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ABSTRACT 

Water companies are continually adopting catchment management as a way of 

improving the quality of raw water prior to treatment. The catchments from which raw 

water is abstracted are often heterogeneous which regularly presents multiple 

pollutant issues and variability in the spatial distribution of pollutant-contributing 

areas. For catchment management to be effective, it is crucial that water companies 

select and target appropriate interventions at multi-pollutant high risk areas. Within 

this thesis a conceptual framework is developed to disaggregate and compare multiple 

pollutant risks in drinking water catchments to aid water companies in this decision 

making process. 

A review of pollutant processes highlights links between pollutants often mitigated 

using catchment management and therefore confirms the feasibility for a multi-

pollutant framework. Criteria were developed with water industry catchment 

management professionals to determine framework requirements. No current 

framework or model fully meets these criteria. 

The Catchment Risk to Potable Water(CaRPoW) framework was therefore developed 

which disaggregates pollutants risks according to the Source-Mobilisation-Delivery 

continuum. Models for various pollutants that match the defined criteria were 

developed for each component of the framework and applied to the River Ugie 

catchment, a lowland agricultural drinking water source catchment in the North East of 

Scotland, UK. 

Within the limits of uncertainty for both the models and monitoring data, the models 

were capable of representing total catchment load for each pollutant reasonably well. 

Similarly approximately half of the models were able to replicate the spatial 

distribution of pollutants loads. Given the relative simplicity of the models, the scale at 

which processes are represented and uncertainty in validation data, the models 

provide a reasonable representation of catchment loading (risk) for the pollutants 

modelled. 
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Spatial comparison of the outputs highlights concurrence in risks between pollutants 

and the potential for multiple benefits. A methodology to select and target 

interventions was demonstrated for the pesticides chlorotoluron and metaldehyde. 

The majority of high risk areas were best mitigated using source control interventions; 

however certain fields were better mitigated using mobilisation and delivery 

interventions thus confirming the need for informed intervention selection depending 

on the field. 

Finally a retrospective economic analysis using data from Scottish Water’s catchment 

management project highlights theoretical savings upwards of £30,000 in monitoring 

costs. Additionally, comparison of applications to Scottish Water’s incentive scheme 

against CaRPoW outputs suggests discrepancies in the interventions applied for and 

funded.   

Overall this thesis has improved understanding on the representation of multiple 

pollutant processes at the catchment scale within one conceptual framework and 

provided a decision support methodology to aid water industry catchment 

management projects going forward. 
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Chapter 1. Introduction 

1.1 Research context 

1.1.1 Catchment management for water quality 

The variable nature of catchment water quality affects multiple aspects of the 

environment and society. In response to poor water quality, regulations implemented 

in the latter half of the 20th century to control point source pollution (e.g. European 

Union Urban Waste Water Directive 91/271/EEC) have resulted in general catchment 

water quality improvements in developed countries (Jarvie et al., 2002; Kinniburgh and 

Barnett, 2009). Nevertheless the control of point sources has somewhat shifted the 

focus to tackling diffuse pollution (Orr et al., 2007; Edwards and Withers, 2008). By its 

nature diffuse pollution is not conducive to the same regulatory controls as point 

sources and therefore an integrated approach at the catchment scale (catchment 

management) has been adopted as the primary mechanism for its control (Keirle and 

Hayes, 2007; Harris, 2013). Internationally this has been enshrined in legislation such 

as the Watershed Approach Framework in the United States (EPA, 1996) and the 

formation of Catchment Management Authorities in Australia (New South Wales 

Government, 2003). 

The European approach is centred on the EU Water Framework Directive (WFD) which 

aims to achieve a ‘good’ ecological and chemical status for all EU water bodies 

(2000/60/EC; Holzwarth, 2002). Catchment management is intertwined within the 

WFD where improving the status of water bodies is predicated on the designated 

competent authority in each member state outlining a programme of measures within 

river basin management plans to improve a range of water quality parameters, some 

of which are directly related to diffuse pollution control (Holzwarth, 2002).  

Aside from national and international legislative drivers a number of other sectors 

have been incentivised to implement catchment management to improve water 

quality. A key adopter of the approach is water companies who are reliant on 

catchment water quality for the provision of clean drinking water (Keirle and Hayes, 
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2007). With encouragement from regulators (e.g. the Water Services Regulation 

Authority (OFWAT) and the Drinking Water Inspectorate (DWI) in England and Wales 

and the Water Industry Commission for Scotland (WICS) and the Drinking Water 

Quality Regulator (DWQR) in Scotland) uptake in the sector has been large in recent 

years. So much so that all of the major drinking water suppliers in the United Kingdom 

have some form of catchment management at varying degrees of implementation 

(Spiller et al., 2013). Commitment to the approach has been in response to a variety of 

drivers. Compliance with both the EU Drinking Water Directive (DWD) and the WFD 

(2000/60/EC) are key, with article 7 of the WFD stating that member states should aim 

at “avoiding deterioration in their [water companies] quality to reduce the level of 

purification treatment required in the production of drinking water” (2000/60/EC). In 

some circumstances catchment management has been adopted in response to 

deteriorating raw water quality where the design limits of treatment works are being 

stretched and there is a threat to compliance with the DWD. Water companies are also 

incentivised by non-legislative drivers such as the increasing operational costs of 

treatment and striving to promote sustainability in their practices (UKWIR, 2012).  

In accordance with the DWD water companies are required to remove an assortment 

of different pollutants to maintain compliance (98/83/EC). There are also other 

pollutants that are not directly regulated by the DWD or cause issues with the 

treatment process that are problematic to water companies. Subsequently water 

company catchment management schemes have tended to focus on the following 

pollutants: 

• Nitrate (directly regulated under the DWD) 

• Phosphorus (eutrophic issues in reservoirs) 

• Pesticides (directly regulated under the DWD) 

• Dissolved Organic Carbon (DOC)/water colour (issues with disinfection by-

products which are regulated under the DWD) 

• Sediment (issues with turbidity and is a conduit for other pollutants) 
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Although multiple pollutants often manifest in the same catchment, most water 

industry catchment management schemes are reactionary and emphasise single 

pollutant issues in isolation. Arguably water companies have therefore missed the 

opportunity to implement catchment management in a truly integrated way so that 

interventions are selected on the basis of multiple pollutant mitigation. 

1.1.2 Catchment heterogeneity and current approaches to intervention 

selection and targeting 

The occurrence of different pollutants within drinking water supply catchments is 

often dependent on a heterogeneous mix of varying land uses, soil types, hydrology, 

geology and anthropogenic influences. The spatial distribution of the processes that 

define overall catchment pollutant risk for different pollutants are therefore 

disproportional, and subsequently Critical Source Areas (CSAs) exist (Strauss et al., 

2007; White et al., 2009; Doody et al., 2012). Many water industry catchment 

management schemes offer funding for land owners to implement interventions on 

their land (e.g. Scottish Water’s Sustainable Land Management Scheme). For such 

schemes to be successful it is important that interventions are selected according to 

the dominant processes that promote high risk critical source areas (Doody et al., 

2012). By doing this, interventions can be selected that will pay back benefits for more 

than one pollutant (Gooday et al., 2014). At the same time comparing pollutants in this 

way will also highlight where risks do not match and consequently where there is the 

potential for pollutant swapping (Stevens and Quinton, 2009). In this thesis ‘pollutant 

swapping’ refers to incidences where interventions implemented to mitigate the 

drinking water contamination risk of one pollutant increases the risk of another. 

Adopting such an approach will make sure maximum benefits to water quality are 

achieved from minimal investment.  Accordingly, money will not be invested on 

interventions unlikely to have a positive (or even negative) impact on catchment water 

quality. The targeted approach will similarly reduce disruption to other catchment 

stakeholders which is an important consideration when the uptake of interventions by 

land owners is considered (Beharry-Borg et al., 2013). Overall, selecting and targeting 
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interventions at CSAs has the potential to improve the efficacy and efficiency of 

catchment management. 

Consequently methodologies are required that are able to characterise, define and 

break down multiple pollutant risks at the catchment scale to predict where CSAs may 

exist, and select appropriate interventions accordingly. Such an approach is 

representative of what Beven and Alcock (2012) describe as “Models of everything 

everywhere”; these being simple generic models and frameworks capable of 

implementation in many situations to develop understanding of complex catchment 

processes for decision making. 

There are previous methodologies and frameworks that have been developed, 

however none specifically meet these requirements. For example the Nutrient Export 

Risk Matrix (Hewett et al., 2009, 2004), the Phosphorus Indicators Tool (Heathwaite et 

al., 2003) and CatchIS modelling framework (Brown et al., 2002) are able to define 

critical source areas for nitrate, phosphorus and pesticide respectively i.e. single 

pollutants. Other approaches are applicable to more than one pollutant but only target 

one component of risk; for example the SciMap modelling framework (Lane et al., 

2009) which characterises pollutant risk on hydrological connectivity alone. Some 

frameworks and models do consider multiple pollutants but are only applicable to 

certain land use and soil types (e.g. Granger et al., 2010), only consider one risk 

component (e.g Dawson and Smith, 2010) or do not allow for easy comparison 

between different pollutants (Gascuel-Odoux et al., 2009). As of yet, no “model of 

everything everywhere” exists that is generic, can be applied to multiple pollutants, 

specifically breaks down the components of pollutant risk and allows for multiple 

pollutant comparison for the purposes of measure selection i.e. which intervention to 

target where. 

