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Abstract

Roll-to-roll printing on continuous plastic films could enable the production of flexible
electronics at high speed and low cost, but the granularity of feature sizes is limited by
the system accuracy.

Technologies such as gravure printing and nanoimprint lithography demand a level
of rotary motion precision that cannot be achieved with rolling element bearings. Manu-
facturing tolerances of the rotating parts, thermal drift and process forces in combination
with structural compliance add up to additional error motions.

In this master by research an active magnetic bearing (AMB) solution is designed
for a new, super-sized roll-to-roll flexible electronics production machine, which was so
far based on hydrostatic bearings. The magnetic bearing could actively compensate the
accumulated synchronous error and maintain high accuracy under all conditions.

However, the asynchronous error of a conventional AMB with the required size and
power is a problem. In order to reduce the relatively high positioning uncertainty of active
magnetic bearings an innovative radial position measurement based on linear, incremental
encoders with optical conversion principle is proposed. A commercial encoder scanning
head faces a round scale with concentric, coplanar lines on its face. By counting these
lines the radial position can be measured.

Because such a scale is not readily available, it is made by micro-machining. In
experiments, different machining methods are compared. Then a magnetic bearing is
built to demonstrate the efficacy of the proposed sensor. As a result, the best measurement
noise is 3.5nm at 10kHz and a position uncertainty of approximately 0.25µm has been
achieved for the magnetic bearing. These promising results are especially interesting for
applications with high precision requirements at low speed of rotation.
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Chapter 1

Introduction

Chapter 1 first explains the application that stimulates the interest in magnetic bearings

and then goes into more details concerning the specifications for the magnetic bearing.

1.1 Stimulus of research: flexible electronics machine

This research deals with the development of an active magnetic bearing (AMB) for the

printing roller of a new roll-to-roll (R2R) flexible electronics production machine. Flex-

ible electronics are the counterpart of circuits on a rigid substrate with brittle materials

for electrodes, resistors, electrolytes and semiconductors. Because the flexibility is often,

albeit not necessarily, achieved with conductive polymer inks printed on polymer sub-

strates, the phrase plastic electronics is also common. The idea of roll-to-roll production

is that the flexibility of the substrate is utilized to print electronic circuits in a continuous

process on a plastic film that reels off from one roller and re-reels on another roller after

the printing process. The single devices are cut into their final size afterwards [19, 15].

The machine for R2R printing of flexible electronics is still in development, but the

planned arrangement can already be seen in the Siemens NX export in figure 1.1. It is
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a research platform that can flexibly be rearranged to cover a variety of research topics

around plastic electronics: ultra-precision film steering of a 1,400mm wide, continu-

ous plastic web at high throughput rates, accurate real-time position measurement of the

fabricated film to evaluate the film-steering capabilities, gravure printing, inkjet printing

and ultraviolet light nanoimprint lithography (UV-NIL) on a continuously moving film

[29, 28].

pinch roller
printing roller

20 kW UV-light curing system

metrology station

take-off roller

air shoes

slot die coater

reel one,
source

reel two,
destination

Figure 1.1: CAD image of roll-to-roll machine layout generated in Siemens NX by Roger
Read from Cranfield University

The displayed arrangement supports UV-NIL, which works as follows: When the film

reels off from the first reel, it is coated with a resist by the slot die coater. The pinch roller

(also nip roller, press cylinder or support roller) then presses the film against the printing

roller or patterning roller, which has a structured surface, a prefabricated mould. These

structures are embossed into the liquid resist on the film. A UV-light under the printing

roller hardens the resist before the take-off roller behind the printing roller separates film
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and mould again. Finally the web is re-reeled [80, 27, 29].

In gravure printing the structured printing roller is temporarily immersed in an ink

depository and a doctor blade wipes off the excess ink. Only the content of the cavities in

the roller surface remains and is rolled on the substrate. Again the nip roller presses the

film against the printing roller or gravure roller. In contrast to NIL the film is separated

from the gravure roller before the resist is hardened [84, 14].

While good feature fidelity of UV-NIL and gravure printing has been demonstrated

for R2R and nanometre scale features [71], the granularity of printable features is still

limited by a lack of cleanliness and accuracy [84]. One problem is the residual layer of

resist in places where it should be squeezed away by the mould or wiped off by the doctor

blade, respectively [84]. Another problem is the non-uniformity of the resist layer due to

deformations of the soft mould material [84, 71]. A hard mould can help if the process

accuracy is so high that no elastic averaging is necessary [71].

An important quality indicator is the "overlay printing registration accuracy (OPRA)"

[84], p. 275 or register error [65]. It is the maximum relative distance between two

points in different layers that are meant to be printed in the same position. The OPRA

directly limits the minimum transistor size. For example, with tolerances of ≈ ±50µm

transistors cannot be smaller than 200µm [84]. TFTs are visually affected by defects or

they do not work at all. Well established media printers are based on human perception

and tolerate 100µm misalignments [85]. Current R2R facilities have ±20µm OPRA, but

for reliable TFT circuits that compare to Si-based TFTs the OPRA had to be improved to

±5µm or ±1µm [86, 85]. Main limitations to sufficient OPRA are vibrations, variability

in web tension and thermal expansion [84]. Synchronization errors between rolls and roll

eccentricities also enhance the OPRA [65].

Another quality indicator is the "pattern positioning accuracy (P/A)" [15], p. 3. This

quality indicator deals with the deviation of a pattern position on each layer from its
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target position. Apart from the film steering accuracy the P/A is limited by dynamic or

kinematic errors in the system. The precision of each element like roll circularity, which

is only as good as the machining capabilities allow it, causes deterioration in the P/A.

High accuracy is "the biggest technical hurdle" [15], p. 1 in R2R printing [15].

The claim behind the new plastic electronics production machine is that high accu-

racy of the printing and nip roller in combination with a hard mould is a necessary step

in solving the above accuracy problems. A simple and low cost setup can demonstrate

basic principles of operation, but for a product with features small enough for display

backplanes, RFIDs and others higher precision levels are required. Apart from the film

steering it is not least down to the bearings to achieve the necessary accuracy under all

conditions [27, 29, 28].

In the past the suitability of hydrostatic bearings for the printing roller has been inves-

tigated by Zhao [129]. The idea of this research project is that active magnetic bearings

(AMB)s could be even better. Given the fact that precision is crucial to the functionality

of the machine, magnetic bearings with their active control could be superior to passive

bearings because they can eliminate geometric errors in the whole construction that are

not directly related to bearing imperfections.

The literature review in chapter 2 explains the assets of magnetic bearings in more de-

tail and analyses how magnetic bearings generally compete with other bearing technolo-

gies. Remaining questions are addressed in chapter 3 by designing a magnetic bearing for

the machine. The main limitation of AMBs is the subject of the experiments in chapters

4 and 5. Finally, discussion, conclusion and future work are subject of chapters 6 and 7.
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1.2 Bearing specifications

For the comparison of bearing technologies and for the design of a suitable magnetic

bearing it is necessary to collect the specifications for the printing roller bearings. Some

specifications can be adopted from the previous machine design and from publications

of the research centre. The specifications that are magnetic bearing specific have to be

initially defined.

Figure 1.2 shows a cross section view of the hydrostatic bearing of the printing roller

with motor1. In addition to carrying the rotor the bearing also incorporates the angular

encoder, the connection to the base and the flange for the connection to the printing roller

on the left of figure 1.2. The AMB requirements are summarized in table 1.1. Spacial re-

quirements result from the demand to build a magnetic bearing with the same connections

as the hydrostatic bearing and about the same size, which is known from [129].

A benefit of the magnetic bearings is that they can compensate for errors that are not

directly caused by the bearings, see section 2.1.4. Criterion 50 refers to the maximally

expectable radial error that has to be compensated. Only a maximum run-out of 100µm

along the axis is allowed, i.e. ±50µm, the remnant is reserved for static or quasistatic

errors.

A load capacity of 1,500N for each radial bearing is defined in [129] for the hydro-

static bearing. This is related to the spindle mass of approximately 200kg. The film

tension that acts upon the roller in horizontal direction is far below this value [40]. The

specified magnetic bearing load capacity is two times higher because the static force of a

magnetic bearing with two opposing electromagnets should be less than the load capacity

[10]. The minimum axial load capacity is also twice the value defined in [129].

Point 80 follows from publications of the research centre [29, 28]. With a maximum

1The motor is of type TMK0175 from ETEL - motion technology.
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hydrostatic bearing (222 mm) torque motor (139 mm)

1
0
0

2
8
0

Figure 1.2: Section view of the printing roller’s hydrostatic bearing with torque motor,
designed by Roger Read from Cranfield University

film speed of 5m/s and a cylinder diameter of 400mm the fastest angular frequency of

the printing roller that can occur is 239rpm. 300rpm velocity stability is safer for the

bearing.

The positioning accuracy of the printing roller is defined by the achievable OPRA.

±20µm would be competitive already, but the long-term aim should be ±1µm or ±5µm

[85]. In the annual report of the research centre 5µm is set as the target specification

for up to 3m/min traversing speed [27]. The requirement for the P/A is 1µm in each

step [27]. The same value is assumed for the printing roller surface position. Allowing
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Table 1.1: Spacial and functional requirements for the active magnetic bearing

Index Requirement Value min Value opt Value max Unit
10 Length housing - 222 300 mm
20 Width housing - 280 300 mm
30 Height housing - 280 300 mm
40 Shaft diameter 90 100 - mm

in bearing
50 Lateral range ±100 ±200 µm

of compensation
movement

60 Radial load 3,000 - - N
capacity, each

70 Axial load 1,000 - - N
capacity

80 Angular velocity 300 - - rpm
stability

90 Positioning accuracy, - ±0.25 ±0.5 µm
radial

100 Positioning accuracy, - ±0.25 ±0.5 µm
axial

110 Temp. rise −3 0 3 K
of housing

±0.5µm remaining synchronous error motion of the spindle after repeatable errors have

been compensated by the magnetic bearing, the permissible asynchronous error has to be

as low as ±0.5µm at 3m/min traversing speed.

Point 110, the temperature rise of the AMB housing during operation is defined for the

hydrostatic bearing in [129]. It should be aimed at maintaining an average temperature

equal to the room temperature of 20◦C.
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Chapter 2

Literature review and theory

This chapter covers a short comparison of common bearing technologies to warrant the

choice of active magnetic bearings and also to point out potential shortcomings of this

technology. These are installation space, stiffness, positioning noise and price. These

shortcomings (excepting the price) are treated in more detail in the subsequent sections to

differentiate the problems. Theory needed to design a magnetic bearing is also covered.

2.1 Comparison of bearing technologies

This section is not aimed at giving an exhaustive overview of different kinds of bearings,

but it will establish a basis for the evaluation of magnetic bearings. Commercially avail-

able high precision rolling element bearings, hydrostatic oil bearings and air bearings are

considered serious alternatives for this application.

2.1.1 Rolling element bearings

The load carried by a rolling bearing is transmitted through balls or rollers from one ring to

the other. Ball or roller bearings can be mounted with interference fit to reduce the clear-



2.1. COMPARISON OF BEARING TECHNOLOGIES 9

ance in the bearings, which makes them interesting for higher precision requirements.

This is often achieved with tapered shafts or tapered sleeves, opposed angular-contact

ball bearings and pre-loading [42]. Still, the accuracy depends on the machine compo-

nent which the bearing is mounted to. For example, if a perfectly round outer ring is

pressed into an out-of-round hole, the bearing will have large errors. Also, the form ac-

curacy of the raceway needs to be high. Under ideal mounting conditions a radial bearing

with 120mm bore size and the best available tolerance has 3µm total radial error motion

[108].

The radial bearing stiffness in a particular direction varies as the balls or rollers re-

circulate. This causes a non-repeatable error motion when the bearing rotates under

load. Double-row bearings have twice as many rolling elements and the effect is reduced

slightly [108, 63].

Relevant advantages of rolling bearings are:

• Cool operation, in most applications, especially at low speeds or low loads no ther-

mal consideration required [42]

• High stiffness [4]

• High load capacity combined with compact design [91]

• Easy to buy and cost effective

Relevant disadvantages are:

• Low accuracy, getting worse as the bearing ages [9]

• Additional errors due to thermal displacement [63]

• High and fluctuating friction especially at low speed with Coulomb characteristic,

caused by the sources: elastic hysteresis, sliding in the raceways, sliding between
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the cage and the rolling elements, seal friction and others [42]. This is not reconcil-

able with high precision rotary speed control.

• Very low damping [63, 119, 4]

(a) Type with excentric rings (b) Locating bearing type

Figure 2.1: Two examples of roller bearings for printing machines from the company FAG
[99]

Consider the following two examples of rolling bearings as a solution for the R2R

machine: Schaeffler Group Industrial with the brands INA and FAG offers special rolling

bearings for printing machines. These are clearance-free single or multi row needle bear-

ings. Eccentric rings allow the radial fine-adjustment of the axis of rotation to adapt the

distance between the centre lines of grouped rollers, see figure 2.1, a. For locating bear-

ings tapered rollers or radial cylindrical rollers with thrust needle rollers (figure 2.1, b are

available [99]. The part DML3E105x210x80, for instance, is a two or four row radial

roller bearing with location adjustment ring. The dynamic load capacity of the two row

version is 219kN, the stiffness is 1,429N/µm at a static load of 20kN. It is suitable
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for a shaft with 105mm diameter and its outer dimensions are 210× 80mm2. The fric-

tional torque is 0.04725Nm. The radial run-out of the inner ring is 5µm and 10µm is the

run-out of the outer ring at tolerance class P4 [99].

The company SKF provides roller bearings with similar properties and finer toler-

ances: 3µm radial run-out for inner ring and outer ring of a radial bearing with the same

dimensions as the above mentioned one [106].

2.1.2 Hydrostatic bearings

A hydrostatic bearing or fluid static bearing supports relative sliding movements of two

members with respect to each other by means of fluid in a narrow gap. The fluid is

pressurised by an external pump and then fed into the gap through flow resistors. In com-

bination with the resistance from the narrow gap they act as a compensation mechanism,

that makes the pressure in the recesses adjust in response to an external load. The rotor

is hence always precisely centred in a journal bearing if no load is applied. Error mo-

tions smaller than the cylinder form tolerances are expectable, because the fluid provides

averaging [111].

The term hydrostatic allows the fluid to be either be a liquid or a gas. Air-lubricated

bearings are called aerostatic bearings or air bearings whereas oil-lubricated bearings are

referred to as hydrostatic bearings or oil bearings [117]. Air bearings have a lower stiff-

ness at the same gap size owed to the low viscosity of air1 and their load capacity is

limited by the allowable supply pressure. Air bearings have no passive lubrication and

they provide less damping2 than oil bearings [93]. Oil is therefore more interesting for

the R2R bearing and air bearings are not further considered.

1The reduced viscosity can be remedied with a smaller gap, but manufacturing tolerances set a limit
[117].

2Wide lands and small pockets are incorporated to overcome this restriction or pads filled with porous
material [33].
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Stiffness and friction of hydrostatic bearings depend on the speed of rotation. Hydro-

dynamic actions dominate the stiffness of oil bearings at high speeds. They drag fluid

into narrowing regions between the bearing members and the stiffness rises (squeeze-film

effect). The squeeze-film effect dissipates energy which means good damping[111]. The

smaller the clearance of the bearing the higher is the stiffness, but again the manufactur-

ing tolerances set a limit [129]. The load capacity is limited by the supply pressure, about

1MPa for air bearings and 4MPa for oil bearings [61].

The following advantages can be derived from the structure of oil bearings:

• High accuracy of axis of rotation because of the averaging effect of the fluid [63]

• High stiffness and higher load capacity over a large frequency range than many

other bearing types [93, 63]

• Good vibration and shock resistance [129]

• High damping [63]

• Low friction at low speed, only caused by the forces that sheer the oil, no Coulomb

friction [111]

Relevant disadvantages are:

• Heat generation in the bearing due to oil shearing causes thermal drift [111, 63].

• Major impact of the recirculation system including pump, piping and filters on the

initial costs and the subsequent maintenance in addition to the maintenance of the

bearing itself [111, 93, 63]

• Need for smooth and coated surfaces with narrow form tolerances [129]

• The bearing characteristics change as the temperature of the oil rises [129].
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Some features of the current R2R oil bearing solution have been investigated by Zhao

[129]. The summary of his findings in table 2.1 allows an assessment of the printing roller

spindle performance with hydrostatic bearings3.

Table 2.1: Properties of one hydrostatic bearing in the R2R machine after [129]

Bearing Calculated Measured Measured Deflection due to
load capacity stiffness temperature rise oil pressure

Journal 9.09kN 80−100N/µm 10K 2.97µm
Thrust 5.28kN 21.2−84.8N/µm 10K 5.83µm

No accuracy measurement has been done for this set of bearings, but it can be es-

timated. As to [111] the run-out without load of a hydrostatic bearing is one-fourth of

the roundness and the cylinder surfaces in the journal bearing have been manufactured

with a cylindricity specification of 1µm. The resulting synchronous error related to form

tolerances thereby comes to 250nm.

2.1.3 Active electromagnetic bearings

In rotational active magnetic bearings the shaft is encompassed by a soft iron sleeve or

a disc that is pulled in opposing directions by electromagnetic coils. The position of the

rotor is measured without contact and the coil currents are controlled actively to levitate

the rotor.

Some popular advantages of AMBs are:

• Stiffness and damping adjustable within limits [13]

• Active unbalance compensation possible: reduced unbalance induced deflection or

rotation about the centre line of inertia [44, 105, 18]

3Deflections due to oil pressure have been simulated with ANSYS [129].
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• Usable for fault diagnosis and rotor dynamics identification [2]

• Special features like constant process force control possible [11]

Disadvantages:

• Accuracy of rotation limited by the precision of the sensors [13]

• Low carrying capacity, four times below hydrostatic oil bearings with the same size

[10].

• Low stiffness at medium frequencies, difficult to predict [22]

• Expensive compared with rolling element bearings [13, 22, 62]

• Application specific development required, no all-round products available, often

years of engineering work [91]

The disadvantage of high power consumption can be overcome with hybrid magnetic

bearings. Permanent magnets carry the static loads and electromagnets only stabilize mi-

nor deflections from the ideal position [112]. This low energy operation goes on expense

of the precision and is therefore not further considered.

2.1.4 Making the decision

The target specification that suggests the use of active magnetic bearings is the accuracy

of rotation. The analysis has shown that a rolling element bearing of the required size

would not be precise enough. Because the machine is currently based on hydrostatic

bearings, it is possible to compare hydrostatic bearings and magnetic bearings. A com-

parison between the rolling element bearings and the magnetic bearings would lead to the

same conclusion.
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As explained above the rotor of a hydrostatic bearing is precisely centred with respect

to the bearing stator if no forces are applied, but this still does not mean that the position

of the printing roller surface is precise to 1µm under all circumstances: Under load the

hydrostatic journal bearing gives way with a stiffness of 80−100N/µm. For example the

gravity induced force of 1kN makes the axis move 11µm and the finite stiffness of the

entire structure increases the compliance further. It can be assumed that the process forces

change slowly over time, for example because of resist remnants and contaminations. It is

therefore not possible to compensate all force induced deflections by manual adjustments.

Furthermore, the oil bends the aluminium and it raises the temperature (table 2.1). Most

importantly, the bearing lands will always have a run-out with respect to the roller. The

entire shaft is not machined in one piece but it has flanges for changing the printing roller.

This creates interfaces with high concentricity and perpendicularity requirements. The

concentricity could be adjusted each time the printing roller is changed, but that would be

time-consuming and difficult to measure. In the current design it is not possible to adjust

the run-out.

Moreover, the combination of two cylindrical hydrostatic bearings is over-constraint.

When the printing roller is changed to refresh the printing patterns, which wear off, a time-

consuming process of aligning the two housing stators has to be undertaken. Conditions

have to be kept constant during operation to prevent contact between the parts with only

25µm oil gap in between. Solutions with flexible coupling on one end of the printing

roller have been discussed, but this would reduce the stiffness.

A magnetic bearing could compensate for all these errors and because of the wider

air gap the assembly is facilitated. Successful realisations of this idea, albeit in different

applications are described in [59] for a linear magnetic bearing and in [64] for a rotary,

radial bearing. Error motions and deflections of the entire R2R system could be measured

and used to predict the behaviour of the roller. It is the idea to evaluate the production
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outcome constantly in order to calculate correction motions for the following metres of

film. For instance monitoring the roughness of the printed structures over one revolution

represents run-out errors that can be compensated in the next revolution. In the long run

magnetic bearings could also be used to support the film steering.

Having introduced magnetic bearings as a solution to all the problems with passive

bearings the disadvantages are discussed now. The asynchronous error of rotation is the

most important limitation. Although synchronous disturbances can be compensated, a

certain level of noise will always remain. The asynchronous error of magnetic bearings

is analysed more thoroughly in the following sections. The second disadvantage in the

above listing, the low carrying capacity at a given installation space raises the question of

restrictions to the load capacity. The stiffness is adjustable, but there are limits. How is

the stiffness adjusted and what are the boundaries? How does the stiffness depend on the

frequency? Price and development effort have to be considered at the design state.

An alternative to magnetic bearings may be the use of oil or air bearings in combina-

tion with a fast tool servo. In tool machines fast tool servos are used to compensate for

straightness errors of guideways, imperfections of ball screws and periodic errors of roller

bearings [58, 114, 38]. Here it is considered more elegant to have one bearing with the

capability to perform active movements rather than having positioning systems that move

the entire housing of the bearing. Fast tool servos have a very high bandwidth with light

targets but when moving the bearing housing the reaction to a command would always

be delayed owned to the limited fluid bearing stiffness [58]. Furthermore it is question-

able if a fast tool servo with three directions of movement would be less complex than a

magnetic bearing.



2.2. MAGNETIC BEARINGS 17

2.2 Magnetic bearings

Following the general discussion of AMB advantages and disadvantages this section anal-

yses their characteristics more thoroughly to evaluate their suitability and also to provide

background knowledge for the design of a magnetic bearing.

2.2.1 Introduction

Magnetic bearings are well established in a number of applications and excessive litera-

ture on different facets of their design and control is available. The textbooks [101, 112,

10, 81] are recommended.

Applications of AMBs that have been analysed thoroughly and are described in papers

are:

• Turbo-molecular vacuum pumps, where the absence of lubricants and contaminat-

ing wear is advantageous [81]

• Energy storage flywheels: The high frequency stability and the low friction are

utilized in this application [16].

• Blood pumps: The suspension without contact spares the blood cells [73]

• Generators in power stations where maintenance is a problem and reliability is im-

portant [116]

• Compressors operate at high speed and benefit from low friction and long periods

of time without servicing [124]

• A newer and rather rare application is the use in machine tools, initially described

in 1993 [91, 22]
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• In hard disk drives (HDD) AMBs could outweigh external vibrations, but because

of their low stiffness currently fluid film bearings are preferred [4].

There are a few patents that describe the use of AMBs in printing machines [8, 36, 82].

The patents suggest the application of radial and axial magnetic bearings to perform lat-

eral and axial translations and tilts. These could serve the film steering, they could elimi-

nate vibrations due to friction, they could serve to adjust a constant process force or a cer-

tain force profile in response to a process induced displacement. Also, the drive currents

of the AMB coils could be used as an indicator of the roll weight, which changes when

the drum wears off. Finally, magnetic bearings could compensate for position changes of

the rollers [8, 36, 82]. But the use of AMBs in printing machines has hardly been investi-

gated in research and media printing machines work on a different precision level so that

the performance requirement for a magnetic bearing in such a machine is different. High

precision R2R printing with magnetic bearings has not been described yet.

