
A UNIFIED FRAMEWORK FOR

SPACECRAFT OPERATIONS

By

David Verrier

SUBMITTED IN PARTIAL FULFILLMENT OF THE

REQUIREMENTS FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

AT

CRANFIELD UNIVERSITY

c© Copyright Cranfield University 2001

All rights reserved. No part of this publication may be

reproduced without the written permission of the copyright holder.

University: Cranfield University

Department: College of Aeronautics

Degree: Ph.D.

Submitted: April 2001

Author: David Verrier

Title: A Unified Framework for Spacecraft Operations

Supervisor: T.S.Bowling

Presentation: 28 Nov. 2002

This thesis is submitted in partial fulfilment of the

requirements for the degree of Doctor of Philosophy

c© Copyright Cranfield University 2001

All rights reserved. No part of this publication may be

reproduced without the written permission of the copyright holder.

Dl� moe$i l�bimen~ko$i Kiski

iii

iv

Table of Contents

Table of Contents v

List of Tables viii

List of Figures x

Abstract xiii

Acknowledgements xv

1 Introduction 3

1.1 Background . 3

1.2 Increasing Knowledge Transfer . 8

1.3 Structure of this Thesis . 12

2 Space Projects 15

2.1 Introduction . 15

2.2 The Space Business . 16

2.3 Space Project Life Cycle: Who, What and When 17

2.4 Mission Operations . 23

2.5 Operations Commonality . 30

2.6 Mission Differences . 31

2.7 Industrial Policy . 37

2.8 Summary . 39

3 Organisational Behaviour 41

3.1 Introduction . 41

3.2 Behaviour . 42

3.3 Rules And Procedures . 45

3.4 Flight Control Teams . 48

3.5 Organisations . 58

3.6 Summary . 66

v

4 Risk 69

4.1 Introduction . 69

4.2 Risk Perception . 71

4.3 Risks Encountered During A Programme Life-time 71

4.4 Risk Management . 73

4.5 Risk Analysis . 80

4.6 Summary . 85

5 Ground Segment Preparation 87

5.1 Introduction . 87

5.2 Satellite Database . 88

5.3 User Manual . 104

5.4 Flight Control Procedures . 106

5.5 System Validation . 109

5.6 Simulations . 110

5.7 Reviews . 113

5.8 Summary . 115

6 Control Systems 119

6.1 Introduction . 119

6.2 Control System Procurement . 120

6.3 Commonality Between FCS and CCE 121

6.4 Automation . 126

6.5 Summary . 132

7 Vocabulary 133

7.1 Introduction . 133

7.2 Jargon . 134

7.3 Ontology . 136

7.4 Summary . 149

8 Formal Methods 151

8.1 Introduction . 151

8.2 What is Z? . 152

8.3 Outline of a Specification . 154

8.4 Tools . 155

8.5 Example Specification: Satellite Operations 157

8.6 Detailed Specification . 161

8.7 Summary . 167

9 The Nature of Complexity 169

9.1 Introduction . 169

9.2 Algorithmic Information Content . 172

9.3 Effective Complexity . 173

vi

9.4 Causes of Complexity . 174

9.5 Example . 179

9.6 Complexity Management . 183

9.7 Summary . 190

10 Telemetry and Telecommand 193

10.1 Introduction . 193

10.2 PCM Telecommands . 194

10.3 Packet Telecommanding . 195

10.4 Telemetry . 196

10.5 Packet Telemetry . 200

10.6 Summary . 201

11 Information Theory 203

11.1 Introduction . 203

11.2 Information Theory . 203

11.3 Background: Hypergraph . 206

11.4 Fixed Format Telemetry . 209

11.5 Analysis of Flags . 212

11.6 A Packet: With Details Please! . 214

11.7 Information Usage . 216

11.8 Summary . 217

12 Synthesis 219

13 Conclusion 225

13.1 Summary . 225

13.2 Discussion . 231

13.3 Further Work . 235

References 236

A Ontology Outline 243

A.1 Interface . 243

A.2 Equipment . 251

vii

viii

List of Tables

2.1 OSI Reference Model . 24

2.2 X.25 Implementation of OSI Reference Model 24

2.3 TCP/IP Suite and OSI Reference Model 25

2.4 Theoretical Spacecraft Operations Model 26

2.5 Spacecraft Operations Model and Available Standards 27

5.1 Example Telemetry Parameter Characteristics Table 89

5.2 Example Database Table . 95

6.1 Intentions of automation compared with results 127

10.1 PCM Telecommand . 195

10.2 Telemetry Format . 198

ix

x

List of Figures

1.1 Classical View of Spacecraft Engineering 4

1.2 Knowledge Transfer Between Projects By Individuals 8

1.3 Critical Knowledge Transfer Between Projects 11

2.1 Integration Local Test (Stand-alone) 18

2.2 Integration and Test (in Simulated System) 19

2.3 Participation in the Project Life Cycle 21

2.4 Physical and Virtual Paths . 28

2.5 Monitoring and Control Layers . 28

2.6 Interfacing Monitoring and Control Layers 29

2.7 Monitoring and Control Loops in Space Mission Operations 34

3.1 Years on ERS Project . 53

3.2 ESOC Structure . 59

3.3 ESOC Reorganisations . 60

3.4 Multiple Reporting in ESOC . 61

3.5 EUTELSAT Structure . 61

4.1 Decision Utility . 76

4.2 Risk Management(after Hollnagel [25]) 79

5.1 Initial Database Schema . 96

5.2 Corrected Database Schema . 100

5.3 Completed Schema . 101

6.1 Schematic Diagram of Functions in FCS 122

6.2 Schematic Diagram of Functions in CCE 122

6.3 Automation and Manpower . 130

xi

7.1 Protegé Overview . 140

7.2 An Ontology in Protégé . 141

7.3 Protégé Instance Editor . 143

7.4 Herschel-Planck Equipment types . 144

7.5 Herschel-Planck Units . 145

7.6 Herschel-Planck Instrument HFI . 146

7.7 Herschel-Planck Instrument HFI . 147

7.8 Herschel-Planck Instrument HFI architecture 148

9.1 Comparative Complexity . 170

9.2 Effective Complexity . 174

11.1 Shannon Information of a Binary Digit 207

11.2 Example Hypercube - a 4-cube . 208

11.3 Information of a Multi Digit System 210

11.4 Information of Single-Change System 211

11.5 Information of Flag-based Monitoring 213

11.6 Information of Optimum Flag-based Monitoring 214

11.7 Information of Packet-Based Monitoring System 215

12.1 Knowledge Transfer Between Projects By Individuals 221

12.2 Effective Knowledge Transfer Between Projects 222

xii

Abstract

This work analyses the current state of the art in the Spacecraft Operations domain.

It reviews the structure and practices within the European space industry and shows

how the industry is generally shaped by national or international non-governmental

organisations. Although it draws most material from the author’s experience in

Europe whilst working on commercial space projects and international scientific

projects, it compares and contrasts this with the US manned space programme and

the Russian space programme.

The space industry in Europe has inefficient working practices and a poor market

structure which lacks incentives. The civil service-based organisations that admin-

ister the majority of national and European space activity have a poor internal

organisation, are often slow to react, exhibit little delegation and reduce individual

initiative. Recommendations are made about industrial policy, and how organisa-

tions should approach risk management and how teams should be formed and should

interact.

The spacecraft and instruments are normally built by specialised teams and

organisations. This results in a conceptual gap between those who acquire knowledge

whilst building and testing the systems and those who will operate the system. It

is necessary to explicitly transfer the knowledge to the operations team, and there

are weak mechanisms for doing so. At the same time, the operations team also has

to prepare the ground segment to control a spacecraft and exploit a payload that,

from their point of view, may be poorly defined.

It is proposed that the traditional paper-based products (user manual and flight

procedures) could be usefully supplemented or replaced by a knowledge base. An

ontology to define a vocabulary is developed and it is shown to facilitate knowledge

capture and exploration. The availability of such a facility would then also assist

xiii

xiv

future missions (or even missions running in parallel) to understand the problems

that their colleagues have, and adapt or incorporate the solution if it was applicable.

There is a significant trend for spacecraft to become more complex and to have

many computers and a great deal of software on-board. This make the system

difficult to operate, and can also lead to unexpected results, since the state space of

a software-driven system is so large. For terrestrial systems, formal methods have

been developed to try to counteract the trend: by proving certain behaviour in the

specification, the number of paths that need to be tested can be significantly pruned.

It is proposed here that formal methods could be adopted to test and communicate

knowledge, as well as to improve the design.

The trend to have increasingly intelligent sub-systems has been occurred in par-

allel to the trend to have increasingly sophisticated data communication. This is

applicable equally to command and monitoring. The information content of param-

eters is analysed, and the content of flags and simple packets is calculated.

Acknowledgements

I would like to thank Tom Bowling, my supervisor, for his many suggestions and

patient support during this rather long research.

Of course, I am grateful to my parents for their patience and love. Without them this

work would never have come into existence (literally). Without my wife, Tatiana,

this would not have been worth doing.

Finally, I wish to thank John and Paulo because they taught me so much, and they

made my job such a pleasure.

David Verrier

April 25, 2001

Vega Group PLC

Welwyn Garden City

xv

Glossary

ASW Address and Synchronisation Word

BCH Bose Chaudhuri Hocquenghem

CCSDS Consultative Committee for Space Data System

CFE Customer Furnished Equipment

CFI Customer Furnished Item

CLTU Command Link Transmission Unit

CRP Contingency Recovery Procedure

DBMS Database Management System

ESA European Space Agency

ESOC European Space Operations Centre (part of ESA)

FCP Flight Control Procedure

FMECA Failure Modes, Effects and Criticality Analysis

FOP Flight Operations Procedures

LEOP Launch and Early Orbit Phase

MSSS Multi Satellite Support System

OCC Operations Control Centre

OSI Open System Interconnection

PCM Pulse Coded Modulation

PCM standard ESA Standard for telemetry and telecommands (superseded)

SCOS Spacecraft Control and Operations System

SQL Structured Query Language

TC Telecommand

TM Telemetry

1

2

Chapter 1

Introduction

’The unexamined life is not worth living.’

Socrates (469 - 399 B.C.)

This work relates the current state of the art in the Spacecraft Operations industry.

It is based on the author’s experience on commercial space projects, international

scientific projects and manned space projects.

1.1 Background

The author’s experience after more than 15 years in the space industry is that space

projects are usually last a long time and have a lot of people working on them. Even

though the recent experience indicates that rather more consideration is given to

designing spacecraft that can be operated easily than used to be the case, the author

identifies a number of factors that tend to make the spacecraft operations difficult:-

• Launch-centric view of the space-project.

• Fluctuating participation in development life-cycle leads to a lack of continuity

in people and knowledge across the project.

• People perform different roles, have different viewpoints and use a different

vocabulary at various stages in the development. This leads to a perception

3

4

Design
and

Manufacture
OperationsLaunch

Industry Launch
Authority

Operator

Operations are given
less emphasis

Highly visible areas

The most visible aspect of a space mission is the launch. Some people are also
aware that engineering goes into the design, integration and test of a spacecraft,
but historically the importance of operations have been neglected.

Figure 1.1: Classical View of Spacecraft Engineering

gap, a difference between the logical understanding of different people who are

really talking about different parts of the same whole.

• Structural and organisational problems lead to a lack of knowledge sharing

across the project.

1.1.1 Launch-centric view of space projects

Many people seem to consider that the most difficult part of the project is when the

spacecraft is designed, built, integrated, tested and launched. Some people actually

consider that this is the whole project and that what comes after the launch is

almost unconnected with what happens before the launch. However, this viewpoint

is inconsistent with the actual purpose of the spacecraft: usually to gather data or to

perform some other service or task. After launch, the industrial team that built the

5

satellite starts to run-down, with the more experienced people usually being the first

to leave a project, since they are most in demand else-where. Within the author’s

experience,it is even known for the management team to change or run-down before

the spacecraft is launched, long before it can reveal any scientific results or enter

into service, and so before it is revealed whether the decisions that were taken during

the development were correct. This is a clear indicator that the operations phase is

not given a very high priority.

This launch-centric view is shown in Figure 1.1. This can be highly imbalanced,

since the whole reason for building and launching the spacecraft was to perform a

purpose and return some results, but also the post-launch phase is usually at least

as long as the pre-launch phase. It is also worth noting that the tasks of building,

launching and operating the satellite are very often performed by different teams.

This is true for most American missions (commercial or military), Russian missions

(still mostly military or defence-oriented) and European missions.

Most of the remaining factors are linked to reducing the knowledge transfer either

from one project to another or through time on the same project.

1.1.2 Fluctuating Participation Throughout Project Life-
Cycle

The people who design the satellite systems are usually different from the people

who build and integrate it, and in turn it is frequently the case that yet another a

different group operates the satellite. This is virtually always the case in missions

operated by the European Space Agency, ESA, where there is usually also a separate

ESA team managing the procurement of the satellite (and payload).

After the launch, the industrial team that assembled the spacecraft disbands and

the management team is assigned to another project. During the duration of the

procurement, technology continued advancing and so it is rare for a completely new

project to use the same kind of technology as a previous project. Whilst a particular

6

technology (e.g. microprocessors with the mil-std-1750 instruction set) is used on a

number of different project in parallel, different projects apply it in different ways

and so build up different sets of experience. Unfortunately, the lifetime of a project

is often comparable to the lifetime of the technology, so very few people get to use

the same technology again. However, they have gained a particular experience and

overcome certain problems, and so on their next project, there may be a tendency

to carry out a strategy to mitigate against problems with a previous technology that

may never occur with the new technology.

1.1.3 Different Roles Have Different Viewpoints and Vocab-
ulary

Another factor that seems to have become a problem is that people and jobs have

become increasingly more specialised. This leads them to take a particular view of

the spacecraft and can easily lead to the situation where different specialists cannot

understand each other’s points of view. The partial antidote to this situation is

the systems engineer, who is supposed to be able to take an overview of all of the

areas and have a high-level understanding of the main problems in each domain.

Specialists also tend to develop their own vocabulary and jargon, which although it

might make it easier for them to do their job, also acts as a barrier to communication

across disciplines.

A further complication is that all of these points of view need to be explained to

the operations team. The operations team normally has least insight into the details

of the spacecraft, often never actually seeing the real flight hardware and having to

build up a knowledge base from formal documentation and information transfer.

The operations team normally starts out quite small, and then slowly increases in

size as launch approaches. Their initial vague ideas slowly materialise with time as

the actual hardware is manufactured and assembled, and as they get more contact

with the documentation and perhaps even with with the satellite. However,they

7

can never reach the same level of knowledge and understanding as a specialist who

designed the spacecraft system. It may be more, or it may be less, but it is never

the same. This process leaves a perception gap, a difference between the logical

understanding of different people who are really talking about different parts of the

same thing. The various specialists may not fully understand each others problems,

and the operations team may not understand every facet of how the spacecraft

works.

1.1.4 Structural and Organisational Problems

Many projects use equipment that is more or less standard, and then introduce some

modification to it to tailor it to the specific mission, often including renaming the

unit.This makes it more difficult for other people see the heritage of a particular

unit, and thus makes it very difficult for people who work on one project to learn

from other projects. If a third mission comes along, it is unclear if the technology

is appropriate.

Another way in which the long project durations block knowledge transfer is

because it results in de-skilling. If people stay attached to one generation of tech-

nology, since technology progresses continually, this means falling behind the current

technology, giving reduced innovation and an overall loss of technical skills. The fact

that people tend to stay on one project means that they can build up considerable

knowledge and experience on that one project. The question is, who does this bene-

fit? The only opportunity to transfer information is at the end of the project, when

people are redeployed from one project to another. Figure 1.2 shows the problem.

This transfer is ineffective, since it relies on vacancies in new projects becoming

available at the same time as other projects are ending, and also as mentioned be-

fore, the technology base will have changed. Furthermore, if the development and

8

Operations
Integration

and
Verification

Design Manufacturing Operations
Integration

and
Verification

Design Manufacturing

Operations
Integration

and
Verification

Design Manufacturing Operations
Integration

and
Verification

Design Manufacturing

Operations
Integration

and
Verification

Design Manufacturing Operations
Integration

and
Verification

Design Manufacturing

Individual Learning

Time

Knowledge transfer that relies on individuals from the development team moving
from one project to another has several disadvantages:- (i) it does not include the
final evaluation of the design in operations; (ii) it is very slow, since it can take
place after the development is completed; (iii) it does not benefit projects that run
in parallel, which are most likely to be using similar technology.

Figure 1.2: Knowledge Transfer Between Projects By Individuals

operations teams are separate, then the developers will not have any real-world feed-

back on how their design performed and whether or not their decisions on the design

and implementation were correct.

1.2 Increasing Knowledge Transfer

This thesis proposes several ways to improve the knowledge transfer within the

contemporary industrial situation and organisational frameworks that exist in the

European space industry. It is shown that the current organisations are often not

ideally suited to their responsibilities and functions, but this is accepted as a con-

straint. Trying to change the current political and industrial situation is regarded

as out of scope.

The author identifies that in his experience, many projects have failed to learn

from each other. There are many reasons why this is so, but some of the main

reasons are:

9

• Poor allocation of manpower

• Inability to share knowledge within a project

• Inability to share knowledge across projects

1.2.1 Manpower Allocation

Since projects run over such long periods of time, it is too expensive to have the

specialists available all the time and difficult to allocate the specialists when they

are needed. The industrial consortia that manufacture satellites have an incentive

to use their staff with good reputations to bring in new work, and then to try to get

the work done as cheaply as possible. This usually means that most of the work is

performed by people with much less experience.

At the same time, in the operations field, the peak in the manpower demand usu-

ally occurs during the launch and entry into service. This means that the operations

team usually starts off small, and then gradually increases until launch, and then

slowly decreases. It is the author’s personal experience that many organisations try

to absorb this temporary increase in staff by using external consultants. This can

mean that the consultants get to work in launch preparation and the Launch and

Early Orbit phase (LEOP) and then they are no longer required and they usually

leave to work on another project.

However, it is precisely during the LEOP when there is most opportunity for

learning and for judging whether or not the design decisions that shaped the space-

craft and ground segment design were correct. The consultants then join another

project as it builds up its manpower profile, and often have to live with the same

mistakes as were discovered in the project that they had just left, or discover that

the new project has implemented a completely new and different solution to an issue

that was also addressed on the previous project. This can lead to the situation where

10

a lot of the knowledge that is transferred from one project to another is only trans-

ferred via temporary workers, and most knowledge gained from the critical project

phases is actually stored outside the organisation. This leads the organisation to

become very dependent upon external companies and people.

1.2.2 Knowledge Sharing Within a Project

The author has known many projects where there was no overall spacecraft database

of telemetry and telecommands. Often there were several, overlapping databases,

where some of the data was stored, but there was initially no single configuration-

controlled place where all teams could refer to for telemetry and telecommands.

This is so fundamental to information sharing that most operations centres known

to the author have realised that this is a problem and try to insist that there is

a project-wide database. The European Space Agency ESA is proposing a stan-

dard format within the framework of the Consultative Committee for Space Data

Systems, CCSDS. However, sometimes there can still be a problem with inherited

systems. For example, on projects with a long duration or with multiple generations

of spacecraft, the operations team might have an old control system (along with an

old database format) and then the manufacturer or one of the payload providers

might offer a spacecraft database that is incompatible with the existing system in

some respect (e.g. identifier length or content). This can result in the operations

team using a different set of identifiers from the design or integration teams, which

results in much more work for everybody, as well as a clear loss in transparency.

1.2.3 Knowledge Sharing Across Projects

It can be very difficult for one project to learn from another project. The author’s

experience indicates that unfortunately this is as applicable to projects running in

parallel as it is to projects running in series. Currently much re-use takes place either

by re-using the technology ’as-is’, or by re-using the specification as it was at the

11

Project A

Specification

Project A

Design

Results

Experience

Project BProject B

Design

Specification

Results

Experience

 Internal
feedback

Internal
feedback

High value
knowledge
transfer

Projects start of with a specification and then a design is conceived to satisfy the
specification. This may generate some internal feedback which may (or not) result
in an updated specification or the decision to use ”as-is”. The design is then put
into service operationally which generates experience. This will generate feedback
into either the design or perhaps even the specification. This feedback is valuable
to any other project, since it shows what went wrong and what the team had to
change (or would have changed if it had been able to). This prevents mistakes
being repeated.

Figure 1.3: Critical Knowledge Transfer Between Projects

beginning of the project. This means that it is very difficult for a project to benefit

from the actual experience that has been gained by another project. What would

be really useful to follow-on projects would be to know the changes that the earlier

project had to make during the design, why such changes were necessary, and what

they would try to do differently if they had the opportunity (see Figure 1.3. For

them, it is hindsight, but for the upcoming project, it is foresight! Unfortunately, it

can be a non-trivial amount of work to perform such a review,and the old project

has no immediate benefit and so no strong incentive to perform it.

12

1.3 Structure of this Thesis

Chapter 1 is this introduction to the thesis. Chapter 2 introduces the Space Business,

and outlines some of the problems that can occur during a space project. It explains

why the people who operate a spacecraft are rarely the people who built it.

Organisations are one of structures which provide the context for the spacecraft

operations. Typically spacecraft operations are performed in teams within substan-

tial organisations. Chapter 3 discusses the roles of the individual members of the

team, the actors who perform these roles, and takes a critical look at some of the

organisations in which these people perform their roles.

Risk is present in every kind of business or activity. Chapter 4 discusses the nature

of risk, how it can occur in space programmes and methods used to manage the risk

inherent in space exploitation. It shows that humans are often very poor judges of

probability and of the risk that ensues. This is also a new application of existing

methods.

Chapter 5 shows how many organisations prepare for the launch or entry into service

of their satellites. It also looks at how the valuable knowledge gained during design,

manufacture and testing of the satellite is transferred to the people who actually do

the operations of the satellite when it is in orbit.

Computer systems are used to control the satellites and payloads before and af-

ter launch. In Chapter 6, the two systems are compared, found to have much in

common, and it is proposed that cost-savings could be made via a common, or har-

monised, development. This idea probably even pre-dates the author’s entry into

the space industry, but it is still a very topical question, since almost no projects

have made use of the commonality approach. The author is working on a European

scientific project to try to implement this strategy and realise the cost-savings.

Chapter 7 illustrates how the vocabulary used varies from one mission to another,

13

and how this can be a barrier to prevent the benefits of experience being passed

around. This introduces the concept of an ontology to manage the knowledge,

which is a novel application of a technique well-known in the circles of artificial

intelligence.

Formal Methods are introduced in Chapter 8 as one possible solution to the problem

of transferring knowledge across time and place as is required on modern space

missions. Formal methods are techniques which have been used for many years in

the fields of software specification and high-reliability computing, and this Chapter

adopts one particular method to show the benefit of a precise specification.

Complexity is one of the factors against which operations engineers must struggle

throughout the project, both before and after launch. In Chapter 9 the author

discuses the sources of complexity, and strategies for reducing the rate at which

complexity makes itself felt. This is an innovative look at the problems associated

with remote command and control.

Satellites are controlled and monitored in-orbit by a ground system via radio signals.

Chapter 10 gives a brief introduction to the systems that are used in western Europe

for this purpose and shows how they transfer information from the space segment

to the ground segment. This is a fairly standard introduction to current practice.

In Chapter 11 the Shannon Information of a fixed format telemetry system is cal-

culated and compared with a packet system, and an event-driven packet system. It

is shown that the information scales much better with packet-based systems. This

is an original result which is the sole work of the author.

Chapter 12 discusses the results of all the Chapters and brings together the individ-

ual threads of each Chapter. Chapter 13 presents a summary, a shortened discussion

and recommendations for further work.

14

Chapter 2

Space Projects

2.1 Introduction

This Chapter gives a high-level overview of the space business. Section 2.2 looks at

how the industry is structured in Europe and why the people who operate satellites

and space systems are rarely the people who design and build the satellites and

payloads.

The following section, Section 2.3, shows who participates in the spacecraft life-

cycle, how the participation varies from one phase to another, and why this can be

a problem.

Section 2.4 discusses mission operations. It proposes an ’Operations Model’ by

comparison with several protocol models that have been developed in industry. Us-

ing this, it is possible to see which areas are already covered international standards

and which areas are left for individual missions to design and implement themselves.

Sections 2.5 and 2.6 look at commonality in the mission operations concept across

different missions, and then at the differences.

Section 2.7 concentrates on Europe and looks at how the industry operates in a

distorted market place and some of the conflicts and inefficiencies that can result.

15

16

2.2 The Space Business

Many missions fly for many years (e.g. ten years is almost the minimum for a

telecommunications satellite, with consumables such as fuel often sized for many

more years). Before launch they all have a test and integration phase that lasts

several years. Often the design of the sub-systems is started much earlier, and it is

not unknown for negotiations prior to the start of design work to last more than one

year. When Cluster 1 was destroyed in an explosion shortly after launch on the first

Ariane 5 flight, V501, some experimenters had already been working on the project

for fifteen years.

Historically, most of the companies and organisations that build spacecraft have

been hardware-oriented, and have had little experience or desire to participate in

the development of software systems or to participate in mission operations.

Within both ESA-driven missions and commercial procurements, the activities

associated with mission operations and those with design, integration and test have

been separated almost from the very start of a satellite procurement. This division

of the procurement into separate satellite engineering and operations activities can

be the source of many problems, inefficiencies and duplication of effort. For exam-

ple, the prime contractor needs to develop and maintain a system for testing the

performance during spacecraft integration and launch site activities. At the same

time, the operations team needs to produce a control system that will be used to

operate the satellite and payload after launch. As a consequence, the operations

team has only a few opportunities to test the control system with the real hard-

ware before launch, and so it is often necessary to produce a software simulator of

the satellite and instruments to test the control system and train the flight control

team. This division can also lead to the situation where the project management

views the operations preparation as being somehow less important than the satellite

integration activities.

17

However, this separation is likely to continue, because it sometimes make sense!

In a similar way to the aviation industry, the manufacturers specialise in the man-

ufacture of the flight hardware, but do not expect to operate it, although there are

evidence of a trend for them to become involved more actively in the maintenance

activities. Even though it might not be the theoretical optimum, industry must

continue from where it actually is, not where it should be. Most organisations that

want to operate satellites are already operating satellites built by various manufac-

turers, and so already have considerable ’sunk costs’ in the investment in people

and control systems, and so they do not want to (or cannot reasonably) change to a

whole new control system every time they take a satellite from a new manufacturer,

and nor do they wish to become chained to a single manufacturer. This means that

they either have to adapt their existing infrastructure to the new satellite, or specify

modifications to the satellite so that it suits their infrastructure.

2.3 Space Project Life Cycle: Who, What and

When

This section includes a description of the life cycle of a space project, the types of

resources that must be monitored and controlled for a mission and the types of users

(referred to as agents) that monitoring and control the activities of the resources.

The prime contractor, sub-system manufacturers or instrument teams use a

checkout system (usually referred to as the Central Checkout System, CCS) during

the following phases of the project life cycle:

1. Development and test of individual units

2. Integration and test of subsystems at system level

3. Integration and test of payload at system level

4. Test of the fully integrated spacecraft as a complete mission system

18

Instrument
or
Sub-system Test

Equipment
Testing

Monitor and
Control flow

Figure 2.1: Integration Local Test (Stand-alone)

5. Launch site operations

Space projects monitoring and control the activities executed by mission re-

sources throughout the cycle of assembly, integration, test, and operation. This

requires monitoring and control of all of the subsystem elements. Figures 2.1 and

2.2 show simple schematics of the monitoring and control paths for subsystem inte-

gration and test as a stand-alone subsystem and interfaced with a simulated system.

In each case there is an agent, a subsystem tester, controlling subsystem activities

through signals and/or commands and monitoring subsystem activities by interpret-

ing signals and/or telemetry. For subsystems with computing capabilities, the tester

may be loading software, tables of parameters, procedures (sequences of commands)

and commands to invoke software programs and procedures. The subsystem may

report health status and performance summaries via telemetry. The subsystem may

also perform some level of self-calibration and diagnostics and report results to the

tester.

Integration of the spacecraft as a payload on a launch vehicle is conducted at

a launch vehicle/payload integration centre normally located near the launch pad.

During this phase, both the launch vehicle and the payload continue to be tested

as systems and the integrated launch vehicle/payload takes part in a count down

rehearsal. Payload test activities are monitored and controlled by testers at the

launch vehicle/payload integration centre and the mission test and operations centre.

19

Instrument
or
Sub-system Test

Equipment
Testing

Monitor and
Control flow

Simulated
Control and
Monitoring

Simulated
System
behaviour

Environment
Simulation

Figure 2.2: Integration and Test (in Simulated System)

Monitoring and control techniques used in this phase are similar to the ones used in

spacecraft integration and test.

Finally, mission operations begin after the payload (from the point of view of

the launcher, this is the entire spacecraft + instruments/payload) has separated

from the launch vehicle. The mission operations centre monitors and controls both

the spacecraft and the ground terminals used to track and communicate with the

spacecraft. Monitoring and control techniques used in this phase usually include all

those used in ground testing, the major difference being that there is no support

equipment to control or monitor. The control centre uses one or more dedicated

Mission Control Systems to control the satellites in flight.

In order to achieve the objectives of a space project, the activities carried out

through the mission resources must be controlled and monitored. In the past, most

of the agents monitoring and controlling mission resources have been people. It

is now increasingly common that tasks be divided between people and computers,

so the term agents is used in preference. The different types of mission resources

and the agents that monitoring and control them are discussed in the following

paragraphs.

20

2.3.1 Resources

Taken as a set, the systems employed to execute a mission (e.g., spacecraft, launch

vehicle, ground terminals, launch pad facility) are the mission resources. Different

types of systems are employed throughout the life cycle of a project, yet the tech-

niques for the monitoring and control of those systems have many common factors.

The reasons for this commonality can be explored by considering that these systems

each consist of subsystems that, in turn, consist of components.

Monitoring and control in space missions can be performed at the system, sub-

system, or component level and is frequently performed at all levels simultaneously.

To the extent that monitoring and control is done at the component level, the mon-

itoring and control problems and techniques used to address them are the same

for similar component types even though they are part of different systems. Dif-

ferent component types may have different monitoring and control problems and

techniques.

As the level of monitoring and control moves up to subsystem and system level,

the monitoring and control problem is less tied to the type of components. The

monitoring and control problem can be dealt with in terms of higher-level abstrac-

tions (such as ’system functions’ or object characteristics and behaviours). Such

abstractions may be absolutely necessary if the typical agents monitoring and con-

trolling subsystems or systems are not intimately familiar with the components that

make up those subsystem or systems.

2.3.2 Agents

As discussed in the previous section, there are many different agents monitoring

and controlling mission resources during the life cycle of a space project. These

agents can be categorised by the roles they play in the life cycle, and by the mission

resource they monitoring and control. The author, together with colleagues at the

21

Time

Time

Time

Time

Sub-system
Development

Assembly,
Integration &
Test (AIT)

Launcher
Integration

Launch &
Early Orbit
Phase
(LEOP)

Mission
Operations

Experts

Maintainers

Operators

Integrators
and testers

This figure shows how the participation of the different categories of people varies
over the project life cycle.

Figure 2.3: Participation in the Project Life Cycle

European Space Agency, has developed the following set of agent categories. The

level of participation of each type of agent in each project phase are depicted in

Figure 2.3.

Experts: These agents supply expertise on the characteristics and be-

haviour of mission resource components, subsystems, or sys-

tems. Typically they design the mission resources and assist

in their integration and test. They may have need to mon-

itoring and control mission resources during operations in

order to respond to anomalies. They may do this from a

mission operations centre or from a remote site via a link to

a mission operations centre.

Maintainers: These agents maintain any mission resource components,

22

subsystems, or systems that need attention in order to con-

tinue performing to specified requirements. Their location

depends upon which resource they are maintaining. For the

control system, they will usually based at a mission opera-

tions centre, but may also perform work ’on site’ for ground

terminals or at the home institute for payload team mem-

bers.

Operators: These agents operate the mission resources (e.g., spacecraft,

checkout equipment, and ground facilities terminals) in or-

der to achieve the mission objectives. They typically moni-

toring and control activities abstracted to the subsystem and

system levels. They usually perform their function from a

mission operations centre, but may perform work ’on site’.

Integrators and Testers: These agents put together subsystems and systems and test

them to create delivered mission systems to support the

achievement of mission objectives. Typically these agents

are mainly involved with mission systems early in their life

cycle, however integration and testing of new capabilities

can continue during the operational phase of a project, par-

ticularly for resources designed to support multiple missions.

This may include teams of scientists and researchers operat-

ing within their own institute, as well as sub-system devel-

opers. These agents usually perform their functions from a

test and operations facility. For self-testing subsystems and

systems, the agent may be an automated agent operating

within the subsystem or system.

23

2.4 Mission Operations

This section discusses several views of space mission operations in order to explain

in detail the context in which space mission resources are monitored and controlled.

The author found it interesting to analyse the overall system by dissecting it into

layers. This approach was developed by analogy to common practice in the commu-

nications industry with great success.

The Open System Interconnection (OSI) reference model describes how informa-

tion from a software application in one computer moves through a network medium

to a software application in another computer. It is a conceptual model composed

of seven layers, each specifying particular functions. The model was developed by

the International Organisation for Standardisation (ISO) in 1984, and it is now con-

sidered the primary architectural model for inter-computer communications. The

OSI model divides the tasks involved with moving information between networked

computers into seven smaller, more manageable groups of tasks. A task or group

of tasks is then assigned to each of the seven OSI layers. Each layer is reasonably

self-contained so that the tasks assigned to each layer can be implemented inde-

pendently. This has the advantage of decoupling layers as much as possible, so that

technical solutions offered by one layer can be changed or updated without adversely

affecting the other layers. A given layer in the OSI model generally communicates

with three other OSI layers: the layer directly above it, the layer directly below it,

and its equivalent layer in other networked computer systems. Table 2.1 details the

seven layers of the Open System Interconnection (OSI) reference model

The users should, according the OSI model, only interface with each other at

level 7, and leave the intermediate details to the other layers. The OSI model

is a theoretical model which has a few implementations, although none of them

implement the whole stack of 7 layers. The most faithful implementation was the

x.25 set of communication standards, which was very successful for a number of

24

Name Description
7 Application End user services
6 Presentation Data problems and data compression
5 Session Authentication and authorisation
4 Transport Guarantee end-to-end delivery of packets
3 Network Packet routing
2 Data Link Transmit and receive packets across a physical network link
1 Physical The cable or physical connection itself

Table 2.1: OSI Reference Model

Name Description
7 Application
6 Presentation
5 Session
4 Transport
3 Network Packet Layer protocol PLP
2 Data Link Link Access Procedure, Balanced LAPB
1 Physical Serial standard X21bis

Table 2.2: X.25 Implementation of OSI Reference Model

years, and is still used widely. As can be seen in Table 2.2, it only addressed the

lower three layers.

This means that any applications that communicate via X.25 have to handle

the tasks that are attributed to the layers 4,5 and 6 themselves. It is interesting

to compare the implementation of X.25 with a more modern competitor, TCP/IP.

Internet protocols were first developed in the mid-1970s, when the Defense Advanced

Research Projects Agency (DARPA) became interested in establishing a packet-

switched network that would facilitate communication between computer systems

consisting of different hardware and software. The result of this development effort

was the Internet protocol suite, completed in the late 1970s. TCP/IP later was

included with Berkeley Software Distribution (BSD) UNIX and has since become

the foundation on which the Internet and the World Wide Web (WWW) are based.

25

Name Description
7 Application Telnet, FTP, SMTP,
6 Presentation
5 Session
4 Transport Transmission Control Protocol TCP,
3 Network Routing protocols, IP, Address Resolution Protocol, ARP
2 Data Link not specified
1 Physical not specified

Table 2.3: TCP/IP Suite and OSI Reference Model

As can be seen from 2.3, the TCP/IP suite only implements a few layers in the OSI

reference model, but it still became very widely used.

TCP forms part of the Transport Layer of the OSI Model, and splits the format-

ted application data up into segments. It provides connection orientated, acknowl-

edgement and reliable transport services between end hosts. In layman’s terms, it’s

responsible for establishing and maintaining the connection until data exchanged by

application programs is complete, guaranteed delivery of data and for reassembling

the data segments back into the order in which they were sent.

Internet Protocol or IP is part of the Network Layer of the OSI Model. IP is

connectionless. Each packet is treated independently from others. IP is responsible

for the delivery of data, via routing and logical addressing.

The Link layer, level 2, is not addressed by TCP/standards, and so every com-

puter has the freedom, and the duty, to implement the services necessary to interface

the Network layer in any way it pleases. This is normally handled by the Operating

System device driver interface to the network interface on the computer. It is inter-

esting to note that the standard applications, such as Telnet or ftp only allow the

user to perform very simple, almost atomic tasks, however, by luck or design they

were what people wanted to do between computers that were networked. Telnet is

a way of getting a command prompt on a remote machine (”get me there”) and the

26

Name Description
6 Activity Mission Specific Operations
5 Decision-Support Monitor and Control Applications
4 Message Packet Utilisation
3 Data Link Telemetry and Telecommand Packets
2 Coding Encoding scheme
1 Physical Radio Frequency Modulation

Table 2.4: Theoretical Spacecraft Operations Model

File Transfer Protocol ftp is way of getting data that is on a remote machine sent

to the local machine (”bring something here”).

It is interesting to draw parallels between the communication industry and the

space industry. The author developed Table 2.4 as an ”Operations” model to com-

pare and contrast it to the implementations of the OSI model.

As with the OSI model, for each layer of the model, components in one stack can

communicate with the equivalent component in another stack without knowledge

of the underlying mechanisms to transfer the data. Similarly, each layer must be

able to pass information one layer up or down, but the design should precludes the

need for individual layers to have any greater scope. Table 2.5 shows that many

of the lower layers of the model stack have already been specified by various or-

ganisations. Initially this was performed by military or national organisations such

as ESA and NASA, but these standards have generally been superseded by wider

multi-party CCSDS (Consultative Committee for Space Data System) recommen-

dations. However, it is noteworthy that the upper levels of the Operations Models

remain mission-specific.

