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ABSTRACT 

The focus of this research is to study how targets can be more faithfully 

detected in a multi-camera CCTV network system using spectral feature for the 

detection. The objective of the work is to develop colour constancy (CC) 

methodology to help maintain the spectral feature of the scene into a constant 

stable state irrespective of variable illuminations and camera calibration issues.  

Unlike previous work in the field of target detection, two versions of CC 

algorithms have been developed during the course of this work which are 

capable to maintain colour constancy for every image pixel in the scene: 1) a 

method termed as Enhanced Luminance Reflectance CC (ELRCC) which 

consists of a pixel-wise sigmoid function for an adaptive dynamic range 

compression, 2) Enhanced Target Detection and Recognition Colour Constancy 

(ETDCC) algorithm which employs a bidirectional pixel-wise non-linear transfer 

PWNLTF function, a centre-surround luminance enhancement and a Grey Edge 

white balancing routine.   

The effectiveness of target detections for all developed CC algorithms have 

been validated using multi-camera ‘Imagery Library for Intelligent Detection 

Systems’ (iLIDS), ‘Performance Evaluation of Tracking and Surveillance’ 

(PETS) and ‘Ground Truth Colour Chart’ (GTCC) datasets. It is shown that the 

developed CC algorithms have enhanced target detection efficiency by over 

175% compared with that without CC enhancement.  

The contribution of this research has been one journal paper published in the 

Optical Engineering together with 3 conference papers in the subject of  

research.  

Keywords:  

Colour constancy; CCTV surveillance; Illumination invariance detection; Colour 

feature  
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Chapter 1: Introduction  

1.1 Problem Statement: CCTV surveillance technology 

One main objective of the Closed Circuit Tele-Vision (CCTV) surveillance 

network is the provision of visual recognitions and tracking of targets across 

wide areas (Soori, et al. 2011). Strategic places such as in the airports, banks, 

shopping malls, traffic control areas are commonly deployed CCTV network 

surveillance system for security reasons. It is reported that BBC News, 2006; 

McCahill & Norris, 2003) the number of operational CCTV (2014) cameras in 

the UK was over 4 million in 2002. However, live surveillance in CCTV network 

is in fact monitored manually by operator as depicted in Figure 1-1. This is 

highly ineffective as it is almost impossible for a person to monitor such large 

number of screens simultaneously (Smith, 2004). 

 

Figure 1-1: Shows the example of control room with large number of TV 

monitors, image is taken from (CCTV, (2014)). 

One solution to remedy this drawback is the development of an autonomous 

surveillance using machine vision technology. Autonomous target/people 

tracking in public places from CCTV footage have been a popular research 

since the turn of century. However, it is still a very active research topic despite 

of enormous effort has been put into the area over the last 20 years. The real 

difficulties for target detection in complex backgrounds are in fact due to 



 

24 

numerous factors, such as occlusions, viewing angles effect, variable 

illumination conditions and self-shadowing, which modulate intrinsic signature of 

targets thereby giving large false alarm rates in the detection. Face recognition 

technology in general cannot be applied in CCTV scenario because of the low 

resolution CCTV footages. Textural features are often corrupted in the crowded 

scene due to occlusions, and it is found that spectral features, such as the 

colour of people’s dress and clothing may offer an alternative, and very often a 

more effective means for target detection particularly in the very crowded 

situation. This is highlighted in Figure 1-2 which depicts the image of a crowded 

scene in (top) greyscale and (bottom) colour. It is so obvious how easy to spot 

the various species of flowers just by their colours. 

  

 

Figure 1-2: Highlight the effectiveness of using colour features for target 

detection: (top) greyscale image, (bottom) colour image. (image taken from 

(Gehler, et al. 2008)) 
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1.2 Issues for using spectral features in target detection 

The spectral feature, or the colour of targets as seen by the sensor, is a 

compound effect of illumination conditions, background of the scene and the 

characteristic of the sensor. As illustrated in Figure 1-3 which highlights how the 

apparent colour of the target is changed when the scene is irradiated under 

variable illumination conditions. Figure 1-3(a) shows the raw RGB picture of a 

target in an airport scene and Figure 1-3(b) depicts the colour attributes of 10 

frames of a subject as the target averaged over a small Region of Interest 

(ROI). It is seen from the plot in Figure 1-3(b) that the apparent shade and 

colour of the target seems to change rather dramatically when the target is 

walking towards the exit where the illumination is a lot stronger than other parts 

of the room. Figure 1-3(c) shows the colour attribute of the target after the 

image data is transformed by ETDCC algorithm developed in this PhD 

programme (see Chapter 5:). Unlike the raw data, it is seen that the shade and 

colour of the target remain to be more or less constant throughout the whole 

video sequence. Figure 3(d) plots the Standard Deviation (SD) of Figure 1-3(b) 

and Figure 1-3(c), which shows the effectiveness of the colour constancy to 

maintain the colour attributes of the target despite of the variable illumination 

conditions.  

 

   
(a) 

 
 

Raw
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(b) 

 

(c) 

 

(d)  

Figure 1-3: To highlight one of the most concerning issues in machine vision for 

tracking targets from CCTV network footage:  (a) raw image plot of target (T1) in 

camera 1 and the ROI of the target is depicted by the red box. (b) Exhibits the 

raw colour within the ROI for 10 frames of the video. (c) Same data as (b) but 

after the scene is transformed by ETDCC algorithm developed in this work. (d) 

Depicts the Standard Deviation (SD) of the RGB attributes in the ROI for 10 

frames of data before (in dots) and after processed by ETDCC algorithm 

(triangle). 
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1.2 Objectives and Contributions  

1.2.1 Overall Objectives 

The overall objectives of this research programme have been set as the 

following: 

1. The development of colour constancy algorithm for broad band RGB 

imaging and to study its effectiveness for target detection purposes. 

2. To assess the accuracy of detection of the targets in non-overlapping 

multiple camera views CCTV network by using ONLY colour as the 

detection feature, and to verify if colour constancy (CC) approach may 

help to reduce illumination artefacts and to improve target detection 

performance. 

3. To assess the effectiveness of colour descriptors for maintaining colour 

constancy and target detection.  

1.2.2 Contributions and Achievements  

The main contributions of this PhD programme have been: 

1. The development of a colour transfer mechanism to reduce the colour 

bleaching side effect in Retinex based CC algorithm. 

2. The development of a luminance based CC algorithm which 

incorporated a pixel-wise mid-tone compression routine to further 

reduce colour bleach. This Enhanced Luminance Reflectance Colour 

Constancy algorithm (ELRCC) improves the target detection by over 

100% compare to untreated raw data within the metric of Area-Under 

ROC assessments (AUROC). This work has resulted in a paper 

publication in the Optical Engineering Journal (Soori, et al. 2013). 

3. Further development of ELRCC using a bidirectional pixel-wise non-

linear transfer PWNLTF function, together with an in-scene multi-

camera calibration method, a centre-surround luminance 

enhancement and a colour invariant descriptor to formulate an 

Enhanced Target Detection Colour Constancy (ETDCC) algorithm. 

This ETDCC achieves over 200% of target detection performances 
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better than that of using untreated raw data in the FOM metric. This 

work is being written up for another journal paper publication. 

 

1.3 Organization of the thesis 

Chapter One provides a brief introduction of the presented work. Chapter Two 

discusses the related work. Chapter Three elaborates about experimental set 

up and dataset utilised throughout this research programme. Chapter Four 

deals with two proposed modifications of luminance-based CC algorithms: one 

with a colour transfer mechanism and the other ELRCC that have been 

developed during the course of this work. Chapter Five details the Enhanced 

Target Detection Colour Constancy (ETDCC) algorithm which consists of a 

Pixel Wise Non-Linear Transfer Function (PWNLTF), a centre surround 

luminance enhancement and colour invariant descriptor. The target detection 

performance of this algorithm has been compared with several other CC work 

using 3 data sets in this chapter. Chapter Six presents the experimental results 

and discussions and the thesis is concluded together with an outlook of future 

work in Chapter Seven. 
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Chapter 2: Overview of Related Work 

2.1 Retinex Theory 

Retinex theory (RETINa-and-cortEX system) was firstly proposed by E. Land 

and McCann (1971) to model the lightness and colour perception of the human 

vision system. Land studied the characteristic of lightness and colour 

observation of human eye and derived a theory to implement visual perception 

for machine vision. Retinex is based on the surround spatially opponent 

operation which is related to the neurophysiological functions of neurons in the 

retina and cerebral cortex in the primates visual perception. Retinex has been 

one of the earliest CC methods for coping colour perception in non-uniform 

illumination scenarios.  

Retinex theory can be divided into two different hypotheses: firstly, it provides a 

model of human vision based CC (Meyer, 2010) which will be discussed in 

more detail in section 2.2.3. Secondly it also gives basic concept for image 

enhancement (Jobson, et al. 1997b; Rahman, et al. 1996; Barnard & Funt, 

1997) which will be discussed here. 

2.1.1 Basic Retinex Methods  

2.1.1.1 Single-scale Retinex (SSR) 

Jobson et al. (1997b); (1996) refines the Retinex model and proposed a single-

scale Retinex (SSR), which applies a fixed scale (filter) for all colour channels of 

the image. The SSR can either provide dynamic range compression by utilising 

small scale or tonal rendition by using large scale. In this methodology the 

illumination is firstly estimated through a Gaussian low pass filter (LPF) to an 

input image. The output image is then obtained by subtracting the logarithmic 

input image to logarithmic Gaussian filtered image. The Single-scale Retinex is 

given by equation (2.1) 

               ( , ) log ( , ) log( ( , )* ( , ))i i iRr x y I x y G x y I x y   (2.1) 

Where ),( yxRri is the Retinex output, ),( yxI i is image distribution in the i-th 

colour band in (R,G,B) channel, “*” denotes the convolution operation and 
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( , )iG x y  is the normalised surround Gaussian function given by 

2 2 2( ) /( , ) x y cG x y ke  where c is the Gaussian surround space constant, and k is a 

normalisation constant which satisfy ( , ) 1G x y dxdy  . The image is the product 

of scenes reflectance and illumination as shown in equation (2.2) 

             ),(),(),( yxRyxLyxI iii                                                             (2.2) 

where ),( yxLi  is the spatial distribution of illumination and ),( yxRi the 

distribution of scene reflectance.  Jobson highlighted that Gaussian filter has the 

ability to have more regional effect and that it can give better dynamic range 

compression through different space constants. However, one drawback of this 

methodology is that the space constant c is a user defined empirical variable 

which cannot be computed mathematically. 

 

2.1.1.2 Multiscale Retinex (MSR) 

Hurlbert (1989) extended Land’s (1971) Retinex theory from one surround 

constant into three different sigma values of the Gaussian surround function in 

order to obtain better dynamic range compressions for each colour channel. 

Hurlbert’s work has been the first of its kind which leads to other Retinex 

derivatives (Rahman, et al. 1996; Barnard & Funt, 1997; Tao & Asari, 2003), 

such as the Multi Scale Retinex (MSR) (Rahman, et al. 1997; Jobson, et al. 

1997a) which is formulated by a weighted combination of multi-scale 

components of 3 colour SSR. The use of multiple scales in each colour 

channels in MSR has the advantage to maintain a better balance between 

dynamic range compression and colour rendition. The MSR formulation is 

shown in equations (2.3) and   (2.4): 

             SSRR
N

n

nMSRi 



1

                                                          

 

  (2.3) 
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1

{log ( , ) log[ ( , )* ( , )]}
N

MSRi n i i

n

R I x y G x y I x y


      (2.4) 

where ),,( BGRi , N is the number of the scales and n is the weighting factor 

of each scale under constraint of summation (n)=1, MSRiR  is the i-th colour 

channel of the linearly combined SSR. It seems that systematic analysis of how 

to choose the optimum number of scales and the exact weighting values in 

each colour channel are still lacking. Most researchers in the field have 

employed three scales for the image analysis, and it is difficult to judge whether 

their analysis is meaningful. The weights have direct effects of emphasising 

more on dynamic range compression or colour rendition. Chao (2007) has 

presented a rather detailed analysis using SSR and MSR on MRI images. A 

wide range of scales and weights have been employed in many MSR work in 

the past, and the results have shown that Retinex methods indeed 

outperformed the histogram equalisation based methods. Zhang, et al. (2011) 

also concluded that when ‘good’ parameterisation of MSR is attained it not only 

maintaining good contrast ratio but also that it increases the entropy (visual 

quality) of image in comparison to histogram equalisation and SSR methods.  

2.1.1.3 Multiple Scale Retinex with Colour Restoration (MSRCR) 

MSR is basically formulated from SSR, which, implements the centre and 

surround by subtracting off the logarithmic of the surround (or logarithmic ratio) 

thereby inducing artefacts such as colour bleaching particularly when the space 

constants are not set properly. This centre and surround side effect imposes 

great drawbacks in both MSR and SSR, which tends to turn the image into 

‘grey’. This is very unfavourable to target detection especially when colour 

feature is used for the detection. To help reduce this colour bleaching issue, a 

Colour Restoration (CR) algorithm has been proposed known as Multi-Scale 

Retinex with Colour Restoration (MSRCR) (Barnard & Funt, 1997; Rahman, et 

al. 1998; Rahman, et al. 1997; Jobson, et al. 1997a). The colour restoration 

essentially estimates the statistics of the colour attributes from the raw image 

and it is then transferred into colour constancy processed image to improve the 
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colour integrity. The CR and the sum of multi-scales in MSRCR can induce side 

effect of out of the range which can be constraint by compressing the histogram 

of the outputs to within the range through an auto gain/offset mechanism. The 

MSRCR is formulated as in equation (2.5): 

             ),(),(),( yxRyxCyxR MSRiiMSRCRi                                                             (2.5) 

Several linear and nonlinear functions have been implemented and Jobson 

(1997b); (1996) found that the general colour restoration is much better in the 

form of equation (2.6) 
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                                                              (2.8) 

Where  is strength of non-linearity and   is control gain constant, ),( yxIi is the 

raw image. The G  and b are the gain and offset and all these parameters are 

user defined function (see section 4.4.1).  

 

2.1.2 Advanced Retinex algorithms 

2.1.2.1 Sub Band Decomposition MSR (SBD-MSR) 

Sub-band decomposition MSR (SBD-MSR) (Jang, et al. 2008) basically is the 

MSR with enhancements of having an additional two-state transfer functions for 

mid-tone dynamic compression, then follow by a procedure for decomposing 

scale components to make them more independent to each other. The author 

(Jang, et al. 2008) nomenclatures this centre surrounds operation and scale 

component decomposition as mlog. The algorithm firstly maps the MSR output 

through a two state logarithmic function which effectively moderate the colour 

attributes in both extreme ends of the intensity attributes. Then a differential 
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scale component is applied to reduce the overlaps between scales as shown in 

equations (2.9) and 2.10): 
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where nR'  and nR  denotes the moderated Retinex output and the sub-band 

decomposed (differential component) Retinex output (SD-retinex output) 

respectively. N is the total number of scales, Gn is the Gaussian space function 

and I is the input image. In the standard MSR, a user-defined constant gain is 

needed for the calculation of the Retinex output, but in SD-MSR the gain for 

each sub-band can be evaluated from the differential component.  

2.1.2.2 Luminance Based MSR (LBMSR) 

Luminance Based MSR (LB-MSR) (Tao & Asari, 2003; Sun, et al. 2007) 

implements the centre and surround function using the luminance of each pixel, 

instead of manipulating the colour attributes of the image as in the conventional 

MSR/SSR method. The luminance can be obtained through PCA transform 

(Sun, et al. 2008) or as defined by (Tao & Asari, 2003): 
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Where I is the intensity map. In this methodology the LB-MSR only requires one 

cycle of centre surround convolution, instead of three cycles that are required in 

the MSR/SSR methodology thus reduces computational cost significantly. The 

centre and surround in LBMSR method is then reduced into: 
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Where (G1, G2, G3) are the Gaussian space function for the 3 colour channels, 

I(x,y) is the intensity map of the image. This is the main difference between the 

LBMSR with respected to the conventional MSR/SSR. 

Similar to the MSR the gain-offset is applied on the convoluted 2MSRR and the 

output is mapped into (0-255) range such that the zero point is set by the 

minimum intensity of the scene. Again the parameters of the gain (the contrast) 

and offset (brightness) are scene dependent and are set by user. To 

compensate colour bleach in LBMSR, a colour transfer through the chromaticity 

of the original image can be incorporated as shown in equation (2.13) 
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Where j = 1: Red component, j = 2: Green component, j = 3: Blue component, 

λ= Flexible adaptive constant between 0 and 1.  

2.2 White Balancing Methods 

The ability of Retinex to maintain Colour Constancy (CC) is largely based upon 

the centre and surrounds to deduce the luminance of the scene and to ratio (or 

logarithmic subtraction) with the sensor (raw) data. This is similar to white 

balancing, which resolves to find the spectral irradiance (illumination) and 

subsequently correction of the estimated illumination such that the resulted 

image appears to be taken under white light or canonical light source. These 

methods commonly assume uniform illuminations across the scene. Note that 

image formation not only depending upon the intrinsic reflectivity of targets, but 

also that factors such as irradiance, sensor characteristics and background 

adjacency effects are also important too. 

2.2.1 Reflection Model 

Reflection model defines the physical interaction of scene with light and the 

simplest one is the Lambert reflectance model which defined as equation (2.14). 
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dSLyxRyxI iii )()(),,(),(           (2.14) 

Where ),,( yxRi donates the surface reflectance of targets in the scene, )(L  is 

the spectral irradiance and )(iS is the sensor spectral response/characteristic, i 

= [R, G, B]. All of these variables are defined as a function of the wavelength (λ) 

over spectral region w. ),( yxIi is the corresponding intensity map of the i-th 

colour channel. In general if the sensor property is known then the variation of 

the colour in an image is directly dependent on the target reflectivity and the 

illumination source.  

2.2.2 Source Model 

One method to maintain CC is to transform the unknown illumination light 

source of the scene into a known light source. Most of the transformation is 

linear especially in the broad band [RGB] imaging (Kries, 1970) and it rescales 

the unknown source to match with the known. The von kries model is given in 

equation (2.15):  
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(2.15) 

Where  , ,
T

Ru Gu Bu is the RGB channels of input image taken under unknown 

light source,  , ,
T

Rc Gc Bc is the RGB channels of output image under conical 

light source and the diagonal matrix is the scale factors which maps the colour 

of unknown light source in u to that of known in c.   

2.2.3 Static methods 

Colour Constancy (CC) in general can be roughly divided into two main classes 

of i) static method where no prior information was needed, ii) learning based 

methods, where training or learning is required prior to analysis. Apart from 

Retinex, Grey-World (Buchsbaum, 1980) has been a common technique in the 
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static approach, which postulates the average colour of a scene is achromatic 

when it is illuminated by a canonical light source. This means that the mean 

value of the R, G, B channels of an image would be a common grey value and 

any deviation from grey is due to the variation of light source.  The image f can 

be defined as (equation (2.16)): 

             xx dfke
c

c )(          

 

(2.16) 

where “e” is the colour of light source, k is the constant k=0 for no reflectance 

and k=1 for total reflectance, c is the number of channels (c = R, G, B) and x is 

the coordinate in the image. 

The white patch method (Land, 1977) which is also known as the perfect 

reflectance method, postulates that the highest intensity of an image is due to 

the surface colour of the target in the scene. The Max-RGB algorithm processes 

each colour channel separately (Land, 1977):  

             )(max xfke          (2.17) 

             ))(max),(max),((max xxx BGRke          (2.18) 

where “e” is the colour of illuminate source, k is the reflectance, c is the number 

of channels (c = R, G, B) and x is the coordinate of the image. Finlayson & 

Trezzi (2004) proposed a new method using shades of grey and have employed 

Minokwski norms for source estimation. They showed that Max-RGB method is 

equivalent to P=∞ Minkowski norm and the Grey World is equivalent to P=1 

Minkowski norm. The method shades of grey was shown to outperform the 

Grey World and Max-RGB methods when the dataset of Ciurea & Funt (2003) is 

used. They also showed that better CC result can be achieved by using P=6 

Norm. Another technique of this type of method is Grey Edge (Weijer, et al. 

2007) which postulates that the average reflectance difference in the scene is 

achromatic. Unlike the above methods Grey Edge is based on the derivatives of 

the whole scene. The average of the colour derivatives can be used to compute 
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the light source colour. Their study has shown that the distribution of colour 

derivatives can reveal the differences in the illumination directions of the source.  
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where e is estimated light colour, c is the number of band (c = R, G, B), P 

denote the Minkowski norm and n is Grey-Edge order. If n = 0 and for P = 1 

then the equation (2.19) is equal to the Grey-World assumption. For P = ∞ it is 

equal to White-Patch algorithm and for Shades of Grey 1 < P < ∞. Finally for 

higher n (that is n > 1) it is similar to the Grey-Edge method (Weijer, et al. 

