exposure fluorescence images were reduced onto a single

pixel line. This removed the issue of pulse-to-pulse fluctuations of the laser sheet.

Therefore each line represents the NO concentration in a measurement volume of

approximately 10 x 2 mm in the vicinity of the spark plug.

8.3 Results

Single Shot Measurements
The average of 58 NO fluorescence lines is shown in Figure 8.1 together with the

average of 10 background lines. The fluorescence signal from exciting the Q2(22.5)

transition of NO is very weak. The fluorescence was about 2.5 times higher than the

background signal. The background contains mainly scattered laser light from surfaces

and Rayleigh scattering. Fluorescence was detected using a 45° mirror with a

reflectivity of 90 % between 238 nm and 258 nm. The strong background signal

suggests that scattered laser light (226 nm) was not completely rejected by this filter.

This is illustrated by the spike in the middle of signal and background in Figure 8.1.

The spike stems from scattered laser light off the spark plug which extends into the

combustion chamber. Although the laser sheet was not hitting the spark plug, stray

laser light will have been reflected by the spark plug. Due to the spark plugs irregular
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shape the angle and intensity of the reflection will be a function of the pulse-to-pulse

fluctuations of the laser sheet intensity and profile, changing the background signal

from shot to shot. Since the corrections for the background contribution are made on

the basis of a mean background, the data will not be quantitative in this region. The

NO fluorescence signal contained a high frequency component which was mainly due

to shot noise on the intensifier and the CCD (Fig. 8.2). This high frequency component

was removed by filtering the signal with a fast Fourier transform (fft).

The standard deviation for each pixel of the 58 lines was calculated and the fluctuation

of the NO fluorescence around the mean from cycle to cycle obtained (Fig. 8.3). On

average the cycle-by-cycle fluctuation was 18.1 % in the fft-filtered signal (Fig. 8.4).

The expected fractional error for the line measurement is 6.5 % (see Section 8.6).

Taking the fractional error into account the expected fluctuation in the NO

fluorescence-signal is 17 %. The fluctuation around the mean of 10 images obtained

from an uniform NO/N2 concentration in the research engine was about 2 % (Fig. 8.5).

This fluctuation is a measure of the repeatability of the measurement and consists of

pulse-to-pulse laser fluctuations and shot noise from the intensified CCD camera. In a

separate measurement, the fluctuation of the fuel concentration was found to be on

average 10.5 % in a similar measurement volume (Fig. 8.6).

Averaged 2-dimensional measurements

Figure 8.7 and 8.8 show the mean of 1000 single 2-dimensional images, for injection at

0° and 405° CA ATDC respectively, taken at ignition 5 mm below the spark plug. The

regions of high intensity at the secondary inlet valve are an artefact and are also

present in the background images; but background subtraction did not remove the

effect completely. The precise origin of the artefact is unclear. It may be due to

reflections of stray laser light from the valve region of the cylinder head. As with the

scatter off the spark plug in the case of the line measurements, the irregular shape of

the cylinder head in the valve region may lead to fluctuating background signals due to

pulse-to-pulse fluctuations of the laser sheet. Since the background corrections are

made on the basis of a mean background, the data in these images does not give

reliable information in this particular region.

The overall pattern for the images, taken at the different injection timings, is as

expected very similar. For both injection strategies, the NO fluorescence-signal is

significantly higher in the inlet half of the cylinder. The average gradient across the

image is 20 % between the exhaust and inlet sides and 8 % between primary and

secondary half of the cylinder (Fig. 8.9). Therefore, the highest residual concentrations

are in the primary inlet quadrant, while the lowest concentrations are in the secondary

exhaust quadrant. This is almost a mirror image of the fuel distribution (Fig. 8.10).
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Fig. 8.6: Fluctuation around the mean of 200 single fuel LEF images (AFR 19, n = 1500 rpm). The
signal represents the average of a 10 mm wide sheet centred 0.7 mm below the spark plug. The mean
fluctuation is 10.5 %.
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Fig. 8.7: NO fluorescence signal averaged over 1000 cycles in a plane 5 mm below the spark plug at
the time of ignition (Ignition 680° CA, Injection 0° CA).

Fig. 8.8: NO fluorescence signal averaged over 1000 cycles in a plane 5 mm below the spark plug at
the time of ignition (Ignition 680° CA, Injection 405° CA).
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Fig. 8.10: Fuel concentration on an equivalence ratio scale, averaged over 125 consecutive cycles in a
plane 5 mm below the spark plug at the time of ignition (AFR 19, ignition 680° CA, injection 405°

CA, n = 1500 rpm).
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8.4 Absorption & Quenching

Absorption of the laser light was found to be insignificant. Measurement of the laser

energy before and after the probed volume, both in the engine and in preliminary cell

studies, showed no difference between tuning on and off resonance. This is not

surprising given that the ground state population of the Q 2 (22.5) transition is very

small and hence the absorption cross-section is low.