In the same way as Telnet lets the user behave is if he or she is actually sitting

in front of the remote computer, the different layers interact to shield the user

from the complexity of the data transfer. For example, an agent (perhaps the

scientific user in their home institute) has a virtual path to the resource (their

27

Name Description
6 Activity Mission-specific operations
5 Decision-Support Mission-specific Monitor and Control Applications
4 Message Standard: Packet Utilisation Standard

(and mission-specific extensions)
3 Data Link Standard: Telemetry and Telecommand Packet Standard
2 Coding Standard: Encoding scheme
1 Physical Standard: Radio Frequency Modulation

Table 2.5: Spacecraft Operations Model and Available Standards

payload instrument), even though in practice the telecommands may be routed

via a central mission control centre, a ground station, the spacecraft before finally

arriving at the instrument. The same also applies to data downlink, of course.

Figure 2.4 shows a simple schematic of the major flight and ground systems of a

space mission operation (a similar setup for a checkout system can exist before launch

by replacing the Payload Operations Centre with a Payload Checkout System).

Some of the monitoring and control of the ground station, spacecraft, and payload

are carried out over ’virtual paths’ from the payload and S/C operations centres.

Some level of autonomy resides in the spacecraft and the payload, allowing local

monitoring and control.

This concept of an Operations Model can be neatly fitted in with the high-level

concept of agents and resources that was introduced earlier. If the agent wishes

to do something with the resource (e.g. an instrument), she interfaces through the

layer with the decision support layer (e.g. a control system). This layer contains the

applications that provide decision support logic to assist the agent in the monitor-

ing and control process. These applications are programmed to determine whether

commands are safe and effective, to compare monitoring data against expected re-

sponses or states, and to automatically respond to certain monitoring data by issuing

commands.

As shown in Figure 2.6, the monitoring and control functionality is built upon

28

Payload
operations
Control
Centre

Mission
Operations
Control
Centre

Ground
Station

Spacecraft

Payload

Virtual path

Just as with the OSI communications stack,different control loops can be
performed in parallel using the same physical system. The individual layers of
functions should prevent interference.

Figure 2.4: Physical and Virtual Paths

Physical

Coding

Data Link

Message

Decision

Activity Agent

Monitoring/Control
and decision-support logic

Monitoring/Control
mesages

Packets

Bit stream

Radio link

Layer Implementation

By analogy with the OSI communication stack, it is interesting to develop an
Operations Model, and show how the different layers should interact with each
other.

Figure 2.5: Monitoring and Control Layers

29

Physical

Coding

Data Link

Message

Decision

Activity Agent

Monitoring/Control
and decision-support logic

Monitoring/Control
mesages

Packets

Bit stream

Radio link

Layer Implementation

Resource

Monitoring/Control
and decision-support logic

Monitoring/Control
mesages

Packets

Bit stream

Radio link

Implementation

Each level in this Operations Model should directly interface only with the layers
above and below it, and should carry out a dialogue with the equivalent layer in
the the next protocol stack. This could equally apply to the interaction between
the ground control team and the spacecraft,or the spacecraft control software and
a payload.

Figure 2.6: Interfacing Monitoring and Control Layers

the messaging services in the the messaging layer. These messaging services are the

mechanisms that provide a consistent way to communicate monitoring and control

information. Monitoring and control information is placed in or extracted from

messages at both the agent and resource conducting the monitoring and control

dialogue. The implementation details of the service are hidden from the agent.

Underlying the service are two way flows of messages that consist of requests and

responses similar to the concepts of the client/server model.

The underlying flows of messages use the data link, coding and physical layers to

get the messages to the intended recipient, the resource. The concept is extensible,

in that the target resource could also be, for example, the onboard data handling

system of the spacecraft, which is a resource when viewed from the ground, but

can also perform as an agent with respect to another resource such as a scientific

instrument. Some common monitoring and control functions can be executed either

on ground or on-board and so ideally the same monitoring and control interface

30

definition language can be used.

2.5 Operations Commonality

This section discusses the system from the spacecraft operations point-of-view. It

describes features that are common to all spacecraft mission operations and those

features that will vary from mission to mission. These views define the space mission

operational environment in which the layered monitoring and control and commu-

nication functions must be performed.

Spacecraft engineering operations can be categorised into a few functions that

are common to all space missions. These functions are ’end-to-end’, that is, they are

performed by coordinated activities at both the operations centre and the spacecraft.

For any given mission the allocation of activities between the operations centre and

spacecraft may differ, however these end-to-end functions are done for all space

missions supporting a payload.

1. Orbit/Trajectory which includes those functions necessary to place the payload

in the proper position/velocity in space

2. Attitude/Pointing which includes those functions necessary place the payload

in the proper orientation

3. Power which includes those functions necessary to supply the payload with

sufficient power,

4. Thermal which includes those functions necessary to maintain the payload

within allowable temperature range,

5. Data Handling which includes those functions necessary to exchange data be-

tween payload elements, transform payload data, associate payload and space-

craft data, or preserve payload data.

31

6. System Executive which coordinates the functional areas listed above to the

extent necessary to achieve space mission objectives. On a manned mission,

this will include the crew members.

7. Life Support Systems are an additional requirement for manned missions,

to provide a benign environment containing the correct availability of Oxy-

gen,water, food, etc and waste removal.

2.6 Mission Differences

Although the end-to-end functions are common to the spacecraft operational envi-

ronment for monitoring and control, there are significant differences from mission

to mission in requirements on monitoring and control loop performance and con-

straints placed on monitoring and control loop implementation by processing power

and communication bandwidths available from the mission resources.

2.6.1 Monitoring and Control Loops

The monitoring and control dialogue between the agent and the mission resource

form a monitoring and control loop. The loop consists of a control instruction (e.g.

command) sent from the agent to the mission resource, the execution of the instruc-

tion by the resource and an optional response (e.g., monitoring information) from

the mission resource to the agent indicating the results of the executed instruction.

If the mission resource is required to respond this is ’closed loop’, if not it is ’open

loop’.

In closed loop control, the mission resource response may give rise to another

command when the agent monitors it and the cycle around the loop repeats itself.

The total monitoring and control dialogue for any given mission is made of many of

these loops and repeated cycles around the closed loops. The requirements on time-

liness of exchanges of information in these loops is driven by the mission objectives.

32

Tightly coupled closed loops are necessary to execute some types of dynamic control

or to protect mission resources in case of anomalies. Other loops may be loosely

coupled closed loops or open loops. Tightly coupled closed loops are characterised

by short turnaround times and/or intensive exchange of monitoring and control in-

formation. Loosely coupled closed loops are characterised by long turnaround times

and/or sparse exchange of information.

Several different kinds of closed loop control may be distinguished. At the sim-

plest level, the agent monitors the telemetry, observes that a change is needed and

sends commands that will carry out the change. The agent can monitoring the

desired change throughout the dialogue. This is a case of direct control.

The next case is when the agent sees that a change is necessary, and sends

commands that will result in this change being carried out. To close the loop, the

resource should report back that the change has been completed. This is supervisory

control.

At the extreme level, the resource can monitoring itself, and report back to the

agent that it believes that everything is in order, or even only reports to the agent

when it needs assistance. This is autonomy, a strategy of great inherent risk, since

the system must monitoring its own health, and there are risks that for example,

one failure might mask another.

The system should allow for these variations in monitoring and control loop

requirements by allowing for distribution and portability of monitoring and control

applications across the set of mission resources. Note that space missions that have

little space/ground communications bandwidth available to support the monitoring

and control dialogue, that have long periods when space/ground communications

links or not available, or that have long two-way communication times are, in general,

forced to close the more critical monitoring and control loops on board the spacecraft.

This will be discussed more in the next section.

33

2.6.2 Available Bandwidth and Processing Power

For checkout operations there will be little or no reason to consider processing power

or communication bandwidth limitations. However, for space systems, limitations

(sometimes severe) are placed on computer, memory, and communications resources

due to mass and power available and the radiation environment of space. The impact

of this upon the mission operations concept is much more severe than the impact

upon the checkout system, so it is possible the the space system can be checked-out

on ground in an unrepresentative way. In this section, this author explains a simple

comparison between mission types that he developed.

Simple missions (type A in Figure 2.7) may have relatively few monitoring and

control loops and need to only close a few of them on-board the spacecraft. These

missions can be accomplished even though there is not much processing power and

not much on-board or space/ground communications bandwidth available to sup-

port monitoring and control applications. As missions become more complex with

relatively many monitoring and control loops, various distributions of monitoring

and control capabilities in mission resources can satisfy mission needs.

Mission type B shown in Figure 2.7 is an example of one design solution that has

been used frequently in the past. The additional monitoring and control loops are

closed at the operations centre, again except for those few that must be closed on

the spacecraft. However, this has become quite labour intensive at the operations

centre and has tended to force almost continuous space/ground communications.

These features drive up mission operations costs and are unacceptable solutions for

most missions being designed to hold down life cycle costs. However, automated

applications at the operations centre acting as monitoring and control agents for

humans can reduce life cycle costs even for these types of missions if the Earth-

Space link availability and bandwidth allows it.

Mission type C (in Figure 2.7) is an example of building more ’autonomy’ into

34

Operations

Center

Spacecraft

Monitor & Control Loops

Monitor & Control Loops

Monitor & Control Loops

M&C Loops

Simple mission, S/C has small on-board

processing power and communications

bandwidth, small space/ground communications

bandwidth

Complex mission, S/C has small on-board

processing power and communications

bandwidth, large space/ground communications

bandwidth

Complex mission, S/C has medium on-board

processing power and communications

bandwidth, small space/ground communications

bandwidth

Complex mission, S/C has large on-board

processing power and communications

bandwidth, no space/ground communications

bandwidth

A

B

C

D

Different types of mission may require different mixtures of on-board control ,
on-ground control or control by human intervention. A flexible control strategy
should be able to move fairly easily between human interaction, to
ground-automation and then to onboard automation. The optimum point will be a
function of the available contact period, the required bandwidth, and the required
reaction time.

Figure 2.7: Monitoring and Control Loops in Space Mission Operations

35

spacecraft monitoring and control. There are still many monitoring and control

loops, but most of them are closed on-board the spacecraft. A minority of them are

still closed at the operations centre. This reduces labour at the operations centre

and allows less frequent space/ground communications, but at the cost of increased

processing and communications bandwidth on the spacecraft.

In Mission type D in Figure 2.7, the spacecraft is completely autonomous. All

monitoring and control loops are closed on board and therefore no space/ground

bandwidth is used for monitoring and control. Of course, for a complex mission this

will require a large amount of processing capability and on-board communications

bandwidth.

The C type is mainly during LEOP and commissioning phase while the D type

is for the deep space operations.

2.6.3 Control Strategies

Sometime it is possible that the S/C could undergo a component failure which

could be recovered by the use of a back-up (redundant) unit. In order for the

ground controller to be able to check the S/C configuration, it is necessary to draw

attention to the fact that this has occurred.

Although the controllers pride themselves on being attentive and closely moni-

toring the telemetry all the time, it is inevitable that the trends or initial indicators

of a problem may be missed and that problems are identified only when an alarm is

raised. At most European control centres (e.g. ESOC, EUTELSAT and EUMET-

SAT), this change would be detected by either Status Consistency checks, which

would produce an alarm at the unexpected change in telemetry, Expected Status

Checks or Out Of Limit checks. Even though the spacecraft are apparently being

monitored all the time, a response is made only when an out-of-limits conditions is

detected. This is referred to as control by exception.

36

It is the personal experience of the author that some control centres in Russia

have abandoned the routine analysis up TM altogether, and so even switch the

transmitter off, removing all routine contact with the ground controllers. When

an autonomous reconfiguration occurs, the S/C sends a Ground call by turning the

transmitter on and transmitting an identifiable signal. This is subsequently detected

(after an unknown interval) by a ground station, which then makes a full acquisition

of TM. This can be regarded as the ultimate implementation of control by exception.

Note that in this case a full history of telemetry is not available unless it is stored

on-board.

The Russians are in the process of reversing this strategy, partly through the

desire to meet market needs (the new customers are mostly Western, and expect

to be able to monitoring and predict outages before they happen) and partly as a

desire to increase the system reliability.

This author would explain this situation by looking at the underlying economics

of the centralised economy. The Russian production strategy evolved in a time of

central management when the factory was expected to make satellites and the only

customer was the military. There were no penalties for early satellite failure, and

launch costs were not paid by the military. This encouraged the development of

many satellites with relatively short life-times, and some dramatic under perfor-

mances. One example known to the author from his personal experience concerned

a C-Band transmitter being produced by a supplier in Russia in 1998. It had an

expected lifetime of 300 hours. Following the drift to a market economy after the

breakdown of the Soviet Union, that the Russian satellite manufacturer has freedom

to select suppliers and an incentive to do so. They selected an equivalent Japanese

item which weighs less, produces more radio frequency power and has a qualified

lifetime of 10 years.

The principal disadvantage of the control by exception strategy is that it reduces

37

the quality of service provided. Seeing a unit enter a failure state that might not

be recovered by the on-board automation does not change the reliability of the

spacecraft, but even a warning of 2 minutes before a loss of attitude or loss of

service can be sufficient to switch customers from one spacecraft to another. This

does increase the quality of service from the customer point of view. Since almost

all telecommunications providers have a constellation of satellites, some of which are

collocated, this is a major advantage for them. On a science mission, this possibility

does not exist.

2.7 Industrial Policy

There are a number of political and economic factors which tend to disturb the pro-

curement process. This increases costs and reduces the quality of the final product.

Most of these can be seen within the European Space Agency’s processes.

1. As national barriers to trade have broken down all over Europe, but especially

within the European Union, a massive consolidation has taken place, to the

point that there are now only two industrial consortia capable of acting in the

role of industrial prime contractor for a large satellite procurement.

The European Space Agency failed to adapt its rules to the changing envi-

ronment. ESA has rules in place which require that each member state to

receive a percentage of the work (by value) of each project that is related to

the amount that the country contributes to ESA. This is the policy of justes

retours, fair returns. For example, if a country contributes 10% of the value

of a project, this would indicate that companies within that country should

receive 10% of the value of the project. This leads to projects being broken up

into numerous small work packages which can be easily distributed geographi-

cally, which can easily drive up the price of the work, or more usually, decrease

38

the quality of the product because so much money is wasted integrating small

units and even on travelling.

2. Some countries have a very small industrial base, and this means that effec-

tively one or two companies must be in every consortium. It is not unusual

for a company in Spain or Italy to appear in both competing consortia that

are bidding for work.

3. The requirement of balancing the distribution of work also means that it is

difficult to write contracts that include penalties for late delivery or poor

design. No project manager will let himself be left in the situation where

he/she has 90% of a satellite and the prime contractor will not do any more

work, and so it is difficult to impose penalty clauses. Often work packages are

completed and paid before the satellite is integrated and tested, and almost

always paid before the satellite enters the nominal operations phase.

4. Since the number of bidders for each contract is so low, it is difficult to nego-

tiate payment terms which are end-loaded, to keep the suppliers working until

the end. This practice is very common on other commercial contracts.

5. The bid evaluation procedure specifically excludes references to previous work

on other projects, so even if a company has developed a bad piece of hard-

ware/software on a previous mission, this cannot be included in the evaluation.

The evaluation can only refer to the ’quality’ of the current bid, which is a few

percent of the overall evaluation.

6. For scientific missions, the funding for the instruments is completely separate

from funding for the spacecraft. This brings the instrument teams potentially

into conflict with the spacecraft team, but the project management has no

direct leverage over the science teams. Similarly, the funding for the scientific

39

data processing is separate from the spacecraft, so there is little incentive

for cost-saving by combining the development, integration and post-launch

operations or even cooperating across different phases.

7. The size of many ESA projects means that they are often very complicated. It

is always tempting a include another instrument, but the result is that projects

get bigger and slower. The project Herschel-Planck spent more than one year

between the end of phase A, proof of concept, to the beginning of phase B,

design. The size of the satellites and the speed of the progression also drives

up the costs. It is difficult to maintain staff continuity over such a long project.

8. Companies in North America are not immune to the vagaries of political mis-

management. After a number of ’Spy Crises’, the USA imposed dramatically

tightened restrictions upon the export of information related to almost any

technology, explicitly including the aerospace industry. It is the personal ex-

perience of the author that this means that for a commercial contract e.g. for

a communications satellite, American companies can offer to deliver a satellite

to a US launch site, but are seldom able to provide background information

that is necessary for the evaluation of the design or for operations. If the pur-

chaser insists on receiving adequate information about what he/she is buying,

then it is clearly very difficult to select an American company.

2.8 Summary

This chapter has discussed the space business from a very high-level. Section 2.2

has shown how the industry is structured and why the industry is normally divided

into separate communities of satellite operators and satellite builders. This division

certainly leads to inefficiencies in information transfer and usually also to cost in-

creases for the duplicated development of checkout and control systems even though

40

there is significant commonality between the two.

Section 2.3 has shown who participates in the spacecraft life-cycle, how the par-

ticipation varies from over the project lifetime, and why this can be a problem.

Section 2.4 discussed mission operations. It proposed an ’Operations Model’ to

show which areas are already covered by international standards and which areas

are left for individual missions to design and implement themselves.

The optimum point will be a function of the available contact period, the required

bandwidth, and the required reaction time. Sections 2.5 and 2.6 looked at the

commonality in the operations concept across different missions, and then at the

differences. There is a broad spectrum of control activity that can be performed on-

board, on ground or by human intervention. Different types of mission may require

different mixtures of these techniques. A flexible control strategy should be able to

move fairly easily between human interaction, to ground-automation and then to

onboard automation.

Finally, since much of the space activity relies on government funding of some

form or another, it is easy for activities to become dominated or distorted by political

activity or interference. Section 2.7 has shown how the industry operates in a

distorted market place and some of the conflicts and inefficiencies that can result.

Chapter 3

Organisational Behaviour

3.1 Introduction

Organisations perform actions by requiring an agent (human or machine) to perform

according to a certain structure. These actions are governed by one or more of the

following:

• Rules and Procedures

• Intervention by supervisor

• New Project/Task Force/Review Team

• New Department

All of these structures and practices are present within the space industry, and

it is interesting to compare and contrast the different emphasis given to each. This

Chapter examines the different kinds of behaviour that is displayed by individuals

and organisations. Behaviour is broken-down into skill-based behaviour,rule-based

behaviour and knowledge-based behaviour and the different benefits and disadvan-

tages of each are discussed in section 3.2.

Section 3.3 classifies rules and procedures according to different criteria, and

section 3.4 shows the structures that the author has experienced in the teams of

people responsible for operating spacecraft, and section 3.4.4 looks at the dynamics

41

42

of people working in teams and some problems frequently associated with teams.

Section 3.4.5 presents guidelines for individuals and how they should interact within

groups in order to reach a good decision.

The nature of some of the organisations that operate satellites is discussed in

section 3.5. This sections looks at several European civil satellite operators, all

of which started out as non-governmental organisations and one of which made a

transition to a commercial company. It discusses the way that these organisations

procure satellites, the internal structure of the organisations, the problems that each

organisation faces and the ways that they have reacted to their challenges.

3.2 Behaviour

The aviation industry has been in existence for much longer than the space industry,

and it is interesting to see what lessons can be learned from aviation and applied to

the space industry.

’The behaviour of a skilled operator...may be broadly broken into three

categories. Skill-based behaviours are those that rely on stored routines

or motor programmes that have been learned through practice and which

may be executed without conscious thought... Rule-based behaviours are

those for which a routine or procedure has been learned. The compo-

nents of rule-based behaviour may compromise a set of discrete skills.

Knowledge-based behaviours are those for which no procedure has been

established...[and] require the pilot to evaluate information, and then use

his knowledge and experience to formulate a plan for dealing with the

situation’[18].

43

3.2.1 Skill-based Behaviour

Skills may be acquired in different ways, for example, by practicing the whole pat-

tern of behaviour until the desired result is achieved or by giving conscious attention

to individual aspects of the skill. This may seem to be less relevant to spacecraft

operations, since there is not a clear element of physical skill compared with, for

example, an aircraft’s manual approach and landing. However, many activities are

performed so frequently that they become automated by the operator and as such,

can be considered skill-based, and this can bring several problems. For example, the

skill may be stored as ’non-declarative knowledge, i.e. the possessor of the skill may

not be able to articulate what the components of the skill are, and this may cause

difficulty if he wishes to pass the skill on to another person’[18]. Furthermore, the

operator can, when busy or distracted, ’make the correct initial decision, inadver-

tently exercise the wrong skill, but fail to monitor his activity and remain completely

unaware of the mistake that he has made. This mechanism is very common on flight

decks’[18].

A second route to error is referred to as ’environmental capture’. It occurs with

a skill that is ’frequently operated in the same environment (and becomes a habit),

it may be elicited by that environment even though the pilot [or operator] has not

made a conscious decision to operate the skill’[18]. Green reports that ’virtually all’

pilots who have landed with the undercarriage up have combined these errors, and

adds the final reminder ’it should be remembered that these errors of skill do not

happen to novices, since they have to think about what they are doing. They occur

only to those with experience’[18].

3.2.2 Rule-based Behaviour

Procedures and checklists should normally be stored either on paper or electronically.

Procedures are widely used in the aviation and space industries, and Green[18]

44

attributes the safety of commercial aviation to their use, together with the associated

training and checking. Even though the details of the procedure may be stored, the

operator still needs to retain a basic memory of the procedure in order to retrieve

an action it. Green reports that ’errors in procedural behaviour are usually because

the pilot has made a initial misidentification of the problem and engages the wrong

procedure entirely...Errors may also occur if the pilot believes that it is safe to depart

from procedure’[18].

3.2.3 Knowledge-Based Behaviour

Green provides a very simple example to illustrate some important aspects of how

people tend to evaluate evidence and make decisions. ’Imagine that you are told

that there is a rule that connects sets of three numbers, and that you have the task of

discovering the rule. To help you, you are given an example of a set of three numbers

that fits the rule; you can try out further sets of numbers and will be told if they fit

the rule or not. The example set of numbers is 2, 4, 6. A person playing this game

will often try a set of numbers such as 10, 12, 14 and be told that the set fits the rule.

He will try several similar sets of numbers and come rapidly (perhaps after only one

trial) tot he conclusion that the rule is n, n + 1, n + 2, only to be told that this is

not the rule. Despite being told this, the future examples that the person tries are

likely to be further instances that fit his own inference (eg 24, 26, 28) and when he

is told that they fit the rule, he becomes more and more sure that n, n + 1, n + 2 is

the right rule, and may even refuse to believe that it is not the rule. Another person

may come by a similar path, and equally rapidly, to the conclusion that the rule is

n, 2n, 3n, try out such instances (eg 50, 100, 150), to be told that they fit the rule,

and be equally disappointed to be told that it is not the rule. The explanation is

that the rule is ’Any three numbers in ascending order’[18].

Green uses this and other examples to arrive at the following conclusions[18]:

45

• Data may be ambiguous.

• People are very keen to structure information and make inferences from it.

• The inferences that people make are very heavily influenced by their experi-

ences and by the probability structure of the data.

• Once a person has formulated a certain way of thinking about the problem, it

appears difficult for him to get out of that way of thinking and try a different

interpretation of the data.

• Even if a person tries to test his hypothesis about a set of information he

is likely to try only positive instances of his hypothesis and unlikely to try

negative instances of his hypothesis.

• Even if a person is presented with instances that negate his hypothesis, he is

likely to disregard them.

• People make inferences in accord with their wishes, hopes and desires.

• Having a hypothesis reduces anxiety and stress compared with admitting to

oneself that one does not understand what is going on.

Given these fundamental limits on knowledge-based activities and the frequent pit-

falls, it is important for members of the flight control team to be aware of potential

mistakes and for both individuals and the whole team, particularly the leader, to

behave in a certain manner. This is discussed further in section 3.4.5.

3.3 Rules And Procedures

Rules are the ”lowest levels” or fine grained source of control, and ideally they should

be unambiguous and deterministic. Each of the higher levels usually uses all of the

lower levels and is hence not as efficient, although flexibility is introduced as a form

46

of compensation. It is the author’s experience that people working in the industry

assume that all activities to be carried out on the satellite are proceduralised and

that any attempt to perform activities for which a procedure has not been provided

would require specific authorisation from the project management.

Rules can be classified in many ways. One technique divides rules initially into 2

categories: constraint rules and deviation rules. Constraint rules, as the name sug-

gests, specify policies or conditions that restrict behaviour, intervention or structure.

Deviation rules help infer policies or facts from other facts.

3.3.1 Response Rules

Stimulus/Response rules constrain behaviour by defining WHEN and IF conditions

that must be true for a particular operation to be triggered e.g.

WHEN the stock level of a product is less than re-order point then

reorder WHEN library book requested by borrower

IF a copy available THEN

check out this copy to borrow

ELSE place next copy of book on reserve

Stimulus/Response rules constrain behaviour within an event context. The same

action could be called in multiple contexts. When an IF condition must be true for

an operation to be performed correctly a different kind of rule is required.

3.3.2 Operation Rules

Operation constraint rules specify those conditions that must hold before and after

an action starts to ensure that the action performs correctly. Such constraints are

completely independent of the event context and should be vital to the execution of

the operation. In the field of software engineering Bertrand Meyer [31] states that

these rules should be viewed as a contract that binds both the method (procedure

call) and its requesters (execution context):

47

”if you call me with the precondition satisfied I promise to deliver a final

state in which the post-condition satisfied” [31].

Precondition rules say that the operation cannot go ahead unless (all) these con-

straints are met. In contrast, post condition rules guarantee the result of an opera-

tion. In a perfect world, they might not be necessary, but if a practical point of view

is adopted, the possibility of failure must be accepted and post conditions supply a

mechanism for triggering an action after an unexpected failure: in software terms

this is an exception handler.

3.3.3 Structure Constraint Rules

Structure constraint rules specify policies or conditions about objects (things) e.g.;

attributes, and interactions between things. An attribute could be constrained:

IT MUST ALWAYS HOLD THAT an employees salary cannot be greater

than that of the manager

Structural constraint rules are not context sensitive they must be true whatever the

phase of life of the object.

3.3.4 Inference Rules

Inference rules specify that if certain facts are true, a conclusion can be inferred.

Note that if inference rules are specified in an IF AND ONLY IF form, they operate

bidirectionally.

3.3.5 Supervision

Satellites and their associated ground segments are supposed to be operated ac-

cording to procedures, as outlined above. When it is not possible to decide which

procedure to run, or a procedure fails, than the catch-all clause is to refer the prob-

lem up the defined chain of supervision. Each supervisor then has to decide if she/he

48

is happy accepting that level of risk, and taking a decision, or referring it upwards

again.

3.4 Flight Control Teams

In the author’s experience, the structure of most flight control teams can be com-

pared by considering different roles to be performed, the actors who perform those

roles, and the functions of the various roles.

3.4.1 Roles

Spacon (Spacecraft Controller)

Spacons generally perform routine functions. The ground control system is usually

highly automated, but often each individual task must be initiated by the Spacon.

They generally work in shifts and there is usually at least one spacon present all the

time. Spacons generally have a secondary-level education.

Analyst

Routine trend analysis is performed by a senior spacon, or a former spacon who

has moved off the shift rotation into a day job. This is a much-coveted status for a

spacon.

Engineer (Spacecraft Operations Engineer, SOE)

Engineers generally either write procedures or specify/write software which form

part of the mission control system. The procedures are usually executed by a spa-

con, and during the mission the engineer only really has to respond to anomalies.

Engineers always have a university level education, usually in a technical subject:

engineering, physical science or sometimes mathematics/computer science

49

Manager (Spacecraft Operations Manager)

The SOM is responsible for the entire team. She/he will normally assign tasks

within the team and then expect a report upon their completion. Most of the

activities are delegated to be performed under the supervision of the engineer, with

the SOM being called in the event of a major anomaly or if it becomes necessary

to interface with other organisations. The SOM usually has many years experience

as an engineer on a number of different projects, and has a similar, university-level

education

3.4.2 Agents

The roles outlined above have to be performed by agents, people or computer sys-

tems. EUTELSAT and ESOC are both European organisations and both have a

mixture of staff types: Permanent staff (called ”Staff” in the language of the indus-

try) and temporary staff (referred to as ”Contractors”). EUMETSAT also has same

mixture, but suffers from a different set of problems.

1. Staff:

Staff are European civil servants, a status which brings with it many advan-

tages: tax free salary, private health insurance, and a subsidised education

for their children. Until recently, staff were recruited directly into permanent

positions. This permanence, coupled with the substantial benefits in life-style,

mean that very few staff leave, and that they subsequently accumulate in the

organisation hierarchy. Although now days most staff are initially employed

on a 4 or 6 year contract, it is rare for a staff member who wishes to stay not

to get offered a renewed contract (e.g. 6 years). EUMETSAT has been trying

to enforce the principal of rotation of staff, by making it clear that staff will

not be offered a third contract after the first two, which can bring problems

of its own since projects tend to be very long both before and after launch.

50

2. Contractors:

Contract staff are provided by various contract companies throughout Eu-

rope. In terms of providing operations engineers, Vega is the market leader

in Europe. The staff are supposed to provide continuity and the contractors

are supposed to be recruited to perform a particular well-defined task, on the

understanding that they will leave when that task is completed. In a static

market, the rationale of hiring contractors to help out in periods of intense

activity would seem to be a good one, but the market for spacecraft oper-

ations seems to be expanding, and as soon as people are viewed as ’having

experience’, they become highly valued throughout the industry. Although

the period from pre-launch through to entry into service is very stressful, it

is also the time when most learning takes place, and therefore when the most

valuable experience is accumulated. Relying upon contractors for this phase

can therefore lead to a loss of experience, which is heightened if the staff mem-

bers have been busying themselves in management positions. This becomes

further amplified since engineers have a natural desire to concentrate on the

most interesting part of the life-cycle, and after having gained experience of

one launch or service entry, the engineer then becomes a much more attractive

proposition to other projects within the same organisation or outside it.

3. Automation:

At both ESOC and EUTELSAT, the level of automation in the ground segment

is surprisingly low. The satellites are designed to be capable of 48 hours

autonomy (i.e. no ground intervention) but the ground segments still have

a lot of redundancy, e.g. at EUTELSAT it is possible to transfer control to

a complete back-up control centre within 2 hours. There is little evidence of

optimisation of the trade-off between satellite autonomy and ground segment

robustness.

51

The control system can usually perform limited, pre-defined commanding ac-

tivities once they have been enabled by the controller, e.g. send this command

at a certain time, send this command when this mode equation (logical state)

is true.

The experience with ground-based autonomy (of the kind often branded as

’Artificial Intelligence’) is poor, in that often delivers less than it promises, it

replaces one operations engineer with one operations engineer and one software

engineer, and is unreliable. Despite having all actions proceduralised, there is

an enormous amount of implicit knowledge that is required in order to decide

which is the correct procedure to run at any given time.

3.4.3 Functions

A Spacecraft Controller generally has very little to do and those operations that are

frequently necessary soon tend to be routine. Spacons are present as insurance for

the time when something goes wrong. Routine trend analysis is usually performed

by a senior spacon or analyst. Analysts have historically also been responsible for

manually entering the satellite database of telecommands and telemetry, since an

electronic import of data from the manufacturer has not been possible, largely for

non-technical reasons. Analysts are generally responsible for updating the satellite

database if a change needs to made, such as adding or modifying telemetry displays,

or changing status texts, calibrations curves or limit checks.

The engineer initially writes procedures or designs systems which are used by

the spacon. During the mission (i.e. the very purpose for which the satellite was

procured) the engineer only really has to respond to anomalies. Anomalies are diffi-

cult to classify by their nature, and when an anomaly occurs sufficiently frequently,

it becomes almost normal until, of course, it changes.

52

Initially engineers are fully occupied in control system (be it in software or pro-

cedure) development, and the launch and entry into service are seen as high points.

Spacons are usually either busy with the existing missions or are recruited so close to

launch that it is difficult for them to contribute to the service entry in a useful way,

and largely the launch and entry into service can be seen as ’On the job’ training for

the shift staff. The procedures necessary to control the satellite should be already

written by the time that the satellite is launched.

Close to launch and in commissioning, the job is very demanding but it soon

tails off into routine: waiting for anomalies to occur in order to recover them. These

occur about once every 2 - 3 days, the same term being used for a minor glitch to a

catastrophe. As the project settles down into the routine phase, the engineers often

lose interest and move onto other projects or leave the establishment entirely. If

a person leaves, the contractor provides a replacement. They are usually replaced

with younger, less-experienced engineers.

The current contract at ESOC requires a 3 month hand-over period from one

engineer to another. During this time, it is necessary to show the incoming engineer

all the procedures and how to use them as well as how to work with the spacons

and other elements in the ground station systems. Initially the replacement is full

of enthusiasm for the new position, and can usually continue to learn on the job.

However, eventually the thrill wears off and this person will also wish to be replaced.

This person has less emotional loyalty to the program having missed the excitement

of the launch and the other associated birth pains of a new satellite. There is

evidence that people who join the mission at an earlier phase stay longer than those

who join later. This is shown in figure 3.1, which shows the number of years that

each person stayed with the project, in the order that they joined the project.

This is likely to be a big problem on long-term projects, such as Rosetta or the

International Space Station. It means that regular rotation of staff will have to be

53

1

2

3

4

5

6

7

8

9

10

11

2 4 6 8 10 12 14 16 18 20

’ers-dat’

This figure shows the number of years that an engineer on the ERS project stayed
on the project before leaving(vertical axis), in the order that they joining the
project . Note the false origin. After the launches of ERS1 and ERS2 the mean
duration on-project dropped and seems to stabilised at around 2 years.

Figure 3.1: Years on ERS Project

54

introduced to try to keep them fresh and interested, or else they will simply leave.

This is a particular problem for a large institutional bureaucracy, since it requires

them to perform well in one of their weakest areas: staff management.

Engineers are typically highly-qualified academically, full of enthusiasm, and

welcoming of the challenge of learning how to operate a new satellite. In the space

business, more than most other industries, people do it because they want to do it,

not because they have to do it. Most engineers believe that their skills are highly

marketable elsewhere, but still chose to stay within the space industry even when it

is beset with delays or disasters.

3.4.4 Team Dynamics

There are a number of factors that impact the way people to other people and to

the equipment under their responsibility. One very simplified version presented in

[18] suggests that people should be evaluated in two independent qualities in order

to predict how they may interact as a team. ’The first is concern to achieve task

goals (goal-directed style) and the second is concern to keep team members happy

(person-directed style)... The actual style of behaviour that is appropriate may be

somewhat context-specific, and many of the factors bound up in successful leadership

may be indefinable. For example, much has been written on why Churchill was a

successful wartime, but not peacetime, leader’[18].

Other factors that will clearly influence the way team members interact with

each other are perceived ability, status with respect to each other, and role within

the team.

One reason for having a team of people operating the spacecraft is to produce

better quality decisions and better solutions than would be produced by one alone.

Green reports on the extensive results of aviation research ’It is generally true that

the decision made by a group will be better in quality than the average decisions

55

made by the members of the group, but perhaps slightly depressing that the group

problem solving ability will rarely improve upon the problem solving ability of the

ablest member of the group. From this point of view, therefore, the function of

having more than one person in a crew is to improve the chances of having an

able person there, rather than to have an interaction between crew members that

produces better decisions than any would produce individually’[18].

The process of recognising and accepting a correct solution and implementing a

decision of a group is subject to further factors, which include the ideas of conformity,

compliance, status, polarisation and group lifetime.

conformity Sometime members of a group will say that they agree with the de-

cision, or simply remain silent,for fear showing that they disagree with the

group. This can be further exaggerated by differences in status within the

group. The classic experiment cited in [18] to demonstrate this is a test where

a group of people are asked to compare the lengths of some lines with the

length of a standard reference line. The answer is normally obvious, but when

the subject is placed in a group of ’stooges’ who start off giving the right an-

swers, but gradually switch to supply wrong answers many subjects will agree

with the group even when they believe the group is wrong. Interestingly, ’this

effect is almost maximised when the size of the group holding the opposing

opinion is four’[18].

compliance A person’s response to a situation is sensitive to the context. An

experiment has shown that ’a householder would be more likely to agree to

having a large road safety poster in his front garden if he had either previously

refused to have an even larger sign or had already accepted having a smaller

sign’[18].

56

status People who are perceived as having a higher status tend to force more com-

pliance from their team. For example, after a test on a simple problem which

on military flight crew, 30% of pilots (a role with high status in the group)

got the correct answer, compared with 50% of navigators (medium status) and

30% of gunners (low status). However, 90% of pilots who got the correct an-

swer were able to persuade their group that their answer was correct, whereas

only 80% of navigators and 60% of the gunners were able to do so [18].

polarisation If individual members of a group already tend to hold a viewpoint,

then the group will tend to that viewpoint more strongly. This can be a

problem if a set of bold individuals form a group, as the result can be unduly

bold [18].

group lifetime If members of a group do not know each other, then this reinforces

the need for standardised procedures, whereas if a group spends a lot of time

together, then it may come to rely upon interpersonal knowledge than on

adherence to standard procedures[18]. It is also slightly unfortunate that in

identifying an ’in’ group, of which someone considers him/herself a member,

then there is an implicit formation of an ’out’ group. Team members may

forget that they are members of more than one group (e.g. employees, local

residents, human beings) and should remember to bear in mind that many of

the people outside the immediate group are in fact colleagues, and that little

is to be gained by treating ’them’ as the enemy[18].