There is therefore a niche both within the water industry and wider catchment 

management research for a methodology capable of defining and comparing multiple 

pollutant risks at a scale that allows for interventions to be specifically targeted at the 

dominant components that constitute CSAs for multiple pollutants. 
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1.2 Aims and objectives 

1.2.1 Aim 

The overarching aim of the thesis is to develop a conceptual framework and associated 

modelling methodologies capable of identifying and comparing high risk areas in 

catchments for multiple pollutants so that catchment management interventions can 

be effectively selected and targeted. 

1.2.2 Objectives 

To achieve the broad aim set out in section 1.2.1 the following objectives have been 

formulated, each one relating to a specific chapter in the thesis: 

1. Assess the feasibility of considering multiple pollutants within the same 

conceptual framework by reviewing the processes that constitute 

catchment risk for the pollutants mitigated in water industry catchment 

management schemes (Chapter 2).  

2. Develop criteria with water industry professionals to outline the industry 

requirements for a conceptual modelling framework (Chapter 3). 

3. Critique current methodologies and frameworks against the industry 

defined criteria and outline a new conceptual framework (Chapter 3). 

4. Develop modelling methodologies to populate the conceptual framework 

developed in objective 3, capable of representing the components of risk 

using a quantifiable metric (Chapter 4). 

5. Apply the framework and associated modelling methodologies to the River 

Ugie catchment and assess the utility of the framework for representing 

multiple pollutant risk against catchment water quality data (Chapter 5). 

6. Compare the risk outputs of different pollutants to identify where multiple 

benefits and pollutant swapping may be prevalent and develop a 

methodology to select and target interventions using model outputs in the 

River Ugie catchment (Chapter 6). 
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7. Determine how the framework fits within Scottish Water’s (SW) and other 

water companies catchment management processes, and conduct a 

retrospective economic analysis to quantify the benefits of implementing 

the methodologies developed (Chapter 7). 

1.3 Research Contribution 

The thesis contributes to the development of catchment management within the 

water industry in a number of ways. The framework developed is the first of its kind 

capable of being applied generically for the specific purpose of selecting and targeting 

catchment management interventions when multiple pollutants are an issue. Likewise 

the results of applying the framework and associated models has highlighted a number 

of key constraints that must be considered by water companies when selecting and 

targeting interventions. The analysis of scheme applications against model outputs has 

outlined a number of disparities between the interventions applied for by land 

managers and those that are likely to have the most positive impact on water quality. 

Aside from the specifics of the water industry the research also contributes to wider 

understanding on pollutant processes at the catchment scale. The development of 

models within the framework has already contributed to understanding on pesticide 

mobilisation for example and it is hypothesised that the continual development of 

models within the framework will contribute to a better understanding of more 

complex processes. The approach also constitutes one of the first attempts at 

modelling pollution swapping within the context of catchment management 

interventions where multiple pollutants are concerned. More specifically the research 

builds on the concepts of the Source-Mobilisation-Delivery continuum by developing 

the theory for pollutants other than phosphorus for which it was first developed. 

Likewise the addition of landscape barrier and enhancement features within the 

structural connectivity model represents the first time this has been done using 

generic data. 



 

7 

Overall the research provides a step in the right direction for catchment management 

decisions within the water industry to be made upon a pragmatic integrated 

understanding of catchment processes. 

1.4 Thesis structure 

The thesis is structured as 8 chapters with a separate analysis that sits as an appendix 

but is still discussed in some parts of the thesis. The structure is detailed by the 

illustration in Figure 1.1 and detailed below. 

 

 

Figure 1.1 - Thesis structure 

Chapter 2 reviews the dominant processes and deterministic variables within the 

source-mobilisation-delivery continuum for the pollutants of concern to the water 

industry. The purpose of the review is to ascertain similarities and differences between 
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pollutants to assess the feasibility of considering multiple pollutants within the same 

conceptual framework. Intervention options are also considered and categorised by 

pollutant and processes targeted. 

Chapter 3 initially sets out criteria for the development of a conceptual framework 

developed in conjunction with catchment management professionals within Scottish 

Water. Current frameworks and models are then critiqued against the criteria to 

determine if a new framework is required. The new CaRPoW (Catchment Risk to 

Potable Water) framework, developed on the back of the industry defined criteria, is 

then outlined.  

The framework can be used with modelling or to qualitatively conceptualise pollutant 

process understanding in a catchment. In the thesis, Chapters 4 and 5 outline the 

method of using the framework for modelling purposes. Models are applied and 

validated in the River Ugie catchment for nitrate, phosphorus, sediment and 

pesticides. A separate analysis is also included in appendix A which applies the 

framework in a qualitative sense to an upland catchment (Amlaird) with DOC/water 

colour issues where catchment data are not available to model pollutant processes. 

Chapter 6 outlines the methodology for using the modelled risk outputs from Chapter 

5 to select and target interventions. Modelled outputs for each pollutant are 

compared to assess potential for multiple benefits or pollutant swapping. The 

intervention selection and targeting methodology is then applied to the pesticides 

chlorotoluron and Metaldehyde as a detailed example. The limitations of the overall 

methodology and post-processing steps required after modelling are discussed. 

Chapter 7 discusses Scottish Water’s Sustainable Land Management (SLM) processes 

and where the CaRPoW methodology can be used. A retrospective economic analysis 

is conducted to highlight potential savings generated from using CaRPoW at the 

beginning of the SLM process. Finally a blueprint is detailed for an updated SLM or 

general catchment management approach making full use of the CaRPoW framework. 
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Chapter 8 assesses if the aim and objectives of the thesis have been met by discussing 

each objective in turn. Key contributions and implications of the research to both the 

water industry and wider catchment management research are discussed and 

recommendations for future work are outlined. 
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Chapter 2.  Literature review of multiple pollutant processes 

and associated interventions 

2.1 Introduction 

The aim of Chapter 2 is to review the dominant processes from source to delivery of 

the pollutants included in catchment management schemes and the associated 

interventions that could therefore contribute to drinking water protection. It is 

necessary to complete this review before the generic conceptual framework is 

developed in Chapter 3, as evidence for the process links between different pollutants 

must be established as a conceptual basis for a new framework. This chapter does not 

provide a review of pollutant modelling methodologies or frameworks. Such a review 

comes later in Chapter 3 once criteria have been developed to benchmark 

methodologies against. 

The chapter starts by identifying the method of reviewing pollutant processes within 

the source-mobilisation-continuum. Each pollutant is taken in turn and the dominant 

processes and controlling variables detailed. Dominant processes are compared and 

potential opportunities for multiple benefits and issues with pollutant swapping 

identified. Finally interventions are reviewed in the context of which pollutant 

processes they mitigate to identify measures capable of mitigating multiple pollutants. 

The following structure is therefore followed: 

• 2.2 The Source-Mobilisation-Delivery (S-M-D) Continuum 

• 2.3 Review of dominant processes within the S-M-D continuum for different 

pollutants 

• 2.4 Process links between pollutants 

• 2.5 Interventions within the S-M-D continuum 

The review of pollutant processes (section 2.3) and pollutant process comparison 

(section 2.4) have been published as part of Bloodworth et al. (2015). 
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2.2 The Source-Mobilisation-Delivery (S-M-D) continuum 

The dominant processes of the identified pollutants (pesticides, nitrate, phosphorus, 

sediment and DOC/colour) are reviewed within the context of the Source-Mobilisation-

Delivery (S-M-D) continuum. The S-M-D continuum was originally developed to 

conceptualise phosphorus processes within a catchment (e.g. Haygarth et al., 2005), 

but has more recently been applied to other pollutants in heavy soiled grassland 

environments (Granger et al., 2010). The continuum describes the cascade of 

processes from source to water body. It follows a similar approach to the widely used 

source-pathway-receptor model in pollutant fate assessment but has been developed 

specifically for a hydrological context.  The selection of the continuum for the review of 

pollutant processes is based upon its cross-scale and cross-pollutant applicability. The 

parts of the continuum are described in sections 2.2.1 to 2.2.3. 

2.2.1 Source processes 

Source processes refer only to how pollutants are derived in a catchment, with no 

emphasis placed on their movement or delivery to the water body. In the classification 

scheme of Granger et al. (2010) source processes are split into three groupings, 

external, cycled and internal. External sources are those pollutants applied outside of 

the natural system and are often anthropogenically derived (e.g. pesticides). Cycled 

sources relate to external pollutants that may have been incorporated into the system 

and modified in some way (for example the cycling of nutrients by livestock). Internal 

sources are pollutants derived within the ‘natural’ system and are often associated 

with the soil, lithology or vegetation processes.  

