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Approximate Uncertainty Modeling in Risk Analysis with
Vine Copulas

Tim Bedford,1 Alireza Daneshkhah,2 and Kevin J. Wilson1,∗

Many applications of risk analysis require us to jointly model multiple uncertain quantities.
Bayesian networks and copulas are two common approaches to modeling joint uncertainties
with probability distributions. This article focuses on new methodologies for copulas by devel-
oping work of Cooke, Bedford, Kurowica, and others on vines as a way of constructing higher
dimensional distributions that do not suffer from some of the restrictions of alternatives such
as the multivariate Gaussian copula. The article provides a fundamental approximation re-
sult, demonstrating that we can approximate any density as closely as we like using vines. It
further operationalizes this result by showing how minimum information copulas can be used
to provide parametric classes of copulas that have such good levels of approximation. We ex-
tend previous approaches using vines by considering nonconstant conditional dependencies,
which are particularly relevant in financial risk modeling. We discuss how such models may
be quantified, in terms of expert judgment or by fitting data, and illustrate the approach by
modeling two financial data sets.
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1. INTRODUCTION

Many areas of applied risk analysis require us to
model multiple uncertainties using multivariate dis-
tributions. For some decision support settings, it is
common to use discrete models such as Bayesian net-
works. In other settings, particularly when modeling
financial data or carrying out uncertainty analysis,
it is necessary to have models of multivariate con-
tinuous random variables. Dependency modeling is
therefore an area of great interest for a whole range
of risk analysis applications.

There is a growing literature on the use of cop-
ulas to model dependencies (see, e.g., surveys by

1Department of Management Science, University of Strathclyde,
Glasgow, UK.

2Cranfield Water Science Institute, Cranfield University, Bedford,
UK.

∗Address correspondence to Dr. Kevin Wilson, Department of
Management Science, University of Strathclyde, Glasgow G1
1XQ, UK; kevin.j.wilson@strath.ac.uk.

Nelsen and(1,2) Joe(3)). Copulas have found applica-
tion in a number of areas, including combining ex-
pert opinion and stochastic simulation.(4–9) A copula
is a joint distribution on the unit square (or more
generally on the unit n-cube) with uniform marginal
distributions. Under reasonable conditions, we can
uniquely specify a joint distribution for n random
variables by specifying the univariate distribution for
each variable, and, in addition, specifying the cop-
ula. This is because we can simply transform each
variable by its own distribution function (sometimes
called its quantile function) to ensure that the trans-
formed variable has a uniform distribution, so that
the joint distribution function F can be written:

F(x1, . . . , xn) = C(F1(x1), . . . , Fn(xn)), (1)

where C is a copula distribution function, and
F1, . . . , Fn are the univariate, or marginal, distribu-
tion functions. We can use this formula construc-
tively: given a copula C and marginals F1, . . . , Fn

we can define F in this way. A special case is that
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of the “Gaussian copula,” obtained from the Gaus-
sian joint distribution and parameterized by the cor-
relation matrix. Use of the Gaussian copula to con-
struct joint distributions is equivalent to the NORTA
method (normal to anything).(10)

The use of a copula to model dependency is sim-
ply a translation of one difficult problem into an-
other: instead of the difficulty of specifying the full
joint distribution we have the difficulty of specifying
the copula. The main advantage is the technical one
that copulas are normalized to have support on the
unit square and uniform marginals. As many authors
restrict the copulas to a particular parametric class
(Gaussian, multivariate t , etc.) the potential flexibil-
ity of the copula approach is not realized in practice.
The approach used in this article, by contrast, allows
a lot of flexibility in copula specification. It utilizes
a graphical model, called a vine, to systematically
specify how two-dimensional copulas are stacked to-
gether to produce an n-dimensional copula.

The main objectives of this article are to show
that a vine structure can be used to approximate any
given multivariate copula to any required degree of
approximation, and to show how this can be opera-
tionalized for use in practical situations involving un-
certain risks. The standing technical assumptions we
make are that the multivariate copula density f un-
der study is continuous and is nonzero. No other as-
sumptions are needed. We illustrate this by modeling
a data set of Norwegian financial data that was previ-
ously analyzed in Aas et al.(11) We extend the model-
ing approach used by Aas et al.(11) by considering the
possibility of nonconstant conditional dependencies
within the vine structure.

Since vines demonstrate high flexibility and ad-
vantages in constructing multivariate distributions,
they have recently been used to describe the inner-
dependence structure and build the joint distribu-
tion of portfolio returns. As coherent measures of
risk, value at risk (VaR) and conditional value at
risk (CVaR), which are greatly affected by the tail
distribution of risk factors, have been widely used
to optimize portfolios and measure their risk. Deng
et al.(12) used extreme value theory to model the tails
of the innovation of each asset return and estimate
risk of assets. The dependence structure between in-
novations of asset returns can be represented by a
vine. This vine is useful to model both the influence
of portfolio dimensions and the differences of tail de-
pendence between assets. As expected, the optimal
portfolio is better via a vine than that via a Student
copula model (see also Ref. 11 for similar study). We

illustrate that the minimum information vine can out-
perform the standard multivariate copula model and
specific parametric vines.(13)

Our constructive approach involves the use of
minimum information copulas that can be specified
to any required degree of precision based on the data
available. We prove rigorously that good approx-
imation “locally” guarantees good approximation
globally. Finally, we discuss rules of thumb that
could be used to apply this in practice. In particular,
we discuss vine structure. A vine structure imposes
no restrictions on the underlying joint probability
distribution it represents (as opposed to the situation
for Bayesian networks, for example). However, this
does not mean that we should ignore the question
about which vine structure is most appropriate,
for some structures allow the use of less complex
conditional copulas than others. Conversely, if we
only allow certain families of copulas, then one vine
structure might fit better than another.

2. VINE CONSTRUCTIONS FOR
MULTIVARIATE DEPENDENCE

A copula is a multivariate distribution function
with standard uniform marginal distributions. Us-
ing Equation (1), a copula can be used, in conjunc-
tion with the marginal distributions, to model any
multivariate distribution. However, apart from the
multivariate Gaussian, Student, and the exchange-
able multivariate Archimedean copulas, the set of
higher dimensional copulas proposed in the litera-
ture is limited and is not rich enough to model all pos-
sible mutual dependencies among the n variates (see
Kurowicka and Cooke(14) for details of these copu-
las). Hence, it is necessary to consider more flexible
constructions.

A structure, here denoted the pair-copula con-
struction or vine, allows for the free specification of
(at least) n(n − 1)/2 copulas between n variables.
(Note that n(n − 1)/2 is the number of entries above
the diagonal of an n × n correlation matrix—though
these are algebraically related so not completely free
variables.) This structure was originally proposed by
Joe,(3) and reformulated and discussed in detail by
Bedford and Cooke,(13,15) who considered simula-
tion, information properties, and the relationship to
the multivariate normal distribution but who consid-
ered a more general method called a Cantor tree
construction.

Kurowicka and Cooke(14) (Chapters 4, 6–9) con-
sider simulation issues and Aas et al.(11) look at
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Fig. 1. A regular vine with four elements.

inference. Excellent overviews of vines are given in
Refs. 16 and 17. The modeling scheme is based on
a decomposition of a multivariate density into a set
of bivariate copulas. The way these copulas are built
up to give the overall joint distribution is determined
through a structure called a vine, and can be easily
visualized. A vine on n variables is a nested set of
trees, where the edges of the tree j are the nodes of
the tree j + 1 (for j = 1, . . . , n − 2), and each tree
has the maximum number of edges. For example,
Fig. 1 shows a vine with four variables, which con-
sists of three trees (T1, T2, T3) with 3, 2, and 1 edges,
respectively. A regular vine on n variables is a vine
in which two edges in tree j are joined by an edge in
tree j + 1 only if these edges share a common node,
for j = 1, . . . , n − 2. There are n(n − 1)/2 edges in a
regular vine on n variables. The formal definition is
as follows.

DEFINITION 1. (Vine, regular vine) V is a vine on
n elements if

(1) V = (T1, . . . , Tn−1).
(2) T1 is a connected tree with nodes N1 =

{1, . . . , n} and edges E1; for i = 2, . . . , n − 1, Ti

is a connected tree with nodes Ni = Ei−1.
V is a regular vine on n elements if additionally the
proximity condition holds.

(3) For i = 2, . . . , n − 1, if a and b are nodes of Ti

connected by an edge in Ti , where a = {a1, a2},
b = {b1, b2}, then exactly one of the ai equals
one of the bi .

One of the simplest regular vines is shown in
Fig. 1—this structure is called a D-vine; see Kurow-
icka and Cooke,(14) p. 93. Here, T1 is the tree con-
sisting of the straight edges between the numbered
nodes, T2 is the tree consisting of the curved edges
that join the straight edges in T1, and so on.

For a regular vine, each edge of T1 is labeled by
two numbers from {1, . . . , n}. If we take two edges of

T1, for example, 12 and 23, which are nodes joined
by an edge in T2, then of the numbers labeling these
edges one is common to both (2), and they both have
one unique number (1,3, respectively). The common
number(s) will be called the conditioning set De for
that edge e (in this example, the conditioning set is
simply {2}) and the other numbers will be called the
conditioned set (in this example, {1, 3}). For a reg-
ular vine, the conditioned set always contains two
elements.