2007). The advancement of illumination estimation algorithm for CC was 

presented in (Gijsenij, et al. 2012). Instead of using the complete scene the 

author employed local image patches, which was found more suitable to 

situations in which multiple light sources were present in the scene. This 

method has shown a better detection performance than the Grey world 

particularly when the scene is illuminated by several different light sources.  

Other static methods, such as the dichromatic reflection model as shown in 

equation (2.20) have also been proposed (Finlayson & Schaefer, 2001b). 

Dichromatic reflection model utilises physical intersections between the objects 

and irradiance of the scene. It is postulated that the image planes of a scene 

due to different wavelength of illuminations are statistically different as the result 

of the different reflective characteristics of objects in different spectral regions 

across the scene. Thus the intersection between the planes from different 

spectral channels can be used to estimate colour of light source.  

             ( ) ( ) ( , ) ( ) ( ) ( ) ( ) ( )i b i i s iI m R L S d m L S d
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(2.20) 

where image values ( )iI x depend upon the colour of illuminant )(L , surface 

reflectance ( , )iR x and the sensor sensitivity )(iS . All of these variables are 

defined as a function of the wavelength (λ) over visible spectrum w and i-th 



 

38 

colour channel (i = R, G, B). The ( )bm x  and ( )sm x are the scale parameters for 

diffuse and specular reflection respectively. 

Other workers in the field (Lee, 1986; Klinker, et al. 1988; Finlayson & Schaefer, 

2001a) make use of technique that estimates the colour of illumination by 

comparing chromaticity of two surfaces. The estimation is achieved by 

searching the intersection between two or more dichromatic lines in the 

chromaticity colour space. Tan, et al. (2004) employed inverse-intensity 

chromaticity space to recover specular reflections which is then used for 

restoring the colour of the light source.    

2.2.4 Learning based methods 

2.2.4.1 Gamut based Method 

Gamut mapping is a training based CC method first proposed by Forsyth 

(1990). The algorithm assumes that only limited number of colours is significant 

in a real world image for a given known light source, thereby any change of 

colour that appears in an image is due to the change of illuminant source. The 

set of colours that should have existed in a known light source can be learned 

offline from real world datasets. The learning from the ground truth illumination 

is labelled as canonical gamut C. The input gamut I  is generated from the 

input image taken under unknown light source it is then mapped to match with 

that of the canonical gamut C  through the diagonal matrix iΜ : 

             CIi Μ          (2.21) 

Early gamut method makes use of RGB colour space which is also known as 

3D gamut mapping algorithm. Finlayson (1996) introduced an extension of 

Forsyth's work (1990) in which a 2D chromaticity space for gamut mapping has 

been employed. Barnard (1997) proposed the modification of diagonal model by 

introducing a feasible mapping function in the 2D chromaticity colour space and 

the 3D RGB colour space. Gijsenij, et al. (2010) extends gamut mapping by 

incorporating higher order statistics of images. Moreover, it is suggested that a 
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more robust result can be achieved by considering the intersection of multiple 

feasible sets of the mapping.  

2.2.4.2 Machine Learning Based Methods 

Machine learning based methods deduce the colour of light sources by using a 

model which is based on the supervised training from ground truth dataset. 

Training using Neural Network (NN) methodology (Cardei, et al. 2002; Funt & 

Cardei, 1999) such as Multi-Layer Perceptron (MLP) feed-forward neural 

network in chromaticity colour spaces has shown a better result than other 

colour constancy algorithms. Funt & Carde (1999) utilised bootstrapping method 

which synthetically generate large amount of images from small amount of real 

dataset and have achieved good results.  

Bayesian theory has also been employed in which the probability distributions of 

the illuminant and reflectance are learned. After the prior probability is 

computed from the training dataset, the illuminant is estimated from the   

probability distribution under the assumption that the data is Gaussian. The 

posterior can be estimated using Maximum a Posteriori (MAP) or Minimum 

Mean Squared Error (MMSE). Freeman & Brainard (1995) proposed a 

maximum local mass (MLM) and has shown better CC performance than that of 

the Grey-World, subspace technique and the MAP estimator. Rosenberg, et al. 

(2003) developed a Bayesian approach for CC using non- nonparametric 

Gaussian models with performance better then gamut mapping.  

2.3 Person Re-identification techniques for surveillance  

This section reviews common techniques for person re-identification which also 

known as people tracking or people recognition especially in a multi-camera 

network for surveillance applications.  

2.3.1 Brightness Transfer Function (BTF) 

Although research in person re-identification (P re-ID) has received 

considerable attentions over the past few decades (Porikli, 2003; Javed, et al. 

2005; Javed, et al. 2008; Prosser, et al. 2008), people tracking is still one of the 
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hot topics within the machine vision community nowadays. One significant issue 

in the application of P re-ID is the inconsistency of image brightness across the 

camera network which alleviates the rate of false alarm and subsequently fails 

the target detection. 

To address this network inconsistency issue, Javed et al. (2005); (2008) and 

Porikli (2003) proposed a Brightness Transfer Function (BTF) to model the 

brightness between different camera views in order to compensate inconsistent 

illuminations across the entire scene. This algorithm assumes a constant 

illumination over each camera view. The BTF 
ijf  is a function for a pair of 

camera views iC  and jC  and a given pair of targets iO  and jO . This BTF maps 

brightness value iB  in iO  to the corresponding brightness value jB  in jO  as 

shown in equation (2.22).  

             )( iijj BfB        (2.22) 

The ijf  ideally should be operated in pixel domain. However, limitations due to 

non-rigidity of target’s shape and size as the result of geometric factors such as 

occlusions and different field of views (FOV) normalised histograms of the 

whole object or even for the entire scene has been the common approach to 

exploit this technique in practise. It is assumed that the percentage of image 

points in an observation iO  with brightness less than or equal to iB  is equal to 

the percentage of image points in the observation jO  with brightness less than 

or equal to jB  (Javed, et al. 2005). Given iH  and jH to be the normalised 

cumulative histograms for iO  and jO observations respectively, then the BTF 

can be computed as (equation (2.23)) 

             ))(()( 1

iijiij BHHBF        (2.23) 

 where 
1

jH is the inverted cumulative histogram. Note that Hi(Bi) and Hj(Bj) are 

readily available from the pair of the scene data. The Fij is simply the transfer 

function between the two scenes. To improve the accuracy the Mean 
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Brightness Transfer Function (MBTF) is often employed by averaging all objects 

in views iC  and
jC . For n targets in two camera views the BTF 

ijf  can be 

computed for each target then )....,,( 321 nffffM  and computed as (equation 

(2.24))  
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Alternative approach using the Cumulative Brightness Transfer Function 

(CBTF) has been reported (Prosser, et al. 2008). The CBTF is computed by 

accumulating all target observations in one view and to evaluate the BTF from 

this cumulative histogram. Prosser, et al. (2008) employed this approach 

together with a bidirectional matching scheme to reduce false positive in their 

people tracking work. Some authors also suggested using an adaptive training 

scheme to overcome local illumination variation (Chen, et al. 2008). One 

drawback in this approach is that the BTF is only applicable in the overlapped 

camera view network system.  

2.3.2 Textural Feature Based Detection 

Textural features have been commonly employed for target detection over half 

a century.  Scale invariant SURF/SIFT features together with KD-tree approach 

for fast matching have been reported for people tracking applications 

(Hamdoun, et al. 2008). Gray & Tao (2008) proposed viewpoint invariant target 

recognition by combining colour and texture features to improve the tracking 

(Gray, et al. 2007). Multiple colour spaces of [RGB, YCBCR, HSV] and texture 

features of Schmid and Gabor filters have been employed. The authors have 

shown that better tracking can be achieved by using more weight in the spectral 

(colour) feature. 

Gheissari, et al. (2006) has employed spatiotemporal technique to obtain 

appearance invariant feature through the colour and structural clues of people’s 

clothing.  Bak, et al. (2010) has also employed appearance based technique to 

detect target’s body parts such as head, limbs and torso by using colour and 
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texture approach. The body parts are recognised by using Histogram of 

Oriented Gradients (HOG) with covariance based descriptor which is used to 

find similarity over the target and the scene. It is found that the colour feature 

extraction is not straight forward even for a single camera view. The authors 

have resolved to use histogram equalisation on each RGB bands for the colour 

feature extraction. Note that histogram equalisation is not a robust CC 

technique (see section 6.4.3). 

Further examples of spectral textural processing have been the Symmetry-

Driven Accumulation of Local Features (SDALF) technique which makes use of 

three robust features: 1) colour histogram in HSV colour space, 2) Maximally 

Stable Colour Regions (MSCR) used for colour region displacement 

measurement and 3) Recurrent High Structured Patches (RHSP) for target 

texture classification (Farenzena, et al. 2010). Others workers (Gray & Tao, 

2008; Wang, et al. 2007) have also utilised colour, shape and appearance 

model for target detection. Their results have shown that features extracted 

from the RGB and Lab colour space in general perform better than that of the 

HSV colour space. Gilbert & Bowden (2006) have proposed an incremental 

online learning methodology to model the incremental colour variations and the 

probability distributions of spatio-temporal links of targets amongst multiple 

cameras. The proposed method reported an increase of detection accuracy 

over time without prior information of the scene/target. Note that the target 

appearance methodology is more prone to errors particularly when occlusion is 

present in the scene.  

2.3.3 Colour Invariant Features 

Direct use of colour attributes in machine vision target detection is not 

favourable due to the many factors that can moderate the intensities of the pixel 

image. Many authors (Orwell, et al. 1999; Mittal & Davis, 2003; Park, et al. 

2006) have opted to use colour or chrominance feature for target detection. 

These colour features have been exploited in various colour spaces such as 

YCBCR/HSV/RGB (Orwell, et al. 1999; Mittal & Davis 2003; Park, et al. 2006). 
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The hue (H component) has been found more effective than the saturation (S) 

and value (V) components for people tracking in HSV space.  

Swain & Ballard (1990) has achieved good people tracking using a colour 

histogram intersection method which works well in strong occlusion and 

background interference situations. The detection is invariant to viewing angles 

but it is not robust enough for scenes with variable illuminations across the 

network. Funt & Finlayson (1995) have improved Swain’s model by using 

illumination invariant colour derivative feature which is similar to that of the 

centre-surround cells in human’s vision. The algorithm was tested under 3 

different colour temperatures and achieved almost 100% of target detection 

comparing to the ~75% detection rate using Swain’s model. Gevers and 

Smeulders (1999) extended the work of Funt and Finlayson (1995) by 

proposing several colour invariant descriptors such as the C1C2C3 and L1L2L3 

and the authors have validated their invariance properties with respected to the 

theory. The performance of these colour descriptor for tracking people has been 

tested and compared with other CC algorithms (Soori, et al., 2013). It has been 

found that although these colour descriptors maintain colour constancy rather 

well, the people tracking ability of these descriptors are not as good as other CC 

models. 

While these chrominance features maintains CC rather well by removing the 

pixel intensity, the chrominance in general somehow reduces the prominence of 

feature making it not as acute as that in the original colour space. For instance, 

high intensity images with good signal to noise ratio contain more information 

for target detection than that in the dark areas. Thus by removing the intensity 

features will result in a loss of valuable information or clues. Moreover 

chrominance cannot distinguish different shade of grey (see section 6.2).  

There are many colour invariant features reported in the literature and here is a 

brief overview of the most common colour descriptors reported in the literature. 
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2.3.3.1 Sum Feature 

The sum feature is commonly exploited in machine vision (Mehtre, et al. 1995) 

and (Soori, et al., 2011) and it is defined as shown in equation (2.25) 
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2.3.3.2 L1 L2 L3 Feature 

The L1L2L3 feature has the property to define the direction of the triangular 

colour plane in the RGB-space (Gevers & Smeulders, 1999):  
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(2.26) 

 
 

2.3.3.3 C1 C2 C3 Feature 

C1C2C3 feature makes use of colour ratio and arctan function which has been 

considered as one of the robust colour descriptors for object detection (Gevers 

& Smeulders, 1999): 
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2.3.3.4  rgb Colour Feature 

The rgb colour descriptor is also known as normalised RGB colour feature as it 

involves the normalisation of the pixel intensity (Gevers & Smeulders, 1999):  
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2.3.3.5 Colour Opponent Feature 

 

 

(2.28) 

The colour opponent (CO) (Gijsenij & Gevers, 2011) has been commonly 

exploited in machine vision as it provides better colour invariance. The colour 

opponent feature is given in equation (2.29) 
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(2.29) 

where R, G and B are the Red, Green and Blue bands of an RGB image 

respectively. O1 is commonly known as Red-Green opponency, O2 is known as 

Blue-Yellow opponency and O3 is the average of all bands.  

 

2.4 Mid tone dynamic compression  

High dynamic range imaging (HDR) is the technique to improve the quality of 

image via a non-linear transfer of the input intensity into the limited output 

range. The most common non-linear transfer function (NLTF) has been the 

logarithmic one which has been deployed in almost all of the display devices 

such as TV, computer monitors, photographic and image displays.  
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Apart from the logarithmic compression, a number of non-linear transfer 

functions have been proposed to help improve colour constancy in the machine 

vision research area (Tao, et al. 2005; Tao & Asari, 2005; Tao, et al., 2006). 

Tao & Asari (2005) has suggested a sigmoid function (equation (2.30)) 
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where “a” is constant and v is a parameter that can be evaluated from global 

mean of the image intensity map mI . Soori et al. (2013) has refined the transfer 

function by implementing a more effective pixel-wise minv parameter for better 

colour corrections. The implementation of pixel-wise minv  will be discussed in 

section 4.3 in more detail. Tao & Asari (2005) have proposed an Adaptive and 

Integrated Neighbourhood Dependent Approach for Nonlinear Enhancement 

(AINDANE) (Tao & Asari, 2005) which employs cumulative distribution function 

(CDF) of the intensity image for an adaptive contrast enhancement. AINDANE 

improves the visual quality of image especially for images recorded under 

insufficient illumination. AINDANE transfer function is in the form of:  
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where nI  is the input intensity of the pixel at (x,y), nI '  output intensity 

transformed by AINDANE transfer function, Z is the image dependent 

parameter: 
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(2.32) 

where I is the intensity level at 0.1 of the cumulative distribution function (CDF) 

of the whole scene. Note that the CDF is the normalised cumulative histogram 

of the entire scene, and therefore this algorithm cannot address issue such as 

local self-shadowing. Ghimire & Lee (2011); (2012) extend the concept by 
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dividing the image into sub-sets of overlapping blocks and image dependent 

parameter z can be computed from each block. Asari et al. (2006) has proposed 

a Multilevel Windows Inverse Sigmoid (MWIS) function (Asari, et al. 2006) 

which is designed for extreme non-uniform illumination scenarios. This method 

employs histogram and global mean dependant parameters to control the exact 

form of the transfer function. In this algorithm the illumination and intensity 

values is averaged first (as shown in equation (2.33)) to reduce halo effect:  
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where I  is input intensity image and L  is illuminance of input image. After 

averaging L’ it is then normalised into L’’ and the mid tone compression is in the 

form of (equation (2.34)): 
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where parameter α, β are the control parameters for dark and bright regions 

respectively. The control parameters can be assessed in-scene through the 

global mean or through user-defined threshold values. Other form of the 

compression such as the cosine based non-linear transfer function (Arigela & 

Asari, 2006) has shown better CC performance as compared to the bare 

MSRCR, sigmoid function (Tao & Asari, 2005) and AINDANE (Tao & Asari, 

2005). Wavelet based function together with hyperbolic sine function has been 

suggested by Unaldi et al. (2009). The results further confirm the advantage of 

non-linear compression with respected to the linear colour restoration procedure 

like that of colour restoration (CR) in MSRCR (see section 2.1.1.3).  Other forms 

of dynamic compressions, such as that based on hyperbolic tangent  Tsai & 

Chou:, 2011; Tsai, 2012), arcsine function (Arigela & Asari, 2013), logarithmic 

(Choudhury & Medioni, 2009; Choudhury & Medioni, 2010; Jourlin & Pinoli, 

1987; Jourlin & Pinoli, 1988) and parameterised logarithmic (Panetta, et al., 

2011) have been proposed and most of them produce better image 

enhancement and CC performance with respect to that without NLTF.  
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It is noted that the proposed dynamic compression techniques are all suffering 

from drawbacks of:  

1. The control parameters of the transfer function are mostly estimated from 

the entire scene which cannot handle local effects such as self-

shadowing. 

2. Most of the proposed algorithms address the enhancement of image 

quality in the dark regions. It is necessary to deal with compression for 

over-exposed area too. 
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Chapter 3: Experimental Set Up and Dataset  

3.1 Dataset 

Three different type of datasets: 1) Imagery Library for Intelligent Detection 

System (i-LIDS) dataset (UK Home Office, 2008), 2) Performance Evaluation of 

Tracking and Surveillance (PETS) dataset (PETS, 2007) and 3) Ground Truth 

Colour Chart (GTCC) dataset have been employed throughout this study. 

3.1.1 Imagery Library for Intelligent Detection System (i-LIDS) 

dataset 

i-LIDS dataset (UK Home Office, 2008) consists of serials of CCTV video 

footage recorded in the Gatwick airport. The data is purchased from the Home 

Office Scientific Branch. The footage covers five different camera views that are 

non-overlapping. The data set has a total of ~44 hours of video, consisting of 

107 shots of 5-camera extracts from 12 different collection epochs. Figure 3-1 

shows the schematic layout of camera views and locations. The data presented 

in this study is selected from one of the series MCT-TR (1001-1005).  

 
(a) 
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(b) 

Figure 3-1: (a) Illustrate schematic layout of camera view of the Gatwick Airport, 

(b) C1, C2, C3, C4 and C5 represents camera 1, camera 2, camera 3, camera 4 

and camera 5 views respectively.   

 

3.1.2 PETS 2007 data set 

PETS (2007) dataset which is obtained online from (PETS, 2007)  consists of 

four overlapping camera views. PETS (2007) dataset is mainly designed for 

security/criminal events, within a real-world environment. The scenarios are 

recorded from four cameras and involve multiple actors. Namely 3 situations are 

1) loitering, 2) attended luggage removal (theft) and 3) unattended luggage. 

Moreover equidistant markers were also placed on the floor of the terminal for 

the purposes of calibration. However we do not utilised any prior information in 

our experiments and colour (spectral) feature has been solely used for the 

target detection. Figure 3-2 shows the example of four different overlapping 

camera views. Note here that the camera view 3 is the imaging through a glass 

window which makes the colour of the scene appears to be quite different. This 

also makes target detections quite challenging in this case.  



 

51 

 

Figure 3-2: Shows the camera view of the PETS 2007 dataset (PETS, 2007), C1, 

C2, C3 and C4 represent camera 1, camera 2, camera 3 and camera 4 views 

respectively.   

 

3.1.3 GTCC dataset 

GTCC dataset is recorded by us in the laboratory using Canon 600D SLR 

Camera with ground truth data. In this data set the Gretag MacBeth Colour 

Checker Chart has been used as target which consists of 24 different colour 

boxes with various colour substances in the background. The scene is 

irradiated by two 1000W Halogen lamps with diffuser box at about 3m away 

from the target. The ground truth is obtained by setting the camera in 

customised white balance (CWB) mode for taking images of the white/black 

spectralon as references.  During the experiment the camera is set in manual 
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mode with Aperture = F5.6, Shutter Speed = 1/15, ISO = 100 and MF manual 

focussing. Images are taken at 10 different step changes of irradiance and the 

illumination in each step is measured by light meter. The raw images of the 10 

illumination settings are shown in Figure 3-3(a). Figure 3-3(b) illustrates the 

ground truth lux values with respect to images depicted in Figure 3-3(a) 

 

 

(a) 
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(b) 

Figure 3-3: (a) shows ten variable illumination images of GTCC dataset from top 

left to bottom middle shows low to high illumination. (b) Illustrates the ground 

truth illumination values measured by light meter in lux with respect to (a).   

 

3.2 Targets 

A number of human and colour patch targets have been chosen from the 3 data 

sets (see fig Figure 3-4): 

1. iLIDS data set: 28 people targets in various colour and grey clothing. 

2. PETS data set: 5 people targets in various colour and grey clothing. 

3. GTCC data set: 24 various colour and grey patches.   
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(a) 
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(b) 

 

(c) 

Figure 3-4: Shows the representative pictures of targets exploited in this study. 

(a) iLIDS dataset targets in camera 1. (b) PETS 2007 dataset targets in camera 1. 

(c) GTCC dataset 24 colour chart.  

3.3 Detectors  

3.3.1 Anomaly Detection (AD)  

Anomaly detection is a technique that locates and identifies uncommon pixel 

vector with reference to a background model. If an observed pixel spectra 
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deviates from the ‘norm’ of the background, this deviation is measured in a 

distance metric to represent the degree of anomaly. The background 

characteristics can be estimate from the scene, and hence AD is a detector that 

does not need the prior knowledge of targets or background (Ahlberg & 

Renhorn, 2004).  