2.2.2 Mobilisation processes 

Mobilisation refers to the processes by which sources become mobile following an 

input of energy (usually hydrological). Mobilisation processes are characterised as 

solubilisation, detachment and incidental by Haygarth et al. (2005) and Granger et al. 

(2010). Solubilisation relates to biological and chemical processes such as desorption, 

mineralisation and the release of material following biological degradation that 

contribute to soluble pollutants mobilised in soil water (Granger et al., 2010). 
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Pollutants attached to soil particles that are eroded via processes such as raindrop 

impact and hydraulic shear constitute detachment processes (Granger et al. 2010). 

Incidental processes include both detachment and solubilisation processes but relate 

to the rapid mobilisation of externally applied substances in close proximity to 

application e.g. mobilisation of phosphorus following manure application (Haygarth et 

al., 1999; Withers et al., 2003). 

2.2.3 Delivery processes 

Delivery processes refer to the pathways in which mobilised pollutants travel before 

reaching a water body (receptor). Pathways are largely hydrological and can be split 

into high energy pathways such as surface runoff and macropore flow or low energy 

processes such matrix throughflow associated with groundwater recharge 

(Reichenberger et al., 2007). For some pollutants there may be more direct pathways 

not associated with hydrology such as spray drift with pesticides and direct inputs of 

nutrients by livestock (Reichenberger et al., 2007).  

Delivery processes can be altered via anthropogenic activities such as the installation 

of agricultural tile drainage which may reduce the incidence of infiltration excess 

overland flow and increase macropore or bypass flow (Geohring et al., 2001). 

2.3 Review of dominant processes within the S-M-D continuum for 

different pollutants 

The method for reviewing pollutant processes within the continuum is based on similar 

work by Granger et al. (2010) where the dominant processes are outlined for each 

component of the continuum for each pollutant. In this review however more 

pollutants are reviewed and processes are related to different land uses and soil types. 

The key catchment variables controlling the likely dominance of one process over 

another are also detailed where appropriate. 

2.3.1 Pesticides 

Agricultural land use is the most important factor in determining the strength and 

importance of the source term for pesticides as it defines the timing, frequency and 
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rate of active ingredient application (Hunt et al., 2006). This is certainly the case for 

sources applied to fields that are mobilised and delivered during hydrological events 

via runoff, drainflow and leaching processes (Leu et al., 2004; Reichenberger et al., 

2007). Less common but nevertheless important pesticide sources can come as a result 

of poor practice, with spray drift, overspray and point source spills all potentially 

important source processes (Reichenberger et al., 2007). Although less understood in 

the context of overall source load, pesticides from amenity land uses such as golf 

courses can also be important (e.g. King and Balogh, 2010). The availability of a source 

for mobilisation is dependent on the half-life of the pesticide i.e. the rate at which it 

degrades within the environment (Webb et al., 2004). It is therefore an important 

consideration in the source strength of different substances. 

Pesticides can be mobilised in solution or attached to particles, the ratio of which is 

informed by soil properties and the sorption and solubility characteristics of the 

pesticide (Wauchope et al., 2002; Gavrilescu, 2005). Nevertheless even pesticides with 

high sorption strengths are dominated by soluble mobilisation (e.g. Wu et al., 2004). 

Important soil characteristics influencing partitioning include the organic carbon and 

clay content which provide sorption sites; and physical properties such as porosity for 

instance which limits water storage capacity and hence the likelihood of sorption 

(Spark and Swift, 2002; Arias-Estévez et al., 2008). Where prevalent, particulate 

pesticide mobilisation is dependent on the soil properties that influence erosion rates 

e.g. texture and topographical features such as slope (Arias-Estévez et al., 2008). 

Rainfall characteristics relating to timing, duration and intensity are important for the 

onset of particulate associated mobilisation (i.e. erosion processes), mobilisation of 

soluble pesticides recently applied to the soil and mobilisation of pesticides in stored 

soil water if the soil is at or near field capacity (Kladivco et al., 2001;  Nolan et al., 2008; 

Lewan et al., 2009).  

Pesticides are associated with both high and low energy hydrological and non-

hydrological delivery processes (Reichenberger et al., 2007). As with mobilisation, the 

dominant delivery process in a given context is somewhat dependent on pesticide 

properties where highly soluble and low sorbing substances can be more associated 



 

15 

with low energy hydrological processes such as leaching and throughflow (Kördel et al., 

2008), as well as high energy runoff and drainflow processes. In contrast substances 

that are less soluble with higher sorption strengths can be more related to higher 

energy runoff and preferential delivery processes (Riise et al., 2004; Reichenberger et 

al., 2007). Soil properties are similarly important for determining dominant pesticide 

delivery. Where soils are lighter for example, a higher prevalence of slower leaching 

and throughflow pesticide delivery processes may be present (Leu et al., 2004). 

Whereas heavier soils (higher clay content) promote faster runoff processes and 

drainflow where artificial drains are present (Akay and Fox, 2007; Brown and van 

Beinum, 2009).  

Related to both mobilisation and delivery processes, the proximity and characteristics 

of the first rainfall event after applications are very important; with heavy rainfall soon 

after an application likely to lead to a larger proportion of the pesticide source being 

mobilised and delivered (Louchart et al., 2001; Guo et al., 2004). The prevalence of 

non-hydrological delivery processes, such as volatilisation, spray drift and overspray 

are reliant on poor practice, application technique, proximity to water body, pesticide 

properties (e.g. volatility) and weather (e.g. wind and temperature) (Gil and Sinfort, 

2005; FOCUS, 2008). 

Overall pesticide processes can be highly variable depending on the characteristics of 

the catchment and the pesticide. However a few key points can be drawn from the 

review that are relevant in many contexts: 

• Pesticide source strength is generally highest in agricultural land 

uses (arable in particular). 

• The first rainfall event after application is crucial for the availability 

of sources for mobilisation but also the proportion of available 

source that is mobilised and delivered. 

• Pesticide mobility is highly dependent on sorption strength (unless 

particulate mobilisation is very high). 
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• High energy runoff and drainflow process contribute the highest 

mobilised and delivered pesticide loads. 

2.3.2 Nitrate 

Nitrate sources associated with agricultural land uses are related to a surplus within 

the soil (Di and Cameron, 2002), inorganic fertilisers (Domburg et al., 1998) or livestock 

manure/slurry application and direct excreta (Hooda et al., 2000). Agricultural sources 

are generally diffuse in nature, however point sources can exist on farm steadings 

where slurry storage is poorly managed (Edwards et al., 2008). Other non-agricultural 

sources are generally point sources and related to wastewater treatment discharges 

from municipal works and localised septic tanks (Withers et al., 2011). The proportion 

and prevalence of nitrate sources in a catchment are therefore dependent on the type 

of agriculture (although variability is high within each agricultural system e.g. different 

stocking rates and fertiliser requirements) and the presence of other point sources. 

Temporally, diffuse sources are generally higher in the autumn and winter months 

when leaching rates are high and uptake by plants is low (Jarvie et al., 2010). Nitrate 

sources can be depleted by the nitrification process, where, through a series of 

reduction reactions nitrate is converted to nitrogen gas (Rivett et al., 2008). 

Denitrification rates are generally higher in anaerobic conditions and therefore soils 

that are waterlogged for periods of the year will have higher denitrification rates than 

freely draining soils (Rivett et al., 2008). Denitrification is therefore an important 

process in the availability of nitrate sources for mobilisation. 

Due to its very high solubility, nitrate mobilisation is dominated by solubilisation 

processes (Di and Cameron, 2002; Granger et al., 2010). Solubilisation is closely related 

to soil moisture content, which is dependent on the properties of the soil (e.g. porosity 

and texture) and inputs from rainfall (Torbert et al., 1999). The incidental mobilisation 

of ammoniacal-N (that can be nitrified to nitrate) from livestock manures and nitrate 

from inorganic fertilisers can occur in some isolated areas. It is dependent on low soil 

infiltration capacity (Butler et al., 2008) and the proximity of the application to 

hydrologically effective rainfall events (Smith et al., 2001). 
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The high solubility of nitrate means that approximately 5 times more nitrate is 

delivered via low energy leaching processes than higher energy surface runoff in both 

arable and grassland systems (Pärn et al., 2012). Variables that promote or increase 

nitrate losses via throughflow and leaching are soils with low field capacities and high 

hydraulic conductivity (Bergström and Johansson, 1991), a lack of cover crops during 

the autumn and winter period (Macdonald et al., 2005) and land management 

activities such as the installation of artificially drainage that increase the hydraulic 

conductivity in the soil (Singleton et al., 2001). Ammoniacal-N and nitrate mobilised 

incidentally can also be delivered via high energy surface runoff and preferential flow 

(e.g. Ming-kui et al., 2007), however the occurrence of such processes is less common.  

Nitrate processes are generally well defined and understood across multiple land uses. 