We associate a vine distribution to a vine by spec-
ifying a copula to each edge of T1 and a family of con-
ditional copulas for the conditional variables given
the conditioning variables, as shown by the following
result of Bedford and Cooke.(15)

THEOREM 1. Let V = (T1, . . . , Tn−1) be a regular
vine on n elements. For each edge e( j, k) ∈ Ti , i =
1, . . . , n − 1 with conditioned set { j, k} and condi-
tioning set De, let the conditional copula and cop-
ula density be Cjk|De and c jk|De, respectively. Let
the marginal distributions Fi with densities fi , i =
1, . . . , n be given. Then, the vine-dependent distribu-
tion is uniquely determined and has a density given
by:

f (x1, . . . , xn) =
n∏

i=1

f (xi )
n−1∏
j=1

∏
e( j,k)∈Ei

c jk|De (Fj |De(xj ), Fk|De(xk)). (2)

Note that we use c jk|De here to be a condi-
tional copula density and not the more usual con-
ditional bivariate cumulative distribution function
(cdf) (which is not a copula). The existence of regu-
lar vine distributions is discussed in detail by Bedford
and Cooke.(13)

The density decomposition associated with four
random variables X = (X1, . . . , X4) with a joint den-
sity function f (x1, . . . , x4) satisfying a copula-vine
structure shown in Fig. 1 with the marginal densities
f1, . . . , f4 is:

f1234(x1, . . . , x4) =
4∏

i=1

f (xi ) × c12 (F(x1), F(x2))

c23 (F(x2), F(x3)) c34 (F(x3), F(x4)) ×

c13|2 (F(x1 | x2), F(x3 | x2)) c24|3 (F(x2 | x3),

F(x4 | x3)) × c14|23 (F(x1 | x2, x3), F(x4 | x2, x3)) .(3)
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Note that in the special case of a joint normal
distribution, we would use the normal copula every-
where in the above expression and the conditional
copulas would be constant (i.e., not depend on the
conditioning variable). This means that the joint nor-
mal structure is specified by n(n − 1)/2 (conditional)
correlation values, which are algebraically free be-
tween −1 and +1 (unlike the values in a correla-
tion matrix). See Bedford and Cooke(13) for more
details.

Theorem 1 gives us a constructive approach to
build a multivariate distribution given a vine struc-
ture: if we choose marginal densities and copulas,
then this will give us a multivariate density. Hence,
vines can be used to model general multivariate den-
sities. However, in practice we have to use copulas
from a convenient class, and this class should ideally
be one that allows us to approximate any copula to
an arbitrary degree. In the following sections, we ad-
dress this issue in more detail. By having this class of
copulas, we can approximate any multivariate distri-
bution using any vine structure.

Unlike the situation with Bayesian networks,
where not all structures can be used to model a given
distribution, the theorem shows that, in principle, any
vine structure may be used to model a given distribu-
tion. However, when specific families of copulas are
used some vine structures work better than others.
That is, given a family of copulas, some vine struc-
tures give a better degree of approximation than oth-
ers. We shall return to this point later.

Much work has been done to opera-
tionalize the use of vines for modeling mul-
tivariate data sets(11,16,18,19) and an R package
“VineCopula” has been developed to imple-
ment the approaches in this work (http://cran.r-
project.org/web/packages/VineCopula/index.html).

It is worth stressing that the flexibility of vines
gives us the potential to capture any fine-grain struc-
ture within a multivariate distribution. A key as-
pect that cannot be modeled by Bayesian networks
is that of conditional dependence. Bayesian net-
works are built around the concept of conditional
independence—arrows from a parent node to two
child nodes means that the child variables are con-
ditionally, independent given the parent variable. Of
course, unconditionally these two child nodes are de-
pendent. However, different models of conditional
dependence are not available as building blocks in
Bayesian networks.

Multivariate Gaussian copulas do allow for a
specification of conditional dependence, but do not

allow that dependence to change: in a multivariate
normal distribution, the conditional correlation of
two variables given a third may be nonzero but is al-
ways constant. Our approach allows the explicit mod-
eling of nonconstant conditional dependence, as we
illustrate with a simple example.

The deeper a bivariate copula is in the vine hi-
erarchy, the more variables will be conditioned on.
If the conditional dependencies are neglected, then
vines are a direct method to build flexible multivari-
ate models using bivariate copulas as building blocks.
Acar et al.(20) argue that ignoring conditional depen-
dencies (the so-called simplifying assumption) can
lead to reasonably precise approximations of the un-
derlying copula (as claimed by Ref. 21), but this can
in general be misleading. They develop an approach
to condition parametric bivariate copulas on a single
scalar variable. Stoeber et al.(22) repeated this con-
cern, after studying several examples, and felt the as-
sumption of an absolutely continuous vine is some-
times too strong. The latter assumption is used to
make the vine models tractable for inference and
model selection. Lopez-Paz et al.(23) also reported
that the simplifying assumption can lead to oversim-
plified estimates in practice. They then extended the
work of Acar et al. by developing a method for es-
timation of fully conditional vines using a Gaussian
Process.

2.1. Example

We consider an example involving nonconstant
conditional correlations. Suppose we have three un-
known quantities, X1, X2, X3, for which we wish to
specify a joint distribution. Marginally each vari-
able is normally distributed, Xi ∼ N(mi , s2

i ), for i =
1, 2, 3, and Xi is not independent of Xj for i �=
j . We can represent the joint distribution between
X1, X2, X3 using a D-vine in three dimensions. That
is, specify a copula between X1, X2, one between
X2, X3, and then a conditional copula between
X1, X3 | X2.

In each case, we choose a bivariate Gaussian cop-
ula. This takes the form, for Ui = F(xi ),

C(ui , u j ) = �ρ(�−1(ui ),�−1(uj)),

where �(·) is the cdf of the standard Normal distri-
bution and �ρ(·, ·) is the cdf of the standard bivariate
Normal distribution with correlation ρ. Suppose that
the correlations in the first tree of the vine are spec-
ified as ρ12 and ρ23 for the marginal copulas between
X1, X2 and X2, X3, respectively.
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If we were to specify a constant correlation be-
tween X1, X3 | X2 then the resulting distribution of
X1, X2, X3 could be modeled using the Gaussian cop-
ula. However, let us suppose that the correlation be-
tween X1, X3 | X2 is not constant but rather

ρX1,X3|X2∈(0:0.33) = 1, ρX1,X3|X2∈(0.33:0.67) = 0,

ρX1,X3|X2∈(0.67:1) = −1,

so that there is a positive linear relationship between
the variables for U2 = F2(X2) in (0, 1

3 ), they are un-
correlated for U2 between ( 1

3 , 2
3 ), and there is a nega-

tive linear relationship between them in ( 2
3 , 1).

We can divide the support of X2, via U2, into
intervals. Then we can define a Gaussian copula
within each interval. Suppose that numerical val-
ues for the required means and standard deviations
are m1 = 0.5, m2 = 1, m3 = −1, and s1 = s2 = s3 = 2
and the correlations between X1, X2 and X2, X3 are
ρ12 = 0.75, ρ23 = −0.75, respectively. This fully spec-
ifies the vine.

We can simulate from the vine to check that we
recover the conditional correlations for X1, X3 | X2.
In order to do this, we randomly draw u1, u2, u3, three
standard uniform variables. Then

x1 = F−1
1 (u1), x2 = F−1

2|1 (u2 | x1), x3 = F−1
3|12(u3 | x1, x2),

where the distribution function F3|12 is found from
f3|1,2(x3 | x1, x2). For further details on this, see Ref.
15 and Section 5.2.1. We perform 5,000 simulations.
The resulting X1, X3 values are plotted in Fig. 2.

We have recovered the correlations well
in each interval. The simulated correlations
are ρX1,X3|U2∈(0,0.33) = 0.9998, ρX1,X3|U2∈(0.33,0.67) =
−0.0032, and ρX1,X3|U2∈(0.67,1) = −0.9998.

We shall use this approach when considering the
example of Aas et al.(11) in Section 5.1. We believe
that incorporating such nonconstant conditional cor-
relations as we lay out in this article would be a use-
ful addition to the R package VineCopula. By using
a smooth function for the dependence instead of a
piece-wise constant function as in the binning in the
example above it, would be possible to apply such an
approach to large, complex distributions.

The use of Gaussian copulas in financial mod-
eling has come under fire for its uncritical use.
Shreve(24) points out that the simple modeling of cor-
relation available in the Gaussian copula does not
pass validation tests, but that this did not stop its
widespread adoption in the finance community.

3. BUILDING BIVARIATE MINIMUM
INFORMATION COPULAS

The emphasis in this article is on approximation
rather than on statistically optimal estimation tech-
niques. We use minimum information methods to op-
erationalize the approximation in the class of copulas
used. This section discusses how the data required to
specify bivariate copulas can be derived, either from
expert or sampling data, and shows how this can be
used to determine a minimum information copula.

We recall that when f and g are bivariate densi-
ties then the relative information of f with respect to
g is:

I( f |g) =
∫ ∫

ln( f (x, y)/g(x, y)) f (x, y) dxdy.

Information is a measure of the degree of devia-
tion of f from g and is minimized at 0 when f =
g. Furthermore, because the information function is
transformation-invariant, the relative information of
f with respect to g is the same as that between the
copula for f with respect to the copula of g. This
makes information a natural quantity with which to
measure the degree of dependency in a copula, for if
g is an independent bivariate with the same marginal
distributions as f , then I( f |g) is the same as the in-
formation of the copula of f relative to the indepen-
dent copula.

From the perspective of information and
entropy,(25) a natural way to specify dependency
constraints is through the use of moments. These
can be specified either on the copula or on the
underlying bivariate density (as long as we know the
marginal distributions and can therefore transform
from one to the other). We consider moment con-
straints in which real-valued functions h1, . . . , hk are
required to take expected values α1, . . . , αk. By a
minimum information copula, we mean a copula that
satisfies a set of constraints as above and that has
minimum information (with respect to the uniform
copula c(u, v) = uv) among the class of all copulas
satisfying those constraints. This copula (when it
exists and is unique—which is normally the case) is
the “most independent” bivariate density that meets
the constraints. Note that probabilities are simply
expectations of identity functions and so this method
of specifying constraints is not restrictive.