AD algorithm is firstly developed by Iriving Reed and Xiaoli Yu in 1990 and the 

algorithm is commonly known as RX detector. Yu and Reed (1990) developed 

the algorithm under the generalized likelihood ratio test (GLRT) framework for 

multidimensional image data assuming that the spectrum of the target and the 

covariance of the background are in Gaussian distributions and they are 

generally unknown.  

By denoting a background model as B, a distance measure as d(.) and a 

threshold is t, pixel x is regard as anomaly if (Reed & Xiaoli, 1990; Stein, et al. 

2002). 

              BDRX x   =     tBd ,x    
(3.1) 
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Where RXD  is the RX detector, μ is the mean and Γ covariance matrix which 

can be computed as follows: 

             



N

n

n
N

μ
1

)(
1

x  (3.4) 

               



N

n

Tnμn
N 1

))()()((
1

xxΓ    (3.5) 



 

57 

In equation (3.5), the distance between each pixel signature to the background 

signature is calculated using Mahalanobis distance. Here, we assume that the 

background is model as a multivariate Gaussian distribution.  

Hence in AD it is the model of the background which is needed to identify the 

uncommon pixels. There are various techniques reported for characterizing the 

background such as the employment of local or global windowing, target 

removal or clustering.  

3.3.2 Matched Filter Detection 

Matched filter detection is a well-developed technique using a known target 

spectral signatures or target probe to search for the presence of that spectrum 

in a scene (West, 2005).  It attempts to detect and locate pixels containing a 

target material of known spectral composition. In here, the scene background 

remained as unstructured background or stochastic background which takes the 

form of first and second order spectral statistics (mean and covariance) 

estimated from the scene data like that done in the anomaly detection. 

3.3.2.1 The adaptive matched filter (AMF)  

The adaptive matched filter (AMF) is a detector that models and suppresses an 

unstructured background and then uses a known target spectrum, denoted as 

s, to search for that in the scene. The pixel x is classify as target classes, C if  

             AMFD (x | B, C)= 
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This detector is optimum only when the target and background follow Gaussian 

distribution, and in real applications it is highly unlikely (Ahlberg & Renhorn, 

2004). 
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3.3.2.2 Adaptive coherence/cosine detector (ACE) 

The adaptive coherence or cosine detectors model the target variability by 

measuring the angle between the target pixels to the target spectrum. The pixel 

x is classify as a target pixel if (Ahlberg & Renhorn, 2004; Manolakis, et al., 

2003).  

             ACED (x| B, C)= 
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Where sP
~

 is the projection and reconstruction operator onto the d target 

subspace, that is 

             sP
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 (3.10) 

and  is the angle between the target subspace and the test vector and the 

matrix Φ
~

 contains the available a priori variability information about the target. 

3.3.3 Parametric Classifier  

Given a multivariate mixture model, with L classes of w, Liwi ,...,1,  , the 

probability of pixel, at location x belongs to class iw is given by the observation-

conditional probabilities,  x|iwp , i.e the probability of class iw  given by the 

observation of pixel at location x. Classification is performed by finding the class 

with maximum conditional probability (Kam, 2009): 

                 ijwpwpw jii   ||         , xxx  (3.11) 

However, in practice these observation-conditional probability functions are 

often unknown. 
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If we have a sufficient number of training data, nxx ,...,1  for an accurate 

estimation, the probability of finding x for each class can be assessed by 

estimating the probability distributions in each class using the Bayes’s theorem 

(Kam, 2009),  

       xxx pwpwpwp iii ||   (3.12) 

Where p(x) is the conditional probability that a pixel belongs to certain class and 

it is given by: 

              i

L

i

i wpwpp 



1
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From equation (3.12),  x|iwp  is known as the posterior probability and  iwp is 

known as the prior probability. The prior probability for each class occurring is 

  10  iwp  and for  ,...,1 Li  , the total prior probability is  



L

i

iwp
1

1  . Now, 

the classification rule of equation (3.12) is given by: 

                 ijwpwpwpwpw jjiii  ||         , xxx  (3.14) 

with the common factor  xp  removed (Kam, 2009). Since the logarithm is 

monotonically increasing the probability terms can be rewritten into: 

               iii wpwpg |ln xx      ii wpwp ln|ln  x  (3.15) 

where  xig  is sometimes known as the discriminant function and the 

classification rules of equation (3.12) becomes  

    ijggw jii  xxx        ,  (3.16) 
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3.3.3.1 Maximum likelihood classifier (QD) 

In the case of Gaussian density with N spectral bands, the parameter for each 

class i  denotes mean im  and covariance matrix iΓ ,  iii m Γ, . The 

likelihood probability is defined by: 
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The logarithmic form of the discriminant function becomes: 
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Since the  2ln
2

N
   term is constant for all  xig , it can be removed to simplify 

the calculation. Often, there is no useful information about the prior probability 

and equal prior probability is assumed. By removing all the unnecessary 

constant terms, the final discriminant function can be refined: 
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Where 

    ijggw jii  xxx
''

       ,  (3.20) 

This is sometimes known as the maximum likelihood classifier, log-likelihood 

classifier or quadratic (Gaussian) classifier (Kam, 2009; Dempster, et al. 1977). 

 

3.3.3.2 Mahalanobis Distance classifier (MD) 

If we assume that the covariance’s iΓ for all classes are equal that is ΓΓ i for 

all class, the determinant of the covariance is constant and can be ignored. The 

discriminant function becomes 
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     ii

T

iii mmfd   xΓxx 1  (3.21) 

This is known as the Mahalanobis Distance classifier or Fisher Linear 

Discriminant classifier. A pattern is classified by finding the minimum distance 

from the normalised mean (Kam, 2009; Theodoridis, et al. 2010).  

3.3.3.3 Euclidean distance classifier (ED) 

Consider the covariance matrices of all classes to be diagonal and equal, and 

the variances in each component to be identical, therefore Ii

2Γ . The 

logarithmic form of the original log-likelihood discriminant function becomes 
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Again we assume the prior probabilities are equal and remove all the constant 

terms, the discriminant function becomes 

     ii

T

iii mmg  xxx  (3.23) 

Here, we are trying to find the minimum  xig  which is called the Euclidean 

distance. Therefore this type of classifier is called the Euclidean distance 

classifier or minimum distance classifier (Kam, 2009). 

 

3.3.4 Detector employed in this work: MD classifier 

During the course of this work the Mahalanobis Discriminant (MD) classifier, 

ACE and QD have been employed as detectors. Figure 3-5 shows the Receiver 

Operating Characteristics (ROC) results for the detection of a target (T3) from 

camera view #1 (denoted as T3C1) using these 3 detectors.  It is seen from 

Figure 3-5 that the detection performances amongst these three detectors vary 

rather significantly. The MD detector has been chosen as the detector 

throughout this work. 
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Figure 3-5: Shows the detection ROC for target T3 in camera view #1 (denoted as 

T3C1) using the 3 detectors MD (circle), QD (triangle) and ACE (dot) for the raw 

data. All detection was performed using the colour opponent descriptor. 

 

3.4  Experimental Set Up 

3.4.1 Target Signature Acquisition 

The objective of this project is to examine how people detected in multiple non-

overlap CCTV system could be improved by using colour constancy and 

spectral feature. Thus, there is no target segmentation or background 

subtraction involved in this work. All detections was performed using three 

dataset (as described above) namely MCT-TR (1001-1005) serials of the iLIDS 

(UK Home Office, 2008), PETS (2007) and GTCC datasets in this research 

work. The experimental procedure for target detection is carried out in the 

following procedures: 

1. Short video sequence clips in which the chosen target makes 

appearance are pre-selected from all camera views as the test data clip. 
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2. A ROI box on the target is manually selected for the first THREE frames 

of the clips and the colour attributes inside the box is averaged as 

signature of each target. Normally the ROI box is selected from Camera 

view #1 and the signature is then stored in the memory for the detections 

of the same target in ALL camera views. 

3. Clips of the video data are prepared in two forms: A) raw data B) the 

same clip but after processed by various CC algorithms.  

4. Some targets do not have appearances in certain camera views and 

therefore detections will be performed on the views that they appear. 

5. Detection is made for every 10 frames of video clips data and 10 

detections (i.e. 10 frames of clip) are made for every target in each 

camera view. The averaged of these 10 detections (see Figure 3-6 Red 

plot) represents the overall detection performance of the target. The 

detection result is presented in ROC plotted for the probability of 

detection (PD) versus the probability of false alarm (PFA). 

 

Figure 3-6: Typical ROC results for the detection of a target in every 10 frames 

interval (Black plots) of a video clip when the target transverse across the scene. 

There are 10 detections for a particular target and each produces one ROC. (Red 

plot) for better visualise the detection performance for particular target within 

video clip, all ROC results as seen in (Black plots) is averaged into one (Red 

plot). 
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3.5 Assessment of detection performances  

Three methods for assessing the goodness of detection have been employed:  

1) Figure of Merit (FOM) via ROC for target detection, 2) Delta Eab ( abE ) and 

3) Colour Difference Percentage (CDP).  

3.5.1 Figure of merit (FOM) using AUROC 

To quantify the goodness of detection, the area under the receiver operating 

characteristics (AUROC) between two fixed PFA values as shown in Figure 3-7, 

have been employed. The ROC assessment is widely used in area of target 

detection (Eisenbach, et al. 2012; Zhu, et al., 2013) as a verification system. 

The AUROC is a more faithful way for assessing the detector performance 

rather than to compare the PD at a certain PFA value (Soori, et al. 2011). It is 

because most ROC do not shift rigidly as it is depicted in Figure 3-7 that at 

PD=0.4 the blue circled plot depicts ~2 order of magnitude better in PFA than 

that of the red curve, but it is only a factor of about 3 better at PD=0.7. The 

FOM is proposed in this research work (Soori, et al. 2013) and can be defined 

as equation (3.24): 

 

             100cc raw

raw

AUROC AUROC
FOM

AUROC

 
  
 

      (3.24) 

 

where the AUROC(raw) and AUROC(cc) are the area under the ROC for the 

raw untreated image data and that after it is processed by CC treatment 

respectively. Note that the all detection results, i.e., the ROC(raw) and ROC(cc), 

are obtained from the detections by using exactly the same detector (i.e. the 

MD classifier). The FOM is the performance index (in percentage) and the 

higher of the FOM the better of target detection enhancement after the CC 

treatment.  
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Figure 3-7: Illustrates how the enhancement of target detection is assessed in 

this work: the figure of merit (FOM) for the detection enhancement is evaluated 

by the difference in areas of the two ROCs with respect to the raw data according 

to equation (3.24). The area is calculated within the fixed PFA boundaries: in this 

case the enhancement is indicated by the area coloured in blue. Red trace: ROC 

of raw data, blue circle trace: ROC of the same data but after processed by 

ETDCC. The detectors in both cases are the Mahalanobis Discriminant (MD) 

classifier.   

 

3.5.2 Delta ΔEab 

Delta Eab ( abE ) has been widely used for assessing the colour 

correspondences between two given sample images. Euclidean Distance in 

L*a*b colour space has been commonly used for the ΔEab assessment 

(Sharma, et al. 2005):   
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where abE  is colour difference, L a b are the three bands of the image in L*a*b 

colour space, the subscript “n” denotes the test data set, subscript “10th(max)” 

denote the reference image. The abE  assessment has been applied for the 

GTCC dataset under the following conditions: 

1. The 10th image which was acquired under uniform illumination at ~600 

lux of irradiance is selected as the reference.  

2. All images are converted into L*a*b and targets from 24 colour boxes are 

selected and their spectral characteristics are computed. 

3. Test data: all images acquired under reduced irradiance (i.e. <~600 lux 

illumination). 

4. abE  is evaluated.  

3.5.3 Colour Difference Percentage (CDP) 

CDP is a generalisation of abE  for other colour spaces: 
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Where Bi is the value of band i.  
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Chapter 4: Enhanced Luminance Reflectance Colour 

Constancy Algorithm (ELRCC) For CCTV Network  

This chapter details two modifications of luminance-based CC algorithms 

developed during the course of this research: 1. Colour transfer mechanism and 

2. A pixel-wise sigmoid function for an adaptive dynamic range compression 

and it is also known as enhanced luminance reflectance CC (ELRCC). It has 

been found that both algorithms improve the efficiency of target detection 

substantially better than that of the raw data without CC treatment, and in some 

cases the ELRCC improves target detection by over 100% within the FOM 

assessment metric. 

Most of the work presented in this chapter has been published in the OE paper 

(Soori, et al. 2013). 

4.1 Colour Transfer (CT) 

Camera calibration has been an important factor for maintaining the white 

balance and colour matching of the recorded images in each camera view 

within the multi-camera surveillance system. When this method is not available 

or when calibrations cannot be performed to achieve high degree of accuracy, 

then alternative method has to be employed for maintaining consistent colour 

characteristics over the entire multi-camera network. Colour Transfer (CT) is the 

method for the correction of colour differences in two sets of images using 

statistical mean and standard deviation of one of the camera data. This 

information is then transferred into other image scenes monitored by another 

camera. This method can be useful for applications such as in the image 

analysis of multi-camera system (Soori, et al. 2011). In real situations, however 

there are other factors such as variable illumination conditions, viewing angles 

and camera calibration settings which can induce colour distortions not intrinsic 

to the scene. Reinhard (2001) has developed a CT method for reducing 

illumination induced artefacts. The method utilised simple statistics of two 

images and introduced a relationship between the colour of the target image 

and that of the source image through a transform as shown in equation (4.1). 
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Where 'I  is the intensity map of the scene which receives the characteristics 

from another camera I  (designated as source) within the network, j  represents 

the (R, G, B) bands, s  and t  depict the information to be extracted from the 

source and target scenes respectively, σ and µ are the standard deviation and 

mean respectively. This method is termed as CT hereafter in this paper. 

 

4.2 Enhanced Luminance Reflectance Colour Constancy 

Algorithm (ELRCC)  

 

The proposed ELRCC method evaluates the luminance ),( yxL at pixel ),( yx  

through the one band intensity ),( yxI in the RGB colour space: 

             ( , )  max(r(x,y), g(x,y), b(x,y))I x y        (4.2) 

where r, g and b are the RGB components of colour images in RGB colour 

space. The intensity map I  is the function of the luminance L  and its 

reflectance R of the image scene as shown in equation (4.3): 

             ( , )  ( , ) ( , )I x y L x y R x y       (4.3) 

There are several ways to estimate the luminance L  of the scene and one 

approach uses a low-pass filtering of the intensities I  at (m, n) through a 2D 

discrete Gaussian G  as shown in equation (4.4)  
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where G  is the 2D Gaussian at pixel location ),( yx  and define as: 
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C  is the surround neighbourhood constant (c=2~5) and q  is the normalisation 

constant and computed as: 
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(4.6) 

Thus the reflectance R  can be obtained through equation (4.3). Note that the L 

is not the real luminance as defined in physics but an approximated luminance 

that contains both the luminance and the mid-tone low-frequency components 

of the reflectance. Figure 4-1(b) shows intensity image of Figure 4-1(a) obtain 

by equation (4.2) and Figure 4-1(c) illustrates luminance image calculated by 

obtain by equation (4.4) 

             

                (a)                                                                     (b) 

 
                                                                  (c) 

Figure 4-1: Highlights one band intensity and luminance images. (a) Original/Raw 

image of Target (red box) in Cam 1. (b) Intensity image obtain by equation (4.2). 

(c) Luminance image of (a) obtain by equation (4.4) 

4.2.1 Adaptive Dynamic Range Compression  

To achieve a balance of contrast enhancement and colour constancy, 

researchers in the field commonly use a non-linear transfer function, such as 
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the Windowed Inverse Sigmoid (WIS) function (Tao, et al. 2005), to condition 

the luminance such that the dynamic range of the image is compressed into a 

user defined moderate range. Typical WIS transfer function is shown in 

equation (4.7) 

             
ve

vf



1

1
)(       (4.7) 

In practise the luminance is moderated into a range of user defined minv  and 

maxv  through the transfer function:  
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where equation (4.8) is employed for linearly mapping of input image to the 

magnitude range min)(vf max)(vf  for equation (4.9), which is the non-linear 

inverse sigmoid function. Equation (4.10) is used to normalise the intensity 

transfer to bind the range of the luminance. Parameters maxv  and minv

controls the shape of the transfer function. The range of minv and maxv  effect 

the contrast enhancement, and the maxv  can be fixed as arbitrary, while minv

can be extracted from the scene. The method described in (Tao, et al. 2005) 

has been using global mean and in this work it is proposed to evaluate the 

minv for every pixel. This will give more control over the details of colour 

correction: the dark pixels should be given a smaller minv  value whereas bright 

pixels should have larger value of minv . To achieve this objective equation 

(4.11) is implemented:  
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where k  is a user define fixed constant and from experiments the appropriate 

value of minv  is selected from -1 to -6 and 5k  satisfying the equation (4.11) 

for minv -1 to -6 for 8-bit images, thus 5k  has been used throughout this 

work.  

4.3 Effects of Vmin in Luminance Based CC Algorithm  

The minv effects the dynamic range and thereby it has direct influence on the 

brightness and contrast of the image. Previous work (Tao, et al. 2005) set this 

parameter for the whole image as a user’s define constant, which can be 

obtained from the global mean of the scene. Figure 4-2 (b) & (c) are the results 

of one clip of the raw video sequence as shown in Figure 4-2 (a), after 

processed by the band wise luminance based CC using the minv = -5 and -10 

respectively. The RGB attributes of the target within the ROI which is depicted 

as the red rectangle in the images (a-c), are shown in Figure 4-2 (d) and (e) 

after the video sequence is processed using constant minv of -5 and -10 

respectively. The sampling frequency is 5 frames per sec, and the colour 

attributes are in RGB. It is quite clear that the colour constancy is rather poor 

when minv = -5 (Figure 4-2(d)), and it improves a little when minv = -10 is used 

(Figure 4-2(e)). However, the larger value of the minv also increases colour 

bleaching. 

Intuitively, a pixel wise minv is needed for the colour constancy due to the non-

uniform illumination across the scene.  Figure 4-3 compares the effects of using 

a constant minv for the global scene (Tao, et al. 2005) with that using a pixel 

wise implementation according to equation (4.11). The colour characteristics of 

the target after processed by the pixel wise minv are shown in Figure 4-3 (d), 

indicative of having a much better colour constancy performance than that using 

a global minv for the whole scene (Figure 4-3 (c)). 
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Figure 4-2: Illustrates the effects of vmin settings on the colour constancy of a 

video sequence after processed by the luminance based algorithm. (a) Raw data, 

(b) vmin = -5 and (c) vmin = -10, (d) colour attributes of target (in red rectangle) 

after processing data using vmin = -5 and (e) colour attributes of target after 

processing data using vmin = -10. 
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Figure 4-3: Shows the effect of pixel wise dynamic range compression in the 

luminance based CC algorithm: (a) & (c) after processed by using a global mean 

vmin for the complete scene as proposed by (Tao, et al. 2005), (b) & (d) after 

processed by the proposed pixel wise vmin. (c) & (d) depict the colour 

characteristic of the target. Note that the images that have been processed by 

the global vmin in (a) is found not capable to rectify local colour non-uniformity 

due to variable illumination conditions. 

 

4.3.1 Adaptive Mid Tone Frequency Components Enhancement 

Like all the Retinex algorithms, the luminance as depicted above exhibits a mid-

tone and low frequency components which can be degraded by the dynamic 

range compression. A centre-surround type of contrast enhancement method 

can be utilised to help compensate this degradation as shown in equation 

(4.12):  
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where ),( yxI and ),( yxI conv are the luminance evaluated using larger values of 

the neighbourhood constant c (10~20) in equations (4.4 - 4.5). The ),(' , yxL enhn  

is the enhanced luminance image after pixel-wise sigmoid function. The 

exponent P is chosen to be a function of the global standard deviation in the 

image ),( yxI  which measures the extremeness of the intensity map. The exact 

value of P  is scene dependent and it can be determined by experiments. 

Typical values of P  is in the range of (0.1~1) for the data set utilised in this 

study. Given the knowledge of the luminance L , then the reflectance R  can be 

achieved using the relationship from equation (4.3). Figure 4-4(b) shows 

reflectance image. Once the final luminance ),(' , yxL enhn ) is obtained the 

enhanced one-band image ),( yxI enh  can be obtained by combining the 

reflectance R  from equation (4.3) in equation (4.14). Figure 4-4(c) shows the 

one-band enhanced intensity ),( yxI enh . 

             ,( , )  ' ( , ) ( , )enh n enhI x y L x y R x y       (4.14) 

The process for arriving the ),( yxI enh  is termed as ELRCC (Enhanced 

Luminance Reflectance Colour Constancy algorithm) hereafter in this thesis.  
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               (a)                                                              (b) 

 

(c) 

Figure 4-4: Outlines the ‘reflectance’ and one-band intensity map: (a) the 

intensity I(x,y) of original image for Target (red box) in Cam1 (b) luminance based 

‘reflectance’ image obtained by equation (4.3) (c) the one-band enhanced 

intensity Ienh by using equation (4.14).  