Key points from the review include: 

• High nitrate sources are generally associated with arable and 

intensive grassland land uses, although the proportion of nitrate 

inputs from wastewater treatment can be high depending on their 

presence in a catchment. 

• Mobilisation is almost exclusively in a soluble form due to nitrate’s 

high solubility. 

• Delivery processes are dominated by low energy leaching and 

throughflow. 

2.3.3 Phosphorus 

Phosphorus follows a similar source profile to nitrate with sources available from 

added inorganic fertiliser, applied and excreted livestock waste, internally within the 

soil where a phosphorus surplus is present and point sources (Edwards and Withers, 

1998; Withers et al., 2003; Hodgkinson and Withers, 2007). In agricultural catchments 

both diffuse and point sources of phosphorus can be high. Diffuse sources exist in the 

form of applied fertiliser and applied or excreted manure, and points sources from 

farmyards and wastewater effluent discharges (Macintosh et al., 2011). The strength of 

either source depends on the type of livestock and stocking rate for livestock inputs 
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(Smith, 1998; Withers et al., 2001), the fertiliser application rate, usually determined 

by the phosphorus status of the soil (DEFRA, 2010) and the occurrence of wastewater 

discharges for point sources (Macintosh et al., 2011). 

Unlike nitrate, phosphorus mobilisation has been demonstrated to be mobilised 

significantly in particulate, soluble and incidental forms (Granger et al., 2010). Given 

the high sorption strength of phosphorus, particulate phosphorus detachment is 

thought of as the dominant phosphorus mobilisation process (Kleinman et al., 2011). 

High rates of phosphorus detachment require significant rainfall inputs but are further 

augmented by vulnerable soil textures, tillage practices, livestock poaching and soil 

compaction (Van Oost et al., 2006; Bilotta et al., 2010). Although particulate processes 

dominate, the mobilisation of soluble reactive phosphorus is perhaps more important 

given its critical role in the eutrophic processes that cause water companies issues 

(Crossman et al., 2013). The mobilisation of phosphorus in solution is largely a result of 

desorption when the phosphorus equilibrium of the soil is tipped or via the dissolution 

of phosphorus compounds (Styles et al., 2006). The exceedance of the phosphorus 

equilibrium in the soil is particularly prominent in over fertilised agricultural soils, with 

a low sorption strength, low organic carbon content and high soil moisture content 

(Hooda et al., 2000; Mcdowell et al., 2001; Djodjic et al., 2004). When a fertiliser and 

manure application or excretal phosphorus input coincides with a hydrologically 

effective rainfall event there is potential for incidental mobilisation (Preedy et al., 

2001). The effect of incidental mobilisation is unclear however it is thought effects 

tend to be localised (Withers et al., 2003).  

Surface runoff is understood to be the dominant delivery mechanism for both 

particulate and soluble phosphorus in both arable and grassland catchments 

(Mcdowell et al., 2001; Haygarth et al., 2006; Bilotta and Brazier, 2008). Effective 

rainfall inputs (Shigaki et al., 2007), along with soil properties (texture), topography 

and land management activities such as tillage practices and compaction (Silgram et 

al., 2010) are important drivers of phosphorus delivery via surface runoff. More recent 

research however has highlighted the importance of both natural (macropores) and 

artificial (drains) preferential flow in the delivery of both soluble and particulate 
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phosphorus (e.g. Heathwaite and Dils, 2000; Smith et al., 2015). Preferential flow 

pathways generally become an issue when the texture of the soil (heavy soils) is 

conducive of macropore formation (van Es et al., 2004) or poorly drained soils are 

under drained (Hodgkinson et al., 2002). Although not as common a delivery 

mechanism as high energy processes there is evidence for soluble phosphorus to be 

delivered via lower energy throughflow and leaching processes (e.g. Börling, 2003). 

The key dominant processes identified from the phosphorus review include: 

• Sources from both diffuse (fertiliser, soil and manure) and point 

(farm yards and wastewater discharges). 

• Mobilisation dominated by the particulate form however in certain 

circumstances (e.g. when phosphorus sorption capacity of the soil is 

exceeded) soluble phosphorus mobilisation is very important. 

• Delivery dominated by high energy processes with preferential 

processes important where soil type and land management 

activities promote them. 

2.3.4 Sediment 

Sediment is important as it often provides a conduit for other pollutants (e.g. 

pesticides and phosphorus) and is directly related to turbidity which is regulated under 

the DWD (Lawler et al., 2006). Sediment is derived ‘naturally’ within a catchment from 

erosive processes on land and from bed and bank erosion within the river system 

(Walling, 2005). With land based sediment erosion, vegetation is an important 

controlling variable, and therefore areas of land that have limited or no vegetation 

(e.g. bare soil following crop harvesting) contribute a large proportion of total 

sediment load (Collins et al., 2009). Other sediment sources within the catchment can 

arise from urban and sewage treatment, where contributions can be large. Carter et 

al., (2003) for example reported that 19-22% and 14-18% of total annual sediment load 

was sourced from urban areas and sewage treatment effluent respectively.  

By its nature sediment mobilisation is via detachment processes, which requires 

significant energy inputs (Granger et al., 2010). Land based sediment sources are 
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generally detached via hydraulic detachment or rain drop action (Morgan, 2005). 

However certain land management activities such as the livestock poaching (Skinner et 

al., 1997) may exacerbate sediment detachment from both land and also river bank 

sources where livestock have access.  

Sediment delivery is dominated by high energy runoff processes, meaning that the 

proportion of sediment that is mobilised and delivered to the water body is reliant on 

runoff having enough energy to sustain sediment suspension or saltation (Blake et al., 

2012). When energy is not maintained along the runoff pathway sediment is deposited 

(Morgan, 2005). Subsequently the majority of sediment is delivered to surface waters 

in the highest energy most intense runoff events (Smith et al., 2003). More recent 

studies have also started to demonstrate the significance of sediment delivery in sub-

surface drains, where macropores in the soil provide a connection between mobilised 

sediment and sub-surface drainage (e.g. Deasy et al., 2009).  

The key processes from the sediment review include: 

• Sediment can be sourced from land, bank and bed erosion as well as 

from urban and wastewater discharges. The proportion of each 

depends on catchment features relating to land use and soil type. 

• Mobilisation is wholly via detachment processes that require high 

energy from hydrological or land management processes. 

• Delivery is largely via surface runoff although there is evidence that 

high energy preferential processes can contribute. 

2.3.5 DOC/Colour 

Dissolved Organic Carbon (DOC) (as a proxy for water colour) is largely sourced from 

the dissolution of organic matter in soil and vegetation, and a much smaller proportion 

from atmospheric deposition (Dawson and Smith, 2007). There is therefore a distinct 

relationship between the DOC concentration of surface waters and the organic carbon 

content of the soils that they drain (Clark et al., 2004; Holden, 2005; Buckingham et al., 

2008). In the United Kingdom by far the largest loads of DOC come from rivers that 

drain catchments with a large proportion of peat soils (Billett et al., 2010). 
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DOC is solely mobilised by solubilisation processes the rate of which depends on 

organic matter decomposition in the soil (Dawson and Smith, 2007). In peatlands the 

rate of organic matter decomposition is dependent on pH, temperature and water 

table depth (Bonnett et al., 2006). This promotes distinct seasonality in DOC 

production and mobilisation, with higher rates of decomposition and release in the 

summer and autumn seasons compared to the winter and spring (Dawson et al., 2011). 

These processes explain intra-annual variations in DOC production and mobilisation 

but they do not provide an explanation for the observed increasing trend of DOC in UK 

surface waters over the land 40 years (Evans et al., 2005). Potential explanations for 

this include a reduction in acid deposition resulting from sulphur emission controls 

(e.g. Evans et al., 2006), increases in temperature driving increased rates of 

decomposition (e.g. Freeman et al., 2001), CO2 enrichment from increasing emissions 

(e.g. Freeman et al., 2004) and upland management practices such as drainage, 

moorland burning and land use change that affect local hydrology (e.g. Yallop and 

Clutterbuck, 2009). Although evidence exists for all of these explanations there is no 

one driver that fully explains trends in all catchments. 

In peatland catchments DOC is delivered via both high energy surface runoff and 

preferential flow processes (especially in degraded peat with large peat pipes and 

macropores) as well as low energy throughflow processes (Clark et al., 2008; Holden, 

2005). There is a distinct variability in the literature on the dominance of any one 

process, however a number of studies have quantified the importance of large runoff 

events in the overall annual flux of DOC. For example Clark et al., (2007) found that in 

one catchment 50% of the annual DOC flux was exported in 10% of runoff events. 

Key processes from the DOC review include: 

• Soils with high organic matter content (e.g. peatlands) provide the 

largest source for DOC in the UK. 

• The mobilisation of DOC in solution is dependent on the rate of 

organic matter decomposition which is dependent on pH, 

temperature and water table depth. 
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• DOC can be transported by both low and high energy processes 

however there is evidence in the literature that the largest loads are 

delivered in high energy delivery pathways. 