3.4.5 Individual Operations Strategies

Green reports that ’Aviation has traditionally been very strong in training individual

skills and rule-based behaviours but has not generally provided pilots with practice

at solving possibly ill-defined problems on a group basis’[18]. This is what the

recent (from 1995) introduction of Flight Deck Management and Cockpit Resource

57

Management training as part of the formal (and mandatory) parts of commercial

pilot training try to address. Green provides the following guidelines to teams to

follow in order to come to a good group decision and also maintain the team morale:

• The leader should avoid giving an indication of his own opinion or idea at the

outset. If any member of the team has another idea, he will then be reluctant

to share it since it may appear to contradict the leader.

• The leader should specifically and overtly solicit the ideas and opinion of team

members and encourage them to express doubts and objections to a particular

course of action. This is to ensure that the potential problems are fully aired

and not ignored.

• When the leader has made a decision, he should explain his reasons for arriving

at that decision to the other members. Failure to do so could make the other

team members feel as if their own ideas have either not been considered or not

heard.

• All team members should not hesitate to raise uncertainties through worry of

appearing foolish or weak.

• When asked for an opinion, it should be given fully and clearly without worry-

ing about what the other people want to say, but not in an emotionally loaded

or dominant way.

• Deal in evidence and not prejudice. Team members should not become too

attached to their own points of view and simply try to get their own way.

Members should accept group decisions unless they feel that it contains some

hazard that has not been appreciated by the group.

• Don’t let others progress down wrong paths just to appear clever

• Don’t compete, don’t get angry and don’t shout[18].

58

3.5 Organisations

3.5.1 ESOC

ESOC’s structure has changed with time as successive directors try to inject energy

into and breakdown barriers within an ageing organisation. It is a typical, mature

bureaucracy, being more than 25 years old and populated by career civil servants on

permanent contracts. As part of the European Space Agency, ESOC has suffered

from lack of direction, intermittent funding and lack of responsiveness. Many func-

tions are performed centrally, in the expectation that this will give cost savings, but

the inefficiencies often far outweigh the cost savings. The following example illus-

trates this point. ESA has four large establishments, in France, the Netherlands,

in Germany (i.e. ESOC) and in Italy. The catering for all four establishments is

procured centrally on a single contract, with the results that for the most recent

competitive tender, only 2 companies could meet the needs in all establishments.

By centralising the contract, effectively local companies were unable to apply, since

they lacked the infrastructure in each country. This meant that there was not very

much competition in the tender.

ESOC has a deep structure with very low fan-out (see Figure 3.2). The Director

tends to be a political appointment and then a number of Department Heads (2,3,

or 4 Departments in recent years) report to him. Each Department consists of 2

or 3 Divisions and most Divisions consist of 1 or 2 sections. The two most recent

Directors established an independent cabinet called the Management Support Office

to determine what policy should be and to monitor its implementation through the

Departmentalised structure. This clear duplication of resources seems to indicate

that even the Directors felt that they were unable to impose policy throughout the

organisation.

ESOC has undergone re-structuring several times over the recent years. Figure

3.3 attempts to show how the departments have been shuffled back and forth over

59

Management Support
Office

Flight Control
Team

Mission Control Section

Flight Operations
Division

Mission
Operations
Department

Ground Segment
Engineering Department

Director

ESOC exhibits are deep structure with very low fan-out. This is characteristic of a
low level of delegation.

Figure 3.2: ESOC Structure

the five years 1992-97. The names given are not the formal ones, since those names

changed even more frequently. At the Divisional level, the changes have been even

more noticeable, and the organisation still has many inconsistencies. For example,

in Figure 3.2, only the manager of the team reports to the section shown. The

members of the team still also report to a managers of different sections, e.g. as to

the grey box in Figure 3.2.

ESOC has a mixture of permanent staff and consultants provided by contract

companies. The ESOC operations division consists of a series of operations teams.

Each team has one or more SOMs - always a staff position. Then there is a number

of engineers, most of whom are employed by a contract company. ESOC specifies

from year to year how many people shall be provided to supply engineering support.

The staff are supposed to provide continuity and the contractors are supposed to be

hired and fired to smooth out the peaks and troughs. But, either the staff do not

have sufficient time to learn the details (if they are on several projects or also have

management responsibilities) or they are not sufficiently experienced in a range of

topics. The current projects last so long that some staff members are made into S/C

60

Operations Information
Systems

Ground
Station
Engineering

Operations Computer
/Networking

Flight
Control
Systems

Station
Engineering

Mission
operations

Ground
segment
Engineering

1992

1994

1997

ESOC undergoes periodic reorganisations.

Figure 3.3: ESOC Reorganisations

managers after having been an engineer on one mission, or due to staff movements,

never actually having been an operations engineer. This clearly leaves the SOM in

an exposed position and makes the overall ESOC structure even more reliant upon

contractors. The ESOC structure has evolved into a variation of the common ’matrix

structure’. Dedicated teams have been built up for a particular project, although

the previous structure remains as a legacy. Contractors are all supposed to report

to the contract Technical Officer, and staff members are assigned to a particular

Division when they are employed, which does not have to be the same Division in

which they work. This has further divided the Flight Control Team structure, by

leaving multiple lines of responsibility, which is shown (in an example form) in Figure

3.4. The situation is actually far more complicated, with the reporting percentages

being squabbled over between the various Division and Section heads in an attempt

to maintain the status quo by bolstering the number of total number of ’fractional

people’ in their division. In practice most of the administrative bonds are of little

consequence, and most people report to the head of the Flight Control Team.

61

100% reporting

70% reporting

30% reporting

Key

Mission Control
Section

Operations
Control Section

Eng
1

Eng
2

SOM
#1

Flight Control
Team #1

Eng
1

Eng
2

SOM
#2

Flight Control
Team #2

Science Missions
Division

The ESOC structure tends to have multiple reporting for different projects,
task-forces and working groups. Since many managers do not have full
responsibility for the people who are working for them, this can make it difficult to
allocate resources correctly and difficult for the engineers to prioritise the different
tasks they are given.

Figure 3.4: Multiple Reporting in ESOC

Director-General

Engineering Dept. Operations Dept. Commercial Dept.Administration Dept.

Satellite Engineering Div Satellite Operation Communication

Satellite Operations
Section

Ground Control Systems
Section

Ground Station
Section

Figure 3.5: EUTELSAT Structure

3.5.2 EUTELSAT

At EUTELSAT, one division is responsible for all the satellite operations as shown

in Figure 3.5 and another manages the satellite procurement process.

This is obviously a much leaner organisation, with much greater fan-out. EU-

TELSAT is not without its peculiarities though: for more than 2 years there was

no overall organigram, since the management believed that it is not necessary and

would hinder the relations between the Divisions.

On many projects the lack of coherency between operations and engineering

leads to a lack of understanding of the operational needs during the procurement,

62

and results in designs that are difficult to operate or require expensive changes in

the ground segment software.

EUTELSAT has adopted the idea of a single ’kernel’ control system software with

special modifications for each mission. Thus every time a new ’family’ of spacecraft

is added, this increases the complexity of the control system. EUTELSAT allows two

external companies to bid for each software maintenance work package, and normally

gives the major tailoring due to a new satellite ’family’ to a single contractor. The

contractor then starts updating the kernel software as necessary. In the meantime,

of course, the same contractor (and the competitor) is changing the software on the

other satellite control systems. Since they cannot change the kernel, they have to

introduce a series of local ’patches’ to each system. When all changes need to be

integrated with the new kernel, the result is a nightmare of dependencies. Each

new family n needs to be integrated with (n-1)! other systems. The extra cost

of developing and testing the ground system is not adequately fed-back into the

procurement process. The EUTELSAT strategy makes sense if each ’family’ has

many members, but the last two families consisted of one satellite each!

3.5.3 EUMETSAT

EUMETSAT is also an organisation with low fan-out, and the division of tasks

from the projects that procure the spacecraft from the people that will operate the

spacecraft is again present.

3.5.4 Differences Between ESOC and EUTELSAT

Scope of Control

ESOC performs the launch and early orbit phase control for all of its own satellites

and for some external customers. EUTELSAT does not perform its own LEOP,

preferring to take delivery of a tested and checked out system on station. This is

analogous to the role of an airline, as opposed to a flight test centre where almost

63

every type operated is a fully new type. At EUTELSAT the business area is si-

multaneously well defined and confined to the provision of broadcast television and

telephone services. Since EUTELSAT fulfils its business interests by operating the

S/C and reselling the transmission capacity to other organisations, it does not need

to expand the capital effort in the risky parts.

Manning Levels

At EUTELSAT it is normal to have two spacons controlling more than ten satellites,

although when more than two satellites manoeuvre at the same time, an extra

controller is brought in. This is because manoeuvres are perceived to be the times

of greatest risk in EUTELSAT routine operations, analogous to the approach and

landing of an aircraft. Software will be developed soon to perform and monitor

station keeping manoeuvres. This is similar to the manning level at ESOC, even

though ESOC controls unique, bespoke satellites.

EUTELSAT considers that it is worth investing in expensive training e.g. one

of the new spacons at EUTELSAT underwent a 6 month training phase, including

about 3 months of one to one training from an engineer and 3 months of shadowing

another spacon. Spacons are viewed as a long term resource and experience is more

valuable than academic ”smartness” or the ability to innovate. Both ESOC and

EUTELSAT require 6 people to provide full shift coverage, although the financial

pressure upon ESOC has been so great that for one particular mission, ERS-2 (when

it was still operating ERS-1 every few months), the decision was taken to not use

all the periods of contact with the satellite, but to only use the ground station

passes where it was possible to both receive telemetry and send commands. This is

obviously a management decision that increases the risk of a failure going undetected

and uncorrected for a longer time.

64

Responsibilities

ESOC generally receives responsibility for all engineering work, including on-board

software maintenance, whereas EUTELSAT writes and strictly enforces contracts

with the satellite manufacturer. ESA-ESOC traditionally gets poor post-commissioning

support from the manufacturer even when it is specified in the contract with indus-

try. Unfortunately, ESA has little leverage over the manufacturers. The stage

payments are typically small, and since the political condition within ESA makes

it difficult (impossible) to stop contractors from winning new work, there is little

incentive for industry to continue to provide high quality support. On the contrary,

since ESA runs a series of procurements in parallel with the long duration missions

that are already flying, industry has every incentive to use its experienced staff to

win new work rather than keeping them on routine support. This is also much

more popular with the engineers, who would much prefer to design and develop new

things instead of maintaining the old equipment.

By comparison, EUTELSAT is able to force much better support from its con-

tractors, since the legal team is ready to intervene, and since the contracts are

drafted in a way that favours EUTELSAT.

3.5.5 Problems

ESOC

ESA has suffered from the build up of people over more than 25 years, becoming a

slow-moving bureaucracy, with out of date financial techniques and little delegation

of authority. Many documents require a large number of signatures, which often

results in documents being ’hand-carried’ around the establishment from one office

to another.

65

EUMETSAT

EUMETSAT suffers from other problems. Rather than having an accretion of staff

over the years, there is a certain deficit in experience. EUMETSAT took a conscious

decision to limit the duration that anyone can stay with the organisation by limiting

both the length of employment contract and the number of contract renewals. The

aim was presumably to avoid the creation of an aging organisation like ESA. A

result of enforcing this principle of rotation is that there very little continuity on the

project, since many projects take more than 10 years to go from conception to launch.

This leads to an overall loss of experience and vulnerability to external contractors.

It also means that some staff may not take decisions that are in the long-term

interest of EUMETSAT, since, they have no long term future with EUMETSAT,

however well they perform.

EUMETSAT takes on contactors to supplement their staff numbers, like at

ESOC. At ESOC there is a five year frame contract through which a number of

people from one or two companies are recruited, at EUMETSAT the people are

recruited directly for particular work packages of 1 or 2 years. This may increase

competition on price per contractor hour, but it can also bring contractors into con-

flict with each other, since they are sometimes competing for the same resources

(i.e. vacancies). It can also mean that contractors have little reason to cooperate

with each other, and leaves potential reasons for them to make their colleagues look

bad or ineffective.

EUTELSAT

EUTELSAT started as an international organisation, an off-shoot from the European

Space Agency. Over the last two years EUTELSAT has been readied for a pseudo-

privatisation, with the organisation being split into two parts: one part to continue

with its existing regulatory functions, and the other to compete as a commercial

66

satellite operator. This led to a massive drop in moral as people feared for their

benefits, such as tax-free salaries and cars with education and family allowances.

The uncertainty over the future caused many people to leave, and the resulting

recruitment process was poorly handled. The Personnel Department was used to

administering according to a predefined set of rules, and avoiding setting any kind

of precedent. Managers were able to say who they wanted for a particular position,

but had no control over the salary that was offered by the Personnel Department,

which had no experience of a commercial environment.

3.6 Summary

This Chapter has shown how organisations typically achieve their goals by encoding

activities in procedures, creating teams and trying to build up a particular kind of

culture. It has looked at the kinds of teams that have been encountered by the

author in his experience in the space industry and broken down individual types

of behaviour into skill-based, procedure-based and knowledge-based behaviour. It

has suggested some best-practice guidelines for how team leaders and team mem-

bers should interact in order to arrive at the best solution. In the Chapter 4, the

question of how an organisation can and should manage risk is addressed, and then

section 5.7 shows via the STS 51-L Challenger launch decision, the consequences of

a break down in communication between the individuals and teams of operations,

engineering and management.

The space industry, as well as facing some unique challenges, also faces many

normal business and organisation challenges. Managers should be able to meet the

career aspirations of their workers, and control their workload. Because so much

space-related work is carried out by organisations with bureaucratic roots and a

military or civil service mentality, personnel development has typically been a low

priority. The amount of delegation has also been typically low, with managers often

67

not responsible for some of the effects of their decisions.

The organisations examined here all became dependent upon the short-term

supply of labour to meet their peak work-load. People who are only working on

short-term contracts inevitably only have a reduced level of allegiance to the or-

ganisation that hosts them, and can easily move on. This tends to drive up wage

levels within the contract companies since the supply of experienced labour is re-

stricted, and give the contract companies an incentive to replace experienced people

with more junior, cheaper people. This reduces the amount of knowledge available

within the organisation.

The typical structure of a hierarchy with a low fan-out, often covering many

sites that are a long way away from each other- perhaps even in different countries,

can make it very easy for the management to lose contact with the people who

have the first-hand knowledge of the state of the mission and the current problems.

This prevents the free flow of information that is vital for taking major decisions

correctly.

68

Chapter 4

Risk

4.1 Introduction

Every person and organisation faces risk. Risk is fundamental to the planning and

implementation processes of every organisation.Risk is often treated in a negative

context, but it is also the companion of opportunity. ’Business risk arises as much

from the likelihood that something good won’t happen as it does from the threat

that something bad will happen’[12].

Some organisations, particularly in the financial sector have developed special

departments to perform tasks called risk management, but few other organisations

have taken such a serious approach. The literature reflects this situation: ’Even

now, the literature on managing risk is slim compared to that on finance and almost

without exception, it becomes preoccupied with with the management of financial

risk and the use of derivatives’[3].

Risk is most often associated with insurance, but ideally companies and organ-

isations would engineer their own approach to risk, and then seek insurance where

appropriate, rather than blithely paying premiums at almost any cost. By identify-

ing risk, risk can become another resource, and an organisation can try to distinguish

itself from others in its ability to manage risk.

In the space industry, risk and risk management are often restricted to sub-issues,

such as reliability and safety. However, focussing so closely on one area may leave

69

70

many other areas unwatched, so that, for example, a company building a launcher

may try to concentrate upon building a reliable launcher (especially after some

setbacks in the development), but may fail to see the greater threats of changing

markets due to over-supply or problems related to macro-economic phenomena such

as currency fluctuation. More generally, risk and opportunity can be seen in the

following situations:

• Finance

• Decision-making

• Process and structure

• People and Machines

• Legal and regulatory requirements

• Customer/Client needs

• Environmental considerations.

and it is management’s job to ensure that the whole organisation is aware of and

shares the same goals. This Chapter shows that risk management is fundamentally

about people and processes, although there are many tools and techniques that can

assist, but not replace, human judgement. Section 4.2 shows how people perceive

risk in different ways at different times. Chapter 3 showed that one of the ways

organisations can perform a task is by setting up a new project or team. Section 4.3

analyses the risk that can occur during a project or programme. Risk management

is broken down into three phases, risk control, risk reduction and risk containment

in Section 4.4, which shows how these techniques are used in the space industry.

Section 4.5 shows in more detail risk items can be identified and the risk can be

quantified.

71

4.2 Risk Perception

People perceive risk in different ways, so there are different types of risk. These

include:

• individual risk versus organisational risk or societal risk;

• voluntary risk versus involuntary risk;

• high-probability, low-impact risks versus low-probability, high-impact risks;

• delayed impact risks versus immediate consequence risks;

• risks with low-value impacts for many, versus risks with disastrous conse-

quences for a few;

When individuals ’voluntarily’ take risks, they sometimes seem to accept rather

high risks for relatively modest benefits. This can be explained by noticing that

when Organisations or individuals are in ’involuntary’ situations, they no longer

believe that they can personally control or influence their exposure to the risk, and

the perceived risk is much greater than when a person or individual is in control.

One result of research into decision taking in the private sector is that decision

makers tend to avoid risks rather than confronting them. Another study showed

that some managers often view risk as a challenge that should be overcome through

use of formal knowledge and experience. A way of reconciling these two observations

would be to note that an admission of risk would then also be an admission of the

lack of the latter qualities.

4.3 Risks Encountered During A Programme Life-

time

Sage [37] identified several risks present when developing a new system:

72

1. Technical performance risk results when the fielded system performs in a way

that creates hazards or poor operating properties. A technical risk could be a

risk to society or other harm that results from the way the system performs.

2. Acquisition schedule risk results when the intended entry into service needs to

be migrated to some later time. This is very common in space programmes.

3. Acquisition cost risk results when the anticipated cost of fielding the system

increases beyond that forecast. This is also very common with the space

industry, especially in centrally-funded programmes which have little or no

penalty for the introduction of delays.

4. Supportability risk arises when the operational system is unsupportable by

the planned maintenance and operations efforts. This is common when the

part of an organisation that operates the system is remote from the part of

the organisation that procures the system.

5. Programmatic foundation risk is created by events outside the formal control

of the management process. This could be due to internal factors (such as

research and development difficulties) or factors outside the organisation. An

example of this kind is the ESA Hermes programme, which although beset by

organisational and technological difficulties, cost and schedule over-runs, was

only finally terminated due to the rising costs of German re-unification[9].

It is important to note that technical and programmatic risks are generally the

cause of schedule or cost risks. The latter are detected before the entry into ser-

vice, whereas the technical risk is often only apparent at the entry into service (e.g.

launch, hand-over). Soon after, the supportability risks become known. It is im-

portant to be able to identify the source of the perceived risk in order to implement

corrective management efforts. Sage[37] also cites key potential risk areas when

73

trying to introduce a high-technology product. With appropriate adaptation to the

field of spacecraft engineering these are:

• Inadequately emerged technology, which results in a poor system;

• New systems that are not an acceptable substitute for that which they replace;

• Specification drift due to changing customer requirements, especially when the

volatility was not identified;

• Technological leapfrogging by a competitive system;

• A lack of credibility, either on the part of the system or the organisation that

develops it;

• Too lengthy a time scale to field a working system;

• Inappropriate standards, either because they are lacking or because they are

present and conflict with other standards;

• Lack of proper infrastructure.

4.4 Risk Management

In the space industry, much emphasis is given to reliability. Reliability is the proba-

bility that a system will perform some specified function under specified conditions

for a specified length of time. Risk is more difficult to define. It involves two

elements:

• probability

• cost.

Although it is the author’s direct experience that most organisations have some

kind of risk management procedures, this seems to be used in a very narrow sense.

74

According to [3] in many organisations the ’Cult of the amateur’ is still prevalent.

’Where it is adventurous it has too often indulged in blind speculation, leading to

spectacular failure with the natural bureaucratic response of stiffening regulation’[3].

Carroll reports[3] that many commercial financial institutions generally have much

more advanced risk management processes than their public-sector counterparts.

However the introduction of risk management is relatively recent feature - he quotes

his experience of introducing treasury management into a financial institution in

1985, which then went on to become the first in the sector to introduce risk man-

agement. There is an enormous body of literature on financial risk management, and

many practices are now mandated by the regulatory authorities[1]. Carroll favours

a holistic approach to risk management, extending it to the enterprise and how the

enterprise interacts with its environment.

Carroll proposes a framework to allow people and organisations to evaluate

themselves[3]. He present checklists and questionnaires on the following areas for

individuals to fill in and answer to see how these factors impact on their organisation.

• Financial implication

• Decision making

• Process and structure

• People and Machines

• Legal and regulatory requirements

• Customer/Client needs

• Environmental considerations

• Communication requirements[3].

75

The traditional analytical approach to evaluating risk employs probability dis-

tributions of alternative choices. A utility function is defined which has four basic

dimensions:

• The probability of winning

• Amount to win

• Probability of losing

• Amount to lose.

In most cases, management is the process of ensuring that something happens,

and the aim is both to make it happen and to continue to happen. This could

be, for example, to improve the quality of the product, or to improve efficiency

(e.g. by reducing the resources required to perform a task). There is always a clear

relation between the event (e.g. manufacturing) and the entity being controlled

(time, energy, money). By comparison, risk does not have such a clear relation

with events. According to Hollnagel ”Risk is used to characterise a certain state

of the world, or a consequence, that is (1) unwanted, (2) uncertain, and (3) in the

future” [25].

Furthermore, most management systems deal with something that is monitored

either continuously or periodically, but can at least be assessed on a regular basis.

From the point of view of risk management, the goal is often to prevent something

from happening - i.e. to ensure that the risk-initiating event does not occur, and

so risk management systems must deal with something that is far from being a

continuous quantity. The desired event is actually the non-occurrence of an event.

The consequence of an event is the result of an event occurring, but the risk remains

the same whether or not the event occurs. The consequence is uncertain until the

event happens, and is always undesirable. Once the event happens (releasing the

76

Decision
Node

Chance
Node

Outcome
Node

A

B

p

1 - p
A1
A2

B1

Outcome
Utility

U(A1)
U(A2)

U(B)

Figure 4.1: Decision Utility

consequences) we know the risk has manifested itself, but the risk remains the same

(unless the system is changed).

Risk is a phenomenon with strange properties. Even though risk is always

present, risk is not a continuous quantity. Risk can be calculated (e.g. a proba-

bility can be assigned to the likelihood that an event will occur) but it cannot be

measured, and it does not always add. For example, when comparing the risk of

an airline flight with the costs, the cost of the flight increases with time in a way

that is easy to understand (e.g. fuel, interest payments, amortisation of purchase

price and landing charges, to name but a few contributing factors), but most people

would agree that the risk of an aircraft crashing is in general decreased every time

an aircraft lands successfully.

There seems to be little doubt that risk-associated decision making is primarily

influenced by responses to two questions: What are the possible event outcomes of

alternative courses of actions and their valuations? How likely is the occurrence of

each of the various outcomes?

The fundamentals of modelling decisions are illustrated in Figure 4.1. Following

a decision, (either A or B), the natural events take their course with a probability

p following decision A. The outcome after decision B is certain (p=1). Each of the

outcomes then has a certain utility assigned to it. It is possible to enumerate 5

categories of decisions:

1. Decisions under certainty: p = 1 and the utility functions are known

77

2. Decisions under probabilistic uncertainty : p such that 0 < p < 1 is known,

and the utilities are known

3. Decisions under probabilistic imprecision: p is imprecise and the utility func-

tions are known

4. Decisions under information imperfection: p may be precise, the utility func-

tions may be imprecise

5. Decisions under conflict: the values of p and U may be changed by an opponent

It is rare that decisions under certainty involve risk, by their very nature. De-

cisions in category 5, conflict, in which the probabilities typically have the form of

variable quantities that can be altered by the actions of a competitor, is typical of

game theory. This is a situation which is mercifully rare in satellite engineering.

The aim of decision assessment is to provide a framework for describing how people

choose, or should best choose, when the outcomes that arise from those decisions

are obscured by lack of information or the presence of uncertainty. Behavioural

psychology can provide information concerning both the decision process and the

judgment process. System modelling should in principle allow the decision to be

represented in a clear way, and probability theory allows, in principle, the decision

maker to make best use of the information available. Utility theory guarantees that

the choice will reflect the declared preferences of the decision maker, if everything

has been modelled correctly!

A theory of choice is said to be rational if it involves giving numerical measures to

these probabilities and values, and aggregating these numbers into a single figure of

merit that the decision maker should maximise in order to obtain the best strategy.

In classical gambles, outcomes are simply different amounts of money, and often the

probabilities of the various outcomes could be calculated from simple models with

easily determined objective probabilities. In system engineering then, the objective

78

probabilities are often subjective, and the simple value of an event needs to be

replaced with the decision maker’s subjective utility.

The classical formulation for maximum expected utility has a number of in-

herent difficulties. Cost/benefit must be integrated to produce a single number,

which is then multiplied by the probability of that outcome. While this makes the

computability more easy, it brings the associated problem that it is difficult to dis-

tinguish between a situation where there is a small (almost zero) probability of a

very large loss, or a very large probability (nearly one) of a small loss. Another

factor that is not considered is the immediacy of the result. Most people would be

much more reluctant to accept a 0.001 probability of loss of life tomorrow than a

0.001 probability of loss of life over the next 20 years. This seems to indicate that

some kind of integrated probability (potential) must be introduced.

Hollnagel[25] defines three different ways to manage risk according to the different

parts of the life cycle. These are illustrated in Figure 4.2.

• Risk Control

• Risk Reduction

• Risk Containment

4.4.1 Risk Control

Risks can be controlled at the operational level (i.e. day to day) or at a management

level. The principal difference from risk reduction is that risk control takes place

when the system is already operational. Control thus tends to be tactical rather

than strategic. Although this is appealing, it is a difficult practical concept since

risk itself cannot be directly measured. For spacecraft operations, this would mean,

for example, using existing procedures, even though a new procedure with a short-cut

might be desirable, or using established hardware rather than innovative technology.

79

Condition 1

Condition 2

Condition n

Risk initiating
event

Consequence
Risk
Initiating
Event

Risk Control
Ensure that the
conditions leading to
the event do not jointly
reach the threshold
level

Risk Reduction
Ensure that the a priori
risks are lower than
the acceptable
maximum value

Risk Containment
Ensure that the
consequences do not
trigger another risk
initiating event

After Hollnagel

Figure 4.2: Risk Management(after Hollnagel [25])

4.4.2 Risk Reduction

This is normally achieved by design improvements, often to the physical system, but

also to the operating environment or the organisation, e.g. the distribution of roles

and responsibilities. The aim is to get the risk below the maximum acceptable risk

e.g. designing a system that has no known single point failures.

4.4.3 Risk Containment

This aims to contain the consequences engendered by an event, should it ever oc-

cur. This could be physical containment (e.g. steel/concrete containment vessel)

or functional (a crash barrier to stop a car that has already suffered an accident

from crossing into the on-coming traffic and causing further injury or loss of life).

For spacecraft operations, this could be having extra support staff available during

periods of critical operations, or using control systems with ’hot’ redundancy (with

two or more systems running in parallel, each capable of performing the whole task)

instead of ’cold’ redundancy (a replacement system is available but is not running

and needs to be started in order take over control), or performing critical activities

80

during periods of double ground station coverage.

4.5 Risk Analysis

4.5.1 Prospective Risk Analysis

This is a classical approach which places emphasis on risk reduction, which can be

described as assessing the risks inherent in a system in order to decide whether or

not they are below the limit of acceptable risk. This can be done by calculating the

risk of specific events and predicting the likely outcomes. This is the classic Failure

Modes, Effects and Criticality Analysis, FMECA. Risk containment extends this

technique to look further downstream in a fault tree in order to consider the range

of potential consequences of an event. This enables the responsible authorities to

identify those events which may lead to serious consequences, and also to become

aware of (and hopefully restrict) the possibility for one event to have consequences

which trigger other events. The third part of risk management that was identified

above, risk control, plays a smaller part in prospective risk analysis, being largely

incorporated in risk reduction.

4.5.2 Retrospective Risk Analysis

The main emphasis is upon risk control, the aim being to identify all the conditions

that jointly led to the risk-initiating event. Analysis of an incident that has already

taken place provides a full understanding of what happened and the opportunity to

learn. It should

• provide a probable root cause (or causes);

• identify which changes could prevent a re-occurrence

• update the data (i.e. probabilities) and methods that were used in the initial

analysis.

81

Risk reduction and risk containment play only minor roles in a retrospective

analysis, since the event has already happened. This is the classic Board of Enquiry.

4.5.3 Synchronous Risk Analysis

Hollnagel [25] proposes that a third type of risk management be studied, which he

refers to as Synchronous Risk Management. Admitting that ideally retrospective risk

analysis would not be needed, since there would be no accidents, he suggests that

prospective risk management be continued into the operational phase. This would

make it more similar to a conventional control system, in that it would monitor the

relevant parameters of the system to find discrepancies, and then provide advice

principally in the area of risk containment.

All three of the techniques mentioned above require an adequate basis for mod-

elling. Each analysis is based on compound elements, assumptions about those ele-

ments and the relations between them. The relations between them would typically

be of the cause-consequence type which could either link causes to consequences or

consequences to causes. The analysis is based upon a simplified representation of the

plant, and the two major questions that must be asked (and answered) during the

model development are: what should be modelled and how should it be modelled?

For many many years it was believed[37] to be sufficient to confine the model

to the hardware elements used within the system. Initially this could provided

much useful information, but in many fields (and satellite engineering in particular),

the reliability of the individual mechanical and electrical components has increased

significantly, and it was realised that in many incidents, software systems with a

human operator played an important role in how the risk initiating events occurred

and developed.

It can be very difficult to model the failure modes of a software system, but some

qualitative analysis can normally be performed to define some kind of boundary. For

82

example, if the system needs to be restarted, or even completely re-installed, this

should be included as a case that subsumes a number of smaller failures. However, a

more difficult case to model is what happens when the software performs ’correctly’

(i.e. as specified) and no failure is identified, but the wrong action was initiated. In

this case software systems must be treated like their human counterparts.

Initially the human operator was incorporated into a system model by treating

the human as a machine. Although difficult to justify now, it seems as if this was

done because it was

• the established practice

• there was a lack of usable alternatives.

Subsequent research, and a number of high profile incidents, eventually led to the

ability to analyse and describe human cognition. This proved that human errors,

which had previously only been treated at the operational level, could also arise

at the management level. ”Factors such as training, work demands, time pressure,

availability of the procedures, design of the work place and quality of information

display all turned out to have a direct effect on the probability of errors occur-

ring” [25].

Management factors affect the likelihood of errors in a number of ways. Some

factors, such as training policies, procedures, equipment or work planning, have

an indirect effect, whereas other factors, such as organisational culture that the

management creates (and is part of) or the priority that organisation assigns to

safety and productivity can have direct effects. Models must be able to account for

the dynamics of how an event can develop, as well as the statics. The dynamics

are needed to account for the interaction between people and between people and

machines.

Although different researchers may emphasise the technological, the psychologi-

cal/cognitive or the organisational/contextual parts of the system, the consensus of

83

opinion is that a model must include all three aspects. Models that consider only

one factor will not suffice.

4.5.4 Modelling Techniques

Technology pushes onwards relentlessly to change the way we work - whether there

is a need to change or not. For risk management this has two implications. Firstly

the target systems that are being analysed change due to the introduction of com-

puters. This means that risk management method must be able to to model and

analyse the effects of computerisation. Secondly, perhaps necessarily in response

to the complexity of the target systems, risk management techniques have them-

selves become computerised. Manual methods (which includes methods that use

computers for text processing or type setting) have always suffered from the fact

that analyses are necessarily incomplete. Even for a very simple system it is just

impossible to investigate all possible conditions and combinations of conditions.

There is a clear reason for wanting to introduce the symbol processing capabilities

of computers. But this potential advantage also has an associated cost, since the

introduction of computers will bring a further layer of complexity to the analysis

and may therefore increase the imprecision and uncertainty, exactly the opposite of

what was intended. Hollnagel [25] refers to these as Scylla and Charybdis, two mon-

sters from Greek mythology who lived on either side of the Strait of Messina. Scylla

seized sailors and devoured them, and Charybdis, the whirlpool, created shipwrecks.

Manual Analysis

When compared with prospective risk analysis, retrospective risk analysis has two

advantages. Firstly, uncertainty is virtually eliminated because the event has hap-

pened. Some imprecision may remain if it is difficult or impossible to get all the

required data. Secondly, there is ample time. The investigation of an air accident

may last for years and can focus upon a single event. In contrast, a prospective

84

analysis usually needs to be completed before a certain deadline, often when the

system become operational, and has to consider not one but all possible events.

A retrospective analysis typically relies upon risk control and thus starts with the

consequences and identifies the (chain of) events that gave rise to them. This can

run into problems when the causal reasons are complex. A natural reaction is to

stop the analysis at an arbitrary point or to make simplifying assumptions to allow

the analysis to continue. It is in any case difficult to justify a particular stopping

point. Prospective risk management relies mainly on risk reduction, which depends

on the ability to correctly predict the consequence of a particular event. Here the

limitation is that event trees can easily become too large to be analysed manually -

or even displayed - unless some simplifications are made.

Computerised Analysis

The attraction of computers is that they can handle models that are more complex

and that they can do so faster and more reliably than a human. It is tempting to

use the same manual methods on a computer, but simply transferring the existing

methods will not be enough to overcome the combinatorial complexity of even a

simple system. Even the results of e.g. playing chess by brute-force suggest that

much optimisation is necessary in order to make significant progress, as well as a

great deal of domain-specific knowledge. But most risk analysis methods require

a substantial input from an experienced human in order to work, whether this in-

volves interpreting incomplete data, inventing assumptions or conditions or seeing

in which sense the event trees should be developed. A hybrid system would aid both

prospective and retrospective analyses.

For retrospective methods, the identification of links in the event chain by a

human can be improved because more alternatives can be easily tested. Similarly

the thoroughness that a retrospective analysis requires is also better provided by

computers, even if this only extends to book-keeping.

85

Prospective analyses can be significantly improved by the use of computerised

predictions or simulations. Even a limited dynamic system can produce much richer

results than those of a manual, necessarily static, analysis. Even though comput-

erised analyses need not per se be more correct than the corresponding manual work,

the fact that the results differ should be a ground for fruitful discussion.

While computerisation obviously holds out promise, it suffers from the two usual

shortcomings associated with information technology. It is easy to become blinded

by the computer and to not really understand what it does. There is a strong bias

to take the output of a computer as real, especially if that output is presented in

a convincing fashion. Secondly, there is the familiar problem of verifying and vali-

dating what computers do. Most systems are verified on a very small data set. For

retrospective risk analysis it may be possible to ’calibrate’ the computerised method

on known cases, but this does not ensure that the results will be correct in other

situations. For prospective analysis, there are by definition no test cases on which

the system could be tested. In summary it seems therefore that the choice between

manual and computerised risk management is a choice between incompleteness and

inaccuracy.

4.6 Summary

This Chapter has shown that every person and organisation faces risk and that risk

is fundamental to the planning and implementation processes of every organisation.

More generally, risk and opportunity can be seen in the following situations:

• Financial implication

• Decision making

• Process and structure

• People and Machines

86

• Legal and regulatory requirements

• Customer/Client needs

• Environmental considerations

• Communication requirements[3].

Risk management is more oriented towards people, processes and human judge-

ment than safety and reliability, although these are important factors. Section 4.2

showed how people perceive risk in different ways at different times. Section 4.3

showed some of the ways risk can occur during a project or programme, which is

one of the way that an organisation performs a task or reaches a goal. Section 4.4

broke risk management down into three phases, risk control, risk reduction and risk

containment and showed how these techniques can be applied in the space industry.

Section 4.5 showed how risk events can be identified and the risk can be quantified.

Chapter 5

Ground Segment Preparation

5.1 Introduction

As mentioned in Chapter 1, since the satellite is often being operated by a different

organisation to the one that built or integrated it, somehow the people responsible

for operating the satellite must be trained and prepared for their forthcoming tasks.

The satellite database is one of the most important interfaces between the satel-

lite constructor(s) and the satellite operator(s). This is discussed in section 5.2.

This section explains the sound theoretical basis for a relational structure, as well as

discussing several other structures prevalent in European spacecraft control centres.

As outlined in the Chapter 3, the users require skill-based, procedure-based

and knowledge-based behaviour. The User Manual is one of the terms used to

describe the documentation that the spacecraft developer is supposed to deliver

to help the end-users understand and operate the spacecraft and payloads safely

and successfully. The User Manual should be the source of procedure-based and

knowledge-based behaviour. This is discussed in section 5.3. The procedures are

used for the routine work, and the structure of the flight control procedures is

discussed in section 5.4.

According to the author’s experience, spacecraft (or a family of spacecraft) are

frequently being procured as part of a whole system, which often has a very large

87

88

ground segment that needs to be developed, maintained and operated in parallel to

the space segment. Section 5.5 discusses how the spacecraft database is validated

through a series of tests between the ground segment and the space segment, which

are frequently called System Validation Tests in Europe.

The role of simulations in preparing the individuals and teams mentioned in

the previous Chapter is discussed in section 5.6. It shows how they are useful in

preparing the individuals to cope with the stress of operational situations, as well

as forging a team.

Since satellites are normally only procured by large organisations, there is nor-

mally a formalised process for checking the progress at various phases in the pro-

curement and operations. These are referred to as reviews. They are important

since it gives management an opportunity to investigate the current status of the

programme, and also forces management to take a position on various items that

are flagged as risks to the programme. However, this only operates correctly if the

correct data is made available to the correct people. As mentioned previously, in

large organisations with extensive hierarchies, this can be very difficult to achieve,

and there is a danger that the reviews may become so formal that the people who

have the working knowledge may not feel that they are able to participate in this

process. This is discussed in section 5.7.