The colour information is stored in a single channel image ),( yxI enh via equation 

(4.15). 
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(4.15) 

where ),(,, yxELRCC BGR is the result of the 3 colour channels after processed by 

the ELRCC algorithm in the RGB colour space.   
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4.4 Results 

4.4.1 Retinex and CT Results  

Figure 4-5(a) represents the raw image with target (red box) presents in the 

Camera 1 view. Figure 4-5 (b), (c) and (d) shows result image after application 

of SSR where Gaussian surround function “c” equal to 15, 80 and 250 

respectively. It is found that SSR is incapable of achieving CC regardless of 

using different surround function “c”.  

The same data but processed by MSR algorithm is shown in Figure 4-6(b) 

which have utilised the Gaussian surround constants of c1=15, c2=80 and 

c3=250. The results are seen to improve in comparison to that of the SSR, but 

the colour integrity of the processed image is degraded too. Note that this MSR 

can be generated by linear combination of the SSR results as shown in 

equation (2.1). 

The same data is applied using MSRCR as shown in Figure 4-7(b) using the 

same surround constants of c1=15, c2=80, c3=250. It is seen that the colour 

correction improves the colour compensation when it is compared with Figure 

4-6(b) (MSR without colour correction). The gain and offset are not very 

sensitive to the colour restoration, but the alpha and beta in equation (2.6) can 

change the colour attributes rather significantly (Figure 4-7).  

  

        (a)                                                               (b)     
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            (c)                                                            (d)   

Figure 4-5: Shows SSR result. (a) Raw/original Image with Target (red box) in 

cam 1. (b) SSR result with Gaussian surround constant “c” = 15. (c)  SSR result 

with Gaussian surround constant “c” =80.  (d)  SSR result with Gaussian 

surround constant “c” = 250. 

 

   

            (a)                                                             (b)   

 

Figure 4-6: Shows MSR result. (a) Raw/original Image with Target (red box) in 

cam 1. (b) MSR result with commonly used Gaussian surround constants c1=15, 

c2=80 and c3=250.  
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                                (a)                                                                (b)   

    

                (c)                                                               (d)      

 
Figure 4-7: Shows MSRCR result. (a) Raw/original Image with Target (red box) in 
cam 1.   
(b)  MSRCR result with surround constants c1=15, c2=80, c3=250, gain G=192, 
offset b=-30, alpha=125 and beta =46  
(c)  MSRCR result with surround constants c1=15, c2=80, c3=250, gain G=50, 
offset b=-3, alpha=125 and beta =46 
 (d)  MSRCR result with surround constants c1=15, c2=80, c3=250, gain G=192, 
offset b=-30, alpha=10 and beta =5 

 

The performance of Sub-Band Decomposition MSR (SBD-MSR) algorithm is 

shown in Figure 4-8 which presents the raw and the processed data using SBD-

MSR algorithm on the left and right hand panels respectively. In (a), (b) & (c) it 

shows the image of a target (red box) extracted from Camera 1, 3 and 5 

respectively. It is quite obvious that the colour of images in all three camera 

views have been washed out significantly and resulting in grey. Even for strong 

colour like the pink coat, the colour is seen to reduce to very pale making it very 

difficult to recognise after the SBD-MSR processing. 
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(a) 

 

(b) 

  

(c) 

Figure 4-8: presents the raw and the processed data using SBD-MSR algorithm 

respectively in the left and right hand panels. In (a), (b) & (c) it shows the images 

of a target (red box) in clips extracted from Camera 1, 3 and 5 respectively.   
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The LB-MSR algorithm was coded in MATLAB according to the equations set 

out in section 2.1.2.2, and the luminance of the scene according to equation 

(2.12) is illustrated in Figure 4-9, which is plotted such that high luminance is 

represented by ‘hot’ colours. Note that in LBMSR algorithm the colour 

constancy is ‘conditioned’ according to the luminance of the scene and this is 

the main difference with the conventional MSR which relies heavily on the 

appropriateness of the user input parameters. 

 

Figure 4-9: Illustrates the luminance (in right) of an image (left).  

The colour attributes are seen to be somewhat less degraded in the LBMSR 

processed images in comparison to that of the MSR. Figure 4-10 shows the raw 

(left) and processed data by LB MSR (right) for a target (red box) that had made 

appearance in camera 1, 3 and 5. The distinct difference between the LB MSR 

(Figure 4-10) and the MSR (Figure 4-8) results is the more superior colour 

retention in the luminance based methodology.  

      

(a) 
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 (b) 

       

(c) 

Figure 4-10: shows the raw (left) and processed data by LB MSR (right) for a 

target (red box) who had the appearance in (a) camera 1, (b) camera 3 and (c) 

camera 5.  

 

4.4.2 ELRCC Results 

 

4.4.2.1 Targets Representations 

Ten subjects with various coloured clothing have been chosen as targets in this 

experiment and typical RGB images of them are shown in Figure 4-11. 
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Figure 4-11: Representative RGB pictures of 10 selected targets in this chapter: 

(left to right) T1 to T10, respectively. 

4.4.2.2 Optimum colour descriptor 

It is well known that the selection of inappropriate colour feature descriptor is 

detrimental to object detection. To understand the effectiveness of the colour 

descriptor for maintaining colour constancy, we have employed 6 different 

colour descriptors in this study: RGB Feature, Ratio Feature (Soori, et al. 2011), 

Sum Feature (Soori, et al. 2011), L1L2L3 descriptor (Gevers & Smeulders, 

1999), C1C2C3 descriptors (Gevers & Smeulders, 1999) and colour opponent 

feature (Gijsenij & Gevers, 2011). Figure 4-12 present the averaged results of 

10 frames of images for the detection of target T3 in camera 1 view using these 

six different colour descriptors. It is seen that the colour opponent feature and 

the C1C2C3 descriptors have exhibited rather good colour invariance properties 

with better detection performances than that of all other descriptors. Figure 4-12 

also highlights the importance of the descriptors: the good descriptors, for 

example, C1C2C3 & colour opponent feature, can reduce the PFA by two 

orders of magnitude in comparison to the bad one, such as the L1L2L3. It is 

also found that the C1C2C3 descriptor cannot give consistent colour invariance 

performance (see Figure 4-12 (b)) due to chrominance conversion 

(normalisation) the C1C2C3 descriptor unable to distinguish different shade of 

grey (see section 6.2 for more detail) and therefore the colour opponent has 

been selected for assessing the effectiveness of various colour constancy 

algorithms in this chapter. 
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Figure 4-12: Shows the averaged detection ROC of T3 ELRCC data in (a) camera 

view #1 (b) camera view #5. Note that some descriptors, such as the L1L2L3, 

have exhibited very poor colour invariance property thereby giving rather poor 

detection performances. The C1C2C3 descriptor also gives very variable results 

which can be seen from the ROC of the two camera views shown in (a) & (b).  
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4.4.2.3 Target detection performances of various CC algorithms 

In this section, the effectiveness of various forms of CC algorithms is testified 

here through their object detection performances for using one video clip set as 

the test data. The video clip set is firstly processed by all these CC algorithms, 

and their Receiver Operating Characteristics (ROC) and subsequently their 

Figure of Merit (FOM) is compiled to give some indications whether they have 

improved target recognitions with respected to the untreated raw data. The 

experiment involves the detection of a randomly selected target, and in this 

case the target T3, who had made appearances in camera views #1, #3 & #5 . 

These video clips are also employed as the test data of this experiment. Six 

different CC algorithms have been employed: 

i) the proposed ELRCC (Soori, et al. 2013),  

ii) the luminance based and CT method (Soori, et al. 2011) (denoted by 

LB CT),  

iii) the MSRCR (Rahman, et al.1998),  

iv) the LBMSR (Tao & Asari, 2003),  

v) the luminance based method which uses global mean depended fixed 

vmin for the entire scene (Tao, et al. 2005) (denoted by Fixed Vmin); 

vi) the sub-band MSR method band wise (Jang, et al. 2008) (denoted by 

SubBand MSR). 

In all cases the colour opponent feature has been employed throughout and the 

detection was performed using the MD classifier. Figure 4-13 shows the 

detection results of target T3 for the 3 different camera views after the image 

data is processed by the six different CC algorithms as mentioned above.  

Two main results have been observed from Figure 4-13:  

 

1. All CC algorithms apart from the proposed ELRCC are not producing 

consistent performance and in many cases the detections are not 

even as good as that of the raw data.  
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2. The ELRCC algorithm shows better the target detection rate at low 

probability of false alarm (PFA). For example Figure 4-13(a) shows 

under 40-45% of probability of detection (PD) for all other CC methods 

at the PFA 10-2, while the data processed by ELRCC shows ~70% of 

PD which exhibits ~25-30% higher detection rate than all other 

methods.  

 

Table 4-1 tabulates the FOM for the detection of Target T3 in 3 different views 

after the data is treated by these six different CC algorithms. It is seen from the 

table that the CT method barely improves target detections, while the proposed 

ELRCC enhances target detections by about a factor of 2 better than all other 

CC methods utilised in this experiment. 

 

 
(a) 
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(b) 

 
 

 
(c) 

 

Figure 4-13: Average of 10 detection results for target T3 in (a) camera view #1, 

(b) camera view #3, and (c) camera view #5, after the video sequence is 

processed by six different CC algorithms. Note that all CC algorithms, except for 

the one enhanced by the proposed ELRCC (in blue circle) method, exhibit little or 

no detection improvements with respect to that of the raw untreated data (in red 

cross) in some camera views. 
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Table 4-1: Tabulates the Figure of Merit (FOM) in % for the detection of Target T3 

in 3 different views after the data is treated by six different CC algorithms. 

CC Methods Camera 1  Camera 3  Camera 5  

Mean 
FOM  
in % 

1 ELRCC  91.2 178.52 126.28 132 

2 LB CT  35.35 68.78 110.56 71.56 

3 MSRCR  46.09 114.22 92.04 84.12 

4 LBMSR  52.01 115.63 88.96 85.53 

5 Fixed Vmin  40.94 117.5 84.39 80.94 

6 
SubBand 

MSR  
-49.21 3.61 48.17 0.86 

 

4.4.2.4 ELRCC algorithm: 10 targets test  

The results that have been presented in the last section may suggest a better 

colour constancy capability in the proposed ELRCC algorithm, than all other 5 

different CC algorithms employed in this study. However, this is only based on 

one result from the detection of target T3. In this section, the capability of the 

ELRCC algorithm is critically assessed here by using data sets of 9 other 

targets. As previously, the detection is made for every 10 frames of video clips 

and the detection results for each target in each camera views are presented in 

ROC which is then averaged to form a representative ROC.  4-14 shows the 

typical RGB images of three camera views (view #1, view #3 and view #5) of 

target T10 with the raw data shown in the upper panel, the same data but after 

processed by ELRCC is shown in the lower panel. Note that the colour 

bleaching is very minimal after the data is processed by the ELRCC algorithm.  
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Figure 4-14: Shows representative RGB images selected from 3 camera 

views of target T10: (upper panel) raw data and (bottom panel) after 

processed by the ELRCC algorithm. 

Due to the large number of targets utilised in this experiment, only the detection 

results for the first five targets (T1 to T5) are presented here, and their ROC 

results are depicted in Figure 4-15 (a) to (e) for these five targets respectively. 

The ROCs are colour coded, depicting the results from camera views #1, #3 

and #5 in red, blue and green respectively. It is quite clear that the ELRCC 

processed data (in circle trace) exhibits consistently improved target detections 

over that of the raw data (in dot trace) for all camera views. The degree of 

enhancements can be indicated by the shift of the ROC curve to the right which 

can be measured more quantitatively from the area of the ROC within the PFA 

bounds of [10-5, 1]. The enhancement of target detection after the data is 

processed by ELRCC is computed for all 10 targets for all camera views using 

the FOM formulation according to equation (3.24). Note here that the T5 in 

camera view #3 in Figure 4-15(e) shows quite the bad detection results as 

compare to other camera views, it is mainly due to high false alarm rate 

because cam #3 background have similar spectral signature as the target. 
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The result is tabulated in Table 4-2 which exhibits substantial detection 

enhancement for the data that has been processed by the proposed ELRCC 

algorithm. In many cases there are over 100% of detection enhancements that 

have been seen particularly from camera view 5. Note that all targets in all 

camera views have shown variable degrees of detection enhancements after 

the data is processed by the proposed ELRCC algorithm. 

 

 

Table 4-2: Tabulates the FOM for the detection performance enhancement 

for the data processed by the proposed ELRCC for all 10 targets. 

Targets Camera 1 Camera 3 Camera 5 
Mean FOM 

In % 

T1 82.95 45.73 213.45 114.04 

T2 108.98 123.25 82.59 104.94 

T3 91.20 178.52 126.28 132.00 

T4 62.38 109.51 129.04 100.31 

T5 43.69 63.89 122.12 76.57 

T6 37.17 50.55 78.66 55.46 

T7 91.56 74.83 199.80 122.06 

T8 43.52 Target Absent 89.64 66.58 

T9 86.81 48.35 149.21 94.79 

T10 69.29 Target Absent 108.51 88.90 

Averaged 71.75 86.83 129.93 96.17 
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(a)                                                             (b) 

 
 
 
 

 

 
(c)                                                              (d) 

 
 
 
 
 
 
 
 



 

91 

 
(e) 

Figure 4-15: Shows the mean of the ROC results for the detection of targets (a) 

T1, (b) T2, (c) T3, (d) T4 and (e) T5. The ROC of the raw data and that after 

processed by ELRCC are presented in circle and cross respectively. The three 

different camera views of data are presented in colour code of red, blue and 

green for view #1, view #2 and view #3 respectively. All detection was performed 

using the colour opponent descriptor. 

4.4.3 Discussion 

The main result in this chapter is presented in Figure 4-15 and Table 4-2, which 

have shown a consistent trend of detection enhancements for all 10 targets 

after the data is processed by the proposed ELRCC algorithm. This result may 

suggest that the CC processing can indeed help to reduce illumination artefacts 

and to help restore the colour integrity of the scene. The averaged target 

detection enhancement over the 10 target in the 3 camera views #1, #3 and #5 

are found to be ~71%, ~87% and ~130% respectively in FOM metric. However, 

more of the enhancement is seen from the detections in camera view #5, where 

the range of detection is much further amongst all the three views presented in 

this work. Furthermore, the rear view of the scene in camera #5 was greatly 

affected by the strong solar illumination through the window, and therefore the 

detection is expected to be more difficult particularly when the spectral 

characteristics of the very limited number of the target pixels are heavily 

distorted by the illumination artefacts. It is also noted that the least detection 

enhancement is seen from the data recorded by camera view #1, where the 
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target signatures were taken from the first 3 frames of the video sequence. The 

relatively poor detections may be due to the more extreme change of 

illumination condition inherit in this  camera view, and partly may be due to the 

presence of many colourful objects in the background of the scene.  

The average detection enhancement for all three camera views over all the 10 

targets is found to be ~90% in FOM metric. In order to visualise the implication 

of this enhancement as the result of the CC treatment by the proposed ELRCC 

algorithm, all the ROCs that presented in Figure 4-15, together with that of the 

rest of the other 5 targets, are summed and averaged as shown in Figure 4-16.  

It is quite clear from this figure that the ROC of the CC processed data has 

shifted rather rigidly to the lower PFA rather substantially. At PD=0.5 the PFA 

reduction as the result of the CC process by the proposed ELRCC is found to 

be about a magnitude better than that of the raw untreated data.  It is to 

emphasise that this amount of PFA reduction is the averaged result for over all 

ten targets in three different camera views. 

 

Figure 4-16: Shows the averaged ROC detection results for all 10 targets in all 

camera views: the averaged raw ROC in red trace, and the average ROC for the 

ELRCC treated data in blue which shows a FOM of target enhancement by 90% 

FOM, implying for a PFA reduction by about a magnitude at PD=0.5. 
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Chapter 5: Enhanced Target Detection Colour 

Constancy algorithm (ETDCC) 

The main drawbacks of Retinex based method is the “user defined” 

parameterisation such as the spatial scale constant, Gaussian surround 

function parameters, α the strength of non-linearity, β the control constant, gain 

G and offsets b for colour restoration are needed to be tuned manually. 

Furthermore MSR methodology is seen to suffer from these issues:  1) Noise in 

the dark region which tends to alleviate further in the processing chain. 2) 

Artefacts at the boundary between the dark and bright areas. 3) Dark and 

shadow regions remains dark if the image have higher proportion of brighter 

regions. 4) Computational cost is quite high due to convolution between large 

images. There have been attempts for the parameterisation using edge 

sharpness, (Orsini, et al. 2003) and automatic tuning (Ciurea & Funt, 2004) but 

these techniques lacks in robustness and hence more research in this direction 

is needed. 

The main cause of these issues is due to the use of global parameterisation in 

these algorithms. One solution to these problems is the pixel-wise 

parameterisation approach as detailed in the last chapter (Soori, et al.  2013).  

Target detection becomes even more challenging and demanding in the CCTV 

system where many parameters/settings are unknown. It is necessary to take 

multiple measures in order to enhance target detection in this complex 

environment. Some illumination invariant colour features (such as rgb and 

C1C2C3 descriptors) are found applicable only for the targets with strong 

colours (for detail discussion section 6.2). Thus a multiple approach consisting 

of: 

1. A bidirectional pixel-wise non-linear transfer functions for mid-tone 

compression. The transfer function also acts as luminance 

synchronisation across different video frames and across different 

camera views. This algorithm is one of the contributions from this work. 

2. Luminance enhancements using centre-surround convolution. 
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3. Grey Edge algorithm is utilised mainly for colour correction and white 

balancing in the image scene. 

 Figure 5-1 show the flow chart of the proposed ETDCC algorithm.  

Input Image

RGB to HSV V-Band

Bidirectional 

Pixel Wise Non 

Linear Transfer 

Function

Depend upon α, 

which can be 

computed from 

image

Contrast 
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 (ground truth)
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 Figure 5-1: Outlines the flowchart of the proposed ETDCC algorithm.  
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5.1 Non-Linear Transfer Function (NLTF) 

This is the first step in the work flow. 

Dark pixels in the CCTV footage can be partially corrected using techniques 

such as gamma adjustment, histogram equalisation and the AINDANE (Tao & 

Asari, 2005) type of algorithms. However these types of methods utilised global 

parameter which do not have appreciable effects for small patches of 

dark/bright ROIs within the scene. Furthermore there is a real need to correct 

the dark (e.g. shadows) as well as the bright (e.g. overexposed) pixels in the 

scene in order to enhance colour base target detection.  

Some compression functions, such as that shown in Figure 5-2(a) and (b)), only 

enhance pixels in the dark region. It is proposed here to use a two way 

bidirectional Pixel-Wise Non-Linear Transfer Function (PWNLTF) for enhancing 

pixels in the dark and overexposed areas. The form of the proposed transfer 

function is shown in Figure 5-2(d). Figure 5-2(c) illustrates the NLTF curve of 

NWIS method with different weighted parameter α and β (note here in Figure 

5-2(c) some of the NLTF curves are overlapping each other).  
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                                  (c)                                                              (d) 

Figure 5-2: Illustrates different non-linear transfer function plots. (a) AINDANE 

method with weighted parameter “z” (b) IRN transfer function curve with 

parameter vmin (c) NWIS curve with α and β parameters (d) PWNLTF curve with 

weighted parameter α. 

 

5.2  Bidirectional Pixel Wise Non Linear Transfer Function 

5.2.1 RGB to HSV 

Unlike RGB colour space, HSV separates luminance or intensity image (V) from 

chrominance or colour information of the image (H and S). The RGB image can 

be converted into HSV image:  
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               max( , , )V R G B    (5.3) 

where H, S, V are Hue, Saturation and Value component of HSV colour space 

respectively. 

5.2.2 Pixel Wise Non Linear Transfer Function (PWNLTF) 

Mid tone dynamic compression T can be written in the form of: 

             ( , ) ( , ) ( , )( )x y x y x yI T x        (5.4) 

             ( , ) ( , )( )T

x y x yI x        (5.5) 

where ),( yxx is input intensity value and ( , )x yI is the output intensity value after it is 

transformed by transformation function ),( yxT at pixel location ),( yx , T is the 

power of transformation (Arigela & Asari, 2013). If p  is 10  T  then it amplify 

the input value; if 1T then it compresses the data.  

The form of the transformation has been suggested to be logarithmic as it is the 

way that human’s visual perception works according to the Weber-Fechner law  

(Land & McCann, 1971; Hurlbert, 1989). Thus the function to be utilised for 

dynamic compression in this work is proposed to be based on two logarithmic 

functions:  

General form:                    ( , ) ( , ) ( , )log( ) log( )enh x y x y x yI I Z I         (5.6) 

Specific form:              ( , ) ( , ) ( , ) ( , ) ( , )(log( )) (1 )(log( ))enh x y x y x y x y x yI I Z I           (5.7) 

where ( , )x yI  is the intensity at ),( yx , Z=256 for 8-bit images, α is a scale factor 

which depends on the illumination at the image pixel ),( yx . Examples of these 

transfer function is shown in Figure 5-3. The α parameter can be extracted from 

the scene: 

             ( , )
( , ) ( )

255
x y

x y

I
c 

 
   
 

      (5.8) 
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where β is an enhancement dependent parameter for the whole frame of image 

data and c is a constant which is found from experiment (see Appendix B). Note 

that ,( , )enh x yI  is evaluated for every pixel through the pixel-wise parameter α.  