Figure 2.2 shows a possible structure of a heteropolar radial bearing4 and a thrust

bearing. The coils make magnetic fields recirculate in the iron and they are typically

grouped into four independent channels in the radial bearing and two channels in the

thrust bearing case. These numbers result from the degrees of freedom multiplied by two

directions of movement. Figure 2.2(a) shows a variant with eight poles. Three poles or

more than eight are also possible [13].

The shown AMBs exhibit variable reluctance actuators with electromagnetic forces on

permeability boundaries in contrast to Lorentz force based electrodynamic actuators. A

magnetic bearing is called "active" if the position is stabilized by a sensor-actuator closed

loop. Completely passive bearings (that means no control) based on repulsive forces from

permanent magnets are also possible but according to the Earnshaw stability criterion they

4Heteropolar means that the magnetisation of the rotor changes when it rotates because the magnetic
field lines penetrate the rotor in circumferential direction. The opposite is homopolar with axial flux [112].
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Figure 2.2: Radial and axial version of active magnetic bearings based on reluctance
force, Siemens NX models

cannot stabilize the shaft in all directions. At least one degree of freedom still must be

controlled actively [66]. Lembke [66] gives an overview of achievements with passive

magnetic bearings. See [10] for a full classification of magnetic bearings.

Variable reluctance actuators with active electromagnetic transducers are most com-

mon, because they show the strongest forces, the best damping and a simple structure.

Lorentz force magnetic bearings, i.e. electrodynamic devices are favoured if hysteresis is

a problem [10].

The pictures do not show the auxiliary bearings, also called retainer bearings or touch-

down bearings. An active magnetic bearing needs additional rolling element bearings or

sliding bearings that are wider than the shaft and do not revolve during normal operation.

Their purpose is to prevent contact between rotor and stator if the system fails or the load

exceeds the bearing’s capacity [10].
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2.2.2 Derivation of the force on a radial bearing rotor

In order to evaluate the feasibility of the specifications and to contemplate the character-

istics of magnetic bearings it is important to reflect on the forces and the non-linearities.

Figure 2.3 shows the schematic of a radial magnetic bearing with eight poles. One coil

out of four independent coils is displayed. The two halves of the coil are connected in

series and the total number of windings is n. The stator of this radial bearing has an inner

diameter of dr. Between rotor and stator is the air gap with a length of s0. Small radial

deviations x in the rotor position increase the air gap on one side and reduce it on the

opposing side.

shaft

c

Aair

AFe

dr,i

dr
dr,o

Φ

Φsc ≈ 0Φsc ≈ 0
fx

x
y

s0

fext

coil1 coil1

stator rotor

Figure 2.3: Radial bearing schematic with magnetic flux Φ resulting from one coil

In contrast to a Lorentz actuator the force of a reluctance actuator is a non-linear func-

tion of the coil current i and the rotor position. In [81] the force of a general reluctance

actuator is calculated from the energy equilibrium. The shortened version of this deriva-
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tion can be found in appendix A. As a result, the force from the displayed coil acting on

the radial bearing rotor can be written as

fx1 =
1

2
i2

dL(x)

dx
. (2.1)

For the inductance L(x) the magnetic reluctances in air Rm,air(x) and in iron Rm,Fe are

calculated as functions of the iron path length lFe, the nominal air gap s0 and the current

deviation x from the nominal width. µrFe is the relative permeability in iron and AFe and

Aair are the respective cross-section areas, see figure 2.3. The inductance results [50]:

L(x) =
n2

Rm(x)
=

n2

Rm,Fe+Rm,air(x)
(2.2)

with

Rm,Fe =
lFe

AFeµrFeµ0
and Rm,air (x) =

2s0−2cos(π8 )x

Aairµ0
. (2.3)

For this calculation all scattering effects are neglected (Φsc = 0) and equal cross sec-

tion areas are assumed (Aair = AFe = Ar). Merging the equations (2.1), (2.2) and (2.3)

leads to the force on the rotor in x-direction from coil 1:

fx1 =
1

2
(ni)2 d

dx

Arµ0
lFe

µrFe
+2s0 −2xcos(π8 )

= (ni)2 cos(π8 )Arµ0
(

lFe
µrFe

+2s0 −2xcos(π8 )
)2 .

(2.4)

The impact of other coils on the rotor is the same for the respective direction and more

than one coil may be active at a given time, see section 2.2.3. The maximal admissible
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current is softly limited by the heat that can be accommodated by the chilling system

[10]. Another limitation is the saturation of the iron that occurs at higher flux densities,

see section 3.1.

For the axial bearing the calculation is analogue and the result only looks different

because the force is exactly parallel to the direction of movement:

fz1 =
(ni)2Aaµ0

(

lFe
µrFe

+2s0 −2z

)2 . (2.5)

z is the deviation from the nominal position in axial direction and Aa is the cross-

section area of the axial bearing’s iron circuit.

2.2.3 Dependencies of the force on the current and the displacement

Equation 2.4 shows that the force is proportional to i2 and approximately inversely propor-

tional to the air gap length squared. So, the system is non-linear even if saturation effects

are neglected. A linear model, which often facilitates the control circuit development,

seems inappropriate. This is a drawback of AMBs.

Typically, two opposing coils are turned on at the same time so that the resulting force

is reduced to the difference between the two forces that pull in opposite directions. In a

simple bias current approach one coil is driven with the current I0 +∆i and the opposing

one with the current I0 −∆i [115, 127]. This is called constant current sum (CCS) or

Class A control [41]. I0 is a constant bias current of the size 0.2 to 0.5 times the maximal

admissible current of the bearing [10]. ∆i is the control current. The resulting force

fx =
n2 (I0 +∆i)2 cos(π8 )Arµ0
(

lFe
µrFe

+2s0 −2xcos(π8 )
)2 −

n2 (I0 −∆i)2 cos(π8 )Arµ0
(

lFe
µrFe

+2s0 +2xcos(π8 )
)2 (2.6)
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is illustrated in figure 2.4 (µrFe → ∞). If the rotor is centred, i.e. x ≈ 0, the force-current-

relation becomes a linear function of ∆i:

fx|x=0 =
n2 · cos(π8 )Arµ0

(

(I0 +∆i)2 − (I0 −∆i)2
)

(

lFe
µrFe

+2s0

)2

=
n2 · cos(π8 )Arµ0 ·4I0∆i

(

lFe
µrFe

+2s0

)2 .

(2.7)

As a consequence, a constant force-current factor ci can be calculated or identified, as

demonstrated in [127], if the rotor is operated in a position close to the bearing centre.

This factor depends proportionally on the bias current I0, as can be derived from equation

2.7. The derivative of the force with respect to the control current ∆i is qualitatively

displayed for different bias currents in figure 2.5. The figure also shows, how the factor

changes, if the rotor is moved out of centre. Only for small deflections the changes are

negligible. To ensure force-current linearity, ∆i shouldn’t rise above I0 and the bearing can

only react to disturbances fast if ci is high, because the coil inductance limits the current

slope. For these two reasons the bias current is chosen high if energy consumption is not

an issue [92, 105].

During normal operation and without static load the control current ∆i is close to zero.

The resulting force-displacement slope for ∆i = 0

cx =
d fx

dx

∣

∣

∣

∣

∆i=0

=
ξ

(

lFe
µrFe

+2s0 −2xcos(π8 )
)3 +

ξ
(

lFe
µrFe

+2s0 +2xcos(π8 )
)3

with ξ = 4n2 cos
(

π

8

)2
Arµ0I2

0

(2.8)

is not a linear function like the force-current relation, but figure 2.6 shows that the

slope is almost constant for small deflections. This fact gives the AMB a spring-like
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Figure 2.4: Force fx with respect to x (unit: s0) and ∆i (unit: I0)

behaviour, excepting that the force has the wrong sign. It strives to amplify deflections

instead of stabilizing the system like a spring would. This derivative is also called ’passive

stiffness’ [122], as opposed to the active stiffness of a spring. For operations close to x= 0

a constant force-displacement factor cx can be used. Because of the iron saturation the

force is smaller at great deflections than calculated with this simple estimate. The flux

density does not rise above a certain saturation level and thus the slope declines at the

margins.

2.3 Design considerations for AMB control circuits

To operate an AMB a controller is necessary because of the "anti-spring behaviour" that

is innate in the uncontrolled bearing. Only the one-dimensional case is explained exten-

sively, but this is sufficient to show most of the effects at low speed.
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Figure 2.5: Force-current-factor plotted against the rotor displacement x in multiples of
s0. The contour lines show the graph for different values of I0 (0.1 ∼ 0.5· max. current)

2.3.1 One dimensional stiffness and damping design

In section 2.2.3 it was shown that a constant factor between bearing force and displace-

ment, respectively between force and current is a reasonable linearisation around the op-

erating point if only small deviations from the air gap centre occur and if the bias current

is high.

In order to stabilize the system a controller with phase lead like PD, PDT1 is neces-

sary. This can be shown by equating the unstable system to a bearing model with normal

stiffness and damping [10]: If the inertia of the rotor is represented by the mass m and

the influence of the environment is summarized in the force fext, the force equilibrium

becomes:

mẍ = cx · x+ ci ·∆i+ fext. (2.9)

cx · x is the inherent force of the two opposing coils with bias current I0, see section 2.2

and figure 2.3. The transfer function of the unstable system in the Laplace domain with
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Figure 2.6: Inherent stiffness cx for the case of two opposing coils. The abscissa is scaled
to multiples of s0.

the Laplace-variable s is [92]:

GPlant(s) =
X(s)

∆I(s)
=

ci

ms2 − cx
. (2.10)

Equation (2.9) is equated with the desired stiffness caim and damping daim character-

istic:

mẍ = cx · x+ ci ·∆i+ fext =−caim · x−daim · ẋ+ fext. (2.11)

The equation can be resolved for ∆i with

∆i =
1

ci
((−cx − caim)x−daimẋ) . (2.12)

caim,daim and cx are all positive constants. A PD controller with a reference signal of 0

results. The desired characteristic can only be implemented if both values cx and ci are

exactly known and in any case they change as the rotor departs from the operating point,
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as shown in section 2.2. The range of caim and daim is restricted, see next section [10, 128].

If deflections close to the air gap width occur, this linear approximation has limita-

tions. Non-linear control strategies have been described [120] as well as procedures to

measure or calculate the non-linearities of the force-field and to compensate for them

[46, 45, 88, 91, 41]. Typically a linear control outputs actuator forces rather than currents

and based on look-up tables or formulas the currents are derived to create the desired

forces. This is, however, no remedy to avoid the bias current, because the controllability

still depends on the current-force slope [41].

Control strategies with reduced bias current have been described for energy sensitive

applications [79, 50]. Also, the eddy currents can be reduced this way [115]. Such a

compromise is the "partial bias control" [105], p. 2, which means a small bias current

(I0 = 0.1Imax) and non-linearity compensation. With this small bias current a higher po-

sitioning accuracy is achieved than without any bias current [105].

2.3.2 Stability limits and possible values for stiffness and damping

There are different factors that restrict the choice of the quantities for caim and daim. If

the desired stiffness is chosen too small, uncertainties in the current gain and the inherent

stiffness cx become more significant and the control current may not suffice to overcome

the bias field [10].

The upper stiffness limit is more difficult to predict and very important in the given

application. This limit is determined by many factors like non-linearities (section 2.2.3),

sensor noise at high frequencies, the inductance of the coils, which forbids infinitely fast

current changes and the power limits of the amplifiers [91, 10].

An intuitively accessible explanation can be made over the bandwidth: Flotor mass

and bearing stiffness together set the frequencies of the rigid body modes. The higher



28 CHAPTER 2. LITERATURE REVIEW AND THEORY

the stiffness, the higher are these frequencies. The servo bandwidth of the control must

be above the rigid body modes and anything that limits the bandwidth also limits the

achievable stiffness. The bandwidth should not significantly exceed one-third of the first

flexible mode, thus bending modes of shaft and support structure limit the stiffness. Delay

times in the signal path limit the servo bandwidth because at high frequencies they cease

the phase lead and thereby they also limit the stiffness [50, 81]. Delay times mainly

result from the limited amplifier and sensor bandwidth and from the sampling delay of

the controller. Typically, the delay time equals one or two sampling time delays [10].

The higher the stiffness, the smaller is the permissible range for the damping that leads

to stable operation. This phenomenon can also be elucidated by the signal delay. In [92]

the PD controller from section 2.3.1 is modelled as a PDT1-controller to incorporate the

sampling time delay:

GPD(s) = KP
TDs+1

T1s+1
. (2.13)

Together with the system transfer function (2.10) investigations with Hurwitz criterion

and root locus are made, which yield a lower border for caim and for TD with respect to T1

[92].

Su [113] finds that for a given set of stiffness and damping the maximum admissible

time delay for a 1-DOF system is

Tdead ≪ min

(

m

daim
,

daim

cx + caim

)

. (2.14)

As to [101], a good choice for the target stiffness is caim = 1 ·cx > 0 or max. caim = 3 ·

cx, which results in indulgent behaviour. In [81] the recommendation is also caim = 1 · cx.

There are different rules for the choice of daim, see [81] for a frequency-domain design.
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According to [101] daim =
√

m · caim is a good choice. In this case the quotient of slew rate

σ and swaying frequency ω of the resulting vibration is σ/ω = −1/
√

3. This quotient

should always be in the range −0.1 ∼ −1 [101]. As to [92] daim should be close to but

smaller than
√

m · caim.

In addition to these basic estimates a few further tricks should be considered in the

design of hardware and control, although it is more difficult to predict in advance how

much they will affect the stability limits:

A method to reduce the noise level of the derivative feedback without introducing a

phase delay is a state observer such as the Kalman-filter or Luenberger observer [22].

It predicts the sensor measurement from an internal system model and uses the sensor

feedback only to correct this estimate [100]. It can also be used to fuse acceleration and

position sensors to reduce the effective sensor noise for the AMB control [95].

In applications with high rotational velocities cross-couplings between the individ-

ual degrees of freedom due to gyroscopic effects should be counteracted. This justifies

centralized control [92] or alternatively decentralized control with disturbance observer

[91].

There are more advanced attempts to deal with flexible modes than just to reduce

the stiffness especially as the load sometimes dictates a minimum stiffness. One way is to

flatten peaks in the frequency domain with notch filters in the sensor path but this approach

does not always help and it is difficult to realize if conditions change over the life time [11,

51]. Another way is the tilt control introduced by Okada [89], which detects and actively

dampens the inclination of the shaft in the bearing points. These inclinations are related to

the bending modes. A third way works if the frequencies of natural vibrations are known

a priori. Then the sensor signals can be decomposed and the discrete frequencies are

attenuated individually to some degree [18].

If a bending node coincides with either a sensor or an actuator, the mode is not observ-
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able or not controllable, respectively [11]. Also, it must be avoided in the hardware design

state that bending nodes fall between non-collocated position sensors5 and actuators. The

corresponding nodes are excited by the control rather than damped [35].

2.3.3 Analysis of the stiffness as a function of the frequency

If the reference signal is not 0 to centre the rotor as assumed in section 2.3.1 but any

small value xref, then the control law must be adapted to support reference signal tracking

[41]. In general this is only as accurate as the system parameters like ci and cx can

be determined. In order to reduce the remaining control offset and also to improve the

rejection of low-frequency disturbances integrating feedback is added to the control law

and a PID control with the transfer function GPID(s) = KP

(

1+ 1
TIs

+TDs
)

results.

In [122] the dynamic stiffness of an AMB with PID control is calculated as a function

of the frequency. The transfer function from the disturbing force Fext(s) to the position

X(s) with Xref(s) = 0 is the dynamic compliance, see figure 2.7 and equation (2.10). The

reciprocal value is the dynamic or complex stiffness [122]:

-

Fext(s)

∆I(s)ci

GPlant(s) X(s)

Xref(s)GPID(s)

Figure 2.7: Active magnetic bearing GPlant(s)with PID control GPID(s) in a block diagram

Fext(s)

X(s)
=

ms3 − cxs+ ciKP(s+
1
TI
+TDs2)

cis
. (2.15)

The amplitude frequency response declines at low frequencies because of the s in the

5Non-collocated means the sensor is not in the same axial position as the actuator [10, 11].
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denominator and after the three zeros it rises again. In [122] it is therefore compared to

a bathtub, that means a function with a minimum and ascends on both sides. Practically

speaking, the stiffness increases at high frequencies because of the high forces necessary

to move the inertia of the rotor. As a result, the stiffness resulting from section 2.3.1 is

the minimum stiffness over the frequency range and depending on the frequency of Fext

the dynamic stiffness can be higher [122].

2.4 Position sensors for magnetic bearings

The accuracy of a magnetic bearing is primarily determined by the signal quality of the

position sensors. The asynchronous error of the AMB can only be low if the sensor

resolution is a small number [10, 110, 115, 13, 94]. For the sensor resolution statement

it is practical to measure the sample standard deviation σ of the noise and to declare this

value as the resolution. Alternatively multiples of the standard deviation or the peak-to-

peak value6 are stated [70]. The number is only valid in combination with the bandwidth

for the reason given in section 2.4.5. The four types of position sensors in AMBs are:

optical, inductive, capacitive and eddy current transducers [110]. Sensor-less magnetic

bearings have been investigated, too, but their strength is not the high accuracy [90]. This

section briefly explains the four techniques and gives examples of achievable performance

values.

2.4.1 Eddy current sensors

An eddy current sensor consists of a primary coil around an open, non-ferrous core that

is supplied with an AC voltage of ≈ 1MHz. An alternating magnetic field is induced in

6Peak-to-peak is not the preferred option because the value is higher if the recording time is longer. To
minimize this effect Fleming recommends 100s acquisition time, which is hardly practical [32].
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the conductive surface of the target, causing eddy currents to circulate in the target like

in a short circuited secondary transformer coil. Depending on the measured distance both

the amplitude and the phase of the current in the primary coil are affected in return and

represent the position information [13, 81].

Eddy current sensors have a limited full-scale range to resolution ratio, also called dy-

namic range and they have temperature drift. In magnetic bearings disturbances can occur

when the bearings are driven by switching power amplifiers, especially if the switching

frequencies are close to the modulation frequency of the sensors. When the sensors are

mounted to close together and the oscillators are not synchronized, mutual interference

occurs [78]. A major cause of disturbance in the application of magnetic bearings is

related to inhomogeneities in the target material. As soon as the shaft rotates, material

impurities and micro cracks with varying conductivity lead to false movement detections

("electrical noise") [10, 87, 81, 70]. In control loops with very high update rate the phase

lag of the eddy current sensors deteriorates the performance [60].

Companies for eddy current sensors are Micro-Epsilon [78], Lion Precision, Meggitt,

AEC Applied Electronics Corporation and others [32]. An example of a high performance

eddy current sensor system is the ECL150 from Lion Precision with 1.25mm range and

140nm RMS resolution at 10kHz on a nonferrous material. It has a bandwidth of 15kHz,

0.25% full-scale non-linearity and a temperature drift of 0.04% full-scale per K. It is

available for approximately £1,300 per channel [70]. Other eddy current sensors have

comparable characteristics. The range is dictated by the air gap of the magnetic bearing

and the mounting tolerances. Two eddy current probes would be operated differentially

as opposing sensors, ie. two sensors for each DOF. With five DOF this is a considerable

expense.



2.4. POSITION SENSORS FOR MAGNETIC BEARINGS 33

2.4.2 Capacitive sensors

A capacitive sensor determines the capacitance between the sensor and the target that

changes with the distance. Again, a differential arrangement in which the target is in the

middle is common and improves the linearity. Limitations of capacitive sensors are the

crosstalk between the sensors, thermal effects and changes in the dielectric due to humid-

ity and contamination. For their use in AMBs it is important to note that the electrostatic

field is disturbed by external electric fields and that a curved sensor target degrades the

linearity [32].

Capacitive sensors are favourable for small distances because their noise is approxi-

mately proportional to the distance squared [32] and sensors for wider stand-off, as needed

in this application, have large housing diameters - a problem with round shafts [108]. For

most sensors the target needs to be grounded with special, conductive brushes. Arrange-

ments with two concentric electrodes separated by a guard ring for non-grounded targets

have been described, but the capacity is reduced to one-fourth by this means and the

working distance must be even smaller [81, 78]. Best results are achieved with grounded

targets [78].

Capacitive sensors don’t detect target material inhomogeneities as much as eddy cur-

rent sensors, but they also rely on the form and smoothness perfection of one single sur-

face in a small point [70]. In AMBs there are approaches to replace the probe type ca-

pacitive sensors by cylindrical or plate-type sensor shapes, which provide averaging over

a wider target surface area to improve the resolution [52, 104]. None of these extensions

shows a better resolution under good conditions7 than commercially available capacitive

sensors.

Again the specifications of a high quality sensor from Lion Precision shall be given,

7Good conditions means, the rotor is not deliberately designed to have imperfections.
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which would be suitable for the given magnetic bearing design: The P016-6032 probe

with 1,250µm full-scale range and 20nm RMS resolution at 10kHz has a bandwidth of

15kHz and 0.2% full-scale non-linearity. The temperature drift is 0.04% full-scale per

K and the price is £3,163 per channel according to a quote for ten sensors from Lion

Precision [70]. Quotations from other companies also confirm that capacitive sensors are

even more expensive than eddy current sensors.

2.4.3 Inductive sensors

Inductive position sensors work on the basis that the self-inductance of a coil changes if

the magnetic circuit reluctance is altered. The rotor is part of this magnetic circuit and the

air gap length varies with the displacement to the rotor. In contrast to eddy-current sensors

inductive sensors require a soft-magnetic target material and the core of the coil is a

ferrous material. Inductive sensors are not as sensitive to disturbing magnetic fields as the

above sensors, but switched power amplifiers may interfere if their frequencies are close

to the sensors’ modulation frequency. The iron hysteresis is a drawback. Resolutions are

10 to 1µm [32, 10].

2.4.4 Electro-optical sensors

Before the above sensors were introduced for magnetic bearings, electro-optical sensors

were more in vogue than today. Because of the higher linearity and sensitivity of the

other three sensors, optical sensors are today only found in a few magnetic bearings. In

these application they are favoured because of their immunity against magnetic fields,

their high bandwidth and their low price [110]. "Electro-optical sensor" is a collective

term for a number of operation principles: The shadow line of the shaft can be located by

charge-coupled device (CCD) sensors, the irradiance of a light beam can be modulated by
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partial interception, or the position of a laser spot is detected by a position sensitive device

(PSD) [110, 34]. Sridharan reports 1µm resolution at standstill with partial interception.

The resolution of CCD based sensors is limited by diffraction [10].

Yet another principle is the optical proximity detector, a device consisting of a light

emitting diode (LED) and a photo-transistor next to it. LED and photo-transistor are sep-

arated by a wall so that the photo-transistor receives no light. As soon as the reflective

magnetic bearing shaft approaches the device, the LED light is reflected at the shaft and

reaches the photo-transistor. Over a certain range of short distances the measured irradi-

ance increases with the distance. At wider offset it is exactly the other way round, albeit

with a less steep slope. The accuracy is limited by the cleanliness of the LED current,

the ageing of the LED, variations in the target’s reflectivity, ambient light and noise in the

detector [81].