In preliminary cell tests, iso-octane did not show any fluorescence or quenching effect

on the fluorescence of NO excited at a wavelength of 226 nm. Oxygen, water vapour

and carbon dioxide have big quenching cross sections for nitric oxide laser induced

fluorescence (Drake 1993). Nitric oxide is also a very efficient self quenching species;

however, the low concentration level in the engine renders self-quenching insignificant.

CO2 and H20 are the major constituents of the residual gas and 0 2 of air; therefore the

NO fluorescence will be composition dependent. Fortunately the effect of quenching

on the fluorescence signal can be calculated.

Fluorescence Yield as Function of Mixture Composition

The fluorescence emission If for a two-level system can be expressed as:

If 	 NO •I L • BN	 Lu•
A

A + Q 1 + 1 .1f,	 (8.1)

PatL

where N is the number of molecules of the fluorescing species, IL the laser intensity, Blu

the Einstein coefficient for the rate of absorption, A the Einstein coefficient for

spontaneous emission and Q the quenching coefficient.

(8.2)

where N is the number of molecules of the quenching species, cY the quenching cross

section and v the relative velocity of the species. With the laser intensity being much

smaller than the saturation intensity (IL< <
SAT ), equation 8.1 becomes:

If = NNO • L • BLu
A + Q

The relative fluorescence signal of two different gas compositions, for the same

fluorescence species concentration and measurement condition, can be written as:

I = A2 + Q2 

12	 Ai +	 •

A
(8.3)

(8.4)
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and

(8.7)

(8.8)

(8.9)

The Einstein coefficient for spontaneous emission is much smaller than the quenching

rate ( AN0 ,=-1 3.3-4.6 . 106 s-1 ; QN0 :=-• 1-200 . 1028 s-1 ) and equation 8.4 can therefore

be simplified to:

1 _ Q2 _ 1(N • Ci t 1)2

12	Q1	 E (N, •cr,•v,),

where the number of quenching molecules N, = n- NAVOGADRO. Density is:

(8.5)

n	 p 
=

V R • T
(8.6)

The number density of the quenching species can be expressed as a function of species

mole fraction Xi:

and inserting in equation 8.5 results in:

NA • ()2 • E(Xi • a i • V i)2

12	 N A • (01 .I (xi • 0-; • vi),

If p i = p2 and T1 = T2 then the density remains constant:

1.1 _	 (x; • Ci•v1)2

12 - I(xi • a; • vi),

Correction for Quenching Environment

The LT measurement of the average NO distribution showed a gradient of 20 %

between inlet and exhaust side (Figure 8.9). Galliot (1990) measured residual gas

fractions of between 5 - 10 % at full load and about 20 % at part-load condition (0.45

bar inlet pressure) in an engine with a compression ratio of 8.3:1 and a valve overlap of

3° CA operating at 1500 rpm. These engine parameters and operation conditions

match very closely those used for this investigation. Assuming an average residual gas

fraction in the cylinder of 20 %, the charge composition can be calculated by using the

residual gas composition from Figure 6.1 for an fuel/air equivalence ratio 4) of 0.875

(see Table 5). The effect on the fluorescence yield due to the difference in the

quenching environment across the image was calculated with Equation 8.9, using

quenching cross sections from Drake (1993):

0.1615 . 29.8 . 6.36 + 0.0381-107.4•7.12 + 0.0231- 61.2 5.65
= 1.052

12 - 0.1685 29.8•6.36 + 0.0339 . 107.4 . 7.12 + 0.0189 61.2 •5.65
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Table 5: Mixture compositions and quenching factors

N2 02 H20 CO,

Quenching Cross Sections' ) (T = 296 K)
(7	 [A2]

0.014 29.8 107.4 61.2

Average Velocity of Collision Partners2)

v	 [1025 m/s]

6.58 6.36 7.12 5.65

Air Composition (60 % humidity) 	 [%] 78.50 20.00 1.50 0.00

Residual Composition: 3) (AFR 16)	 [To] 75.00 2.50 12.00 10.50

Mixture 1: (82 % Air + 18 % Residuals) [%] 77.87 16.85 3.39 1.89

Mixture 2: (78 % Air + 22 % Residuals) [%] 77.73 16.15 3.81 2.31

1)taken from Drake et al 1993
	 2) see note at foot of page

	 3) taken from Figure 6.1

The fluorescence signal in the residual-rich inlet region will be 5 % lower than in the

residual-lean region due to quenching. Therefore the gradient in residual concentration

will be 25 % rather than 20 % as indicated by the images. Iterative linear interpolation

between expected gradient and quenching leads to convergence for a difference in the

quenching rate of 7 % between the lowest and highest concentration value. Therefore
the gradient in residual concentration from exhaust to inlet side is expected to be
27 %. Between the primary and secondary sides, the measured gradient was 8 %

(Figure 8.9). With the above values, iterative linear interpolation between expected

gradient and quenching leads to convergence for a difference in the quenching rate of 3

% between the lowest and highest concentration value. The gradient in residual
concentration from the primary to the secondary side is expected to be 11 %.