Information has a further advantage for us in
that it is a natural measure for vine distributions: a
specification of minimum information bivariate cop-
ulas automatically gives minimum information vine
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Fig. 2. The simulated distributions of X1, X3 given X2 in each of the intervals.

distributions. Specifically, lemma 4.4 and theorem 4.5
in Bedford and Cooke(13) (see also Kurowicka and
Cooke(14)) show that if we take a minimal informa-
tion copula satisfying each of the (local) constraints
(on moments, rank correlation, etc.), then the result-
ing joint distribution is also minimally informative
given those constraints.

3.1. Data: Expert Judgment or
Random-Sample-wBased Approaches

Quantitative operations research models are
typically quantified either by expert judgment or
estimation from data. In our case, the minimum in-
formation models are parameterized by the expected
values of functions hi : [0, 1]2 → R discussed above.
The simplest case is to consider a single function
defined on the copula parameters h(u, v) = uv.
Specifying the expected value of this is equivalent to
specifying the Spearman rank correlation coefficient
for the copula.(26) If we wanted to consider the
product-moment correlation, this would entail trans-
forming back to the original variables and using the
function:

h(u, v) = F−1
1 (u)F−1

2 (v),

where F1 and F2 are the marginal distributions of
the original variables. The use of experts to specify
correlations has been explored extensively in the
literature (see, for example, Clemen and Reilly(7)).
Hence, the methods we propose allow for common
correlation-based approaches to specifying depen-

dence, as well as providing for a wider range of
constraints if desired. Kurowicka et al.(27) explored
the use of Bayesian networks to structure the
specification of parameters for vine models.

We remark that the Spearman correlation can
take any value between −1 and +1, whereas the
product-moment correlation is typically restricted to
a narrower interval depending on the marginal distri-
butions involved. Bedford(28) discussed the possibili-
ties of using the minimum information approach to
explore the range of feasible values to aid experts in
choosing consistent parameter values.

The approach taken in this context is subjec-
tivist and follows a tradition in which expectation val-
ues are used to specify uncertain quantities.(25,29–31)

Within a conventional Bayesian approach, our work
may be thought of as a way to generate an informa-
tive prior distribution. We are not suggesting that the
approach be used as an alternative to Bayesian up-
dating. We remark that MCMC methods have been
used in conjunction with vines(16,32) in order to up-
date vines.

The elicitation of a joint probability distribu-
tion from experts or the approximation of a joint
distribution of multiple uncertain quantities are
among the key research areas in risk assessment,
and the distinction between sources of uncertainty
often comes into play in the elicitation of the un-
certain quantities.(33,34) Uncertainties are sometimes
distinguished as being either aleatory (stochastic)
or epistemic. The former arises because of natural,
unpredictable variation in the performance of the
system under study. In this case, the proposed
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method in this article can be used to approximate the
joint distribution based on observed sample data for
multiple uncertain quantities. Epistemic uncertainty
is due to a lack of knowledge about the behavior of
the system. This is conceptually resolvable.

The epistemic uncertainty can, in principle, be
eliminated with sufficient study. Borgonovo(35) and
Aven(33) reported that subjective probabilities are of-
ten used for representing this type of uncertainty, but
several other approaches can be used to represent
this uncertainty. Therefore, our method can be used
to elicit the prior distribution of unknown parame-
ters by building a subjective multivariate distribution
based on observable quantities. Although one may
use rank correlations that are not observable quan-
tities, within a minimum information framework it is
possible to specify the expected value of any partic-
ular function on the probability space. Rank correla-
tion falls into this framework as it is linearly related
to the expected value of a product of cdfs in the cop-
ula space.

If we wish to fit distributions on the basis of sam-
pling data (large quantities of which may be avail-
able, for example, in financial risk modeling prob-
lems), the data can be transformed to uniform after
estimation of the marginals. This makes it possible to
consider approximation, or encoding, of the data us-
ing a multivariate copula, and enables us to consider
ways of judging how well that approximation can be
made using given families of two-dimensional copu-
las. We give examples later in the article to illustrate
this approach.

3.2. The D1 AD2 Algorithm and Minimum
Information Copulas

Suppose there are k functions, h1, h2, . . . , hk :
[0, 1]2 → R, for which we specify the mean values
α1, . . . , αk that these functions simultaneously take.
Further suppose that hi , h j are linearly independent
for i �= j . We seek a copula that has these mean val-
ues, a problem that is usually either infeasible or un-
derdetermined. Assuming feasibility for the moment,
we ask that the copula be minimally informative (rel-
ative to the uniform distribution), which guarantees
a unique and reasonable solution. Define the kernel:

A(u, v) = exp(λ1h1(u, v) + . . . + λkhk(u, v)). (4)

According to the general theory of Borwein et al.(36)

and Nussbaum(37) (section 4), there is a unique
copula with minimum information satisfying the

constraints that the mean value of hi is αi (i =
1, . . . , k), and this has density

d(1)(u)d(2)(v)A(u, v)

for some functions d(1)(·), d(2)(·). The parameters
(λ1, . . . , λk) depend on (α1, . . . , αk) in a nonlin-
ear way. There are numerical procedures to de-
termine this relationship: given (λ1, . . . , λk) we can
numerically determine the functions d(1)(u) and
d(2)(v) and calculate the associated mean values for
h1, h2, . . . , hk. By numerically solving this function, as
discussed below, we can find the unique (λ1, . . . , λk)
for which the mean values of h1, h2, . . . , hk are
α1, . . . , αk. A summary of the theory based on
Bedford and Meeuwissen,(26) Nussbaum(37) (section
4), and Borwein et al.(36) is addressed in Ref. 38.

The general theory says that the set of all pos-
sible expectation vectors (α1, . . . , αk) that could be
taken by (h1, h2, . . . , hk) under some probability dis-
tribution is convex, and that for every (α1, . . . , αk) in
the interior of that convex set there is a density with
parameters (λ1, . . . , λk) for which (h1, h2, . . . , hk)
take these expectations.

This general approach to defining a copula was
used by Bedford and Meeuwissen(26) with a single
function h(u, v) = uv, which measures the Spear-
man rank correlation of the copula. Bedford(28) and
Lewandowski(39) have considered larger groups of
functions.

The discrete version of this problem can be
written in terms of matrices. In this case, the prob-
ability densities defined above are approximated
by probability mass functions, which are given
below. Suppose that (u, v) are discretized into n
points, respectively, as ui , and v j , i, j = 1, . . . , n.
Then, we write A= (ai j ), D1 = diag(d(1)

1 ,...,d(1)
n ),

D2 = diag(d(2)
1 ,...,d(2)

n ), where ai j = A(ui , v j ), d(1)
i =

d1(ui ), d(2)
j = d2(v j ). The assumption of uniform

marginals means that:∑
j

d(1)
i d(2)

j ai j = 1/n, and
∑

i

d(1)
i d(2)

j ai j = 1/n,

∀i, j = 1, . . . n.

Hence,

d(1)
i = 1

n
∑

j d(2)
j ai j

and d(2)
j = 1

n
∑

i d(1)
i ai j

.

Finding matrices D1 and D2 so that D1 AD2 is
a stochastic matrix has been long studied. Sinkhorn
and Knopp(40) gave a simple algorithm, and the iter-
ative proportional fitting (IPF) algorithm(41) has been
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much used. IPF uses an iterative procedure to de-
termine the entries of D1 and D2. The idea is sim-
ple: start with arbitrary positive initial matrices for
D1 and D2, then successively define new vectors by
iterating the maps:

d(1)
i 	→ 1

n
∑

j d(2)
j ai j

(i = 1, . . . , n),

d(2)
j 	→ 1

n
∑

i d(1)
i ai j

, ( j = 1, . . . , n).

This iteration converges geometrically to give us the
vectors required. Nussbaum(37) (section 4) consid-
ered the problem in greater generality, considering
continuous densities and functions, and showed that
the corresponding functional is a contraction map-
ping on a space of functions endowed with a Hilbert
projective metric. We make use of this fact when con-
sidering the quality of approximations made to cop-
ulas below.

To compare different discretizations (for differ-
ent n), we multiply each cell weight d(1)

i d(2)
j ai j by n2

as this quantity approximates the continuous copula
density with respect to the uniform distribution.

As discussed above, for a given set of functions
(h1, . . . , hk), the mapping from the set of vectors of
λs parameterizing the kernel Aonto the expectations
of the function (α1, . . . , αk) is found numerically, and
optimization techniques are used. We wish to deter-
mine the appropriate set of λs for given expectations
αi , where the expectations are calculated using the
discrete copula density D1 AD2. Define

Ll(λ1, . . . , λk) : =
n∑

i=1

n∑
j=1

d(1)(ui )d(2)(v j )A(ui , v j )

hl(ui , v j ) − αl , l = 1, 2, . . . , k. (5)

We seek the simultaneous roots of these functions
and so minimize

Lsum(λ1, . . . , λk) =
k∑

l=1

L2
l (λ1, . . . , λk).

The problem can be solved using one of Matlab’s
optimization procedures, FMINSEARCH, which im-
plements the Nelder-Mead simplex method.(42) This
is used in the examples in this article.

We remark that, given the choice of func-
tions (h1, . . . , hk), we have a parametric class of
distributions with parameters the expected values
(α1, . . . , αk) of (h1, . . . , hk). However, although we
have a parametric family, we do not have a closed-

form expression for that family. Although the ker-
nel in Equation (4) has a closed-form expression, the
functions d(1) and d(2) do not. They are, however,
uniquely defined and simple to compute. Pseudo-
code is given in the Supporting Information to the
article.