2.4.5 Interplay bandwidth - resolution

The challenge of contact-less position measurement with high resolution and high sam-

pling rate at the same time intensifies in active magnetic bearings with sampling rates of

5 to 20kHz [69, 98, 4, 41], see also section 3.4.2. Fleming [32] explains this problem as

follows: Noise is a mean-free random process χ(t) with the power spectral density

Sχ( f ) = 2 ·E
[

1

T
|FT {χ(t)}|2

]

. (2.16)

FT denotes the Fourier transform over a long time T and E is the expectation operand.

The power spectral density represents the noise power distribution across the fre-

quency spectrum (unit for example V2/Hz). Position sensors have a noise characteristic
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of the form

S( f ) = A
fnc

| f | +A. (2.17)

Characteristic is the 1/ f pink noise component8 with corner frequency fnc and the con-

stant thermal noise with power spectral density A. The standard diviation σ is the square

root of the integral over the measured bandwidth fl to fh:

σ =

√

√

√

√

√

fh
∫

fl

A
fnc

| f | +Ad f . (2.18)

Solving the integral leads to

σ =

√

A fnc · ln
fh

fl

+Ake( fh − fl). (2.19)

Typically, the lower frequency fl is not zero for noise measurements but 0.01 or 0.1Hz to

exclude the effect of drift and fnc is 10Hz. ke accounts for the low-pass filter that limits

the bandwidth and it is 1.57 for a first order linear filter. As a result the RMS noise of the

mean-free signal, which equals the standard deviation, is approximately proportional to

the square root of the low-pass filter cut-off frequency fh [32].

That is the reason why the resolution was stated together with a bandwidth in the above

sections. Eddy current sensors and capacitive sensors with short stroke have resolutions

of a few nanometres if they are sampled at 1 or 10Hz [70], but not at 10kHz sampling

rate and appropriate stroke.

8This is excess noise, also called flicker noise caused by imperfect contact between two conductors and
thereby fluctuating conductivity [50].
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2.5 Precision magnetic bearings

In AMB applications that are optimized for high precision, which is only rarely the main

concern, different aspects play a role in achieving this aim: The phase lead characteris-

tic of the high bandwidth control, which is inevitable to stabilize the system, amplifies

high frequency noise from the sensors. An intrinsically stable system can be controlled

without derivative feedback, which makes it more precise [17]. Rotating machinery has

to deal with periodic disturbances that simply don’t exist in linear position controls like

linear motors. The challenge is to hold the rotor in a constant position as it rotates with

conditions changing. Only very few rotational AMBs with nanometre accuracy exist and

in industrial applications orbits are not better than 10 or 20µm [105, 10].

Among the main periodic disturbances are run-out errors along the shaft, mass un-

balance and sensor target inhomogeneities [102, 18, 6]. Run-out errors are also referred

to as magnetic offset [41] or magnetic run-out [60]. Because of the limited stiffness of

magnetic bearings and their characteristic displacement-force relationship external forces

have much impact. Methods to counteract periodic disturbances have been studied exces-

sively, albeit more often with the aim of high speed stability than high accuracy of axis of

rotation at low speed [102].

In linear magnetic bearings the situation is different because some of the disturbances

don’t exist. Consequently, there are linear bearings with high stationary accuracy. Below,

examples of both types are cited.

Kim and Kim simulate the effect of imperfections in the sensor target surface, mis-

alignment errors and inclinations of the thrust bearing plate [57]. According to the sim-

ulations these three factors have the greatest influence on the error motion. Setiawan et

al. detect the sensor target surface run-out including higher harmonics and compensate it

automatically. Mass unbalance is also considered [102].
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An example of a nanometre accuracy radial AMB is the one described in [105]. The

vertical spindle is supported by axial air bearings and only the two horizontal translations

are controlled magnetically. The iron material for stator and rotor is expensive Ni-Fe with

high linearity and high initial permeability. The capacitive sensors with 15nm resolution

have a measuring range of 200µm. Linear drives are used instead of switching amplifiers.

In experiments 3σ positioning accuracies of less than 40nm are demonstrated for up

to 1,500rpm. As a further improvement the periodic run-out caused by unbalance at

high rotational speed is reduced by means of active unbalance control, called repetitive

control [69]. In [68] the algorithm for rotation about the centre line is augmented to work

with spindles whose geometrical centre line is not defined by the sensor target surfaces.

Also, instead of the inductive motor, compressed air accelerates the rotor to eliminate the

ripple forces. In [126] the results of the various methods applied to this magnetic bearing

are compared. Especially at high speeds the improvement of the combined repetitive

control is obvious. At 2,880rpm the 3σ positioning accuracy is reduced from 301.2nm

to 21.9nm.

The test rig is an example of a very accurate radial bearing but not all degrees of

freedom are levitated magnetically and the rotor mass of 3.29kg is less than the printing

roller mass. A linear low-noise amplifier may not be economical for a magnetic bearing

with high load capacity and high load. These are important differences to the magnetic

bearing in the roll-to-roll machine. See [60] and [50] for two more examples of rotary

magnetic bearings with nm position uncertainty achieved with low rotor mass and linear

amplifiers.

Petzold describes the design and commissioning of a rotary magnetic bearing system

with higher spindle mass, approximately 1,900kg. The eddy current sensors have a nom-

inal resolution of 200nm at a range of 2mm. Without rotation the positioning noise is

approximately ±3µm [91]. This is an example of a high load magnetic bearing where the
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positioning accuracy for very slow rotations is important. In [100] the positioning accu-

racy of an AMB is improved from a bit more than 2µm peak-to-peak to approximately

1µm peak-to-peak by means of extended Kalman filter. The two test rigs have a rotor

mass of 250kg and 25kg, respectively. With PIDT1 control only, the accuracy is limited

by sensor noise at high frequencies [100]. Approximately 1µm peak-to-peak error mo-

tion of a radial magnetic bearing and a bit more in axial direction are demonstrated at

standstill in [43]. This seems to be a better result, but it must be said that the rotor mass

is only 0.35kg.

Precise position tracking with magnetic bearings requires either feed-forward in com-

bination with PID control or particularly high bandwidth PID control. Grochmal and

Lynch [41] demonstrate tracking control of a radial bearing with 50 and 80µm amplitude

of the sinusoidal reference signal at 10Hz. ±3µm accuracy is achieved for a non-rotating

shaft and at 14,000rpm deviations from the reference of 20 to 30µm occur. The rotor

mass is 0.98kg [41]. In [43] tracking control on micrometer level at 1Hz is implemented

for a radial magnetic bearing with high bandwidth. The reference signal amplitude is

30µm and the rotor mass is 0.35kg [43].

For a rotor with 8.34kg mass tracking control in radial direction is incorporated by

Lee et al., as already cited above to compensate for tool axis misalignment errors. In

addition to the stabilizing PD-control a feed-forward control is built based on identified

system parameters. At 2,000rpm and approximately 60µm run-out a following error of

±3.3µm remains [64]. The diamond turning lathe with a magnetically levitated spindle

in [56] is designed to perform radial compensation movements in the range of ±100µm,

but no active compensation of errors is actually presented in the paper [56].

Very high precision levels for levitation in constant position have been demonstrated

for linear bearings at the University of North Carolina at Charlotte [47]. Three capacitive

sensors provide vertical position feedback and interferometers measure the horizontal
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position. The vertical positioning noise is less than 2.2nm (3σ) and 0.6nm (3σ) noise in

horizontal direction is achieved with linear motors. For disturbance rejection and against

mechanical coupling of the axes the stage is floating in oil. A Zerodur metrology frame is

mounted independent of the main frame [47].

2.6 Concluding remarks

The precision of the printing machine axes has been identified as a key optimisation tar-

get to make flexible electronics printable with small feature sizes. High quality fluid-film

bearings are therefore even more suitable than commercially available printing machine

rolling element bearings. The comparison of bearing technologies suggests that oil lubri-

cated bearings are the better fluid film bearings than air bearings because the latter have

even tighter alignment requirements and their specific load capacity is lower. Also, air

bearings have low damping and are costly to manufacture. But as soon as the entire ma-

chine is considered, neither of the passive bearings can meet the accuracy requirements

of the grouped rollers in the machine. It can be anticipated that the positioning of the

surfaces of interest would not be accurate enough although the fluid-film bearing itself

defines its rotor precisely. Reasons for that have been given.

Active magnetic bearings are a promising improvement over passive bearings because

they can compensate for imperfections of the spindle and the entire assembly. Tunable

stiffness and damping expand the opportunities to tailor the bearings at run-time. For

static forces the stiffness is infinite. As a positive side-effect there are reasons to believe

that maintenance and alignment efforts are reduced with AMBs.

Nevertheless, printing machines are not a typical application of AMBs and the reasons

may be the low stiffness at medium frequencies and the unavoidable positioning noise. A

number of factors limit the stiffness and they are all well known and have been studied
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excessively. It will still be necessary to determine the actually achievable stiffness for the

R2R magnetic bearing. The following issues can be inferred from the literature review

that could limit the stiffness of the printing roller levitation or complicate its design and

control:

• The necessity to move the rotor around actively may lead to problems with non-

linearities compared to applications where it is merrily centred (section 2.2.3).

• The horizontal operation of a heavy spindle is a problem. Unless the bearing’s load

capacity is very high, non-linearities need to be considered.

• With a hollow printing roller of limited rigidity bending modes might interfere with

the bandwidth that results from the desired stiffness.

• Although it is important to locate the sensors close to the actuators one may be

inclined to measure the position of the roller directly because of run-out errors.

This would cause problems with bending nodes between sensors and actuators.

The accuracy limitation of AMBs has been addressed in sections 2.4 and 2.5. In rotat-

ing magnetic bearings countermeasures are necessary to eliminate periodic disturbances.

Light rotors can be levitated very precisely as shown by the references. In the given ap-

plication with low speed of rotation it can be anticipated that algorithms for rejection of

periodic disturbances will achieve satisfactory results or that they are not even necessary.

Unfortunately, the positioning uncertainty seems to be a function of the rotor mass and

the sensor range. With heavy rotors there is always a non-repeatable error motion of a few

micrometres, even if the rotor is not rotating and no disturbing forces are present. This is

related to various tricks applied in small, precise magnetic bearings as explained above,

for instance, larger magnetic bearings must be driven by switching power amplifiers that

disturb the sensors. Large AMBs also have sensors with wide stroke to account for the
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wider air gap. A magnetic bearing of the required size would hardly be precise enough to

meet the specifications.

Regarding the gap sensors, capacitive and eddy current sensors are the sublime gap

sensors, but in contrast to optical sensors they are prone to field disturbances. At the high

sampling rate in magnetic bearings especially eddy current sensors may have too much

noise and they introduce a phase lag. Capacitive sensors are available with higher reso-

lution, but they are expensive and their measurement principle is affected by the electro-

magnetic fields in active magnetic bearings. Regarding the position sensors there seems

to be no ideal solution for large magnetic bearings with high bandwidth and high accuracy

over a wide stroke of movement.

Another aspect that will become important is the tracking control of radial magnetic

bearings. There are not many publications that deal with this problem but some examples

have been cited.

The situation is clearer for the bearing dimensioning and the choice of materials. The

load capacity can be related to the approximate bearing size and the current starting with

the calculations in section 2.2.2. Heteropolar radial bearings are used in the majority of re-

search platforms and their characteristics are well known. It seems that the dimensioning

of the actuators is straightforward and that no innovative design is required.

2.7 Aim and objectives

The aim of this master by research study is to investigate the applicability of active mag-

netic bearings to high precision R2R production.

In section 1.1 the purposed long-term research has been described and justified. Unre-

solved questions and potential problems have been identified in the literature review and

summarized in section 2.6. Within the scope of this research study the following objec-
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tives shall contribute to the overlying aim and push the use of active magnetic bearings in

printing machines:

• Justification of magnetic bearings as a potential improvement of high precision R2R

printing machines

• Description of an innovative radial position sensor for magnetic bearings based on

linear optical encoders

• Definition and experimental comparison of different techniques to create amplitude

gratings for ordinary optical encoders by micro-machining

• Experimental validation of the position sensor and characterisation of chosen as-

pects

• Design, assembly and commissioning of a new magnetic bearing test rig

• Performance demonstration of the position sensor in closed loop control of a rotary

magnetic bearing

• Design of a magnetic bearing spindle for R2R production systems including optical

encoders for position measurement, discussion of associated limitations
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Chapter 3

Magnetic bearing design work

In this chapter the design of a magnetic bearing for the printing roller is approached in

some initial steps. These include the dimensioning of the AMB, the power amplifiers,

theoretical considerations on optical, linear encoders for the position measurement and

the choice of a suitable control hardware as well as reflections on discarded options. A

first spindle design of the R2R AMB is also provided.

3.1 Bearing dimensioning

The next step is to verify the feasibility of the target specifications regarding force-size

relation and to determine further characteristics. In section 2.2.2 the force has been calcu-

lated in terms of the rotor displacement and current. To account for requirement 50 from

table 1.1 the radial bearing clearance is set to 300µm. The air gap length should be about

two times this value, s0 = 600µm, because of the structural compliance [10]. The same

values have been chosen for the axial bearing.

The required size of the AMB is determined by the load capacity in combination with

the iron saturation. If the flux density B was raised beyond the saturation point Bsat, much
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more electric power would be required. A material with sufficient saturation polarisa-

tion, low eddy current loss and affordable price is Silicon-iron [39]. Non-grain-oriented

M290-50A is a compromise between energy loss and high saturation polarisation. It has

a lamination thickness of 0.5mm, core losses of 1.14W/kg at 1T and 50Hz and an in-

duction of Bsat = 1.58T at 2,500A/m [83]1.

In order to calculate the radial force at Bsat, equation (2.4) is taken as a starting point.

With

Θ = ni = ΦRm = BAr
(

Rm,air+Rm,Fe
)

(3.1)

the magnetomotive force Θ = ni can be replaced in equation (2.4). This eventually leads

to the easy form

fx1 =
1

µ0
B2Ar cos

(

π

8

)

, (3.2)

which allows to calculate the force from the flux density.

The area Ar equals clr, which can approximately be expressed as Ar ≈ 1
16πdrlr. Be-

cause of the space for the coils only half of the circumference is available for iron [10].

Refer to pictures 2.2 and 2.3 for geometric constants. With this assumption the force of

the radial bearing can be related to the size of the rotor:

fx1 = cos
(

π

8

)

B2πdrlr

16µ0
. (3.3)

The maximum quotient of force and rotor area drlr, which is called the specific load

1The guaranteed characteristics differ slightly from manufacturer to manufacturer.
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capacity [10], is

fx1,max

drlr
= cos

(

π

8

)

B2
sat

π

16µ0
= 360

kN

m2
. (3.4)

The cross section area of the radial bearing rotor corresponding to the load capacity of

3kN is 83cm2. The radial bearing stator must have an inner bore suitable for such a rotor,

which seems reconcilable with the dimensional requirements at the first glance, but the

question of the overall size will be treated in more detail later.

One might be tempted to dimension the magnetic bearing with the aim that its stiffness

is the same as that of the hydrostatic bearing. The passive radial stiffness in vertical

direction can’t be calculated with equation (2.8), because the bearings have to carry the

mass m of approximately 200kg, so the control current is not 0. With only one active coil

the force-displacement slope can be calculated from equation (2.4):

d fx1

dx
=

4(ni)2(cos(π8 ))
2Arµ0

(

2s0 −2cos(π8 )x+
lFe

µrFe

)3 . (3.5)

Assuming a static load of 1
2mg the expression for the force in equation (3.5) can be

replaced:

d fx1

dx

∣

∣

∣

∣

OP

=
1

2
mg

4cos(π8 )

2s0 −2cos(π8 ) ·0+
lFe

µrFe

≈ 2.9
N
µm

. (3.6)

µrFe is set to 5,000 at this undersaturated point and lFe ≈ 0.3. The stiffness can be in-

creased if the lower magnet is also energized. This additional force fx,add increases the

force of the upper magnet in the operating point by the same amount, because the force



3.1. BEARING DIMENSIONING 47

equilibrium is still maintained. The resulting stiffness is:

cx =
1
2mg+2 fx,add

1
2mg

·2.9 N
µm

=

(

1+4
fx,add

mg

)

·2.9 N
µm

. (3.7)

If this negative stiffness had to be as high as the stiffness of the hydrostatic radial bear-

ing (100N/µm, as measured in [129]) an additional force of fx,add = 16.4kN would

be required. With a load capacity of two times this value, the rotor area had to be

(drlr) = 912cm2, for example lr = 350mm and dr = 260mm. The bearing had to be

bigger than allowed by the requirements in table 1.1. In figure 3.1 the anticipated size

of such a magnetic bearing is shown. It is intuitively too big and also too expensive.

The company MECOS Traxler AG in Switzerland estimates a price of CHF250,000 ≈

£166,000 for one radial bearing.

300mm

Figure 3.1: Anticipated outline of magnetic bearings with the same minimum stiffness as
the hydrostatic bearings, shown with the printing roller in between. The bearings have a
length of 660mm.

The conclusion from this thought experiment is that the aim should not be to build
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a magnetic bearing with the same stiffness as the hydrostatic bearing. The stiffness at

medium frequencies will always be lower. Realistic stiffness values are stated in the next

section for the actual product.

3.2 Outsourcing of standard components

A detailed design of the magnetic iron circuits and the electric coils could now be carried

out on the basis of the requirements and section 3.1. However, these calculations are state-

of-the-art [115, 7] and there are no special requirements that would exclude a standard

design. The iron for rotor and stator, the coils and the amplifiers should be outsourced to

specialized companies.

The global search for companies that design and manufacture magnetic bearings re-

turned the following results: SKF has operational sites in many countries and it has the

longest experience in industrial magnetic bearings [115]. In the USA there are Synchrony

® magnetic bearings, headquartered in Virginia, Airex Corporation in Vermont, Calnetix

Technologies in California and Waukesha Bearings in Wisconsin. Foshan Genesis [31],

founded in 2012, is the youngest company and it is located in Foshan City, China. German

companies are Schaeffler with the brands FAG and INA, Elektrische Automatisierungs-

und Antriebstechnik (EAAT) GmbH Chemnitz, LEViTEC in Lahnau and evico GmbH

in Dresden. In Switzerland there are the companies Levitronix in Zurich and MECOS

Traxler AG in Winterthur.

It can be observed that magnetic bearing companies generally refuse to sell single

parts of the mechatronic system and the product always includes amplifiers, sensors, the

controller and the cabinet. Only a few companies made offers for a subset of the usual

delivery and service, but in the given case with special sensor system, interchangeable

control unit and complex spindle and housing design it is impossible to outsource the
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entire magnetic bearing design.

To the amplifier requirements, it is important that the current slew rate be as high as

possible because the bandwidth for full force amplitude is proportional to the saturation

power [115]. Thus the DC intermediate circuit voltage should be as high as possible

and the amplifier should support two-quadrant operation, ie. both signs of the output

voltage [41]. Negative output currents are not required, because the direction of the force

is the same, but [53] still argues for four-quadrant power stages to improve the dynamic

performance2. The PWM duty-cycle of a switching type amplifier is either proportional to

the control variable or it is actually controlled based on current measurement to follow the

reference signal (transconductance amplifier). The later makes the output current more

predictable and linear to the reference signal and it allows more rapid changes [72]. A

transconductance amplifier is therefore preferred. Furthermore each amplifier should be

able to drive its electromagnetic coil at maximum current.

The most suitable offer for two radial magnetic bearing stators and one axial mag-

netic bearing stator pair was made by Foshan Genesis [31], see details in table B.1 and

figure B.1 in appendix B. The delivery also includes two radial, inductive sensors and the

dedicated signal conditioners. Regarding the amplifier the BA30 from Aerotech with inte-

grated feedback current control and four-quadrant operation has been chosen and bought,

see table B.2 in appendix B [3].

Almost all the promised magnetic bearing features seem to fulfil the requirements

from section 1.2, but the geometrical specifications can only be approved on the basis

of the entire housing and rotor design. What is not sufficient is the resolution of the

sensors. For the targeted positioning accuracy sensors with finer resolution are required

and this set of sensors cannot be used. From equation 2.2 the inductance of one radial

2Bidirectional currents are more commonly used in hybrid magnetic bearings. The permanent magnet
bias flux adds to control current induced flux that can be positive or negative to stabilize the position [120].
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magnetic bearing coil can be estimated: 18mH > 1mH. The inductance of the axial

bearing is approximately 160mH > 1mH. So, the amplifiers are suitable to drive both

coil types and the current capability is sufficient to drive both bearings with maximum

force continuously.

From equation (3.7) a radial, vertical stiffness of cx = 12.7N/µm results, assuming

a maximum continuous force of half the load capacity. The radial, horizontal stiffness is

cy = 15.6N/µm and the thrust bearing stiffness is cz = 15.5N/µm, based on the same

assumption.

3.3 Sensor system for spindle position measurement

It has been shown in the review of AMB sensors and notorious high precision bearings

that the position sensors determine the precision of levitation significantly and that com-

mercially available sensors have critical limitations. The proposed design for the radial

sensors is based on linear incremental optical encoders as they are known from machine

tools to measure the position of a carriage relative to a slideway. In order to use them as

a radial position sensor a special scale has to be made that is not available on the market.

This section explains the operation principle of the scale in different types of encoders to

allow an estimation of the feasibility to machine a suitable scale.

3.3.1 Encoders based on the imaging scanning principle

A reading or scanning head counts periodic structures on a scale grating while reading

head and scale move relative to each other. The irradiance of a light source is modulated

by the scale and directed either at photodetectors behind the scale (trasmissive type) or at

photodetectors on the same side of the scale as the light source (reflective type) [81].
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Figure 3.2: Imaging scanning principle with reflective scale and single-field detector,
source: Heidenhain [24]

This so called imaging scanning principle is shown in figure 3.2 for a reflective scale.

The parallel light emanating from a light source with condensor lens passes through a

reticle with index grating and is then reflected by the scale. The index grating has an

interchanging pattern of transparent and absorbent or reflective fringes with a period of p

that cast lines of shadow on the scale. The scale has reflective and absorbent lines, too, so

that the light is modulated by a relative movement. During a movement of p the light on

the measuring standard changes from maximum to minimum and back [24, 30].

With ideally sharp fringes and a point light source the intensity on the detector would

follow a triangular pattern. But the light is blurred because of the size of the light source

and the reading head is designed in a way that the output signal is close to sinusoidal.

Furthermore, the index grating has a slightly different grating period from the scale or it
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is tilted a few degrees. Consequently, the irradiance is not homogeneous over the entire

sensor area but resembles a moving wave with longer wavelength than the scale grad-

uation but the same frequency. This effect is called Vernier magnification3 and allows

the recognition of speed and direction by CCD sensors in the detector when the scale is

moving. Sometimes the moving fringes with magnified grating period are referred to as

moiré fringes. The outputs are two differential, harmonic voltage signals for each encoder

with 90◦ phase difference. One period of the output signal represents a movement of p

[81, 118].

It is important to note that the reflective lines of the scale must be highly reflective

and they must reflect the light in the right direction. Contrast is created on the scale with

etching and vacuum evaporation techniques. For the substrate, materials with expansion

coefficients close to that of steel or cast iron are often used, e.g. steel, glass or glass-

ceramic [118, 24]. The imaging scanning principle is used for grating periods of 10µm

to 200µm [24]. At these structure sizes diffraction is only a side-effect and short optical

paths of the light keep it at a minimum [118, 81, 108].

A reading head communicates the incremental position with sinusoidal current sig-

nals, sinusoidal voltage signals, quadrature signals or with digital interfaces. In the

case of sinusoidal voltage signals the information is contained in the two 90◦ phase-

shifted, harmonic signals a and b. The amplitude of both signals is A, ideally A = 0.5V,

M = 2A = 1V, see figure 3.5. A high amplitude can only be achieved with high scale

contrast, so that the peak-to-peak amplitude M is an important performance indicator.