The fluctuation in the NO concentration from cycle-to-cycle was measured to be 17 %

around the mean concentration (Figure 8.4). The fluorescence signal of NO will be

quenched more heavily for residual concentrations above the mean and less heavily for

concentrations below the mean. Therefore the quenching rate is a systematic addition

to the measured fluctuation. If the mean residual concentration corresponds to 20 % of

2) The relative velocity v of the quenching species is defined as:

8 . k •T
v =

TC • II,

where k(=1.3806226e23 J/K) is the Bolzmann constant, T the temperature and i the reduced mass of

the pair:

1 .1 ± 1 . N	 N±A
Il i 	 Pi M I M2

where NA is the Avogadro number and M, the molecular mass of the two species (quenching and

fluorescence pair).
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Fig. 8.11: Schematic of the influence of mixture composition on quenching.

the cylinder volume, iterative calculation of the quenching effect based on the

measured residual concentration fluctuation using equation 8.9 leads to a difference in

the quenching rate of 6 % between the mean concentration and the mean concentration

plus one standard deviation (a). Therefore the fluctuation in the residual

concentration around the mean value is estimated to be 23 %.

8.5 Interpretation of Results

Laser induced fluorescence measurement of NO in the one-cylinder research engine

gave some insight into the NO distribution and fluctuation at the time of ignition:

• The ensemble-averaged 2D-images showed, that on average the NO concentration

is non-uniform in a plane across the cylinder bore.

• The single exposure measurements showed that substantial cycle-by-cycle

fluctuations in NO concentration exist.

The fluctuation in the NO concentration is not equal to the fluctuation in residual

concentration, since the amount of NO generated is dependent on the combustion

temperature of the previous cycle, which will in turn vary from cycle-to-cycle.

Therefore the cycle-to-cycle variation in the measured signal includes the variation in

the overall NO concentration and the variation in the spatial distribution of NO due to

non-uniformity of the residual gas within the cylinder. Chen (1976) showed that cyclic

variations in peak pressure are linked to cyclic variations in nitric oxide concentrations

in the exhaust gas. The faster combusting cycle is hotter and therefore generates more

nitric oxide (Heywood 1988). Single shot temperature measurements by CARS in a SI
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engine showed a linear correlation between combustion temperature and maximum

pressure at light-load operation (Marie 1987). Therefore, fluctuations in peak pressure

are an adequate measure for the cyclic variation in NO formation. In-cylinder pressure

measurements showed fluctuations in peak pressure at the chosen running conditions

to be on average about 5 %. Thus, the contribution of the cyclic variation in

combustion to the measured fluctuation in NO is expected to be small:

a N =	 2 -6 p 2 = ,123% 2 —5% 2 =22.5%

The mean level of the residual gas fraction in the unburned gas will affect the flame

speed which is dependent on the diluent fraction and the unburned gas temperature

(Metaghalchi 1982, Rhodes 1985). Flame radii and velocity measurements in

conjunction with in-cylinder pressure measurements by Witze (1988) showed higher

flame velocities and higher peak pressures earlier in the cycle for fully scavenged cycles

compared with incompletely scavenged cycles. This result indicates that the diluting

effect of the residual gas is more important for the burning velocity than the effect due

to higher unburned gas temperatures. It follows that higher residual gas fractions lead

to lower combustion temperatures and hence lower NO concentrations in the burned

gas and the opposite for a lower residual fraction. The residual fraction in the unburned

gas is dependent on load condition valve overlap period, compression ratio and for

large valve overlap on engine speed. Therefore, for a given engine operation condition,

the fluctuation in the mean level of the residual gas fraction from cycle-to-cycle will be

higher than the fluctuation in the mean level of the NO concentration. The fluctuation

in the mean level of the residual gas fraction is expected to be smaller than the

fluctuation in peak pressure, since, as explained above, the extent of dilution with

residuals affects the flame speed and therefore peak pressure. Galliot (1990) measured

mean residual fraction fluctuations of about 1 % for an engine running at 1500 rpm

with an inlet pressure of 0.4 bar and a valve overlap of 39° CA. For smaller valve

overlaps, as for the engine used in the current work, these fluctuations are expected to

be smaller. Therefore the measured fluctuation in the NO concentration of 25 % is

attributed to imperfect mixing of the residual gas with the fresh charge.