 

  

(a)                                                           (b) 

Figure 5-3: Outlines the bidirectional NLTF proposed in this work (a) first half of 

PWNLTF which is controlling dark part of images (b) Second half of PWNLTF 

which is controlling bright part of images.  

 

β is the enhancement factor for a video frame and it is designed to maintain the 

mean intensity of the video clips to a constant over the video sequence. β is set 

at 0.6 for the first frame (t+1) of data, and subsequent β value can be computed 

by iteration process until the mean of the ,( , )enh x yI  in the next frame is close to the 

that of previous frame, or close to a user selected desirable ,( , )enh x yI . The flow 

chart for computing β is depicted in Algorithm 1.  
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Algorithm 1: Calculation of β 

Frame t=0 

Calculate mean of Ienh (t=0), Initialise β (random 

value) 

Next frame t+1 

use  β=0.6 

while  

   compute PWNLTF with β 

   compare mean (Ienh(t+1)) with mean (Ienh(t)) or 

desirable Ienh mean by Euclidean Distance  

   if distance is large 

      increase β by larger factor 

      elseif distance is small 

           increase β by smaller factor 

   end  

  repeat  

    until (mean(Ienh (t+1)) = mean(Ienh (t)  or 

desirable Ienh mean) 

      

This is possible that the β parameter can also be utilised to synchronise image 

quality across the CCTV network. It is postulated that the β parameter of other 

camera view can be adjusted such that the ,( , )enh x yI in this view is made to 

synchronise with that in the reference camera view. Further experiment in this 

aspect will be studied in the future work. 

The α parameter has direct effects on the dynamic range compression and also 

has strong influence on the image brightness (intensity). Figure 5-4 shows 

examples of the effects for different values of α and β in the PWNLTF. Figure 

5-4(a) is raw image, Figure 5-4(b) left: processed image with PWNLTF and 

right: the PWNLTF curve with β=0.8 for all pixels. It is seen that the PWNLTF 



 

100 

compress high intensity pixels (e.g. flooring near to the exit) to low, and at the 

same time it brightens up the dark region (e.g. flooring near to the bottom of 

image). When the β is increased to 0.9 and 1 as shown in Figure 5-4(c) and 

Figure 5-4(d) respectively, the dynamic range compression is increased and the 

NLTF is shifted up accordingly.  

Like many other techniques, this methodology is quite dependent on the 

intensity profile of the very first initial frame data. Again, this issue will be further 

investigated in the future work.  

 

 

 
(a) 

 
 

   
(b) 



 

101 

   
(c) 

 

  
(d) 

 

Figure 5-4: Shows the effect of α and β (a) raw image (b) left: processed image 

with PWNLTF method right: its corresponding curve, where β = 0.8, similarly in 

(c) and (d) but this time β = 0.9 and β = 1 respectively.  

 

The Venh intensity map can be normalised to:           

   
, min

, max , min

'  
enh enh

enh

enh enh

I I
I

I I





      

 

(5.9) 

Where Ienh,max = max (Ienh) and Ienh,min = min (Ienh).   

To avoid having pixels with high saturation the high contrast point can be found 

using:  
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 ,  

( , ) 'x y enh avgHC I      (5.10) 

where HC is the high contrast point in the image, Iavg is the mean of V for the 

image frame. All pixels in the image with I larger than 5% of HC can be replaced 

by the mean ((Ienh‘). 

5.3 Centre Surround Luminance [CSL] 

In the next stage of the work flow is to enhance the intensity V further using a 

centre-surround type of CC to help compensate colour degradation due to 

illumination artefacts. This part of work follows the algorithm proposed by Tao 

(Tao, et al. 2005).  

The luminance can be obtained through a 2D discrete Gaussian (G) function as 

shown in equation (5.11): 

             
-1 -1

0 0

( , )  ( , ) ( , )
M N

conv

m n

I x y I m n G m x n y
 

         (5.11) 

G is the 2D Gaussian at pixel location (x,y), M and N are the dimension of the 

image:  

             

2 2

2
-

G(x,y)  q.e

x y

c

  
    
         (5.12) 

where c is the surround neighbourhood constant (values of the neighbourhood 

constant c (10~20)). Note here that the equation (5.11) uses different surround 

constant c as compare to equation (4.4).  

The q is the normalization constant computed via 1dxdy q.e
c

yx
-

 


























 
2

22

  . 

             ( , )''( , ) '( , )E x y

enh enhI x y I x y       (5.13) 

where the exponent E(x,y) is defined by: 
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E x y

I x y

 
  
 

      (5.14) 

where I (x,y) is the intensity of the input at (x,y), i.e. the I is V component of HSV 

and the Iconv(x,y) is the centre-surround luminance evaluated using larger values 

of the neighbourhood constant as shown in equation (5.11). The Ienh’’(x,y) is the 

luminance after contrast enhancement. The exponent P is chosen to be a 

function of the global standard deviation in the I(x,y) which measures the 

extremeness of the intensity map. The exact value of P is determined by 

experiments and it can be scene dependent. Typical values of P is (0.5~0.75) 

for the dataset utilised in this study. Once the enhanced V component that is 

Ienh’’ is computed by using equation (5.13), it is combined with H and S 

components in HSV space. Hence the CC transformed RGB colour space 

image is obtained by converting HSV image back to RGB space.   

5.4 Effectiveness of PWNLTF+CSL vs other NLTF algorithms  

It is known that previous work such as AINDANE (Tao & Asari, 2005) IRN (Tao, 

et al. 2005) and NWIS (Asari, et al. 2006) algorithms are not capable to handle 

local variable illumination scenarios. In Figure 5-5 it is shown how effective is 

the work developed here, i.e., the PWNLTF+CSL, to compare with that of the 

reported NLTF CC algorithms. 

Figure 5-5 shows 4 frames of video clip extracted from camera 1 view of the 

iLIDS data set to highlight the effects of images under variable illuminations. 

Figure 5-5(a)-(e) are the images of the Raw data, after processed by AINDANE, 

IRN, NWIS and PWNLTF respectively. It can be observe that the images after 

processed by other NLTF methods cannot maintain colour constancy. In 

contrast, the image data that processed by the PWNLTF+CSL algorithm has 

shown rather good colour constancy throughout the whole video sequence.  

This result is further evidenced from the RGB plot as shown in Figure 5-6. The 

RGB attributes of the Target (red box) in camera 1 after processed by all 

algorithms are shown in Figure 5-6(a)-(c). Note that the images that have been 
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processed by other NLTF algorithms have not been able to compensate the 

colour of the target due to variable illuminations. Likewise Figure 5-6 (d) to (f) 

depicts the Standard Deviation (SD) of the R, G and B bands respectively for 

the 10 frames ROI (red box) data.  

The very small SD in the developed PWNLTF+CSL algorithm further 

demonstrate the better colour constancy capability in proposed methodology. 

 

     
(a)                                                                 (b) 

      
(c)                                                                     (d) 

 
(e) 

Figure 5-5: Shows the comparison of PWNLTF with other NLTF algorithms on 

Target (red box) in camera 1, frame numbers 518 and 531 are the entry point of 

target where illumination is weak and frame numbers 596 and 622 are middle and 

exit point of target where illumination is strong. (a) to (e) are Raw, AINDANE, IRN, 

NWIS and PWNLTF+CSL respectively.  
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(a)                                                                   (b) 

 
(c)                                                                (d)                                                                 

 

    
 (e)                                                                    (f) 

Figure 5-6: Highlights the RGB attributes of the ROI for 10 frames of Target (red 

box) in camera 1 after processed by PWNLTF+CSL and other NLTF algorithms as 

shown in Figure 5-5, (a) to (c) are R, G, and B bands respectively. Note that the 

images that have been processed by other NLTF algorithms are found not 

capable to rectify colour non-uniformity due to variable illumination conditions, 
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(d) to (f) depicts the Standard Deviation (SD) of the R, G and B attributes 

respectively of the ROI for 10 frames, this SD gives the indication that inside the 

ROI colour losses its constancy as target moves in different illumination regions. 

 

 

Figure 5-7: Shows the effectiveness of CC for various algorithms in the colour 

opponent colour space.  The circle and triangle plots represent data extracted 

from the first (ie frame #518) and last (frame#596) frame of images as shown in 

Figure 5-5.   

The effectiveness of colour constancy in the proposed algorithm can also be 

seen in the colour opponent space. Figure 5-7 shows the scatter plot of the 

opponency of the target after processed by various CC algorithms. The circle 

and triangle scatters represent 16 data points of target extracted from the first 

(frame #518) and last (frame# 596) frame of data as presented in Figure 5-5. It 

can be observed that only the plots in blue, i.e. the data after processed by the 

proposed PWNLTF+CSL method, exhibits almost the same opponency 
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throughout the video sequence. This shows the excellent colour constancy of 

the proposed CC algorithm with performance far better than all other reported 

CC methods studied in this work.  

5.5 Grey Edge Algorithm  

This is the third stage of the EDTCC work flow. 

Grey Edge is a method which is capable to convert the spectral irradiance of an 

unknown light source into another light source with known spectral 

characteristics. The principle of the algorithm is the assumption that the average 

reflectance difference of all pixels in the scene is achromatic (Weijer, et al. 

2007). The average of the colour derivatives, usually computed via the 

Minkowski norm, represents the characteristics of the illumination source: 

             

pP

n

c

n

c d
I

e

1

)(


















  x

x

x
         

 

(5.15) 

where ec is estimated spectral characteristics of the illumination source for 

channel c, c = [R, G, B] for broadband imaging, P denotes the Minkowski norm 

and n is Grey-Edge order. 

The ec is estimated for two sets of data and they are then normalised with a 

diagonal matrix which will then be used for rescaling the luminance of the other 

data set: 
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(5.16) 

Where, ColourCorrectionIr , ColourCorrectionIg , ColourCorrectionIb are the colour corrected R,G,B 

bands of an image, , ,r g be e e  is the estimated the colour for each R,G,B band 
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respectively,  factor 3 is the normalisation constant and (X) is the (x,y) 

coordinates of an image.  

 For convenience the processing algorithm up to this point, i.e., 

PWNLTF+CSL+grey edge is termed as ETDCC. 

5.6 Colour invariant descriptors 

This is the last step of the ETDCC algorithm work flow. 

A range of colour invariant descriptors such as the Sum Feature(Soori, et al. 

2011), L1 L2 L3 descriptors (Gevers & Smeulders, 1999), C1 C2 C3 descriptors 

(Gevers & Smeulders, 1999), the reduced rgb colour feature (Gevers & 

Smeulders, 1999)  and O1 O2 O3 colour opponent feature (Gijsenij & Gevers, 

2011) have been individually tested together with the enhanced luminance 

output obtained from the PWNLTF+CSL+Grey Edge (ETDCC) procedure, to 

formulate the ultimate ETDCC algorithm.  

The final form of the ETDCC is targeted to achieve the following two important 

objectives: 

A. The ability to maintain colour constancy irrespective of illumination 

conditions and camera calibration issues. 

B. The ability to enhance target detections from multi-camera CCTV 

network systems.  

In the following sections the formulation of the ultimate ETDCC and the colour 

constancy ability as well as the target detection performance of this algorithm, 

are presented. 

5.7 Ultimate ETDCC formulation and test results 

5.7.1 Targets Representations 

Ten subjects with various coloured clothing have been chosen as targets in this 

chapter, and typical RGB images of these targets are shown in Figure 5-8. 
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Figure 5-8 : Shows the representative pictures of targets exploited in this 

chapter: left to right T1 to T10 respectively. 

 

5.7.2 Colour Descriptors 

Six different colour descriptors have been utilised: 

1. RGB Feature, 

2. Sum Feature (Soori, et al. 2011), 

3. L1 L2 L3 descriptors (Gevers & Smeulders, 1999), 

4. C1 C2 C3 descriptors (Gevers & Smeulders, 1999), 

5.  Reduced rgb colour feature (Gevers & Smeulders, 1999);  and  

6. O1O2 O3 colour opponent feature (Gijsenij & Gevers, 2011).  

Figure 5-9 shows the averaged results of 10 frames of images for the detection 

of target T2 in all 3 camera views using these six different colour descriptors. 

Note that some descriptors, such as the L1L2L3, have exhibited very poor 

colour invariance property thus giving rather poor detection performances. The 

C1C2C3 and reduced rgb descriptor also gives quite variable results which can 

be seen from the ROC of the two camera views as shown in Figure 5-9 (a), (b) 

and (c).  

Table 5-1 summarises the detection results in FOM metric for the experiments 

as presented in Figure 5-9. It is seen that the O1 O2 O3 colour opponent 

feature together with ETDCC has exhibited the best detection performances 

over all other descriptors. Hence the O1 O2 O3 colour opponent descriptor 

feature has been selected to formulate the ultimate ETDCC algorithms. 
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       (a) 

 
 

 
      (b) 
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       (c) 

Figure 5-9: Shows the averaged detection ROC of T2 with respect various 

descriptor in (a) camera view #1 (b) camera view #3 and (c) camera view #5.  

 

Table 5-1: Shows the efficiencies of different features utilised in this research 

study in FOM metric.  

 

            Features Camera 1  Camera 3  Camera 5  

Mean 
FOM  
in % 

1 O1 O2 O3 175.40 111.47 286.46 191.11 

2 Sum  63.10 56.61 57.94 59.22 

3 L1 L2 L3  20.40 -0.83 42.08 20.55 

4 C1 C2 C3  52.54 32.96 233.86 106.45 

5 rgb  75.14 56.61 260.20 130.65 

6 RGB  146.64 83.73 241 157.12 
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5.7.3 Comparison of Detectors 

Figure 5-10 shows the ROC results for the detection of target T2 in all 3 camera 

views using 3 detectors namely:  1) Mahalanobis Discriminant (MD), 2) 

Quadratic Discriminant (QD) and 3) Adaptive Coherence Estimator (ACE), and 

compare them with that using the raw data, and also the processed data using 

the ultimate ETDCC algorithm. The red traces denote the ROC obtained from 

the raw data in RGB feature, and the blue ones represent the detection results 

using the ETDCC data. It is seen from Figure 5-10 and Table 5-2 that the 

detection performance amongst the three detectors varies significantly. This 

may be due to the limited colour channels in this RGB data set which may affect 

the conditions of the covariance in the colour opponent space. It is seen that the 

MD detectors together with the ETDCC have exhibited much better detection 

performance than that of the QD and ACE.  

 

 

 
 

      (a) 
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   (b) 

 

 
 

    (c) 

Figure 5-10: Shows the detection ROC for target T2 (a) camera view #1 (b) 

camera view #3 and (c) camera view #5 using the 3 detectors MD (circle), QD 

(square) and MF ACE (triangle) for the raw data and that after processed by CC 

algorithm (the ultimate ETDCC).  
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Table 5-2: Tabulates the detection efficiencies of three different detectors that 

have been employed in this study. 

            Features Camera 1  Camera 3  Camera 5  

Mean 
FOM 
In % 

1 MD  175.4 111.47 286.46 191.11 

2 MF ACE 48.32 34.10 162.02 81.48 

3 QD  98.91 58.72 53.92 70.51 

5.7.4 Detection Performances of Various CC Algorithms 

Twelve different CC algorithms reported in the literature have been utilised here 

to compare with the detection performance of the proposed ELRCC algorithm: 

1. Enhanced Luminance Reflectance Colour Constancy (ELRCC) 

algorithm as defined in chapter 4 (Soori, et al. 2013),  

2. Grey-Edge method (GEdge) (Weijer, et al. 2007),  

3. Multi Scale Retinex with Colour Restoration method (denoted as 

MSRCR) (Rahman, et al. 1998),  

4. Luminance Based Multi Scale Retinex algorithm (denoted as LBMSR) 

(Tao & Asari, 2003),  

5. Illuminance-Reflectance Nonlinear algorithm (denoted as IRN) (Tao, 

et al. 2005),  

6. Adaptive and Integrated Neighbourhood Dependent Approach for 

Nonlinear Enhancement method (denoted as AINDANE) (Tao & 

Asari, 2005), 

7. Multilevel Windows Inverse Sigmoid function (denoted as NWIS) 

(Asari, et al. 2006),  

8. The proposed PWLNTF dynamic compression but using fixed alpha 

(alpha=0.85) (denoted by FixAlpha),  

9. Single logarithmic function as the dynamic compression (denoted as 

OneLog),  

10. Cumulative Brightness Transfer Function method (denoted as CBTF) 

(Prosser, et al. 2008), 

11.  Histogram equalisation (denoted as Hist EQ) and  
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12.  The proposed Pixel-wise Nonlinear Transfer function+CSL+Grey 

Edge: this is the ultimate ETDCC algorithm (denoted by ETDCC in 

the legend). 

In all cases the O1O2O3 colour opponent feature has been employed 

throughout this experiment and the detection was performed using the MD 

classifier.  

Figure 5-11 shows the detection results of target T2 for 3 different camera views 

after the image data is processed by the twelve different CC algorithms as 

mentioned above. It is quite clear that all other CC algorithms, apart from the 

proposed ETDCC method, are found not capable to detect the target robustly. 

Note that some of the CC algorithms exhibit worse detection performances than 

that using the raw data. Much of the detection enhancement in the ETDCC 

algorithm seems to be lying in the low probability of false alarm (PFA) region. 

Table 5-3 tabulates the FOM for the detection of Target T2 in 3 different views 

after the data is treated by these twelve different CC algorithms. It is quite clear 

that the proposed ETDCC enhances target detections far better than all other 

CC methods reported in the literature. 

  
(a) 
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(b) 

 
(c) 

Figure 5-11: shows the average of 10 detection results for target T2 in (a) camera 

view #1, (b) camera view #3, (c) camera view #5, after the video sequence is 

processed by twelve different CC algorithms. Note that all CC algorithms, except 

that processed by the ETDCC (magenta star) method, exhibit little or no 

consistence detection improvements with respected to that of the raw untreated 

data (in red x).  
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Table 5-3: Tabulates the FOM for the detection of Target T2 in 3 different views 

after the data is treated by twelve different CC algorithms. 

 

CC Methods Camera 1  Camera 3  Camera 5  

Mean 
FOM 
In % 

1 ELRCC  82.95 45.73 213.45 114.04 

2 GreyEdge  9.33 -9.23 -21.49 -7.13 

3 MSRCR  31.22 42.94 138.59 70.92 

4 LBMSR 86 20.65 182.16 96.27 

5 IRN 66.92 41.95 130.69 79.85 

6 AINDANE 86.47 72.33 212.15 123.65 

7 NWIS 72.47 -2.43 68.42 46.15 

8 FixAlpha 61.74 -12.97 164.89 71.22 

9 OneLog 75.30 -6.38 177.18 82.03 

10 CBTF 20.53 6.72 -62.15 -11.63 

11 Hist Eq 16.57 -13.89 -63.41 -20.24 

12 ETDCC 175.4 111.47 286.46 191.11 

 

5.7.5 ETDCC & other CC algorithms: detection of 10 targets  

The capability of the proposed ETDCC algorithm is critically assessed here for 

the detection of 10 targets from the iLIDS data set. Figure 5-12 shows the 

typical RGB images of three camera views (view #1, view #3 and view #5) of 

target T1 with the raw data shown in the upper panel, the same data but after 

processed by ETDCC is shown in the lower panel. Note that the colour 

bleaching is very minimal after the data is processed by the ETDCC algorithm.  
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(a) 

 
 

  
(b) 

Figure 5-12: Shows representative images selected from the all 3 camera views 

of target T1 (left to right camera 1, 2 and 3 respectively). (a) Raw data.  (b) After 

transformed by the ultimate ETDCC algorithm. 

Due to the large number of targets, the detection results of a subset of five (T1. 

T2, T4, T6 and T9) are presented here in Figure 5-13 (a) to (e). The ROCs are 

colour coded, depicting the results from camera views #1, #3 and #5 in red, 

blue and green respectively. It is quite clear that the ETDCC processed data (in 

circle trace) exhibits consistently improved target detections over the raw data 

(in dot trace) for all camera views. The degree of enhancements can be 

indicated by the shift of the ROC curve to the right which can be measured 

more quantitatively from the area of the ROC within the PFA bounds of [10-5, 1]. 