Depending on the exact reference a range of 0.6 ≤ M ≤ 1.2 [25] or 0.75 ≤ M ≤ 1.25 [24]

is rated as acceptable. The signal phase is reconstructed with the function α = atan2(a,b)

[24].

3The word Vernier magnification stems from to the French inventor Pierre Vernier (1580 - 1637) [81].
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3.3.2 Interferometric encoders

For finer grating periods the imaging scanning principle has two limitations: Diffraction

becomes more critical and the mounting tolerances of the reading head become too tight

to be practical. Encoders with grating periods of 8µm, 4µm and finer operate according

to the interferometric principle [24, 30] with diffraction gratings. The gratings modulate

the phase of the incident light and the light beam is diffracted into different orders. The

diffraction that is inevitable at finer grating periods is utilized to deliberately split the light

and the interference of different paths contains the position information. The reflective

Heidenhain encoders of interest are equipped with transparent phase grating reticles, re-

spectively reflective phase gratings on the linear scale [81]. Refer to [81] for the exact

operation of interferometric encoders.

no light

λ

θ1

p1/4λ

-1st order, 1st order,

0th order,

50 % irradiance 50 % irradiance

Figure 3.3: Scale for differential encoder with reflective phase grating

Figure 3.3 shows a reflective Lamellar grating that constitutes the scale4. The surface

has reflective stripes at two alternating heights. When this surface is illuminated with

monochromatic light (wavelength λ ) in the vertical direction, the light reflected at the top

4"Lamellar grating" refers to the rectangular cross section and the equal spacing between upper and
lower surface [74].
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surface interferes with the light reflected at the bottom. The step height of 1/4λ cancels

the light that would otherwise be reflected back into the light source (0th order) and makes

the 1st orders as bright as possible. The constructive and destructive interference is only

perfect if the height of the structure is exactly 1/4λ , for example 0.2µm. The grating

period p determines the angle of reflection:

nλ = psin(θn). (3.8)

The encoder only works with the correct angle θ1, so that exact depth and width of the

structures are both crucial [81].

3.3.3 Radial position measurement with incremental optical encoders

The idea is to make a special scale for the magnetic bearing with concentric, coplanar

circles on a disc, see figure 3.4. The encoders count the lines of the round scale as they

would otherwise count the lines of a linear scale. In contrast to a rotary encoder the lines

are not aligned in radial direction, but each line is a circle. A rotary encoder with four

reading heads could measure the radial position, too [75], but it has drawbacks: Firstly,

the speed of rotation is limited, even without run-out because counting mistakes must be

avoided. Secondly, the accuracy might deteriorate when the shaft rotates quickly, because

the output signals change constantly. Thirdly, four position signals have to be fused by the

control instead of two, which makes it more costly and the sensor noise adds. With linear

encoders and concentric circles the extrapolated line of measurement for each sensor goes

through the centre line of the shaft, so that its position can be measured without Abbe

offset [81]. The displayed disc should be mounted close to the actuators to avoid errors

due to bending modes of the shaft.

The suitability of conventional optical sensors for AMBs has already been discussed
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round scales

four encoder
reading heads

Figure 3.4: Proposed setup for radial spindle position measurement with incremental,
optical encoders

in section 2.4.4. The reasons why incremental, optical encoders could have the potential

to be better for a high precision magnetic bearing are:

• Signal distortions of the analogue output voltage may have less effect because the

span from minimum to maximum output voltage only represents 1/2p, not the en-

tire measurement range.

• Linear optical encoders have a high accuracy and linearity of up to 5ppm at 1m

range. That is about 200 times better than capacitive sensors [32].

• Encoders have been widely used in machine tools since the 1950s and they are

highly optimized [32]. They are cheaper than gap sensors, see prices below.

• Optical sensors have a high bandwidth, e.g. 400kHz, see also manufacturers’ web-

sites and at the same time a high resolution [110].

• They are not sensitive to external electromagnetic fields that are present in magnetic

bearings and interfere with ordinary gap sensors [110, 115]

• The simultaneous evaluation of several square millimetres of scale (14.5mm2 for

the LIDA 48) provides spacial averaging of statistically distributed scale errors [24,
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118].

• The effect of thermal drift is reduced because the scale is separated from the elec-

tronics by an air gap.

• Assumption: Thanks to the incremental principle, the range of movement can be

wider than with gap sensors while maintaining a high resolution.

It is possible to extend the described arrangement by cutting gratings into the cylin-

drical surface of the disc, too. This would add the capability to measure the axial position

of the spindle, but the mounting tolerance of the reading head would limit the radial range

of movement. The distance between reading head and scale is specified and must be kept

to a tolerance of ±250µm or ±100µm, depending on the exact type [24]. This tolerance

always restricts the movement in one direction. The proposed principle is therefore only

applicable in applications where either the radial or the axial vibrations are below these

tolerances. For the printing roller only radial run-out is supposed to be compensated and

fast axial movements are not planned. The axial position measurement would also bring

about a high Abbe offset and possibly difficulties to reference the incremental sensors.

For these reasons the axial position still has to be measured with for instance capacitive

sensors but that could be possible as the range is not wide.

3.3.4 Grating period and scale type

As a next step the grating period in accordance with the scale type (imaging scanning

principle or interferometric) is chosen. As explained in section 3.3.2 diffraction grating

scales for interferometric encoders are only functional if the structures have the right

depth and the right widths. With a grating period of 4µm, ie. 2µm width of the grooves

and 200nm depth the dimensions are very small for a turning process [37]. If the grooves
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were cut into a flat surface, it would be difficult to maintain a constant depth of 200nm in

spite of thermal spindle growth. Adjusting the depth of a cut more precisely than to 1µm

requires special equipment or test runs to monitor the exact depth [74].

This only leaves encoders based on the imaging scanning principle. There are two

exposed linear optical, incremental encoder types from Heidenhain based on the imaging

scanning principle: AK LIDA 48 and AK LIDA 285. Their characteristics are summarized

in table 3.1 [24].

Table 3.1: Characteristics of two Heidenhain encoder types with imaging scanning prin-
ciple, table based on information from Heidenhain [24]

Type Grating p Smallest Deviations Mounting Price
period measurable per signal tolerance

step period
LIDA 48 20µm 0.01µm or 0.05µm ±0.2µm ±100µm £315.00
LIDA 28 200µm 0.5µm ±2µm ±250µm £195.30

The scale for the LIDA 28 can be machined with less delicate tools and promising re-

sults are thus more likely. It also allows the detection of 10 times faster radial movements;

the speed limit is exceeded when the relative movement reaches half a signal period per

sampling delay or more. Assuming a sampling frequency of 10kHz this is equivalent

to 1,000mm/s average speed for 0.1ms in case of 200µm grating period or 100mm/s

for 20µm grating period. This limitation, however, is irrelevant because the spindle only

moves radially to compensate the roller run-out. According to section 1.2 the ultimately

expectable radial speed is 50µm · 2π · 5Hz = 1.57mm/s. The effect of high frequency

vibrations in the controlled position should be less critical because these have a small

stroke.

5The last digit represents the way of internal interpolation. Only AK LIDA 48 and AK LIDA 28 output
the analogue signals directly and don’t interpolate internally. Analogue output signals are needed for the
experiments.
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Three reasons suggest the use of the LIDA 48. Firstly it has the smaller specified mea-

surement steps, small enough to fulfil the accuracy requirement of the magnetic bearing.

Secondly with the ten times smaller grating period more grooves are measured at the same

time, which strengthens the spacial averaging effect [118]. Thirdly, noise caught by the

signal cable and errors of the analogue circuits and the ADCs are less amplified and have

less influence than with 200µm pitch. This third aspect can be visualized in a calculation:
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Figure 3.5: Incremental encoder output signals a and b with errors (qualitative figure).
The grating period is 200µm.

Each output signal a and b is to some degree disturbed and distorted, see figure 3.5.

In order to calculate the error in the phase α in terms of the voltage errors of a and b, the

derivative of α = atan2(a,b) with respect to a and b is evaluated:

∂α

∂a
=

∂

∂a
arctan

(a

b

)

=
b

a2 +b2
, (3.9)

∂α

∂b
=

∂

∂b
arctan

(a

b

)

=
−a

a2 +b2 . (3.10)
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The position error related to the error in a only is

∆x(∆a) =
p

2π

∂α

∂a

∣

∣

∣

∣

OP
·∆a (3.11)

and for b respectively.

When both signals together are considered, two cases must be distinguished: The first

case deals with the noise propagation from signals a and b to the position noise. ∆a and

∆b are standard deviations of the noise that leads to the coupled position noise ∆x with

∆x(∆a,∆b) =
p

2π
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assuming uncorrelated disturbances [50]. Assuming further that ∆a = ∆b and plugging

equations (3.9) and (3.10) into (3.12), the resulting noise turns out to be independent of

the signal angle:

∆x(∆a = ∆b) =
p

2π

∆a

A
. (3.13)

Note: a = cos(α)A, b = sin(α)A.

The second case of interest describes the maximum position error resulting from a

certain offset in a and b of ∆a and ∆b respectively. In this case the error influences are

added [97]:

∆x(∆a,∆b) =
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When for example ∆a equals ∆b, then the resulting position deviation

∆x(∆a = ∆b) =
p

2π

∆a

A
(sinα − cosα) (3.15)
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is still a function of the signal angle α . The maximums and minimums, both of interest

coincide with the bisectrix:

∂

∂α

(

∆a

A
(sinα − cosα)

)

=
∆a

A
(sinα + cosα)

!
= 0 ⇒ α = z ·π+

3

4
π. (3.16)

with z ∈ Z. This case is relevant for the distortions caused by non-zero-free signals and

for the peak-to-peak error [97]. Both cases show that a smaller signal period reduces the

influence of noise from the analogue electronics and the ADC. A high signal amplitude

has the same effect.

One disadvantage of a smaller grating period, apart from the difficulties in machining

it, is the tight mounting tolerance. Decisive is the tolerance for the distance between read-

ing head and scale as indicated in table 3.1 and the parallelism tolerance. Furthermore,

when the curved scale moves radially in the direction perpendicular to the measurement

direction of a certain encoder, the reading head sees a rotation of the scale lines. This

misalignment is labelled xc in figure 3.6.
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Figure 3.6: Theory of misalignment between scale and reading head reticle
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The moiré fringe effect degrades when reticle and scale fringes are rotated against

each other, because the contribution of each groove to the output signal is phase-shifted

by a different angle. Groove n has approximately the phase ϕn(x):

ϕn(x) =
2π

p

√

(Ri +np)2 − x2 (3.17)

Ri is the radius of the innermost groove that is evaluated. Assuming that m slots6 with a

length of lx in the reticle contribute equally to the measured output signal, then the voltage

amplitude A can be estimated:

A =
1

mlx

∣

∣
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·Amax. (3.18)

This estimate might differ from the reality because the reading head may have addi-

tional, unknown features. Especially the number of slots m and the length lx are unknown

so that a precise calculation cannot be made at this point but it is obvious that the correct

alignment is more critical for higher numbers of slots and a smaller grating period p. How

far the signal amplitude is actually affected by the orthogonal movement should be deter-

mined in experiments for both grating periods because this characteristic is important. It

limits the measurement range of the radial sensor system. It shall also be mentioned that a

false measurement of approximately Ri+ pm/2−ϕm/2(xc) · p/(2π) occurs, but this effect

is known from gap sensors in magnetic bearings, too; they also measure a curved target.

6For simplicity only four slots and four grooves are shown but in reality the number is higher.
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3.4 Controller hardware

For the controller hardware especially powerful equipment is required. The number of

analogue and digital interfaces is higher than usual because of the redundant position

measurement. At the same time a high sampling rate must be achieved. This section

first gives an overview of available systems, without considering the project requirements

in detail. Later, these requirements are stated and finally a decision among the most

promising candidates is made.

3.4.1 Overview of possible systems

As in any other application the control of a magnetic bearing can be implemented either

with analogue or with digital hardware. If the sensor inputs and the control outputs are

analogue voltages, an analogue control with very short delay time and low manufactur-

ing cost can be an asset [11]. The first active magnetic bearings were based on analogue

controllers with tube amplifier [55]. However, for a research project the lack of inter-

changeability in a hard-wired electronic circuit would become a problem. Possibilities of

analogue or hard-wired controllers are therefore disregarded.

Digital control systems can be assigned to the groups microprocessor, digital signal

processor (DSP), field programmable gate array (FPGA), personal computer (PC) and

software-in-the-loop / rapid prototyping equipment. Intersections and ambiguities are

possible, but typical characteristics of these groups are still evident as follows.

General purpose microprocessors and microcontrollers are cheap and easy to buy.

Evolution boards for rather powerful ARM microcontrollers are available for less than

£20 for example from STMicroelectronics, but such a platform does not provide enough

analogue field connections with the required update rate, noise rejection and resolution.

The possibilities to record experimental data are restricted.
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In [11] the digital signal processor (DSP) TMS320C25 from Texas Instruments demon-

strates the performance of DSPs in a 5-DOF AMB with 15kHz sampling frequency. The

paper concludes that DSPs with an instruction set optimised for data processing and

pipelining are better suited than general purpose microprocessors and that they allow a

reasonable algorithm complexity.

To ease the development with modern, very complex DSPs the company Visual So-

lutions, Inc. in Massechusetts distributes the software VisSim, a visual block diagram

programming language that is translated into C-code for one of the supported signal pro-

cessors. The software allows simulation, code optimisation and debugging [1]. With this

software the problem of building a reliable, high quality hardware platform is not solved.

Also, the proprietary and rare programming language may have mistakes and limitations.

The user is dependent on the vendor [48].

For high speed parallel data processing FPGAs are an alternative to DSPs. The recon-

figurable hardware of the FPGA combines the advantages of parallel, low-latency hard-

ware processing with the interchangeability of microprocessor programmes. FPGAs are

available in different sizes and complexities and they can be found with integrated DSPs,

microprocessors, memory blocks and calculation units [121, 5]. Analogue voltages have

to be connected via external DACs and ADCs.

FPGA and DSP evolution boards are available for example from the company orsys,

but there are not enough analogue connections on these boards. The platforms "X3-

SD16" and "X3-Servo" from the company Innovative Integration are based on Spartan3A

FPGAs from Xilinx [121]. Both boards are Matlab/Simulink programmable, avoiding

time-consuming HDL implementations, and prices are around £8,000 including software

to enable most of the functionality. Additional software has to be purchased from Xil-

inx for translate, link, place and route and the designer needs experience in a hardware

description language, not only in Matlab [49]. The build time is also too long to be practi-
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cal: approximately 12 minutes for a 2.4GHz PC when the FPGA is 85% full. After each

power-up the configuration has to be reloaded because there is no non-volatile memory

on the boards [49].

Personal computers (PCs) are of interest if they have a real-time extension 7. This

solution makes use of the very powerful and comparatively cheap PC hardware in com-

bination with analogue and digital input and output plug-in cards as they are available

for example from Meilhaus Electronic and Innovative Integration. Linux or Windows

CE are popular operation systems, Linux in combination with RTAI, Xenomai, Embedix,

RT-Linux and others [1]. There are also independent, commercial real-time operation

systems such as Lynx, QNX and VxWorks [91].

The suitability of RT-Linux for a magnetic bearing control with state control with 45

states has been investigated in a case study in [48]. Humphrey proves the predictability

(ability to meet sampling deadlines) and demonstrates a cycle-time of 125µs in an AMB

control. Petzold successfully builds a magnetic bearing based on RTAI [91]. The real-

time problem can be overcome, but the expense of work for programming is immense and

modifications of the underlying system may become necessary [48, 91].

Systems for software-in-the-loop development or rapid prototyping are characterized

by their especially powerful hardware and their ease of programming, debugging and

connecting external signals [1]. Unfortunately, these systems are very expensive, see

below.

An example of rapid prototyping equipment is the modular product family "NI Com-

pactRIO" from National Instruments Corporation. The company dSPACE [26] also pro-

vides a range of modular and single-board architectures. dSPACE products are pro-

grammed in Matlab/Simulink and for real-time monitoring and data recording dSPACE

7PC does not neccesarily imply an x86 architecture. There is a plethora of for example ARM boards
with Linux operation system. None of them shall be cited here because the range is too numerous to give
an exhaustive overview.
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offers its own data visualisation software. For the magnetic bearing control either a well

equipped modular system (about £25,000) or one of the most powerful single-board

platforms had to be employed. dSPACE hardware is often used for AMB control, e.g.

[69, 68, 98]. Systems from the Swiss company Speedgoat GmbH [109] fit into the same

category8. The modular concept is based on x86 computer hardware for the main con-

troller, but the operation system is not Windows or Linux, but "Simulink Real-Time ker-

nel" based on RTOS-32 from the company On Time. IO modules are available for ana-

logue signals, digital, general purpose lines, serial protocols, PWM and others. The use

of reconfigurable FPGAs in some of the IO modules makes it possible to change the set

of supported protocols without buying new hardware [109].

It can be inferred that rapid prototyping equipment is the most recommendable choice

if ease of development and interchangeability have a higher priority than a low price

for the hardware. Also, powerful FPGA boards are not cheap either. Rapid prototyp-

ing equipment provides a very powerful solution regarding connectivity and CPU power

and it provides easy methods to visualize and store date. Before single products can be

evaluated, the requirements have to be defined.

3.4.2 Requirements for the controller hardware

A development-friendly AMB control for the roll-to-roll machine must meet the following

requirements9:

1. A servo update rate of 10kHz: In section 2.3.2 the significance of a high update rate

has been explained. Magnetic bearings often have 10kHz [69, 43, 11, 11, 68, 98, 4,

41] or 5kHz or even 20kHz [91, 64, 60, 124] update rate. Is 5kHz sufficient in this

8Speedgoat is an offspring of MathWorks and supersedes the "xPC-Target-Box", an obsolete MathWorks
product [1].

9These requirements apply to the magnetic bearing for the R2R machine and they are independent of
the actually achievable objectives for this research project.
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application? This question can be answered by budgeting the phase margin [50].

The radial AMB with a maximum stiffness of 15.6N/µm moves a mass of 1/2m =

100kg. The intersection frequency is fc = 1/(2π) ·
√

2cy/m = 63Hz and the open-

loop unity-gain cross-over frequency is two times more [81]: fd = 2 fc = 126Hz. At

this frequency the phase lead should be 30◦ or more [107]. Assuming the derivative

feedback acts from 1/3 fd corner frequency and the P(I)D control is tamed at 3 fd,

as recommended in [81], then a phase of 72◦ can be attributed to the PD control

at 126Hz and −18◦ to the taming action. A sensor amplifier10 with a first order

low-pass filter at 18.45kHz causes further −0.4◦ and a power amplifier with 2kHz

bandwidth −3.6◦ at 126Hz. With 5kHz sampling frequency the controller delays

the signal by approximately 2 ·200µs= 400µs≡−18.1◦ [10]. Everything together

leaves 31.9◦ phase margin. That is just enough, but it leaves no safety for further

unconsidered delays and the control hardware has a considerable contribution to

the overall phase lag. 10kHz is therefore safer and might even allow to enhance the

stiffness slightly.

2. Min. 16 differential analogue inputs with min. 15 bits resolution and at least 10kHz

sampling rate. Eight of them are used to read the four encoders with two ana-

logue outputs each11, five measure the absolute position of the shaft plus potentially

one compensation measurement12 and two measure the temperature of the bearing

housings. The temperature must be monitored to avoid overheating when the water

cooling beaks down. The minimal sampling frequency equals the control update

frequency of 10kHz. 15 bits resolution are necessary for the absolute sensors to

10The sensor amplifier is necessary to read the encoders, see section 4.1.2. Gap sensors may have ap-
proximately the same cut-off frequency.

11Only the signals a and b are used, because reference and limit switch are not supported by the scale.
12The temperature drift of gap sensors can either be compensated with two opposing sensors for each

channel or as suggested here with one additional reference sensor with known gap size.
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achieve a resolution of at least 50nm at 1mm range.

3. Min. 10 analogue outputs with at least 10kHz sampling rate and ±10V output

range for the ten actuators. A higher sampling rate than 10kHz could be advan-

tageous to allow instant output changes after the calculation to shorten the overall

delay time. ±10V is the input voltage range of the amplifiers [3].

4. Min. 1 incremental encoder interface input for one rotary encoder, fast enough

to capture harmonic or square wave signals with 115kHz. The current angular

encoders of the axis13 have 2,300 lines on the circumference and rotate at a maxi-

mum speed of 300rpm. Currently, the encoders output analogue 1VPP signals, but

the control interface needn’t necessarily be analogue. Interpolation is not necessary

because the signal is only used for the magnetic bearing control, not for the rotary

motor control.

5. Control of all actuators in one unit to allow for centralized control. This denies

distributed, possibly easier solutions.

6. Hard real-time capability and reliability.

In addition to these strict requirements some additional functions would be useful

such as an interface to the superordinate machine control. Also, the system should have

non-volatile memory for the programme so that it can run stand-alone without the host

computer and start automatically after power-up. Alternative requirements, for example

external interface electronics for the encoders with quadrature output, could be formu-

lated, but this set is considered most promising.

13These are two optical angular encoders with 150mm nominal diameter, company Renishaw, type
RESM20USA150. They might be replaced by different encoders later, see section 3.5.
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3.4.3 Introduction of possible systems for the AMB control

The vast amount of companies and products can be narrowed down to three most promis-

ing solutions that meet the requirements best:

1. The single-board hardware "MicroLabBox" from dSPACE is based on a dual-core

processor with 2GHz CPU speed. It has its own mobile housing with different

options for the connectors. It can run the programme in stand-alone operation,

ie. without the host computer and from its own non-volatile memory. It is Mat-

lab/Simulink programmable and shipped with software for graphical run-time mon-

itoring of variables. In addition to the required interfaces it incorporates a sensor

power supply and UART and CAN interfaces [26]. These might be useful for the

communication to the machine control.

2. The DS1103 from dSPACE is also a single-board hardware, but it consists of several

pieces of hardware. The main controller board with 1GHz PowerPC and slave-DSP

TMS320F240 is supposed to be connected to the host via ISA. If the host computer

has no ISA slot, an extension box for the DS1103 PCB is connected to a PCI card by

means of an optical cable. The DS1103 cannot run stand-alone. The analogue and

digital IOs are accessible via BNC and sub-D connectors on a separate connector

panel. Considerable digital interfaces for the communication to other systems are

SPI, UART and CAN [26].

3. A certain configuration of modular hardware from Speedgoat depicts the third op-

tion. It is the "performance real-time target machine" with the IO modules "IO106",

"IO111" and "IO317". Digital interfaces are implemented on the FPGA-module

IO317. The other two modules are responsible for analogue inputs and outputs.

The system is programmable in Matlab/Simulink.
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These general characteristics make all three systems appear well suited. The next sec-

tions analyses which system meets the exact specifications, especially the IO requirements

best.

3.4.4 Final decision

Table 3.2 compares the options introduced in section 3.4.3 with respect to certain require-

ments including prices and lead times14.