Galliot (1990) measured a residual fraction of about 20 % in an engine with a

compression ratio of 8.3, a valve overlap of 3° CA operated with 1500 rpm at 0.4 bar

inlet pressure. These parameters are very similar to those of this experiment and in the

following analysis a residual fraction of 20 % is assumed.

In a separate measurement, the fuel distribution was found to fluctuate by about 10 %

around the mean in a similar measurement volume, 0.7 mm below the spark plug (Fig.

8.6, inj. 405° CA). However, the influence of the fluctuations in fuel concentration on

the fluctuations in residual concentration is very small, because the difference in partial

pressure between the fuel and residual gas is about one order of magnitude. Assuming

a residual fraction of 20 %, and a homogenous mixture of air and residuals, with the

fuel concentration fluctuating by 10 % cycle-by-cycle, the residual gas concentration

would fluctuate by only 0.13 % (Fig. 8.12, Case 1). In the opposite case, where a
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Fig. 8.12: Schematic on mixing between residual gas, fuel and air.

perfect mixture of air and fuel was mixed with residual gas, with a fluctuation of 23 %,

the fuel concentration would be expected to fluctuate by 6 % (Fig. 8.12 Case 2). The

separate measurements of fuel and residual concentrations in a line across the cylinder

showed fluctuations of 10 % and 23 % respectively in the vicinity of the spark plug.

Therefore, the air concentration (and thus the oxygen concentration) is likely to

fluctuate on average about 6 % (Fig. 8.12, Case 3). The ensemble-averaged 2D-images

showed a gradient between exhaust and inlet side of about 27 % for the residual gas

and a reverse gradient of about 10 % for the fuel distribution. This will cause a

gradient of about 6.5 % in air concentration across the image (Fig. 8.12, Case 4), with

more air in the exhaust half of the cylinder.

These considerations show that even with a perfectly premixed air/fuel mixture the

local fuel concentration would fluctuate by 6 % due to incomplete mixing of residual

gas with the fresh charge (Fig. 8.12 Case 2). This is reflected in the fuel concentration

measurements which showed in a similar measurement volume the smallest fluctuations
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in the fuel concentration to be 8.5 % in the case of injection behind the closed inlet

valve at 0° CA (Fig. 5.19). Similarly Williams (1991) observed fluctuations in the local

fuel-air-ratio of 6 % despite using a premixed propane/air mixture. This is also

consistent with Keck (1987) where cyclic fluctuations in the laminar flame speed of the

early flame kernel were observed. Since in this work a premixed propane/air mixture

was used no fluctuations in the air/fuel equivalence ratio were expected and the

fluctuations in the flame speed were attributed to incomplete mixing of the fresh

charge with residuals.

The fluctuations in the residual concentration of 23 % causes fluctuations in the air

concentration of 6 % which affects the local AFR. For equal heat capacity added to the

unburned mixture, burned gases have a much larger effect on the reduction of the

laminar burning velocity (Fig. 8.13, Rhodes 1985). While the excess air helps

combustion, the residual gas just absorbs energy and impedes the diffusion of chemical

species and heat (Rhodes 1985). For example in an indolene-air mixture, the laminar

burning velocity of a stoichiometric mixture is reduced by 23 %, as it is leaned out to

an equivalence ratio of 0.8. Adding combustion products of the same heat capacity

reduces the laminar flame speed by 52 % (Fig. 8.13). However, the molar specific heat

of the combustion products of a stoichiometric mixture is about 10 % larger than that

of air. Therefore, adding residuals of the same density as air, reduces the burning

velocity by 58 % in this example. The higher temperature of the residual gas reduces

density but the effect on burning velocity is likely to be compensated by an increase in

heat capacity. Therefore, the fluctuation in the local AFR caused by incomplete mixing

of air and residual gas will cause fluctuations in the laminar burning velocity.

In lean mixtures fluctuations in the fuel concentration in the vicinity of the spark plug

were found to be a major cause for cyclic fluctuation in combustion (Chapter 5.2).

Since incomplete mixing of residual gas with the fresh charge causes cyclic fluctuations

in the fuel concentration it also limits the lean operation of a SI engine. In Chapter 5.2
it was shown that, close to the spark plug, fluctuations in the fuel concentration of

10% mark the difference between a slow burning cycle and a fast burning cycle (Fig.

5.24, 5.25.). Therefore, fluctuations in the fuel concentration of 6 % caused by

incomplete mixing with residual gas are significant for cyclic variability in combustion.