When fitting common parametric copulas such as
the t-copula using expert judgment it can be difficult
to relate the parameters of the copula to observable
quantities for which we can ask experts values. This
is not true using minimum information copulas, how-
ever, due to the flexibility of the functions hi (·). As
an example, we show how an expert could specify a
copula though defining two expected values.

3.3. Example

Suppose X and Y represent the failure times
of two components that are functionally identical
and physically colocated. There are many reasons
to believe that the distributions of X and Y will be
dependent, but modeling all the different sources of
dependency may be difficult to do explicitly. Assume
that the marginal distribution functions FX and FY

are exponential with mean time to failure 100, and
that we want to specify a copula for (X, Y).

We could ask an expert for information about
the likelihood of near-simultaneous failure. Suppose
that the expert assesses that the probability of both
systems failing within time 1 of each other is 0.1, and
that the probability both systems fail within time 10
of each other is 0.3. The expert information says that
if we consider the functions of the copula variables U
and V, defined by:

h1(u, v) =
{

1 if |F−1
X (u) − F−1

Y (v)| < 1
0 otherwise,

,

h2(u, v) =
{

1 if |F−1
X (u) − F−1

Y (v)| < 10
0 otherwise,

then the copula needs to be chosen so that the ex-
pected value of h1 is 0.1 and that of h2 is 0.3. Using
the methods discussed here we can construct the min-
imum information copula.

In general, the range of expectation values avail-
able to the expert will be constrained, in the first
instance by the choice of marginal distribution, and
then by the expected value chosen for the first func-
tion. This was discussed by Bedford(28) in the con-
text of a single copula. Two important aspects are
discussed there. First, we can choose functions for
evaluation that have a real “operational meaning”



Approximate Uncertainty Modeling with Vine Copulas 9

for the experts, which is better than asking them to
assess moments or abstract parameter values. Sec-
ond, as the range of possible values for the expecta-
tion of a function can be computed by evaluating the
function’s expected value as we change the Lagrange
multiplier values in Expression (4), we can offer guid-
ance to experts about what values may be chosen to
be consistent with those already chosen.

The resulting parameter values for this copula,
found using a discretized grid of 200 × 200 points, are
λ1 = −12.9100 and λ2 = −1.377. The left-hand side
of Fig. 3 shows the minimally informative copula for
these values.

On the right-hand side of Fig. 3, we have in-
cluded a contour plot of the copula density trans-
formed to allow for standard normal margins by
transforming the copula coordinates (u, v) to (z1, z2)
with zj = �−1(u j ) for j = 1, 2. This allows us to as-
sess which is the closest bivariate copula to the mini-
mum information copula fitted and so allows compar-
ison to common parametric copulas. In the case of a
Gaussian copula, the contour plots will be elliptical,
while shapes like pears give indication of tail depen-
dence induced, for example, by a Clayton or Gum-
bel copula. Bivariate t-copulas are identified through
diamond-shaped contours. In this case, we see an el-
liptical shape.

4. COPULA COMPACTNESS

The previous section showed how bivariate min-
imum information copulas can be constructed and
provides a useful family of bivariate copulas. How-
ever, the article aims to construct higher dimensional
copulas. An important technical step is taken in this
section where we consider the amount of variability
between different bivariate copulas arising in a multi-
variate copula. The key step is to show that the family
of bivariate (conditional) copula densities contained
in a given multivariate copula distribution forms a
compact set in the space of continuous functions on
[0, 1]2. We can then show that the same finite param-
eter family of copulas can be used to give a given
level of approximation to all conditional copulas
simultaneously.

It is important to define precisely the way in
which we approximate densities. We assume that
all densities are continuous and uniformly bounded
away from zero. Write C(Z) for the space of contin-
uous real-valued functions on a space Z, where we
shall always take Z = [0, 1]r for some r . A norm on
the space C(Z) is given by:

|| f1...r || = sup | f1...r (x1, . . . , xr )|, f1...r ∈ C(Z).

Since our functions are assumed continuous on Z,
and since Z is compact, the norm of any such func-
tion is finite. We shall be interested in the set of all
possible two-dimensional (conditional) copulas asso-
ciated to a given continuous density function f :

C( f ) = {ci j |i1...ir : 1 ≤ i, j, i1, . . . ,

ir ≤ n, i, j �= i1, . . . , ir },
where ci j |i1...ir is the copula of the conditional den-
sity of Xi , Xj given Xi1 , . . . , Xir . Thus, C(·) is an in-
finite set. It will be important to show that this set
is relatively compact in the space of all continuous
real-valued functions C([0, 1]2) because then we can
show that the copula densities can be uniformly ap-
proximated. We consider compactness relative to the
topology induced by the sup norm.

Compactness of a set K can be defined equiva-
lently through one of two properties, each of which
we shall use. (1) Any open cover of K has a finite
subcover. In other words, if K is a subset of an infi-
nite union of open sets, then it is in fact also a subset
of a finite union of those open sets. (2) Any sequence
of points (which in our case are functions) of K has a
convergent subsequence.

The Arzela-Ascoli Theorem gives another way
of checking compactness when dealing with func-
tion spaces. It says that a subset K ⊂ C([0, 1]2)
is relatively compact if the functions of K are
equicontinuous and point-wise bounded. We re-
call that a set of functions is equicontinuous if
for all ε > 0 and (u, v) there is a δ > 0 such that
if the Euclidean distance |(u, v) − (u′, v′)| < δ then
|g(u, v) − g(u′, v′)| < ε∀g ∈ K, and that K is point-
wise bounded if sup{||g|| : g ∈ K} < ∞.

As a first step to showing the relative compact-
ness of C( f ), we first consider two other spaces: the
set of conditional marginal densities:

M( f )={ fi |i1...ir : 1≤ i, i1, . . . , ir ≤ n, i �= i1, . . . , ir },

where fi |i1...ir (xi | xi1 , . . . , xir ) : [0, 1] → R are the
conditional densities of Xi given Xi1 , . . . , Xir , one
function for each combination of conditioning val-
ues xi1 , . . . , xir , and the set of conditional bivariate
densities:

B( f ) = { fi j |i1...ir : 1 ≤ i, j, i1, . . . , ir ≤ n, i,

j �= i1, . . . , ir },
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Fig. 3. A plot of the minimum information copula and transformed contour plot for X, Y.

where fi j |i1...ir is the conditional density of Xi , Xj

given Xi1 , . . . , Xir . Thus, M( f ),B( f ) are also infi-
nite sets. As we have defined it, a member of M( f )
is a function of one variable—in other words, all
the different marginals that we get for different con-
ditions are individually members of M( f ). Simi-
larly for B( f ). Hence, M( f ) ⊂ C([0, 1]) and B( f ) ⊂
C([0, 1]2).

THEOREM 2. The sets M( f ) ⊂ C([0, 1]) and
B( f ) ⊂ C([0, 1]2) are relatively compact.

Proof. See Appendix A. �

THEOREM 3. The set C( f ) ⊂ C([0, 1]2) is relatively
compact.

Proof. See Appendix A. �

Since all the functions in C( f ) are positive and
uniformly bounded away from 0 it follows that:

COROLLARY 1. The set LNC( f ) = {ln(g) : g ∈
C( f )} ⊂ C([0, 1]2) is relatively compact.

4.1. Linear Bases and Approximate Copulas

Consider the ordered set of sequences
h0, h1, h2, . . . ⊂ C([0, 1]2). We would like any
finite sequence h0, h1, . . . , hn to be linearly indepen-
dent modulo the constants. The set C([0, 1]2) can be
considered a vector space. Define Vn to be the vector
space generated by the first n terms in the sequence.
We would also like to show that ∪nVn is dense in
C([0, 1]2).

A countable basis h0, h1, . . . of C([0, 1]2) over the
field R is a countable subset h0, h1, . . . ⊂ C([0, 1]2)
with the property that every element v ∈ C([0, 1]2)
can be written as an infinite series v = ∑∞

i=0 λi hi , in
exactly one way, where λi ∈ R.

Consider the countable basis h0, h1, . . .. Since
v = 0 can be written in exactly one way, then
this must be with λi = 0 for all i . This means
that any finite collection of basis elements is lin-
early independent modulo the constants. If we set
h0 = 1, then, for any n, h1, . . . , hn are linearly in-
dependent. It is also clear that ∪nVn is dense in
C([0, 1]2). There are lots of possible bases, for exam-
ple, u, v, uv, u2, v2, u2v, uv2, . . . .

Given an ordered basis h1, h2, . . . ∈ C([0, 1]2)
and a required degree of approximation ε > 0 in the
sup metric, we can consider the collection of open
sets:

Uk,ε = {g ∈ C([0, 1]2) : inf ||g −
k∑

i=1

λi hi || < ε},

where the infimum in the above definition is to be
taken over all possible values of the λi . Now, Uk,ε is
clearly open and furthermore:

Uk,ε ⊂ Uk+1,ε,

∞⋃
k=1

Uk,ε = C([0, 1]2).

So the Uk,ε form an open cover of LNC( f ) and
hence by definition of compactness there is a k such
that Uk,ε covers LNC( f ). We can state this as a
result.
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THEOREM 4. Given ε > 0, there is a k such that any
member of LNC( f ) can be approximated to within
error ε > 0 by a linear combination of h1, h2, . . . , hk.

The same result holds for C( f ) (though not nec-
essarily with the same k). We call the linear combi-
nation

∑k
i=1 λi hi an approximate copula because it is

not guaranteed to be a copula itself. The next section
shows that it can be adjusted slightly to obtain a cop-
ula that provides good approximation.

We remark that though we have been looking
at approximation in the sense of the sup norm, one
could easily look at higher order approximation. For
example, if we assume that the density f1...n is con-
tinuously differentiable, then all the derivatives are
continuous functions and the same arguments as used
above show that they form an equicontinuous and
point-wise bounded family. Following through we
find that the copulas generated from f1...n are also
continuously differentiable. By using a slightly dif-
ferent norm on the continuously differentiable func-
tions C1([0, 1]2) ⊂ C([0, 1]2),

||g||1 = ||g|| + || d
du

g|| + || d
dv

g||,

we can guarantee that a similar approximation result
to the above holds with point-wise approximation of
the derivatives.