Table 3.2: Listing of the control hardware specifications and three potential platforms
including prices and lead times [109, 26]

Criterion Requirement MicroLabBox DS1103 Speedgoat
Analogue 16×15bits, 8×14bits, 16×16bits, 16 diff. or

input 10kSPS, 10MSPS+ 1MSPS, 32 single-ended,
channels simultaneous 24×16bits, multiplexed, 16bits,

1MSPS, single-ended up to 200kHz,
simult., diff. simultaneous

Analogue 10 with 16×16bits, 8×16bits, 16×16bits
output min. 10kSPS 1MSPS, 5µs settling 300kSPS,

channels ±10V range, ±10V, time, ±10V, ±10V,
simultaneous simultaneous simultaneous

Encoder input 1, digital or 2, digital 6 digital, 3, digital,
interfaces better analogue 1 analogue 10MHz

1VPP, 115kHz 1VPP, 600kHz
Controller 10kHz unknown 10kHz 20kHz
update rate

Price not defined £11,292 £7,644 CHF25,135.2
≈ £17,565.25

Lead time - 6−10 weeks 3−6 weeks 4 weeks

All three products satisfy the analogue input requirement. On the performance: The

DS1103 multiplexes four internal ADCs to read 16 analogue inputs, but the sampling rate

is 100 times higher than the minimum - high enough for multiplexing. The MicroLabBox

14The prices and lead times are based on quotations and include 20% VAT and shipping.
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has differential inputs, but there is only one BNC connector per channel, not one for plus

and one for minus. The second criterion is met by all except the DS1103. The limitation

to eight outputs can be conquered with an additional analogue circuit, if the method of a

constant bias current is applied as described in section 2.2.3. With this method only eight

degrees of freedom are necessary to drive ten coils15, but the interchangeability would be

restricted. All products have the required number of encoder inputs, but for the Micro-

LabBox the speed is not known, because the product is new and detailed information on

this interface is not available yet.

The estimate of the update rate for the Speedgoat equipment is based on documenta-

tion from Speedgoat [109]. The IO modules IO106, IO111 and IO317 all cause a latency

depending on the amount of channels. These add to the kernel and algorithm delay. Table

3.3 shows the calculation of the predicted cycle time.

Table 3.3: Estimate of the cycle time for the proposed Speedgoat product, with nChannel

being the number of signals generated or captured with the IO card

Instance Function Formula nChannel Time slice
IO106 Analogue in 7.2µs+1.4µs ·nChannel/2 16 18.4µs
IO111 Analogue out 1.0µs+0.2µs ·nChannel 10 3.0µs
IO317 Digital in/out 6.4µs+3.2µs ·nChannel 1 9.6µs
CPU - - - 8.0µs
Sum - ∑ - 39.0µs

With a total of 39µs and a few percent safety 20kHz update rate should be possible.

The sampling rate of 10kHz for the DS1103 can be estimated by comparing similar

projects with the same control hardware [69, 68]. In [98] a "DS1005 PPC Board" from

dSPACE is used for the control of a magnetic bearing. It utilises the same CPU (PowerPC

750GX and 1GHz) as the DS1103. A controller update rate of 10kHz is reported. For the

15The bias current is assumed to be the same value for the right radial bearing and the left radial bearing,
whereas the horizontal and the vertical bias current may differ.
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MicroLabBox no evaluations as magnetic bearing controller are available yet, but com-

pared with the DS1103 the higher CPU power (2×2GHz in contrast to 1×1GHz) and the

high sampling rates of the simultaneous DACs and ADCs suggest a higher performance.

The degree of satisfaction of the three products varies. In the evaluation chart in table

3.4 a value of 3 represents the highest merit.

Table 3.4: Evaluation chart for the three alternative controllers

Criterion Weighting MicroLabBox DS1103 Speedgoat
factor

Analogue IOs 0.3 2 1 3
Digital IOs 0.05 2 2 3

and communication
CPU performance 0.15 2 1 3
Software usability 0.1 3 3 2

Price 0.3 2 3 1
Availability 0.1 1 3 2

Sum 1.0 2.0 2.05 2.2

According to table 3.4 the Speedgoat product has the highest merit (2.2). The main

problem with the MicroLabBox is its availability (not even ten weeks lead time can be

promised) and the DS1103 has the limitation of only eight analogue outputs. A discount

of 30% was negotiated and the Speedgoat product was bought.

3.5 Mechanical design of the magnetic bearing axis

A pivotal contribution to the discussion if magnetic bearings are applicable to R2R print-

ing is the mechanical design of the printing roller axis. A suitable arrangement of com-

ponents would combine all the necessary functions with good dynamic properties. This

section highlights some basic design considerations and makes a suggestion for a mag-
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netic bearing layout.

3.5.1 Boundary conditions

Boundary conditions for the design arise from the dimensional specifications in section

1.2, from the sizes of the actuators and sensors shown in figure B.1 and the required

overall functionality. The following functions have to be incorporated into each of the

two bearing blocks on either side of the printing roller:

1. One radial actuator so that together with the other bearing block four degrees of

freedom are controllable

2. At least one thrust bearing actuator for the entire axis

3. Radial position measurement in two directions with linear optical encoders

4. Inductive radial position measurement with the inductive sensors supplied by Fos-

han Genesis, see figure B.1. This additional position measurement is necessary for

the commissioning because the encoders don’t yield the absolute position and they

only function when the axial position is already in the valid range.

5. Two sets of touch-down bearings. When the printing roller is changed it is required

to rotate each part of the spindle independently, which would not be possible with

only one touch-down bearing on each side of the roller.

6. The same torque motor as in the hydrostatic design

7. An angular encoder for the motor control

8. An axial flange to connect the printing roller including its trunnion
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9. A water cooling system for the AMB that can accommodate the energy dissipation

of approximately 500W

10. A hollow shaft for the connection of the printing roller water cooling

The underlying postulate of the design is that radial movements of the spindle are in

the range of hundred micrometers or more while axial movements are restricted to a few

micrometers. Far axial movements as they could be caused by thermal expansion would

lead to layer registration errors in the printing process and must be avoided by precise

temperature control.

The arrangement of components should allow easy replacement of the touch-down

bearings without the need to take everything apart and to realign it afterwards. Moreover

the radial position sensors should be as close to the radial actuators as possible because of

the bending nodes that would otherwise fall between the actuators and the non-collocated

sensors [35, 11]. Radial position sensors and the radial actuator should also be close to

the printing roller because that is the part of the axis that has to be controlled precisely.

It could even be argued to have the encoder gratings on the printing roller itself which

would make the calibration easier. One disadvantage of that solution would be that the

profile had to be renewed each time the structures on the printing surface are resharpened

as the whole printing roller is submerged for the coating. An other disadvantage is the

increased distance between sensors and radial actuators.

The distance between axial sensors and axial actuator is considered less critical be-

cause the stiffness in longitudinal direction of the shaft is usually high, resulting in high

frequencies of longitudinal resonant modes. It is, however, important to minimize the dis-

tance between axial sensors and the printing roller to eliminate the influence of thermal

expansion of the shaft inside the bearing. Finally the axial sensors should be installed in

line with the axis to avoid the Abbe offset.



74 CHAPTER 3. MAGNETIC BEARING DESIGN WORK

3.5.2 Proposed arrangement of components

Figure 3.8 shows the proposed integration of components. It is a section view of the

Siemens NX magnetic bearing model with horizontal viewing direction. A different cut

through the same assembly is shown in figure 3.9. The exterior dimensions are that of a

cuboid, only the motor housing is round. Figure 3.7 displays the assembled axis including

the printing roller designed by Roger Read from Cranfield University.

2 301.6,

Figure 3.7: Printing roller axis with magnetic bearings

The radial actuator with inductive sensor on one end and radial encoders on the op-

posing end is located close to the trunnion that is connected to the printing roller to allow

for accurate position control. Because the inductive sensors are only used for the com-

missioning before the more precise radial encoders take over, they are located at the end

of the radial bearing that is further away from the drum.

Even closer to the printing roller is one of the touch-down bearings. The reason for the

touch-down bearing to be at the end of the housing is that it must be accessible later. When

this touch-down bearing is changed, trunnion and printing roller have to be disconnected

and when they are reconnected, the run-out may have changed. This is a drawback of

having two sets of touch-down bearings in two different axial positions; Only by opening
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the axis the inner touch-down bearings can be serviced.

For ideal alignment the radial encoder in figure 3.8 can be adjusted in three degrees

of freedom. The mounting plate on the outside of the housing allows adjustment of the

encoder ride height, horizontal positioning and rotation about the vertical axis. Radial ad-

justments are not necessary. Respective conditions are valid for the second radial encoder

that is visible in the section view 3.9.

The parts that needn’t be close to the roller are the axial bearing, the outer touch-

down bearings, the motor and its rotary encoder. In this design the thrust bearing actuator

comes next. The main reason is its relatively wide shaft diameter. The motor with a shaft

diameter of 50mm would weaken the shaft if it was not at the far end of the construction.

With the proposed order the shaft is getting increasingly strong from the motor to the

printing roller. The trunnion, which was noticeably thin in the old design, had to be

redesigned. Changing the touch-down bearings is possible by removing the motor and its

housing. For performance reasons the longer, axially constrained touch-down bearing is

further away from the printing roller.

Instead of the ordinary construction for the axial bearing with two opposing coils

and the thrust disc in between, the solution shown here can only move the rotor in one

direction. Together with the magnetic bearing on the other end of the printing roller

both directions of movement are essentially possible, but the implications of this solution

are still critical. For example the construction of the printing roller must have a certain

strength to bear the continuous axial forces of the bias current control. The reason why

only half a thrust bearing is located on either side is that the construction should be as

short as possible. An additional axial stator would make the housing about 42mm longer

and that would not only cause a space problem in the machine but it would also lead to

excessive radial vibrations of the torque motor rotor. With a complete axial bearing on

only one end of the roller the two housings would look different which is not advisable for
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a cost-effective production or alternatively one of them would be hollow where the axial

bearing is missing. For precise axial positioning it may also be better to have a completely

symmetric system, not only sensors in symmetric places [108].

At the very end is the angular encoder for the motor control. Concentricity adjust-

ments of the angular encoder can be done when everything else is assembled and the

magnetic bearing is in operation, but it has to be readjusted each time the printing roller

is changed. To save time it is beneficial to have a rotary encoder with wider run-out toler-

ance. That is the reason why the original encoder of the hydrostatic design with radial air

gap has been replaced by this encoder (ERO 6000 from Heidenhain [23]) with axial air

gap. The axial mounting tolerance of ±100µm is narrow, but the radial run-out tolerance

is extended. This is consistent with the posit that the axial position is controlled precisely

and only radial motions occur. In order to maintain good accuracy in spite of concentric-

ity errors of the encoder, two reading heads are mounted on opposing sides of the scale,

one on top and one below. The signals of the two are averaged later.

In figure 3.9 the capacitive sensors for axial position measurement are shown. They

are close to the printing roller, which is good, but they are not in line with the axis, because

a hollow shaft is required for the water cooling of the printing roller. As a workaround

two capacitive sensors are averaged. Their target surface is the encoder disc that can be

cut level and smooth when the structures on the other side are cut, so that a good target

surface is achieved without much additional effort.

Suitable capacitive probes would be CS08, CS1, CS1HP or CSE1 from Micro-Epsilon

or the P016-6032 - C8-3.2 -2.0 from Lion Precision [70] with 250 to 1,500µm range and

20nm RMS resolution at 10kHz bandwidth. The price is about £15,000 for four sensors.

The fixture with a set screw as shown is the preferred way of mounting capacitive sensors

but the screw should be from plastic and when the alignment is complete it should be

supported by low-shrinkage epoxy [108, 78]. There are capacitive sensor systems that
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don’t require target grounding but the sensor channels must be synchronised [78].

3.5.3 Details and materials

The material for all parts of the casing and the shaft is aluminium. The casing benefits

from the high thermal conductivity and the shaft from the low weight of aluminium. The

weight reduction is reinforced by the centre hole in the shaft. Aluminium is also quick

to machine and easy to buy in large blocks as required here [129]. There are grades

of aluminium with low internal stresses and good plasticity [74]. Slots in the sockets

make up for different thermal expansion of the aluminium and the stone base underneath

although the temperature should not normally vary at any time.

The radial bearing journal is supposed to be made from non-grain-oriented silicon-

steel as it is an affordable material with low anisotropy, reduced eddy current losses and a

thin hysteresis curve [39]. Grade M290-50A has the same high saturation density as the

stator material [83]. In general low carbon steel with less than 0.001% carbon, cobalt-iron

or nickel-iron could be used instead of silicon-steel, as long as the saturation induction is

at least as high as in the stator material. However, silicon-steel is an affordable choice if

no special requirements like very high saturation polarization, high initial permeability or

particularly low hysteresis are a concern. Silicon-iron has a higher breaking stress than

pure iron [20, 39]. In contrast to the radial rotor the axial rotor should not be laminated

because it does not see a changing field and stability is of importance. The inductive

sensor target is also from silicon-steel and can be made from the same sheets as the radial

rotor. The sensor supplier Foshan Genesis [31] recommends titanium rings on both sides

of the iron ring.

The auxiliary bearings have tolerance rings around the outer ring as elastically soft

support to limit the load and frequency of the whirl motion when the shaft drops. The
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massive aluminium structure around still maintains integrity of the bearing and precise

alignment. This is recommended by Schweitzer and Nordmann [10]. Rolling element

bearings together with damping rings absorb the energy of a de-levitation and avoid ex-

citation of bending modes by damping. The tolerance rings from spring steel are the

preferred option for heavy rotors. For light rotors o-rings made from fluor-kautschuk can

be used instead [10].

The water cooling consists of several holes that go all the way through the aluminium

and are sealed by plugs. They intersect with each other to create three continuous pipes

of 960mm length. These can be connected in parallel or in series to work with different

chillers.

3.5.4 Limitations of the design

Reflecting on the boundary conditions from above it must be noted that most of them have

been accomplished but not all of them: The axial position is not measured in line with the

shaft and the length of the whole composition is longer than allowed by the specifications

and much longer than the hydrostatic bearing. Drawbacks of the design are also the

high cost of the capacitive sensors, the limited graduation accuracy of the rotary encoder

and the weakening of the housing because of the big scale for the radial encoders. The

design prompts that the integration of radial sensors is more difficult for encoders than for

ordinary gap sensors. The temperature control of the printing roller must be precise and

safe to avoid thermal expansions of more than the encoders’ mounting tolerance. Details

of the design like tolerances and the exact procedure of the alignment and commissioning

are not defined yet. It may be necessary to validate the design with FEA tools and if it

turns out that the printing roller construction is too weak, it needs modifications, too. The

water cooling for the printing roller is still to be designed.
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Figure 3.8: Elevation of magnetic bearing spindle for patterning roller axis
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Figure 3.9: Section view of magnetic bearing spindle for patterning roller axis
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Chapter 4

Experimental procedure

The description of experimental procedures is divided into two parts: firstly, arrangements

and procedures with linear encoders and concentric, mechanically ruled scales, secondly,

the magnetic bearing experimental test rig.

4.1 Encoder gratings experiments

The concept to measure the radial position of the spindle with linear, incremental, optical

encoders and turned scales has been described in section 3.3. The aim of the experiments

is to find a process to create a suitable profile and to measure its performance.

4.1.1 Replication of gratings by machining

The production of scales with conventional lithography, etching and deposition techniques

is optimized for each encoder type and brief descriptions can be found in [24], but the

required round scale with concentric, coplanar fringes is not readily available. A prototype

made with conventional technologies would require "extremely specialized and costly

equipment and procedures" [21] p. 334 and it would be difficult to make the patterns
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concentric with the axis. Also, the exact process parameters for photolithography, etching

and deposition are not published but company specific know-how. On the other hand,

ruling gratings, that means cutting grooves into a flat surface with a diamond tool or other

hard material is not an outlandish technique to produce gratings and it finds application

in spectrometers and encoders of capacitive or optical type [12, 67].

The history of ruling machines used for phase gratings dates back to the nineteenth

century where Fraunhofer made diffraction gratings with a ruling machine for spectral

analysis with an optical spectrometer [12]. These first diffraction gratings were made with

randomly chosen diamond splitters and the characteristics couldn’t be shaped actively

before the 20th-century. The precision of the groove spacing was only as good as the lead

screw, which couldn’t be manufactured more precisely than to ±200nm. This limitation

was only overcome in the second half of the 20th-century with feedback position control

[74].

Today, a favoured profile for mechanical ruling is the blazed grating, grooves with

triangular footprint placed close to each other so that the original surface completely van-

ishes and a saw-tooth or ladder structure is created [54, 21, 67]. Sinusoidal profiles are

also feasible with CNC milling machines [37]. These two profiles are designed in a way

that they can be cut with a tool that is much bigger than the resulting grooves. Blazed

gratings with 4,000 grooves per mm have been reported [74]. Because the entire surface

is reshaped when cutting sinusoidal grooves or blazed gratings, it can be anticipated that

inaccuracies caused by thermal spindle growth, non-perpendicular machine axes, work-

piece and machine distortions are eliminated.

Examples of more recent blazed gratings are the one reported by Davies [21] cut into

6061 aluminium with a grating period of 151.05µm or the experiments conducted in [54]

to optimize geometrical parameters for a cutting process with 12.66µm graduation period.

An example of a sinusoidal profile is the grid cut into an aluminium surface as a 2D scale
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for position measurements with an incremental encoder [37]. This encoder is based on a

deflected laser beam that is detected by position sensitive devices. With a pitch of 100µm

and a special, round profile an ordinary radius tool with 1mm nose radius can be used for

the entire surface [37].

Regarding the material, aluminium and in particular 6061 aluminium seems to be a

common choice for gratings that needn’t be highly wear resistant. Aluminium is reflective

over a wide range of wavelengths and the formation of Al2O3 on the surface only reduces

the reflectivity below 200nm and this limit can be extended with MgF2 or LiF coatings.

Aluminium combines low internal stress with good deformability. Aluminium of the

grade 6061 wears the diamond tool less than aluminium with higher concentrations of

impurities. Other materials are only possible if they are diamond turnable and highly

reflective. Gold and alloys of tin and copper [67] are sometimes preferred, but 95% of

all gratings are made from aluminium [74, 12]. From the machining point of view and

especially when feature fidelity is considered, nickel-phosphorous (NiP) seems to be a

good material, too [123]. The experiences made by Davies with aluminium prove the

suitability of aluminium. The burr formation is not severe [21].

It can be concluded that the history of mechanical ruling dates back to the 19th-century

and that diamond turning of gratings is a well-established technique. However, the focus

lies clearly on diffraction gratings that can be made in form of blazed gratings and the

applications are different. In order to make scales that meet the requirements of the linear

encoder reading heads (section 3.3) the techniques for sinusoidal or blazed gratings can’t

be adopted directy. It seems that the required pattern of reflective and absorbent or scat-

tering lines is difficult to make. The experiments described in this section must reveal a

suitable technique for the machining process.
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4.1.2 Experimental arrangement

Both cutting of the gratings and encoder experiments are conducted on a Nanotech 350UPL

diamond turning lathe from Moore Technology Systems. The workpart is an aluminium

disc, type 6061-T6 with 120mm diameter and 29mm length that is held by a vacuum

chuck, see figure 4.1. Only the face is structured with concentric, coplanar grooves, not

the cylindrical surface. The cuts are applied from radius r = 43mm to 59mm, starting

with the bigger radius, creating a scale "length" of 16mm for the encoder’s optical area

of 14mm. In the figure half of the final raster area is already cut.

Figure 4.1: Photo of the encoder scale turning process on the Moore machine

The aluminium sample is smaller than the disc that will be used in the real magnetic

bearing sensor. This makes the experiments less time-consuming and less expensive, but

unfortunately the experiments exclude effects that may deteriorate the quality of the actual

magnetic bearing sensor. These are mainly thermal spindle growth and tool wear. Because

of the long turnaround time of the turning work (four to twelve weeks per sample) it was

still decided to work with smaller discs. The reason for the wide thickness of the discs is
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the flexibility of aluminium. A thinner sample would deflect under the turning forces and

the forces of the vacuum chuck, leading to varying structure depths.

The cutting parameters are: 600rpm spindle speed, 0.6mm/min feed-in rate for plung-

ing the grooves, which is 1µm per revolution, and at the bottom of each groove one second

dwell. An upwards jet of compressed air and white spirit from underneath is used for lu-

brication. The rake angle of any form tool is 0◦. The radius tool generated flat surfaces

are turned at 6mm/min feed rate.

After finalisation of a certain profile the tool is replaced with the encoder reading head

which can be mounted vertically (figure 4.2) or horizontally (figure 4.3). In both orien-

tations the distance to the scale can be set according to the specification by moving the

tool holder along its slideway. Tilt adjustments can be made with the fixture. The radial

position must be adjusted so that the window is covered by the raster area completely.

Out of the two orientations of the reading head the vertical one is preferable to adjust

the encoder position in tangential direction, see figure 4.2. Because the scale is curved,

only in one position the scanned section of the scale is parallel to the fringes of the reticle

and this position is not specified in the encoder documentation. Moving the spindle with

the workpiece horizontally along the reading head allows to find the optimum position

by evaluating the output signal quality. That is the benefit of the vertical arrangement.

In the horizontal orientation radial movements can be performed, which is necessary for

accuracy and related measurements.

The incremental position signals a and b are recorded with the analogue input module

IO106 from Speedgoat, see section 3.4. Because the ADCs have 120kHz low-pass filters

and the controller update rate is only 10kHz, an additional low-pass filter is required.

This measure should reduce the measurement noise. The circuit diagram of the interface

between encoder output and ADC is displayed in figure 4.4. In addition to the low-

pass characteristic it converts the differential input signal into a single-ended signal and
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machine spindle

encoder reading head

adjustable fixture

tool holder

scale

Figure 4.2: Photo of the experimental arrangement to test each scale with its encoder
reading head in vertical pose

amplifies it by a factor of 3.92. The amplification could reduce the effective quantisation

error and ADC noise and the single-ended signal is the preferred option for the ADC board

in the final magnetic bearing. The low output impedance of the operational amplifier

allows to use long cables and the circuit protects the encoder from short circuits and other

operator mistakes. In appendix C the transfer characteristic

Uout(jω) =
39.2kΩ

10kΩ

1

jω ·39.2kΩ ·220pF+1
(Ua+(jω)−Ua−(jω)) (4.1)

is derived from the circuit diagram. This circuit diagram is recommended by the sensor

manufacturer Heidenhain [24]. Because of the above benefits it is used for the encoder

connection, albeit with adapted parameters.

It is necessary to determine the certainty of experimental results. For that reason all
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encoder reading head

scale

Figure 4.3: Photo of the experimental arrangement for horizontal encoder measurement

experiments are repeated n times and the sample standard deviation s is calculated with

the formula

s =

√

1

n−1

n

∑
i=1

(xi − x)2. (4.2)

x is the individual reading and x is the sample mean. In most experiments n is 5. RMS

values are calculated with n in the denominator, not n−1. All experiments are carried out

at 10kHz sampling rate.

4.1.3 Definition of grating profiles

The two encoder scanning heads LIDA 28 and LIDA 48 have been sponsored by Hei-

denhain, see section 3.3. With the available diamond cutting tools there are at least six

different ways of creating contrast for these encoders by cutting grooves into aluminium.
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Figure 4.4: Circuit diagram of interface electronics to connect the encoder to the Speed-
goat analogue inputs

Figure 4.5 illustrates three for 200µm and three for 20µm grating period. The require-

ment of the imaging scanning principle is an interchanging reflective and absorbent pat-

tern with a space ratio of one to one, see section 3.3. For profiles (a) and (d) the sample

is first cut blank with a round tool, creating a highly reflective surface. Then a pointed

tool cuts the grooves that are meant to trap the light. According to Yan micro-cutting of

V-grooves creates burr at the margins of the grooves and material stagnation at the tool-

tip is a problem, but good results can be achieved if the final depth is approached in steps

[123]. With different material, included angle and sample geometry the results are not

directly comparable.