 The enhancement of target detection after the data is processed by ETDCC is 

computed for all 10 targets for all camera views using the FOM formulation 

according to equation (3.24). The result is tabulated in Table 5-4 which reveals 

an averaged of ~165% better detection for all these 10 targets has been 

resulted from the data after processed by the proposed ETDCC algorithm. 
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   (a)                                                                    

 
 (b) 

 

 
(c)                                                          
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  (d) 

 
 

 
(e) 

 

Figure 5-13: Shows the mean of the ROC results for the detection of targets (a) 

T1, (b) T2, (c) T4, (d) T6 and (e) T9. The ROC of the raw data and that after 

processed by ETDCC are presented in circle and cross respectively. The three 

different camera views of data are presented in colour code of red, blue and 

green for view #1, view #2 and view #3 respectively.  Note that the circle plot 

ROC for all colour plots is substantially better than that of the cross in all cases. 

The colour opponent descriptor and the MD detector have been employed in all 

cases. 
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Table 5-4: Tabulates the FOM for the detection performance enhancement 

for the data processed by the proposed ETDCC for all 10 targets. 

Targets Camera 1 Camera 3 Camera 5 
Mean FOM 

in% 

T1 
211.79 310.83 205.84 242.82 

T2 
175.4 111.47 286.46 191.11 

T3 
43.71 105.2 110.6 86.50 

T4 
109.11 205.82 113.29 142.74 

T5 
76.46 240.62 543.51 286.86 

T6 
92.09 139.74 175.89 135.91 

T7 
81.92 Target Absent  130.61 106.27 

T8 
79.18 249 266.78 198.32 

T9 
107.91 92.89 206.64 135.81 

T10 
79.55 Target Absent 144.74 112.15 

Averaged  105.71 181.95 218.44 168.70 

 

5.7.6 Discussion 

This chapter details the formulation of the proposed ETDCC algorithm, and to 

verify its CC capability as well as target detection performance, within the 

context of other reported CC algorithms in the literature.  

The main result of this chapter is presented in Figure 5-13 and Table 5-4, which 

highlights how the proposed ETDCC performs with respected to the detection of 

10 targets from the iLIDS data set. The result gives the evidence that the CC 

processing can indeed reduce illumination artefact and to help restore the 

colour integrity of the scene to certain degrees. The averaged target detection 

enhancement for the ETDCC over the 10 target for the 3 camera views #1, #3 

and #5 are found to be respectively ~105%, ~180% and ~215% better than that 

using the raw data. However, much enhancement has been seen from the 

detections in camera view #5, where the detection ranges is the longest 

amongst all other views. It is expected to be more difficult for target detection in 
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this view, because the background is strongly affected by the solar illumination 

through the window.  

The average detection enhancement for all camera views over all 10 targets is 

found to be ~155% in FOM metric. In order to visualise the implication of this 

enhancement as the result of the CC treatment by the EDTCC algorithm, all the 

ROCs that presented in Figure 5-13, together with that of the rest of the other 5 

targets, are summed and averaged as shown in Figure 5-14. It can be observed 

quite clearly from this Figure 5-14 that the ROC of the ETDCC processed data 

has shifted rather significantly to the lower PFA. At PD=0.5 the PFA reduction is 

found to be about two orders of magnitude after the data is treated by the 

proposed ETDCC.  

 

Figure 5-14: Shows the averaged ROC detection results for all 10 targets in all 

camera views, (red cross) ROC for raw data, (blue circle) ROC for after 

processing data with the ETDCC method. It can be seen that FOM of target 

enhancement by 155% FOM, implying for a PFA reduction by about two order of 

magnitude at PD=0.5. 
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Chapter 6: Discussions for all data sets [iLIDS, 

PETS, GTCC]  

6.1 Targets 

Various subjects with different coloured clothing have been chosen as targets in 

this chapter and typical RGB images of these targets are shown in Figure 

6-1(a)&(b).  

 
(a) 

 

 
(b) 

Figure 6-1: Shows the representative pictures of targets exploited in this chapter 

(a) left to right T1 to T12 respectively extracted from iLIDS dataset (b) left to right 

T1 to T4 respectively extracted from PETS 2007 dataset. 

6.2 Limitation of colour invariant descriptors (rgb and C1C2C3) 

Colour invariant feature such as reduced rgb and C1C2C3 as outlined in section 

2.3.3.4 and section 2.3.3.3 respectively, have limitations to work for weak 

colours when the colour attributes are about the same in all 3 channels. 

Different shades of white, grey and black colours will be almost zero or infinity in 

these colour descriptors. This is illustrated in Figure 6-2 which outlines an 

image extracted from the GTCC dataset. The black/white and various shades of 
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grey colours becomes zero when the image is converted into reduced rgb 

(Figure 6-2(b)) and (Figure 6-2(c)) C1C2C3 colour space.  

Another example can be seen in the iLIDS dataset as shown in Figure 6-3.  

a. b c  

Figure 6-2: Highlights the drawback of some colour invariant descriptors (a) raw 

RGB image extracted from GTCC dataset (b) after converted image into reduced 

rgb colour space (c) after converted image into C1C2C3 colour space.  

  
(a)                                                             (b) 

 

  
(c)                                                           (d) 

Figure 6-3: shows another examples of limitations in some colour invariant 

features (a) raw RGB image from iLIDS  (b) after converted image into rgb colour 
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space (c) after converted into C1C2C3 colour space and (d) after processing the 

image using EDTCC.   

 

The ineffectiveness of these colour invariant features has direct impacts on the 

target detections. Figure 6-4 shows the ROC of target 9 who has a light blue 

colour top. The detection performance for the data in the reduced rgb and 

C1C2C3 are quite poor with respect to ETDCC method which employs O1 O2 

O3 colour feature. However, the detection performances for target 7 who was in 

sharp (strong) orange colour top shows almost the same result for all these 3 

colour descriptors (see Figure 6-4).  

 

                                (a)                                                                   (b) 

   

                               (c)                                                                     (d) 

Figure 6-4: Demonstrate the impacts of limitations in colour invariant descriptors 

on the target detection performance: (a) and (b) ROC for weak coloured target 9   
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in camera 1 and camera 3 respectively, (c) and (d) ROC for strong coloured 

target 7 in camera 1 and camera 3 respectively.  

6.3 Colour constancy over multiple camera views  

In this section the colour constancy ability of various CC algorithm over all (3) 

camera views are presented as shown in Figure 6-5. The O1O2O3 

chrominance of target 1 from camera views [1, 3, 5] after transformed by 

various CC algorithms are depicted in [circle, triangle, square] respectively. It 

can be seen that all tested methods, except for the one processed by the 

proposed ETDCC (in yellow plot), shows very good colour constancy over the 3 

cameras views.  

 

Figure 6-5: Shows the O1 O2 O3 chrominance of target 1 for all three camera 

views after processed by all CC algorithms utilised in this study. The plots for 

views [1, 3, 5] are in [circle, triangle, square] and note that only the proposed 

ETDCC (in yellow) exhibit good colour constancy (i.e. small spread).   
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6.4 iLIDS & PETS data sets: All CC algorithms  

6.4.1 Colour Enhancements  

Colour bleaching has been one of the main issues in almost all CC algorithms. 

Figure 6-6 highlights 3 views of a screen shot of target 6 extracted from the 

iLIDS data set after they are processed by various CC algorithms. Note that 

some CC algorithms could indeed enhance the colour and textural (contrast) 

but almost all of them fail to maintain the colour in a stable state (i.e. colour 

constancy). Figure 6-6(b)-(g) show the images after processed by the following 

CC algorithms: Histogram Equalisation (by colour and intensity), Average 

intensity, MSR, MSRCR and LBMSR methods respectively. 

Figure 6-6(b) & (c) highlight the significant effect of colour bleach in target’s t-

shirt colour after the images are processed by the Histogram Equalisation 

method, showing the incapability of this algorithm to maintain colour constancy 

in variable illumination situations. The failure is mainly due to the histogram 

stretching in each colour channel which distorts the overall colour and in many 

cases it weakens the overall colour attributes (see Figure 6-6(b&c)). In Figure 

6-6(d) it shows the result after the Average Int algorithm is employed as defined 

in equation (2.33). The images of the scene become darker because the 

algorithm compresses the image intensity significantly. The LBMSR result as 

shown in Figure 6-6(g) shows slightly better colour contrast as compare to other 

methods that presented in (b)-(f) because LBMSR evaluates luminance from 

each pixel rather than manipulating the colour attributes from the whole scene 

as in the conventional Retinex methods.  

Figure 6-6(h)-(j) shows the images after processed by NLTF based methods 

and the result is seen to suffer from the same drawbacks as in the raw 

untreated data: poor colour constancy accompanying with strong colour bleach. 

This symptom is again mainly caused by using global parameters evaluated 

from the whole scene. In Figure 6-6(j), the NWIS compresses high intensity 

pixels through the NLTF (see Figure 5-2(c)) and exhibit better colour constancy 

as compare to IRN and AINDANE methods (see Table 6-4). The FixAplha 

method which uses a fixed global parameter (Figure 6-6(k)) also is seen cannot 
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maintain CC efficiently. The OneLog method uses a non-linear transfer function 

to compress pixels only with low radiance and leaving the high illuminated 

regions unchanged thereby exhibits very limited CC performance as it is shown 

in (Figure 6-6(l)). 

Figure 6-6(m) and Figure 6-6(n) shows the images after processed by Grey-

Edge and CBTF methods respectively. The Grey-Edge utilises the global mean 

of the whole scene to estimate the strength of the light source and thus the 

method is more applicable to uniformly illuminated scene as it can be seen from 

Figure 6-6(m). In the CBTF method the camera 1 image has been used as the 

reference and the brightness is then transferred to camera 3 and camera 5. The 

histogram of the scene in camera 5 view is quite different from that of camera 1 

thereby giving large error in this camera view as shown in Figure 6-6(n). 

The ELRCC method previously developed in this work handles illumination 

pixel-by-pixel but with a drawback of coping high radiance pixels (see Figure 

6-6(o)). This problem is overcome by the presently proposed ETDCC method 

which shows better CC over all three different non-overlapping camera views 

(see Figure 6-6(p) and section 6.4.2 and 6.4.3). 

 
(a) 

 
(b) 
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(c) 

 

 
(d) 

 
(e) 

 
(f) 

 
(g) 



 

130 

 
(h) 

 
(i) 

 
(j) 

 
(k) 

 
(l) 
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(m) 

 
(n) 

 
(o) 

 
(p) 

Figure 6-6: Illustrates the RGB image of target 6 for 3 views from iLIDS dataset 

(a) raw images and (b)-(p) after processed by various CC algorithms.   

6.4.2 Colour Descriptors: EDTCC algorithm 

Table 6-1 and Table 6-2 tabulate detection results for all targets (16 targets) in 

the FOM metric using the ETDCC algorithm when it is processed with various 

colour descriptors. Table 6-3 shows the average data of Table 6-1 and Table 

6-2. It is seen that when the ETDCC utilises O1O2O3 colour descriptor it 
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exhibits the best colour invariance properties with much better detection 

performance over all other colour descriptors. 

Table 6-1 demonstrates the consistence trend of target detection enhancement 

in all six different descriptors. The sum and L1L2L3 features show considerably 

poor detection performance with respect to other features which shows that 

these features are unable to cope with complex illumination variations. Similarly 

invariant colour features rgb and C1C2C3 also unable to manage colour 

variations this can be seen when camera 3 data is processed by rgb and 

C1C2C3 feature, which shows low FOM (i.e. lower detections) as compare to 

data processed with ETDCC algorithm in camera 3. Moreover due to 

chrominance conversion the rgb and C1C2C3 descriptors unable to distinguish 

different shade of grey as discussed above (see section 6.2). 

Likewise Table 6-2 tabulates the targets FOM data for six features on PETS 

dataset which is overlapping camera view. Interestingly the performance of sum 

and L1L2L3 descriptors has risen noticeably, it is due to fact that the target in 

overlapping camera view is less challenging as compare to non-overlapping 

camera view. Again the processed data with proposed method gives the 

evidence that O1O2O3 descriptor shows significant improvement in target 

detection that is by 192% when it compares to raw unprocessed data.  Over all 

we can see that ETDCC utilises O1O2O3 colour descriptor exhibits good colour 

invariance properties with better detection performance the average 

enhancement rate is found to be 183% 
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Table 6-1: Tabulates the FOM results for the detection of 12 targets in 3 different non-overlapping camera views of iLIDS data 

after the images treated by ETDCC+ six different descriptors. 

Targets 
M:ETDCC 

F:RGB 

M: Raw  

F:rgb 

M:ETDCC 

F:rgb 

M:Raw  

F:Sum 

M:ETDCC 

F:Sum 

M:Raw  

F:L123 

M:ETDCC 

F:L123 

M:Raw  

F:C123 

M:ETDCC 

F:C123 

M:Raw  

F:O123 

M:ETDCC 

F:O123 

T1C1 182.35 192.67 187.80 19.38 47.88 77.44 133.94 126.47 91.38 43.43 211.79 

T1C3 223.05 157.05 326.23 109.51 136.93 47.56 256.37 31.46 259.35 23.95 310.83 

T1C5 45.31 226.35 244.28 -51.96 -23.60 32.92 183.14 167.57 212.93 20.73 205.84 

T2C1 125.65 96.07 97.54 18.04 28.80 32.87 24.54 65.83 55.21 40.56 155.53 

T2C3 115.63 73.59 116.52 16.72 46.84 18.79 26.04 48.37 69.45 31.08 186.4 

T2C5 383.92 508.14 520.23 111.05 297.61 172.56 150.83 464.69 385.50 62.12 541.94 

T3C1 31.55 40.93 40.70 10.33 6.64 14.63 24.05 26.26 20.23 24.76 43.71 

T3C3 77.03 62.89 85.17 41.68 65.34 27.03 20.45 33.46 64.32 39.02 105.2 

T3C5 50.86 110.52 111.31 -47.15 45.60 -35.94 19.67 94.31 90.34 55.92 110.6 

T4C1 72.93 114.09 114.73 46.56 9.95 17.31 28.92 104.44 97.22 28.14 109.11 

T4C3 145.03 74.18 194.05 73.01 7.88 39.60 51.10 80.07 192.78 39.33 205.82 

T4C5 7.98 63.22 70.23 -56.48 -38.70 -42.10 44.42 49.36 19.80 7.65 113.29 

T5C1 54.33 67.45 65.65 4.73 29.03 11.81 20.63 58.63 39.51 21.63 76.46 

T5C3 188.84 61.3 229.34 27.58 24.30 124.89 100.53 53.73 181.82 2.37 240.62 

T5C5 427.68 601.33 471.54 -78.00 -60.76 340.00 101.72 534.20 479.32 -29.83 543.51 

T6C1 49.66 78.73 78.58 19.84 34.28 22.68 20.00 74.34 75.12 98.68 79.18 

T6C3 196.17 168.82 192.53 12.79 42.49 15.96 34.07 122.58 182.31 235.86 249 

T6C5 -8.26 280.11 288.09 30.80 260.28 20.02 140.77 212.91 270.21 296.76 266.78 

T7C1 77.14 73.82 70.18 16.63 93.28 28.01 46.37 49.48 42.11 14.23 92.09 

T7C3 125.93 120 138.68 85.89 102.68 9.43 67.89 119.43 126.48 53.62 139.74 
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Targets 
M:ETDCC 

F:RGB 

M: Raw  

F:rgb 

M:ETDCC 

F:rgb 

M:Raw  

F:Sum 

M:ETDCC 

F:Sum 

M:Raw  

F:L123 

M:ETDCC 

F:L123 

M:Raw  

F:C123 

M:ETDCC 

F:C123 

M:Raw  

F:O123 

M:ETDCC 

F:O123 

T7C5 35.14 191.92 181.27 -28.61 147.01 -14.12 71.48 196.20 185.15 6.06 175.89 

T8C1 64.6 73.97 75.32 5.31 65.33 2.53 14.77 47.65 37.12 48.37 81.92 

Target Absent  

T8C5 34.39 113.08 110.37 -34.33 -30.10 -43.05 6.61 108.08 74.52 75.53 130.61 

T9C1 146.64 76.3 75.15 27.88 63.10 43.94 20.40 57.34 52.55 31.45 175.4 

T9C3 83.73 39.48 56.50 10.60 56.62 1.11 37.15 25.85 32.97 15.8 111.47 

T9C5 241.53 262.55 260.20 1.06 57.95 70.92 42.08 253.11 233.86 28.7 286.46 

T10C1 65.43 84.64 82.18 36.76 59.41 22.39 47.00 63.23 55.30 35.78 97.35 

Target Absent  

T10C5 -35.51 86.99 86.85 -10.65 -4.84 -31.06 30.52 80.11 74.58 110.37 96.56 

T11C1 83.24 80.12 77.15 15.23 62.83 15.78 12.05 56.02 45.02 26.48 107.91 

T11C3 72.61 59.54 68.73 13.25 46.60 10.78 26.29 56.43 57.74 19.44 92.89 

T11C5 171.35 178.39 170.16 -29.23 58.54 64.90 -0.06 175.92 179.87 31.9 206.64 

T12C1 52.08 78.09 79.39 3.19 47.71 4.40 40.56 52.46 43.15 24.11 79.55 

Target Absent  

T12C5 104.91 153.31 155.16 -60.60 114.13 -35.97 58.02 151.93 163.81 59.88 144.74 

Average 111.90 140.89 155.20 10.93 57.60 32.96 57.64 116.42 127.00 49.20 174.99 
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Table 6-2: Shows the FOM in % results for the detection of 4 targets in overlapping views of PETS data after images treated by 

ETDCC+ six different descriptors. 

Targets 
M:ETDCC 

F:RGB 

M: Raw  

F:rgb 

M:ETDCC 

F:rgb 

M: Raw  

F:Sum 

M:ETDCC 

F:Sum 

M: Raw  

F:L123 

M:ETDCC 

F:L123 

M: Raw  

F:C123 

M:ETDCC 

F:C123 

M: Raw  

F:O123 

M:ETDCC 

F:O123 

T1C1 58.57 56.22 55.64 2.37 48.78 8.63 15.84 57.46 57.41 67.09 77.89 

T1C2 31.52 47.71 40.27 23.02 6.49 26.37 26.31 49.90 39.97 79.69 46.3 

T1C3 -14.45 84.56 84.70 85.22 13.15 96.29 82.10 80.62 76.83 39.17 77.57 

T1C4 164.04 334.07 350.30 -32.80 241.21 144.31 147.02 274.41 347.41 295.86 345.31 

T2C1 91.21 114.38 112.29 1.81 62.58 5.77 2.63 133.04 125.68 3.12 165.79 

T2C2 70.02 71.38 84.84 90.78 43.27 8.44 4.63 63.84 67.96 23.31 139.59 

T3C1 85.74 107.38 107.30 4.38 57.06 11.96 4.45 102.87 102.18 101.12 124.5 

T3C2 69.19 79.44 94.63 3.76 4.74 14.38 26.74 32.70 54.34 73.42 177.13 

T3C3 -0.16 123.04 139.29 133.39 404.92 700.50 700.75 -13.12 2.73 804.39 786.41 

T3C4 108.05 261.38 256.87 -37.17 31.08 43.42 36.08 260.22 253.64 354.07 350.14 

T4C1 41.96 69.46 82.93 17.59 43.19 29.16 3.17 69.11 84.13 67.25 83.15 

T4C2 37.24 75.32 83.95 1.93 11.87 0.92 1.47 73.05 82.75 104.96 111.41 

T4C3 16.84 -88.34 81.92 7.06 51.46 100.64 86.00 24.98 11.29 11.72 45.52 

T4C4 57.34 110.9 110.91 45.58 57.82 49.04 41.96 105.43 109.17 77.86 161.98 

Average 58.36 103.35 120.41 24.77 76.97 88.55 84.22 93.89 101.10 150.21 192.33 

Table 6-3: Tabulates the average FOM in % results for the detection of 16 targets by using ETDCC + various colour descriptors.  

Targets 
M:ETDCC 

F:RGB 

M: Raw  

F:rgb 

M:ETDCC 

F:rgb 

M: Raw  

F:Sum 

M:ETDCC 

F:Sum 

M: Raw  

F:L123 

M:ETDCC 

F:L123 

M: Raw  

F:C123 

M:ETDCC 

F:C123 

M: Raw  

F:O123 

M:ETDCC 

F:O123 

Average 85.14 122.12 137.81 17.86 67.29 60.76 70.94 105.16 114.05 99.71 183.66 
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6.4.3 Target detection results by ALL CC algorithms 

Table 6-4 and Table 6-5 summarise the detection results for all in the FOM 

metric by using all CC algorithms utilised in this study. Table 6-6 presents the 

main result of this project which shows the averaged results of Table 6-4 and 

Table 6-5. This result has shown an overall superior colour constancy capability 

of the proposed ETDCC algorithm with respected to all other CC methods 

utilised in this study. 