5.2 Satellite Database

The satellite database is one of the most important interfaces between the satellite

constructor(s) and the satellite operator(s). Although there can be more impor-

tant interfaces to convey the information from one party to the other, the satellite

database is important because it is unambiguous and relatively concise. If an appro-

priate database system is used for its creation and management (see the following)

89

ID Description Units High Limit Low Limit Width Byte Offset Bit Offset

A123 ES1 Status None 1 45 6

A124 ES1 Voltage Volts 4.5 5.2 16 46 0

B100 CPU Voltage Volts 4.5 5.5 16 48 0

Table 5.1: Example Telemetry Parameter Characteristics Table

then it is relatively easy to check the completeness. A textual description may con-

vey more understanding of how a system or unit works, but it is difficult to check

it for completeness. A relational database is far easier to check for completeness

and correctness, whereas arguments about the largely textual User Manual may

easily degenerate into differing opinions about how to explain a piece of text or

even whether or not it is relevant. With a database system the goal, at least, is

usually clear, even though many implementations fall short of the ideal. It is thus

interesting to examine where this strength in a database system comes from.

At the simplest level, a database system is simply a computerised record-keeping

system. At first glance, a simple file system may seem to perform the same tasks,

and so one can imagine a simple file (e.g. a text file containing values separated by

commas) with the contents shown in Table 5.1. However, it simplifies the discussion

if we initially consider only a hypothetical system, without being constrained, for

the time being, by any implementation details.

The title provided in the first row may or may not actually be present in the

file. Usually it is preferable for it to not be there, and it is provided here only for

ease of reference. The data within a particular file is referred to as a table, for fairly

obvious reasons. The rows of such a table can be thought of as representing the

individual, logical records of the database. Likewise, the columns can be regarded

as representing the fields of those logical records. Even from a simple example as

this, several questions arise: What is in Byte Offset 45, bit 7? What byte and

bit numbering convention is used? Where is Byte 0, in the telemetry transfer from

90

header or the data field? Where is bit 0, and which way does the numbering increase?

If parameters A124 and B100 are 16 bit values, are they byte swapped? Is there a

calibration curve to show the relation between analogue (calibrated) value and the

bit pattern (raw value)? The ESA Packet TM Standard defines the answers to some,

but not all, of these questions. It is difficult to accept that a textual description of

the same data would have generated as many questions, since it was the format of

the presentation that rendered the gaps so obvious.

5.2.1 Why a Database?

Even though the examples given here are trivial, it most be obvious that most of the

advantages detailed below become ever more significant as the database increases in

size.

1. Currency: Up-to-date accurate information is available on demand.

2. Less drudgery: The sheer tedium of maintaining files by hand is eliminated,

and the quality is improved.

3. Compact: No need to wade through voluminous paper files or archives.

4. Speed: A machine can retrieve (and change) data faster and more accurately

than a human can.

5. Availability: usually more than one user can access the database at one time

(although there may need to be some restrictions).

This means that most databases are multi-user, and in any case, the goal of most

multi-user systems is to allow each individual user to behave as if she were working

with a single user system. Redundancy can be controlled: in a non-database system,

each application (or, for example, employee) has its (her) own private files. This

can often lead to a considerable redundancy in stored data. For example, consider

91

the simple case where a supervisor prints off a schedule for the two-week period,

starting in one week’s time, and distributes 12 copies to her team. During that

three week time period in which the plan has (or may have) validity, all changes will

need to be marked up one by one by each employee individually. If each member

does not rigorously incorporate all changes, as they become known, then the team

will be operating on the basis of an incoherent data set. This might mean that on

one particular day, two people turn up, or worse, that one day nobody is available to

perform the necessary tasks. Here the redundancy has introduced an inconsistency.

This is always a risk when data is replicated in an uncontrolled manner. It can be

equally disastrous whether applied to an operations schedule, design documentation,

or telemetry processing information.

By using a database management system (DBMS), the data can be shared be-

tween users without introducing inconsistencies, and, furthermore, new applications

can be developed that operate against the same data. In other words, this means

that it may be possible to develop new applications without having to add any new

stored data. This facility can act as a sort of ’future proofing’, reducing the effort

of introducing arbitrary new functions in the future.

Standardisation of data storage comes as an easy by-product of using a DBMS.

This could include corporate, departmental, national or international standards.

Data standardisation is particularly desirable since it aids data interchange and the

migration of data between systems. It thus becomes easier to upgrade the system.

Since a single DBMS can provide complete control over the database, its use can

ensure both that the only way to access the data is through the formal channels, and

can also define security rules to be checked whenever any access is made. Different

rules can be defined for reading, writing, insertion, etc., on different levels of data:

Table, report, query etc. Note, however, that without such rules, the organisation

might be exposing its data to greater risk than in an uncontrolled, uncentralised

92

system, so a DBMS not only permits but also requires a good security system to be

set-up.

5.2.2 Why relational?

A relational database is basically just a database where the data is perceived by the

user as tables (and nothing but tables) and the operators at the user’s disposal (e.g.

for data retrieval) are operators that generate new tables from old. For example,

there will be one operator to extract a subset of rows of a given table, and another

to extract a subset of the columns - and of course a row subset and a column subset

of a table can bother in turn be regarded as tables them selves.’ [8]. The name

’relational’ is just a mathematical term for a table that satisfies certain conditions.

It is now very common for the terms ’relation’ and ’table’ to be used as synonyms,

and in many cases they are. However, the relational model [7], formulated by Dr.

E. F. Codd, a researcher at IBM, deliberately introduced new terms that were not

in wide-spread use in computing circles at the time. This was because many of the

terms in use, such as table or record, meant different things to different people, and

thus lacked the precision that Codd wanted for a formal theory. For example, the

term ’record’ could mean a programming structure, a logical or physical storage

structure or a type definition. Thus the relational theory avoids the use of the term

record completely: it uses the term ’tuple’ (short for ’n-tuple’).

Relational theory is a combination of set theory and first-order predicate logic.

The first element to be defined is a domain. A domain provides a set of scalar values

from which a relation can take its actual values. Domains are the smallest semantic

unit of data i.e. they have no logical internal structure as far as the DBMS is con-

cerned. For example, a database of employees might include an employees name as

a string ”DAVID”, which consists of a sequence of characters, but by decomposing

the name into the individual characters, we lose the meaning. A domain is a named

93

subset of scalar values, for example the set of all possible names. Thus domains are

pools of values, from which actual attribute values can be drawn, and a domain is

really nothing more than data type, as the term is used in modern programming lan-

guages. For example, the following is a legal fragment of the programming language

Ada:

Type DAY is (MON, TUE, WED, THU, FRI, SAT, SUN);

Subtype DAY_OF_MONTH is INTEGER range 1 .. 31;

Most DBMS available today provide only limited scope for domains as Codd

defined them. Instead, they provide the ability to characterise attributes as being

one of a small range of primitive data types. These could include floating point

numbers, integers of various ranges, or character strings of a defined length. A

relation has two parts: a header and a body. The header is a fixed set of attribute-

name/domain name pairs: { < A1 : D1 >,< A2 : D2 >, . . . , < An : Dn > }. The

attribute names A1,A2, . . . ,An are all distinct. In the informal representation, the

header corresponds to the column headings. The body consists of a set of tuples.

Each tuple consists of a set of attribute-name/attribute-value pairs: {< A1 : Vi1 >

,< A2 : Vi2 >, . . . , < An : Vin > } (i = 1, 2, . . . ,m, where m is the number of

tuples in the set). In each tuple, there is precisely one attribute-name/attribute

value pair for each attribute in the heading. The value m is called the cardinality

of the relation, and the value n is the degree of the relation. In informal contexts it

is normal to omit the attribute names from the table, because we have an informal

convention that says that each individual value in the table is actually a value of

the attribute whose name appears at the top of the column.

Much as the image of a table is sometimes useful, it also suggests some things

that are not true. It suggests, for example, that the tuples (the rows in the table)

are in some top-to bottom order, but this is not the case. It could also suggest that

the columns have some predefined order. This is also false. The columns may be

94

moved into any order, as long as the headings are moved at the same time as the

attribute values. The number of attributes in a given relation is called the degree, or

sometimes the arity of the relation. A relation of degree one is called unary, degree

two is called a binary relation, and an arbitrary relation of degree n is called an

n-ary relation.

It is tempting to think that a unary relation can simulate a domain, because a

domain looks like a table with one column. However, there is an important differ-

ence: domains are static, whereas relations can change over time. Note also that

domains contain all possible values of the relevant attribute.

Several properties follow from the definition of a relation.

1. There are no duplicate tuples. The body of the relation is a set, and sets,

by definition, include no duplication (Note that the database language SQL

(originally Structured Query Language) [27] does permit tables to contain

duplicate rows, but this means that SQL is not a purely relational language.

This is probably attributable to the compromises necessary to get a standard

approved in the real world when there is already a large installed user base).

It follows from the absence of duplication that every relation has a candidate

for a primary key. Since tuples are unique, at least the combination of all the

attributes can (if necessary) serve as a primary key, and usually some lesser

combination is adequate.

2. Tuples are unordered, top to bottom. As before, this property follows from

the fact that the body of a relation is mathematical set, which is unordered.

3. Attributes are unordered left to right. This follows from the fact that the

header of a relation is a set, which, of course, is unordered.

4. Attribute values are atomic. This means that every individual attribute does

not contain any structure, i.e. there is never a collection of values. This can

95

ID Description
A123 ES1 Status
A124 ES1 Voltage
B100 CPU A Voltage

Table 5.2: Example Database Table

also be restated as ’relations do not contain repeating groups’. A relation

that satisfies this condition is said to be normalised, or in First Normal Form

(FNF). This implies that as far as relational theory is concerned, all relations

are normalised. The point is that it is easy to propose table structures that are

not normalised, especially if new information is added without due attention

being paid to the meaning or context of the information.

5.2.3 Relations and Predicates

Every relation has an intended interpretation or meaning. This meaning may be

made available to the other users of the RDBMS by naming a table, although the

name is used only as a label within the operation of the RDBMS itself. Consider

the (fictitious) relation illustrated by table 5.2, and let ID be the primary key.

The meaning of the relation defined by this table could be approximately put into

English as:

there exists a relation between telemetry parameters and descriptions

such that every parameter has a unique identifier (ID) and the telemetry

parameter with the identifier ID can be described by the text in the

Description field.

This statement can be regarded as a predicate with four arguments, which yields

a proposition that is either true or false. At any one time, the relation contains

exactly those tuples which make the predicate evaluate to true. It follows that

when a tuple is presented for insertion into the relation, the DBMS should accept

96

TPCT
TMID
Description
CalCurve
Type
Validity

CalCurves
CCID
Title
Points
x1
y1
x2
y2
x3
y3

MET
MID
Equation

EST
TMID
Mode1
ES1
Mode2
ES2
Mode3
ES3

OOL
TMID
Mode1
UL1
LL1
Mode2
UL2
LL2

Figure 5.1: Initial Database Schema

only those tuples which make the predicate evaluate to true. This is the theoretical

soundness that makes the relational model so robust [8].

A relational database is also ideal for defining interfaces. If a RDBMS is correctly

normalised, then adding a relation (table) can easily incorporate further changes.

Compatibility is a minor problem: either the relation exists or it does not exist.

However, if the interface is a data structure that does not follow the relational ideal,

then modifications may be required to an existing relation. This could mean, for

example, changing the field width in a table, or more usually, adding or changing a

field within a table. This means that compatibility becomes a major problem: the

old table is not compatible with the new one, and databases in different places need

to be changed synchronously.

97

5.2.4 Example Telemetry Database

Let us examine an example database in detail (see figure 5.1). The Telemetry

Parameter Characteristics table (TPCT) is supposed to include all of the information

pertaining to an individual parameter. It includes a description field, some type

information (e.g. floating point, signed integer, unsigned integer) and a field to

identifier which Calibration Curve that should be used to convert a raw digital

value in telemetry to an engineering value (e.g. to a temperature in Celsius). This

example database also includes a table of Mode Equations, in the Mode Equation

table (MET). Mode equations are assumed to be a simple combination of logical

operators on existing telemetry parameters, e.g. a certain Mode might become true

when a redundant earth sensor is in use. This mode might then be used to show

that angular measurements from the redundant sensor are valid. The validity mode

should appear in the Validity field of the TPCT. The remaining tables are the Out

of Limits table (OOL) and the Expected Status Table. Both the OOL and the EST

are indexed by the field TMID.

The OOL can be used to define a normal operating range for a parameter. This

could be, for example, the fact that a prime sensor was expected to be in use, and

if ever it was found to be OFF, an alarm should be raised. An alternative, and

perhaps better example, would be to define limits to analogue parameters, so that

an alarm would be generated whenever an equipment item got too hot or too cold.

An example usage of the EST would be to say that if the redundant earth sensor

were selected, then one would normally expect a redundant processor to be in the

status ON. Thus if the redundant processor was OFF and the redundant Earth

Sensor was in use, an alarm should be generated and the operator would have to

react to the situation.

The structure that is shown above is fairly typical of that used in control systems

throughout Europe, being similar to that initially developed at the European Space

98

Agency’s Space Operations Centre, ESOC in the 1970s and subsequently spread

around Europe under ESA’s rather flexible licensing structure. There are, however,

a number of problems inherent in such a structure. First of all, let us examine the

Calibration Curve Table, CCT. It is obviously not normalised.

Normalisation is the process of efficiently organising data in a database. It has

two goals:

• Eliminate redundant data (for example, storing the same data in more than

one table)

• Ensure data dependencies make sense (only storing related data in a table).

The database community has developed a series of guidelines for ensuring that

databases are normalised. These are referred to as normal forms and are num-

bered from one (the lowest form of normalisation, referred to as first normal form

or 1NF) through five (fifth normal form or 5NF) or sometimes even higher.

First normal form (1NF) sets the very basic rules for an organised database:

• Eliminate duplicate attributes from the same table.

• Create separate relations (tables) for each group of related data and identify

each tuple(row) with a unique attribute or set of attributes (the primary key).

Second normal form (2NF) further addresses the concept of removing duplicate data:

• Remove subsets of data that apply to multiple tuples of a table and place them

in separate rows.

• Create relationships between these new tables and their predecessors through

the use of foreign keys.

Third normal form (3NF) goes one large step further:

• Remove attributes that are not dependent upon the primary key.

99

Finally, fourth normal form (4NF), also known as Boyce-Codd normal form (BCNF)

has one requirement:

• A relation is in BCNF if and only if every determinant is a candidate key.

These normalisation guidelines are, of course, cumulative. For example, for a relation

to be in 2NF, it must first fulfill all the criteria of a 1NF database. A clear warning

of lack of normalisation is when attribute descriptions have numbers, e.g. x1, x2 etc.

Calibration curves can usually have different numbers of points, a maximum of 16

points being typical, although only 5 have been shown here. This is why an entry is

also required to say how many points contain meaningful data. If a calibration curve

only contained 2 data points, the remaining points would be empty! Although this

is an acceptable waste from a resource point-of-view since satellite databases are

typically very small, with perhaps 5000 TM parameters, of which 500 might require

calibration curves, it is an unnecessary evil.

As outlined in the guidelines, the standard way to normalise such a table is by

splitting it into one or more tables. This is shown below. There are no extraneous

indices or flags. For a given calibration curve there can only be one engineering value

(y) associated with each individual raw (x) value. Furthermore, if, for example, on

the previous architecture, it was desired to enter a new point between existing

points, some of the existing points need to be moved, i.e. re-numbered. This is not

necessary after the improvement. A point can be added anywhere in the calibration

curve. A further difficulty is in the relation between the TPCT and the CCT. Not

all parameters have calibration curves (e.g. a simple counter, or a status parameter

will not need a calibration curve) and one calibration curve can be used by more

than one parameter. This again leads to a situation where one of the fields in a

table can contain a null value, and sometimes a meaningful piece of information.

This is the crux of relational theory. There are no special flags linking one table to

another. The tables are simply files that behave according to certain rules. It is in

100

TPCT
TMID
Description
Type
Validity

CCDef
CCID
Title MET

MID
Equation

EST
TMID
Mode1
ES1
Mode2
ES2
Mode3
ES3

OOL
TMID
Mode1
UL1
LL1
Mode2
UL2
LL2

CalCurves
CCID
TMID

CCPoints
CCID
Index
x
y

Figure 5.2: Corrected Database Schema

fact completely wrong to have a field that can sometimes contain null data. The

correct procedure is once again to build a new table to link the two previous tables.

This contains only the TMIDs that have entries in the calibration curve table. An

updated datebase schema is shown in figure 5.2.

A similar set of problems exist in the OOL and EST. Not all parameters have

out of limits values or expected statuses, and the TMID has been correctly used so

as to form part of the key for these tables. However, once again, some of the at-

tributes have names with numbers: Mode1, Mode2 etc. This is a clear indicator that

things must be changed. The first step is to take advantage of the fact that for each

TMID, a mode value can occur only once. The two values combined can constitute

a primary key for the table. This gives two tables. Most of the MSSS:Multi Satellite

Support System and SCOS:Spacecraft Control and Operations System based sys-

tems that inherited the ESOC design had a rather subtle feature that is distinctly

non-relational. The order of definition of the limits and expected status was impor-

tant! The telemetry processing software applies the limits in the order that they

appear in the database, one of the things that is expressly forbidden in relational

theory. This extra feature can be made explicit by introducing an ’index’ parameter

101

TPCT
TMID
Description
Type

CCDef
CCID
Title MET

MID
Equation

ESTM
TMID
Mode
Index
ESID

OOLTM
TMID
Mode
Index
OOLID

CalCurves
CCID
TMID

CCPoints
CCID
Index
x
y

OOL
OOLID
UL
LL

EST
ESID
ES

Validity
TMID
Mode

Figure 5.3: Completed Schema

to be used to show in which order the checks should be applied.

The next potential improvement is to allow for the fact that telemetry parameters

may have similar limit sets or expected status sets. For example, if individual cell

voltages are available, they will usually be identical. This means that perhaps 120

limits (if there are three batteries of forty cells each) will be identical. This can be

performed by allowing a limit set to have an identifier. It is important to emphasise

that this places no restriction upon the ability of the user to define any possible

limits upon any telemetry parameter. It is simply an opportunity to reflect a real-

life situation in the relations in the database structure. Any sensibly defined editor

would make such changes transparent to the user. The well-protected user does not

need to act upon the tables directly. She/he can access the contents of the database

via forms populated with suitable queries that access the tables. These changes are

shown in figure 5.3.

5.2.5 Discussion

Some of the changes that have been made to the initial database may be perceived

as being cosmetic, but they brought about a substantial increase in the robustness

of the database, without necessarily changing the interface for the user in terms of

data entry forms or printouts. For example, in the initial case, consider what would

102

have happened if a parameter did not need a calibration curve. In the field for the

calibration curve identifier in the TPCT, there would be a null. Now consider the

case when someone enters a calibration curve number in that field that does not

exist. Either we accept that the database can be inconsistent for a while, or we have

to write some software to check one of the other tables and to trap this error if it

occurs. If the database is only single user, this is possible, but if many users can

write and read from the database, either we need to take a very defensive view point

and lock all records, making the database single user for a short time, or we accept

that people risk working with an inconsistent database. In the relational model, flags

which indicate that an item is present in another table are simply not necessary, and

such a mistake is not possible. However, then it becomes important to understand

the relationships between the tables. Indeed, the relationships between the tables

are just as important as the contents of the tables.

5.2.6 Object-oriented Databases

Nobody who has been in contact with information technology in the last 10 years

can have escaped the latest fashion, object- orientation. The general idea is that

object-oriented languages enable people to program at a higher level of abstraction.

Rather than dealing with bits and bytes, or integers and records, people can en-

capsulate a certain amount of functionality and data together to make an object.

The object (some languages prefer to talk about instances of an object) can only be

interfaced through a predefined set of messages. The advantage of encapsulation is

that it allows the internal representation of objects to be changed without requiring

any of the applications that use those objects to be rewritten - provided of course

that any such change in the internal representation is accompanied by a correspond-

ing change to the code that implements the applicable methods. In other words,

encapsulation implies data independence.

103

Object-oriented languages have managed to tame, to a certain extent, the mas-

sive complexity of tangled computers and protocols that are used in modern user

interfaces. Almost inevitably there has been trend to start using them first, to inter-

face with databases and then within databases. The current fashion is to actually

’store’ the objects in a database, however there are a number of ’standards’ for doing

so, none of which seem to be wholly satisfactory. There is no clear definition of what

constitutes an object (some answer ”Everything!”[38, 8], some exclude integers[6],

some exclude strings etc. etc[35]). Moreover, difficulties exist in interconnecting

object-oriented databases in a way that is not a problem for relational databases.

For example, if an object is identified by an Object Identifier in one place, it is not

at all clear if the same set of data should have the same Object Identifier when it is

replicated to a different site or be assigned a different one [8]. The author’s profes-

sional experience in this area is that in order to get differing object-oriented systems

to communicate, an extra layer of software (often referred to as ”middle-ware” is

required. This can further chain the database, which should be a logical model, to

a particular technology, which is a major disadvantage for the overall maintenance.

ESOC has developed (yet another) new generation control system [20] that is

object-oriented, but all of the current control systems store the ”Mission Information

Base” (new generation terminology for the database) in a relational database, albeit

that because so many tables were carried forward from a previous system, the tables

are still far from normalised.

5.2.7 Run-time Databases

Historically, telemetry processing was so computer intensive that it could not always

be performed in real-time. In order to minimise the computational effort, the infor-

mation in the database was de-normalised, spread out into a form that was easier

104

to access from the control system. This normally meant that after a change to the

database had been made, a separate distribution had to be performed. This might

have required anything from a short pause in telemetry processing to a restart of

the system software. Operationally such a two phase system is highly undesirable.

It brings with it separate problems about version control (when was the distribu-

tion started? Did my changes get incorporated?) and traceability (what was in the

database when this parameter went out of limits?).

Since processor speeds are now so much greater, there is little justification for

the run-time distribution, but many systems are so locked in the past it is a major

change to upgrade them. For example, one previous system was hosted on a machine

that was so fast that it was only ever possible to see any CPU usage when one of the

tasks was stuck in a loop. The rest of the time it was using less than 1% of CPU.

5.2.8 Database Summary

With the current level of technology there is no significant benefit in moving to

leading edge technology (often rightly referred to as the bleeding edge). Much benefit

could be obtained by the operations engineers having a much greater knowledge of

the intricacies of the database and the reasons for its current architecture.

5.3 User Manual

The User Manual (or Operations Handbook, ORH) is supposed to describe every-

thing that it is necessary to know about an instrument or subsystem. In short, it

should describe:

• what it is,

• how to operate it,

• what to do if things go wrong.

105

It normally consists of a mixture of plain text, diagrams and pictures. Often the

prime contractor is required to make a presentation on the satellite and sub-systems.

There are a number of limitations with the attempt to transfer knowledge by means

of the User Manual.

1. Normally the documentation has to be supplied in English, but none of the

remaining prime contractors in Europe are actually in Britain. Consequently

the UM is often written by people whose first language is not English, and it

is often poorly written and poorly structured.

2. Often the UM is prepared and delivered late in the project. The prime con-

tractor has schedule pressures from a number of sources, and the UM is a

low priority. Nobody will delay the launch because the documentation is not

ready.

3. Few engineers enjoy writing about what they have already developed, and

often do not see it as part of their main functions.

4. The writing of the UM tends to get passed down to junior staff who often do not

have the in-depth knowledge that goes across departmental and professional

boundaries, and do not have the position or power to get this information.

5. It is possible to review a document for correctness, but it is impossible to judge

whether anything is missing.

Since the User Manual is usually produced by the team that designed the sub-

system or instrument, when there is a conflict over the allocation of resources to

resolve a problem with the flight article,the documentation always loses out. Fur-

thermore, this means that the documentation tends to suffer from the same problem

as the whole spacecraft life-cycle: it takes such a long time to produce, that few peo-

ple stay in the same job on more than one project and so few people produce more

106

than one User Manual in a lifetime.

Furthermore, since there is no standard structure for the information to be pro-

vided, it varies enormously in quality and quantity from one sub-system or instru-

ment to another and from project to another. Just because the documentation

produced by a company was good on a previous project, that does not mean that it

will be good on the next project since there is no real process in place to make sure

that documentation is produced, and that the quality increases with time

5.4 Flight Control Procedures

Almost everywhere within the space industry (and other places and industries),

people operate according to procedures. The Flight Control Team will normally

spend several man-years of effort in preparing a massive document called the Flight

Operations Plan, FOP. Normally the contract with the manufacturer specifies that

procedures shall be delivered, but these are often incomplete or incorrect, since the

manufacturer usually has very little experience with flight operations. This is often

further complicated by the presence of Customer Furnished Items, CFI: a part of the

spacecraft or payload developed by a separate contractor or, on scientific missions, a

consortium of scientists. The manufacturer will usually, and understandably, refuse

all responsibility for CFI, on the basis that they are beyond its control. Unfor-

tunately this can result in the database, User Manual and flight procedures being

incoherent or incomplete since they were developed by different teams.

At ESOC (and according to the author’s experience, throughout most of the Eu-

ropean space industry) nominal procedures for operating the spacecraft and instru-

ments are referred to as Flight Control Procedures (FCP). Procedures that should be

executed in response to an out-of-limits condition or an emergency are called Con-

tingency Recovery Procedures (CRP). In North America the naming differs only

107

slightly, and in Russia same terminology is used. The term timeline is used to de-

scribe a series of activities over time. The advantages of working by procedure are

that they bring reproducibility of workmanship and traceability. If the procedures

are correct, they will normally produce the correct result, unless the wrong proce-

dure is being used (or at the wrong time) or the system has changed (e.g. due to

failure or aging). Even if the procedure does not work, it will usually be possible to

call an expert to investigate, and restore the system to an operational condition and

then improve the procedure. Thus the use of procedures should produce a knowledge

base that is always improving.

The disadvantages of working by procedure are that they can result in a de-

skilling of the task, and a lack of flexibility in the resultant operations. The latter

can be overcome organisationally, by maintaining the team so that it can respond

to the changing needs of the operators by writing or rewriting the procedures.

In the author’s experience there is often a lack of understanding about how to

write procedures. The following guidelines encapsulate the author’s experience of

writing procedures, helping other organisations to write procedures and integrating

sets of procedures from different authors and organisations to get a homogenous

operations concept. There is more than a passing resemblance to the algorithm

outlined for normalising a database. Perhaps this is not surprising, since the idea is

reduce duplication and simplify the choice of procedure as much as possible. Some

of the rules conflict with each other to a certain extent.

1. Procedures should be written to perform a single activity or for a single pur-

pose.

For example, if a system is designed so that it can fail for many reasons, but

that the resultant action is always to switch to a redundant unit, then there

could be one procedure for diagnosis, and then another procedure for switching

to the redundant unit. This could help avoid the proliferation of procedures

108

such as

(a) Pump failure diagnosis after low flow rate alarm

(b) Pump failure diagnosis after temperature alarm

(c) Pump failure diagnosis after voltage alarm

(d) Switch over pump due to mechanical blockage

(e) Switch over pump due to electrical failure

(f) Switch over pump due to routine maintenance

because the last three might essentially only contain the same activities. In-

deed, unless the activities associated with the first three activities were found

to be very lengthy, it would probably be preferable to condense them into a

single anomaly/malfunction diagnosis procedure,since as a system fails, it is

not always predictable which symptom will be appear first, and executing a

procedure that is too focussed on one aspect may prevent the operator from

getting an overview of the real problem. Thus the above six procedures could

easily be condensed into the following two:

(a) Pump failure diagnosis

(b) Pump switch over

2. Procedures should generally be tied as closely to the sub-system as possible.

This is important because procedures should normally be written by people

with detailed knowledge of the particular sub-system or instrument. This helps

maximise the chance that the procedure is complete and correct. However, the

very fact that the procedure is being written by a specialist means that if they

make assumptions about things outside their specialisation, they may be wrong

or somehow in-applicable to the situation that pertains when the procedure

109

is run. For example, this could occur when an instrument procedure makes

assumptions about the telemetry rate, or power budget or attitude, all of which

are factors that normally need to be managed very closely at system level.

3. The number of system level procedures should be minimised with only proce-

dures that change multiple subsystems being considered as system level pro-

cedures.

4. A good procedure should indicate when it is appropriate, and also when it

cannot be used.

5. The number of procedures should be as small as possible.

6. However,the procedures should cover every planned activity and cater for each

defined failure mode.

5.5 System Validation

The database is normally developed by the industrial prime contractor and the

sub-contractors and instrument principal investigator teams. They can introduce

changes and tune limits, change status texts, etc. during the integration of their

systems and instruments. The database is delivered to the control centre either in

the form of printout, or increasingly through electronic media. Within the control

centre, the database must be either entered manually into the database system used

for the control system or imported electronically. This is obviously a substantial

amount of work, especially if it needs to be repeated if updates are received.

If the database system in use in the control centre is different from that in use by

the manufacturer, then obviously there is a need to validate the database before it

is used in mission operations. The normal way to do this is to arrange a few periods

where the Mission Control System can receive telemetry from the manufacturer and

110

send telecommands to the satellite while it is still on the ground. These are referred

to as System Validation Tests, SVT.

The ground segments for the most recent ESOC missions have been designed to

use a single database, which can be accessed by the prime contractor, the integration

team, the scientific instrument teams as well as the operations team. Changes

between databases propagate automatically from one site to another.

SVT are still necessary even with a common database, since they also validate

as far as possible the flight procedures, the Mission Control System and can help

to confirm (or disprove) the Flight Control Team’s understanding of the way the

satellite works.

Since the spacecraft is often being procured as part of a much wider programme

(e.g. for global navigation systems, or for scientific investigation) it is important to

test the overall system. A series of tests referred to as End-to-End tests, or System

Operational Verification, are used for this. Normally this should include the entire

space segment (e.g. the spacecraft and payloads while they are still on the ground)

as well as the ground segment, perhaps including scientific institutes, and industrial

partners from around the world. As the scope of the system grows, it becomes not

only more difficult to find windows when all the partners are available, but more

important to do so.

5.6 Simulations

Simulation is more than a tool for the pre-launch preparation, it is one of the most

useful techniques available for all phases of the mission. It does not matter that the

simulator is usually not a high fidelity representation of the whole spacecraft. As in

other industries, the simulator exists to replace the resource of interest (the satellite

or instrument(s) or payload) but it also means that certain elements of the ground

segment are not required.

111

At ESOC, simulators are usually built (i.e. the software is written) by an inde-

pendent company, not the satellite prime contractor. This is because the simulator

is procured as part of the operations activities, not part of the satellite engineering.

This can lead to difficulty in accessing timely, correct, detailed information about

the satellite design, but it does have the advantage of having an independent com-

pany compare the different levels of design documentation. This can be especially

useful when the instruments are customer-furnished items, and the prime contractor

does not need to study beyond the interfaces.

At ESOC, since the various satellites are typically very different from one another

in their system design and target mission, it is usual to prepare for the launch with

a very intensive simulations campaign. This consists of various stages:

OCC Simulations: The mission control team in the Operations Control Centre

(OCC) work with the simulator replacing the entire ground

segment and space segment. The use of the simulator means

that the flight control team can rehearse procedures that might

be difficult, dangerous or impossible with the real hardware.

Station Simulations: The ground station personnel train on their own using all the

real ground station equipment and simulated data. Histori-

cally data tapes were recorded from satellite testing and dis-

patched to the ground stations, but now there is usually a

simple test system (e.g. PC-based) that provides a source of

telemetry and a sink for telecommands. Since most satellites

now use closed loop packet telecommanding with verification

of reception onboard, normally the test source can even re-

act to telecommands by providing the correct verification of

reception and command execution.

112

Network Simulations: The ground station staff and equipment take part in the sim-

ulation, playing their actual role at the correct time, and the

mission control team interact with the simulator for data, and

the ground stations for data and voice interfaces.

Integrated Simulations: Not all missions require these. This is the name given to

simulations with external agencies (e.g. During the EURECA

launch/retrieval, NASA Johnson Space Center, including the

astronauts), but at ESOC the term is used for any partici-

pation e.g. use of an external ground station with no extra

control centre.

The simulations are very important because it gives a chance for the flight pro-

cedures, control system and database to be verified in a meaningful way, as close

as possible to the actual operational scenario. The learning also takes place at a

higher level, since the simulations campaign is a opportunity for the control team to

grow together and start operating and feeling like a team. Prior to this phase, the

relevant people were working in isolation: The flight dynamics people concentrating

on their own issues, software specialists on development and testing, and the flight

control team were normally been concentrating on understanding the User Manual

and writing procedures.

As Green reports, based on extensive results in the aviation industry, ’...training

has two distinct functions. The first is to provide the pilot with practice in executing

the skills and procedures that he will need to to deal with real emergencies in the

air. The second is to reduce the stress generated by the real emergency and to

prevent it reaching incapacitating proportions by exposing him to the same, or

similar conditions, in the simulator’ [18].

The simulations campaign provides an invigorating way of learning to work as a

team, and also in gaining confidence that the team will be able to solve the problems

113

when they occur on the day. This can be very important for the members of the

team who are new to the project.

5.7 Reviews

Reviews are the formal process that organisations try to go through in order to

maximise the likelihood of mission success. The actual milestones vary from one

organisation to another, but typically there will be separate reviews for the space

segment and ground segment. For the space segment (and for the project as a whole)

the following reviews may be scheduled:

• Preliminary Design Review

• Critical Design Review

• Flight Readiness Review

• Launch Readiness Review

These can be very intimidating to the uninitiated, since there is normally a Review

Board populated by upper management who are trying to go through the details of

the project, and who call for evidence to be presented to them in an almost judicial

manner. Unfortunately, there is usually little time available for these excellent minds

to sift through the details of the project in any real depth,and so normally the project

team have to decide what is important, and draw it to the attention of the board

members for their consideration.

This judicial atmosphere, and the conflicts resulting from resource and schedule

pressures, can make the formal review rather adversarial. This can mean that the

review board gets very little information on which to base decisions. The people

empowered to speak are the line managers and team leaders, and any doubts or

lack of approval from the team members can easily be missed out. Rather like the

114

’first past the post’ election system in the UK elections, it tends to give rather

extreme results than proportional representation. This is the effect referred to as

’polarisation’ in Section 3.4.4. It is interesting to contrast the recorded remarks of

senior management during the shuttle STS 51-L Flight Readiness Review, such as

’My God, Thiokol, when do you want me to launch, next April?’ and some of the

rules outlined in Section 3.4.4 designed to be used to correct a good group decision.

Vaughan [40] reports how, after having gone through the Flight Readiness Review

for the Shuttle launch STS 51-L and reached a launch decision, when asked about

their opinions about some new data, many specialist engineers simply thought that

their ideas about how a sub-system might perform were simply not of a sufficient

quality to voice in such a forum: ”I felt we didn’t have a real strong position. We

had a lot of, you know, feelings that we were concerned about those temperatures,

but we didn’t have a solid position that we could quantify”[40]. The atmosphere had

then changed so that ”instead of proving that it was safe to fly, they had to prove

it was unsafe.” The mission ended 73 seconds after launch as STS 51-L, Challenger

and its seven crew disappeared in a huge fireball.

This demonstrates how people, and organisations, must retain humility and scep-

ticism to function correctly. NASA had basically made risk-taking part of the routine

on the Shuttle programme, since before the first flight, there were six volumes on

the acceptable flight risks. NASA and the contractor seemed to be participating in

”a kind of Russian roulette. ... (The Shuttle) flies (with O-ring erosion) and

nothing happens. Then it is suggested, therefore, that the risk is no longer so high

for the next flights. We can lower our standards a little bit because we got away

with it last time. ... You got away with it, but it shouldn’t be done over and over

again like that”[36].

Eventually, overturning the STS 51-L launch decision would have been implicitly

overturning all of the previous launch decisions as well, and that was too great a

115

task for any one person, or organisation.

5.8 Summary

As mentioned in Chapter 1, since the satellite is often being operated by a different

organisation to the one that built or integrated it, somehow the people responsible

for operating the satellite must trained and prepared for their forthcoming tasks.

The transfer of knowledge is an essential part of spacecraft operations engineering.

This Chapter has shown that most low-level information is now transferred in the

form of a database.

The satellite database is one of the most important interfaces between the satel-

lite constructor(s) and the satellite operator(s). However, the higher-level knowledge

is still transferred separately, usually in the form of documents containing textual

descriptions, diagrams and procedures. This makes the descriptions and procedures

potentially inconsistent with the database and because it is also manually produced,

it may also be internally inconsistent or incomplete.

As outlined in the previous Chapter, the users require skill-based, procedure-

based and knowledge-based behaviour. The User Manual is one of the terms used

to describe the documentation that the spacecraft developer is supposed to deliver

to help the end-users understand and operate the spacecraft and payloads safely

and successfully. The User Manual should be the source of procedure-based and

knowledge-based behaviour.

The User Manual is usually produced by the team that designed the sub-system

or instrument. Thus, when there is a conflict over the allocation of resources to

resolve a problem with the flight article,the documentation always loses out. Fur-

thermore, this means that the documentation tends to suffer from the same problem

as the whole spacecraft life-cycle: it takes such a long time to produce, that few peo-

ple stay in the same job on more than one project and so few people produce more

116

than one User Manual in a lifetime.

Since there is no standard structure for the information to be provided, it varies

enormously in quality and quantity from one sub-system or instrument to another

and from project to another, and just because the documentation was good on a

previous project does not mean that it will be good on the next project since there is

no real process in place to make sure that it is produced, and that quality increases

with time. Chapters 7 and 8 of this work indicate some of the methods that could be

used both to ensure that documentation thorough, and to reason with the knowledge

that is encapsulated in the documentation.

Spacecraft (or a family of spacecraft) are frequently being procured as part of

a whole system, which often has a very large ground segment that needs to be

developed, maintained and operated in parallel to the space segment. Section 5.5

discussed how the ground segment and the space segment are validated.