4.2. Ensuring that Approximating Densities are
Copula Densities

Since the approximation we make of a copula
density is not guaranteed to be a copula density it-
self, we need to transform it to obtain a copula. This
is done by weighting the density as described in Sec-
tion 3.2. If we have a continuous positive real-valued
function A(u, v) on [0, 1]2, then there are continu-
ous positive functions d(1)(u) and d(2)(v) such that
d(1)(u)d(2)(v)A(u, v) is a copula density, that is, it
has uniform marginals. We call this density the C-
Projection of A and denote it C(A). It will be conve-
nient to denote by N(h) the normalization of a non-
negative function h with finite integral.

We can control the error made when approxi-
mating a copula by another function.

Lemma 1. Let g be a nonnegative continuous copula
density. Given ε > 0 there is a δ such that if ||g − f || <

δ then ||g − C( f )|| < ε.

Proof. See Appendix A. �

The reweighting functions have the same dif-
ferentiability properties as the function f being
reweighted. This can be seen from the integral equa-
tion that they satisfy:

d(1)(u) = 1∫
d(2)(v) f (u, v)dv

and

d(2)(v) = 1∫
d(1)(u) f (u, v)du

.

We use Equation (2) to see that good approxi-
mation of each conditional copula gives a good ap-
proximation of the multivariate density.

5. CONSTRUCTING APPROXIMATIONS
USING MINIMALLY INFORMATIVE
DISTRIBUTIONS

The above discussion has shown that we can ap-
proximate all conditional copulas using linear com-
binations of basis functions. We did not address
the question of how you choose the appropriate
parameter values, and finding the parameters that
would minimize the sup norm for a given copula
is not an appealing procedure. An alternative that
lies very close to the approach described above is
to use the minimum information criterion. Given
{1, h1, . . . , hk} : [0, 1]2 → R we seek values λ1, . . . , λk

so that exp(
∑k

1 λi hi ) is close to the copula density we
are approximating.

In the minimum information framework, we do
this by fitting the moments of hi . So if

∫ ∫
hi gdudv =

αi then we search for the copula density with min-
imum information (with respect to the independent
distribution) that has those moments. This copula
density is unique and has the form:

d1(u)d2(v) exp(
∑
i=1

= 1kλi hi (u, v)).

When we use a vine structure to model a mul-
tivariate distribution, the vine defines a decomposi-
tion of the multivariate distribution into conditional
copulas, associated to the conditioned and condition-
ing sets of the vine. For example, if {i, j} is the con-
ditioned set and De is the conditioning set in one
part of a vine, then the family of conditional copu-
las for xi , xj given De has to be specified. Using the
minimum information approach means that we spec-
ify mean values for the functions hr given the vari-
ables in De, that is, we specify the conditional means
αm(i j | De).
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A multivariate distribution can be approximated
as follows. Specify a basis family B(k), specify a vine
structure and for each part of vine, specify either ex-
pected values α1, . . . , αk for h1, . . . , hk on each pair-
wise copula or functions αm( j i | De) for the expected
values as functions of the conditioning variables, for
m = 1, . . . , k.

We remark that, since under our assumptions
there is a uniform lower bound on the density of
the copulas used in the representation, the uniform
point-wise approximation that can be achieved im-
plies information convergence in two ways. By mak-
ing the copula approximations close enough, we
can ensure that (i) the information of the over-
all approximate multivariate copula (with respect
to the independent copula) is close to that of the
original multivariate copula, and (ii) the informa-
tion of our approximate multivariate copula rela-
tive to the original multivariate copula is close to
zero.

We illustrate the procedure by applying it to two
financial data sets.

5.1. Example: Stock Market Time Series

We use the same data set as considered by Aas
et al.(11) We have four time series of daily data: the
Norwegian stock index (TOTX), the MSCI world
stock index, the Norwegian bond index (BRIX), and
the SSBWG hedged bond index. All are for the pe-
riod January 1, 1999 to July 8, 2003. We denote these
four variables T, B, M, and S.

We generate a vine approximation fitted to
this data set using minimum information distribu-
tions. We adopt a vine structure similar to that in
Fig. 1 with variables T, B, M, S being 1, 2, 3, 4, re-
spectively. We can find the corresponding functions
of the copula variables X, Y, Z, and W associated
with T, M, B, S. These are defined by, for example,
hi (X, Y) = h

′
i (F−1

1 (T), F−1
2 (M)) and have the same

specified expectation, in this case E[h
′
i (T, M)] =

E[hi (X, Y)]. The minimum information copulas cal-
culated are derived based on the copula variables
X, Y, Z, W.

Initially, we construct minimally informative
copulas between each set of two adjacent vari-
ables in the first tree, T1. We must decide on
which bases to take and how many discretization
points to use in each case. We illustrate the recom-
mended procedure for the first copula in T1, between
T, M.

Fig. 4. The log-likelihood of the minimally informative copula cal-
culated based on different functions for the simple (blue stars) and
stepwise (red crosses) methods (colors visible in on-line version).

5.1.1. Step-wise Inclusion of Basis Functions

We wish to know which basis functions to in-
clude in our copula. We could choose basis func-
tions, starting with simple polynomials and moving
to more complex ones, and include them until we
are satisfied with our approximation. For example,
if we included the following basis functions in or-
der TM, TM2, T2 M, TM3, T3 M, T2 M3, then the log-
likelihood for the copula changes as in the blue stars
in Fig. 4.

There is a jump in the log-likelihood as we
add the sixth basis function, T2 M3. This could im-
ply that we are not adding the basis functions in
an optimal manner. Instead, at each stage, we pro-
pose to assess the log-likelihood of adding each ad-
ditional basis function. We include the function that
produces the largest increase in the log-likelihood.
Our method is similar to a step-wise regression. Do-
ing so for the initial copula yields the basis func-
tions TM2, T2 M, T2 M2, TM, TM4, T2 M4. The log-
likelihood at each stage is given in the red crosses in
Fig. 4.

We see that there is no longer a jump in the
log-likelihood when adding the sixth basis function.
The log-likelihood also increases more quickly and
reaches its plateau value of around 60 using fewer
basis functions. We use this step-wise technique to
choose all of the remaining basis functions in the ex-
ample. The use of log-likelihood in this way is not
inconsistent with minimum information modeling.
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Fig. 5. A plot of the number of iterations against convergence
level for 20, 50, 100, and 200 discretization points.

Jaynes(25) uses the parameter maximum likelihood
estimates associated with the form of the minimum
information distribution to justify the connection in
the constraint rule of expectations and frequencies.

5.1.2. Returning to the Example

We include the six basis functions given
above, that is, h′

1(T, M) = TM2, h′
2(T, M) = T2M,

h
′
3(T, M) = T2 M2, h′

4(T, M) = TM, h′
5(T, M) =

TM4, and h′
6(T, M) = T2 M4. We shall fix the values

of the expectations of these functions by using the
empirical data. For example, α1 = 1

1,094

∑1,094
i=1 ti m2

i ,
as there are 1,094 observations for each variable.

The minimum information copula CTM with re-
spect to the uniform distribution given the six con-
straints above can be constructed. To do so, we need
to decide on the number of discretization points (or
grid size). A larger grid size will provide a better ap-
proximation to the continuous copula but at the cost
of more computation time. Similarly, the more itera-
tions of the D1 AD2 and optimization algorithms that
are run, the more accurate the approximation will be-
come. This is again at the expense of speed. Com-
ments on the D1 AD2 algorithm are given in Section
3.2. In terms of the optimization, we can specify how
accurate we wish our approximation to be and then
judge the effect on the number of iterations required
for convergence. The number of iterations needed
will also depend on the grid size.

Fig. 5 gives a plot comparing the number of iter-
ations required for convergence of FMINSEARCH

Table I. Constraints and Parameter Values for CMB and CBS

h
′
i (M, B) αi λi h

′
i (B, S) αi λi

MB 0.2905 24.970 BS 0.2375 18.818
M2 B 0.2066 −22.233 B2 S 0.1546 −26.914
M3 B 0.1611 20.308 B3 S 0.1142 7.929
M2 B3 0.1223 32.006 B3 S2 0.0730 −13.949
M2 B2 0.1527 −39.639 BS2 0.1537 −24.939
MB5 0.1142 −3.910 B2 S2 0.0992 36.763

given a certain error of Lsum and grid size. The errors
considered are in the range 1 × 10−1 to 1 × 10−24.
These are then transformed by taking − log(.) and
this is the quantity plotted.

We see that the larger the number of grid points
used, the larger the number of iterations needed for
convergence. This is true over all error levels. The
grid sizes all follow the same pattern, with large in-
creases in the number of iterations needed for im-
proved accuracy initially and smaller increases when
the error is smaller.

Throughout the rest of the example, we choose
a grid size of 200 × 200 and shall work to an error
of 1 × 10−12. This corresponds to a transformed error
in Fig. 5 of 27.63. This represents a suitable balance
between providing an accurate approximation to the
minimally informative copula and keeping computa-
tional effort to a reasonable level.

We can find the minimally informative copula
CTM. Pseudo-code for doing this is given in the Sup-
porting Information. This gives parameter values
of λ1 = 17.0262, λ2 = −17.6367, λ3 = −1.1117, λ4 =
4.7746, λ5 = −26.8054, λ6 = 19.9014. The copula is
plotted on the left-hand side of Fig. 6 and the con-
tour plot of the copula density transformed to allow
for standard normal margins is given on the right-
hand side. The log-likelihood for the copula is lTM =
58.1256.