For in-homogeneous fuel/air mixtures the residual fluctuations have an additional effect

of changing the local APR. Therefore, in stratified charge engines, the fluctuation in

fuel concentration close to the spark plug does not give a complete picture of the

magnitude of fluctuations in the mixture composition which influence the laminar

burning velocity. This is reflected in the correlation coefficient between fuel

concentration in the vicinity of the spark plug and peak pressure of 0.7 being

significantly below 1 (see Chapter 5.2 Fig. 5.30, 5.31).
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Fig. 8.13: Reduction in the laminar burning
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addition of various amounts of excess air or
N2-0O2 diluent (Rhodes 1985).

Fig. 8.14: Dependence of the burning velocity
of mixtures of iso-octane, methanol, propane
and RMFD 303 (Metaghalchi 1982).

L.

In the stratified charge Honda VTEC-E engine local rich mixtures exist in a plane close

to the spark plug (Fig. 5.3b, 5.4b). The burning velocity in iso-octane peaks at an

equivalence ratio of 1.1 (Fig. 8.14, Metaghalchi 1982). Fluctuations in the air

concentration caused by non-uniform mixing with residual gas will therefore change

the stoichiometry and influence the burning velocity also in rich mixtures.

The laminar flame speed is also strongly dependent on temperature (Metaghalchi 1982,

Rhodes 1985). The local temperature in the unburned gas will be dependent on the

distribution and concentration of the hot residual gas. Although the data of Witze

(1988) indicates that dilution is the more important factor, further studies, comparing

residual concentrations with engine performance, may clarify which of the two effects,

dilution or temperature, will be dominating.

The ensemble-averaged NO concentration images show a gradient from the exhaust to

the inlet side and from the secondary to the primary side, with the highest NO

concentrations on the inlet side in the primary inlet quadrant. This is nearly a mirror

image of the fuel distribution. The result can be explained by the tumble and swirl

motion of the intake air as observed by Hardalupas (1995).

The crank angle resolved 3D fuel images (Chapter 5.1) showed that during the inlet

stroke, as indicated by the fuel motion, there was a strong axial air flow from the

primary inlet valve along the exhaust side directed to the piston. The flowfield as

measured by Hardalupas (1995) (Fig. 5.8) showed that by 540° CA, which is BDC of
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intake, the flow has developed a strong clockwise swirl and the tumble results in

piston-directed velocities along the exhaust side and head-directed velocities along the

inlet side of the cylinder. Thus, during the inlet stroke, the air flow will gradually dilute

the residual gas in the exhaust half of the cylinder, creating an axially-stratified

air/residual mixture which continues to be convected by the tumble vortex towards the

inlet side and up towards the cylinder head, thereby creating a residual-richer mixture

in the inlet half of the cylinder. The magnitude of the swirl was measured to be such

that the in-cylinder gas will rotate through approximately one revolution around the

cylinder axis over a 360° CA rotation period. From the onset of the swirl motion,

around BDC, up until ignition the residual-lean mixture in the exhaust half of the

cylinder will be convected clockwise by 90 0 -120° towards the inlet side, explaining the

lower residual concentration below the secondary inlet valve compared to the primary

inlet valve region.

This implies that little mixing occurs across the perpendicular cylinder axis. That the

mixing is indeed poor can be inferred from the crank angle resolved 3D fuel images

(Chapter 5.1) where little cross-bore mixing of the fuel was observed during

compression. The swirling pathlines during compression in Figure 5.8, are all close to

concentric circles and therefore the amount of mixing that can be expected to occur,

due to motion in the plane of the bore, is small (Hardalupas 1995). As for the fuel

concentration measurements, additional studies in an engine with a non-swirl inlet

port/valve configuration should be performed in order to clarify the influence of swirl

on mixing.
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8.6 Error Analysis of Data

Each of the final NO concentration images (F) was formed from four separate images:

- a raw data image (R),

a background taken with the engine motoring (B),

- a calibration image (C)

- and a background for the calibration image (Bcai)•

Each of these can potentially add to the total noise on the final NO image. The errors

that will arise from the background images and the calibration image can be evaluated

by measuring the fluctuation in sets of these images (denoted a) and comparing them

to the mean values. The fractional error in the raw data image is harder to estimate, but

will be at least as large as the one for the calibration image. The final NO images were

calculated as:

R — B
F=

C — Bcal

The expected fractional error in measuring F will be:

(8.10)

2	 N2	 i	 2
(  E R  )2 +	 +(  G B  ) + 	 G c	 G Bca I 

K R—B)	 R—BC —Bc ai j \ C — B cal )

(8.11)