The role of simulations in preparing the individuals and teams mentioned in

the previous Chapter was discussed in section 5.6. It shows how they are useful in

preparing the individuals to cope with the stress of operational situations, as well

as forging a team.

Since satellites are normally only procured by large organisations, there is nor-

mally a formalised process for checking the progress at various phases in the pro-

curement and operations. These are called reviews. This was discussed in section

5.7. Reviews are particularly important since they force management to take a po-

sition on various items that are flagged as risks to the programme. However, this

only operates correctly if the correct data is made available to the correct people.

As mentioned previously, in large organisations there is a danger that the reviews

may become so formal that the people who have the working knowledge may not

feel that they are able to participate in this process. A good example of this was the

almost judicial nature of the NASA flight readiness review boards. This prevented

117

the free flow of information that was vital for making the launch decision correctly.

118

Chapter 6

Control Systems

6.1 Introduction

The procurement of a Flight Control System (FCS) is one of the major tasks that

faces a flight control team as it prepares for launch. This is also one of the major

costs of the pre-launch ground segment preparation activities, since not only must

the system be specified, it must be designed, tested and accepted before the mission

operations can begin.

Section 6.2 examines the options for procuring a control system, first looking

at the buy-or-build decision, and then the contractual implications of fixed price

developments compared to time and materials developments. This section links

strongly into Section 6.3, which looks at the issues of commonality between the

check-out system used by the spacecraft manufacturer and then control system that

is designed to be used by the operations team after launch.

It is often tempting to try to bring cost-savings to a project by introducing

automation, either to the space segment or into the ground segment to control the

space segment. The issue of when and how to automate the ground segment is

discussed in 6.4, which presents some of the complications of doing so, as well as

some of the theoretical limitations to the automated approach.

119

120

6.2 Control System Procurement

There are various options about how the FCS can be procured. One of the first major

choices is whether it should be based on an existing solution, hopefully for either a

similar mission or using a generic system. The fashionable phrase at the moment is

COTS - Commercial Off The Shelf software. The general idea is that it is possible to

define some set of core functions across all missions, and then to adapt the generic

system to meet the particular needs of the mission and that this should be cheaper

than writing an entire control system from scratch. A compromise architecture is

to adopt a generic kernel, and then write further software as necessary. This is

generally what ESOC does.

The next major choice is about how the procurement contract should be financed,

typically being a choice of either Fixed-price or Time and Materials (T&M). If a

fixed-price contract is to be placed, then normally the requirements must be precisely

known and stable. Every change to the requirements after the contract kick-off

will usually result in an additional charge from the developer. Time and materials

contracts are unfashionable at the moment, the feeling being that it encourages

developers to use up all available resources during the development phase, and to

not be sufficiently ’goal oriented’. However, a fixed price contract is essentially a bet

with a contractor about the effort needed to implement the requirements. Naturally

all prudent contractors will include margin in their estimates, a risk premium on

top of the estimated actual costs of delivering the system as specified. This extra

margin is why a fixed-price solution is not always the cheapest development method,

depending generally upon the stability of the requirements and the availability of

any deliverable items that are required as inputs to the contract. A fixed price

contract can lead to some very bitter negotiations about the detailed interpretation

of the requirements, and usually the developer is in the stronger position: the flight

control team simply cannot fly the mission without the control system, and as time

121

continues to run, that puts increasing pressure on the purchaser to make extra funds

available to keep the developers working.

There is a strong tendency for a COTS architecture to imply a fixed-price con-

tract, but this does not always have to be the case.

As discussed in Chapter 2, during the satellite design, integration and test a

control system is needed to monitor and test the satellite units and systems. This

is normally referred to as the Central Checkout Equipment, CCE. Regardless of the

details of the positioning of the satellite with respect to other satellite missions, there

is normally a lot of commonality between the needs of the Flight Control team post-

launch, and the needs of the AIV team before launch. This means that normally

two systems are developed to meet a similar set of needs. This is independent

of the architecture (COTS or bespoke) of the implementation, although obviously

the more flexible the system, the more likely it is to be able to satisfy the diverse

requirements.

6.3 Commonality Between FCS and CCE

This section examines the very high-level functional requirements for a Flight Con-

trol System and a Central Checkout System. The functional building blocks for a

Flight Control System and for the Central Checkout Equipment are given in Figure

6.1 and Figure 6.2.

We can now discuss and compare the functional building blocks represented in

figures 6.1 and 6.2 to show what functions are common in the CCE and FCS.

• Man Machine Interfaces - this function provides the operator with the inter-

faces to the monitoring and control system, including the database system.

The layout and content of each display used for telemetry and telecommand-

ing are defined in the database system. This function is identical for the FCS

122

Man Machine Interfaces

Chain

Database System

Ground Station Interfaces Ex
ter
na
l
Int
erf
ac
es

Functional Building Blocks for

F
C
P
G
en
er
at
or

O
B
S
M
M

Da
ta
Ar
chi
ve

Man Machine
Interfaces

Database
Management
System

TM
Processing
Chain

TC
Processing
Chain

Ground Station
Interfaces

FC
P

G
eneration

O
B

S
M

E
xternal

Interfaces

D
ata

A
rchive

Figure 6.1: Schematic Diagram of Functions in FCS

Man Machine Interfaces

Chain

Database System

Ground Station Interfaces Ex
ter
na
l
Int
erf
ac
es

Functional Building Blocks for

F
C
P
G
en
er
at
or

O
B
S
M
M

Da
ta
Ar
chi
ve

Man Machine
Interfaces

Database
Management
System

TM
Processing
Chain

TC
Processing
Chain

Spacecraft Interfaces

FC
P

G
eneration

O
B

S
M

E
xternal

Interfaces

D
ata

A
rchive

Figure 6.2: Schematic Diagram of Functions in CCE

123

and CCE. It must be possible to define or select screen layouts according to

which tasks are currently being undertaken.

• Database System - this function allows the definition and handling of all the

mission parameters required to drive the system. This includes mainly all

detailed definitions of telemetry and telecommands and of the user-definable

displays. The CCE must monitor and control the spacecraft and ground test

equipment so the CCE database should include definitions required for these

functions.

• Telemetry Processing Chain - this function performs the processing of teleme-

try, including parameters extraction and interpretation, automatic limit-checking,

short-term filing and special processing (derived parameters). The Teleme-

try Processing Chain is driven by the definitions stored in the operational

database. For CCE functions telemetry processing chain must also be capable

of monitoring Special Checkout Equipment (SCOE).

• Data Archiving and Distribution - this function supports the long-term archiv-

ing and the on and off-line (retrieval) data distribution to a variety of exter-

nal users to the FCS, in particular to the scientific community, industry and

Project engineers. In the FCS this function has to satisfy strict security rules

in order to prevent external access to the front-end control system.

• Telecommand Processing Chain - this function performs the processing nec-

essary for telecommands construction, uplink and execution verification. The

command processing chain is driven from the command and sequence defi-

nitions stored in the operational database. For the CCE, the telecommand

processing chain must also be capable of commanding SCOEs.

• Ground Station Interfaces - this function handles all interfaces to the ground

stations for a number of functions such as Telemetry, Telecommands, Tracking,

124

transfer of station-specific files, etc. The Flight Control System must be able

to simultaneously connect to several ground stations. This is clearly unique to

the FCS although a corresponding, unique interface exists for the CCE, since

it may be required to communicate with the spacecraft in a way that is not

possible during mission operations, i.e. via a hardwired link.

• Procedures - The CCE uses computerised procedures to automatically drive

the test sessions. These are sometimes referred to as test scripts. They contain

instructions to the test equipment, commands for the spacecraft and decision

steps using the monitoring functions of the telemetry chain (for both space-

craft and test equipment data). The analogous components for the FCS are

referred to as Flight Operations Procedures. This scope of this function in-

cludes the tools to produce all the procedures and timelines necessary to carry

out the flight operations. Typically the final product is a paper document,

the Flight Operations Plan, but connections of the generation tool to the

Database System is required to allow automatic references to the telemetry

and telecommand items and generation of command sequences derived from

the procedures, to be stored in the operational database itself.

• On-Board Software Maintenance (OBSM) - this system that is used to main-

tain the on-board software via the normal uplink, the handling of configuration

control and the facilities required for uplink verification

• External Interfaces - for the FCS, these are the interfaces to other functional

blocks that form the overall ground segment facilities of a typical satellite

mission, e.g. the Flight Dynamics System. For a scientific mission this would

also include interfaces to the Mission Planning System, the Data Distribution

System, and perhaps to one or more Science Operations Centres. These are all

typically considered as unique, off-line functions. For the CCE this includes

125

the interfaces to the special checkout equipment and the payload checkout

systems which are controlled by the CCE.

From the above discussion it is clear that there is a large degree of commonal-

ity between the two systems. In particular, the following functions are duplicated

between the Flight Control System and the Central Checkout Equipment:

1. Man Machine Interfaces - there are clear benefits in maintaining the same man

machine interface for the CCE and the operational system because AIT/AIV

people are involved in mission operations and operational people are involved

in checkout activities. Keeping the same interfaces save preparation and train-

ing costs and increase safety.

2. Database System - there are clear benefits in maintaining the same database

for the CCE and the Operational System. This would save preparation costs

and make the two systems consistent. There should be one master database

for checkout and operations.

3. Telemetry Processing Chain - this function is in general the same in the two

systems and can be capable to monitor spacecraft telemetry and data received

from other external interfaces such as SCOE’s and ground stations.

4. Telecommand Processing Chain - this function is in general the same in the

two systems and can be capable to command the spacecraft and other external

interfaces such as SCOE’s and ground stations.

5. Control Procedures Generator - this function should combine the functions of

test script and flight procedures generation, using a common control language

that can be interpreted by the ground systems into single telecommands for

debugging.

126

6. Data Archiving and Distribution - this function is identical in the two systems

and should be combined with the obvious advantage to present to external

users the same functional interfaces for acquisition of data in all phases of the

project.

7. On-Board Software Maintenance - this function is identical in the two sys-

tems and should be combines with the obvious advantage to present the same

functional interface for on-board software maintenance.

6.4 Automation

It is often tempting to try to bring cost-savings to a project by introducing automa-

tion, either to the space segment or into the ground segment to control the space

segment.

When new automation is introduced into a system or when there is an increase

in the autonomy of automated systems, developers often assume that adding ”au-

tomation” is a simple substitution of a machine activity for human activity – this is

referred to as ’the substitution myth’[43]. Woods suggests that partly because in re-

ality tasks and activities are highly interdependent or coupled ’adding or expanding

the machine’s role changes the cooperative architecture, changing the human’s role

often in profound ways. New types or levels of automation shift the human role to

one of monitor, exception handler, and manager of automated resources’[43]. This

is shown in Table 6.1. ’What is needed is better understanding of how the machine

operates, not just how to operate the machine’[43].

The theoretical problem with any attempt to automate is the following: Gödel’s

Theorem seems to indicate that any formal language above a certain complexity

used to describe a system is either inconsistent or incomplete. Incomplete in this

sense means that there are true statements about the system that cannot be derived

127

Putative benefit Results found in studies[43]
better results, same system
(substitution)

transforms practice, the roles of people change

frees up resources: 1. off loads
work

create new kinds of cognitive work, often at the
wrong times

frees up resources: 2. focus
user attention on the right an-
swer

more threads to track; makes it harder for prac-
titioners to remain aware of and integrate all of
the activities and changes around them

less knowledge new knowledge and skill demands
autonomous machine team play with people is critical to success
same feedback new levels and types of feedback are needed to

support peoples’ new roles
generic flexibility explosion of features, options and modes create

new demands, types of errors, and paths towards
failure

reduce human error both machines and people are fallible; new prob-
lems associated with human-machine coordina-
tion breakdowns

Table 6.1: Intentions of automation compared with results

from the system axioms. Gödel dealt with first order systems, for example a series

of statements about a system. He then showed that going to a higher order system

(for example, making statement about all statements) introduces the problem of

either inconsistency or incompleteness.

Turing then went even further, looking at how a logic is applied to produce

deriving proofs, and he showed that even if a logic system contains only first-order

statements, it is possible to write a program that will not reach a conclusion in finite

time. Even worse from the point of view of applying logic to a control a system,

he showed that there is no way to tell in advance if a conclusion will be reached in

finite time i.e. the only way to see if a statement can be proven in a logic system is

to try to prove it!

Initially the ’system’ is defined as being the system, and the controller is separate;

the next stage is when the system equals controller + system, etc. This is not to say

that automation is impossible, it is aimed at sounding a note of warning to those

128

who think that automation can solve all problems. If a control system is designed to

maintain a system within certain boundaries, then this is possible. However, when

the system ’suddenly’(i.e. faster than the controller can cope with) moves into an

area where the controller was not designed to operate, the controller may not be

able to recover the situation and may even exacerbate it.

The key point seems to be the introduction of self-references. This ensures that

any system described in a language that is powerful enough to be expressive is also

incomplete. Without them, the language is not expressive enough. It is possible to

side-step this constraint for one moment, by introducing a meta-language which can

reason about the first language, but the same question then immediately arises in

the meta-language. The solution to this problem is then a meta-meta-language ...

and so on.

The only way out that still produces something useful is to try to transcribe some

of the problems and pitfalls that have already been incurred on various projects,

describe some of the lessons learned, and generally provide a ’check list’ of things

that should be considered on various missions. The problem that is encountered

straight away is that descriptions differ from one project to another, and even from

one person to another on the same project.

Hofstadter[24] introduced the terms I-mode and M-mode to describe two different

kinds of reasoning. In M-mode, it is possible to work only ”in your capacity as a

machine”, thus applying axioms or production rules to the already proven set of

theorems. In I-mode, by contrast, the work is ”in your capacity as a thinking being”.

If the documentation is perfect (even if it presented in some pseudo-mathematical

notation such as a formal method) it is possible to get a lot of information using

M-mode to generate new theorems. Perhaps that will be sufficient to cover almost

every situation that is likely to be encountered, but there will still be room for

I-mode thinking, to assess commonality, and spot differences in behaviour. The

129

operations engineer needs to be able to perform in both modes.

One of the more practical reasons against major automation can be explained

by comparing the cost of automation compared with the the cost of manpower. The

author proposes that these can be broadly modelled as expecting to scale as shown in

Figure 6.3. The cost of automating the first stage of the operations should be quite

low, but the cost will increase, probably at an increasing rate, as the automation

is required to do more, e.g. handle all different failures, special cases cases that

might occur, restart after any problems, handle exceptional cases. Conversely, the

manpower costs for a very low level of automation will be very high, if this includes

manually generating telecommands and checking telemetry raw values. This will

reduce as the automation increases, but eventually the saving will be very small,

since it is difficult to eliminate all positions, since the manpower analysis should also

include the problem of who maintains and operates the automated system.

Each organisation should decide for itself how much it would cost to develop each

level of automation, compared with the savings that would be realised by reducing

the manpower level. In making this decision, it is also important to include the

amount and level of training that will be required to operate the system over the

lifetime of the project and to maintain the skills of the staff at the appropriate

level. Dekker et al [10] report a number of organisational problems associated with

the introduction of automated systems, particularly illustrated by a ship which run

aground after nearly two days of being guided precisely off-course by a GPS-based

system that was displaying an error message after its antenna became disconnected.

However the meaning of the message was not understood by the crew, and the crew

failed to investigate the difference between the location reported by the GPS system

and the other means available [10]:

• During the entry into service, the manufacturer provided familiarisation train-

ing to the first crew. However, at the time that the ship ran aground, only

130

Scope of
Automation

0% 100%

Scope of
Automation

0% 100%

Cost of
Automation

Cost of Manpower

The authors model: the cost of automation will generally increase with the scope
of automation whereas the cost of manpower will decrease as the amount of
automation increases. The optimal point will be for each organisation to decide,
perhaps on a mission-specific basis, as a function of how efficiently it can develop
or re-use automation, compared with the cost of the manpower available to it.

Figure 6.3: Automation and Manpower

131

one member of the crew remaind from that original session;

• Training of other crew members had been ’on the job’;

• None of the crew was fully proficient in the navigation system, and certainly

did not understand its failure modes;

Training restricted a basic set of modes, and how these modes work in routine sit-

uations. Often this is all an organisation can offer in terms of preparation, because

instructors themselves (often colleagues) are not proficient in or exposed to the sys-

tems broader functionality. Dekker refers to this as ’teaching of recipes’[10]. ’Recipes

restrict the range of options and modes taught, and they concentrate on the systems

input-output relationships rather than on its internal workings...pedagogically and

operationally, recipes are problematic. They work only if the basics provide a co-

herent foundation that aids learning the more difficult parts. That is, if they equip

practitioners with the appropriate skills for coordinating the automation in more

difficult circumstances...Generally, recipes create the ironic situation that training

focuses on those parts of the automated systems that are the easiest to learn. The

more complicated parts, the surprising mode transitions, the unexpected failure

modes, these are all for individuals to learn later on their own... And for them to

learn on the line[operationally], where slack to recover from going sour ... may not

exist’[10].

Dekker gives a further examples, quoting an airline pilot as saying, ’I can’t fly

anymore, but I can type fifty words a minute now’ and another captain (about

the interaction with the aircraft mode control panel), ’Oh now it goes into this

mode - that means I can...uh... I cant ...uh...move the throttles by hand, or...I’m

not sure exactly’[10] which reinforce the fact that the organisational aspects of the

introduction and maintenance of automated systems must be fully accounted for in

the decision-making process.

132

6.5 Summary

This Chapter has examined briefly some of the strategic choices that must be made

in developing a control system for spacecraft operations. There is substantial com-

monality across missions, holding out the possibility of large-scale reuse of software

and systems. This has resulted in an increasing number of COTS solutions being

proposed. This Chapter has shown that a common approach to checkout and control

system development is possible and that it might bring cost benefits. Even though

it might cost more in the initial phases such as review of the design specifications,

benefits and cost savings are expected to occur in the following areas:

• Overall development cost of the common building blocks

• Preparation of the mission database and flight operations procedures

• Consistency between checkout system and flight control system

• Validation of mission database and flight operations procedures

The approach of maintaining a single mission database has been followed on the

ESA projects Rosetta and Mars Express, and the integration between the ground

control system and the Electronic Ground Support Equipment (EGSE) has been

further extended for the ESA project Herschel/Planck.

This Chapter has also shown that automation is often introduced with the aim

of reducing costs, but studies have shown that the impact is often to change the

skill set required to do the job, and to drive up the indirect costs e.g. to maintain

proficiency at a level required for manual operation to take over from the automation

when the situation deteriorates, often under time pressure. The way automation can

contribute to the complexity of the overall operational scenario is further discussed

in Chapter 9.

Chapter 7

Vocabulary

7.1 Introduction

The User Manual is one of the names used to describe the documentation that the

spacecraft developer is supposed to deliver to help the end-users understand and

operate the spacecraft and payloads safely and successfully. Section 5.3 identified

several frequent problems with the documentation that describes the spacecraft and

its systems.

The User Manual is usually produced by the team that designed the sub-system

or instrument. Thus, when there is a conflict over the allocation of resources to

resolve a problem with the flight article,the documentation always loses out.

Furthermore, the documentation tends to suffer from the same problem as the

whole spacecraft life-cycle: it takes such a long time to produce, that few people

stay in the same job on more than one project and so few people produce more than

one User Manual in their career.

Since there is no standard structure for the information to be provided, it varies

enormously in quality and quantity from one sub-system or instrument to another

and from project to another, and just because the documentation was good on a

previous project does not mean that it will be good on the next project since there is

no real process in place to make sure that it is produced, and that quality increases

with time. Overall, it is fair to say that it is difficult to produce a user manual

133

134

because there is not standard to say what it should contain or how to produce it.

This Chapter indicates some of the methods that could be used both to ensure

that documentation complete and correct, and the following chapter, Chapter 8,

illustrates a way to reason with the knowledge that is encapsulated in the documen-

tation.

Section 7.2 illustrates how the introduction of new names for existing concepts

makes it difficult to produce the User Manual to a consistent standard and prevents

re-use of documentation from one project to another, and section 7.3 illustrates a

powerful new technique to make information available to the users in a systematic

way, that allows them to browse it graphically or scan hierarchies in a way that is

convenient for them.

7.2 Jargon

As Hamming[22] reports, ’Every field seems to have its own special jargon,one which

tends to obscure what is going on from the outsider - and also, at times, from

insiders.’ He defines jargon as a special language to facilitate communication over

a restricted area of things or events. However, it also blocks thinking outside the

original area for which it was defined to cover. Hamming even asserts that the use of

jargon is an instinctive social phenomena to increase the coherency of a group and

exclude outsiders[22]. Since groups now have much more interaction than before,

and projects often span countries or even continents, the use of such jargon can be

a significant impediment to the free flow of knowledge.

People (or at least, scientists and engineers) seem to have an inexhaustible ability

to introduce new names for things, even though they may be fundamentally the same

as existing devices. Once the name ’television’ was coined, nobody tried to insist

on giving a different name to the technique of viewing pictures at a distance, even

after it went from black and white (monochrome) to colour (polychrome) technology.

135

Consumers did not want to talk of CTV, instead of TV. But now the consumer is

weighed down by a whole new burden of vocabulary, such HDTV, D2MAC etc.

The same thing, and worse, happens in the space industry. For example, one

instrument on the Mars Pathfinder mission was called the MPC. This name hardly

gives any information about its function or architecture, but the name is clearly

tied to the mission: MPC stands for Mars Pathfinder Camera. The same unit was

designed to fly on a series of subsequent missions, but the prime contractor had to

change the name of this unit for each one. This is a classic way of obfuscation: Any

procedure or database item for this unit would need to be changed for each mission,

and if it were not otherwise known, the operations team might never realise that

their experience with one unit could have been relevant on a following mission.

Perhaps this is being done for commercial reasons: the magic though smoke

and mirrors of the Marketing Department might be able to present each unit as

more innovative, more important, more worth having if the name keeps changing.

Or perhaps this helps a Project Manager feel that he/she really is getting value

for money, since the unit now caries the name of the project embedded inside it.

However, this technique can sometimes backfire in other ways, besides loss of op-

erational knowledge. For example, High-resolution Radiometer for FIRST (HiFi)

was an instrument on the FIRST spacecraft, due to be launched in 2007. But the

project name has recently had its name changed from FIRST to Herschel, leaving

the instrument with a name that is almost devoid of meaning.

Some rules for avoiding this kind of (trivial and serious) problem are as follows:

• Avoid naming a unit after the technology that went into it.

• Avoid naming a unit after what it supersedes (advanced, improved, next-

generation etc).

• Name a unit after what it does, not how it does it, since functions are more

136

likely to persist with time.

• Never name a unit after the project or mission.

7.3 Ontology

An ontology is an explicit specification of some topic. It could be viewed as the

antidote to jargon, since each term has an explicit definition, and the relationships

between terms are also defined. The term ontology seems to generate some contro-

versy in AI circles. The word ’ontology’ is used in philosophy to refer to that part

of meta-physics which relates to the nature of existence.

In the context of knowledge sharing, the term ’ontology’ is often used to mean

the specification of a conceptualisation. It is ’a formal and declarative representation

which includes the vocabulary (or names) for referring to the terms in that subject

area and the logical statements that describe what the terms are, how they are re-

lated to each other, and how they can or cannot be related to each other. Ontologies

therefore provide a vocabulary for representing and communicating knowledge about

some topic and a set of relationships that hold among the terms in that vocabulary.’

[19].Thus it is really a formalised dictionary.

Ontologies are designed to help share knowledge. For pragmatic reasons, it is

usual to write ontologies as a set of definitions of a formal vocabulary, although

this is not the only way. They are often equated with taxonomic hierarchies of

classes, but class definitions, and the subsumption relation, but ontologies need not

be limited to these forms. Ontologies are also not limited to conservative definitions,

that is, definitions in the traditional logic sense that only introduce terminology and

do not add any knowledge about the world.

When the knowledge of a domain is represented in a declarative formalism, the set

of objects that can be represented is called the universe of discourse. For knowledge-

based systems, what ”exists” is only that which can be represented (perhaps this is

137

the cause of the adoption of ’ontology’ to express this concept). This set of objects,

and the describable relationships among them, are reflected in the representational

vocabulary with which a knowledge-based program represents knowledge. However

it is important to maintain a distinction between an ontology and a knowledge base.

An ontology is a common understanding of concepts. Knowledge may be represented

with an ontology and stored in a knowledge base.

In such an ontology, definitions associate the names of entities in the universe of

discourse (e.g., classes, relations, functions, or other objects) with human-readable

text describing what the names mean, and formal axioms that constrain the inter-

pretation and well-formed use of these terms. Formally, an ontology is the statement

of a logical theory.

We say that an agent commits to an ontology if its observable actions are con-

sistent with the definitions in the ontology. We use common ontologies to describe

ontological commitments for a set of agents so that they can communicate about a

domain of discourse without necessarily operating on a globally shared theory. The

idea of ontological commitments is based on the Knowledge-Level perspective [33] .

The Knowledge Level is a level of description of the knowledge of an agent that is

independent of the symbol-level representation used internally by the agent. Knowl-

edge is attributed to agents by observing their actions; an agent ”knows” something

if it acts as if it had the information and is acting rationally to achieve its goals.

Gruber [19] proposed a preliminary set of design criteria for ontologies whose

purpose is knowledge sharing and inter-operation:

• Clarity: An ontology should effectively communicate the intended meaning

of defined terms. Definitions should be objective. While the motivation for

defining a concept might arise from social situations or computational re-

quirements, the definition should be independent of social or computational

context. Formalism is a means to this end. When a definition can be stated

138

in logical axioms, it should be. Where possible, a complete definition (a pred-

icate defined by necessary and sufficient conditions) is preferred over a partial

definition (defined by only necessary or sufficient conditions). All definitions

should be documented with natural language.

• Coherence: An ontology should be coherent: that is, it should sanction in-

ferences that are consistent with the definitions. At the least, the defining

axioms should be logically consistent. Coherence should also apply to the con-

cepts that are defined informally, such as those described in natural language

documentation and examples. If a sentence that can be inferred from the ax-

ioms contradicts a definition or example given informally, then the ontology is

incoherent.

• Extendibility: An ontology should be designed to anticipate the uses of the

shared vocabulary. It should offer a conceptual foundation for a range of

anticipated tasks, and the representation should be crafted so that one can

extend and specialise the ontology monotonically. In other words, one should

be able to define new terms for special uses based on the existing vocabulary,

in a way that does not require the revision of the existing definitions.

• Minimal encoding bias: The conceptualisation should be specified at the

knowledge level without depending on a particular symbol level encoding. An

encoding bias results when representation choices are made purely for the con-

venience of notation or implementation. Encoding bias should be minimised,

because knowledge sharing agents may be implemented in different represen-

tation systems and styles of representation.

• Minimal ontological commitment: An ontology should require the minimal

ontological commitment sufficient to support the intended knowledge sharing

activities. An ontology should make as few claims as possible about the world

139

being modelled, allowing the parties committed to the ontology freedom to

specialise and instantiate the ontology as needed. Since ontological commit-

ment is based on consistent use of vocabulary, ontological commitment can be

minimised by specifying the weakest theory (allowing the most models) and

defining only those terms that are essential to the communication of knowledge

consistent with that theory.

Ontology design, like most design problems, will require making tradeoffs among

the criteria. However, the criteria are not inherently at odds. For example, in the

interest of clarity, definitions should restrict the possible interpretations of terms.

Minimising ontological commitment, however, means specifying a weak theory, ad-

mitting many possible models. These two goals are not necessarily contradictory:

the clarity criterion talks about a definition of terms, whereas ontological com-

mitment is about the conceptualisation being described. Having decided that a

distinction is worth making, one should give the tightest possible definition of it.

Formal languages are required to express an ontology which, as said earlier, is

nothing more than a formalised dictionary. A number of languages have been de-

signed or constructed to express ontologies. Just some of them are KIF (Knowledge

Interchange Format[17]), OKBC (Open Knowledge Base Connectivity[41]) and OIL

(Ontology Inference Layer[26]). There are many tools available on the Internet

for developing ontologies. Indeed, most representations have at least one tool set

that has been used to test the representation language, and many have many more.

OKBC is, in fact, a definition of a programming interface to allow different tools to

communicate with each other.

Part of an ontology created by the author is given in Appendix A as an example.

It works at the descriptive level, showing how a vocabulary can be structured from

the operational point-of-view, not going into too much detail when it would not

be visible either directly or indirectly to the ground-based team. The ontology

140

presented in Appendix A was originally developed by the author using a semi-

graphical User Interface onto a freely available web-accessed server-based system

Ontolingua[15]. This system was very useful, but it had the significant disadvantage

of being difficult to capture the output in a textual form suitable for incorporation

into a thesis. A further ontology was implemented by the author using the tool

Protégé [30, 32] to meet the specific needs of an on-going project, and a snapshot

of the ”index” of this ontology is given in Appendix A. The following screen shots

illustrate the user interface and demonstrate how easy it is to use the tool. After

starting the application, the first window that the user can see is the Class Editor,

shown in Figure 7.1.

A Protégé ontology consists of classes, slots, facets and axioms. Classes are

the concepts of a particular domain and, in terminology reminiscent of the object-

oriented approach popular in software engineering, each class has a set of attributes

called slots. A Protégé knowledge bases includes both classes and instances of

The main window of the Protégé tool. This is the Class Editor.

Figure 7.1: Protegé Overview

141

classes. The Class Editor is used to control or create relationships between classes

(by moving classes around the hierarchy). Classes can have multiple super-classes

(”parents”) and multiple sub-classes (”children”).

The ”Relationship” window on the left of Figure 7.1 shows the hierarchy. It is

possible to click on one of items in the Class-Relationship window and ’drill-down’

through the hierarchy. If the user clicks upon a class in the Relationship window,

then the ”Template Slots” window shows the slots (attributes) of that class. This

is shown in Figure 7.2.

In the Class Editor, it is possible to click on one of items in the Class-Relationship
window and ’drill-down’ through the hierarchy. The slots (attributes) of each class
can be seen on the right-hand side in the area labelled ’Template slots’.

Figure 7.2: An Ontology in Protégé

The author implemented the ontology in two main branches: the Equipment

hierarchy and the Interface hierarchy. The Equipment branch follows the typical

breakdown of the spacecraft according to the author’s experience, having separate

branches for System, Instrument, Unit, Actuator and Sensor. The Interface branch

142

was designed to show how the items specified in the Equipment branch are connected

with each other, which might include electrical interfaces, such as 28V power supply,

or a data exchange. The data exchange interface was further refined into a serial link

or a data bus, which were then further refined into different standards frequently

encountered by the author, such as an SMCS-1355 link, and a Mil-Std 1553 data bus.

Since the ontology is checked by the editor, it is possible to specify that a certain

kind of relationship can only take place between certain classes, for example, that a

only classes that have the ”28V class” as a superclass can supply or receive 28V i.e.

it is possible to check the knowledge base for internal consistency. Conversely, it is

also possible to specify the ”arity” of relationships, the number of participants, so

that a Mil-Std-1553 bus class might, for example, require precisely one class to be

specified as a bus master, and at least one class to be specified as a remote terminal.

The ontology is augmented by the presence of instances which illustrate how the

ontology would be used to describe a particular mission. Figure 7.3 shows how the

user can create instances of a particular class and fill out the data for their slots

(attributes).

143

This screen shot shows the Instance Editor. It is used to populate the ontology.
This makes it possible to test how suitable an ontology will be, as well as also
permitted Protege to serve as a knowledge base for a project.

Figure 7.3: Protégé Instance Editor

144

The ease of editing instances and classes in parallel makes it relatively easy to

develop a knowledge base. The Protégé editor is being developed largely by the

Stanford Medical Informatics at the Stanford University School of Medicine as an

open-source project. There is a well-defined Application Programming Interface

(API) and as a result, many other groups in both academia and industry have

developed a range of ”plug-ins” that add further functionality, either by adding a

storage format or new functions. There is a plug-in for an expert system, as well as

a plug-in for a prolog-like language. These make it easy to change classes and slots,

as well as to perform queries on the whole knowledge base.

One of the exceedingly interesting plug-ins for the user interface is the Simple

Hierarchical Multi-Perspective Views[29] plug-in called Jambalaya. The following

figures show how useful this ability to have different views on a sub-system can be.

Using one of the plug-in components, it is possible produce a more graphical
layout to illustrate different relationships between different classes. This makes it
very easy to explore a design.

Figure 7.4: Herschel-Planck Equipment types

145

In Figure 7.4 the classes are shown as a network of boxes, with the arcs and

arrows between them corresponding to the relationships between classes.

The user can view the structure at different levels of detail and from different

viewpoints. When the user uses the mouse to double-click on one of the boxes, it

opens to reveal the internal structure as in Figure 7.5.

The user can view the structure at different levels of detail and from different
viewpoints. In this diagram the internal structure of one of the equipment classes
is revealed.

Figure 7.5: Herschel-Planck Units

It is possible to filter which set of relationships (arcs) are shown in order to

increase the clarity of the diagram, or to facilitate the search for a particular piece

of information. In Figure 7.6 the details of the instances of the payload units (of

the Unit-PL) class are shown.

146

This figure shows that it is possible to zoom in on one area and see in which
relationships units participate, for example,relationships between payload units
and power units.

Figure 7.6: Herschel-Planck Instrument HFI

147

This tool make it very easy to browse for information and generally learn about

a particular instrument or subsystem. It is possible to zoom in and out and view

the data that is stored in the knowledge base in different ways. Figure 7.7 shows

this.

It is possible to zoom in on one area and see in which relationships units
participate. If the diagram become too cluttered, the labels on the arcs can be
removed, or set to appear when the mouse is moved over a particular arc. This
facilitates exploration.

Figure 7.7: Herschel-Planck Instrument HFI

As further examples of how this innovative tool allows the user to explore a

knowledge base, Figure 7.8 shows which parts of the instrument HFI are connected

by the High Speed Link (HSL) serial communication link and shows which parts of

HFI are connected by the Low Speed Link (LSL) serial communication link. These

diagrams illustrate how easy it is to see and display different sets of information

from the knowledge base in a visually appealing manner.

148

By filtering to show certain arcs, the architecture of the instrument can be
revealed. This figure shows which parts of the instrument use the High Speed Link.

By filtering to show different relationships (arcs) different aspects and and
viewpoints can be shown. This figure shows which parts of the instrument are
connected via the Low Speed Link.

Figure 7.8: Herschel-Planck Instrument HFI architecture

149

7.4 Summary

The User Manual is to help the end-users understand and operate the spacecraft

and payloads safely and successfully.

Since there is no standard structure for the information to be provided, it varies

enormously in quality and quantity from one sub-system or instrument to another

and from project to another, and just because the documentation was good on a

previous project does not mean that it will be good on the next project since there is

no real process in place to make sure that the quality increases with time. Overall,

it is fair to say that it is difficult to produce a user manual because their is not

standard to say what it should contain or how to produce it.

This Chapter has shown a method that could be used both to ensure that docu-

mentation complete and correct,and the following chapter, Chapter 8, illustrates a

way to reason with the knowledge that is encapsulated in the documentation.

Section 7.2 has shown how the introduction of new names for existing concepts

makes it difficult to produce the User manual to a consistent standard and prevents

re-use of documentation from one project to another, and section 7.3 illustrated a

powerful technique with its roots in artificial intelligence that allows users to browse

data and display relationships graphically, whilst at the same time permitting writers

to check their input obeys certain consistency constraints which will highlight when

or where information is incomplete.

The short example in Appendix A is sufficient to show that even a consistent

ontology is not a panacea.

The Appendix contains examples about one instrument (HFI) and the Low Speed

Link that some units within HFI use to communicate. The current ontology would

require an additional 250 pages to print out or view via a web browser. It is apparent

that the volume of a complete ontology would be a significant burden upon any

contractor to produce, or any operations team to read. However, it is something

150

that only needs to be done once, and it is better to do a minimal component of

it properly rather than aim for a complete Theory of Everything that can never

be completed. Since this shows how much information is require for an incomplete

model, it also shows how much information would really be required for a complete

set of documentation.

Without an approach that makes it easier to develop a knowledge base that can

be checked and transferred easily, future projects are destined to repeat many of the

mistakes of their predecessors simply because it is too difficult to learn from them.

Chapter 8

Formal Methods

8.1 Introduction

Modern spacecraft and their payloads are extremely complex devices. Often they

are required to have high autonomy, they are often sent on unique missions, they

are expensive and the subject of high expectations. However they are still being

design and tested using fundamentally the same methods as their predecessors:

personal experience, manual design and limited testing of a few scenarios with the

real hardware.

One of the most lucid arguments in favour of formal methods is presented in

[34] ”..the building of ships has been practised for over two thousand years, and

the construction of houses and bridges for considerably longer. Small wonder, then

that the many principles of civil, nautical, structural and mechanical engineering

have become part of our collective consciousness. For instance few would begin to

build even a model boat without a set of drawings, and one hardly remarks on the

need for plans to be prepared for a new house or even an extension to an old one.

Time has not yet allowed us to acquire the equivalent body of expertise with which

to surround and support the development of software-based systems. Consequently

many systems are constructed with little or no overt attention to any underlying

theory, and without the benefit of centuries of experience in the selection of those

techniques which are likely to to confer success.”

151

152

Discrete systems are based a very simple logic, usually binary logic, in which

the system is usually either in one state or another. By comparison, in structural

mechanics a material is subject to a either static or continuously varying forces and

responds in a continuous fashion. The structural system has a clear boundary, and

the limits can be calculated and tested. If a new phenomena is discovered, such

as shock-loading, or fatigue, then that can also be calculated and extrapolated and

tested. ”By testing a structural system to its limits, we can be reasonably sure

that if we stay in a well-defined envelope, the structure will be able to carry out

the task intended”[34]. Although the discrete system may sound simpler, it scales

differently. In contrast , for a discrete system ”for a medium sized system containing

1000 decisions ..would require more than 10300 test cases”[34].