In versions (b) and (e) the entire surface is shaped with only one tool. A reduction

of the spindle growth influence may be the advantage of these profiles as stated in the

references [37, 21] and others from these authors. Also, the burr formation may have less

influence compared with (a) and (d). The light is supposed to be reflected at the ground of

the grooves. Versions (c) and (f) use blackboard paint to create an absorbent surface that

lies flush with the reflective aluminium. The last cut is made with an ordinary round tool.

This way any burr is cut off. Here the risks are that the paint wears the tool too quickly

and that the paint as an unexplored material brings about other unexpected issues.
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Figure 4.5: Six methods of cutting grating profiles into 6061 aluminium
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In order to find a suitable profile and evaluate its performance, more than one of the six

profiles should be machined and tested, but not necessarily all of them. An experimental

procedure with branching is required to cope with the dilemma of a limited time scale

on the one hand and the need to machine several profiles for the comparison on the other

hand.

The procedure starts in the first row of figure 4.5, as the ten times wider structures

are expected to be easier to manufacture. It was pointed out in section 3.3.4 that the

smaller pitch is more likely to fulfil the precision requirements, but the coarse profile

could at least prove the concept. Version (c) is arbitrarily set as the first run. If it does not

function, versions (a) and (b) are made. If it works, no more discs need to be machined

with 200µm grating period. Proceeding in the second row the three profiles (d), (e) and

(f) are made and the best one is selected for the magnetic bearing position sensor.

4.2 2-DOF magnetic bearing demonstrator with encoders

The magnetic bearing spindle designed in section 3.5 has not been built in the scope of

the research project. The main reason is the complexity of the design and the limited time

scale. Furthermore, other parts of the axis are still missing like the motor control and

the water cooling for motor and roller, which are not part of this research project. Most

importantly, the radial position measurement with encoders needs to be verified first.

4.2.1 Hardware description of the experimental AMB demonstrator

Instead of the R2R design, a less complex prototype has been built to demonstrate the

radial encoder performance, see figure 4.6. It has only one radial bearing on the right to

control two degrees of freedom of the shaft. The other end of the shaft is connected to the
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spindle of the diamond turning lathe "Nanocentre" from the company Cranfield Precision

via flexible coupling. The machine stabilizes the remaining four degrees of freedom and

it can rotate the shaft at a defined speed. The flexible coupling in form of a bendable

rod has been chosen after initial experiments with universal coupling had shown stability

problems. Universal couplings are commonly used to decouple the driving motor from the

magnetic bearing spindle [96, 18], but in this case the backlash of about 100µm hindered

the precise alignment and caused vibrations at certain angles of the shaft. The flexure is

dimensioned in a way that it changes the expectable AMB stiffness only by about 0.5%

and in radial direction it is 80 times stiffer than the AMB so that it can be modelled as an

ideal universal coupling. Refer to figure 4.8 for the realized setup.

shaft

rod
coupling

connection to
Nanocentre spindle

radial bearing
actuator

radial encoder
system

water
cooling

connection
to machine

frame

eddy current or
capacitive sensors

bridge

Figure 4.6: 2-DOF magnetic bearing demonstrator

Figure 4.7 visualises the arrangement of eddy current and capacitive sensors and en-

coders. They can be used alternatively to measure the position. The round aluminium
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scale of the encoder, which usually covers the sensor ring behind it, is not displayed in

the picture. The fixtures for the encoders are suitable for both LIDA 28 and LIDA 48

so that the type of reading head and scale profile can be incorporated according to the

results of the grating experiments. For tangential and axial position adjustment the same

principle with bolts in slots is used as in the proposed R2R magnetic bearing design. The

eddy current sensors with 500µm range are from Kaman Instrumentation Corporation

(KDM7200) and the capacitive sensors from Lion Precision (DMT12) with 20kHz band-

width have a 75nm peak-to-peak resolution specification for 10kHz. The full-scale range

is 508µm. These sensors have been available easily but their short range denies their use

in the final magnetic bearing. The RMS noise has to be measured. Because the gap sen-

sors are hidden in holes inside the aluminium, they are indicated with dashed lines. The

performance can be compared with encoders as all sensors act in approximately the same

axial position.

eddy current
sensors

capacitive sensorsoptical encoders,
either LIDA 28

or LIDA 48

adjustable
fixture

Figure 4.7: Sensor arrangement in the magnetic bearing prototype, displayed without
encoder scale

To reduce the expenses and to establish comparable conditions, the same radial sta-
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radial AMB

linear encoders

encoder disc

gap sensors

Figure 4.8: Photo of magnetic bearing setup in Nanocentre diamond turning machine

tor and power amplifiers are used as chosen for the R2R bearing, see section 3.2. The

prototype uses the same water pipe system, albeit with only two pipes instead of three

to account for the missing axial bearing. The nominal air gap width of the iron circuit is

0.6mm and the auxiliary bearing clearance is 0.3mm. The housing has a square exterior

surface with 280mm edge length. For the control and data logging Speedgoat hardware

is employed as explained in section 3.4 with 10kHz sampling rate. This sampling rate is

used in all experiments. The iron rotor material is non-grain-oriented cold rolled electrical

steel of the type M290-50A. The 0.5mm sheets are insulated with bonding varnish and

shrunk onto the shaft.

Objectives of the experiments with the simplified AMB rig are

• research on the general suitability of optical encoders for the position control in a

magnetic bearing,

• measurement of the accuracy of axis of rotation at low speed and
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• function testing of the radial stator in combination with the aerotech amplifiers.

The prime distinctions between the R2R magnetic bearing design and the actual ex-

perimental setup are the reduced weight of the demonstrator’s rotor, its higher stiffness,

the absence of a torque motor and the absence of other magnetic bearings along the shaft.

With a diameter of 98mm and a length of 600mm the shaft is so stiff and compact that

a flexible body analysis is considered unnecessary. The simplified design should ease the

programming work, but it is also obvious that the experiments with it haven’t got the same

merit as the full-scale bearing.

4.2.2 Decentralized PID control

The theory of the one dimensional stiffness and damping design from section 2.3.1 is

now applied separately to the two degrees of freedom of the prototype, see figure 4.9.

The inherent behaviour without control on the left is thereby converted into the stable

levitation on the right. Point P is the centre of rotation, which the scalar of inertia J(P)

also refers to. For simplicity reasons the flexible coupling is treated as an ideal joint

without tilt stiffness. Small deflections from the horizontal orientation are denoted with

xa at the point of the actuators and xs at the sensors. Mg ≈ 87.7Nm represents the moment

from gravity.

For the rotation about the pitch axis in point P, the equations of motion are:

J(P)

l2
a

ẍa = xacx + ci∆i− Mg

la
=−daimẋa + caim(xref − xa). (4.3)

This yields a function for the control current ∆i:

∆i =−daim

ci
ẋa +

caim

ci
(xref − xa)−

cx

ci
xa +

Mg

laci
. (4.4)
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xref

xsxs
xaxa

ci∆i

Figure 4.9: Simplified schematic of AMB prototype with inherent unstable characteristics
(left) and intended properties with control (right)

Refer to equation (2.8) for cx at the point x = 0. caim should be in the same range, as

explained before. ci results directly from equation (2.7). Both constants depend on the

bias current, which has to be optimised in experiments.

The only quantity that is not yet defined is the damping daim. An expression in terms

of the Lehr’s damping ratio would allow a more intuitive adjustment and it would avoid a

number of trial experiments. With xref = 0 equation (4.3) can be converted into a homo-

geneous differential equation of order 2 with undamped angular frequency ω0 and Lehr’s

damping ratio D:

J(P)

l2
a caim

ẍa +
daim

caim
ẋa + xa = 0 =

1

ω2
0

ẍ+
2D

ω0
ẋ+ x. (4.5)

Comparing the coefficients leads to

daim =
2D

la

√

J(P)caim and ω0 = la

√

caim

J(P)
(4.6)

with la = 0.492m, ls = 0.610m and J(P) = 5.042kg ·m2. Figure 4.10 shows the resulting



96 CHAPTER 4. EXPERIMENTAL PROCEDURE

closed loop control circuit diagram for the xa movement and the orthogonal ya diagram

would look similar. The mass compensation is replaced by an integrator as a more uni-

versal and accurate solution and the differentiation is terminated by a pole at 600Hz.

-

-

--

PID control

active magnetic bearing

cx

ci
l2
a

J(P)

ls

la

Mg

la

la

ls

cx

ci
caim

ci

caim

ciTI

daim

ci

xref

xsxa

∆i

ẋa

ẋaẍa

xref − xa

Figure 4.10: Block diagram of AMB prototype and PID control
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Chapter 5

Results

In chapter 4 universal arrangements and procedures are described briefly. Further expla-

nations of the experiments build up on them. Throughout this chapter sensor noise levels

and closed loop position uncertainties play an important role. Common phrases are also

jitter [32], accuracy [125], positioning accuracy [100] resolution [70], positioning resolu-

tion [43] or asynchronous radial error motion (AREM) [50]. Here, these words are used

interchangeably.

5.1 Encoder scale grating results

Following the branching procedure described in section 4.1.3 the first set of experiments

deals with the 200µm profile (c) in figure 4.5 (p. 89). The subsequent experimental

procedure depends on the results of these experiments.

5.1.1 Scale for LIDA 28 scanning head

Profile (c) has been machined as described in section 4.1.2 and an image produced on

an optical microscope is shown in figure 5.1. The left image shows part of the surface
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and a scale bar. It can be seen that the black and bright lines are clearly visible, but the

aluminium looks dirty and has scratches in the direction of the grooves. Chippings of the

black paint may have been smeared over the surface in the last cutting run. Because the

inhomogeneities in the black fields are not visible in image a, image b has been recorded

with higher illumination. The two images also show that the ratio of dark and bright is not

exactly 1:1, but with 87µm : 113µm close to the target. Straightness errors of the bright

to dark transitions are bounded between the two green lines in image b, which are 3.2µm

apart.

(a) Impurities on aluminium surfaces, 10x lens (b) Black line only, 50x lens

Figure 5.1: Microscope images of the machined grating of type (c) in figure 4.5

Next, the scale is tested with the LIDA 28 scanning head as explained in section 4.1.2.

From the two analogue output signals of the encoder a Lissajous figure is created for one

scale rotation at 60rpm and 300µm run-out, see figure 5.2. The mean diameter over one

rotation is 0.976V when the alignment is optimal. The status indicator LED of the LIDA

28 shows that the amplitude is in the valid range of 0.75V to 1.25V [24]. This range is

not exceeded at any scale angle. Because the 300µm movement is more than the grating

period of 200µm, functionality over the entire signal period is also proven. An ideal circle

is displayed as a reference that has been optimized by means of nonlinear least-squares
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curve-fitting (function lsqnonlin in Matlab) with variable radius and centre point. The

centre point of the circle is (−0.011V,−0.0021V), which is close enough to the origin

to be neglected. Signal b seems to be a bit larger in average, but that is not compensated

either.
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Figure 5.2: Lissajous recorded with grating (c)

As a next step the measurement noise propagation is analysed. The noise of the Speed-

goat IO106 ADCs is specified as 500µV RMS in single-ended operation for all ranges

and 1mV RMS for differential operation [109], which means 128µV RMS, respectively

255µV RMS when the sensor amplifier with a gain of 3.92 is considered. Measurements

with grounded analogue inputs have confirmed 481µV RMS single-ended and 630µV

RMS in differential mode. Because the noise is lower in single-ended operation and it

occupies less input pins, all the subsequent experiments of section 5.1 are conducted in

single-ended fashion.
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Table 5.1 lists the noise of different components working in a chain. For the first two

rows the RMS position value is calculated with equation (3.13) (p. 59) and the known

peak-to-peak signal amplitude of 0.976V and the peak-to-peak value with equation (3.15).

For the signal angle the worst case is assumed. The standard deviations refer to the RMS

values and result from five subsequent measurements over 7s each. For the peak-to-peak

values five separate values have been averaged, also recorded over 7s. Without the sensor

amplifier (figure 4.4) the ADC noise would be 3.92 times more, which proves the efficacy

of this circuit. Sensor amplifier and encoder reading head together constitute only a minor

influence on the noise. Engaging the scale as shown in figure 4.2 raises the noise, which

could be related to vibrations of the encoder fixture and the machine bearings and to

non-linearities in the reading head.

Table 5.1: Measured noise development in encoder measurements with 200µm grating
period, unit nm

Components RMS Peak-to-peak Standard deviation of RMS
ADC only, single-ended 7.83 91 0.031
+ amplifier + encoder, 9.90 136 0.08
no scale, dark room

+ scale (c), 13.8 139 0.036
no rotation

It is also of interest how much noise is caused by scale roundness errors when the

spindle is rotating. However, experiments with rotating scale are more difficult to eval-

uate because it cannot be distinguished between run-out and deviations from roundness

easily, when the experiment is done as in figure 4.3. It is virtually impossible to rotate

a scale on the machine chuck without run-out. If the standard deviation of the position

measurement was used as an indicator for the sensor resolution without further signal

processing, the result would be highly dependent on this run-out. As a more universal
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procedure a run-out of 2µm is allowed and a sinusoidal curve1 is matched with the mea-

surements to identify and subtract the exact run-out of the disc (eccentricity separation).

The parameters optimized by the Matlab function lsqnonlin are amplitude, frequency,

phase and offset.

An exemplary result of the curve fitting at 60rpm speed is shown in figure 5.3. The

difference between the two lines can be attributed to scale imperfections. For each revo-

lution an independent curve is fitted, so that the variability can be evaluated. The errors

show a highly repeatable pattern, which means that they are caused by scale imperfec-

tions or synchronous errors of the machine bearing, but not by electrical interference. It

is time-consuming to adjust a tight run-out of 2µm but with a higher eccentricity the sub-

divisional error of the encoder and the rotary speed control would play a more significant

role. The deviation in RMS between the sinusoidal curve and the measurement is plotted

for different rotational velocities in appendix D, figure D.1. Speed dependent fluctuations

are regarded as measurement errors, presumably related to the speed control.

In order to eliminate the effect of imperfections in the rotary speed control completely,

the scale roundness error is measured in static experiments, too. The spindle is rotated in

steps of 10◦ and at each step the position is averaged over 1s. Then the measurements are

processed as described above. This experiment is repeated five times in different radial

positions with 200µm step between adjacent positions. The result for profile (c) and

encoder LIDA 28 is shown in figure 5.4. An error bar has the length of two times the

sample standard deviation at that point. From this experiment a median roundness error

of 98.3nm RMS results and the standard deviation over five experiments is 10.9nm.

1The vertical undulation of a perfectly round groove with run-out is not exactly sinusoidal, but that is
neglected here.
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Figure 5.3: Position measurement with LIDA 28 and sinusoidal approximation of real
movement

Together with the noise at non-rotating spindle the total noise can be calculated [50]:

√

13.82+98.32 nmRMS = 99.3nmRMS (5.1)

Comparing this result to the experiments with actually rotating scale in figure D.1 it can

be judged that the agreement is satisfactory.

In conclusion, a procedure has been found to fabricate amplitude gratings for the

LIDA 28 with high contrast in spite of the microscopic imperfections of the scale. The

contrast is high enough to meet the encoder specifications and it seems superfluous to

produce profiles (a) and (b), which would be very time-consuming. Instead it has been

decided to proceed with the 20µm scales, i.e. the second row in figure 4.5 (p. 89).
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Figure 5.4: Scale roundness error of profile (c)

5.1.2 Scales for LIDA 48 scanning head

Scales complying with procedures (d), (e) and (f) have been cut. Microscope pictures of

scale (d) are shown in figure 5.5. The microscope is a XL30SFEG field emission scan-

ning electron microscope (FESEM) from Philips. Pictures taken with optical microscopes

looked unfocussed because of the shallow depth of field of the microscope. The pointed

tool has cut triangular grooves with bright slopes into the reflective surface that appears

dark in the images. Straightness errors of the tool tip are not visible, but burr has piled

up on the margins leaving only narrow lines of the original surface. The grooves are not

10µm wide as intended, but approximately 3µm wider as can be seen from the dimen-

sions in figure 5.5, a.

Figure 5.6 shows the turning results of profiles (e) and (f). The left image is captured

with the same FESEM and shows the inner groove of profile (e) at the bottom of the

image. This is the smallest groove and it has been cut last. The bottom of this groove

appears dark in the image and it looks plain and straight. The other grooves are visible
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20 µm

(a) Magnification 1,000

groove

burr

10 µm

(b) Magnification 2,000

Figure 5.5: FESEM images of the machined grating of type (d) in figure 4.5

but they don’t look as intended. It seems that the walls between the grooves are pushed

aside by the machining force and while cutting one groove they are squeezed into the

previous one. The expectation is a low contrast in the imaging scanning principle.

20 µm

(a) FESEM image of profile (e), inner edge (b) Microscope image of profile (f)

Figure 5.6: Images of machined gratings (e) and (f)

The picture of profile (f) in figure 5.6 is taken in the middle of the featured band with

an optical microscope. It can be seen that the cutting procedure has worked and that clear

dark and bright lines with only minor defects have been created. The bright lines are 1µm
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too wide.

In table 5.2 the output voltages are compared. Profile (c) is also listed. For these

numbers five rotations at 1.5 · p run-out have been recorded and the rotations are evaluated

individually. Minimum, average and maximum are averaged over the five rotations and

the differences between the measurements are represented in the last column (only for the

average). The diameter is calculated for each time step by multiplying the distance of a

measured point in the a−b plane from the origin by two.

Table 5.2: Comparison of the Lissajous diameter M in V for different scales

Profile identifier Min Average Max Standard deviation of average
(c) 0.927 0.977 1.028 26.7µ
(d) 0.379 0.413 0.442 45.5µ
(e) 0.052 0.054 0.056 119.0µ
(f) 0.723 0.765 0.818 127.0µ

As can be expected from figure 5.6, a, profile (e) shows almost no contrast, evident

in the small average Lissajous diameter in table 5.2. Profile (d) does not meet the speci-

fications of the encoder system, but 0.413V is close to the minimum of 0.75V. The two

scales with paint meet the specification.

Figure 5.7 shows the Lissajous figure recorded with profile (f) and the LIDA 48 read-

ing head, because it is the best one with 20µm grating period. The speed of rotation of the

scale is 60rpm and the run-out is 30µm. With 30µm run-out more than one whole signal

period is captured. Analogously to figure 5.2 an ideal circle with the mean diameter is

plotted as a reference. Its centre point is close to the origin and the signals are evaluated

without bias compensation.

Table 5.3 is the counterpart to table 5.1. It shows the influence of noise of the in-

struments that are involved in the measurement. Profile (d) works reliably and allows

low noise measurements, but the signal amplitude is not high enough to fulfil the require-
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Figure 5.7: Lissajous figure for profile (f) and best fit of circle with variable radius and
centre point

ments. Also, the noise is approximately two times higher than that of (f). Profile (e)

simply does not work, as can be derived from table 5.2. The Lissajous does not even sur-

round the origin and position measurements are not possible without bias compensation.

Profile (f) shows the lowest noise of 3.37nm in the static experiment and the highest peak-

to-peak amplitude. Hence, it has the highest merit of the 20µm scales and the following

experiments deal with (c) and (f) only. They are the best achievements for each grating

period.

For profile (f) the position measurement during three rotations of the scale is displayed

in figure 5.8. In comparison with figure 5.3 the signal looks less noisy. In order to give a

quantitative estimate for the scale roundness error, static measurements are performed in

figure 5.9. It has been recorded in the same way as explained above, i.e. static measure-

ments in 10◦ steps around the circumference and five repetitions of the experiment in five
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Table 5.3: Comparison of sensor noise for the three 20µm scales, unit: nm. The three
values are RMS over 7s, standard deviation of the RMS over five experiments and the
peak-to-peak value over 7s.

Components Profile (d) Profile (e) Profile (f)
ADC only, single-ended 1.90;0.0075;21.9 14.5;0.057;167 1.02;0.004;11.8

+amplifier+encoder, 3.47;0.043;43.8 26.6;0.332;335 1.87;0.023;23.6
no scale, dark room

+ scale, 6.37;0.081;58.9 19.6;0.185;189 3.37;0.148;29.9
no rotation

different radial positions (200µm appart). The spindle run-out is accounted for by a sine

curve fitting.
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Figure 5.8: Position measurement with LIDA 48 and sinusoidal approximation of real
movement

From these experiments an estimate of 76nm RMS, standard deviation 1.55nm can

be calculated for the roundness error. Results with actually rotating spindle look similar,

see figure D.2. There is a striking undulation at two times the rotational speed in figure

5.9, or in other words an ellipse has been measured and not a circle. This could be related

to cylindricity errors in the machine bearing. These can be magnified depending on the
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Figure 5.9: Scale roundness error of profile (f)

clamping orientation of the disc for cutting and later for testing.

As the error bars in figure 5.9 are short and the roundness errors seem highly repeat-

able it is obvious to compensate them. This is done in figure 5.10 by subtracting the

position that is measured in a sixth static experiment from each of the other measure-

ments. With this procedure no curve fitting is required and the sixth experiment acts as a

calibration measurement. The remaining error is 15.8nm RMS and its standard deviation

is 9.3nm. The peak-to-peak value is 120.5nm. If the measurement had been undertaken

five times at the same radial position, the calibration error and the length of the error

bars would be much shorter. However, this experiment demonstrates what can practically

be achieved by a simple calibration procedure in spite of radial movements that are not

explicitly calibrated.

5.1.3 Deviations per signal period

Following this separate treatment of 20µm and 200µm grating period, some chosen char-

acteristics are now demonstrated for both together. For the deviations per signal period
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Figure 5.10: Scale straightness error of profile (f) after subtraction of known roundness
error

or also called sub-divisional error the reading head is mounted as shown in figure 4.3.

It is moved in 20 steps in radial direction and at each step the position is averaged over

10,000 measurements. The overall movement is one signal period, which equals 360◦.

This procedure is repeated for five randomly chosen angles of the scale to analyse the

repeatability.

The result is shown in figure 5.11 for LIDA 28 (200µm) and for LIDA 48 (20µm).

For LIDA 28 the measured range of the error is −0.60µm...1.27µm and for LIDA 48 it is

−35nm...44.8nm. Thus, they both fulfil the specification of 1% · p as guaranteed by the

company Heidenhain [24]. Because of the high repeatability even at different angles the

sub-divisional error could possibly be improved by means of calibration measurements.

5.1.4 The influence of a lateral shaft movement

As explained before the output signal of the encoders should degrade when the encoder

reading head is moved in lateral direction, refer to figure 3.6. In this experiment the
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Figure 5.11: Deviations per signal period measured for LIDA 28 and profile (c) and for
LIDA 48 and profile (f), recorded at five different scale angles

encoder is mounted as in figure 4.2 and it is moved more than 4mm in lateral direction

along the scale while the signal amplitude is recorded. The machine spindle rotates at

1,000rpm. After each rotation the signal amplitude is averaged over the last 360◦, so that

material inhomogeneities do not influence the result.

Figure 5.12 comprises measurements for LIDA 28 and profile (c) as a 200µm system

and LIDA 48 together with profile (f) representing the 20µm encoders. It is believed that

the effect will be the same for other cutting profiles as long as the reading head is the

same.