2.4 Process links between pollutants 

If processes and their controlling variables are similar between different pollutants 

then there is a possibility that certain interventions may be able to mitigate multiple 

pollutants. Conversely, if processes are different between pollutants then there is a 

possibility that pollutant swapping may occur if an intervention alters the dominant 

process in an area (Stevens and Quinton, 2009). For example increasing infiltration 

capacity in a soil to reduce surface runoff may increase mobilisation and delivery via 

slow throughflow and leaching processes (e.g. Roberts et al., 2009).  

Process links and dissimilarities for the dominant processes between the different 

pollutants within the S-M-D continuum are summarised in Figure 2.1. Source processes 

are characterised according to which land use type the pollutant is most associated 

with. Mobilisation processes are split into soluble, particulate or incidental 

mobilisation. Delivery processes are defined by high energy runoff or preferential flow 

processes and lower energy lateral throughflow or deep leaching to groundwater.  

With the exception of DOC the sources of most of the pollutants reviewed are 

associated with agricultural land uses. This means that risks are likely to exist in 

spatially similar areas for these pollutants and therefore source related interventions 

may mitigate multiple agriculturally derived pollutants. 

The mobilisation of these sources highlights a different picture however.  Sediment 

and particulate phosphorus by their nature are both mobilised via particulate 

detachment processes. Some pesticides may also be mobilised via particulate 

processes if sorption strength is high however the majority will be mobilised in 

solution. This is comparable with nitrate and soluble reactive phosphorus which is also 

mobilised in solution. Pesticides and phosphorus can be mobilised incidentally 

suggesting interventions that limit their application in close proximity to rainfall events 
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are important. Overall there are some pollutants that could be mitigated with similar 

mobilisation interventions. At the same time however not all pollutants are subject to 

the same mobilisation processes, and therefore care must be taken to limit pollution 

swapping. 

 

Figure 2.1 - Process linkages between the water industry priority pollutants framed within 

the (a) Source, (b) Mobilisation and (c) Delivery continuum (adapted from Granger et al., 

2010). Pest – Pesticides, PP – Particulate Phosphorus, SRP – Soluble Reactive Phosphorus, N 

– Nitrate, Sed – Sediment, DOC – Dissolved Organic Carbon. Note: Figure also found in 

Bloodworth et al. (2015). 
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Similarly the dominant delivery processes are variable across the different pollutants. 

Pesticides have the potential to be delivered by all delivery mechanisms depending on 

the substance and the conditions of the catchment. Sediment and particulate 

phosphorus on the other hand are associated with higher energy surface and 

preferential flow pathways. Soluble reactive phosphorus and DOC can be transported 

via both high and low energy pathways (although their sources are not linked). The 

only pollutant that is largely delivered via slower energy processes is nitrate.  

This review and analysis demonstrates that it is possible to link the processes of 

different pollutants in order to highlight where benefits may be achieved by mitigating 

a certain process. At the same time it has also highlighted where care needs to be 

taken for pollutants that do not have matching processes when selecting 

interventions. 

2.5 Interventions within the S-M-D continuum 

A large spectrum of interventions is available to mitigate the range of pollutants 

reviewed. This section outlines some of the interventions available to water companies 

and classifies them by pollutant and which part of the S-M-D continuum they mitigate. 

The review is by no means exhaustive and does not go into detail on the effectiveness 

of each intervention for each pollutant. More detailed reviews and intervention 

inventories are available such as Vinten et al. (2005), Reichenberger et al., (2007), Kay 

et al. (2009), Newell Price et al. (2011) which go into detail on measure effectiveness, 

potential uptake etc.  

Table 2.1 outlines a range of interventions selected from the various reviews detailed 

above. Each intervention is described and classified according to the S-M-D continuum 

and associated with the pollutants they potentially mitigate. A column is also included 

on the potential for pollutant swapping for each intervention. It is important to note 

that the literature on pollutant swapping for many of the interventions is sparse; 

where a reference is not included potential for pollutant swapping is speculative based 

on process understanding. Likewise pollutant swapping with other problem pollutants 

identified is only considered. There is also a column that details if the intervention is 



 

25 

available in Scottish Water’s Sustainable Land Management Incentive Scheme; this 

column is for use in Chapters 6 and 7. 

Table 2.1 demonstrates that there is a large selection of interventions available to 

mitigate the pollutants reviewed. With perhaps the exception of artificial wetlands, 

very few interventions are able to mitigate all pollutants. However, very few of the 

interventions actually promote pollutant swapping (although evidence in the literature 

for pollutant swapping is often sparse). The interventions that may be subject to 

pollutant swapping can fall into any part of the continuum. For example altering land 

use or substituting pesticides has the potential to swap the source of one pollutant for 

another. Likewise measures that increase the infiltration capacity of the soil have the 

potential to reduce incidental mobilisation but increase solubilisation processes. In a 

similar vein many of the speculative pollutant swapping incidences identified tend to 

be related to mitigating surface runoff and subsequently increasing the risk of 

preferential and slower sub surface flow processes. 
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Table 2.1 - Inventory of measures detailing which part of the continuum they mitigate and for which pollutants. Interventions have been selected 

on the basis that they mitigate the pollutants threatening drinking water sources as reviewed in section 1.1.1. The majority of the interventions in 

the table have been derived from the inventory of measures provided by Newell-Price et al. (2011), the reviews of Kay et al. (2009), Reichenberger 

et al. (2007) and Vinten et al. (2005), various papers on mitigation options for DOC in peatlands or those available in Scottish Water’s Sustainable 

Land Management Scheme 

Measure 

Available 

in SLM 

Incentive 

Scheme? 

Description S, M or D? Pollutants mitigated 
Potential pollutant 

swapping? 
Reference 

1. Do not apply pollutant at 

high risk times 
x 

Avoid applying either nutrients 

(inorganic and organic) or pesticides at 

times of high risk i.e. in heavy rainfall 

or when soil moisture is high to reduce 

losses to surface water 

S, M, D 

P and N (in manure 

and fertiliser form), 

Pesticides 

none 

Vinten et al. 

(2005); Kay et al. 

(2009); Newell-

Price et al. 

(2011) 

2. Do not apply pollutant to 

high risk areas 
x 

Avoid applying P to soil with a high P 

index, do not apply fertiliser (organic 

and inorganic) or pesticides to areas 

susceptible to rapid transport to water 

bodies (dependant on soil type, 

topography etc.) 

S, M, D 

P and N (in manure 

and fertiliser form), 

Pesticides 

none 

Vinten et al. 

(2005); Kay et al. 

(2009); Newell-

Price et al. 

(2011) 

3. Conversion of arable land 

to grassland/woodland 
x 

Conversion to grassland will reduce 

inputs of inorganic fertiliser and 

pesticides, but may increase manure 

inputs 

S 

P, N (inorganic), 

Sediment and 

Pesticides 

none 

Reichenberger et 

al. (2007); Kay et 

al. (2009); 

Newell-Price et 

al. (2011) 
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4. Establish autumn cover 

crops 
x 

Establish cover crop to protect soil at 

high risk time and reduce mobilisation 

and transport of pollutants 

M, D 

PP and N; Pesticides 

to a certain extent but 

only particle 

associated pesticides 

(results largely 

unknown); Sediment 

Potential for extra 

pesticides to be used 

to remove cover crop 

in the spring 

Vinten et al. 

(2005); 

Reichenberger et 

al. (2007); Kay et 

al. (2009) 

Newell-Price et 

al. (2011) 

5. Harvest crops early and 

establish autumn crops 
x 

Earlier harvesting will leave bare soils 

in period of low loss and autumn crops 

would improve soil structure at high 

risk times 

M, D 

P (main particulate), 

Sediment and to a 

lesser extent N. 

Pesticides due to 

potential losses in 

autumn rainfall events 

none 

Vinten et al. 

(2005); Newell-

Price et al. 

(2011) 

6. Cultivate in spring x 

Cultivation in spring increases 

likelihood of uptake of mineralised N 

by plants and reduces losses of P in 

surface runoff at high risk times 

M, D 
P (mainly particulate) 

and N 
none 

Vinten et al. 

(2005); Newell-

Price et al. 

(2011) 

7. Adopt reduced tillage 

systems and cultivate 

across slope 

����    

More direct tillage systems retain 

organic matter content and reduces 

soil erosion; cultivation across slope 

reduces rill erosion 

M, D 

Mainly particulate P; 

Pesticides (although 

results are mixed 

depending on 

pesticide and other 

independent factors 

such as soil type etc.); 

Sediment 

Increased infiltration 

potential for N 

increases? (e.g. Catt et 

al., 2000) 

Vinten et al. 

(2005); 

Reichenberger et 

al. (2007); Kay et 

al. (2009); 

Newell-Price et 

al. (2011) 

8. Strip Cropping ����    

Cultivate across contours leaving strips 

in between to act as filters of runoff 

and throughflow. The larger the width 

of the filter strip the better. Effectively 

an in field buffer strip 

M, D 

Potential to be 

effective for nutrients 

and pesticides but 

mainly for sediment. 

none 
Vinten et al. 