Formal methods bring the benefit of being able to argue a particular case based

upon a rigorously defined specification. ”Proof of one property at the specification

stage may yield a result which corresponds to the behaviour of a very large num-

ber of possible execution sequences, offering an increased level of confidence with

the opportunity of reducing test cases”[34]. The method chosen here is the Z lan-

guage. This chapter demonstrates how formal methods may be applied to analyse

the malfunctioning of a real-world system.

8.2 What is Z?

Z is a formal specification notation based on first order predicate logic and set theory.

It was developed at the Programming Research Group at the Oxford University

Computing Laboratory (OUCL) and elsewhere in the late 1970s. International ISO

standardisation is ongoing (Z is already adopted as a British Standard). This thesis

cannot hope to replace a good tutorial (e.g. [34, 42]) and the interested reader

is referred to these or the many other for more detailed information however this

section and the following sections give an introduction to Z and show how it can be

153

applied in the context of spacecraft engineering.

The main ingredients in Z are the following:

1. The use of mathematical data types to model the data in a system.

2. The use of the notation of predicate logic to describe abstractly the effect of

each operation of a system and to enable us to reason about its behaviour.

3. The way of decomposing a specification into small pieces called schemas. By

splitting the specification into schemas, we can present it piece by piece.

Schemas are used to describe both static and dynamic aspects of a system.

The static aspects include

• the states it can occupy;

• the invariant relationships that are maintained as the system moves from

state to state.

The dynamic aspects include:

• the operations that are possible;

• the relationship between their inputs and outputs;

• the changes of state that happen.

4. The Z Schema Calculus

This is the way ”objects” are introduced. Schemas can either refer to objects

as nouns or to operations as verbs (actions). As mentioned in the chapter

on Relational Theory, the relations between objects are as important as the

objects themselves. The Z schema calculus combines the schema descriptions

into one schema and defines how they can be manipulated.

• Schema Name: Each schema must have a name. By naming them we

have a method to refer to them.

154

• Schema Signature: The signature sets out the names and types of the

entities introduced in the schema.

• Schema Predicate: The predicate sets out the relationships between the

entities in the signature by defining a predicate over the signature entities.

Normally these features are ’packaged’ typographically in a box to enhance

the clarity of the specification although these shapes can be visually quite

intimidating for the newly initiated! A schema is shown in Z as follows:

SchemaName

Signature : defines objects used the predicates section

logical predicates

Note that although we can specify the various requirements for an operation

separately, and then combine them into a single specification of the whole

behaviour of the operation, this doesn’t mean that each requirement must be

implemented separately, and the implementations combined somehow.

The separation of normal operation from error-handling which is the simplest

but also the most common kind of modularisation possible with the schema

calculus.

8.3 Outline of a Specification

A Z specification should follow a fairly standard structure. As an introduction to the

notation a simple example is given, although it cannot replace a detailed tutorial.

Preliminary analysis

First the requirements are analysed to identify the important parts of the problem;

they are described by sets and constants. The first section should include the basic

elements which are to be used throughout the whole specification. They are given

155

what is referred to as global scope. Given sets are used as types in the rest of the

specification.

Application-oriented theory

Often some special purpose theory has to be developed when writing specifications

- after the global declarations, and before the description of the state.

Describing the abstract state

Next, the abstract state is described using one or more schemas.

The initial state

A schema that describes the initial state of the system is given.

Specifying the successful case of operations

Each operation is specified, ignoring any error conditions.

Preconditions

The preconditions of the partial operations are calculated.

Schemas describing error cases

Normally, we wish to build complete interfaces so that systems can handle any input

and provide sensible results.

Making the operations total

The partial operations that describe the successful cases and the various errors are

combined to give a total description.

8.4 Tools

There are a number of tools[11][28] available which provide a great deal of support

for maintaining and checking a specification. Some tools include limited automatic

156

theorem proving, although for non-trivial specifications, the user must guide the

tool in certain places.

157

8.5 Example Specification: Satellite Operations

Controlling a satellite involves a combination of hardware, software and human

operators. It can be difficult to predict how this distributed system can fail. The

components are each designed and built by specialists in individual areas, and it

becomes the responsibility of the operations team to safely operate the system so as

to maximise availability.

8.5.1 Given Sets

This defines the things that we will talk about.

[SWITCH]

Define some specific types.

DischargeSwitchState ::= DOpen | DClosed

ChargeSwitchState ::= COpen | CClosed

8.5.2 State Definition

An individual battery is described in the following schema :

BasicBattery

DischargeSwitch : DischargeSwitchState

ChargeSwitch : ChargeSwitchState

DischargeSwitch = DClosed ⇒ ChargeSwitch = COpen

ChargeSwitch = CClosed ⇒ DischargeSwitch = DOpen

which simply says that in this model, a battery has two switches, one for charging

the battery and one for discharging it. A constraint that the switches should not be

closed together at the same time is made explicit here.

158

8.5.3 Operation Definition

Within this simple model, we then say that to charge the battery we close one of

the switches.The use of the ”prime” notation (shown by a ′) permits to differentiate

between the states before the operation and the states after after the operation.

The Z view of an operation is then as being a relationship between a set of all

before states and the set of all after states. It makes no presumption about how the

particular operation is implemented.

StartCharging1

BasicBattery

BasicBattery ′

ChargeSwitch = COpen

ChargeSwitch ′ = CClosed

DischargeSwitch ′ = DischargeSwitch

Z allows certain abbreviations and conventions to be used within the notation

that do not impair the mathematical rigour. The line ∆BasicBattery shows that

this schema imports the schema BasicBattery and BasicBattery′ and modifies the

state only as shown. The before and after versions of the other variables are the

same, and so do not need to be explicitly shown. With this abbreviated notation

we can write that to discharge the battery we close the other switch.

StartDischarging1

∆BasicBattery

DischargeSwitch = DOpen

DischargeSwitch ′ = DClosed

ChargeSwitch ′ = ChargeSwitch

and then develop schema to describe the end of charging and the end of discharging

too.

159

StopCharging1

∆BasicBattery

ChargeSwitch ′ = COpen

DischargeSwitch ′ = DischargeSwitch

StopDischarging1

∆BasicBattery

DischargeSwitch ′ = DOpen

ChargeSwitch ′ = ChargeSwitch

8.5.4 Pre-Condition Calculation

One of the advantages of using a formal method is to investigate under what cases

the defined operations can succeed. This is called calculating the preconditions of

an operation. In English. this would be equivalent to defining an function called

pre Op such that for an operation Op, there exists a state after the operation Op

as long as the preconditions are satisfied. More mathematically, the pre-conditions

for an operation Op are defined as:

pre Op = ∃ State ′; Outs • Op

where

State ′ is the modified state variables

Outs are the output variables of the operation.

For the operation to be total, it should be possible to start it in any state, and thus

∀ State ′; in : IN ; • pre Op should be a theorem that can be proved in our system.

This then gives:

theorem PreStartCharging1

∀BasicBattery ′ • pre StartCharging1

160

By expanding this gives

BasicBattery

∃ChargeSwitch ′ : ChargeSwitchState,

DischargeSwitch ′ : DischargeSwitchState; •

StartCharging1

Which expands to

DischargeSwitch : DischargeSwitchState

ChargeSwitch : ChargeSwitchState

DischargeSwitch = DClosed ⇒ ChargeSwitch = COpen

ChargeSwitch = CClosed ⇒ DischargeSwitch = Dopen

⇒ ChargeSwitch = COpen ∧ DischargeSwitch = DOpen

Which should have been ’intuitively’ obvious from the outset, but has been calcu-

lated here. These preconditions can then be added and tested:

theorem ModifiedPreStartCharging1

∀BasicBattery | ChargeSwitch = COpen ∧ DischargeSwitch = DOpen

• pre StartCharging1

This can be expanded to give the result true in a theorem checker[11] or type

checkers [28].

161

8.6 Detailed Specification

Now let us examine a more complicated situation, a little closer to real life. In order

to measure the performance of a battery, and to re-condition it if necessary, this

battery is fitted with a resistor, of known resistance, referred to as a shunt. The

battery can be switched out from the support of the Main bus, and then discharged

through this shunt. The time taken to reach a standard voltage (equal to end of

discharge limit) allows the stored energy of the battery to be measured. The battery

then needs to be recharged very slowly (trickle charge) to avoid damage. This is

because if the battery voltage is low, the current into it from the normal charger

would be too high.

8.6.1 Component Specification : Shunt

Component Data Type Definition

ShuntState ::= ShuntOn | ShuntOff

TrickleState ::= TrickleOn | TrickleOff

Component State Definition

Shunt

ShuntRelay : ShuntState

Trickle : TrickleState

Component Operations

The following operations are possible:

162

DeepDischargeStart

∆Shunt

ShuntRelay = ShuntOff

ShuntRelay ′ = ShuntOn

Trickle = TrickleOff

Trickle ′ = TrickleOff

DeepDischargeCompletion

∆Shunt

ShuntRelay = ShuntOn

ShuntRelay ′ = ShuntOff

Trickle = TrickleOff

Trickle ′ = TrickleOff

After the deep discharge, the battery is then charged with a low current (referred

to as trickle charging):

TrickleCharge

∆Shunt

ShuntRelay = ShuntOff

ShuntRelay ′ = ShuntOff

Trickle = TrickleOff

Trickle ′ = TrickleOn

TrickleCompletion

∆Shunt

Trickle = TrickleOn

Trickle ′ = TrickleOff

163

8.6.2 Component Specification : Pressure Detectors

Component Data Type Definition

Let us define three ranges of pressure: a nominal range and a low threshold and

a high threshold, together with two signals which trigger when the appropriate

threshold is breached.

PressureRange ::= Plo | Pmid | Phi

HPSignal ::= High | NotHigh

LPSignal ::= Low | NotLow

PressureSensor

CellHighPressure : HPSignal

CellLowPressure : LPSignal

Pressure : PressureRange

Pressure = Phi ⇔ CellHighPressure = High

Pressure = Plo ⇔ CellLowPressure = Low

8.6.3 Main Specification

The rest of the battery is similar to the previous example. It would be possible to

simply refer to the the previous schema BasicBattery or repeat the definition here.

Data Type Declarations

DischargeSwitchState ::= DOpen | DClosed

ChargeSwitchState ::= COpen | CClosed

164

State Definition

BasicBattery

DischargeSwitch : DischargeSwitchState

ChargeSwitch : ChargeSwitchState

DischargeSwitch = DClosed ⇒ ChargeSwitch = COpen

ChargeSwitch = CClosed ⇒ DischargeSwitch = DOpen

The ComplexBattery has all of the same features of BasicBattery with some

additional ones, including the shunt. The following schema shows the state of the

ComplexBattery and shows that it includes a shunt.

ComplexBattery

BasicBattery

Shunt

PressureSensor

Operations

In the following, we introduce the symbol Ξ in Z, which is the same as ∆ which

introduces the before and after schema, but with the addition of predicates to equate

(all) of the before and after states of the declared variables.

Here we describe the charging process. The pressure increases when charging

takes place i.e. when the charge switch is closed, the pressure is allowed to increase

until the high limit.

Charging

∆ComplexBattery

ΞShunt

ChargeSwitch = CClosed

Pressure ′ 6= Phi

165

Similarly, when a battery is discharging, the pressure drops, but should not be

allowed to drop below the low limit.

Discharging

∆ComplexBattery

ΞShunt

DischargeSwitch = DClosed

Pressure ′ 6= Plo

Normally the battery is kept almost fully charged. It discharges slowly, and the

internal pressure drops. When the low pressure threshold is reached the battery is

charged up again until the pressure reaches the high threshold.

RoutineControl

∆ComplexBattery

ΞShunt

(Pressure = Phi ∧ DischargeSwitch = DClosed) ∨

(Pressure = Plo ∧ ChargeSwitch = CClosed) ∨

Pressure = Pmid

8.6.4 Error Cases

It is possible to define two error cases; that is charging when the pressure is at the

high limit, or discharging when the pressure is at the lower limit.

report ::= Ok | HighPressure | LowPressure

OverPressure

ΞComplexBattery

r ! : report

CellHighPressure ′ = High ∧ ChargeSwitch ′ = CClosed

r ! = HighPressure

166

UnderPressure

ΞComplexBattery

r ! : report

CellLowPressure ′ = Low ∧ DischargeSwitch ′ = DClosed

r ! = LowPressure

It is now possible to combine the RoutineControl and the error cases to make a

schema NominalOperations.

NominalOperations =̂ RoutineControl ∨ OverPressure ∨ UnderPressure

8.6.5 Test Cases

After performing DeepDischarge, DeepDischargeCompletion, TrickleCharge and Trick-

leChargeCompletion the battery should be back in its starting state.

Here we construct a series of test cases by sequentially composing the schema,

one after the other.

Test1 =̂ DeepDischarge o
9 DeepDischargeCompletion

Test2 =̂ TrickleCharge o
9 TrickleCompletion

Test3 =̂ Test1 o
9 Test2

theorem BackToNormal3

Test3 ⇒ ΞShunt

i.e Test3, the result of applying all of these schema, implies that the end state is

the same as the beginning state. This Theorem can be expanded to give the result

true, as desired.

167

8.7 Summary

Formal methods bring the benefit of being able to argue a particular case based

upon a rigorously defined specification. By proving a property of a design early in

the mission life-time, perhaps even before hardware is built, it may result in a cost

saving, by reducing testing, or a dramatic increase in reliability. Formal methods

were developed to be applied to software systems, but are applicable to any discrete

system.

One of the main benefits of formal methods is that it requires a statement of

the problem. This is also sometimes a disadvantage, since some of the knowledge

might not be available. Obviously the main advantage of using a formal method

for the design specification and testing would arise if the overall life-cycle were to

be improved, and the same knowledge of the state space that was tested at the

design phase were also to be used in the testing and qualification phase, and even

if the same source of data were to be used in the user manual. With the idea of an

ontology from Chapter 7 this idea of a single knowledge base for the entire mission

can be applied.

168

Chapter 9

The Nature of Complexity

Of three ordinary people, two must have the same sex.

Daniel Kleitmam

9.1 Introduction

Complexity is defined as the opposite of simplicity, but in terms of trying to eval-

uate the complexity of a system, that (almost recursive) definition does not help.

When trying to compare different designs of satellite, one could initially try to count

the number of distinct telecommands that a satellite can accept, but several ques-

tions arise. Should this number include telecommands with parameters? How are

different parameter values taken into account? How does the number of teleme-

try parameters affect this value? If we avoid these questions for the moment, this

definition would lead logically to the concept that the complexity of a system was

related to the length of its description and it is interesting to analyse this concept

in more detail. For example, what characterises the complexity of a group of inter-

connected computers? As discussed by Gell-Mann[16], a number of nodes can be

interconnected in many different ways and it is interesting to examine the relative

complexity of such networks as shown in Figure 9.1.

Most people will agree that A is simple - no nodes are connected. In case B,

some, but not all, nodes are connected. In C, all the dots are connected, but not

169

170

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

1
2

3

4
5

A B C

D E F

Figure 9.1: Comparative Complexity

in all possible ways. In D, the connections that are present in C are absent, and

those that are absent in C are present; C and D are thus complements of each other.

Similarly E is the complement of B, and F is the complement of A, since all nodes

are connected in all possible ways. This results in what can also be referred to as an

undirected graph. The same information can be shown in matrix form, where each

node represents a column and a row, and a ’1’ indicates that a connection exists

between the two nodes. It is assumed that no node can be connected to itself, and

so the items on the leading diagonal can be disregarded.

A =

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

0 0 0 0 0

B =

0 0 1 1 1

0 0 0 0 0

1 0 0 0 0

1 0 0 0 0

1 0 0 0 0

C =

0 1 0 1 1

1 0 1 0 0

0 1 0 1 0

1 0 1 0 1

1 0 0 1 0

D =

0 0 1 0 0

0 0 0 1 1

1 0 0 0 1

0 1 0 0 0

0 1 1 0 0

E =

0 1 0 0 0

1 0 1 1 1

0 1 0 1 1

0 1 1 0 1

0 1 1 1 0

F =

0 1 1 1 1

1 0 1 1 1

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

171

Most people will agree that case A is simple, i.e. has the least complexity, and

that case B, is more complex than case A. One immediate reaction might be that

case F is the most complex, but there is potentially a good argument to be made

that the property of having all the nodes connected is the same as having none of

the nodes connected. If the convention used in the matrix notation is inverted, ie.

1 = not connected, case F is the same as case A, so perhaps case F belongs at the

bottom of the complexity scale, with case A. The patterns shown in B and E are

evidently more complex than A (and therefore F), and the same can be said for

cases C and D. Note that this analysis might break down if the links between node

are not identical, or change in nature. For example in the domain of control, one is

generally more interested in imposing one’s will upon a system, and so the diagrams

need to be enhanced to include the introduction of information from the outside

world, and then flowing from one node to another. This means that the topology

cannot be represented by an undirected graph.

On a more philosophical note, it should be remarked that if the complexity of a

system is related to the length of its description, then complexity is not an intrinsic

property of that which is being described. Any description of complexity is neces-

sarily context-dependent, and may even be subjective. Not only is the level of detail

at which the system is being described subjective, it depends upon the vocabulary

available. For example, to someone with experience in the space industry, it might

be sufficient to say that a satellite has an Earth sensor, whereas to communicate

the same information to a novice, one would have to start from first principles, per-

haps even with an introduction to orbital mechanics! These ideas can be integrated

into what Gell-Mann refers to as ’crude complexity’: ”the length of the shortest

message that will describe a system, ...,to someone at a distance, employing lan-

guage, knowledge and understanding that both parties share (and know they share)

beforehand.”

172

9.2 Algorithmic Information Content

During the 1960s, three authors (Kolmogorov, Chaitin and Solomonoff) indepen-

dently developed the concept of Algorithmic Information Content, AIC[16]. They

envisaged that a description to a given level would be encoded into a string of binary

digits, and assumed the existence of an idealised, all-purpose computer with no limit

on its storage capacity. They then defined the length of the shortest program that

would make the computer printout the string and then stop as being the Algorithmic

Information Content of the string. These theorists were interested in how descrip-

tion of systems such as those defined above would vary as the number of nodes was

increased towards infinity, and so the initial differences that would result from the

use of one computer or one language instead of another were dwarfed by the effects

due to scaling up the problem. One curious property of Algorithmic Information

Content is that it is not computable. We can never be sure that the Algorithmic

Information Content of a string is not lower than we think it is. There may always

be a theorem or algorithm that would permit the description to be further com-

pressed. This result is reminiscent of Gödel’s Theorem, that stunned the world of

mathematics by proving that it was not possible to formulate a system of axioms

for all of mathematics and prove them consistent, and was thus impossible to derive

the truth or falsity of all mathematical propositions. However, it is possible to put

an upper bound on the Algorithmic Information Content of a description, although

the AIC may of course be lower than this.

A further flaw in the use of Algorithmic Information Content to define complexity

for our purposes is that since Algorithmic Information Content effectively deals with

the compressibility of message strings, Algorithmic Information Content is largest

for random strings, and randomness is not what is usually meant by complexity.

In fact it is the non-random aspects of a system (or of a string) which contribute

to its effective complexity, which can be characterised as the length of a concise

173

description of the regularities of that system.

What we are really interested in is the knowledge gained by separating the reg-

ularities in a system from the random occurrences, since we wish to understand the

behaviour of the system. This is analogous to learning a language. If the student’s

native language is ’similar’ in some way to the new language to be learned, a system

consisting of some rules and a look-up table might be very effective. However, for

every exception to the rules, the length of the description increases. The new student

(or young child) is able to effectively separate grammatical features from the other

factors that gave rise to the sentence that was heard or read. One thing that does

become obvious from the calculation of the Algorithmic Information Content is that

comparisons between systems of differing complexity become more meaningful as

the descriptions become longer. At the absurd extreme, it is evidently meaningless

to differentiate between the simplicity or the complexity of a one bit string. This

leads us to the idea that complexity is linked to the presence of similarities in de-

scriptions, but not absolute identities. The description of the system thus contains

a series of patterns that may re-occur throughout the description.

9.3 Effective Complexity

If the system being described has absolutely no regularities in it, then the compressed

description (which can also be referred to as a schema) will contain no patterns. To

put it differently, the schema will have zero length. This gives us the kind of property

that we desire in a useful definition of complexity, since if we study a random string,

even though its Algorithmic Information Content is maximal for its length, we can

learn nothing useful from it. At the other end of the scale, when the Algorithmic

Information Content is near zero, the bit string is entirely regular, the effective

complexity should also be zero, since the message is so easily compressed. Thus for

the effective complexity to be high, the system must be neither too well ordered,

174

Largest
possible
effective
complexity

Algorithmic Information Content
per message length

Figure 9.2: Effective Complexity

nor to disordered. This is sketched in Figure 9.2.

9.4 Causes of Complexity

In simple words, almost anything can cause complexity. The time-honoured idiom

”Any fool can invent something complicated. It takes a genius to invent something

simple” is very apposite. Complexity has a number of origins: large numbers (too

many things to control), small numbers (resource constraints), interactions, and

time constraints. Often features related to complexity arise much sooner, with

much smaller numbers than expected.

The Birthday Problem

For example, consider the Birthday problem[21], which is apparently well-known ,

but manages to fool or mislead a high fraction of people.

If we consider that a year always consists of 365 days, and that births are equally

likely throughout the year, how large must a group be, for it to be more likely than

not that two members of the group share the same birthday?

Most people (including this author) guess about 183, the obvious reason being

that it is just over half of 365. However, the real answer is 23! The trick here for

finding the probability that something happens is to calculate the chance that it

does not happen, and then subtract it from 1.

With two people, the second person has a different birthday 364 times out of 365.

175

A group of three people will all have different birthdays if the first two are different

(probability 364/365), and the third persons birthday is one of the remaining 363

days. So the chance of having three different birthdays is

364
365

× 363
365

For four people, the first three must be different (as above) and the fourth must be

on one of the remaining 362 days.

364
365

× 363
365

× 362
365

Statisticians introduce a notation to express products such as 364× 363× 362 more

concisely. Write this as (364)3. Then the probability of 5 people having different

birthdays is

(364)4
3654

and the chance that ten people will have different birthdays is

(364)9
3659

If we extended this calculation down to a group of 366 people, the probability would

be zero. But to solve the problem in hand, it is sufficient to use a calculator or

spreadsheet to evaluate

(364)21
36521 and (364)22

36522

which give 0.5243... and 0.4927...respectively, so 23 is indeed the point at which

it becomes more likely than not that a group contains two people with the same

birthday. This surprising result can be partly explained as follows. Consider that

when the group contains 10 people, an eleventh person has 10 chances of size 1
365

of

having a common birthday. If there is no common birthday, then the twelve person

has 11 chances of 1
365

, and so on. There are K × (K − 1)/2 ways of choosing two

176

objects from a group of K objects, which means that there are 253 chances, each of

size 1
365

in a group of of 23 people.

This analysis has been shown in a trivial, amusing case, but it could have more

significant implications in for example, assignments of a limited number of frequen-

cies, or slots on a bus. A constraint has shown to be much more likely to appear

than initially expected.

Ramsey Theory

H.Burkhill and L.Mirsky [2] state ”There are numerous theorems in mathematics

which assert, crudely speaking, that every system of a certain class possesses a large

sub-system with a higher degree of organisation than the original system.” All of

these structural problems can be grouped under the general heading of Ramsey

Theory. The classic Ramsey problem can be phrased in terms of the number of

guests at a party. What is the minimum number of guests that must be invited so

that either at least three guests will all know each other, or at least three guests will

be mutual strangers? To clarify the assumptions, let us assume that the relation

’knowing’ is symmetric: if Alan knows Bill, then Bill also knows Alan. Now let us

consider the situation of the sixth guest, Fred. Since Fred either knows the other

five, or does not know the other five, then by inclusion he will either know at least

three of them, or not know at least three. If we assume that Fred knows at least three

of them, Alan, Bill and Charlie (the argument works the same way with the other

assumption) then we consider what relationships the three acquaintances might have

amongst themselves. If any two of them know each other, then they, together with

Fred, will make up a group of three who know each other and we are done. If all

three of Fred’s acquaintances are mutual strangers, then we are done too, since that

gives us a group of three. This could have been proved by brute-force evaluation of

all 32, 748 possibilities but combinatorics allows some limits to be explored without

177

enumerating and testing every possible combination. R. Graham referred to this as

’Counting without counting”.

For example, if we want to guarantee a group of four people who either all know

each other or are mutual strangers, then 18 people are necessary and sufficient. For

five people, the answer is not known, but it is known to lie between 43 and 49. For

six people, the range is even bigger: 102 to 165. These are normally written as

R(3, 3), for the first example, R(4, 4) for a group of 4 who know or do not know each

other. Sometimes these symmetrical numbers are abbreviated as R(3), R(4) etc.

Ramsey numbers are not always symmetrical: it is possible, for example to define

R(4,3)=6, the number necessary to ensure either a group of 4 people who know each

other, or a group of 3 strangers, or (since the relation ’not knowing’ has the same

properties as the relation ’knowing’) a group of 4 strangers or a group of 3 people

who know each other. In fact, Ramsey Theory does not have to be restricted to a

binary relationship (which is the equivalent of two-colouring a graph), Higher-order

Ramsey numbers are defined, but none of the non-trivial ones are known, apart from

R(3, 3, 3) = 17, the number necessary for a 3 colouring of a graph.

The importance of Ramsey Theory in engineering is difficult to evaluate. It

stresses that given any number of any articles, and some kind of relationship between

them, there must be some kind of structure, and it might not be the kind of structure

that you are expecting. Part of the difficulty arises since the Ramsey numbers specify

that one of two subgraphs will be contained within the graphs, but it does not say

which. Either 3 people will know each other, or 3 people will not know each other.

If we replace the relationship ’knows’ with the relationship ’communicates with’, or

’shares power with’, or ’is physically next to’ and the implications become a little

clearer. Of course, nobody would design a spacecraft where the components could

not communicate with each other when they needed to, and so we can assume that

the main functions will be implemented in a way that corresponds to a ’connected

178

solution’, as opposed to the ’unconnected’ or isolated solution. But in some of the

ancillary functions, limitations may only becomes apparent after design, in testing

or operations.

An example may help to illustrate where it may be possible to see more relevance

to design issues. Without giving the theory, if we look at a sequence of n2 + 1

integers, there will always be a sub-sequence of at least n + 1 increasing integers

or n decreasing integers[23]. In its more general form, this can also explain the

probability of, for example, a series of stars appearing to line up to form a straight

line to an Earth-based observer. This is particularly relevant given the propensity

of human operators to see patterns (as outlined in section 3.2.3).

Ramsey theory is telling us that there will be a higher level structure in what

we create, even if we are not expecting it because we do not create it explicitly.

Ramsey theory has been applied to all sorts of communication and thermodynamic

problems with successful outcomes[23].

Self-References

Gödel worked in Peano arithmetic to construct a statement that affirms its unprov-

ability. Peano arithmetic is quite basic, consisting of the formal axiomatic theory

dealing with natural numbers with the operators for addition, multiplication and

equals. Gödel numbered the symbols, the well-formed formulae (WFFs) and the

axioms and proofs in a formal axiomatic system. This was his way of converting

the assertion that a specific proof establishes a specific theorem into an arithmetical

assertion. He converted the assertion into the fact that a certain natural number

(the Gödel number of the proof) stands in a numerical relationship with another

natural number (the Göedel number of the theorem). The really clever part is in

how Göedel created the self-reference, because the statement doesn’t refer to itself

by containing a quoted copy. It refers to itself indirectly, saying that if a certain

179

calculation is performed, then the result is a statement that cannot be proved.

Five years later, Turing, often referred to as the first computer scientist, found

a different reason for incompleteness, almost the source of incompleteness. This

was his Halting problem. He determined that there is no algorithm, no mechanical

procedure that can ever determine in advance if another computer program will halt.

Chaitin [4, 5], one of the founders of algorithmic information theory, has spent

most of his life developing the theory, and is now convinced that complexity is best

measured by the binary size of a program trying to simulate the system in question:

”The general flavour of my work is like this. You compare the complexity of the

axioms with the complexity of the result you’re trying to derive, and if the result is

more complex than the axioms, then you can’t get it from those axioms” [5].

9.5 Example

Everyone would (probably) agree that a pile of wires could not be too complex, but

depending upon how it is wired together complexity can emerge.

Consider a basic (I hesitate to use the word simple) system: a heating circuit

for a room, operated from a mains supply. We want the room to maintain a certain

temperature, so we wind the wire in a coil, put a thermostat in the circuit and

plug it into the mains supply . The thermostat opens when it is hot (above the

desired temperature) and closes when it is cold (below the desired temperature).

This means that current flows in the heater circuit when the thermostat is cold, and

heats the air in the room, and the heater current stops when the thermostat reaches

or exceeds its desired temperature. This sounds fine.

We then realise that this is an important function, and are worried about the

impacts of failures. If the thermostat fails open, then the room gets too cold. If the

thermostat fails closed then the room gets too hot. If we duplicate the heater circuit

with another thermostat, then we protect against the case that the thermostat fails

180

open, but if either thermostat fails closed, then the room still gets too hot. One

possibility would be to implement a complicated switch, so that each thermostat

also controls the power line of the heater circuit. Another alternative would be to

introduce even more heater circuits, but make them of such a low power that a

failure in one circuit only could not make the room get too hot. The problem with

this strategy is that then the reliability of the whole system decreases in the long

term, since there are more items that can fail.

Then perhaps as an investigation of the performance of the prototype, we decide

to actually measure the temperature of the room. This requires the insertion of

one or more thermistors into the room. These thermistors provide much greater

precision (and accuracy) than the low-tech thermostats. With this data we see

that the temperature is cycling up and down within a deadband. To reduce the

temperature fluctuations, we decide to use the temperature measurements from the

thermistors to operate the switches on the heater cycles. This means that if a switch

fails closed, the thermostat will open, and the room will not get too hot. However,

the problem is now that a switch might fail open, and then the room gets too cold.

Furthermore, the thermistor could fail, and this might cause the switch to stay open

too. This has introduced another failure mode.

So it seems as if we cannot rely on a single thermistor. If we have two, we cannot

tell which one is correct, so we need at least three, and possibly more, ideally an

odd number. But if we decide to average the readings of the thermistors, if one has

failed and is giving an exceptionally low reading, then this might distort the average

so that it is out of the permitted range, and then the switch will be open, and the

room will get too cold.

So the next step is to introduce some kind of plausibility processing on the output

of the thermistors. If we have a sufficient number of measurements, we can disregard

the highest and the lowest, and then average the remaining measurements. Another

181

alternative would be try to actively detect a thermistor failure as it happens, by

looking for a sudden step in the output. Yet another implementation could be to

assume that the temperature must always be between the minima and maxima of

the thermostat, and that any reading outside of this region is erroneous and must

disregarded. The problem with the latter? If we flush the room with cold air (or hot

air, if the system is in use outside the British Isles) outside the expected temperature

range, all of the healthy thermistors will be declared failed and the outputs ignored.

What is the output of the thermistor processing when all inputs are to be ignored?

Does it have ’memory’? This could enable it to keep the same state as previously.

If a thermistor is declared failed, is it disregarded ’for now and for ever more’ or

only for the current set of measurements ? How can the customer be informed

that a component has failed? Should the customer be informed? Is it reasonable

to expect the customer/owner/operator to repair components? Can the customer

’reset’ the thermistor processing unit to make it start taking a repaired thermistor

into account?

Another solution could be to have two separate ’control systems’. One system

with a powerful heater and a coarse thermostat with a wide deadband, and smaller

heater circuit to be operated by the output of the thermistors. But then we come

down to the reliability of the original components again and what redundancy is

necessary. Can the ’fine’ heater be operated in parallel with the coarse heater? Can

it run all the time? This could be important if the room starts off cold, and we had

not considered the fact that the fine heater might have a limit to its duty cycle.

This example has shown how the complexity of a single circuit could be driven

up by a number of items including :-

• Environment

• Reliability

182

• Performance

• Changing Scope

• Usability

Initially we considered only the heater circuit, basically taking a known solution

and trying to impose it upon the problem. But slowly the scope of the problem

got bigger, so that not just a heater was required, a whole heating and monitoring

system was required.

The example system also suffered from ’requirements creep’, as we slowly ex-

panded from a system specified to maintain a given temperature to one that was

intended to take a room from almost any temperature to the desired temperature,

and we had not even addressed any cooling requirements. As an aside, a colleague

has a real central heating system for his house, bought off the shelf which includes

factors for giving weight to the outside air temperature and the amount of sunshine

incident upon the house, as well as the obligatory interface for Internet accessibility.

The really interesting questions are triggered by considering the answers to the

question ’Who monitors the monitor?’. Every time a monitoring requirement is

added, it imposes a ’new level’ to the design. Not only should the monitoring system

be more reliable than the system that it is monitoring, it should also behave correctly

over the entire potential range of operation of the system which it is monitoring,

including starting and stopping and all possible operations in between. Exactly how

much do you trust a unit that says that it has failed?

Hofstadter [24] introduced the terms ”Strange Loop” and ”Tangled Hierarchy” to

explain the phenomenon of, when moving in a single direction through the levels of

hierarchical system, the observer or participant suddenly finds herself back where she

started. Hofstadter illustrates this phenomenon in a wonderful book with examples

from music (e.g. Bach Canons), art (the works of M.C. Escher) and dialogues

183

reminiscent of Lewis Carroll’s Alice in Wonderland. He explains how complexity can

”emerge” by creating another level, almost as a way of avoiding a logical conflict.

For example, if we consider the sentence

”This sentence is a lie”

we run into a conflict, since each of the individual constituents of the sentence is (or

may be) true, but when we move to the semantic level, the sentence itself is telling

us that it is false. Which do we wish to believe? Mathematicians have continued

doing mathematics, long after Gödel produced his paper, and indeed long after he

died. It is always possible to work around this conflict by introducing another axiom,

and continuing happily along in the new system, i.e. at a higher level, with greater

complexity and a greater risk, since the more axioms there are, the more there is

that can be wrong. Nothing is too complicated. Almost everything is more complex.

9.6 Complexity Management

As we have seen, as systems grow, there is an unavoidable increase in the complexity.

Although it is not possible to have a ’big’ system that is simpler (in all ways) than

a ’small’ system, it should be possible to make the complexity scale at a rate less

than the size of the system by trying to localise as many functions as possible

within modules and reducing the coupling between modules as much as possible.

This practice has been established as classic software engineering as well as in other

disciplines. This means, for example, trying to encapsulate functions such as control

and monitoring of a particular sub-system, without involving other sub-systems.

This can often be achieved for the nominal case, but is much more difficult at the

extremes of the performance envelope.

For example, when batteries charge, they get hot. Conversely,when they dis-

charge, they get cool. For everyday use as a source/sink of extra power in stabilising

184

a bus voltage, these effects can be largely ignored, however during eclipses batteries

have to work much harder, and this can cause large temperature excursions which

often require a change in the thermal control system. One telecommunications satel-

lite known to the author had a thermostatically controlled heater to control battery

temperature operating directly from the battery. In the nominal case this system

performed satisfactorily but after a few years of service, as both battery capacity

started to dwindle and the solar array no longer performed as well as at Beginning

of Life, the battery charging was taking longer and longer because the heater was

draining the battery. Left alone, it would have taken more than the time between

two eclipses to recharge, so a ground procedure was implemented to manually regu-

late all the loads in order to ensure that the batteries were charged before the next

eclipse.

If we define the goal to be to make a system as simple to operate as possible,

then at first glance, automation seems to be the key. A Russian manufacturer known

to the author from personal experience NPO-PM tries to automate as much of the

operations as possible. To this end, each sub-system is controlled by a software

model within their control system, which is supposed to model all feature of the

sub-system including known failure modes. This laudable goal is achieved with a

group of approximately 70 programmers all specialists in their own area, which would

be a massive cost in the West. The result is a control system that is highly tailored

to one satellite, and became almost useless when somebody else was commanding

the satellite! Basically, they have optimised the system for a single path through

the satellite state-space, and even with its detailed models it was ’confused’ very

easily by small changes from the current state in an unexpected direction.

Essentially NPO-PM have simplified operations until they do not exist. The

satellite is ’highly autonomous’, and designed to be capable of continuing service

tolerant to any single failure, and many double failures. Typically, the company

185

does not even routinely monitor telemetry from all of their satellites, since they are

designed to switch on a beacon as a signal that ground intervention is required.

This is similar to the way in which vending machines and lifts operate: nobody

expects to have a human operator in attendance, or technicians present on site all

the time. What has happened is that the market accepts that for certain services, it

is acceptable that either people lose small amounts of money in vending machines,

some people are unable to buy from vending machines when they want, or that

people may have to wait for a while inside a broken lift. The common theme is

that the loss of service has been accepted. Perhaps because of the high costs,

and higher profits, associated with satellite broadcasting networks, this has not yet

occurred in the West. For scientific missions, which from their nature, tend to be

very specific and non-repeatable, the costs associated with major automation in the

ground segment are still thought to not be beneficial. In any case, since the data

gathered by the science mission is the product, there must still be a link to a ground

station in some part of the control chain.

9.6.1 System Design

Sometimes the reliability and the availability of a system are linked in strange and

often contradictory ways. By definition, a safely-critical system, should always be

safe, even when this design decision adversely affects its availability. For a mission

critical system, the availability of the whole system is paramount, and so this could

conflict with individual safety. Naturally, if the system (like most satellites) is

intended to be exploited by humans rather than being necessary for their survival

this does not increase the conflict, although there might be other examples where

the decision is not so clear cut, for example, anywhere where people are involved,

such as in a train or lift. If given the chance say, to travel in a lift that has failed

its safety checks, most people would probably use the stairs, but if a company was

186

seeking to install a lift in its 10 storey HQ building, and it was given the choice

between a cheaper lift with 99.99% availability and a more expensive one with 99%

availability, most companies would be very tempted to take the cheaper one, even if

the second lift was more expensive and less available because it carried out certain

checks that were not mandated by the safety legislation in force.