The remaining copulas in T1 are CMB, CBS. The
constraint functions, constraints, and Lagrange mul-
tipliers used for this copula are given in Table I. The
log-likelihoods are lMB = 155.18 and lBS = 19.23, re-
spectively.

The conditional copulas in the second tree, T2,
can be approximated using the minimum information
approach. Initially, we construct the conditional min-
imum information copula between T | M and B | M.
Aas et al.(11) considered the dependencies between T
and B given M to be constant over M ∈ [0, 1].
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Fig. 6. The minimally informative copula between T and M and transformed contour plot, Norwegian stock data.

Instead, we divide the support of M into some
arbitrary subintervals or bins and then construct the
conditional copula within each bin. We will investi-
gate the effect of this in the following example. We
find bases in the same way as for the marginal copu-
las and fit the copulas to the expectations calculated
for these. We use four bins so that the first copula
is for T, B | M ∈ (0, 0.25). The bases for this copula
are h

′
1(T, B | M ∈ (0, 0.25)) = T2 B, h

′
2(T, B | M ∈

(0, 0.25)) = T3 B, h
′
3(T, B | M ∈ (0, 0.25)) = T4 B,

h
′
4(T, B | M ∈ (0, 0.25)) = T5 B, h

′
5(T, B | M ∈

(0, 0.25)) = TB5, h
′
6(T, B | M ∈ (0, 0.25)) = T2 B4.

The expectations given these basis functions that
will constrain the minimum information copula are
α1 = 0.1246, α2 = 0.0983, α3 = 0.0813, α4 = 0.0693,

α5 = 0.0239, and α6 = 0.0220.
We follow this process again for the remain-

ing bins. Table II shows the constraints and corre-
sponding Lagrange multipliers required to build the
conditional minimum information copula between
T | M ∈ (0, 1) and B | M ∈ (0, 1). The overall log-
likelihood of the conditional minimum information
copula between T and B given M ∈ (0, 1) is 29.242.

Similarly, we can construct the minimum infor-
mation copula between M | B and S | B based on
four bins and six constraints. The resulting minimum
information copula has a log-likelihood of 16.3901.

The conditionally minimally informative copula
in the third tree, T3, can be obtained. We first divide
each of the conditioning variables’ supports into four
bins as in T2. Then, the minimum information copulas
for T | (M, B) and S | (M, B) are calculated on each

combination of bins for M, B. In T3, there are 16 bins
altogether. Details are omitted. The log-likelihood of
T3 is 110.69.

The log-likelihood of the overall vine, obtained
by summing the log-likelihoods of each of the com-
ponent copulas, is 388.859. This is larger than that
using the vine construction of bivariate t-copulas and
constant conditional dependence of Aas et al.(11) of
291.801. Suppose, rather than choosing our bases
using the step-wise method, we had calculated all
of the copulas using the same six basis functions.
Further suppose that those chosen were the simple
polynomials, XY, XY2, X2Y, XY3, X3Y, X2Y3. Then
the overall log-likelihood is 370.147. This is lower
than when using our approach but better than the
t-copula of Aas et al. However, the advantage of the
step-wise method can be seen if we take fewer basis
functions for each copula. If we take 5, we obtain a
log-likelihood of 377.552, which is still larger than
that obtained using 6 without the step-wise approach.

5.2. Example: Comparison with the
Gaussian Copula

We consider five years of exchange rates against
the U.S. dollar for four different currencies: the
Great British Pound, the Euro, the Japanese Yen,
and the South Korean Won. Before fitting the copula
models to the data, we first remove any trends, sea-
sonality, etc., from the data by fitting ARMA(p, q) −
GARCH(r, s) models to each of the individual
time series. The analysis is then conducted on the
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Table II. Bases, Parameter Values, and Log-Likelihoods for CTB|M

Interval Bases Parameter Values

0 < M < 0.25 (T2 B, T3 B, T4 B, T5 B, TB5, T2 B4) (26.0,−141.5,231.8,−120.0,12.4,10.6)
0.25 < M < 0.5 (TB, TB2, T3 B, T4 B, T2 B, T2 B3) (−32.4,16.0,−188.2,112.2,103.3,−9.2)
0.5 < M < 0.75 (T2 B, TB2, T3 B, T2 B3, TB, TB5) (13.4,33.6,12.1,−22.2,−35.0,−4.2)
0.75 < M < 1 (TB2, TB3, TB4, TB, T5 B, TB2) (−22.5,38.5,−23.6,1.7,−3.6,6.7)

empirical cdf values of the residuals from the time-
series models. For more details on this, see Ref. 11.

In order to fit a four-dimensional D-vine to the
data, we need to identify a structure for the vine.
Using the methods in this article, we know that we
can fit any vine structure arbitrarily well using bi-
variate minimum information copulas. However, we
select the structure using the method given in the
VineCopula package in R. This identifies the struc-
ture of the vine sequentially, modeling the strongest
correlations in the first tree of the vine, assuming that
the bivariate copulas do not change with the condi-
tioning value. Further information is given in Ref. 19.

The resulting structure of the D-vine gives
Euros, Great British Pounds, South Korean Won,
and Japanese Yen, respectively, in the first tree. We
relabel these currencies 1, 2, 3, and 4.

The Gaussian copula has been criticized for its
widespread use in the financial sector in spite of evi-
dence that the assumptions underlying modeling and
necessary for use were not being met.(43) One such
assumption of the Gaussian copula is that the condi-
tional dependencies between variables in the model
are constant. We apply the Gaussian copula, as well
as a minimum information vine structure, to the ex-
change rate data to investigate the suitability of this
assumption.

The four-dimensional Gaussian copula for the
currencies takes the form:

C�(x1, x2, x3, x4) = ��

(
�−1(F1(x1)),�−1(F2(x2)),

�−1(F3(x3)),�−1(F4(x4))
)
,

where ��(·, ·, ·, ·) is the cdf of the 4-variate standard
Gaussian distribution with mean zero and variance
matrix �, �−1(·) represents the inverse cdf of the uni-
variate standard Gaussian distribution, and Fi (·) rep-
resents the cdf for currency i = 1, 2, 3, 4.

We first fit a Gaussian copula to the residual se-
ries. The fitted values for the correlations are:

ρ12 = 0.61, ρ13 = 0.31, ρ14 = −0.058, ρ23 = 0.35,

ρ24 = 0.027, ρ34 = −0.081. (6)

Table III. The Constraints and Lagrange Multipliers for the
Three Marginal Copulas in the First Tree of the Vine

Copula
Variables (α1, α2, α3, α4) (λ1, λ2, λ3, λ4)

u1, u2 (0.301,0.218,0.219,0.166) (33.63,−20.15,−33.90,30.17)
u2, u3 (0.280,0.196,0.197,0.142) (26.22,−21.69,−22.49,22.21)
u3, u4 (0.244,0.162,0.159,0.105) (21.36,−25.22,−18.89,21.88)

We fit a minimum information vine and compare
the two approaches by simulating from the two
distributions. We fit a D-vine in four dimensions.
This requires a minimum information copula spec-
ified between exchange rates 1 and 2, one between
2 and 3, and another between rates 3 and 4, a
conditional copula between rates 1 and 3 given
exchange rate 2 and between rates 2 and 4 given
exchange rate 3, and a conditional copula between
rates 1 and 4 given exchange rates 2 and 3. We
specify four basis functions for each copula and
use the same basis functions each time, namely,
h1(ui , u j ) = ui u j , h2(ui , u j ) = u2

i u j , h3(ui , u j ) =
ui u2

j , h4(ui , u j ) = u2
i u2

j for i = 1, 2, 3, j �= i . We
could have used the method from the previous
example to choose the optimal basis functions.

Table III gives a summary of the constraints and
resulting parameter values for the marginal copu-
las. The copulas are given in the top three plots of
Fig. 7 and the contour plot of the copula density
transformed to allow for standard normal margins
are given, respectively, at the bottom of the figure.

We wish to split the support of u2 into bins and
define the conditional copula for u1 and u3 based on
these bins. After plotting the conditional correlations
for several different numbers of bins, we settle on
four bins.

The remaining copula is that between u1 and u4.
To construct this, we must create bins of combina-
tions of u2 and u3. We separate u2 and u3 into four
bins each, meaning that there are 16 combinations of
these bins. We can calculate the correlations between
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Fig. 7. The bivariate minimum information copulas (top) and transformed contour plots (bottom) for the exchange rates of currencies 1
and 2, 2 and 3, and 3 and 4, respectively.

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9

0.1
0.2

0.3
0.4

0.5
0.6

0.7
0.8

0.9
−0. 4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Fig. 8. The changes in conditional correlation between exchange rates 1 and 4 given different bins for exchange rates 2 and 3.

u1 and u4 for each of these bins and plot them as a
surface, as in Fig. 8.

The empirical conditional expectation data are
not inconsistent with the conditional correlation be-
ing a smooth function. The use of a smooth curve

to represent the conditional correlation is a possible
way of compressing the data more compactly.