Table 6-4 shows 12 target enhanced detection data with various CC methods 

on iLIDS dataset (non-overlapping camera view). According to the data in Table 

6-4 all other CC algorithm unable to produce consistent results when compared 

with raw data. There are considerable difference in the figures of CBTF 

algorithm and histogram equalisation methods and the FOM in each target in 

each camera view are in negative values, which indicates that their target 

detection performance is even poor than raw data. In histogram equalisation 

methods, histogram stretching in each band causing targets colours to washed 

out and while in CBTF method the histogram of camera 1 is transferred to 

camera 5 however local (each pixel) information does not matched. The 

LBMSR method in Table 6-4 shows better target detection result as compare to 

Retinex based method because LBMSR technique is based on luminance of an 

image instead of multiple surround function on each colour attributes of the 

image as in the Retinex methods. Table 6-4 also shows that NLTF based 

methods have low FOM figures (i.e. lower detection) specially in IRN and NWIS 

methods which exhibits poor target detections, this is mainly due to the use of 

global parameters (i.e. global mean Im of the whole scene). The FOM highlights 

that these techniques unable to cope with colour variations and hence fails the 

target detection in 3 difference camera view with complex illumination.  

The ELRCC framework as defined in chapter 4 out-performs all other methods 

which are not proposed in this research work and shows considerable 

enhancement in target detection with respect to all Retinex and CC (white 

balancing) techniques because of pixel-wise methodology. The ETDCC figures 

shows that the detection performance has risen significantly up to 175% and 
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shows better detection results then ELRCC, subsequently with all other CC 

algorithms. Moreover if we compare the pixel-based NLTF with fixed parameter 

approach that is fixed alpha, then there are noticeably differences between 

these figures and it highlights that the pixel-wise approach is far more robust 

and reliable. Likewise if we compare OneLog enhancement approach that is 

one directional NLTF curves with ETDCC (bidirectional NLTF), which handling 

both low and high intensities, then the FOM in Table 6-4 suggest that 

bidirectional approach is critically important and shows substantial target 

detection results that is 175% enhancement as compare to 100% by using 

OneLog function.  

Similarly Table 6-5 shows targets enhanced detection FOM data results for 

various other CC methods on PETS dataset (overlapping camera view). Table 

6-5 follows the same pattern as Table 6-4 and ELRCC out performed all other 

CC algorithm which are not proposed in this research work. Afterwards ETDCC 

shows marginally better detection results as compare to ELRCC. However the 

performance of all other methods, especially CBTF, Histogram Equalisation, 

Retinex and CC (white balancing methods) are rose dramatically. This is due to 

the main reason of overlapping camera view which technically specking pose 

less challenging as compare to non-overlapping camera view where, 

illumination, scene, background and conditions are totally different. Table 6-6 

shows the average data Table 6-4 and Table 6-5 that is iLIDS and PETS 

datasets respectively. An overall summary of the performance of 15 different 

methods in two different datasets shows the evidence that ETDCC exhibits 

considerably good colour invariant characteristic and therefore demonstrates 

better target detection in overlapping and non-overlapping camera view as 

compare to other CC methods. 
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Table 6-4: Compares the FOM in % for the detection of targets in the non-overlapping camera iLIDS data set after images 

processed by various CC algorithms. 

Target ETDCC ELRCC 
Grey 

World  

Grey 

Edge 
MSRCR LBMSR IRN 

AIND-

ANE 
NWIS 

Fix 

Alpha 

One 

Log 
CBTF 

Hist 

EQ C 

Hist 

EQ Int 

Avg 

Int 

T1C1 211.79 108.98 44.85 38.13 129.31 129.91 69.56 69.83 90.51 93.57 119.44 40.69 78.88 32.22 39.72 

T1C3 310.83 123.25 23.05 87.52 230.89 165.91 71.33 66.71 29.34 76.68 123.19 -20.53 -4.88 40.60 106.51 

T1C5 205.84 82.59 -7.29 53.20 -88.80 -33.85 50.01 62.64 34.79 106.14 132.18 -52.23 -0.46 27.21 141.99 

T2C1 155.53 62.47 42.82 32.51 21.54 59.03 50.07 29.62 73.89 37.68 54.19 45.24 69.48 8.46 7.64 

T2C3 186.40 65.49 50.52 8.51 66.21 21.73 60.67 72.87 28.40 -6.15 4.10 54.52 55.46 28.72 63.86 

T2C5 541.94 296.94 94.47 -40.07 455.41 354.62 206.45 232.57 134.98 189.50 279.76 -65.65 -7.68 1.63 378.53 

T3C1 43.71 37.17 27.02 20.66 57.28 44.41 24.17 14.23 34.25 26.03 36.09 23.88 34.41 24.81 19.79 

T3C3 105.20 50.55 34.54 67.82 84.11 66.31 40.85 -4.62 32.75 22.84 40.75 -13.63 -4.24 10.29 70.17 

T3C5 110.60 78.66 46.51 65.89 2.67 78.29 62.17 24.95 73.76 71.75 94.11 -33.21 -15.95 36.49 85.88 

T4C1 109.11 91.20 17.20 29.73 46.09 52.02 48.30 83.46 40.32 42.34 50.02 19.06 1.99 33.82 29.16 

T4C3 205.82 178.52 67.54 25.76 114.22 115.64 121.09 192.99 34.75 83.96 100.89 177.09 119.05 97.31 205.21 

T4C5 113.29 126.28 28.56 -2.90 92.04 88.96 90.61 119.29 28.73 107.78 103.34 22.56 15.43 65.47 131.74 

T5C1 76.46 46.35 21.59 29.82 52.66 66.67 36.44 32.62 43.47 25.75 45.12 21.56 58.00 21.77 5.72 

T5C3 240.62 52.02 1.87 97.62 115.72 101.73 32.17 32.06 3.35 20.55 64.37 -17.57 14.97 48.33 62.51 

T5C5 543.51 110.63 -42.72 30.85 -68.29 14.72 51.91 49.31 -19.32 52.26 145.49 -75.01 -58.29 128.55 190.24 

T6C1 79.18 79.39 98.35 99.75 94.88 85.22 92.95 90.23 86.73 96.54 95.34 96.98 75.15 91.98 72.40 

T6C3 249.00 223.17 243.39 256.25 218.87 207.06 240.85 234.52 234.01 238.17 226.36 195.01 190.82 232.45 147.54 

T6C5 266.78 309.50 276.77 311.47 293.15 256.38 307.47 314.47 298.85 302.07 246.75 207.49 210.11 347.00 237.86 

T7C1 92.09 62.38 20.62 19.18 58.22 67.74 41.29 68.18 33.37 37.80 50.35 18.35 55.25 24.84 7.81 

T7C3 139.74 109.51 50.14 89.34 162.23 140.47 87.59 106.99 59.26 75.90 105.20 105.03 116.44 55.44 93.44 

T7C5 175.89 129.04 -35.83 37.68 83.21 144.71 78.42 155.82 74.48 79.17 113.27 -70.59 -31.99 80.64 131.28 
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Target ETDCC ELRCC 
Grey 

World  

Grey 

Edge 
MSRCR LBMSR IRN 

AIND-

ANE 
NWIS 

Fix 

Alpha 

One 

Log 
CBTF 

Hist 

EQ C 

Hist 

EQ Int 

Avg 

Int 

T8C1 81.92 69.29 41.73 53.74 67.52 75.15 63.94 64.16 72.62 78.39 84.64 45.31 65.48 51.18 38.25 

T8C3 Target Absent   

T8C5 130.61 108.51 55.75 95.37 -20.02 84.56 106.24 130.78 90.04 120.88 117.84 -56.43 -45.46 112.19 119.30 

T9C1 175.40 82.95 32.80 9.33 31.22 86.00 66.92 86.47 72.47 61.74 75.30 20.53 16.57 64.96 12.65 

T9C3 111.47 45.73 17.90 -9.23 42.94 20.65 41.95 72.33 -2.43 -12.97 -6.38 6.72 -13.89 24.83 51.56 

T9C5 286.46 213.45 32.33 -21.49 138.59 182.16 130.69 212.15 68.42 164.89 177.18 -62.15 -63.41 126.57 259.70 

T10C1 97.35 30.75 34.16 37.67 64.74 73.50 34.46 42.19 66.55 75.72 87.27 28.50 48.78 56.13 39.72 

T10C3 Target Absent  

T10C5 96.56 118.00 106.72 108.15 34.97 69.39 115.19 123.26 97.37 122.03 86.96 -52.23 -37.26 136.12 92.18 

T11C1 107.91 91.56 31.53 8.27 51.83 69.07 51.33 103.20 57.15 65.86 72.40 38.64 14.55 10.12 9.31 

T11C3 92.89 74.83 5.36 -26.24 55.67 32.16 46.41 107.50 13.86 24.01 30.21 7.95 -5.53 6.03 56.30 

T11C5 206.64 199.80 22.93 -16.95 75.97 144.63 126.84 286.76 102.51 158.81 159.33 -57.24 -66.76 32.35 254.97 

T12C1 79.55 43.52 25.10 28.78 90.06 53.51 31.24 53.06 43.06 49.69 59.41 26.64 30.83 50.60 24.58 

T12C3 Target Absent  

T12C5 144.74 89.64 41.73 93.54 125.46 111.30 76.55 145.58 94.97 140.28 129.55 -89.25 -86.37 140.81 159.25 

Avg 174.99 108.85 47.03 52.11 90.32 97.87 83.52 105.34 67.49 85.75 100.12 16.24 25.14 68.18 101.42 
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Table 6-5: Compares the FOM in % for the detection of targets in the overlapping camera PETS data set after images processed 

by various CC algorithms. 

Target ETDCC ELRCC 
Grey 

World  

Grey 

Edge 
MSRCR LBMSR IRN 

AIND-
ANE 

NWIS 
Fix 

Alpha 

One 

Log 
CBTF 

Hist 
EQ C 

Hist 
EQ Int 

Avg 

Int 

T1C1 77.89 83.90 66.52 66.81 81.00 82.48 80.92 66.52 65.78 86.10 83.17 69.27 70.95 73.42 65.15 

T1C2 46.30 54.97 70.18 72.16 53.87 71.51 75.34 55.41 65.34 81.48 80.07 75.89 74.97 77.76 88.08 

T1C3 77.57 76.53 46.04 61.34 89.34 80.08 77.53 50.79 58.00 72.96 75.19 -44.33 -32.07 65.77 32.55 

T1C4 345.31 384.55 314.52 311.69 374.02 404.79 401.82 404.70 332.55 411.89 408.35 251.60 276.73 297.45 258.19 

T2C1 165.79 86.13 7.74 7.56 52.14 65.52 79.35 178.69 21.60 108.27 107.70 2.00 34.56 72.85 40.44 

T2C2 139.59 101.97 34.62 14.83 11.16 85.75 93.27 112.41 45.36 101.08 93.99 60.43 21.21 103.48 9.74 

T3C1 124.50 123.41 104.68 103.47 103.72 113.64 122.33 93.64 109.18 120.12 120.32 101.89 89.42 97.80 65.15 

T3C2 177.13 177.00 131.78 123.48 163.95 179.02 131.13 134.53 134.33 149.71 151.62 57.06 94.86 142.97 88.08 

T3C3 786.41 762.30 650.13 737.34 554.17 656.01 768.82 696.96 683.62 848.97 823.93 401.11 570.41 653.12 341.79 

T3C4 350.14 390.57 327.82 346.42 349.46 333.38 362.50 345.00 372.37 379.03 371.61 259.75 244.44 312.47 258.19 

T4C1 83.15 86.29 75.63 73.03 74.06 88.27 74.82 46.21 62.13 76.52 83.43 68.46 47.54 26.98 37.50 

T4C2 111.41 95.09 115.53 108.58 107.66 115.35 104.85 90.09 79.94 109.65 111.82 81.87 48.55 72.47 60.12 

T4C3 45.52 18.40 67.35 33.64 -71.24 51.34 36.33 16.61 -49.53 -68.99 -50.37 16.14 46.00 26.35 7.01 

T4C4 161.98 129.65 68.86 82.26 128.24 145.25 152.01 143.00 98.46 153.07 150.61 128.05 83.59 165.58 109.80 

Avg 192.34 183.63 148.67 153.04 147.97 176.60 182.93 173.90 148.51 187.85 186.53 109.23 119.37 156.32 104.41 

Table 6-6: Shows the main result of this work which tabulates the FOM in % for the detection of targets in the iLIDS and PETS 

data set after images processed by various CC algorithms. 

Target ETDCC ELRCC 
Grey 

World  

Grey 

Edge 
MSRCR LBMSR IRN 

AIND-
ANE 

NWIS 
Fix 

Alpha 

One 

Log 
CBTF 

Hist 
EQ C 

Hist 
EQ Int 

Avg 
Int 

Avg 177.15 142.05 93.40 98.30 115.75 131.43 126.29 135.85 104.63 130.83 137.51 59.64 68.13 112.24 102.91 
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6.5 GTCC data set: All CC algorithms 

6.5.1  Colour enhancements  

Figure 6-7 highlights the ability of all CC algorithms studied in this work using 4 

samples of images extracted from the GTCC data set. The sample images were 

taken under 4 different irradiances as described in section 3.1.3 (left to right, 

low to high irradiance as shown in raw images in Figure 6-7(a)).   

Figure 6-7(b)-(e) outline the images after processed by Histogram Equalisation, 

MSR, MSRCR and LBMSR respectively. All these results have exhibited 

substantial colour bleach unable to maintain colour constancy although MSRCR 

and LBMSR have improved the colour contrast somewhat through the centre 

and surround operation. Parameterisation in Retinex is normally obtained by 

experimental trials and inappropriate parameters will cause bad results as 

shown in Figure 6-6(f) and Figure 6-6(g). The image after processed by NWIS 

exhibits very dark background (Figure 6-7(h)) due to the excessively mid-tone 

compression.   

The results by ETDCC method depicts much better CC results after the images 

pass the 3 stages of processing: PWNLTF, CSL and grey edge method (Figure 

6-7(l)). It is seen that processing by a single method such as the Grey-Edge 

method as shown in Figure 6-7(m) is not adequate enough to maintain CC.  

Figure 6-8 shows the mean RGB of each frame of image taken under 10 

different irradiances for the experiment as described in section 3.1.3. Note that 

the scene is the same and only the illumination is different, thus it is expected 

that a good CC algorithm will be able to maintain the mean intensity of the 

scene (i.e. mean [RGB] of each frame) to be a constant. It is quite clear that the 

proposed ETDCC algorithm is capable to maintain colour constancy rather 

robustly.  
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Figure 6-7: Illustrates the RGB image of 4 images from the GTCC dataset (a) raw 

images and (b)-(m) after processed by various CC algorithms.   

 

Figure 6-8: Shows the mean intensity of each frame of image extracted from the 

GTCC data set after they are processed by various CC algorithms. The x-axis is 

the 10 experimental runs for recording the scene under 10 different irradiances.   

 

6.5.2 GTCC data set: Δ Eab assessment 

Table 6-7 tabulates the abE  of 24 colour boxes of the GTCC dataset and the 

colour boxes have been used as targets in this experiment. As described in 

section 3.5.2 the abE  metric has been utilised for assessing the colour or 

chrominance difference of the image frame with respected to the ground truth.   
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Each colour box has 10 abE  values and each is evaluated from the image 

taken at step change of irradiance as detailed in section 3.1.3. In each entry of 

the abE  as shown in the table, it shows the average of these 10 abE  values 

as function of various CC algorithms utilised for treating the data. The average 

of the abE  for all 24 targets is tabulated in the row labelled averaged  abE

(highlighted in green) in Table 6-7. Note that the smaller the abE  the better the 

colour constancy ability of the algorithm. In Table 6-7 there is noticeable 

difference in the figures of Grey-Edge, Grey-World and NWIS methods which 

shows quite the same abE  values as raw data. The ELRCC method shows 

better performance than raw and CC methods, but quite the opposite, Retinex 

and NLTF methods out performs ELRCC method in GTCC dataset. However 

the proposed ETDCC method shows significantly better colour difference 

results as compare to all other CC methods by average of 24 colour boxes 

 abE is 173, which indicates that the ETDCC minimise the illumination 

artifacts in 10 variable illumination images, thus keeping the colour difference at 

lowest level and improved the similarity in variable illumination images, 

consequently better CC in these images. It is observed that the least abE  is 

found from the data after it is treated by the HistEQ algorithm: it shows almost 4 

times less than that of the proposed ETDCC method which indicates the HistEQ 

is the best colour constancy algorithm. It can be seen from Figure 6-7 that 

although the Histogram Equalisation method has shown rather good colour 

constancy (i.e. very low ΔEab), the colours of the images after processed by 

HistEQ are found strongly bleached. Table 6-6 shows very clear that the target 

detection capability of HistEQ is about halve of that by ETDCC. 
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Table 6-7: Tabulates the ΔEab for processing the images in the GTCC data set by various CC algorithms. Each entry is the 

averaged ΔEab colour differences of 10 images recorded under step change of irradiance.   

Colour 
Box 

Raw ETDCC ELRCC 
Grey 
World 

Grey 
Edge 

MSR MSRCR LBMSR IRN AINDANE NWIS 
Fix 

Alpha 
One- 
Log 

Hist 
EQ 

 1633 71 495 1624 1620 408 384 376 579 368 3125 397 423 53 

 1352 225 553 1333 1345 223 202 267 559 187 2704 383 402 2 

 1515 58 317 1472 1507 282 235 195 383 71 2896 193 210 13 

 1626 88 388 1592 1613 379 335 284 450 158 3099 250 281 39 

 1430 85 317 1395 1421 245 206 188 374 54 2787 176 190 55 

 1283 86 341 1227 1262 190 130 135 364 155 2618 164 175 54 

 1495 503 771 1503 1492 383 480 456 747 357 2857 570 579 82 

 1553 158 400 1511 1545 327 297 272 496 165 3008 293 306 37 

 1531 406 706 1536 1542 363 397 497 717 238 2936 523 537 56 

 1639 88 525 1625 1645 428 384 329 656 758 3184 473 503 61 

 1364 235 482 1327 1350 239 224 255 521 337 2716 337 351 2 

 1394 430 715 1392 1393 320 393 361 692 398 2750 511 521 78 

 1639 109 412 1588 1617 422 390 303 531 897 3190 323 334 70 

 1508 91 387 1457 1492 299 241 258 469 127 2895 287 305 10 

 1624 398 691 1666 1629 530 609 513 744 388 3069 555 573 203 

 1261 352 641 1239 1261 239 281 284 615 432 2653 431 440 33 

 1444 287 587 1452 1450 318 324 377 606 132 2827 417 429 41 

 1475 139 360 1413 1452 286 229 212 417 55 2865 219 229 42 

 881 44 381 844 872 78 29 46 307 294 2329 133 142 8 

 1092 14 326 1054 1082 133 81 89 331 302 2472 144 159 0.5 

 1299 54 299 1265 1290 196 145 138 341 133 2654 155 175 0 

 1503 69 350 1462 1495 285 233 211 412 72 2896 222 246 0.2 

 1614 66 401 1584 1616 383 335 297 462 277 3152 279 307 0.24 

 1714 97 649 1677 1714 583 550 543 760 514 3277 539 586 169 

Average 1453 173 479 1427 1446 314 296 287 522 286 2873 332 350 46 

01 Raw Fr 1 01 Raw Fr 2 01 Raw Fr 3 01 Raw Fr 4 01 Raw Fr 5

01 Raw Fr 6 01 Raw Fr 7 01 Raw Fr 8 01 Raw Fr 9 01 Raw Fr 10

02 Raw Fr 1 02 Raw Fr 2 02 Raw Fr 3 02 Raw Fr 4 02 Raw Fr 5

02 Raw Fr 6 02 Raw Fr 7 02 Raw Fr 8 02 Raw Fr 9 02 Raw Fr 10

03 Raw Fr 1 03 Raw Fr 2 03 Raw Fr 3 03 Raw Fr 4 03 Raw Fr 5

03 Raw Fr 6 03 Raw Fr 7 03 Raw Fr 8 03 Raw Fr 9 03 Raw Fr 10

04 Raw Fr 1 04 Raw Fr 2 04 Raw Fr 3 04 Raw Fr 4 04 Raw Fr 5

04 Raw Fr 6 04 Raw Fr 7 04 Raw Fr 8 04 Raw Fr 9 04 Raw Fr 10

05 Raw Fr 1 05 Raw Fr 2 05 Raw Fr 3 05 Raw Fr 4 05 Raw Fr 5

05 Raw Fr 6 05 Raw Fr 7 05 Raw Fr 8 05 Raw Fr 9 05 Raw Fr 10

06 Raw Fr 1 06 Raw Fr 2 06 Raw Fr 3 06 Raw Fr 4 06 Raw Fr 5

06 Raw Fr 6 06 Raw Fr 7 06 Raw Fr 8 06 Raw Fr 9 06 Raw Fr 10

07 Raw Fr 1 07 Raw Fr 2 07 Raw Fr 3 07 Raw Fr 4 07 Raw Fr 5

07 Raw Fr 6 07 Raw Fr 7 07 Raw Fr 8 07 Raw Fr 9 07 Raw Fr 10

08 Raw Fr 1 08 Raw Fr 2 08 Raw Fr 3 08 Raw Fr 4 08 Raw Fr 5

08 Raw Fr 6 08 Raw Fr 7 08 Raw Fr 8 08 Raw Fr 9 08 Raw Fr 10

09 Raw Fr 1 09 Raw Fr 2 09 Raw Fr 3 09 Raw Fr 4 09 Raw Fr 5

09 Raw Fr 6 09 Raw Fr 7 09 Raw Fr 8 09 Raw Fr 9 09 Raw Fr 10

10 Raw Fr 1 10 Raw Fr 2 10 Raw Fr 3 10 Raw Fr 4 10 Raw Fr 5

10 Raw Fr 6 10 Raw Fr 7 10 Raw Fr 8 10 Raw Fr 9 10 Raw Fr 10

11 Raw Fr 1 11 Raw Fr 2 11 Raw Fr 3 11 Raw Fr 4 11 Raw Fr 5

11 Raw Fr 6 11 Raw Fr 7 11 Raw Fr 8 11 Raw Fr 9 11 Raw Fr 10

12 Raw Fr 1 12 Raw Fr 2 12 Raw Fr 3 12 Raw Fr 4 12 Raw Fr 5

12 Raw Fr 6 12 Raw Fr 7 12 Raw Fr 8 12 Raw Fr 9 12 Raw Fr 10

13 Raw Fr 1 13 Raw Fr 2 13 Raw Fr 3 13 Raw Fr 4 13 Raw Fr 5

13 Raw Fr 6 13 Raw Fr 7 13 Raw Fr 8 13 Raw Fr 9 13 Raw Fr 10

14 Raw Fr 1 14 Raw Fr 2 14 Raw Fr 3 14 Raw Fr 4 14 Raw Fr 5

14 Raw Fr 6 14 Raw Fr 7 14 Raw Fr 8 14 Raw Fr 9 14 Raw Fr 10

15 Raw Fr 1 15 Raw Fr 2 15 Raw Fr 3 15 Raw Fr 4 15 Raw Fr 5

15 Raw Fr 6 15 Raw Fr 7 15 Raw Fr 8 15 Raw Fr 9 15 Raw Fr 10

16 Raw Fr 1 16 Raw Fr 2 16 Raw Fr 3 16 Raw Fr 4 16 Raw Fr 5

16 Raw Fr 6 16 Raw Fr 7 16 Raw Fr 8 16 Raw Fr 9 16 Raw Fr 10

17 Raw Fr 1 17 Raw Fr 2 17 Raw Fr 3 17 Raw Fr 4 17 Raw Fr 5

17 Raw Fr 6 17 Raw Fr 7 17 Raw Fr 8 17 Raw Fr 9 17 Raw Fr 10

18 Raw Fr 1 18 Raw Fr 2 18 Raw Fr 3 18 Raw Fr 4 18 Raw Fr 5

18 Raw Fr 6 18 Raw Fr 7 18 Raw Fr 8 18 Raw Fr 9 18 Raw Fr 10
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6.5.3 GTCC data set: ETDCC vs colour descriptors 

This section presents results similar to that in Table 6-1 and Table 6-2 but using 

the GTCC data instead. The CDP assessment method has been adopted in this 

test. CDP compares the colour difference similar to that of abE  but it is in 

percentage metric (see section 3.5.3). 