(2005) 
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9. Manage tramlines 

effectively 
x 

Use tines to disrupt tramlines or avoid 

creating tramlines so that infiltration is 

increased and surface runoff reduced 

D 

P (mainly in 

particulate form); 

potentially pesticides 

transported in 

overland flow; 

Sediment 

Increased infiltration 

potential for N 

increases? 

Kay et al. (2009); 

Newell-Price et 

al. (2011) 

10. Edge of field and 

riparian buffers 
x 

Use of buffer strips to intercept 

overland flow 
D 

Largely P in 

particulate form; 

pesticides transported 

in surface runoff 

(edge of field more so 

than riparian); 

Sediment 

Some evidence that 

riparian buffers 

increase SRP release 

(Roberts et al., 2011); 

minimal effect in N 

also (Leeds-Harrison 

et al. 1999) 

Vinten et al. 

(2005); 

Reichenberger et 

al. (2007); Kay et 

al. (2009) 

Newell-Price et 

al. (2011) 

11. Loosen compacted 

grassland soils 
����    

Reduce compaction in grasslands by 

machinery and livestock by soil spiking 

and aeration to increase infiltration 

and reduce surface runoff 

M, D 
Most effective on PP; 

Sediment 

Minimal effect on N in 

literature - potential 

for  leaching? 

Newell-Price et 

al. (2011) 

12. Allow deterioration of 

artificial field drainage 
x 

Reduce preferential flow pathways 

and leaching by allowing drainage to 

deteriorate 

M, D 

N, pesticides and to a 

lesser extent PP - 

Although has 

potential to increase 

surface runoff 

Increase in runoff - 

potential increase in 

sediment and PP? 

Potential for poor 

crop management and 

extra competition 

from weeds leads to 

extra pesticide use. 

Reichenberger et 

al. (2007); 

Newell-Price et 

al. (2011) 

13. Plant crops with 

improved N use efficiency 
x 

The use of plants that are efficient in N 

usage will require less fertiliser inputs 

and thus fewer N losses 

S N 

none (assuming no 

extra pesticide 

requirements) 

Newell-Price et 

al. (2011) 
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14. Efficient fertiliser and 

pesticide use 
x 

Correct machine calibration and a 

system to analyse appropriate 

fertiliser/pesticide requirement will 

minimise unnecessary fertiliser 

application, usage of fertiliser and 

manure in conjunction to meet 

nutrient requirements 

S N, SRP and pesticides none 
Newell-Price et 

al. (2011) 

15. Reduce inorganic 

fertiliser use 
x 

Reducing inorganic fertiliser use will 

reduce short term losses and long 

term build up of P in soils. 

S 

N and P (soluble in 

short term and 

particulate in long 

term) 

none (unless offset by 

organic fertiliser use) 

Newell-Price et 

al. (2011) 

16. Use direct fertiliser 

application technologies 
x 

Using direct application technologies 

will reduce incidental losses of 

fertiliser and increase nutrient uptake 

by plants 

S, M N and SRP 

None (unless artificial 

drains active in close 

proximity to 

application) 

Vinten et al. 

(2005); Kay et al. 

(2009); Newell-

Price et al. 

(2011) 

17. Reduce Manure 

Spreading on Land 
x 

Reduce overall manure application 

rate 
S All nutrient forms 

Potential for increase 

in inorganic fertiliser 

use? 

Vinten et al. 

(2005) 

18. Better manage livestock 

dietary inputs/needs 
x 

Reduce the dietary inputs of N and P 

to livestock and match dietary needs 

to individual or groups of animals as 

current intakes are largely excreted 

S 
N and P in excretal 

form 
none 

Vinten et al. 

(2005); Newell-

Price et al. 

(2011) 

19. Reduce grazing time, 

reduce grazing in high risk 

periods and reduce overall 

stocking rates 

x 

Reduce amount of time livestock are 

in field by housing overnight and in 

winter seasonally; Reduce stocking 

rates when soil moisture is high to 

prevent poaching; reduce overall 

stocking rates to reduce manure 

inputs and poaching 

S, M 

N and P in manure 

form and reduces PP 

from less poaching; 

Sediment 

none 

Vinten et al. 

(2005); Newell-

Price et al. 

(2011) 
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20. Appropriate livestock 

feeding and watering 
x 

Frequent movement of in field feeders 

to reduce poaching and manure inputs 

in concentrated areas; Place water 

troughs in a firm base to reduce 

poaching; use a water trough system 

rather than letting cattle drink straight 

from the water body 

S, M 

N and P in manure 

form and reduces PP 

from less poaching; 

Sediment 

none 
Newell-Price et 

al. (2011) 

21. Effective slurry storage x 
Increase storage of slurry so that it can 

be applied at appropriate times 
S 

N and P but most 

effective for SRP 
none 

Newell-Price et 

al. (2011) 

22. Site solid manure heaps 

away from water bodies 

and drains/Store manure 

on solid base and collect 

leachate 

x 

Site manure heaps at least 10m from 

water bodies and drains to reduce 

pollutant losses in surface runoff and 

drainflow 

S, M, D 
N and P (although 

reductions small) 
none 

Newell-Price et 

al. (2011) 

23. Change from liquid to 

solid manure handling 

system 

x 
Pollutants less likely to be lost from 

solid manure storage to water bodies 
S, M More so for N and SRP none 

Newell-Price et 

al. (2011) 

24. Transport manure 

between farms 
x 

Transport excess manure to farms 

with extra capacity to minimise field 

application at high risk times 

S 
Relatively effective for 

all N and P forms 

Potential to increase 

source risk in other 

areas for nutrients? 

Newell-Price et 

al. (2011) 

25. Minimise livestock 

access to water bodies 
����    

Construct fences and bridges so that 

livestock have no contact with water 

bodies to reduce bank poaching and 

direct manure inputs 

S, M 
Small decreases in N 

and P forms 
none 

Vinten et al. 

(2005); Newell-

Price et al. 

(2011) 

26. Effective farm 

infrastructure management 
���� 

Site gateways and farm tracks away 

from high risk areas i.e. away from the 

bottom of slopes or water bodies, 

make sure tracks drain to appropriate 

S, M, D 

Small reductions in N 

forms, more effective 

for PP losses 

none 
Newell-Price et 

al. (2011) 
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areas etc. 

27. Hedge Establishment x 
Establish hedges along fence lines to 

break surface runoff pathways 
D 

Small reductions in N 

forms, more effective 

for PP losses, 

reduction in pesticides 

transported in surface 

runoff and by wind; 

Sediment 

none 

Reichenberger et 

al. (2007); 

Newell-Price et 

al. (2011) 

28. Barrier Ditches ����    

Excavation of a ditch in between field 

and water body to collect surface 

runoff and intercept pollutants. 

D 

Potential to work for 

all nutrient forms, 

sediment and 

pesticides although 

use is relatively 

unproven 

none 
Vinten et al. 

(2005) 

29. Reduce Water Course 

Maintenance 
����    

Allow water courses to behave 

naturally in order to promote 

pollutant degradation with vegetation 

etc.  

D 

Potential to work for 

all nutrient forms, 

sediment and 

pesticides although 

use is relatively 

unproven 

Potential increased 

pesticide use where 

unfavourable weeds 

grow e.g. rushes 

Vinten et al. 

(2005) 

30. Artificial wetlands ����    
Construct wetlands to capture runoff 

and degrade pollutants. 
D 

Small reductions in N 

forms, more effective 

for PP and sediment 

losses; reduction in 

pesticides transported 

in surface runoff and 

for strong sorbing 

pesticides 

none 

Schulz (2004); 

Vinten et al. 

(2005); 

Reichenberger et 

al. (2007); 

Gregoire et al. 

(2008); Kay et al. 

(2009) Newell-

Price et al. 

(2011) 
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31. Vegetated Barriers x 

Vegetated fences to reduce runoff to a 

certain extent but mainly for wind 

driven pollutants – potential to reduce 

sediment erosion for wind blow 

affected soils 

D 

Small potential for 

nutrients in runoff but 

mainly for spray drift 

pesticides 

none 

Vinten et al. 

(2005); 

Reichenberger et 

al. (2007). 

32. Soil incorporation x 
Incorporate potential pollutant into 

soil to reduce losses in surface runoff 
M, D 

Potential to reduce 

some pesticides 

dependant on 

characteristics e.g. 

sorption strength. 

Shown reduced P 

losses but has 

potential to Increase 

N losses via leaching. 

Potential to increase 

losses via sub-surface 

delivery? 

Vinten et al. 

(2005); 

Reichenberger et 

al. (2007); Kay et 

al. (2009); 

Newell-Price et 

al. (2011) 

33. Low drift spray nozzles x 

Specialist nozzles attached to pesticide 

sprayers that creates coarse pesticide 

droplets less likely to be conveyed via 

spray drift 

M, D 

Potential to reduce 

pesticide losses via 

spray drift massively 

but high variability 

depending on nozzle 

none 

Kay et al. (2009); 

Reichenberger et 

al. (2007). 