Apart from the fact that the amplitude of profile (f) is lower than that of profile (c) it

can be seen that the 20µm scale is more sensitive to angular misalignment errors. The

analytical model described by equation (3.18) is also plotted for both grating periods.

Appendix E describes how the width of the reticle window has been measured. From

this width and the known grating period the unknown constant m can be determined. It

is approximately 55 for LIDA 28 and 375 for LIDA 48. The window length is optimized
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Figure 5.12: Comparison of the misalignment effect for profiles (c) and (f). (c) with LIDA
28: black; (f) with LIDA 48: blue. The scale size refers to the medium scale radius, which
is 55mm in the case of the test discs and 117.5mm in the magnetic bearing prototype.

on the basis of the experimental data and the contrast of the ideal, straight scale is set

to 1VPP. Especially for LIDA 28 there is a good agreement of theory and measurement.

The difference in amplitude at the smaller grating period could be related to the non-ideal

division ratio, see figure 5.6, b.

For the magnetic bearing the observed effect is important and it is a disadvantage of

the smaller grating period that the alignment shows a stronger influence. The dashed lines

are estimates for the behaviour of the larger scale in the magnetic bearing prototype based

on calculation (3.18) (p. 61). Because of the wider radius of curvature in the magnetic

bearing scale the range of movement is extended.
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5.1.5 Which type is to be favoured for the magnetic bearing?

Comparing 20µm scales and 200µm scales the following statements can be made:

• Within the scope of the experiments reported here more precise results were ob-

tained with the best one of the 20µm scales than with the 200µm one.

• The highest contrast could be achieved for 200µm.

• The LIDA 28 is more robust against angular alignment errors that determine the

admissible range of movement in the AMB.

• Regarding the distance between reading head and scale wider mounting tolerances

are specified for the LIDA 28, see table 3.1 (p. 57)

• The LIDA 48 is more expensive, see table 3.1

In conclusion the LIDA 28 is more robust but the LIDA 48 is more precise. Profiles

(c), (d) and (f) seem precise enough to meet the requirements from section 1.2, but the

assumption has to be confirmed in closed loop magnetic bearing experiments. Because

the sensor resolution is the most important criterion, is has been decided to apply the

smaller grating period to the magnetic bearing. It is also more interesting to find out if

stable and save operation can be established in spite of the challenging tolerances. A

20µm scale is more ambitious and a successful performance demonstration would have

the higher merit. For time reasons profile (d) is employed and not profile (f).

5.2 Magnetic bearing performance evaluation

With the magnetic bearing prototype it is possible to stabilize the rotor completely with

gap sensors or alternatively with encoders. Some general observations and efforts to
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improve the performance are summarized first before the performance data are compared

in detail.

5.2.1 Gap sensor control

For all these experiments the encoder disc and the encoders are mounted although they are

not deployed. The bias current is I0 = 1.3A, which does not result in the desired stiffness

but at bias currents of more than 2.1A the magnetic bearing shows stability problems. It

was necessary to support the bridge under the AMB in two points to achieve stable oper-

ation. Without these additional supports the bridge vibrates at a frequency of 103.5Hz.

The controlled stiffness always equals the inherent bearing stiffness, which is 0.41N/µm

according to equation (2.8) (p. 23). With I0 = 1.3A a range of 0.2 ≤ D ≤ 0.8 shows

stable operation and if not otherwise specified the experiments have been conducted with

D = 0.5. The integrating feedback is set to TI = 0.1s and for some experiments it is dis-

abled. Extending the integrator action to higher frequencies would increase the sensitivity

to sensor noise at high frequencies [81].

The closed loop frequency response functions (FRFs) of the magnetic bearing recorded

with gap sensors are shown in figure 5.13 for both directions. For the FRFs a sinusoidal

excitation has been added to the reference signal, while the integrator is disabled. The

excitation frequency is raised in small steps.

At low frequencies the gain is close to one in both directions although the integrator

is disabled. This indicates that the magnetic circuit parameters have been identified cor-

rectly. The FRFs also show that even with the two support points there are flexible modes

at 200Hz and above. If the bandwidth is defined as the frequency where the gain is re-

duced to 71% of the static gain, then the magnetic bearing has a bandwidth of 35Hz in

both directions. The bandwidth can be raised if the damper in figure 4.9 (p. 95) between
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Figure 5.13: Measured closed loop frequency response function of the AMB prototype
from the excitation at the reference signal to the actuator position.

the armature and the virtual frame is replaced by a damper of the same viscosity between

the armature and the reference signal. With this changed control design a bandwidth of

120Hz can be achieved in both directions as exhibited in figure 5.14. All the remaining

experiments have been done as shown in figure 4.10, but for most of the experiments there

is no difference because the reference signal is constant.

The left graph of figure 5.15 shows the radial error motion plot of the AMB controlled

with gap sensors and without integrating feedback. x is measured with one eddy current
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Figure 5.14: Measured closed loop frequency response function. The bandwidth is raised
by the measure described in section 5.2.1.

sensor and y with one capacitive sensor. The shaft is slowly rotated by hand so that

unbalance has no effect. As the integrator is disabled the resulting whirl figure does not

depend visibly on the exact speed as long as it is slow. The recording starts with the

shaft resting in its touch-down bearing. It rises as the stiffness and the bias current are

slowly increased and then performs five rotations. Finally it returns back to the resting

position. The reference value is (−50µm,0)T instead of (0,0)T because the range of the

eddy current sensor restricts the permissible vertical movement. Instead of rotating in
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one point a repeatable shape with approximately 104µm width and 105µm height can be

observed. This could be caused by misalignment errors and imperfections of the sensor

target surface and the bearing rotor.
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Figure 5.15: Whirl motion of rotating and non-rotating AMB, x and y in µm, controlled
with gap sensors.

On the right of figure 5.15 seven seconds of the orbital plot for control with inte-

grating feedback and constant orientation are shown. Under these conditions the mean

position value equals the reference value, but there is still a considerable asynchronous

error. Quantitative results are presented together with the encoder experiments later.

In figure 5.16 the frequency spectrum of the controlled vertical position is shown for

the two different gap sensors. It has been recorded by averaging 1,000 FFTs of sub-

sequent, overlapping time sections with active integrator. The only obvious difference

between the two gap sensors is the noise level at high frequencies. There are two major

peaks at 50Hz and 226Hz. The 226Hz peak could be a bending mode, but the 50Hz
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peak is not related to the structure, because the frequency response function (FRF) of the

AMB does not show a significant peak at this frequency, see figure 5.13. It is assumed

that the 50Hz vibration is either related to line interference on the signal paths or to the

current control of the amplifiers. The exact frequency is not affected by changes to the

experimental setup. Appendix F shows the spectrum of the measured shaft position while

the power amplifiers are driven with a constant reference signal. The spectrum resem-

bles figure 5.16 and the 50Hz peak is present, too. It seems that the power amplifiers are

responsible for most of the closed loop positioning noise.

10
0

10
1

10
2

10
3

10
−1

10
0

10
1

10
2

10
3

 

 
eddy current sensor
capacitive sensor

am
pl

it
ud

e
in

nm

frequency in Hz

Figure 5.16: FFT of the positioning noise controlled with gap sensors

Because the 50Hz undulation rises the resulting positioning noise significantly, the

signal lines for sensors and power amplifiers have been changed to differential and the

shielding inside and outside the cabinet has been treated with special care, but these mea-
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sures have not changed the results. The experiments from above have been conducted

after these changes had been applied.

5.2.2 Adaptive compensation of line interference

In order to reduce the 50Hz undulation, a simple adaptive feed-forward vibration com-

pensation (AFVC) algorithm is applied. It has been described by Shi [103] for unbalance

induced vibrations and an augmentation to the multidimensional case can be found in [6].

In this thesis the derivation is not repeated and the procedure of compensating the line

interference is explained only briefly.

Synchronous disturbances are to be rejected by the function ν(t) = [νx,νy], which is

added to the reference signal xref. All signals are treated as vectors with one entry for x

and one for y. This compensation function is a superposition of a sine wave and a cosine

wave with the known frequency of the disturbance, here Ω = 2π · 50Hz. The function ν

is calculated in each step k:

ν(k) = (Φ(k,ϕx = 0,ϕy = 0))T ·Θc(k). (5.2)

Θc(k) ∈ ℜ4×1 comprises the estimated amplitudes and Φ(k,ϕx,ϕy) is defined as:

Φ(k,ϕx,ϕy) =



















sin(kΩT +ϕx) 0

cos(kΩT +ϕx) 0

0 sin(kΩT +ϕy)

0 cos(kΩT +ϕy)



















(5.3)

with the sampling time T . Θc(k) is updated in each step according to the position feed-
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back xa −xref, also with x and y component:

Θc(k) =Θc(k−1)− γ ·Φ(k,ϕx,ϕy)(xa(k)−xref(k)). (5.4)

The parameter γ must be small enough not to influence the dynamics of the system con-

siderably [103, 6].

ϕx and ϕy constitute the phase of the closed loop transfer function from the reference

signal to the position at 50Hz. Often they are neglected [103, 6], but initial experiments

without consideration of the phase lag showed stability problems of the adaptation in this

case. From figure 5.13 they can be determined for D = 0.5 and the same can be done for

other damping ratios, see table 5.4.

Table 5.4: Phase of the frequency response function at 50Hz for x and y with respect to
the damping

D = 0.3 D = 0.5 D = 0.7
ϕx −111◦ −100◦ −95◦

ϕy −114◦ −101◦ −97◦

Figure 5.17 shows how the adaptation parameters, which represent Θc, converge, after

they have been initialized to 0. At the beginning they are unsteady because the rotor is

far away from the reference position. As soon as the integrator has established the steady

state of the armature they stabilize. Remaining undulations of the parameters at a low

frequency can be related to inaccuracies of the net frequency and consequently binaural

beat. Repetitions of the experiment differ in the exact beat frequency.

The resulting spectrum of the positioning noise is shown in figure 5.18, again with

active integrator. It can be seen that the peak at 50Hz has been reduced, but it does not

always work as good as in this recording. In each time step a maximum of 22µs out of

100µs sampling interval is needed for data acquisition, calculation and analogue output
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Figure 5.17: Transients of the AFVC adaptation parameters

for two degrees of freedom.

Figure 5.19 shows the whirl motion with AFVC and non-rotating shaft for different

damping ratios. It has been recorded over seven seconds with the eddy current sensor

measuring the vertical position and the capacitive sensor measuring the horizontal posi-

tion. The left graph can be compared directly to the right graph of figure 5.15 to evaluate

the efficacy of the AFVC. It works and reduces the overall positioning uncertainty. For

D = 0.7 the result is even better. Quantitative figures are stated below.

5.2.3 Magnetic bearing controlled with encoders

For the large scale encoder disc, profile (d) has been cut into an aluminium disc with

300mm diameter. The surface of interest had to be sandblasted and then coated with

100µm electroless nickel, because it was not possible to replicate the features in alu-
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Figure 5.18: FFT of position noise with gap sensors and active AFVC

minium. While this worked with the smaller test disc, there were problems with the grain

structure of the bigger disc (not with the tool mileage). 53◦ has been chosen for the in-

cluded angle of the tool and the other parameters are unchanged. The resulting signal

contrast is 0.37VPP in average and it varies during one rotation of the shaft between 0.34

and 0.39VPP. Because of the size of the disc it was impossible to take scanning electron

microscope pictures of the gratings, but in appendix G profile measurements with a Taly-

surf CCI are presented. The low signal contrast can be related to defects and the general

roughness of the mirror surface.

At the first glance encoders and gap sensors are both equally easy to operate in closed

loop position control. It makes no difference that the absolute position can’t be measured
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Figure 5.19: Whirl motion plots of gap sensor controlled AMB with AFVC algorithm and
different damping ratios, both directions in µm

directly with incremental encoders. The initial position is referenced to the known touch-

down bearing position. This approach has been used for the gap sensors, too, because

it is safe and works in spite of thermal drift and changing conditions. Problems with

the speed limit of encoders have not been encountered. It is for example possible to

record frequency response functions where the armature moves rapidly. This is proven in

appendix H for the open loop FRF and the plant FRF. It can be seen that up to a frequency

of 333Hz a positive phase can be maintained with the stated control parameters. Higher

speeds of rotation than required in the R2R printing application are possible, see appendix

I. When the frequency of the FRF identification passes 600Hz, a loud tone testifies the

vibration of the encoder disc. It can’t be related to a shaft bending mode because there is

no peak in the FRF at this frequency.

In figure 5.20 measured spectra of the gap sensors and the encoder are plotted. Ob-
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viously, the eddy current sensor has more noise than the capacitive sensor. The encoder

shows less noise than both the capacitive sensor and the eddy current sensor from 5Hz

upwards.

For derivative feedback control the velocity is calculated from the difference quotient

of adjacent position samples and high frequency noise is amplified. Figure 5.21 shows

the velocity signal that has been calculated in this way from position measurements of the

stationary rotor. The sampling rate is 10kHz. Comparing the sensors it can be said that

encoders generate less noise for the position feedback.
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Figure 5.20: Sensor noise comparison of three different position sensors at standstill

The error motion plots in figure 5.22 have been recorded with a reference value of

(0,0). With encoders it is not necessary to restrict the range of movement. On the left

five rotations without integrator and the machine spindle turned by hand are shown. The
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Figure 5.21: Velocity signal derived from position measurement for gap sensors and en-
coders

resulting error motion is 85µm wide and 84µm high. It has approximately the same size

as the one in figure 5.15, but a different shape. The five rotations at low speed show the

high repeatability of the motion if the sensor technology is not changed. On the right seven

seconds without rotation, but with integrator and AFVC are displayed. The damping is

0.5 so that this figure can be compared to figure 5.19, a excepting that the sensors are

different.

Analogously to figure 5.18 the FFT of the position control with encoders is shown

in figure 5.23. The vertical direction x can be compared with the horizontal direction y.

There is no obvious difference except for the structure induced vibration at ≈ 220Hz with

a differing shape. This difference can also be seen in figure 5.13. Comparing figures 5.18

and 5.23 it can be deduced that the noise at low frequencies looks similar independent of

the employed position sensor. Only at frequencies beyond 800Hz the noise is lower with

encoders, which does not necessarily mean that the actual mechanical vibration is reduced

at these frequencies. As can be derived from figure 5.20 the measured vibration is in the

range of the sensor noise and it is impossible to distinguish between measurement error
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Figure 5.22: Whirl motion of rotating and non-rotating AMB, x and y in µm, controlled
with encoders.

and real movement.

There are two peaks at approximately 1,000Hz and 2,145Hz, which are less pro-

nounced in gap sensor control, see 5.18. They could be related to bending modes of the

encoder disc and the shaft. The first one is more likely to be a flexible mode of the shaft be-

cause it is also visible in the FRFs recorded with gap sensors in figures 5.13 and 5.14. As

the encoder disc is 9mm further away from the actuators, the problem of non-collocation

is more severe here.

After this visual performance demonstration a quantitative summary of the achiev-

able performance shall now be attempted. Table 5.5 enlists the noise levels achieved with

the three different sensors in RMS and the 7s peak-to-peak values. Solely vertical mea-

surements are stated so that potential differences in the structure between the axes are

excluded. The sampling rate is 10kHz. The first row of table 5.5 reflects the noise floor
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Figure 5.23: FFT of position noise with encoders for position measurement and active
AFVC

of the respective sensor while it measures the stationary and non-rotating rotor. Only for

these recordings the machine is turned off and there is no lubricant in the bearings. All

the other numbers represent position control , either with or without AFVC and for three

different dampling ratios.

As a result, the measured capacitive sensor is better than the eddy current sensor. With

encoder there is a further reduction of the noise by a factor of approximately four when

nothing is moving: 3.5nm RMS and 51pm standard deviation over five experiments.

This shows the superiority of encoders. In closed loop the numbers with active AFVC

are consistently better than those without AFVC. It is also unambiguous that under all

conditions the results with higher damping are better. The difference between the sensors

is not significant and not consistent. Often the values with encoders are slightly better,
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Table 5.5: Comparison of sensor noise and AMB positioning noise for different sensors
in x direction, unit: µm. No control means no levitation, only the sensor noise.

Control D Eddy current sensor Capacitive sensor Encoder
RMS Peak-to-peak RMS Peak-to-peak RMS Peak-to-peak

No - 0.023 0.19 0.014 0.12 0.0035 0.03
Yes, 0.3 1.02 5.03 0.89 4.52 0.89 4.49

without 0.5 0.55 3.10 0.51 3.13 0.51 2.82
AFVC 0.7 0.40 2.74 0.41 2.57 0.37 2.19
Yes, 0.3 0.40 2.89 0.38 2.96 0.37 2.91
with 0.5 0.30 2.24 0.29 2.35 0.26 1.92

AFVC 0.7 0.26 2.02 0.25 2.07 0.24 1.66

but that could be related to the lower sensor noise at high frequencies rather than to a

difference in the actual motion of the shaft.



128

Chapter 6

Discussion

After presenting and interpreting the experimental results, a more general discussion of

results and methods is attempted in this chapter. Apart from discussing the validity of

results, the discussion deals with performance limitations to the position sensor and the

magnetic bearing demonstrator.

6.1 Encoder experiments on the Nanotech 350UPL

Following the procedure in section 4.1.3 different gratings have been cut and viewed un-

der the microscope as well as tested as encoder scale. These two comparatively quick

ways of evaluation allow a clear judgement of success or failure. They complement each

other as the encoders deliver quantitative performance measures, which are directly rele-

vant in the application, while the microscope images reveal the reasons for contingently

unsatisfactory results. However, it is also obvious that the level of satisfaction is closely

related to a number of input parameters that have not been optimized like exact material

composition, grain structure, tool angles, cutting speed, feed rates, lubrication and dia-

mond quality. The validity of a conclusion such as one profile is superior to another is
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strictly speaking restricted to the chosen set of process parameters. Especially if the per-

formance is stunted by burr formation, the result can be highly non-repeatable. In order to

get a thorough understanding more endeavour would be necessary than only one swatch

of each type. This was limited by time and resources.

Noise measurements of the sensor have been done under various conditions to facili-

tate the discussion about critical noise sources. At both grating periods it can be seen that

the ADCs have a considerable contribution to the noise although their noise has success-

fully been reduced by a self-made amplifier circuit.

What is missing in this noise analysis is an experiment with engaged scale but without

machine to separate the noise of the machine from that of the encoder. It was practically

not possible to align the setup precisely and with little drift without the machine. This has

partly been made up for in the magnetic bearing itself where the encoder has been tested

without any machine noise for one profile. Furthermore, only the vertical fixture (figure

4.2) has been used where the horizontal position control of the linear slideway should not

play a role.

When the scale is rotating the noise is not only related to the ADCs and the reading

head but mainly to scale defects. Accordingly the value is higher. An error influence in

this experiment is the radial error motion of the machine spindle. The Nanotech 350UPL

has a synchronous radial error motion of 15nm, an asynchronous error of 10nm and

19nm total error at 500rpm as to the documentation supplied with the machine. This

falsifies the result. Other axes and bearings of the machine can be characterised by the

fact that the motion accuracy is better than 50nm and that components can be machined

with a few nanometres surface finish [76]. With a measured roundness error of 80nm or

100nm RMS the error motions of the machine are below these values but still relevant. A

more precise spindle was not available and it is questionable if it exists at all because air

bearings are a good choice for high precision, see section 2.1.
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Two procedures have been followed for the roundness measurement: One makes use

of static experiments to eliminate the influence of the rotary speed control, the other cap-

tures the position at 10kHz sampling rate while the disc is actually rotating. The dis-

advantage of the static experiment is that the error motion is only sampled in 37 points

per revolution. The error of the rotational experiment is evident in the fact that slightly

different results are obtained at different velocities. Both versions output approximately

the same value so that a small residual error can be assumed, but for more certain results a

rotary encoder would be required. With easy means it was not possible to read the encoder

of the machine, nor to attach an additional rotary encoder to the spindle.

Without separate, more precise reference measurement it was not possible to measure

the scale accuracy1 over a longer distance. Using the machine encoder for this measure-

ment would impose a traceability problem. The accuracy of the machine encoder also

influences the sub-divisional error measurement (section 5.1.3). It has not been attempted

to measure the accuracy in a different configuration, because the exact value is less im-

portant in this application with less than one millimetre stroke and it can be assumed that

the encoder is accurate enough [32].

The last comment deals with the reduced size of the test samples. When the decision to

use 120mm aluminium samples for the trial cuts was made in section 4.1.2, the associated

risks were pointed out. However, it was not expected that a difference in grain orientation

and workpiece size could make the fabrication in aluminium completely impossible. This

lack of repeatable conditions was paid for by a delay of eight weeks in the project.

1Here accuracy means the deviation of the measurand from the true value, not the noise.
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6.2 Performance of encoders as position sensors

That encoders are more suitable for the radial position measurement in active magnetic

bearings under certain conditions is evident from tables 5.1, 5.3, 5.5 and figures 5.20,

5.21. Model LIDA 48 has less noise than LIDA 28, as predicted in section 3.3.4 but

both of them are an improvement over capacitive sensors. Especially the first row of

table 5.5 allows the direct comparison of different sensors under good conditions and

sampled at 10kHz as required for the R2R AMB, see 3.4.2. In figure 5.20 it can be seen

that from 5Hz upwards encoders have less noise. Capacitive sensors with 508µm range

were readily available. In the final magnetic bearing sensors with wider range would be

required, which are expected to have more noise (section 2.4.2).

With (c) and (f) profiles for both encoder types were found that fulfil the specifications

of the supplier [24], namely position error per signal period and signal contrast. In section

5.1.4, however, it has been shown how the signal quality declines when the rotor in the

AMB departs from the centre. This restricts the measurement range (more strictly with

LIDA 48) and it means that at the air gap margin the measurement noise is higher than in

the centre. The magnetic bearing demonstrator has shown that safe and reliable operation

can be ensured in spite of this "soft" range restriction, even if the Lissajous diameter is

only 0.37V in the centre, which means the scale is not ideal, see section 5.2.3.

In experiments with rotating shaft it has been shown that the speed requirement of

section 1.2 can be fulfilled with encoders as position sensors. Even if the rotary speed is

two times as high as specified, no problems occur. Higher numbers of revolutions have

not been checked out because the machine is not balanced for more than 600rpm. It can

be expected that at high speed the exact sensor noise is less important: Firstly, unbalance

effects and gyroscopic couplings play an increasing role [128, 69]. These effects will

outweigh the contribution of the position sensor to the error motion. Secondly, a certain
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run-out in combination with a high rotational velocity will eventually exceed the lateral

speed limit of 100mm/s or 1,000mm/s as explained in section 3.3.4. Thirdly, the noise

spectrum caused by scale roundness errors shifts with speed of rotation. At low speed

disturbances have a low frequency, too, so that they are not much amplified because the

sensitivity function has a low gain at low frequencies [81]. At high speed they should be

more critical. These three effects suggest using the proposed position sensor preferably

at low speed.

It has also been shown that roundness errors can be calibrated and thereby reduced

(section 5.1.2 and figure 5.10). This technique is limited by the effort to measure and

store compensation values for a high number of angles. For optimal results the radial

position had to be considered, too, not only the angle, resulting in a 2D look-up table.

In the experiment only one value has been saved for each angle to save time. This 1D

look-up-table was then applied to compensate measurements in different radial positions.

Depending on the actual radial position the compensation was more or less exact and the

average error is 15.8nm. This experiment shows what can be expected from a calibration

measurement with tenable effort.