The fitted Lagrange multipliers for the two con-
ditional copulas in tree 2, given the binning of u2 and
u3, respectively, are given in Table IV.
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Table IV. The Lagrange Multipliers for the Two Conditional Copulas in the Second Tree of the Vine

Copula Variables Bin (α1, α2, α3, α4) (λ1, λ2, λ3, λ4)

u1, u3 u2 ∈(0,0.25) (0.119,0.071,0.065,0.041) (48.03,−48.67,−51.07,53.69)
u1, u3 u2 ∈(0.25,0.5) (0.188, 0.116, 0.100, 0.063) (24.57,−21.39,−27.69,25.28)
u1, u3 u2 ∈(0.5,0.75) (0.309, 0.215, 0.207, 0.145) (12.98,−10.54,−9.12,9.71)
u1, u3 u2 ∈(0.75,1) (0.488, 0.372, 0.400, 0.307) (81.61,−76.40,−72.33,69.16)
u2, u4 u3 ∈(0,0.25) (0.205, 0.146, 0.123, 0.089) (49.86,−50.31,−51.80,52.59)
u2, u4 u3 ∈(0.25,0.5) (0.216, 0.140, 0.126, 0.083) (37.30,−35.93,−40.25,39.04)
u2, u4 u3 ∈(0.5,0.75) (0.282, 0.185, 0.197, 0.131) (59.97,−61.00,−57.31,59.77)
u2, u4 u3 ∈(0.75,1) (0.307, 0.204, 0.233, 0.157) (63.21,−64.21,−58.57,60.01)

We fit the minimum information copulas for the
different bins defined in the third tree, between u1

and u4 given u2 and u3. The resulting Lagrange mul-
tipliers are found as previously. Details are omitted.
This fully defines the vine.

5.2.1. Comparison of Models Using Simulation

To compare how well the two methods consid-
ered recover the structures within the data, we simu-
late from each model.

In the case of the minimum information vine,
sampling from the constructed distribution can
be carried out using the cumulative approach(14)

(also known as conditional sampling and the in-
verse of the Rosenblatt transform). The sampling
strategy is as follows: sample four independent
variables distributed uniformly on interval [0, 1],
denoted by W1, W2, W3, W4, and calculate values
of correlated variables X1, X2, X3, X4 by taking
x1 = w1, x2 = F−1(w2 | x1), x3 = F−1(w3 | x1, x2),
and x4 = F−1(w4 | x1, x2, x3), where xi and wi are
realization values of Xi and Wi , respectively. Pseudo-
code for the sampling, including the binning, is given
in the Supporting Information.

Initially, we consider the unconditional cor-
relations in the data that were given in Equation
(6). Taking 1,000 samples from the Gaussian
copula results in estimates of these correlations
being ρ12 = 0.619, ρ13 = 0.341, ρ14 = −0.092, ρ23 =
0.368, ρ24 = 0.010, and ρ34 = −0.090. A simulation
of 1,000 samples from the minimum informa-
tion vine gives estimates of ρ12 = 0.611, ρ13 =
0.364, ρ14 = −0.161, ρ23 = 0.446, ρ24 = −0.098, and
ρ34 = −0.118.

Both methods reproduce the overall correla-
tion structure fairly well. However, we saw from
Fig. 8 that the conditional correlations between the
exchange rates were nonconstant. To see whether
our two models are capturing these dependencies, we
investigate using cobweb plots.

Initially, we consider the data. On the left-hand
side of Fig. 9 we give a cobweb plot of the four uni-
form variables for all of the observed time points.
We see the overall shape of the distribution. On
the right-hand side of the figure, we see the con-
ditional relationship between u1, u4 conditional on
u2 ∈ [0, 0.25), u3 ∈ [0, 0.25). This relationship is fairly
strong. For more information on cobweb plots, see
Ref. 44.

Fig. 10 gives the same two cobweb plots for the
Gaussian copula, in the top row, and the minimum
information vine, in the bottom row. Both methods
are capturing the overall structure of the distribu-
tion well. However, when we condition on u2, u3, the
Gaussian copula fails to capture the conditional re-
lationship between u1, u4. The minimum information
vine reproduces a conditional structure that is much
closer to that found in the data.

5.3. Simulation Study: Tail Dependence

Our general results show that vines formed from
minimum information copulas can represent any
dependence structure. A much investigated case of
dependence in financial and extreme weather risk
modeling is tail dependence. In this section, we study
tail behavior of the minimum information copula for
data simulated from parametric copulas with various
tail dependency, including heavy, symmetric, and
nonsymmetric tails. Of course, in the real world we
compare models to data and not models to models.
Nevertheless, the simulation study may provide
additional insight. Initially, we utilize scatter plots
and Kendall process plots (K-plots),(45) which detect
bivariate dependence using the ranks of the data.

A simulation study is carried out. We initially
investigate data with nonsymmetric tail behavior.
It is known that the Clayton and Gumbel cop-
ulas have asymmetric tails. The first column of
Fig. 11 shows a scatter plot of a random sam-
ple taken from a bivariate Clayton copula with
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Fig. 9. Cobweb plots for all of the data values (left-hand side) and for u1, u4 conditional on u2 ∈ [0.75, 1), u3 ∈ [0, 0.25) (right-hand side).

Fig. 10. Cobweb plots based on simulated data for the Gaussian copula (top row) and for the minimum information vine (bottom row).

parameter θ = 1.3979, and the corresponding K-
plot. The second column shows the same plots for
a minimum information copula fitted to the sam-
ple drawn from the Clayton copula. The basis func-
tions used are U1U2, U2

1 U2, U3
1 U2, U1U2

2 , U4
1 U2 and

the resulting Lagrange multipliers are 9.02, 75.72,

−63.81,−20.98, 7.54.
From the scatter plots, it appears that the

minimum information copula is capturing the gen-
eral behavior of the Clayton copula well. The upper
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Fig. 11. Scatter- and K-plots of the Clayton copula and the fitted minimum information copula.

tail dependency behavior can be observed from the
K-plots and in this case the Clayton and minimum
information copula give similar plots. We have
repeated the exercise for the Gumbel and t-copulas.
The results are given in Appendix B. In all cases, the
minimum information copula captures the data from
the parametric copula well using the scatter plot and
K-plot.

We extend our investigation to test the ability
of minimum information bivariate copulas to capture
the upper tail behavior found in t, Gumbel, and Tawn
copulas. We will investigate the upper tail depen-
dence coefficient. If our minimum information cop-
ula can successfully model the behavior in the upper-
right corner of the unit square, then it will also be
able to model the behavior in the lower left-hand cor-
ner.

We simulate pairs of 10,000 realizations from
each of the parametric copulas identified above for
each of 10 sets of parameter values. If θ is the
first parameter of each copula and γ is the sec-
ond parameter, then the values used for the t-copula
are θ = (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9) (all
with γ = 4 degrees of freedom) and for the Gum-
bel and Tawn copulas θ = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10),
with γ = 1 always for the Tawn copula. The min-
imum information copula is fit to each of these
pairs of observations using six polynomial basis func-
tions of the type given in the examples in this
article.

We use a nonparametric estimator(46,47) of the
upper tail coefficient for both the simulated data
and the minimum information copula. If pairs of
simulated values are (ui , vi ) then this is:

Fig. 12. Comparison of upper tail dependence coefficient for simu-
lated values from the t (green), Gumbel (purple), and Tawn (gray)
copulas and the minimum information copula. The circles repre-
sent the parametric copula and the crosses the minimum informa-
tion copula in each case.

λ̂U = 2 − 2 exp

[
1
n

n∑
i=1

log

{√
log

(
1
ui

)
log

(
1
vi

)
/

log
(

1
max(ui , vi )2

)}]
.

We display the results of the simulation in Fig.
12. The different colors represent the simulated
data from the different parametric families. The cir-
cles denote the upper tail coefficient for the simu-
lated values and the crosses represent the coefficient
for the minimum information copula fitted to the
simulated data. In all cases, the estimated values for
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the simulated data are close to the theoretical values
for the parametric copula. On the x-axis, the parame-
ter values from each of the copulas have been scaled
to be a percentage of their maximum value in the sim-
ulation.

We see that the minimum information copula
can model from weak to strong upper tail depen-
dence in all of the parametric copulas chosen. This
suggests it is suitable for modeling situations that dis-
play tail dependence. Given the basis functions used,
however, the minimum information copula tends to
underestimate the tail dependence coefficient slightly
for all copulas over the ranges of parameter values.
This could be improved by choosing basis functions
that are concentrated in the top right-hand corner of
the unit square. Future work will address this.

We consider tail-dependence in the multivariate
case. To do so, we simulate tail dependent data in
three dimensions (u1, u2, u3), fit a D-vine to the data
with bivariate minimum information copulas, and in-
vestigate its ability to capture the conditional depen-
dence between (u1, u3) given u2. We do not need to
consider Gaussian or t-copulas as they are closed un-
der bivariate marginalization. We consider the Gum-
bel copula. The empirical upper tail coefficients from
varying parameter values and the estimated upper
tail coefficients from the minimum information vine
are given in Fig. 13, In each case 10,000 simulations
were used.

We see a similar pattern to Fig. 12, with the min-
imum information approach able to capture high tail
dependence between the variables but having a small
downward bias in its estimates.

5.4. Discussion

5.4.1. Sources of Error

The method we have used has the theoretical
property that it can be used to build arbitrarily good
approximations to the original distribution. There
are several sources of potential error in this approx-
imation that we briefly discuss. One is the choice
of base where it is convenient to take a low num-
ber of functions hi . Using three terms (u.v, u2v, uv2)
rather than one (uv), we are able to generate asym-
metric copulas, which has value in modeling general
data sets. The use of large numbers of functions does
give more accuracy, at the cost of extra computation
at the construction stage but at no extra cost at the
sampling stage. The second general source of error
arises from discretization. Discretization occurs dur-

ing the construction stage when we have to create
data bins with which to calculate conditional expec-
tations from the original data. There is a tradeoff,
as with higher numbers of bins we have fewer data
and noisier estimates of the conditional expectations.
In our sampling, we simply used conditional expec-
tations based on the bins, although we could have
used them to estimate continuous functions. If we
had used a joint normal distribution, then our implicit
assumption would have been that these conditional
expectations were all constant. We expect the error
arising from this discretization to be the main source
of errors overall. A final source of discretization error
arises in the level of discretization in the D1 AD2 algo-
rithm. The algorithm works more slowly when using
more points, but gives more accuracy. This becomes
more important when the distribution being modeled
is far away from uniform.