34. Product Substitution ����    

Substituting a problem pesticide with 

another that is either less mobile in 

the environment or can be kept below 

the 0.1 µg L-1 limit at the abstraction 

point 

S 

Pesticides - Highly 

dependent on the 

pesticide substitute as 

another problem 

could be potentially 

created 

Potential to swap one 

pesticide for another 

Reichenberger et 

al. (2007). 

35. Maintain Soil Organic 

Matter Content 
����    

Maintain a high soil organic matter 

content to increase pesticide sorption 
M 

Pesticides - 

Dependent on 

pesticide Koc value; P 

Potential increase in 

DOC? 
Kay et al. (2009) 

36. Pesticide loading and 

wash down area (with or 

without biobed) 

����    

Created a specific area where 

pesticide spraying equipment can be 

maintained and cleaned to reduce 

point source losses. The addition of a 

biobed may further improve losses. 

S 

Pesticides - although 

effectiveness at 

catchment scale load 

reduction is uncertain 

none 
Reichenberger et 

al. (2007). 
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37. Grip Blocking ����    

Block artificial peatland drainage 

channels to restore high water table 

and reduce fast preferential flow 

processes 

S, M, D 

DOC - Has been 

proven effective in 

some cases but not 

others 

Some studies have 

shown an short term 

increase on DOC 

concentrations 

Armstrong et al. 

(2009; Wallage 

et al. (2006); Kay 

et al. (2009) 

38. Peatland Revegetation ����    

Reseeding of peatlands with natural 

vegetation type e.g. Sphagnum 

mosses. This is to restore water tables 

previously lowered by heather 

S, M, D 

DOC - Although 

effectiveness 

relatively unproven 

none 

Waddington et 

al, (2008); Kay et 

al. (2009) 
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2.6 Conclusions 

The review of pollutant processes within the S-M-D continuum for the pollutants of 

concern to the water industry has highlighted a few key points. Firstly many process 

similarities have been identified between different pollutants. This is encouraging and 

suggests that there is a high potential for multiple pollutants to be mitigated with the 

implementation of a single intervention. At the same time there are also some 

disparities between pollutant processes that must be considered when selecting 

interventions to limit incidents of potential pollution swapping. These realisations are 

further demonstrated by the range of different interventions available to target 

different aspects and processes of the continuum. Interventions have been outlined 

that are very effective for certain pollutants, but ineffective and potentially have a 

negative effect on other pollutants. Overall the review has demonstrated that it is 

possible for multiple pollutants to be considered in conjunction with one another 

when determining which processes are high risk and how best to deal with them. This 

therefore outlines the potential for a methodology capable of defining CSAs in a 

catchment for multiple pollutants, based on an understanding of the processes that 

constitute pollutant risk and subsequently informs which interventions are likely to be 

most appropriate. 
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Chapter 3. The development of the CaRPoW (Catchment Risk to 

Potable Water) framework using a Water Industry derived 

criteria 

3.1 Introduction 

What is clear from Chapter 2 is that the pollutants often included in water industry 

catchment management schemes have a range of variable and relatively complex 

processes enacting on them. Nevertheless the review demonstrated that in a number 

of cases there is parity between the processes of a number of pollutants. Similarly a 

number of interventions are capable of mitigating processes for more than one 

pollutant. As a result, there is scope for a conceptual framework capable of identifying 

and comparing catchment risk from multiple pollutants for the purposes of 

intervention selection and targeting. This chapter outlines the development of such a 

conceptual framework. 

Firstly, water industry defined criteria are  developed to understand the requirements 

of a new framework and against which current frameworks and models are compared. 

Following this, the newly developed CaRPoW framework is presented to meet the 

requirements of the water industry criteria. The chapter takes on the following 

structure: 

• 3.2 Water industry criteria – Outlines the criteria developed with 

water industry professionals for a new conceptual framework. 

• 3.3 Assessment of Frameworks against criteria – Current 

frameworks and models are compared against the criteria. 

• 3.4 The CaRPoW framework – The new CaRPoW framework is 

presented to match the requirements of the water industry defined 

criteria. 

• 3.5 Chapter conclusions 

The criteria, framework and model review, and outlined CaRPoW framework have 

been published in Bloodworth et al. (2015). 
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3.2 Defining the framework properties with water industry defined 

criteria 

As the framework is to be developed for use within the water industry and the outputs 

to be used by water industry professionals it was deemed necessary to develop criteria 

to inform framework development. The final criteria are also used to benchmark 

current models and frameworks against i.e. assess if currently available models and 

frameworks are suitable.  

The methodology used to develop the criteria was based on a modified version of the 

method developed by Graves et al. (2005) for Agro-Forestry modelling. The purpose of 

the method is to structure end user defined requirements for models within 9 sub-

sections including: model background, systems modelled, model objectives, the 

viewpoint of analysis, spatial scale, temporal scale, generation and use of data, 

platform and interface, and inputs and outputs (Graves et al., 2005). Structuring the 

criteria in this way was deemed beneficial for benchmarking current models and 

frameworks against, and to provide a definitive blueprint for a new framework if 

required. Although the Graves et al. (2005) methodology was initially derived for a 

different purpose its techniques were deemed transferable for any kind of 

environmental modelling. 

The criteria are divided into 9 key sub-sections as documented in Table 3.1.  

In total three end users were selected for criteria development who are involved in 

water quality regulation, catchment management and EU water framework directive 

implementation within SW. The criteria sub-sections were explained to each end user 

and they were asked to provide input to each of the sections. After collation a final set 

of criteria was agreed between all parties which formed the basis of the conceptual 

framework and subsequent modelling methodology.  The final agreed criteria are 

shown in the second column in Table 3.1. 
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Table 3.1 - Water industry defined criteria for a conceptual framework with criteria sub-

sections according to Graves et al (2005) in the first column and the outlined criteria for the 

framework in the second. 

Criteria sub-sections Water company defined criteria 

1. Background - General information on 

framework/model 
1.1 Operate in English 

  
1.2 Supporting methodology for drinking water source 

protection decisions 

    

2. Systems Modelled - Components of the 

system represented by framework/model 
2.1 Represents lowland and upland systems; arable, 

grassland and moorland dominated systems 

  
2.2 Focus on surface water systems although 

consideration of groundwater made in some capacity 

    

3. Objectives 
3.1 Characterise dominant diffuse pollution processes 

from source to delivery in drinking water catchments 

  
3.2 Assess spatial and temporal variation in process 

characterisations 

  3.3 Classify risk of pollutant characterisations 

  
3.4 Compare risk classifications between different 

pollutants 

  
3.5 Select and target interventions according to the high 

risk areas 

    

4. Viewpoint of analysis - Who the 

methodology is being developed for 
4.1 Modelled from the viewpoint of a water company with 

a focus on abstracted raw water quality 

    

5. Spatial scale and arrangement 5.1 Field/land unit scale 

    

6. Temporal scale 
6.1 Monthly for some model components but output to be 

seasonal or annual risk 
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7. Generation and use of data - How the 

framework/model is used 
7.1 GIS methodology with potential to derive information 

from other models if necessary 

  
7.2 Potential for framework to be used in a qualitative 

assessment 

    

8. Platform and interface 8.1 Initial development in spatial modelling platform 

    

9. Inputs and outputs 
9.1 Inputs are spatial-temporal datasets and parameters 

defined by user 

  
9.2 First output is modular to represent components of 

pollutant risk 

  
9.3 Second output combined total risk output with all 

modules 

  9.4 Third output is risk comparison between pollutants 

  
9.5 Intervention options selected according to process 

characterisation in post-processing of outputs 9.1 – 9.3 

 

3.3 Conceptualising Pollutant Processes for Catchment Management 

The synthesis of the modelling criteria in Table 3.1 forms the basis for the 

development of a conceptual framework on which modelling methodologies are 

founded.  

There is a relatively large body of previous work that attempts to conceptualise 

pollutant processes at various scales in order to select and target interventions for the 

purposes of catchment management. Such investigations cover a range of different 

spatio-temporal scales, pollutants, modelling types and systems. For example, there 

are conceptual frameworks such as FARMSCOPER (Gooday et al., 2014) that work at 

the farm scale and the classification system developed by Granger et al. (2010) for 

grasslands with heavy soils attempt to group processes for better conceptual 

understanding. Likewise modelling methodologies such as the Phosphorus Indicators 
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Tool (Heathwaite et al., 2003) operationalise such frameworks into models able to 

spatially delineate risk. 

Before deciding if a unique methodology to meet the criteria in Table 3.1 is required a 

number of current frameworks and modelling methodologies are explored to assess 

whether they meet the outlined criteria. For a model or framework to be included in 

the analysis it either has to be a framework that attempts to classify or characterise 

pollutant processes or a modelling methodology that uses such a conceptualisation of 

pollutant processes. Frameworks and models applied only to the UK or Northern 

Europe that cover at least one of the key pollutants were selected on the basis of 

similar agro-climatic conditions .  