Single Exposure Measurements

The data set comprises of 58 single exposure data images, 10 single exposure images

each for background, calibration and calibration background. Below are the mean, and

the fluctuation around that mean, for each of the data sets:

CCD Counts

- Mean raw data image intensity (R)	 5116

- Mean background intensity (B)	 1835

- Mean calibration image intensity (C)	 21230

_ Mean calibration background intensity (B eal)	 1399

- Fluctuation in raw images (e-estimated as 2.6% of R) 	 133

- Fluctuation in background images (as)	 133

- Fluctuation in calibration images (0-0	 453

- Fluctuation in calibration background images ( a- l,-Bcal,	 65

With the above values, equation 8.11 gives an expected fractional error of 6.5% for

the final images. The resulting values for the final image F (calculated from eq. 8.10)

are:
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a = -113- F 	 CF (8.12)

CCD Counts

- Mean final image intensity (F) 	 1502

- Fluctuation in final images (GF) 	 279 (18.6%)

- Uncertainty in final images (EF)	 97 (6.5%)

The expected fluctuation in the signal F will be:

With the above values, equation 8.12 gives an expected cyclic fluctuation of 17% for

the NO concentration around the mean value.

Ensemble Averaged Multiple Exposure 2D-Images
NO-data, background, calibration and calibration background measurements comprise

of 10 images each, which represent the average of 100 single images accumulated on

the CCD-chip. Below are the mean and the fluctuation for each of the data sets:

CCD Counts

- Mean raw data image intensity (R)	 16283

- Mean background intensity (B) 	 10175

- Mean calibration image intensity (C) 	 28488

- Mean calibration background intensity (B cai)	 8667

- Fluctuation in raw images (Gk)	 974

- Fluctuation in background images (as) 	 737

- Fluctuation in calibration images (Gc) 	 1266

Fluctuation in calibration background images ( CO-- Bcal)	 661

With the above values, equation 8.11 gives an expected error of 21 % for the final

images.

The bigger error on the 2D data in comparison to the single-shot data is due to the

lower signal-to-noise ratio (1.6 rather than 2.5). However, all of the fluctuations in the

raw images of the 2D data - which are effectively a mean of 100 images - were

attributed to the measurement error. This is probably too pessimistic, since samples of

100 images might not be enough to average out cyclic fluctuations in the NO

concentration. Averaging the 10 data images will reduce the error, since random noise

will cancel out:

10 . (5)2	 \110 . 0.212=	 = 0.066
n 2	 102

Yi
(1=1	 /

(8.13)

If all the error in the 10 NO-data images is random, then the expected uncertainty
will be 6.6 % for the averaged images in Figure 8.7 and 8.8.
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8.7 Considerations & Improvements

The previous discussion revealed the major limitation of the measurement system to be

the low signal-to-noise ratio. This led to unsatisfactory error levels and inhibited

measurement of single exposure planar images. Instantaneous planar NO concentration

measurements would show the variation in the NO distribution compared to the mean

distribution.

The accuracy of planar single exposure measurements of the "natural" NO in the

engine, can be improved by optimising the fluorescence detection system. In this study

a f4.5 UV-lens focused the image onto the intensifier. Using a f1.0 collection optics

would increase the collection efficiency by a factor of 10 compared with the standard

f4.5 optics. However, there are no standard f1.0 UV lenses available. This requires the

design of an appropriate custom lens system. However, the effect of the collection

efficiency on the signal-to-noise ratio is limited, since also the collection of stray laser

light will be improved. In the present study a 45° mirror with a reflectivity of over 90

% between 238 nm and 258 nm separated the laser radiation from the fluorescence

signal. The discrimination efficiency between fluorescence and background

luminescence can be improved by using more than one separation mirror. A second

45° mirror with a peak reflectivity at 248 nm and a bandwidth of 10 nm would reduce

the collection efficiency by at least 10 %, but would cut the unwanted background

signal by an order of magnitude. Such a filter system collects fluorescence mainly from

the y(0,2) band. However, since the NO fluorescence is broad-band (Reisel 1993), a

long pass filter with a transmission efficiency of over 99 % above a cut-off wavelength

of 231 nm could further increase the amount of collected fluorescence and reduce the

amount of background scatter collected.

In addition, to improve the signal-to-noise ratio the fuel or the intake air could be

seeded with a component which generates significant amounts of NO during

combustion. Therefore two components were considered; acetonitrile (CH 3 CN) to be

mixed with the fuel and ammonia (NH 3) to be mixed with the intake air. For example,

1 % of ammonia mixed with the air delivered to the engine will produce approximately

8000 ppm NO during combustion. After dilution of the residual gases with fresh

charge approximately, 400 ppm of NO will be available as fluorescence marker for the

residual distribution at the time of ignition. This would raise the NO concentration in

the residual gas by a factor of 5 to 10. Unfortunately, both components are polar and

therefore are efficient fluorescence quenchers for NO. This is likely to negate the gain

of signal due to the higher NO concentration. It will also bias the measurement

towards the residual-rich regions, since the acetonitrile/ammonia concentration will be

highest in air/fuel rich regions.