5.4.2. Vine Structure

We remark on the importance of vine structure.
Any regular vine structure can be used to approxi-
mate any distribution. Many vine structures are avail-
able (see, for example, Kurowica and Cooke(14)), and
even with a given vine structure we could permute
the variables so that different conditional copulas
were being considered in the construction. In view
of the above discussion about error, we believe that
it makes sense to consider different vine structures,
and that a convenient measure of usefulness is the
degree of complexity of the conditional expectation
functions, which would ideally be constant or simple
linear functions.

6. CONCLUSION

We present a novel method to approximate a
multivariate distribution by any vine structure to
any degree of approximation. We have operational-
ized the theoretical approximation results using min-
imum information copulas that can be specified to
any required degree of precision based on the data
available. We have shown rigorously that good ap-
proximation “locally” guarantees good approxima-
tion globally. This approximation allows the use of a
fixed finite-dimensional family of copulas to be used
in a vine construction, with the promise of a uniform
level of approximation. That is, we can use the same
bases to approximate each copula in each tree of the
corresponding vine.
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Fig. 13. Comparison of upper tail dependence coefficient for simulated values from Gumbel (green) copula and the minimum information
D-vine. The circles represent the parametric copula and the crosses the minimum information vine in each case.

While the choice of vine structure imposes no re-
strictions on the underlying joint probability distri-
bution it represents, the fact that we only use finite
parameter families of copulas means that not every
distribution is well represented, and that the choice
of vine structure could be significant in closely match-
ing a distribution while still using a simple family of
copulas.

Any functions can be used to create the mini-
mum information copulas used here, and in some ap-
plications it may be natural to use functions that are
themselves computed in computer codes. Because of
the frequent evaluation calls needed to determine the
min inf distribution, it then makes sense to use em-
ulators or Kriging models as a way to speed up the
computations.

Finally, the methods used here generalize well-
known methods such as Normal to Anything, used
in simulation and decision analysis. This general-
ization provides us two main advantages: natural
ways to generate asymmetric copulas, and simple
ways to specify nonconstant conditional correlations
(or other moments). Our methods provide a flexi-
ble methodology that may be adapted (through the
choice of functions hi and the choices about con-
ditional expectations) to produce models taking ac-
count of naturally available information at an appro-
priate level of complexity for the modeling problem.
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APPENDIX A

Proof of Theorem 2

We have assumed that our multivariate density
f1...n is a continuous function defined on [0, 1]n. Since
all marginal densities fi1...ir are obtained by integrat-
ing out variables from f1...n, it is clear that:

| fi1...ir (xi1 , . . . , xir )| ≤ sup | f1...n(x1, . . . , xn)|,
where the sup is taken over the variables xi (i �=
i1, . . . , ir ). Hence,

| fi |i1...ir (xi |xi1 , . . . , xir )| = | fii1...ir (xi xi1 , . . . , xir )
fi1...ir (xi1 , . . . , xir )

| ≤ || f ||/α,

where α > 0 is a lower bound on the values taken by
f . This shows that there is a point-wise bound for all
the functions in M( f ).

In order to show equicontinuity, we first note
that each function fi1...ir is uniformly continuous.
Since there are only a finite number of such functions,
we can always ensure that given ε > 0 there is a δ > 0
such that for any i1 . . . ir if

|(xi1 , . . . , xir ) − (yi1 , . . . , yir )| < δ,

then

| fi1...ir (xi1 , . . . , xir ) − fi1...ir (yi1 , . . . , yir )| < ε.α.

Hence if |xi − yi | < δ, then

| fi |i1...ir (xi |xi1 , . . . , xir ) − fi |i1...ir (yi |xi1 , . . . , xir )| ≤
| fii1...ir (xi , xi1 , . . . , xir )− fii1...ir (yi , xi1 , . . . , xir )|/α≤ε,

and

| d
dxik

fi1...ir (xi1 , . . . , xir )| ≤ sup
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so that M( f ) must also be an equicontinous family.
A similar argument shows that B( f ) is an equiconti-
nous family.

Proof of Theorem 3

For any element ci j |i1...ir of C( f ), we have

ci j |i1...ir (ui , u j |xi1 . . . xir )

= fi j |i1...ir (xi , xj |xi1 . . . xir )
fi |i1...ir (xi |xi1 . . . xir ) f j |i1...ir (xj |xi1 . . . xir )

.

Hence if we take a sequence of elements in C( f ),
then there are corresponding sequences of elements
of M( f ) and B( f ). Since M( f ) is relatively com-
pact there must be a convergent subsequence, and
looking along that same subsequence there must be
a subsequence of that for which the corresponding
functions in B( f ) converge. Now, along this subse-
quence the right-hand side of the above expression
converges, so the elements of C( f ) on this same se-
quence must converge (and to the same thing). In
particular, there is a convergent subsequence. Hence,
C( f ) is relatively compact.

Proof of Lemma 1

We show that by taking f sufficiently close to g
one can ensure that the reweighting functions for f
are close to 1. This then implies that C( f ) is close to
g.

Without loss of generality we can assume that f
is normalized. The proof uses the fact that we can
use the Borwein-Lewis-Nussbaum approach to find
functions d1 f (u) and d2 f (v) such that d1 f .d2 f . f has
uniform marginals. Such functions d1g and d2g exist

also for g but are constant, d1g(u) = d2g(v) = 1, be-
cause g is already a copula. As discussed above, these
reweighting functions are fixed points of a functional
that is a contraction mapping when using the Hilbert
metric D on the appropriate space of pairs of func-
tions (d1, d2).

We denote by Lf the functional associated to f .
Since this is a contraction mapping there exists a λ f ∈
(0, 1) such that

D(Lf (a, b), Lf (c, d)) < λ f D((a, b), (c, d)).

If we set a0 = 1, b0 = 1, and (an+1, bn+1) = Lf (an, bn),
then we have convergence to the required pair of
functions (d1 f , d2 f ) that reweight f to become a cop-
ula.

Now, by choosing f close enough to g we can
ensure two things. First, that the contraction rate as-
sociated to Lf is close to that of Lg , in particular
less than some chosen λ < 1. Second, we can ensure
that

D(Lg(1, 1), Lf (1, 1)) = D ((1, 1), Lf (1, 1))

is as small as required. This implies that

D((1, 1), (a, b)) ≤
∞∑

n=0

D((an, bn), (an+1, bn+1))

≤ D((a0, b0), (a1, b1))
∞∑

n=0

λn

= D((1, 1), Lf (1, 1))
1 − λ

.

Hence, the reweighting functions for f are close to
the identity, and so C( f ) is close to g.
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APPENDIX B

Fig. B.1. Scatter- and K-plots of the Gumbel copula and the fitted minimum information copula.

.

Fig. B.2. Scatter- and K-plots of the t-copula and the fitted minimum information copula.
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34. Patē C©-Cornell ME. Uncertainties in risk analysis: Six levels of
treatment. Reliability Engineering & System Safety, 1996; 95–
111.

35. Borgonovo E. Epistemic uncertainty in the ranking and cate-
gorization of probabilistic safety assessment model elements:
Issues and findings. Risk Analysis, 2008; 28:983–1001.

36. Borwein J, Lewis A, Nussbaum R. Entropy minimization,
DAD problems, and doubly stochastic kernel. Journal of
Functional Analysis, 1994; 123:264–307.

37. Nussbaum RD. Iterated Nonlinear Maps and Hilbert’s Projec-
tive Metric, II. Providence: American Mathematical Society,
1989.

38. Bedford T, Wilson KJ. On the construction of minimum in-
formation bivariate copula families. Annals of the Institute of
Statistical Mathematics, 2014; 66:703–723.

39. Lewandowski D. High Dimensional Dependence: Copulas,
Sensitivity, Sampling. Ph.D. Thesis, Delft University, 2008.

40. Sinkhorn R, Knopp P. Concerning nonnegative matrices and
doubly stochastic matrices. Pacific Journal of Mathematics,
1967; 21:343–348.

41. Csiszar I. I-Divergence geometry of probability distributions
and minimization problems. Annals of Probability, 1975;
3:146–158.

42. Lagarias JC, Reeds JA, Wright MH, Wright PE. Convergence
properties of the Nelder-Mead simplex method in low dimen-
sions. SIAM Journal of Optimization, 1998; 9:112–147.

43. Salmon F. The formula that killed Wall Street. Significance,
2012; 9(1):16–20.

44. Ababei DA, Kurowicka D, Cooke RM. Uncertainty analysis
with UNICORN. Proceedings of the Third Brazilian Confer-
ence on Statistical Modelling in Insurance and Finance, 2007.

45. Genest C, Boies JC. Detecting dependence with Kendall plots.
American Statistician, 2003; 57:275–284.

46. Frahm G, Junker M, Schmidt M. Estimating the tail depen-
dence coefficient: Properties and pitfalls. Insurance: Mathe-
matics and Economics, 2005; 37:80–100.

47. Ganguly P, Reddy MJ. Probabilistic assessment of flood risks
using bivariate copulas. Theoretical and Applied Climatology,
2013; 111:341–360.

SUPPORTING INFORMATION

Additional Supporting Information may be found in
the online version of this article at the publisher’s
website:

Algorithm 1 To approximate the joint density be-
tween two variables of interest, X and Y, using a min-
imally informative copula.

Algorithm 2 To find the log-likelihood of a mini-
mally informative copula between X and Y given
data x1, . . . , xn and y1, . . . , yn.

Algorithm 3 Calculates the conditional distribution
(Fc) or density (fc) on a grid of points from joint den-
sity f.

Algorithm 4 Algorithm to simulate from a 4-
dimensional D-vine in (X1, X2, X3, X4) given uni-
form marginals and minimum information copulas.