Table 6-8 tabulates the CDP of 18 different colour boxes of the GTCC dataset 

as targets. Each colour box has 10 CDP values and each is evaluated from the 

image taken at step change of irradiance as detailed in section 3.1.3. In each 

entry of the CDP as shown in the table, it shows the average of these 10 CDP 

values as function of various CC algorithms utilised for treating the data. The 

average of the CDP for all 18 targets is tabulated in the row labelled averaged 

(highlighted in green) in Table 6-8. Note that the smaller the CDP the better the 

colour constancy ability of the algorithm. 

Table 6-8 shows the CC ability of the ETDCC with six different colour 

descriptors using the GTCC data set. It can be seen from the table that the best 

colour constancy is in fact achieved by the ETDCC when the reduced rgb colour 

descriptor is employed: it shows the least CDP of 1.75. Despite of having very 

high CC ability in the ETDCC when the reduced rgb descriptor is employed, it 

suffers greatly from colour bleaching and exhibits low target detection 

performance as evidence from Table 6-3 which shows ~50% lower of the target 

detection in reduced rgb than that using O1O2O3 descriptor.  
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Table 6-8: Tabulates the CDP for processing the images in the GTCC data set by the ETDCC algorithm together with various 

colour descriptors. Each entry is the averaged CDP over 10 images recorded under step change of irradiances. 

Colour 
Box 

Raw 
F:RGB 

M:ETDCC 
F:RGB 

M:Raw 
F:O123 

M:ETDCC 
F:O123 

M:ELRCC 
F:O123 

M:Raw 
F:C123 

M:ETDCC 
F:C123 

M:Raw 
F:rgb 

M:ETDCC 
F:rgb 

M:Raw 
F:Sum 

M:ETDCC 
F:Sum 

M:Raw 
F:L123 

M:ETDCC 
F:L123 

 

8.64 0.96 7.52 2.23 2.55 1.74 1.23 1.37 0.98 23.15 16.84 3.29 3.92 

 

7.56 2.05 5.22 4.57 3.65 2.44 1.96 1.85 1.45 1.88 3.63 2.35 3.49 

 

8.18 0.59 8.56 1.20 3.13 0.51 0.53 0.48 0.45 4.73 6.74 2.65 2.53 

 

8.58 0.88 8.61 1.20 3.30 0.68 0.39 0.59 0.37 35.04 26.75 3.63 1.94 

 

7.85 0.83 7.02 4.17 5.68 0.69 0.64 0.81 0.63 2.98 4.07 16.68 6.30 

 

7.55 1.61 7.35 1.18 2.78 1.04 1.26 0.88 1.15 4.01 4.73 20.70 12.26 

 

8.40 4.57 6.06 1.99 2.74 4.65 4.27 3.96 3.62 18.27 27.03 4.15 3.68 

 

8.33 1.47 9.50 3.14 5.74 0.98 1.36 0.84 1.03 6.99 10.02 5.57 4.65 

 

8.47 3.86 6.22 2.17 2.58 4.07 3.66 3.23 2.87 12.68 17.82 5.43 4.02 

 

8.68 1.03 9.22 2.32 5.22 1.30 0.75 0.98 0.65 19.46 15.13 623.41 198.50 

 

7.89 2.57 6.20 3.48 2.49 2.11 1.80 2.30 2.08 9.78 13.74 2.62 0.76 

 

8.04 4.13 5.59 3.12 3.27 4.27 3.88 3.69 3.36 9.94 15.71 6.57 5.15 

 

8.66 1.14 8.90 1.55 3.94 0.79 1.19 0.66 0.93 14.99 15.30 2.01 1.73 

 

8.42 1.49 6.98 6.27 5.12 1.11 1.23 1.35 1.23 42.91 47.51 4.53 3.48 

 

9.07 4.42 6.94 1.28 2.39 4.78 4.41 4.14 3.80 30.51 39.88 6.27 4.60 

 

7.47 3.46 5.41 4.42 4.63 3.56 3.17 3.14 2.83 8.29 12.30 11.67 6.96 

 

8.14 3.11 6.82 8.87 8.68 3.35 2.91 2.63 2.31 4.48 7.38 3.99 2.79 

 

8.31 2.28 7.89 0.95 2.42 1.56 2.06 1.37 1.78 6.54 9.63 2.56 3.78 

Avg 8.24 2.25 7.22 3.01 3.91 2.20 2.04 1.90 1.75 14.26 16.35 40.45 15.03 

01 Raw Fr 1 01 Raw Fr 2 01 Raw Fr 3 01 Raw Fr 4 01 Raw Fr 5

01 Raw Fr 6 01 Raw Fr 7 01 Raw Fr 8 01 Raw Fr 9 01 Raw Fr 10

02 Raw Fr 1 02 Raw Fr 2 02 Raw Fr 3 02 Raw Fr 4 02 Raw Fr 5

02 Raw Fr 6 02 Raw Fr 7 02 Raw Fr 8 02 Raw Fr 9 02 Raw Fr 10

03 Raw Fr 1 03 Raw Fr 2 03 Raw Fr 3 03 Raw Fr 4 03 Raw Fr 5

03 Raw Fr 6 03 Raw Fr 7 03 Raw Fr 8 03 Raw Fr 9 03 Raw Fr 10

04 Raw Fr 1 04 Raw Fr 2 04 Raw Fr 3 04 Raw Fr 4 04 Raw Fr 5

04 Raw Fr 6 04 Raw Fr 7 04 Raw Fr 8 04 Raw Fr 9 04 Raw Fr 10

05 Raw Fr 1 05 Raw Fr 2 05 Raw Fr 3 05 Raw Fr 4 05 Raw Fr 5

05 Raw Fr 6 05 Raw Fr 7 05 Raw Fr 8 05 Raw Fr 9 05 Raw Fr 10

06 Raw Fr 1 06 Raw Fr 2 06 Raw Fr 3 06 Raw Fr 4 06 Raw Fr 5

06 Raw Fr 6 06 Raw Fr 7 06 Raw Fr 8 06 Raw Fr 9 06 Raw Fr 10

07 Raw Fr 1 07 Raw Fr 2 07 Raw Fr 3 07 Raw Fr 4 07 Raw Fr 5

07 Raw Fr 6 07 Raw Fr 7 07 Raw Fr 8 07 Raw Fr 9 07 Raw Fr 10

08 Raw Fr 1 08 Raw Fr 2 08 Raw Fr 3 08 Raw Fr 4 08 Raw Fr 5

08 Raw Fr 6 08 Raw Fr 7 08 Raw Fr 8 08 Raw Fr 9 08 Raw Fr 10

09 Raw Fr 1 09 Raw Fr 2 09 Raw Fr 3 09 Raw Fr 4 09 Raw Fr 5

09 Raw Fr 6 09 Raw Fr 7 09 Raw Fr 8 09 Raw Fr 9 09 Raw Fr 10

10 Raw Fr 1 10 Raw Fr 2 10 Raw Fr 3 10 Raw Fr 4 10 Raw Fr 5

10 Raw Fr 6 10 Raw Fr 7 10 Raw Fr 8 10 Raw Fr 9 10 Raw Fr 10

11 Raw Fr 1 11 Raw Fr 2 11 Raw Fr 3 11 Raw Fr 4 11 Raw Fr 5

11 Raw Fr 6 11 Raw Fr 7 11 Raw Fr 8 11 Raw Fr 9 11 Raw Fr 10

12 Raw Fr 1 12 Raw Fr 2 12 Raw Fr 3 12 Raw Fr 4 12 Raw Fr 5

12 Raw Fr 6 12 Raw Fr 7 12 Raw Fr 8 12 Raw Fr 9 12 Raw Fr 10

13 Raw Fr 1 13 Raw Fr 2 13 Raw Fr 3 13 Raw Fr 4 13 Raw Fr 5

13 Raw Fr 6 13 Raw Fr 7 13 Raw Fr 8 13 Raw Fr 9 13 Raw Fr 10

14 Raw Fr 1 14 Raw Fr 2 14 Raw Fr 3 14 Raw Fr 4 14 Raw Fr 5

14 Raw Fr 6 14 Raw Fr 7 14 Raw Fr 8 14 Raw Fr 9 14 Raw Fr 10

15 Raw Fr 1 15 Raw Fr 2 15 Raw Fr 3 15 Raw Fr 4 15 Raw Fr 5

15 Raw Fr 6 15 Raw Fr 7 15 Raw Fr 8 15 Raw Fr 9 15 Raw Fr 10

16 Raw Fr 1 16 Raw Fr 2 16 Raw Fr 3 16 Raw Fr 4 16 Raw Fr 5

16 Raw Fr 6 16 Raw Fr 7 16 Raw Fr 8 16 Raw Fr 9 16 Raw Fr 10

17 Raw Fr 1 17 Raw Fr 2 17 Raw Fr 3 17 Raw Fr 4 17 Raw Fr 5

17 Raw Fr 6 17 Raw Fr 7 17 Raw Fr 8 17 Raw Fr 9 17 Raw Fr 10

18 Raw Fr 1 18 Raw Fr 2 18 Raw Fr 3 18 Raw Fr 4 18 Raw Fr 5

18 Raw Fr 6 18 Raw Fr 7 18 Raw Fr 8 18 Raw Fr 9 18 Raw Fr 10
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Chapter 7: Conclusion and Future Works 

This research concerns with the development of an effective colour constancy 

(CC) algorithm to enhance detection of targets in multi-view non-overlapping 

camera network system which uses spectral characteristics of targets as the 

means of detection. The programme is aimed to answer the following questions: 

1. To understand whether target detection in multi-view camera system can 

be benefited from CC technique?  

2. To understand the drawbacks of existing CC algorithms why they cannot 

be utilised for practical CCTV multi-camera network system? 

3. How to develop a CC algorithm which is capable to maintain the spectral 

(colour) of the images to a constant irrespective of illumination and 

camera calibration issues, and at the same time to enhance target 

detection? 

To answer the above questions two different forms of CC algorithms have been 

developed in this programme and their performances together with 11 other CC 

algorithms reported in the literature, have been critically tested via 3 different 

data sets to verify their CC capabilities as well as their target detection 

efficiencies. A total of 40 targets selected from 3 data sets of a. non-overlapping 

camera view real iLIDS dataset, b. overlapping camera view PETS 2007 

dataset & c. GTCC dataset, have been utilised for assessing the CC and target 

detection abilities by three metrics of: i) figure of merit (FOM) based upon Area 

Under Receiver Operating Characteristics (AUROC), ii) Colour differences ΔEab 

and iii) Colour Difference Percentage (CDP).  

The main result of this research can be summarised as follows: 

1. Most CC algorithms, such as the Retinex and adaptive histogram 

equalisation (HistEQ), have been shown to possess high colour 

constancy capabilities but they suffer from drawbacks of having strong 

colour bleaching side effects. The heavily colour bleach makes target 

detection difficult especially when colour is used as the detection feature. 

The cause of the colour bleach is mainly due to the lack of a principle 
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way for the parameterisation of these algorithms especially in the Retinex 

based CC algorithms.  

2. The use of colour invariant descriptors alone is not sufficient enough to 

maintain CC and most of them are found effective only to strong colours 

and ineffective to shades of grey.  

3.  This research has developed two CC algorithms and the first one is 

termed as Enhanced Luminance Reflectance Colour Constancy 

(ELRCC) method which incorporates an effective pixel-wise mid-tone 

dynamic range compression based on a modified sigmoid function. The 

pixel-wise mechanism has been shown effective for maintaining CC even 

in situations of strong local illumination variations. As the result the 

ELRCC is shown to enhance target detections by 100% better than that 

using the untreated raw data. A summary of this work has been 

published in the Optical Engineering journal.   

4. The second CC algorithm developed in this research is the Enhanced 

Target Detection by using Colour Constancy (ETDCC) algorithm which 

incorporates a bidirectional pixel-wise non-linear transfer function for 

mid-tone dynamic compression (PWNLTF), a centre surround luminance 

(CSL), a colour invariant descriptor (O1 O2 O3) and a grey edge colour 

correction. This methodology has been shown capable to maintain colour 

constancy 1) even in situations that suffer from strong local non-uniform 

illuminations 2) in multi-camera network with unknown camera 

calibrations via brightness transfer between different camera views 

without prior information. The ETDCC algorithm has been shown to 

enhance target detections by 175% better than that using the untreated 

raw data, and with detection efficiency far better than all other 11 CC 

algorithms reported in the literature. A summary of this work is being 

written up for a journal paper publication.  
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7.1 Future works 

Future work in this direction of research has been identified as follows: 

1. Targets with weak colours like grey/white/black have been found difficult 

to detect using spectral characteristic as a means of detection. Other 

features such as texture, shape/ appearance and perhaps position base 

models will be needed for robust detections of these difficult targets. 

These additional features can help discriminate similar coloured targets 

present in the scene.  

2. All detection performed in this research has been using a single colour 

as signature per target. Multiple colour tagging such as spectral 

characteristics of the top/shirt, trousers, hand bags/luggage etc. will help 

target discrimination immensely. 

3. Background segmentation: all detection carried out in this work was 

performed without background segmentation and it is expected that the 

false positive can be substantially reduced via background 

characterisation technique. This methodology may be particularly 

relevant for the detection of weak coloured targets. 

4. Extensions of the ETDCC for across camera synchronisations within and 

or between CCTV network systems. This can be done by improving the 

Iteration process of Beta, which gives much better control in a low quality 

video footage. However the computation cost of the process is high 

approximately 1.3 fps. However one should attempt to employ a training 

base beta computation process which will reduce the computation cost. 
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APPENDICES 

Appendix A : Limitations of CC algorithms for target 

detections  

 

During the course of this work it is found that some targets, especially those in 

weak colours such as grey, white and black etc., are difficult to recognise/detect 

using the spectral feature for the detection. Figure A-1 depicts 3 examples of 

these targets extracted from the iLIDS data set with clothing in white, grey and 

black colours and they are labelled as targets FT1, FT2 and FT3 respectively. 

The detection performances of these targets are shown in Figure A-2 (a)-(c) 

which indicates high false alarm for both the data using the RAW RGB and after 

transformed by the ETDCC algorithm. It is surprised to observe a worse 

detection for the data after the CC treatment, even though the colour of the 

target have been maintained to a constant as depicted by the abE  assessment 

over the 10 video clips as shown in Figure A-3(b). 

The large false alarm rate is due to the background which contains many 

objects in white/grey/black colour. It is well-known that the discrimination ability 

of the broadband RGB is much weaker than that of the narrow band 

hyperspectral imaging (HSI). It is believed that the detection of these weak 

colour targets may be improved if narrow spectral bands were employed. 

The ‘worse’ detection result observed after CC treatment is thought may be due 

to the correction of these weak colours close to their intrinsic values which are 

highly resembled to many clutters in the background. This could be one of the 

reasons to induce a worse detection as seen in the experiment.   
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Figure A-1: Shows examples of targets that are difficult to detect using spectral 

feature: left to right FT1 (white), FT2 (grey) and FT3 (black). 

 

 
 
 

 (a) 
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 (b) 
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 (c) 

Figure A-2: Shows the ROC results for the detection of targets in 3 camera views 

of: (a) FT1 (white), (b) FT2 (grey) and (c) FT3 (black).  

 
(a) 

 
(b) 

Figure A-3: (a) top row: raw colour of FT2 (grey) for the 10 frames of the video 

clip. Bottom row: same data after transformed by the ETDCC algorithm. (b) 

Shows the abE  assessment of the data shown in (a). 
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Appendix B : Variable C in the PWNLTF 

The pixel wise non-linear function as depicted in Equation (5.8) consists of a 

free parameter C which sets the form of the transfer function. This parameter C 

has been chosen by experiment. Figure B-1 shows the detection result of target 

T1 for using various C values in the PWNLTF which is a part of the ETDCC 

algorithm. It is seen that a moderate value of C~0.2 is more appropriate to this 

data set and this setting of C have been used for all detection results reported in 

this thesis.  

 
 
 

Figure B-1: Show the various C values for the detection of T1 after the data is 

processed by PWNLTF using various C values. C=0.2 has been chosen for all the 

detection presented in this work.  
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Appendix C : Frame to frame target detections 

 

The process for the detection of targets from video clips is elucidated in more 

details in this appendix. As mentioned in section 3.4.1 that each target is 

detected from 10 frames of a video clip and the frame to frame detection results 

are shown in Figure C-1.  

 

Figure C-1(a) shows the first four frames of the ground truth target map for the 

Target 1 as an example. Figure C-1(b & C) shows the detection ROC results of 

the raw data & the images after processed by ETDCC respectively. The MD 

classifier has been utilised for the detection. Note that the target is almost 

missed completely after a few video frames in the raw data set, with a very 

inconsistent ROC scatter over the 10 frame of detections. This is very different 

in the ETDCC treated data (Figure C-1(c)) which exhibits relatively more 

consistent ROC over the 10 detections. Figure C-1(d) highlights the detection 

maps of the first 4 frame of detections for the raw data set at a constant PFA of 

0.02. The correctly identified target pixels are labelled in brown in the figure. It is 

quite clear that the target is almost missed at the 4th frame of detection. Figure 

C-1(e) shows the detection maps of the first 4 frames of images after they are 

treated by the ETDCC algorithm: the target is seen more faithfully detected.  

 

Note that the average of these ROC as depicted in yellow plots of Figure C-1(b 

& C) represent the representative detection results of the target for the raw and 

CC treated data respectively. 
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(a) 

 
 
 

 
(b) 



 

170 

 

 
(c) 

 
 

 
(d) 
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(e) 

 

Figure C-1: Show an example of the frame-to-frame detection process employed 

in this work (a) Ground truth target map for the first 4 frames of images (b) ROC 

detections for the 10 frames of the raw data (c) ROC detections for the 10 frames 

of the data after treated by the ETDCC algorithm, (d) Detection map of the first 4 

frames of data using the raw data as test images at PFA 0.02, (e) Detection map 

of the first 4 frames of data after they are treated by the ETDCC at PFA 0.02. 

 