8.8 Alternative Strategy for Residual Imaging

The imaging of residual gas species proved to be difficult due to the low concentration

levels during the compression stroke. Also, variation in the residual gas composition

from cycle-to-cycle makes interpretation of the fluctuating part of the fluorescence
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signal of one particular species difficult. Therefore, a completely different approach to

residual imaging is suggested for consideration.

By seeding both the air and the fuel (iso-octane) with the same amount of 3-pentanone

per mole, a homogeneous pentanone concentration is expected in a non-combusting

engine. Thus in a combusting engine, any inhomogeneities in the distribution and any

fluctuations in the concentration of the seed must be due to the incomplete mixing of

the fresh charge with residual gas or cyclic fluctuations in the residual concentration.

These inhomogeneities and fluctuations can be measured by planar LIF of 3-

pentanone. The lower limit of the accuracy of this method is determined by the pulse-

to-pulse fluctuations in the laser sheet and shot noise on the intensifier/CCD which has

been previously measured as 2% (see Fig. 5.16). 3-pentanone is the preferred seed,

since its vaporisation characteristics closely match those of iso-octane (see Section
3.3). This minimises potential errors due to the separation of fuel and seed. If this

method is to succeed, a seeding system has to be designed which will provide a

homogeneous air/pentanone mixture. The quality and potential accuracy of the seeder

system can easily be measured in a motoring engine.

8.9 Conclusions on Residual Imaging

• A method for imaging the "natural" NO concentration as a marker for the residual

gas by Laser Induced Fluorescence has been developed and applied to an optical

one-cylinder research engine.

• The results gave some insight into the residual gas distribution:

— on average the residual gas is in-homogeneously distributed in the cylinder.

— there is a significant fluctuation in the mixing of fresh mixture with residual gas

on a cycle-to-cycle basis.

• The measured fluctuation in the mixing of fresh charge and residual gas cause

significant cyclic fluctuation in local fuel concentration.

• In a stratified charge engine incomplete mixing of residual gas with fresh mixture

has a significant effect on the local AFR.

• Cyclic fluctuations in the mixing between residual gas and fresh charge are large

enough to limit the lean operation of a SI engine.

• The influence of swirl on mixing between air and residual gas could be important.

• The low signal-to-noise ratio limits the accuracy of the measurement and prevents

cycle-resolved 2D measurements of natural NO.

• The current method could be improved by designing more efficient collection optics

(f1.0) and using a more efficient filter to separate laser light from fluorescence.

• Alternative strategies for visualisation of the residual concentration should be

considered.
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Chapter 9

Summary

Previously, the contribution to combustion variability arising from the nonuniforrnity of

the fuel-air mixture taken into the cylinder has been examined either indirectly by the

impact of different mixture preparation methods on combustion quality, performance

and emissions, or directly by in-cylinder measurements of the local air-fuel ratio

fluctuations. Although these works indicate that there is substantial variation in the

local fuel concentration at the spark electrodes, and that differences in mixture

preparation can be important to engine behaviour, the contribution to cyclic

combustion variability and performance due purely to mixture nonuniformity has not

been clearly established. Factors influencing the mixture formation have been studied

mostly indirectly by measuring their impact on performance or emission. The mixture

formation process itself has not been clearly understood. Further, the issue of

nonuniformity in residual gas concentration has not been considered in any depth. Thus

an experimental program was undertaken in order to develop a picture of the mixture

formation process in a near-production engine. It was intended to quantify the

influence of the mixture formation on cyclic variability and performance. Further, it

was intended to address separately spatial distribution and variations in burned residual

gas concentration within the cylinder.