Ground controllers should be provided with transitions that can cover the entire

state-space, ie. it should be possible to command all actions from the ground (and

more) that can be performed by the on-board autonomy. From the control point-

of-view, it makes little or no sense to differentiate between automatic functions that

are performed by hardware and those performed by software. The only difference

is that there is more chance of being able to correct (or change) those functions

implemented in software after the satellite has been launched.

The introduction of automation (frequently through use of software) into the

control loop (or the environment) is performed with the best intentions, however it is

frequently increases the complexity of the system. Whereas in the nominal condition,

operations may have been simplified (e.g. a single command ’Configure Attitude

Control System’), in terms of monitoring, the task remains the same (ensure that

the correct number of each type of sensor have been powered on and are working)

and any attempt to override the system for manual becomes much more difficult.

Manual configuration of an autonomous system must:

• Identify what changes have been made by the system to itself;

• Disable the system from making changes to any further units;

• Undo the changes that have been made, where necessary;

• Manually perform the changes themselves.

Software reliability is notoriously difficult to predict. One instruction executed

incorrectly (due to change or error in specification, or development) can have global

187

impact. Common techniques used by hardware engineers, such as extrapolation and

interpolation, have almost no applicability in software reliability.

9.6.2 Software Use

Certain ’classic’ failures can be readily identified in the industry.

• Fashion following - e.g. the way many firms adopted object-oriented ap-

proaches and languages, perhaps without any real thought or justification.

It is reported that the useful life of an office personal computer is now approx-

imately six months. At the end of this period, the PC can still run the same

software that it was bought to run, but the relentless march forward of the

industry, the introduction of new features and bloated software, means that

the PC can no longer run the current software.

• Exaggeration - This is closely linked to trend-setting. A new design method-

ology, a new language or a new operating system is often marketed (and hence

perceived) as a panacea.

• Too trusting - A tool can easily be developed to return an answer (’Okay’,

’true’, or ’false’) but the quality of the answer depends upon the quality of the

data used by the tool as well as, of course, the correctness of the tool itself.

People have an innate tendency to believe an answer that is produced by a

machine and to treat as unchangeable, whereas a human can be challenged.

Another failure or mistake is referred to as ’clumsy automation’. ’Clumsy au-

tomation is a label coined by Wiener to describe such poor coordination between

the human and machine. The benefits of new technology accrue during workload

troughs: when there was already virtually nothing to do, technology will give the

user even less to do. But the costs or burdens imposed by the technology (the ad-

ditional tasks, new knowledge, forcing the user to adopt new cognitive strategies,

188

new communication burdens, new attentional demands) occur during periods of

peak workload; during fast-paced periods of high criticality. This creates opportu-

nities for human error and paths to system breakdown that did not exist in simpler

systems’[10].

Woods reports his research from ’highly automated flight decks in aviation, space

mission control centers, operating rooms and critical care settings in medicine’[43]

where automation, was introduced ’in the hope that they would improve human

performance by off loading work, freeing up attention, hiding complexity’ and indi-

cates that the ’pattern that emerged is that strong but silent and difficult to direct

machine agents create new operational complexities’.

Woods reports how users described their interaction with automated systems

and the challenges that they faced. The users ’revealed clumsiness and complexity.

They described aspects of automation that were strong but sometimes silent and

difficult to direct when resources are limited and pressure to perform is greatest’[43].

Woods reported that the users frequently indicated their confusion and increasing

workload with the following phrases or their equivalents:

• ”What is it doing now?”

• ”What will it do next?”

• ”How did I get into this mode/state?”

• ”Why did it do this?”

• ”Why won’t it do what I want?”

• ”I know there is some way to get it to do what I want.”

• ”How do I stop this machine from doing this?”

and that ’the potential for surprising events related to automated systems ap-

pears to be greatest when automated systems act on their own without immediately

189

preceding directions from the human crew ...and when feedback about the activities

and future behaviour of the automated system is weak’[43]. Dekker asks what a

user should do to prevent being surprised by the automation, and ’from a variety of

accident and incident reports’[10], makes the following recommendations. ’The user

must:

• have an accurate model of how the system works;

• call to mind the portions of this knowledge that are relevant for the current

situation;

• recall past instructions which may have occurred some time ago and may have

been provided by someone else

• be aware of the current and projected state of various parameters that are

inputs to the automation;

• monitor the activities of the automated system;

• integrate all of this information and knowledge together to assess the current

and future behaviour of the automated system’[10].

9.6.3 Individual Operations Strategies

Given that Ramsey Theory indicates that in any system there will always be some

kind of pattern even in random structures and the human tendency to make and

stick to hypotheses outlined in Section 3.2.3, Green[18] suggests a number of tech-

niques and steps to be followed by pilots as they maintain mental models of their

environments. These are summarised and slightly paraphrased as:

1. Gather as much data as possible from every possible source before making an

inference

190

2. Take as much time as is available before making one’s mind up (ie Don’t jump

to conclusions).

3. Consider all of the possible interpretations of the data - including the unlikely

ones - before deciding which data fits the problem

4. After having embarked on a course of action, stop occasionally to take stock of

the situation and question if the hypothesis still fits the data as events progress

5. Consider ways to test the hypothesis in a positive and negative way

6. Be aware of the tendency to disregard data, so if new data does not fit the

hypothesis, do not disregard them but make time to reconsider the situation

and retrace the steps back to the first sign of a problem

7. Ensure that the world is not interpreted in terms of how you would like it to

be, but in terms of how it is.

8. Hope for the best, but plan for the worst

9.7 Summary

Spacecraft and spacecraft operations are complex for a number of reasons.

Space systems are usually still quite recent inventions compared with shipping,

railways, cars and the aviation industry. Systems designers (and, in the author’s

experience, also those that procure space systems) are risk averse, which has yielded

an approach to the design and implementation of evolution rather than revolution.

The disadvantage of this evolutionary approach is that each design brings a lot of

heritage with it, so there has been a gradual accretion of complexity as functions

and automation have been added on, rather than a clean overview.

191

From the point of view of the operations, the spacecraft are generally automated

and safe, but this provides little chance for learning for those in charge of the oper-

ations.

Since virtually all spacecraft operations are a form of remote control, the data

used for a hypothesis often incomplete. The information on difficult (or pathologi-

cal) cases is often not available and generally no physical examination possible at all,

compared with the case of aircraft or marine accident investigations. There is gener-

ally no sharing of data between different organisations, and the author’s experience

is that there is very little data is shared from one project to another.

There is no general measure of complexity, and no general agreement that com-

plexity is bad, so designs are not optimised for this aspect. The manufacturers

of spacecraft and instrument have little incentive to keep designs and operations

simple, and significant incentives to maintain schedule for the delivery of the flight

hardware and software. This situation is reminds the author of the situation in

the air transport industry and the attitude of ignoring human performance and and

limitations evaluation and bundling them together as ’pilot error’. This attitude

was eventually changed by a combination of legislation and financial incentives to

improve flight safety.

192

Chapter 10

Telemetry and Telecommand

10.1 Introduction

This Chapter provides a simple introduction into Satellite Telemetry and Telecom-

mand Systems. It introduces the concepts of how commands are sent to the space-

craft (telecommands) and how data is sent from the spacecraft to the ground control

centre (telemetry). It outlines the techniques which have developed with time (fixed

format telecommands and telemetry) and introduces the concepts of variable length

packets, which make better use of the available bandwidth. The issues associated

with the information transfer are extended in the next Chapter.

Satellites are commanded by sending radio signals from the Earth to the receiver

on-board the satellite. To enable the personnel on the ground to monitor the status

of the satellite, the satellite itself sends out radio signals that can be detected by

equipment on the ground. Normally there is an Operations Control Centre (OCC,

sometimes referred to as Satellite Control Centre, SCC) and one or more ground

stations. Each ground station is equipped with one or more large antennae that

can support communication with the spacecraft. In the early days of space flight,

commands were sent and telemetry was received at comparatively low frequencies,

for example VHF or UHF band. For these frequencies the familiar parabolic ’dish’

antenna were unnecessary, and stick-like Yagi antennae were common. It was also

193

194

common to have separate antennae for transmission and reception, although this is

now rare. When low frequencies were being used, antenna pointing did not need to

be very precisely controlled, either on the satellite or on the ground. Frequencies

used for communication with satellite have generally got much higher, S-Band, C-

Band or Ku-Band being common. This means that

• Higher data rates are possible

• Beam width is reduced

• Pointing requirements greater

• Losses are less.

Telecommands are sent to the spacecraft in a fixed data unit. Part of the data

unit identifies the target, just in case the telecommand should be received by the

wrong spacecraft. The remainder contains the data which will be interpreted by the

spacecraft as an instruction, with some redundancy in the form of checkbits. There

are two well-defined standards in Europe which dictate the format of the data block.

The first was the PCM Telecommand standard[13] Telecommand standard in the

industry), which was eventually superseded by the Packet Telecommand Standard

[14].

10.2 PCM Telecommands

The basic data unit is a 96 bit frame which is shown in Table 10.1.

The term ASW means Address and Synchronisation Word, which dates from

before the time that a word was conventionally (but not incontrovertibly) taken

to be 16 bits. The ASW was originally supposed to be a unique identifier for the

spacecraft decoder, but the proliferation of spacecraft forced people to reuse ASW.

The Hamming code is a 4-bit code capable of detecting a 2-bit error in the 8-bit

data and detecting and correcting 1 single bit error, although the error correcting

195

16 bit ASW = 16 bits
4 bit Mode = 4 bits

8 bit Data Word 1 + 4 bits Hamming Code = 12 Bits
8 bit Data Word 2 + 4 bits Hamming Code = 12 Bits
8 bit Data Word 3 + 4 bits Hamming Code = 12 Bits

Repetition of Mode, DW1,DW2,DW3 = 40 Bits
Total = 96 Bits

Table 10.1: PCM Telecommand

capability is not used as part of the PCM standard. It is clear that the PCM

standard requires a significant overhead (96 bits transmitted for 24 bits of useful

data, giving a 16-bit range (address space) within the spacecraft. It also shows a

very poor use of error correction codes. ESA became the issuing authority for the

ASW Spacecraft identifiers (SCID) in Europe. When it realised that there would be

a conflict over the reuse of SCIDs, ESA decided to stop issuing ASW and encourage

(force) people to use the packet telecommand standard.

10.3 Packet Telecommanding

The basic unit of transport of the packet TC standard is the CLTU. This uses a

longer ’frame’ length, and more sophisticated error control. Instead of repeating the

data and using Hamming Codes, a BCH polynomial is iterated over the contents of

the data field. While this is theoretically more efficient, using 1 octet of checksum

for 7 octets data, it is solving a non-problem, since no European spacecraft in flight

are actually limited by the uplink speed. The uplink bottleneck has always been in

the on-board processing.

When ESA first started to control satellites, commands were sent from the

ground station. The control centre personnel (the Flight Control Team) usually

had a voice link with the ground station, and would request that one or more com-

mands be sent. These would be manually entered one by one into a telecommand

encoder, checked manually, and then transmitted. Readouts of the value of partic-

ular positions in the telemetry format could also be requested by voice. The whole

196

data stream was often recorded on tape and then shipped back to the control centre.

The next increase in sophistication was to allow the control centre to connect

to the telecommand unit in the ground station and send the telecommand elec-

tronically. Similarly the telemetry could also be relayed back to the control centre

in real-time. This was possible since the data rate for the early spacecraft was

still very low. Only the scientific data of Giotto (launched in 1985) and Hipparcos

(1989) could not be sent in the bandwidth of an ordinary telephone line, and both

could be fitted into a 64 kbps leased line. EURECA (launched in 1993) required a

return to the previous method of record and playback data, since the data rate of

256 kbps was thought to be too high for the equipment of the day. Thus EURECA

(and subsequently CLUSTER) was equipped to pass the real -time data necessary

for monitoring the health of the spacecraft back to the control centre, while the

stored data could be captured in a high-speed transfer from the satellite to the

ground station, which could buffer the data and pass it back to the control centre

as necessary.

By comparison, in the Soviet Union (and in present day Russia) the use of any

space segment was initially reserved for the military. This meant that the USSR’s

major communication satellite operator, NPO-PM, could not have direct access to

the ground stations, so control remained as something that had to be requested from

the ground station staff. This could partly explain why the Russian approach even

now favours a much more autonomous approach to spacecraft control.

10.4 Telemetry

Satellites modulate a digital stream onto a sub-carrier, sometimes via an intermedi-

ate frequency. The use of multiple analogue components onto a carrier is possible,

but that would provide a high time resolution of a small number of parameters,

exactly the opposite of what is needed. Generally only ranging data is modulated

197

directly onto the downlink. This enables the ground personnel to determine the

distance between the spacecraft and the ground station (and sometimes the radial

velocity) which, when successive measurements are made and/or multiple ground

stations used, means that the orbit of the spacecraft can be determined.

Telemetry, usually abbreviated to TM, contains different kinds of information.

Some it is needed with a high frequency (e.g. if it is necessary to show the fluctu-

ations in a signal that varies at high speed) and some things only vary at a lower

speed, so requiring less bandwidth. It would seem to be desirable to have a single

data structure that could then be sent when needed. If the situation was changing

rapidly, then the telemetry would be sent faster. However, this has a number of

associated disadvantages. The analogue properties of the radio signal would change

if no telemetry were to be modulated onto the r.f. carrier, and certain equipment

within the ground station might lose lock on the signal. It is thus necessary to al-

ways transmit some data, even if it is only to fill the downlink. These are sometimes

referred to as idle frames.

The usual technique used in PCM type telemetry systems is to send the TM

parameters in a fixed order. This is referred to as a TM format. By splitting the

single format in smaller units, variously referred to as TM frames, TM sub-frames or

sometimes sub-formats, a certain amount of flexibility concerning the rate at which

information is transmitted. If, for example, a format is defined to consist of 16

frames of telemetry, information that changes very slowly may be transmitted in a

single frame (i.e. once per format), whereas information that is varying more quickly

(or is deemed to be more important) can be transmitted in every frame. Several

situations in between the two extremes are also possible: every second frame, ev-

ery fourth frame or every eighth frame. All of these options mean that the same

fixed format, defined before flight, can be used to transmit information at different

rates. It is now appropriate to introduce some terminology that is often used within

198

Frame offset
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 ASM A123 B100 C200 B100 B100 B100
1 ASM A123 B100 C201 B100 B100 B100
2 ASM A123 B100 C202 B100 B100 B100
3 ASM A123 B100 C203 B100 B100 B100
4 ASM A123 B100 C204 B100 B100 B100
5 ASM A123 B100 C205 B100 B100 B100
6 ASM A123 B100 C206 B100 B100 B100
7 ASM A123 B100 C207 B100 B100 B100
8 ASM A123 B100 C208 B100 B100 B100
9 ASM A123 B100 C209 B100 B100 B100
10 ASM A123 B100 C210 B100 B100 B100
11 ASM A123 B100 C211 B100 B100 B100
12 ASM A123 B100 C212 B100 B100 B100
13 ASM A123 B100 C213 B100 B100 B100
14 ASM A123 B100 C214 B100 B100 B100
15 ASM A123 B100 C215 B100 B100 B100

Table 10.2: Telemetry Format

the industry, but unfortunately is not used consistently. Super-commutated usually

means that a TM parameter occurs more that once per frame and sub-commutated

means that a frame occurs less than once per frame. However, some people use the

same terms to describe the distribution of parameters per format, rather than per

frame. Thus it is always preferable to use the full term, e.g. frame sub-commutation,

to avoid ambiguity.

A simple example of a PCM format is given in Table 10.2, containing 16 frames

per format, and only 16 octets of data per frame. This example format shows some

of the basic features of fixed format telemetry. Each frame starts with a synchro-

nisation marker, which is detected by the ground equipment. Usually each frame

contains a frame counter, and each format then also contains a format counter.

Each frame contains a mixture of frame super commutated and sub commutated

data. For example, the parameters B100 occurs 4 times per frame, and is there-

fore frame super commutated. The parameter A123 occurs once per frame, and

is frame commutated. The parameters C200-215 are frame sub-commutated, but

format commutated.

However, one of the principal disadvantages of PCM Telemetry remains the fact

199

that, even if multiple format-types are developed, the channel sampling must be fixed

a long time before launch and it is difficult to modify it afterwards. If modifications

that are made to the spacecraft to change the way that parameters are sampled,

then the ground control system must also be changed.

To overcome some of the limitations of fixed period sampling, a further feature

is sometimes introduced. If one sub-system was normally producing a range of

parameters, there sometimes a feature called ’dwell’ mode. This means that rather

than transmitting a range of parameters to give a complete view of the sub-system,

it is possible to focus in upon one particular parameter and dedicate the whole

telemetry channel to one parameter and see many more measurements. Despite the

terrible contortions that this requires on the ground control system, this is still quite

a common feature since it enables the ground control team to see detailed variation

of a parameter over time. This can be particularly useful for short term or single

events, such as trying to monitor the current as a pyro device fires, to be sure that

it operates correctly.

As spacecraft have become more sophisticated and have incorporated more soft-

ware, some more complications have developed, such as the idea of a Polling Se-

quence Table, where a programmable look-up table is used as the source of each

format. Whilst this can overcome the problem of defining the channel sampling a

long time before launch, it can still leave the problem of requiring the control team

(or the control system, if it is automated) to identify when the Polling Sequence

Table was changed, and what the changes were.

Naturally, Dwell Mode and other similar delights, completely ruin the normal

processing of the telemetry frame, and mean that extra processing must be per-

formed i.e. the frame must be received, decoded, a particular location checked for

a parameter to indicate whether or not Dwell Mode is in operation, and then the

format must be processed accordingly. This means that all nominal activities, such

200

as limit checking, status checking etc. may have to be suspended for some or all

parameters in the format. This also means that it is difficult or impossible to get

detailed information from 2 or more different sub-systems at the same time. The

scheme proposed by ESA (and adopted by the CCSDS) as an answer to all of the

problems of fixed format telemetry is Packet Telemetry.

10.5 Packet Telemetry

The basic principle of packet systems is that different parameters change at different

rates at different times, and so they can be grouped according to how often we

think it is important for the ground operations team to see ’fresh’ values. Some

temperatures might not change at all for days, whereas a thruster temperature

could change rapidly whilst being prepared for firing, during the firing and even

after the firing. Similarly, we might not need to send telemetry from a scientific

instrument when the instrument is off, but when it is in use, the telemetry must be

receive and checked. This means that each sub-system or instrument can be given

an overall budget, or bandwidth of telemetry parameters in bytes per second or per

minute in different modes.

Some intelligent packet systems (usually a complex instrument or subsystem,

such as the ADCS) can change their own telemetry mode, sending data whenever

appropriate, for example, during manoeuvre operations, whereas other subsystems

might need to rely on the central data handling subsystem to poll them at the

appropriate interval to get their telemetry. Reassigning the bandwidth according to

events onboard can lead to much improved availability of pertinent information, as

long as it is done without error. The disadvantage is that it is much more complex

system, and there is more that can potentially go wrong. However, with the more

recent PCM systems (ERS-1, ERS-2), or transfer frame-based systems (Cluster),

telemetry stops updating or stops completely if the software stops running, so true

201

Packet TM is only a small step beyond the intermediate steps which are offered as

an alternative.

10.6 Summary

This Chapter has shown that there have been a number of standards to govern

how telemetry and telecommands should be formatted. The initial approach was

to use fixed messages for both telemetry and telecommands. As the complexity of

satellites increased, it became desirable to have more flexibility in the way the uplink

and downlink bandwidth were used, as well as to permit a larger address space to

distinguish the information sources and sinks within the spacecraft. This lead to

packet-based communication, in the same way that ground telephone networks went

from a series of point-to-point connections, to packet-switched networks. It brings

the advantage of using the available bandwidth better, as long as not everyone wants

to talk to everyone else at the same time. The idea of how to allocate parameters

and packets to a system so as to maximise the information rate is the subject of the

next Chapter.

The other trend of note is that the standardisation process initially consisted

on locally or nationally-mandated standards (in Europe, the standards coming from

ESA) and has then tended to include a wider and wider participation, both within

Europe, with the participation being extended to include industry, and interna-

tionally, with the establishment of more independent, international bodies, such as

the European Cooperation for Space Standardisation, ECSS, and the Consultative

Committee for Space Data Systems (CCSDS).

202

Chapter 11

Information Theory

11.1 Introduction

The standards described in the previous Chapter give the syntactical information

on how to build a telemetry frame, or telemetry format or a packet, but they do

not describe how to allocate parameters to sources or sinks, what size of parameter

is optimal, nor how the split between periodic and non-periodic information could

be made. To examine this issue, this Chapter starts off from Shannon’s information

theory (Section 11.2). Section 11.3 then looks at an example structure of a discrete

system, in this case, an array of perfect switches, and shows how the information

content of this system will vary. In Section 11.4 this example is expanded to con-

sider how it could be monitored by a fixed-format telemetry system and how well

such a monitoring system conveys information about the state of the system it is

monitoring.

11.2 Information Theory

The Shannon information[39] is defined according to the number of possibilities Z,

which in the case of a coin is two and for a die is six.

It is interesting to view information in terms of the information per symbol. Let

us consider a simple example Ro different possible events which have the same a

priori probability , e.g. the tossing of an un-biased coin. When tossing a coin, we

203

204

have two possible outcomes, and hence Ro = 2. If we were rolling a die, we would

have 6 possible outcomes, and hence Ro = 6. Thus the outcome of tossing a coin

(or rolling a die) can be perceived as the reception of a message, and only one of the

possible Ro outcomes is actually realised. Apparently, the greater Ro , the greater is

the uncertainty before the message is received and the larger will be the amount of

information after the event. In the initial situation we have no information (Io = 0)

with Ro probable outcomes. In the final situation we have an information I1 6= 0

with R1 = 1, i.e. a single outcome. We desire that I is additive when we have two

independent events, so that if we have two such sets, the total number of outcomes

is

Ro = Ro1 ∗ Ro2

then we require that the information

I (Ro1 ∗ Ro2) = I (Ro1) + I (Ro2)

This relationship can be fulfilled by choosing

I = K ∗ ln(Ro)

The constant K is arbitrary and can be fixed by some definition. Usually we consider

binary systems, so when we consider all possible ’words’ or sequences of length n,

we find that there are R = 2n realisations. If we wish to identify I with n in a binary

system, we therefore require

I = K ∗ ln(R)

I = K ∗ n ∗ ln(2)

I = n

which is fulfilled by

K = 1/(ln(2))

205

or

K = log [2](e)

With this choice of K we have

I = log [2](R)

This has the property that I is now the number of binary digits in the system, ie if

R = 8, I = 3. It is important to note that that word ’bit’ is frequently used with

two different meanings:

• To describe a Binary Digit , a usage credited to John Tukey

• To describe the amount of information in a message, if the conventions of using

logarithms to base 2 are followed, as here.

If we now consider the case where we initially have Ro equally probable initial cases

and R1 equally probable final cases, the information is

I = K ∗ log(Ro) − K ∗ log(R1)

If we want to derive a more convenient expression for the information we can proceed

as follows.

Consider a symbol stream being generated by a controller by reading off the

statuses of n flip-flops. An initial guess at the entropy might be calculated according

to the following reasoning: Each flip-flop can have two positions, referred to as on

(N) and off (F) (in information theory terms, each generator has an alphabet of

two) and each position is equally likely. This leads to the following calculation of

the entropy of the source

H := −p log2(p) − (1 − p) log2(1 − p)

On average, each digit will be a 1 with probability p (and a 0 with probability

(1 − p)), giving the curve of Shannon information as a function of probability that

206

is shown in Figure 11.1. Note that when ’information’ is almost certain, at either

extreme, the value of the information is much less. The maximum information comes

when the probabilities of a 0 or a 1 are equal i.e. for a binary stream, p = 0.5, and

for other probabilities the information is much less.

11.3 Background: Hypergraph

Now let us turn our attention to the stream as a whole (for example the TM of a

fixed format satellite, with format length n symbols. The problem is that now the

symbols are now no longer random when seen as a whole, and hence the entropy of

the source is lower (recall that a biased coin is easier to predict than a fair coin).

If there are 2 symbols, the alphabet is 2n . Because of the relatively slow dynamics,

single symbol changes are more likely than two symbol changes, which in turn are

more likely than 3 symbol changes etc., etc. The state space of this system then

looks like a hypergraph.

A hypercube is a regular graph. Each vertex has degree n, and, just like for

a 3 dimensional cube, no vertex is initially distinguishable from any other i.e. the

choice of origin is arbitrary. In a hypercube of dimension n, there are n vertices

that are one step away, from each of those there are (n − 1) vertices which are 2

steps from the starting point, although there is some overlap between second nearest

neighbours, and even more with 3rd nearest neighbours (see Figure 11.2).

In the following, let p be the probability of a transition, and then in each case,

the transition probability needs to be divided by the degree of the vertex to get the

transition matrix from the adjacency matrix. We can see that the total number of

vertices in an n-cube is 2n and that in each row r from the origin there are
(
n

r

)

vertices.

In the steady state, the probability of a particular vertex being occupied is

uniform (1/16 in this case). But since the numbers of vertices in each row is a

207

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p

This graph shows how the Shannon information of a binary digit varies with the
probability p of a change. It is maximum when the next value is unknown, and
decreases in both directions as the value becomes more predictable.

Figure 11.1: Shannon Information of a Binary Digit

208

14

15

10

11

7

12

13

2

8

4

5

3

9

6

1

0

Figure 11.2: Example Hypercube - a 4-cube

209

binomial distribution, the likelihood of being in a certain row is proportional to the

number in that row

11.4 Fixed Format Telemetry

Consider a hierarchy of switches and flags. The flags are used for monitoring an

array of n switches. For a leaf flag, it changes state if one of its relays changes state.

For a non-leaf-flag, it changes state if one of its child ’flag’ nodes changes state. If

there are n switches, and n + 1 flags then the total depth of the monitoring tree is

2. Let the probability of each switch changing state be p, then the parent node has

a total information of

∑n

i=1 (−p log2(p) − (1 − p) log2(1 − p))

= n (−
p ln(p)

ln(2)
−

(1 − p) ln(1 − p)

ln(2)
)

So it would seem from this analysis that the information increases linearly with n,

the size of the frame, and that is indeed the case (see Figure 11.3). Unfortunately, the

situation becomes more complex. Although the individual relays are independent,

they are still covered by statistical analysis, which says, for example, that a group

is less likely to go from being all ’on’ to all ’off’ than it is for one of the individual

members to go from ’on’ to ’off’. This is where the properties of the hypercube

become important. Most of the symbols involve changes in more than one digit,

and from an operational point of view, this is not desirable. We want to be able to

see the first change, not the last one.

Our desire to see the first change in n relays means that most of the information

alphabet is ignored, or never seen. We design the spacecraft (for safety’s sake) so

that the parameters are sampled fast enough to spot any change quickly, but this

reduces the information content of whole stream, since it becomes very repetitive.

Instead of having 2n symbols in our alphabet, we only have n + 1 .

210

2
4

6
8

10
12

14
16

18
20

n

0

0.2

0.4

0.6

0.8

1

p

0
2
4
6
8

10
12
14
16
18
20

Info

This 3-dimensional graph shows the Shannon information (labelled Info) plotted
against the probability of a transition pand the number of switches n.

Figure 11.3: Information of a Multi Digit System

211

2
4

6
8

10
12

14
16

18
20

n

0

0.2

0.4

0.6

0.8

1

p

0

2

4

6

8

10

Inf

This shows that in a system which issues a new report after every single change,
the maximum information is much lower than if some messages contain changes in
multiple bits. This is because the alphabet of the system has been artificially
constrained. This effect can be seen by comparing the vertical scale Info on this
graph and Figure 11.3.

Figure 11.4: Information of Single-Change System

212

By comparing Figure 11.4 with Figure 11.3,and comparing the numbers on the

Info scale, it is obvious that a great deal of information has been lost by this artificial

constraint.

11.5 Analysis of Flags

If we now consider the case where the hierarchy gets extended, so that there are

n relays, and n + 2 observers. Each leaf group generates Inf(n,p) information, and

passes it up the tree. The non-leaf nodes have g relays going into them. The

behaviour of each node is now: it passes the status if there is a change (which has

probability pg , zero otherwise (probability = 1 − (pg)). The status consists of g

relays, which can always be encoded in d(log [2](g))e digits.

First we consider the case where manager/parent node raises a flag if there is

a change, else shows no change with a lowered flag. This has 2 symbols, with

information: Iflag := − (1−qg) ln(1−qg)
ln(2)

− qg ln(qg)
ln(2)

, where q = 1 − p. This is because

qg is the probability of the state machine still being at the origin, i.e. all bits

unchanged, and 1− qg is the probability of it being anywhere else in the graph. We

can recast the same expression in p to get

Iflag := {−
(1 − (1 − p)g) ln(1 − (1 − p)g)

ln(2)
−

(1 − p)g ln((1 − p)g)

ln(2)
}

This function is plotted in Figure 11.5. The information is very low for middle

and high probabilities, since as g increases, the likelihood that a change will occur

also increases, and if the flag is always either ’on’ or ’off’. This means that it becomes

predictable and the information content is lowered. At the low probabilities, the flag

becomes less predictable unless group size is large. If we partially differentiate this

function w.r.t. p to trace the maxima, we obtain

Idash := ∂

∂p
Iflag.

Idash := {−
(1 − p)g g ln(1 − (1 − p)g)

(1 − p) ln(2)
+

(1 − p)g g ln((1 − p)g)

(1 − p) ln(2)
}

213

2
4

6
8

10
12

14
16

18
20

g

0

0.2

0.4

0.6

0.8

1

p

0

0.2

0.4

0.6

0.8

1

Info

This graph shows the information of a flag that signals a change in a group of bits
being monitored by it. The group size is g and the probability of a change in one
bit of the group is p. When p is small, the information is high, but as p increases,
the information content reduces since the flag is then always indicating that
change has occurred.

Figure 11.5: Information of Flag-based Monitoring

214

0

0.2

0.4

0.6

0.8

1

2 4 6 8 10 12 14 16 18 20

This plots the probability p against group size g for maximum information content.

Figure 11.6: Information of Optimum Flag-based Monitoring

If we solve for the Idash =0, we obtain the solution:

g = g , p = −e(−
ln(2)

g
) + 1

Which if we plot it (Figure 11.6), shows the form of p as a function of g . Of

course, in a design scenario, it should used in the opposite sense to guide the size of

g according to the estimated probability of a transition.

11.6 A Packet: With Details Please!

The flag is interesting, but of course, in an operational scenario, it simply says that

something has happened, without actually saying what. This is interesting and often

even useful, but in practice we would also like to know what has happened.

If a single digit in a group changes, we need dlog2(g)e digits to say which relay

has changed, and then another digit to say what the current value is. This gives 2g

symbols, each of length d1 + log2(g)e and each of probability p. So the information

215

0

2

4

6

8

10

g

0

0.2

0.4

0.6

0.8

1

p

0
0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2

Inf

This shows the Shannon information of a packet that says which of the relay
statuses that it is monitoring has changed, and the current value. It is plotted
against group size g and probability p.

Figure 11.7: Information of Packet-Based Monitoring System

is.

−2gplog2(p) and the information per digit is

−2gplog2(p)
dlog2(g)+1e

This compares very favourably with the coefficient of n that was calculated for

the multi-digit system. This is shown in Figure 11.7.

216

11.7 Information Usage

There is a very simple but very powerful way of modelling a system, which is to

construct a Markov Model. In a Markov model, the probability that a system makes

a transition from one state to another depends only upon the current state, not the

history of the system i.e. its path to the current state. Shannon[39] developed his

theory of information by considering discrete Markov processes, and in particular,

a special class of Markov processes, the ergodic processes.

The general idea behind an ergodic process is one of statistical homogeneity. For

example, that the thermodynamic properties of one molecule over a long time are

similar to the thermodynamic of many molecules when considered in a ’snapshot’

moment. In Shannon’s terms, every sequence produced by an ergodic process has

similar statistical properties, so as longer and longer sequences are considered, the

frequencies of each symbol occurring in a particular sequence will approach definite

limits.

We saw in the previous section that as something becomes predictable, or less

’random’, its Shannon information goes down. This is the information that would be

sufficient to allow an agent (computer or human) to follow the state of the satellite.

Unfortunately, when a human gets used to a certain behaviour, they tend to take

it for granted, and sometimes do not even perceive changes when they do occur. This

is the disadvantage of a human’s intrinsic ability to learn.

This is reminiscent of what can happen in a Kalman filter: The optimally track-

ing filter tracks the target so well that the error between the predictions and the

measurements can go to zero. Unless care is exercised in the design, the Kalman

filter will then cease to use the real measurements at all when it propagates the state

vector. This can be a problem if the target starts behaving differently. One way to

avoid this is to hard-code ranges for the Kalman gains, or even to artificially inject

noise into the measurements. The equivalent technique for a human operator is to

217

have frequent shift-changes to relieve the monotony.

11.8 Summary

In this chapter we have shown that simply repeating the telemetry as in a fixed

format telemetry system does not give a very high Shannon information. By moni-

toring for changes, we generate much more information per bit. In an event-driven

packet system that transmits telemetry packets when something has changed, the

Shannon information scales very well.

It has been shown that the information available on the ground to help an opera-

tor synchronise his internal model with the physical situation on-board the spacecraft

can be very low. There seems to be fundamental discrepancy between the way that

operators perceive information and what the information is actually telling them.

One major assumption in this analysis is that ’all bits are equal’, i.e. that a

priori no telemetry parameter is more important that another. This is decidedly

not true, but the differences are difficult to analyse in a generic way.

This technique holds out the promise that, if, combined with queuing theory,

it could give better estimates about the best way to define synchronous and non-

synchronous packet systems.

218

Chapter 12

Synthesis

This thesis started with the author’s identification of a number of factors that seemed

to to make the spacecraft operations difficult. To reiterate, these were:-

• Launch-centric view of the space-project.

• Fluctuating participation in development life-cycle leads to a lack of continuity

in people and knowledge across the project.

• People perform different roles, have different viewpoints and use a different

vocabulary at various stages in the development. This leads to a perception

gap, a difference between the logical understanding of different people who are

really talking about different parts of the same whole.

• Structural and organisational problems lead to a lack of knowledge sharing

across the project.

All spacecraft operations take place within some kind of organisational frame-

work or team. By analysing some existing organisations we have seen several short-

comings. We have also shown several expected properties: that people often want

new challenges, new projects, i.e. that they often want a career and are ambi-

tious. For a healthy organisation to remain healthy, these aspects must be planned

and monitored in just the same way that the technical operations of a satellite are

controlled.

219

220

This work has presented how organisations usually prepare for mission operations

and has attempted to identify the current best practice, as well as pointing out

anomalies and inefficiencies when they occur. The short-comings has been traced

in Chapter 2 and Chapter 3 to the project-based work with a short-term structure.

This is particularly prevalent on many ESA projects.

Chapter 4 has shown that risk can be positive as well as negative, if the people

and organisation understand it and are willing to manage it in a systematic way.

Since the responsibility for the design integration, launch and in-service opera-

tions normally lie with different teams,there are normally several different viewpoints

of the spacecraft. For example, the designer might see a electrical circuit, the inte-

grator might see a wire in a harness, and an operations engineer might see a control

loop.

It has been shown that this kind of structure creates a need for knowledge sharing

across the different actors in the space business, whilst at the same time providing

no practical mechanism to facilitate sharing of knowledge within or across projects.

The satellite designers conceive a design that satisfies a certain specification. The

components, units and systems are then built and integrated and the whole assem-

bly is tested. The units and systems will continue to be changed or tuned until the

assembled satellite is believed to have been proven to be able to fulfil its mission.

Then the knowledge gathered in designing and building the satellite takes two dif-

ferent paths - into the design of a future spacecraft, and into the operations phase

of this spacecraft.

The people designing the spacecraft have to try to document the design on the

form of User Manuals, operations procedures and the spacecraft database and pass

all the necessary information to the operations team.

At about the same time that the operations are starting, the design team will

normally be moving onto another project. However, any project that has kicked-off

221

Operations
Integration

and
Verification

Design Manufacturing Operations
Integration

and
Verification

Design Manufacturing

Operations
Integration

and
Verification

Design Manufacturing Operations
Integration

and
Verification

Design Manufacturing

Operations
Integration

and
Verification

Design Manufacturing Operations
Integration

and
Verification

Design Manufacturing

Individual Learning

Time

Knowledge transfer that relies on individuals from the development team moving
from one project to another has several disadvantages:- (i) it does not include the
final evaluation of the design in operations; (ii) it is very slow, since it can take
place after the development is completed; (iii) it does benefit projects that run in
parallel, which are most likely to be using similar technology.

Figure 12.1: Knowledge Transfer Between Projects By Individuals

in the time between the beginning and end of this project will be unable to benefit

from the lessons learned in this project. Any members of the design team who leave

before the spacecraft has entered service will then also not have the opportunity to

evaluate their design and implementation in a real-life situation.

The only opportunity to transfer information is at the end of the project, when

people are redeployed from one project to another. Figure 12.1, repeated from the

Introduction, shows the problem. This transfer is ineffective, since it relies on va-

cancies in new projects becoming available at the same time as other projects are

ending, and also as mentioned before, the technology base will have changed. Fur-

thermore, if the development and operations teams are separate, then the developers

will not have any real-world feedback on how their design performed and whether

or not their decisions on the design and implementation were correct.

The desired situation is shown in Figure 12.2. If knowledge can be encoded in

a way that makes it understandable to people on other projects, then they will be

222

Time

Operations
Integration

and
Verification

Design Manufacturing Operations
Integration

and
Verification

Design Manufacturing

Operations
Integration

and
Verification

Design Manufacturing Operations
Integration

and
Verification

Design Manufacturing

Operations
Integration

and
Verification

Design Manufacturing Operations
Integration

and
Verification

Design Manufacturing

Knowledge

exchange

at every

opportunity

Knowledge transfer by making knowledge available at each stage means that
projects can access it as they need it, when they want it. Projects can benefit from
the experience gained on other projects that are running in parallel or have
already completed.