One last limitation is related to the vibration of the encoder disc at 600Hz. Although

the frequency response functions are only hardly affected by this peak at 600Hz, see for

instance figure 5.14, the thin disc is still an additional complication in the design. It also

makes the integrability into a housing more difficult (section 3.5).

6.3 Positioning uncertainty of the AMB demonstrator

In closed loop position control it was possible to stabilize the magnetic bearing with a

positioning uncertainty of ≈ ±1µm and ≈ 0.25µm RMS in the best configuration, see

table 5.5. To achieve this, different measures like additional cable screening, rewiring and
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AFVC (section 5.2.2) have been applied. The performance capability is still not sufficient

for a printing machine bearing in this respect, see section 1.2.

The performance is comparable to other magnetic bearings of similar size but not

better. Examples are the magnetic bearings in [100], [91] and [43], already cited above.

The magnetic bearings in [100] with 250kg and 25kg rotor mass, respectively, have a

positioning accuracy of 2µm peak-to-peak with PIDT1 control and approximately 1µm

peak-to-peak with extended Kalman filter. The AMB built by Petzold [91] with 1,864kg

rotor mass has approximately 3µm peak-to-peak noise when not rotating. The third ex-

ample has 0.35kg rotor mass and approximately 1µm peak-to-peak error motion in radial

direction and a bit more in axial direction [43]. The mass and the design are not directly

comparable, though.

The question is why the magnetic bearing controlled with encoders is not better al-

though the sensor resolution is superior. There is also no significant difference between

control with gap sensors and encoders of the same magnetic bearing, see section 5.2.3 and

table 5.5. From the analysis of sensor noise and power amplifier current control fidelity it

can be inferred that the current ripple of the power amplifier is the performance limitation.

This shows that low-quality amplifiers do not only cause sensor interference but directly

position undulations. Because of budget and time limitations it was not possible to replace

them. There are for example switching type amplifiers with synchronisation between the

current control channels and also between current and position control to avoid mutual in-

terference, but the BA30 amplifiers do not support this option [94, 3]. Often amplifiers are

made by the researchers themselves but the time scale did not allow that either [50, 22].

As soon as the shaft rotates, its centre point describes a whirl motion, see figures 5.15,

a and 5.22, a. For tracking control and feed-forward compensation of this whirl motion a

rotary encoder would be necessary. Since this piece of work is not part of the objectives,

there is no rotary encoder in the design and no compensation has been attempted.
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Experiments with rotating shaft could be used to calculate the synchronous error,

asynchronous error and total radial error motion. Instead, experiments with non-rotating

shaft have been evaluated to get an estimate for the asynchronous radial error motion at

low speed. This is because the machine cannot run at very low speed like 2.39rpm, at

which the asynchronous error would be of interest, see section 1.2.

6.4 Stiffness, bandwidth

Stable operation has been achieved with the same positive stiffness as the bearing’s nega-

tive stiffness, which was expectable. Also the stability range for the damping (0.2 ≤ D ≤

0.8), which equals −0.204 ≤ σ/ω ≤ −1.33, is close to literature values [10, 81]. What

is not satisfactory is the stiffness of 0.41N/µm as opposed to approximately 15N/µm,

which was predicted in section 3.2. The explanation is as follows: Flexible modes at

220Hz limit the bandwidth to a maximum of 120Hz (figure 5.14). Because of the low

rotor mass of 23kg the stiffness that leads to 120Hz bandwidth is also low. In the R2R ma-

chine the rotor mass is much higher, approximately 200kg on two radial bearings so that

a higher stiffness is permissible for the same bandwidth [81, 50]. It will still be necessary

to determine and optimize the dynamic behaviour before the design can be considered

valid.

The bandwidth of the AMB demonstrator could possibly be extended by adding notch

filters, but this effort is not justified in the temporary design. The demonstrator has entirely

different structural properties and it has not been designed to make predictions about the

stiffness of the final design. These predictions are still limited to the estimates of section

3.2.

Notwithstanding the fact that the value of the bandwidth has a limited general expres-

siveness, its value is comparable to those achieved on other magnetic bearing test stands,



6.4. STIFFNESS, BANDWIDTH 135

see table 6.1. The achieved bandwidth of 120Hz for one radial bearing and 23kg rotor

Table 6.1: Examples of magnetic bearing bandwidths found in literature

Bandwidth Reference Comment
30Hz [103] Especially long and thin: 600mm long

and 10mm thin with a total mass of 2.84kg
46Hz...72Hz [22] Depending on direction

85Hz [17] Linear positioning stage with flexures
100Hz [94] 391kg flotor mass, linear stage,

lateral direction
130Hz [94] 45.6kg flotor mass, linear stage,

lateral direction
150Hz [50] 2.69kg rotor mass
163Hz [91] 1,864kg rotor mass
200Hz [124] Radial bearing,

first flexible mode at 700Hz
215Hz [43] 0.35kg rotor mass, radial direction
255Hz [43] 0.35kg rotor mass, axial direction
282Hz [77] Radial bearing
318Hz [124] Thrust bearing
450Hz [60] 0.18kg rotor mass, radial bearing

mass is neither particularly low nor especially high. In order to improve the bandwidth

it would be advisable to replace the aluminium bridge by a steel part. In any case the

expectable resonant modes should be calculated and interpreted on the basis of the target

bandwidth, which has not been done in this thesis because the effect of flexible modes has

been underestimated.
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Chapter 7

Conclusion and future work

The last chapter summarizes the findings and contributions and reflects upon the satisfac-

tion of objectives. Finally some suggestions for further work are made.

7.1 Conclusion

The quest for high precision in spite of geometric imperfections in the R2R flexible elec-

tronics industry has been addressed by designing a magnetic bearing for a large-scale

printing machine. Magnetic bearing, control hardware and power amplifiers have been

specified and purchased. An innovative position sensor based on conventional linear op-

tical encoders has been proposed and demonstrated in a number of experiments. The

special scale for these encoders was made by micro-machining. Different versions of the

scale have been machined and analysed in experiments. Finally a magnetic bearing has

been built to demonstrate the performance of the position sensor and the other purchased

components in closed loop. In addition, the magnetic bearing was equipped with ordinary

gap sensors to compare the performance.

Contributions to knowledge have been made
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• by providing an innovative method to measure the position of radial AMBs,

• by characterising this method analytically and in experiments,

• by definition and empirical investigation of procedures to create amplitude gratings

for commercial optical encoders by micro-machining,

• by designing magnetic bearings for flexible electronics R2R production systems.

The resulting radial magnetic bearings have a nominal load capacity of 5.3kN each

and the nominal load capacity of the axial magnetic bearing is 4.8kN (table B.1). This

is below the load capacity of the hydrostatic bearing that is currently incorporated in the

machine (9.09kN radially and 5.28kN axially) [129]. Suitable rolling element bearings

have been found with 20kN load capacity (section 2.1.1). The magnetic bearing requires

more installation space than the other two bearing types (sections 3.5 and 2.1) and at the

same time it has the lowest load capacity, but the specifications for the load capacity are

still fulfilled, see section 1.2.

Although the magnetic bearing stiffness could not be scrutinized in experiments, an

estimate could be calculated for medium load frequencies: 12.7N/µm in vertical direc-

tion, 15.7N/µm in radial, horizontal direction and 15.5N/µm for the thrust bearing, see

section 3.2. These values are also below those of hydrostatic bearings (80−100N/µm ra-

dially and 21.2−84.8N/µm axially). The stiffness of the rolling element bearing would

be even higher: 1,429N/µm. On the other hand magnetic bearings have an infinite stiff-

ness at 0Hz and since the application requires low speed of rotation and rapidly changing

process forces are not expectable this special application makes advantage of the high

static stiffness of magnetic bearings.

The experiments with encoders for radial position measurement have borne suitable

micro-machining procedures for both 20µm encoders and 200µm encoders. The noise
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with 20µm grating period is 3.5nm RMS at 10kHz sampling rate with the best scale type

and with 200µm grating period it is 13.8nm RMS. Both types are an improvement over

capacitive sensors with 20nm RMS nominal noise, which are usually used in magnetic

bearings. There are capacitive sensors with less noise, but their range is not wide enough

for this magnetic bearing. Other gap sensors have more noise than capacitive sensors

(section 2.4). It can be concluded that the proposed sensor has better characteristics than

gap sensors under static conditions. Practically speaking, encoders are also easier to use

because their grating period is exactly known and a non-linearity calibration is not always

required as it is for gap sensors and curved targets.

When the shaft rotates, there are other noise sources so that it is more difficult to

quantify the noise. Electrical noise of eddy current sensors and target imperfections of

capacitive sensors have the same effect, but these have not been measured so that a direct

comparison cannot be made.

Another effect is the deterioration of the signal quality when the shaft departs from

the air gap centre. This effect has been analysed analytically (section 3.3.4) as well as

in experiments (section 5.1.4). A good correlation of calculated and measured behaviour

can be observed. In the magnetic bearing it has been shown that reliable position tracking

is possible in spite of this deterioration effect.

An aluminium substrate and blackboard paint have been used as workpiece materi-

als for micro-machining of the encoder scales. These are cheap and easily available so

that this sensor can be used by other research centres where low noise at high sampling

rate and low speed of rotation is required. However, the procedure is time-consuming

and in institutions where this work must be paid, process optimisations will be necessary.

Companies that produce encoders could be inspired by this work and decide to manufac-

ture magnetic bearing scales with conventional photolithography techniques. It should be

analysed if other, e.g. finer or absolute encoders can work, too, see section 7.2.
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In experiments on the active magnetic bearing prototype a positioning uncertainty of

≈ ±1µm and ≈ 0.25µm RMS was the best result that could be achieved with different

optimisations. The size of the AMB is large enough for the R2R machine so that the

achieved accuracy is directly relevant. It is a typical value for a large magnetic bearing

with heavy rotor, as discussed in section 6.3, but it is not better than other examples and

does not meet the specifications of section 1.2. The power amplifiers have been identified

as the main reason for this problem. Adaptive feed-forward vibration compensation has

successfully been applied to reduce 50Hz line interference.

Except from the amplifiers the purchased components work together well. Up to a

frequency of 333Hz phase lead can be maintained. The real-time target machine from

Speedgoat seems to be a good and reliable choice for the control hardware although it is

not a typical platform for magnetic bearing control. In fact, no reference has been found

where it is used. Even with adaptive feed-forward vibration compensation algorithm only

about 22% CPU workload occurred. The remaining work to get the designed R2R mag-

netic bearing working should be easier, now that the control equipment is available.

The objectives from section 2.7 have all been achieved, which is a contribution to the

aim. In order to answer the question more exhaustively if magnetic bearings are applicable

to printing machines a lot of further work will be required as proposed below. Especially

the critical issue of the stiffness needs further investigation and the synchronous error

motion of the rotating magnetic bearings has to be reduced. These steps are necessary

before the magnetic bearing can really supersede roller bearings or hydrostatic bearings.

As far as the statement is already possible, all the specifications from table 1.1 have been

met, expect for the housing length and the positioning accuracy. The fact that the hous-

ing length is exceeded has to be countenanced, but the positioning accuracy should be

improved.

All in all, the thesis at hand constitutes groundwork on the way of realizing a flexible
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electronics R2R machine with magnetically suspended printing roller. The experimental

results were in agreement with the predicted outcome from theory. Only a few initial

steps have been made but the most critical limitation of magnetic bearings in the R2R

application has been addressed and promising results have been achieved. It should be

possible to improve the performance of magnetic bearings in the future.

7.2 Future work

The following points of future work in the field of encoder and grating experiments shall

be recommended:

• Optimize the machining parameters for micro-machining.

• Grating experiments in electroless nickel or chrome instead of aluminium

• Wider tool angle for profile (e); the tool on-hand did not work, but a wider included

angle might help.

• New test rig for function analysis with rotary encoder

• Investigate the tilt tolerance of encoders with factor ten finer grating period and

undiminished ride height tolerance, e.g. the product LIP 200 from Heidenhain with

2.048µm grating period, 31.25pm resolution and ±1nm sub-divisional error [24].

• Investigate gratings for absolute encoders based on the principle of pseudo random

line spacings [24].

The 2-DOF magnetic bearing demonstrator could be used for a few further experiments:

• New amplifiers, probably linear instead of PWM, or linear fine control in addition

to the existing PWM coarse control
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• Add a metrology frame to the AMB demonstrator. As the first flexible modes are

clearly related to the structure this might extend the stiffness and bandwidth [50].

• Compensation of measurement errors due to measurement on curved target

The main part of future work deals with the magnetic bearings for the R2R machine:

• Complement the design including water cooling for the printing drum and optimize

the dynamic behaviour.

• Possibly second radial encoder, 200µm axially offset to extend the axial tolerance

• Assembly and commissioning of the R2R AMB, optimisation of the stiffness

• High precision tracking control in radial direction and rotation about geometric

centre at low speed [41, 64, 68]

• Identify a prescription for the position reference.
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Appendix A

Derivation of the reluctance actuator

force

The following calculation is the derivation of the force of a reluctance actuator with re-

spect to the input current. It is adopted from [81] and shortened.

The electrical input power Pin that drives an electric actuator with a coil arises from

the known current and three voltage drops: the voltage over the ohmic resistor R, the

voltage over the self-inductance L due to changes in the current over time and the voltage

induced, when the flux Φ through the coil changes:

Pin = i2R+ iL
di

dt
+ni

∂Φ

∂x

dx

dt
. (A.1)

x represents the position of the moving part, for instance the magnetic bearing rotor, see

figure 2.3.

Independent of that the input energy is split into three types: Part of the input energy

is stored in the coil Pstorage = PL and the output energy comprises thermal dissipation Pdiss
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and mechanically useful power Pmech:

Pin = Pstorage +Pout = PL +Pdiss +Pmech. (A.2)

If it is assumed that the inductance of the coil does not change with the current, the

energy in a coil is EL = 1
2L(x)i2 and the power necessary to "charge" this coil becomes

PL =
d

dt
EL = iL(x)

di

dt
+

1

2
i2

dL(x)

dt
. (A.3)

The dissipated energy is Pdiss = Ri2. The combination of the equations (A.1), (A.2)

and (A.3) yields the mechanically useful power:

Pmech = ni
∂Φ

∂x

dx

dt
− 1

2
i2

dL(x)

dt
. (A.4)

The relationship between force and mechanical power is

Pmech =
dx

dt
· fx ⇔ fx = Pmech ·

dt

dx
, (A.5)

which allows the calculation of the force from equations (A.4) and (A.5):

fx = ni · ∂Φ

∂x
− 1

2
i2

dL(x)

dx
. (A.6)

For an electrodynamic actuator based on Lorentz force the subtrahend in equation A.6 is

often zero, because the moving part is not necessarily made from ferromagnetic materi-

als so that the inductance L(x) is independent of x. In case of typical reluctance actua-

tors, however, the self-inductance changes with x, because the magnetic reluctance Rm(x)
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varies. With the known correlation nΦ = iL, the subtrahend of equation A.6 is exactly

half of the minuend and only

fx =
1

2
i2

dL(x)

dx
(A.7)

remains. To further calculate the force of a specific actuator, the position dependent in-

ductance must be calculated as a function of the magnetic reluctance [81].
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Appendix B

Specifications of the AMB actuators

signal
conditioner
for sensors

radial bearing stators

thrust bearing
stator pair

inductive sensors

Figure B.1: Photo of the magnetic bearing order from Foshan Genesis, partially un-
wrapped
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Table B.1: Details on the magnetic bearing core from Foshan Genesis according to the
product documentation from the company [31]

Feature Value Unit Note
Length radial 160 mm -

bearing
Length axial 2×42+16 mm Two opposing coils
bearing pair with rotor disc in between

Length inductive 21 mm -
sensor

Diameter inductive 210 mm -
sensor

Diameter radial 220 mm -
bearing

Diameter axial 256 mm -
bearing

Air gap area Ar 0.00312 m2 -
radial

Air gap area Aa 0.00866 m2 -
axial

Load capacity 2×5.3 kN Only with cooling
radial bearing or for a short time
Load capacity 4.8 kN Only with cooling
axial bearing or for a short time
Number of 130 -

windings, radial
Number of 150 -

windings, axial
Max. continuous 7 A

current, radial
Max. continuous 11 A

current, axial
Resolution 1 µm Only for radial

inductive sensor position measurement
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Table B.2: Characteristics of the power amplifier BA30 from Aerotech according to the
product datasheet [3]

Feature Value Unit Note
Input voltage 230 VAC Single phase

DC circuit voltage 320 V 320V ≈
√

2 ·230V
Continuous 15 A -

output current
Peak output 30 A -

current
Min. load inductance 1 mH -

Analogue control ±10 V For positive and negative
voltage output current

Bandwidth 2 kHz current control
Max. efficiency 97 % -
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Appendix C

Transfer function of the encoder

interface

The encoder interface is based on operational amplifiers as sketched in figure C.1. Z1

summarizes R2 and C2. Assuming and ideal transfer characteristic of the operational am-

plifier (U1 =U2, the current of the inputs is zero, the gain is infinite, ideal common mode

rejection) the transfer function of the circuit can be calculated as follows. Dependencies

of the circular frequency ω are not indicated explicitly for simplification reasons. Start

OPVa

Ua+

Ua−

U1

U2R1

R1

R2

R2

R3

C1C1

C2

C2 Z1

Z1

i1
Uout

Figure C.1: OP-AMP circuit diagram for encoder interface
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with

U1 =
(Z−1 + jωC1)

−1

R1 +(Z−1 + jωC1)−1
Ua+, (C.1)

i1 =
U1 −Ua−

R1
+ jωC1U1, (C.2)

Uout =U1 + i1Z1. (C.3)

Equation C.2 is plugged into equation C.3:

Uout =U1

(

1+
Z1

R1
+ jωC1Z1

)

− Z1

R1
Ua−. (C.4)

Then equation C.1 is also plugged into the term for Uout and Z1 is finally written in terms

of R2 and C2:

Uout =Ua+ · Z1

R1 + jωC1R1 ·Z1 +Z1

R1 + jωC1R1 ·Z1 +Z1

R1
− Z1

R1
Ua−

=Ua+ · Z1

R1
− Z1

R1
Ua−

=
R2

R1

1

jωR2C2 +1
(Ua+−Ua−) =

R2

R1

1

jωR2C2 +1
a

.

(C.5)

A first order low-pass filter with a cut-off frequency of

fg =
1

2πR2C2
= 18.45kHz (C.6)
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results. R1 and R2 determine the static gain, which is 3.92 ≈ 4 for the resistor values

R1 = 10kHz and R2 = 39.2kHz. R3 acts as a line terminator for the connection to the

encoder reading head.
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Appendix D

Roundness measurement on the

rotating scale

The RMS of the encoder output is measured while the encoder disc rotates at a number of

different speeds. With the technique described in section 5.1.1 an estimate of the spindle

run-out is calculated in every rotation and subtracted from the measurement. For each

speed step ten rotations are evaluated. The error bars refer to these ten repetitions and

they have a length of two times the sample standard deviation, see figures D.1 and D.2.

For 0rpm the RMS value is based on simple noise measurements over 5,000 samples.

The results are comparable to static measurements in sections 5.1.1 and 5.1.2.
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Figure D.1: LIDA 28 measurement error for different rotational velocities
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Figure D.2: LIDA 48 measurement error for different rotational velocities
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Appendix E

Scale length requirement

The minimum scale length defines the amount of grooves that have to be cut and is there-

fore an important characteristic, but it is not specified in the catalogue. It is also necessary

to know the scale length seen by the reading head (m · p) to apply equation 3.18. In linear

position measurements with conventional scales it is not of interest for the user. However,

this is different in the magnetic bearing where the range of movement is short and the

price for machining the grooves is proportional to their amount.

The encoder reading head is mounted horizontally as shown in figure 4.3. It moves

20mm radially while passing the raster area on the scale. The later is not rotating. While

moving the output signal amplitude changes as shown in figure E.1.

In a small band around 0 the amplitude is almost constant and the operation is not

adversely affected by the movement. For LIDA 28 this range is 5mm long and for LIDA

48 it is 8.5mm long. At larger strokes the measurement shows abnormalities and the valid

range is obviously exceeded. As all scales are 16mm long the minimum lengths can be

calculated: For LIDA 28 it is 11mm plus desired range of movement and for LIDA 48 it

is 7.5mm plus range of movement. To facilitate the alignment, it is advisable to extend

this length by a few millimetres.
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Figure E.1: Signal contrast against radial position along the scale for both grating periods
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Appendix F

Noise spectrum of power amplifiers
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Figure F.1: FFT of position measurement with encoders while the amplifiers for the hor-
izontal coils have a constant reference signal of 1A. The reference signal for the other
amplifiers is 0.
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Appendix G

Coherence correlation interferometry

images of AMB encoder disc

This appendix shows surface measurements taken with a Talysurf CCI from Taylor Hob-

son, a division of the company AMETEK Inc. Figure G.1 shows the nickel plated surface

of the encoder disc in the magnetic bearing. It has been diamond turned after coating but

no gratings have been cut. The arithmetic mean deviation of the roughness as displayed by

the instrument is Ra = 7.12nm, the total height of the roughness profile is Rt = 74.2nm.

Visually the surface looks streaky and shows defects.

Figure G.2 displays the outer edge of the structured surface (profile (d) in figure 4.5).

Areas with steep slopes cannot be detected by the optics and are displayed in grey. Figure

G.3 is the corresponding profile in radial direction. The slopes are missing, too, but the

intended profile consisting of V-grooves can be identified. There seems to be no burr and

the cutting depth is uniform across the structured band. The ridges are 7µm wide.
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Figure G.1: Diamond turned electroless nickel surface of encoder disc without gratings

Figure G.2: Gratings in electroless nickel surface of encoder disc. The outer edge of the
patterned area is just visible.
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APPENDIX G. COHERENCE CORRELATION INTERFEROMETRY IMAGES OF

AMB ENCODER DISC

(a) Inner edge of structured area

(b) Outer edge of structured area

Figure G.3: Profile of electroless nickel gratings, inner and outer edge
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Appendix H

Encoder controlled AMB, locus plots

Figures H.1 and H.2 have been recorded by adding a sinusoidal excitation to the control

current while the controller with a bias current of 1.3A and a damping of 0.5 maintains

stable hovering. Both figures show movements in horizontal direction. According to

the Nyquist criterion the closed loop could be stabilized with an additional gain of 0.52

through 2.94, as can be seen in figure H.1. The phase margin is 42◦. Figure H.2 indicates

once more that this plant can only be stabilized if the controller incorporates phase lead

because the phase of the plant is below −180◦ over a wide frequency range.



160 APPENDIX H. ENCODER CONTROLLED AMB, LOCUS PLOTS

  0.5

  1

  1.5

  2

  2.5

30

210

60

240

90

270

120

300

150

330

180 0

248 Hz
976 Hz

70 Hz

333 Hz

248 Hz
976 Hz

70 Hz

333 Hz
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Figure H.2: Locus of plant frequency response function recorded with encoders. The unit
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Appendix I

AMB experiments at higher speed of

rotation

For the six experiments of figure I.1 the machine runs at three different rotational ve-

locities, while the reference value of the magnetic bearing is (0,0). It is controlled with

encoders. 300rpm represents the maximum required for the application and higher speeds

have only been run to demonstrate the capabilities of the magnetic bearing. At t = 0 the

machine accelerates the rotor and the magnetic bearing is started simultaneously. It takes

a few seconds until the motor has reached its final speed. During this acceleration time the

diameter of the error motion slowly increases on the right because the integrator reduces

it at low speed. The experiments with PD control do not show this speed dependency.
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