Planar laser induced fluorescence was chosen as diagnostic technique to achieve these

goals. For the investigation on mixture formation and mixture nonuniformity the

concentration of a fluorescence marker added to the fuel was measured in a 2-

dimensional slice of the cylinder in an optical research engine. The technique was

applied to a lean-burn one-cylinder SI engine with a 4-valve pent-roof cylinder head

configuration. 3-Pentanone mixed with iso-octane was used as the fuel. In order to

investigate the mixture formation process, mean fuel distributions were measured in

four planes between 0.7 and 15.2 mm below the spark plug during the inlet and

compression stroke. This gave a quasi 3-dimensional picture of the mixture formation

in the cylinder of an operating engine. The measurements were performed with

injection during inlet valve closed and open periods which allowed the effect of

injection timing on mixture formation to be studied. The results showed that for 4-

valve pent-roof cylinder head configurations with swirl inlet flows, fuel impinging on
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the cylinder wall opposite to the inlet valves is a major cause of fuel stratification. The

fuel film formed on the cylinder wall evaporates during compression, leading to a

locally richer mixture. Injection timing was found to influence the amount of fuel

impinging on the cylinder wall and hence the subsequent mixture distribution. To

complete the data base on mixture formation in 4 valve pent-roof cylinder head

configurations and to clarify the influence of the flowfield, similar measurements with

non-swirl inlet flows are proposed.

To determine the influence of the mixture formation on engine performance and cyclic

variability, the fuel concentration in a plane close to the spark plug was measured at

ignition and after ignition on a large number of cycles for different injection timings. It

was shown quantitatively that the mixture formation in a small region in the vicinity of

the spark plug has a dominating effect on the subsequent pressure development for

lean mixtures. The results also showed that variations in the mixture concentration in

the vicinity of the spark plug are a major reason for cyclic variations in combustion.

Injection timing was found to influence the degree of cyclic dispersion in mixture

distribution.

The burned area in the images taken after ignition correlated well with the subsequent

cycle performance. This supports the view that the early flame kernel development has

a dominating effect on the bulk combustion. In nearly all measurements, the burned

area was found to be displaced towards the fuel-lean side of the combustion chamber.

This suggests that after the flame has been established, factors other than the fuel

concentration are important for the flame development.

With the above LIP measurements the mixing of the fuel in the cylinder of a SI engine

could be described and its influence on engine performance quantitatively determined.

However, the fuel not only mixes with air. It also mixes with residual gas left in the

cylinder from the previous cycle. In order to better understand the mixing of residuals

with the fresh charge, a laser induced fluorescence technique was developed to

measure natural NO distribution where the NO is assumed to mark the residual gas.

Measurements were performed for the crank angle of ignition and were made close to

the spark plug.

The results revealed, that at the time of ignition, the residual gas is on average not

homogeneously mixed with the fresh charge and that significant cyclic variation in the

local residual gas concentrations exist. The measured fluctuations in the mixing of

residual gas with fresh charge causes significant cyclic fluctuations in local fuel

concentration. The average residual distribution, as well as the cyclic fluctuations in

residual concentration, are large enough to influence the local mixture composition. It

is implicit from the mean residual distribution in a plane perpendicular to the cylinder

axis, that little cross-bore mixing occurs. This suggests that in accord to the fuel

concentration measurements, swirl motion of the intake air has an inverse effect on

mixing. Further studies involving measurements of NO concentrations in an engine

with no inlet swirl are required.
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The accuracy of imaging the NO concentration as a measure for the residual gas

concentration was limited by a low signal-to-noise ratio which inhibited the collection

of cycle-resolved planar images. Cycle-resolved planar imaging would be important in

gaining information on fluctuations in the residual distribution and to investigate the

influence of residual fluctuations on engine performance. To improve the accuracy of

the residual imaging a more efficient UV collection optic may be used in conjunction

with a more effective filter to separate laser radiation from fluorescence signal.

Imaging the NO concentration by PLIF shows considerable potential as a residual gas

marker. However, further work is required to improve the accuracy of the method.
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Nomenclature

AFR	 Air-to-Fuel Ratio

ArF	 Argon-Fluoride

ATDC	 after Top-Dead Centre

BDC	 Bottom-Dead Centre

b.p.	 boiling point

BTDC	 before Top-Dead Centre

CA	 Crank Angle

CARS	 Coherent Anti-Stokes Raman Spectroscopy

CCD	 Charge-Coupled Device

DI	 Direct Injected

EGR	 Exhaust Gas Recirculation

fft	 fast Fourier transform

IC engine	 Internal Combustion engine

IDI	 Indirect Injected

imep	 indicated mean effective pressure

KrF	 Krypton-Fluoride

LDA	 Laser Doppler Anemometry

LIE	 Laser-Induced Fluorescence

MBT	 Maximum Brake-Torque

n	 engine speed

Nd:YAG	 Neodymium-Yttrium-Aluminium-Garnet

PAH	 Polycyclic Aromatic Hydrocarbons

PDA	 Phase Doppler Anemometry

PIV	 Particle Image Velocimetry

PLIF	 Planar Laser-Induced Fluorescence

rpm	 revolutions per minute

SI-engine	 Spark-ignition engine

SVC	 Swirl Control Valve

TDC	 Top Dead Centre

XeC1	 Xenon-Chloride
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