Figure 12.2: Effective Knowledge Transfer Between Projects

able to see whether other projects had related problems and then be able to learn

from the experience that has been gained. They do not need to wait for a parallel

or preceding project to finish in order to do so.

At the highest level, satellite operations is about information processing. This

can take place over a long time-span, such as the strategic design and procurement

of control system, or in shorter time-scales, where more tactical decisions have to be

taken, such as who does what, when and how. Scientific missions are almost always

challenging, seeking for the new areas to be ’first’ in. This puts the projects under

high risk, and many projects do indeed suffer cost,schedule and quality problems.

We have seen that the people who design and build satellites, the very people

who gain insight into the the spacecraft behaviour during its integration are not

normally present throughout the useful lifetime of the satellite. This means that

the knowledge and tools that they have gained must be either transferred to the

operational team, or in the case of tools, re-implemented.

223

Currently the vast majority of operational effort (and expense) goes into the

preparation of the ground segment for launch,which includes all aspects necessary

to ensure satisfactory entry into service: procurement, verification, validation and

early operations. The spacecraft procurement process becomes an enormous docu-

mentation project, with the documentation often being written by non-native speak-

ers. Individual companies frequently have their own jargon, and equally often they

invent new names and abbreviations to describe the units that they produce or the

processes that they perform. This acts as a substantial impediment to the transfer

of knowledge to the operations team and from one operations team to another.

An ontology has been drafted which would overcome some of these problems,

and guidelines have been proposed as to how to name new developments in a way

that reduces barriers to knowledge transfer. An ontology was suggested as a possible

solution to the problem of transferring knowledge across time and place as is required

on modern space mission. This could be a substantial contribution to ease the

transfer of information. In order to try to encapsulate the knowledge embodied in

the design, it is necessary to use better tools than plain text.

Formal Methods hold out the hope of an extensible framework, that not only

enables the writer to say precisely what he means, also allows the readers and writer

to prove certain features about the system being described. Formal descriptions of

units or sub-systems can be combined to allow reasoning about the greater entity.

The ability share knowledge, and to reason about it and the spacecraft behaviour

from the start, before the satellite has been integrated, would be a great risk reduc-

tion and an enormous improvement to the current process.

As spacecraft steadily increase their performance and autonomy,the complexity

increases. Already the scientific instruments on some modern spacecraft are more

sophisticated in terms of their processing power, autonomy, or telemetry rate than

many spacecraft that are flying. The fact that the flight control team on the ground

224

sometimes need to struggle with or around an autonomous system in space is now

unfortunately common place. Flight control teams must be careful in how they form

hypotheses about the spacecraft, since often the data is ambiguous and sparse, and

the spacecraft may actually still be (mis)-behaving, even as the flight control team

try to get it to do something else. This presents a significant training challenge

for the longer-term missions, as well as missions that reuse systems from earlier

spacecraft.

Very few operations engineers get a chance to participate in the design of the

data of the system that they will eventually control. Chapter 10 presented some

of the historical standards, although now there are more in progress. Chapter 11

took a fresh look at the information that is transmitted by fixed and packet-based

systems. This is an area which could benefit from more work, and from investi-

gating the additional overhead that is enforced by the various packet standards.

More understanding in this area would help future operations engineers guide those

projects who are willing to listen in the right direction and could make the definition

of parameters and packets rather less haphazard than it is today.

Chapter 13

Conclusion

13.1 Summary

13.1.1 Space Projects

An ’Operations Model’ has been proposed to show which areas are already covered

by international standards and which areas are left for individual missions to design

and implement themselves.

There is a broad spectrum of control activity that can be performed on-board, on

ground or by human intervention. Different types of mission may require different

mixtures of these techniques. A flexible control strategy should be able to move

fairly easily between human interaction, to ground-automation and then to onboard

automation. The optimum point will be a function of the available contact period,

the required bandwidth, and the required reaction time.

The space industry operates in a distorted market place and some the conflicts

of interest and inefficiencies result. Many activities are dominated or distorted by

political activity or interference.

13.1.2 Organisation

Organisations typically achieve their goals by encoding activities in procedures, cre-

ating teams and trying to build up a particular kind of culture.

225

226

Individual types of behaviour into skill-based, procedure-based and knowledge-

based behaviour. Some guidelines have been proposed for how individuals in their

roles as team leaders and team members should interact in order to arrive at the

best solution. The catastrophic consequences of a break down in communication

between the individuals and teams of operations, engineering and management has

been shown.

The space industry, as well as facing some unique challenges, also faces many

normal business and organisation challenges. Because so much space-related work is

carried out by organisations with bureaucratic roots and a military or civil service

mentality, personnel development has typically been a low priority. The amount of

delegation has also been typically low, with managers often not responsible for some

of the effects of their decisions.

The organisations examined all became dependent upon the short-term supply

of labour to meet their peak work-load. This reduces the amount of knowledge

available within the organisation.

The typical structure of a hierarchy with a low fan-out, often covering many

geographically distinct sites, can make it very easy for the management to lose

contact with the people who have the first-hand knowledge of the state of the mission

and the current problems. This prevents the free flow of information that is vital

for taking major decisions correctly.

13.1.3 Risk

Risk and opportunity can be seen in the following situations:

• Financial implication

• Decision making

• Process and structure

227

• People and Machines

• Legal and regulatory requirements

• Customer/Client needs

• Environmental considerations

• Communication requirements.

Risk management is more oriented towards people, processes and human judge-

ment than safety and reliability, although these are important factors.

People perceive risk in different ways at different times.

Risk management can be broken into three phases, risk control, risk reduction

and risk containment

13.1.4 Ground Segment Preparation

The satellite is often being operated by a different organisation to the one that built

or integrated it, so somehow the people responsible for operating the satellite must

be trained and prepared for their forthcoming tasks. The transfer of knowledge is

an essential part of spacecraft operations engineering.

Most low-level information is now transferred in the form of a database. The

satellite database is one of the most important interfaces between the satellite con-

structor(s) and the satellite operator(s).

The higher-level knowledge is still transferred separately, usually in the form of

documents containing textual descriptions, diagrams and procedures. This makes

the descriptions and procedures potentially inconsistent with the database and be-

cause it is also manually produced, it may also be internally inconsistent or incom-

plete. When there is a conflict over the allocation of resources to resolve a problem

with the flight article, the documentation always loses out.

228

There is no standard structure for the information to be provided, it varies

enormously in quality and quantity from one sub-system to another and from one

project to another.

Spacecraft (or a family of spacecraft) are frequently being procured as part of

a whole system, which often has a very large ground segment that needs to be

developed, maintained and operated in parallel to the space segment.

Simulations are useful in preparing the individuals to cope with the stress of

operational situations, as well as forging a team.

There is normally a formalised review process for checking the progress at various

phases in the procurement and operations. These reviews are particularly important

since they force management to take a position on various items that are flagged as

risks to the programme. However, this only operates correctly if the correct data is

made available to the correct people.

13.1.5 Control System

There is substantial commonality across missions, holding out the possibility of

large-scale reuse of software and systems. A common approach to checkout and

control system development is possible and it might bring cost benefits. Even though

it might cost more in the initial phases such as review of the design specifications,

benefits and cost savings are expected to occur in the later phases.

Automation is often introduced with the aim of reducing costs, but the impact

is often to change the skill set required to do the job, and to drive up the indirect

costs e.g. to maintain proficiency at a level required for manual operation to take

over from the automation when the situation deteriorates.

13.1.6 Ontology

The User Manual is intended to help the end-users understand and operate the

spacecraft and payloads safely and successfully.

229

Since there is no standard structure for the information to be provided, it varies

enormously in quality and quantity from one sub-system to another and from one

project to another. It is difficult to produce a User Manual because there is no

standard to say what it should contain or how to produce it.

The introduction of new names for existing concepts makes it difficult to produce

the User Manual to a consistent standard and prevents re-use of documentation from

one project to another. An Ontology is a powerful tool with its roots in artificial

intelligence and knowledge management that allows users to browse data and display

relationships graphically, whilst at the same time permitting writers to check that

their input obeys certain consistency constraints which will highlight when or where

information is incomplete. Without an approach that makes it easier to develop

a knowledge base that can be checked and transferred easily, future projects are

destined to repeat many of the mistakes of their predecessors simply because it is

too difficult to learn from them.

13.1.7 Formal Methods

Formal methods were developed to be applied to software systems, but are applicable

to any discrete system. Formal methods bring the benefit of being able to argue a

particular case based upon a rigorously defined specification. By proving a property

of a design early in the mission life-time, perhaps even before hardware is built, it

may result in a cost saving, by reducing testing, or a dramatic increase in reliability.

One of the main benefits of formal methods is that it requires a statement of the

problem. This is also sometimes a disadvantage, since some of the knowledge might

not be available. When combined with the idea of an ontology, a single knowledge

base for the entire mission can be developed: the knowledge from the design phase

could also be used in the testing and qualification phase, and even be the source of

data for the user manual

230

13.1.8 Complexity

Spacecraft and spacecraft operations are complex for a number of reasons.

Systems designers are risk averse, which has yielded an approach to the design

and implementation of evolution rather than revolution. Each design brings a lot

of heritage with it, so there has been a gradual accretion of complexity as functions

and automation have been added on, rather than a clean overview.

Since virtually all spacecraft operations are a form of remote control, the data

used for a hypothesis often incomplete. The information on difficult (or patholog-

ical) cases is often not available and generally no physical examination possible at

all, compared with the case of aircraft or marine accident investigations. There is

generally no sharing of data between different organisations or from one project to

another.

There is no general measure of complexity, and no general agreement that com-

plexity is bad, so designs are not optimised for this aspect. The manufacturers

of spacecraft and instrument have little incentive to keep designs and operations

simple, and significant incentives to maintain schedule for the delivery of the flight

hardware and software.

13.1.9 Telemetry and Telecommands

There have been a number of standards to govern how telemetry and telecommands

should be formatted. The initial approach was to use fixed messages for both teleme-

try and telecommands. As the complexity of satellites increased, it became desirable

to have more flexibility in the way the uplink and downlink bandwidth were used,

as well as to permit a larger address space to distinguish the information sources

and sinks within the spacecraft. This lead to packet-based communication.

The other trend of note is that the standardisation process initially consisted

on locally or nationally-mandated standards (in Europe, the standards coming from

231

ESA) and has then tended to include a wider and wider participation, both within

Europe, with the participation being extended to include industry, and interna-

tionally, with the establishment of more independent, international bodies, such as

the European Cooperation for Space Standardisation, ECSS, and the Consultative

Committee for Space Data Systems (CCSDS).

13.1.10 Information Theory

Simply repeating the telemetry as in a fixed format telemetry system does not give a

very high Shannon information. By monitoring for changes, we generate much more

information per bit. In an event-driven packet system that transmits telemetry

packets when something has changed, the Shannon information scales very well.

The information available on the ground to help an operator synchronise his

internal model with the physical situation on-board the spacecraft can be very low.

There can be a fundamental discrepancy between the way that operators perceive

information and what the information is actually telling them.

13.2 Discussion

This work has presented how the people and organisations usually prepare for mis-

sion operations and has attempted to identify the current best practice, as well as

pointing out anomalies and inefficiencies when they occur.

At the highest level, satellite operations is about information processing. This

can take place over a long time-span, such as the strategic design and procurement

of control system, or in shorter time-scales, where more tactical decisions have to

be taken, such as who does what, when and how.

We have seen that the people who design and build satellites, the very people

who gain insight into the the spacecraft behaviour during its integration are not

normally present throughout the useful lifetime of the satellite. This means that

232

the knowledge and tools that they have gained must be either transferred to the

operational team, or in the case of tools, re-implemented.

Currently the vast majority of operational effort (and expense) goes into the

preparation of the ground segment for launch,which includes all aspects necessary

to ensure satisfactory entry into service: procurement, verification, validation and

early operations. The spacecraft procurement process becomes an enormous docu-

mentation project, with the documentation often being written by non-native speak-

ers. Individual companies frequently have their own jargon, and equally often they

invent new names and abbreviations to describe the units that they produce or the

processes that they perform. This acts as a substantial impediment to the trans-

fer of knowledge to the operations team and from one operations team to another.

An Ontology has been drafted which would overcome some of these problems, and

guidelines have been proposed as to how to name new developments in a way that

reduces barriers to knowledge transfer.

Formal Methods were suggested as a possible solution to the problem of trans-

ferring knowledge across time and place as is required on modern space mission.

This could be a substantial contribution to ease the transfer of information. In or-

der to try to encapsulate the knowledge embodied in the design, it is necessary to

use better tools than plain text. Formal Methods hold out the hope of an exten-

sible framework, that not only enables the writer to say precisely what he means,

also allows the readers and writer to prove certain features about the system being

described. Formal descriptions of units or sub-systems can be combined to allow

reasoning about the greater entity.

All spacecraft operations take place within some kind of organisational frame-

work or team. By analysing some existing organisations we have seen several short-

comings. We have also shown several expected properties: that people often want

233

new challenges, new projects, i.e. that they often want a career and are ambi-

tious. For a healthy organisation to remain healthy, these aspects must be planned

and monitored in just the same way that the technical operations of a satellite are

controlled.

For ESA missions, industrial policy encourages poor performance from industrial

consortia, and the lack of either penalties for late deliveries or incentives for good

long-term performance decrease the quality of the product. There are no real incen-

tives for scientists, industry and ESA to cooperate or coordinate their developments.

Since the industrial environment has changed so much since ESA was founded, the

procurement policy, in particular the principal of justes retours, should be reconsid-

ered. There is considerable scope for saving costs by re-using infrastructure software

and getting the different parties to cooperate across the different phases. Whilst

some phases might become more expensive, the life-cycle costs should be reduced.

We have discussed the nature of risk, showed how it can occur in space pro-

grammes and methods used to manage the risk inherent in space exploitation. Plan-

ning and learning are essential parts of risk management, but in order to be able

to learn from similar cases, it must be possible to recognise similar cases! This is

where use of an ontology would help, as would the use of formal methods to help

recognise similar patterns.

To continue at the strategic level, we have shown that there is a great deal of

commonality between the computer systems are used to control the satellites and

payloads before and after launch. Cost-savings could be made via a common, or

harmonised, development, and this would also reduce the risk at a project level,

since so many elements of the ground system would have been thoroughly tested

during the satellite integration.

Complexity can be portrayed as the eternal enemy of the operations engineer as

it must be dealt with at all phases. It is easy to render a system more complex at one

234

level, by trying to simplify it at another level. We have shown that many systems

have an inherent complexity even if they do not contain or rely upon software. If

they do contain software, then this brings great flexibility, at the cost of even greater

complexity. Even with a ’perfect’ ontology or with formal methods, there may still

be true statements about the physical world that cannot be proved: incompleteness

is a necessary property of all logic systems above a certain power. The operations

engineer must be able to operate within the formal system, but also maintain enough

scepticism and imagination to be able to raise up a level, and act intelligently.

At the tactical level, the Shannon Information of a fixed format telemetry sys-

tem has been calculated and compared with an event-driven packet system. It is

shown that the information scales much better with packet-based systems. This

means that operators get much more relevant information to analyse. People adapt

to the monotony inherent in continuous telemetry by a form of learning, which un-

fortunately means that they do not understand everything that is shown to them.

Alarms and warning lights can mitigate the loss of information by attracting atten-

tion to changes or out of limit conditions. Information theory shows just how little

information is transferred when people believe that they know what is going on.

The job of an Operations Engineer is changing. More organisational and soft

skills are necessary since almost every development is a cooperation between dif-

ferent institutes, organisations and companies. Care must be taken to nurture the

relationship with the partners, but at the same time, to steer the project in an

effective manner. The steady increase in the size of space missions and their associ-

ated ground segments means that a different set of skills are needed from the flight

control team. Knowledge of the flight hardware is no longer sufficient. Much more

experience with software and systems, in particular with the structure and content

of the database, is now necessary.

235

13.3 Further Work

The following areas merit further investigation:

• A mission model to examine current missions should be extended to propose

a more detailed framework.

• The idea of an common, extensible ontology should be further developed.

• The information transfer of different packet concepts should be analysed and

extended.

236

References

[1] BIS. Sound Practices for the Management and Supervision of Operational Risk.

Bank for International Settlements, Basel, Swizterland, 2002.

[2] Burkill, H., and Mirsky, L. Monotonicity. J. Math Anal. Appl. 41 (1973),

391–410.

[3] Carroll, T., and Web, M. The Risk Factor. Take That Ltd, Harrogate,

2001. ISBN 1-873668-37-6.

[4] Chaitin, G. The Limits of Mathematics. Springer, 1998. ISBN 981-3083-58-X.

[5] Chaitin, G. The Unknowable. Springer, 1999. ISBN 981-4021-72-5.

[6] Coad, P., and Nicola, J. Object-Oriented Programming. Yourdon Press,

1993. ISBN 0-13-032616-X.

[7] Codd, E. A relational model for data for large shared data banks. CACM

13(6) (1970).

[8] Date, C. An Introduction to Database Systems, sixth ed. Addison-Wesley,

1995. ISBN 0-202-82458-2.

[9] DE SELDING, P. B. Esa proposes end to costly hermes effort. Space News

(1992). www.space.com/spacenews/archive92/sn1992.fff231.html.

237

238

[10] Dekker, S. Automation, cognition and collaboration. Tech. Rep. HF Tech

Rep. No 2001/02, Human Factors Group, Linkping Institute of Technology,

2001. http://www.ikp.liu.se/hf/Automation.pdf.

[11] Dunford, N., and Schwartz, J. The Z/Eves User Manual. ORA Canada,

Ottawa, Ontario, 2000.

[12] EIU. Managing Business Risks. Economist Intelligence Unit, London, 1995.

[13] ESA. Pcm tc standard. Tech. Rep. ESA-PSS-45 (TTC-A-01), European Space

Agency, 1978.

[14] ESA. Packet tc standard. Tech. Rep. PSS-04-107, European Space Agency,

1992.

[15] Farquhar, A., Fikes, R., and Rice, J. The ontolingua server: A tool for

collaborative ontology construction. Tech. Rep. KSL-96-26, Stanford Knowl-

edge Systems Laboratory, 1996.

[16] Gell-Mann, M. The Quark and the Jaguar. Abacus, 1995. ISBN 0-349-

10649-5.

[17] Genesereth, M., and Fikes, R. Knowledge interchange format version

3.0. reference manual. Tech. Rep. Logic-92-1, Computer Science Department,

Stanford University, 19992.

[18] Green, R. G., Muir, H., James, M., Gradwell, D., and Green, R. L.

Human Factors for Pilots, second ed. Avebury, 1996. ISBN 0-291-39827-8.

[19] Gruber, T. R. A translation approach to portable ontologies. Knowledge

Acquisition 5(2) (1993), 199–220.

[20] Haag, S., and Jones, M. The use of new technologies in flight control

systems. In Proceedings of SpaceOps 98 (Tokyo, 1998), NASDA.

239

[21] Haigh, J. Taking Chances. Oxford University Press, 1999.

[22] Hamming, R. The Art of Doing Science and Engineering. Gordon and Breach,

Amsterdam, 1997. ISBN 90-5699-501-4.

[23] Hoffman, P. The Man Who Loved Only Numbers. 4th, 1998. ISBN 1-85702-

829-5.

[24] Hofstadter, D. R. Goedel, Escher, Bach: an Eternal Golden Braid, twenti-

eth anniversary ed. Penguin, 2000. ISBN 0-14-028920-8.

[25] Hollnagel, E. Computer Supported Risk Management, vol. 4 of Topics in

Safety, Risk. Kluwer, 1995, pp. 33–49. ISBN 0-7923-3372-1.

[26] Horrocks, I., Fensel, D., Broekstra, J., Decker, S., Erdmann,

M., Goble, C., van Harmelen, F., Klein, M., Staab, S., Studer,

R., and Motta, E. OIL: The Ontology Inference Layer. Tech. Rep.

IR-479, Vrije Universiteit Amsterdam, Faculty of Sciences, Sept. 2000. See

http://www.ontoknowledge.org/oil/.

[27] ISO. The database language sql. Tech. Rep. Document ISO/IEC 9075, Inter-

national Standards Organisation, 1992.

[28] Jia, X. The Z Type Checker. De Paul University, 1995.

[29] M.-A. D. Storey, C. B., and Michaud, J. Shrimp views: An interactive

and customizable environment for software exploration. In Proc. of Interna-

tional Workshop on Program Comprehension (IWPC ’2001) (Toronto, Ontario,

Canada, 2001), IEEE.

[30] McGuinness, N. N. . D. L. Ontology development 101: A guide to creating

your first ontology. Tech. Rep. SMI-2001-0880, Stanford University SMI, 2001.

240

[31] Meyer, B. Object -Oriented Software Construction. Prentice Hall, New York,

1988.

[32] N. F. Noy, R. W. Fergerson, . M. A. M. The knowledge model of protege-

2000: Combining interoperability and flexibility. In 12th International Confer-

ence on Knowledge Engineering and Knowledge Management (EKAW’2000)

(Juan-les-Pins,France, 2000), INRIA. SMI-2000-0830.

[33] Newell, A. The knowledge level. Artificial Intelligence 18 (1) (1982), 87–127.

[34] Potter, B., Sinclair, J., and Till, D. An Introduction to Formal Speci-

fication and Z. Prentice-Hall, Europe, 1996. ISBN 0-13-242207-7.

[35] Rist, R., and Terwilliger, R. Object-Oriented Programming in Eiffel.

Prentice Hal, 1995. ISBN 0-13-205931-2.

[36] Rogers. The presidential commission on the space shuttle challenger accident

report. Tech. rep., Rogers Commission, 1986.

[37] Sage, A. Systems Engineering for Risk Management, vol. 4 of Topics in Safety,

Risk,Reliability and Quality. Kluwer, 1995, pp. 3–32. ISBN 0-7923-3372-1.

[38] Schafer, D., and Ritz, D. A. Practical Smalltalk. Springer, 1991. ISBN

0-387-97394-X.

[39] Shannon, C. A mathematical theory of communication. Bell System Technical

Journal 27 (Jul 1948).

[40] Vaughan, D. The Challenger Launch Decision. University of Chicago, 1996.

ISBN 0-226-85175-3.

[41] V.K. Chaudhri, A. Farquhar, R. F., and Karp, P. Open knowledge

base connectivity 2.0. Tech. Rep. KSL-98-06, Stanford University KSL, 1998.

241

[42] Woodcock, J., and Davies, J. Using Z. Prentice-Hal, Europe, 1996. ISBN

0-13-948472-8.

[43] Woods, D. Decomposing automation: Apparent simplicity, real complexity.

In Automation Technology and Human Performance: Theory and Applications

(Erlbaum, 1996), R. Parasuraman and M. Mouloula, Eds.

242

Appendix A

Ontology Outline

This Appendix gives a snapshot of the real ontology. The Protégé software allows the

user to link units and set interface types and also export a wealth of documentation.

This is one of the automatically generated index pages.

A.1 Interface

A.1.1 Electricty

Electricty5V

Electricty28V

• Instrument

Instances: Spire, PACS, HIFI, LFI, HFI, SCS

• Spacecraft

Instances: Herschel, Planck

• SolarGenerator

Instances: H-SolarPanel, P-SolarPanel

• Unit-LFI

Instances: RadiometerArrayAssembly, FrontEndUnit, FeedHorn, Orthomod-

eTransducer, FrontEndModule, Reference Load, WaveGuides, BackEndUnit,

243

244

BackEndModule, DataAquisitionElectronics, RadiometerElectronicsBoxAssem-

bly, PowerSupply, LFI-DPU-A, LFI-DPU-B, SPU-A, SPU-B

• Unit-HFI

Instances: FocalPlaneUnit, J-FET Box, DPU/PowerDistributionPart, Dilu-

tionCoolerSubSystem, FocalPlaneStructure, IsotopeSupplyUnit, HeatSwitches,

GasStorageUnit, DilutionCoolerControlUnit, DilutionCoolerPneumaticUnit, DI-

lutionCoolerPiping, 4KCoolerSubsystem, JTcompressors, AnciliaryGasClean-

ingPanel, ConnectingPipework, LowTemperaturePlumbing, MainElectronics,

HFI-HSL

– Unit-HFI-LSL

Instances: DilutionCoolerElectronics, 4KCoolerDriveElectronics, 4KColdUnit,

4KCoolerAncillaryUnit, 4KCoolerCompressorUnit, 4KCERegulator, 4KCool-

erElectronicsUnit

∗ DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

– Unit-HFI-HSL

∗ DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

∗ ReadoutElectronicsUnit

Instances: REU-Chain-00, REU-chain-01, REU-Chain-02, REU-Chain-

03, REU-Chain-04, REU-Chain-05, REU-Chain-06, REU-Chain-07,

REU-Chain-08, REU-Chain-09, REU-Chain-10, REU-Chain-11, REU,

REU-proc-A, REU-proc-B

∗ Unit-HFI-1553

∗ DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

245

– LCL

Instances: HFI-01, HFI-02, HFI-03, HFI-04, HFI-05, HFI-06, HFI-07,

HFI-08, HFI-09, HFI-10, HFI-11, HFI-12, HFI-13, HFI-14, HFI-15

– PowerControlUnit

Instances: P-PCU, H-PCU

– PowerDistributionUnit

Instances: H-PDU, P-PDU

A.1.2 Data

DataStorage

• Instrument

Instances: Spire, PACS, HIFI, LFI, HFI, SCS

• Spacecraft

Instances: Herschel, Planck

• Databus

– SMCS-1355

∗ Unit-LFI

Instances: RadiometerArrayAssembly, FrontEndUnit, FeedHorn, Or-

thomodeTransducer, FrontEndModule, Reference Load, WaveGuides,

BackEndUnit, BackEndModule, DataAquisitionElectronics, Radiome-

terElectronicsBoxAssembly, PowerSupply, LFI-DPU-A, LFI-DPU-B,

SPU-A, SPU-B

– MilStd1553

∗ Instrument

Instances: Spire, PACS, HIFI, LFI, HFI, SCS

246

∗ 1553Bus

Instances: H-1553Bus, P-1553Bus

∗ CDMU

Instances: H-CDMU-A, H-CDMU-B, P-CDMU-A, P-CDMU-B

∗ Unit-LFI

Instances: RadiometerArrayAssembly, FrontEndUnit, FeedHorn, Or-

thomodeTransducer, FrontEndModule, Reference Load, WaveGuides,

BackEndUnit, BackEndModule, DataAquisitionElectronics, Radiome-

terElectronicsBoxAssembly, PowerSupply, LFI-DPU-A, LFI-DPU-B,

SPU-A, SPU-B

∗ Unit-HFI-1553

· DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

• Serial

– HighSpeedLink

∗ Unit-HFI-HSL

· DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

· ReadoutElectronicsUnit

Instances: REU-Chain-00, REU-chain-01, REU-Chain-02, REU-

Chain-03, REU-Chain-04, REU-Chain-05, REU-Chain-06, REU-

Chain-07, REU-Chain-08, REU-Chain-09, REU-Chain-10, REU-

Chain-11, REU, REU-proc-A, REU-proc-B

– LowSpeedLink

∗ Unit-HFI-LSL

Instances: DilutionCoolerElectronics, 4KCoolerDriveElectronics, 4KColdUnit,

247

4KCoolerAncillaryUnit, 4KCoolerCompressorUnit, 4KCERegulator,

4KCoolerElectronicsUnit

· DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

A.1.3 Hierarchy

System

Instances: H-DMS, H-AOCS, H-Power, H-Thermal, H-TTC, H-RCS, P-AOCS, P-

DMS, P-Power, P-RCS, P-Thermal, P-TTC

Instrument

Instances: Spire, PACS, HIFI, LFI, HFI, SCS

Spacecraft

Instances: Herschel, Planck

Unit-PL

• Unit-LFI

Instances: RadiometerArrayAssembly, FrontEndUnit, FeedHorn, Orthomod-

eTransducer, FrontEndModule, Reference Load, WaveGuides, BackEndUnit,

BackEndModule, DataAquisitionElectronics, RadiometerElectronicsBoxAssem-

bly, PowerSupply, LFI-DPU-A, LFI-DPU-B, SPU-A, SPU-B

• Unit-HFI

Instances: FocalPlaneUnit, J-FET Box, DPU/PowerDistributionPart, Dilu-

tionCoolerSubSystem, FocalPlaneStructure, IsotopeSupplyUnit, HeatSwitches,

248

GasStorageUnit, DilutionCoolerControlUnit, DilutionCoolerPneumaticUnit, DI-

lutionCoolerPiping, 4KCoolerSubsystem, JTcompressors, AnciliaryGasClean-

ingPanel, ConnectingPipework, LowTemperaturePlumbing, MainElectronics,

HFI-HSL

– Unit-HFI-LSL

Instances: DilutionCoolerElectronics, 4KCoolerDriveElectronics, 4KColdUnit,

4KCoolerAncillaryUnit, 4KCoolerCompressorUnit, 4KCERegulator, 4KCool-

erElectronicsUnit

∗ DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

– Unit-HFI-HSL

∗ DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

∗ ReadoutElectronicsUnit

Instances: REU-Chain-00, REU-chain-01, REU-Chain-02, REU-Chain-

03, REU-Chain-04, REU-Chain-05, REU-Chain-06, REU-Chain-07,

REU-Chain-08, REU-Chain-09, REU-Chain-10, REU-Chain-11, REU,

REU-proc-A, REU-proc-B

– Unit-HFI-1553

∗ DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

• Unit-SPIRE

Instances: HSFPU, HSJFP, HSJFS, HSDCU, HSFCU, HSDPU, HSWIH

Unit

• Unit-Power

249

– PowerDistributionUnit

Instances: H-PDU, P-PDU

– PowerControlUnit

Instances: P-PCU, H-PCU

– LCL

Instances: HFI-01, HFI-02, HFI-03, HFI-04, HFI-05, HFI-06, HFI-07,

HFI-08, HFI-09, HFI-10, HFI-11, HFI-12, HFI-13, HFI-14, HFI-15

– SolarGenerator

Instances: H-SolarPanel, P-SolarPanel

• Unit-Thermal

• Unit-DataManagement

– CDMU

Instances: H-CDMU-A, H-CDMU-B, P-CDMU-A, P-CDMU-B

– 1553Bus

Instances: H-1553Bus, P-1553Bus

– RTU

• Unit-AttitudeOrbit

– ACC

Instances: H-ACC-A, H-ACC-B, P-ACC-A, P-ACC-B

• Unit-Telecommunications

– Receiver

– Decoder

– Antenna

250

• Unit-PL

– Unit-LFI

Instances: RadiometerArrayAssembly, FrontEndUnit, FeedHorn, Ortho-

modeTransducer, FrontEndModule, Reference Load, WaveGuides, Back-

EndUnit, BackEndModule, DataAquisitionElectronics, RadiometerElec-

tronicsBoxAssembly, PowerSupply, LFI-DPU-A, LFI-DPU-B, SPU-A, SPU-

B

– Unit-HFI

Instances: FocalPlaneUnit, J-FET Box, DPU/PowerDistributionPart,

DilutionCoolerSubSystem, FocalPlaneStructure, IsotopeSupplyUnit, HeatSwitches,

GasStorageUnit, DilutionCoolerControlUnit, DilutionCoolerPneumatic-

Unit, DIlutionCoolerPiping, 4KCoolerSubsystem, JTcompressors, An-

ciliaryGasCleaningPanel, ConnectingPipework, LowTemperaturePlumb-

ing, MainElectronics, HFI-HSL

∗ Unit-HFI-LSL

Instances: DilutionCoolerElectronics, 4KCoolerDriveElectronics, 4KColdUnit,

4KCoolerAncillaryUnit, 4KCoolerCompressorUnit, 4KCERegulator,

4KCoolerElectronicsUnit

· DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

∗ Unit-HFI-HSL

· DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

· ReadoutElectronicsUnit

251

Instances: REU-Chain-00, REU-chain-01, REU-Chain-02, REU-

Chain-03, REU-Chain-04, REU-Chain-05, REU-Chain-06, REU-

Chain-07, REU-Chain-08, REU-Chain-09, REU-Chain-10, REU-

Chain-11, REU, REU-proc-A, REU-proc-B

∗ Unit-HFI-1553

· DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

– Unit-SPIRE

Instances: HSFPU, HSJFP, HSJFS, HSDCU, HSFCU, HSDPU, HSWIH

A.2 Equipment

A.2.1 Actuator

A.2.2 Sensor

Instances: Gyro, QRS, StarMapper

A.2.3 GroundStation

A.2.4 System

Instances: H-DMS, H-AOCS, H-Power, H-Thermal, H-TTC, H-RCS, P-AOCS, P-

DMS, P-Power, P-RCS, P-Thermal, P-TTC

A.2.5 Instrument

Instances: Spire, PACS, HIFI, LFI, HFI, SCS

A.2.6 Spacecraft

Instances: Herschel, Planck

252

A.2.7 Unit

Unit-Power

• PowerDistributionUnit

Instances: H-PDU, P-PDU

• PowerControlUnit

Instances: P-PCU, H-PCU

• LCL

Instances: HFI-01, HFI-02, HFI-03, HFI-04, HFI-05, HFI-06, HFI-07, HFI-08,

HFI-09, HFI-10, HFI-11, HFI-12, HFI-13, HFI-14, HFI-15

• SolarGenerator

Instances: H-SolarPanel, P-SolarPanel

Unit-Thermal

Unit-DataManagement

• CDMU

Instances: H-CDMU-A, H-CDMU-B, P-CDMU-A, P-CDMU-B

• 1553Bus

Instances: H-1553Bus, P-1553Bus

• RTU

Unit-AttitudeOrbit

• ACC

Instances: H-ACC-A, H-ACC-B, P-ACC-A, P-ACC-B

253

Unit-Telecommunications

• Receiver

• Decoder

• Antenna

Unit-PL

• Unit-LFI

Instances: RadiometerArrayAssembly, FrontEndUnit, FeedHorn, Orthomod-

eTransducer, FrontEndModule, Reference Load, WaveGuides, BackEndUnit,

BackEndModule, DataAquisitionElectronics, RadiometerElectronicsBoxAssem-

bly, PowerSupply, LFI-DPU-A, LFI-DPU-B, SPU-A, SPU-B

• Unit-HFI

Instances: FocalPlaneUnit, J-FET Box, DPU/PowerDistributionPart, Dilu-

tionCoolerSubSystem, FocalPlaneStructure, IsotopeSupplyUnit, HeatSwitches,

GasStorageUnit, DilutionCoolerControlUnit, DilutionCoolerPneumaticUnit, DI-

lutionCoolerPiping, 4KCoolerSubsystem, JTcompressors, AnciliaryGasClean-

ingPanel, ConnectingPipework, LowTemperaturePlumbing, MainElectronics,

HFI-HSL

– Unit-HFI-LSL

Instances: DilutionCoolerElectronics, 4KCoolerDriveElectronics, 4KColdUnit,

4KCoolerAncillaryUnit, 4KCoolerCompressorUnit, 4KCERegulator, 4KCool-

erElectronicsUnit

∗ DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

– Unit-HFI-HSL

254

∗ DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

∗ ReadoutElectronicsUnit

Instances: REU-Chain-00, REU-chain-01, REU-Chain-02, REU-Chain-

03, REU-Chain-04, REU-Chain-05, REU-Chain-06, REU-Chain-07,

REU-Chain-08, REU-Chain-09, REU-Chain-10, REU-Chain-11, REU,

REU-proc-A, REU-proc-B

– Unit-HFI-1553

∗ DataProcessingUnit

Instances: HFI-DPU-A, HFI-DPU-B

• Unit-SPIRE

Instances: HSFPU, HSJFP, HSJFS, HSDCU, HSFCU, HSDPU, HSWIH

This completes the automatically generated index pages. The real ontology would

take more than 250 pages to print out as a hard copy, but can be easily browsed

either using an internet browser or the development user interface. The following

pages show some of the details that are available for two items, a generic HFI unit,

and a HFI unit that is connected to the High Speed Link, HSL.

255

Class Unit-HFI

Concrete Class Extends

Unit-PL,Electricty28V

Direct Instances: 1. FocalPlaneUnit

2. J-FET Box

3. DPU/PowerDistributionPart

4. DilutionCoolerSubSystem

5. FocalPlaneStructure

6. IsotopeSupplyUnit

7. HeatSwitches

8. GasStorageUnit

9. DilutionCoolerControlUnit

10. DilutionCoolerPneumaticUnit

11. DIlutionCoolerPiping

12. 4KCoolerSubsystem

13. JTcompressors

14. AnciliaryGasCleaningPanel

15. ConnectingPipework

16. LowTemperaturePlumbing

17. MainElectronics

18. HFI-HSL

Direct Subclasses: 1. Unit-HFI-LSL

2. Unit-HFI-HSL

3. Unit-HFI-1553

256

Slot name Documentation

Project Which spacecraft this
unit belongs to

Name Unit name

IsPartOf Relation between in-
stances

Temperature to differantiate hot
units and cold units

PowerConsumption Power

UserInfo Description

Has-a Relation between in-
stances

Receives28V

Contains Relation between
Classes

Sends28V

RelatedQuestion Clarifications

257

Class Unit-HFI-HSL

Concrete Class Extends

Unit-HFI,HighSpeedLink

Direct Instances: None

Direct Subclasses: 1. DataProcessingUnit

2. ReadoutElectronicsUnit

Slot name Documentation

Project Which spacecraft this unit belongs
to

Name

IsPartOf Relation between instances

Temperature to differantiate hot units and cold
units

PowerConsumption Power

UserInfo Description

Has-a Relation between instances

Receives28V

SendsHSL

Contains Relation between Classes

ReceivesHSL

Sends28V

RelatedQuestion