Frameworks and models have been identified from literature searches using search 

engines such as Web of Science and SCOPUS. The types of search terms used included 

“diffuse pollution conceptual framework”, “diffuse pollution catchment risk model”, 

“water quality protection framework”, “multiple diffuse pollution mitigation model” 

etc. Initially frameworks and models detailed in journal papers were searched for, 

however further searches for technical reports (especially with Scotland and UK 

specific models) were warranted. The reported outcomes of a workshop on “the 

spatial targeting of agri-environment measures for mitigation diffuse water pollution” 

was also utilised (Naden, 2013). 

In total 12 models and frameworks were identified and selected for analysis against 

the modelling criteria. Of these, 9 were models and 3 were frameworks for process 

conceptualisation. Table 3.2 assesses each of the frameworks and models against the 

criteria outlined in Table 3.1. 
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Table 3.2 - Comparison of current frameworks and models against the water industry defined modelling criteria (table in Bloodworth et al., 2015). 

Column headings relate to criteria sub-sections as outlined in table 3.1. 

Related Criteria Sub-

Sections 1, 4 2 2 2 3 3 3 3 5, 6 7, 8, 9 

Framework/ 

Model Reference 

Drinking 

Water 

Specific? 

Land uses 

represented 

Pollutants 

represented 

Hydrological 

Systems 

Represented? 

Separate 

Source-

Mobilisation-

Delivery? 

Pollutant 

Comparison? 

Intervention 

Targeting? 

Transferable, 

Generic 

Methodology? 

Spatio-

temporal 

scale? 

Platform 

and Outputs 

Phosphorus 
Indicators 

Tool 

Heathwaite 
et al. 

(2003) 

� Upland and 
Lowland - 

Grassland, 
Arable, Semi-
Natural,  

Soluble and 
Particulate 

Phosphorus 

Surface Water S-M-D � � � (principles 
could possibly 

be generic) 

1km
2
 - 

Annual 
GIS risk 
maps - total 

and 
component 
risk 

FARMSCOPER Gooday et 
al. (2014) 

� Lowland - 
Grassland 

and Arable 

Soluble and 
Particulate 

Phosphorus, 
Nitrate, 
Sediment, 

Pesticides 

Surface Water 
and 

Groundwater 

S-M-D � � � Farm Scale 
- Annual 

Numerical 
assessment 

Granger et al 
(2010) 

Granger et 
al. (2010) 

� Upland and 
Lowland - 

Grassland 

Soluble 
Phosphorus, 

Particulate 
Phosphorus, 
Nitrate, Nitrite, 

Ammonia, Fine 
Sediment 

Surface Water 
and 

Groundwater 

S-M-D � � � n/a Qualitative 
classification 
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NERM Hewett et 
al. (2004) 

� Upland and 
Lowland - 

Grassland 
and Arable 

Nitrate and 
Phosphorus 

Surface Water 
and 

Groundwater 

� � (Potentially 
Implicit) 

� � Farm Scale 
- n/a 

Qualitative 
Classification 

SNIFFER - 
Diffuse 

Pollution 
Screening 
Tool 

Sniffer 
(2006) 

� Upland and 
Lowland - 

Grassland, 
Arable, Semi-
Natural,  

Phosphorus, 
Nitrate, 

Sediment, 
Pesticides, 
Metals 

Surface Water 
and 

Groundwater 

� � � � 1km
2
 - 

Annual 
GIS Risk 
Maps 

SCiMap Lane et al. 
(2009) 

� Upland and 
Lowland - 

Grassland, 
Arable, Semi-
Natural,  

Potential for all 
pollutants 

Surface Water D � � � User 
Defined - 

n/a 

GIS Risk 
Maps - Total 

risk 

SAGIS Comber et 
al. (2013) 

�(but not 
exclusively) 

Upland and 
Lowland - 

Grassland, 
Arable, Semi-
Natural,  

Phosphorus, 
Nitrate, 

Sediment, 
Metals 

Surface Water � � � � Catchment 
scale - 

Annual 

GIS Risk 
Maps - Total 

risk 

CatchIS Brown et 
al. (2002) 

� Lowland - 
Grassland, 

Arable, Semi-
Natural,  

Pesticides, 
Nitrate 

Surface Water 
and 

Groundwater 

� � � � Catchment 
scale - 

Daily (time 
series), 
Annual 

(spatial 
risk) 

GIS Risk 
Maps - Total 

risk 

Foster and 

MacDonald 
(2000) 

Foster and 

Mcdonald 
(2000) 

� Upland and 

Lowland - 
Grassland, 

Arable, Semi-
Natural,  

Cryptospridium, 

Pesticides, Oil 
and grease, 

Colour, Trace 
Metals, Faecal 
Bacteria, Lead, 

Phosphorus, 
Nitrate 

Surface Water � � � � Catchment 

scale - 
Annual 

GIS Risk 

Maps - Total 
risk 
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Grayson et al. 
(2012) 

Grayson et 
al. (2012) 

� Upland - 
Grassland 

and Semi-
Natural 

DOC/Water 
Colour 

Surface Water � � � � Catchment 
scale - 

Annual 

GIS Risk 
Maps 

PSYCHIC 

Model 

Davison et 

al. (2008) 

� Upland and 

Lowland - 
Grassland, 
Arable, Semi-

Natural,  

Soluble 

Phosphorus, 
Particulate 
Phosphorus and 

Sediment 

Surface Water S-M-D � � � 1km
2
 Grid 

(Tier 1), 
Farm Scale 
(Tier 2) - 

Monthly 

GIS Risk 

Maps - total 
and 
component 

risk 

The Territ'eau 

Framework 

Gascuel-

Odoux et 
al. (2009) 

� Upland and 

Lowland - 
Grassland, 
Arable, Semi-

Natural,  

Phosphorus, 

Nitrate, 
Sediment and 
Pesticides 

Surface Water � � � � Field to 

catchment 
scale - 
Annual 

GIS Risk 

Maps - Total 
risk 
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Table 3.2 shows that none of the models and frameworks meets the industry defined 

criteria. Failure to do so stems from a number of causes, including not representing the 

full range of pollutants, not being able to represent processes and at a detailed enough 

spatial scale, not being developed for drinking water protection purposes, not being a 

generic transferrable methodology and not covering all land use and soil types.  

This is somewhat unsurprising as most of the frameworks have not been developed for 

the purposes of drinking water protection, meaning they are unlikely to fully meet the 

expectations of the industry. Exceptions to this include CatchIS (Brown et al., 2002), 

Foster and MacDonald (2000), SaGIS (Comber et al., 2013) and Grayson et al. (2012) 

which have all been developed with inputs from water companies or with drinking 

water source protection in mind. These models that are water industry specific fall 

down because they only represent a single pollutant (e.g. CatchIS, Grayson et al., 2012) 

or they do not suitably represent the necessary processes to make informed decisions 

about which interventions to select and target within the catchment (Foster and 

MacDonald, 2000; SaGIS).  

The framework and model that gets closest to the criteria is the Territ’eau framework 

(Gascuel-Odoux et al., 2009) which assesses the ‘fate’ and ‘transfer’ of pesticides, 

sediment, phosphorus and nitrates. The modular structure however is based on that of 

the individual pollutants rather than the continuum of processes. This makes it difficult 

to disaggregate and compare the components of risk between the different pollutants 

and therefore identify potential multiple benefits and pollutant swapping. 

This small literature review of available models and frameworks highlights the need for 

a new framework that is able to meet the industry defined criteria in Table 3.1. Aside 

from the needs of the water industry, the review has also highlighted the relative 

dearth of diffuse pollution models that consider and compare the risks of multiple 

pollutants. Thus the development of a new framework will not only meet the needs of 

water industry catchment management schemes but also in identifying shared spatial 

pollutant risks in general. 
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3.4 The CaRPoW framework 

The CaRPoW (Catchment Risk for Potable Water) has been developed in response to 

the industry criteria and the need for generic frameworks that can compare multiple 

pollutant risk (Figure 3.1). CaRPoW builds on previous conceptual classification 

frameworks of pollutant processes by Heathwaite et al. (2003), Haygarth et al. (2005) 

and Granger et al. (2010). Such classifications divide pollutant processes into three 

separate groupings according to source, mobilisation and delivery i.e. the Source-

Mobilisation-Delivery continuum (Haygarth et al., 2005). 

Although initially developed for phosphorus the S-M-D continuum has been applied to 

other pollutants in certain land types (e.g. Granger et al. 2010) and is loosely based on 

the classic Source-Pathway-Receptor approach of environmental risk assessments (e.g. 

Leo et al., 2008). The continuum has also been applied within a spatial modelling 

platform to identify areas with high agricultural phosphorus loading (the Phosphorus 

Indicators Tool, Heathwaite et al. 2003).  

The key benefit of using the S-M-D continuum within CaRPoW is that its modular 

structure allows the components of pollutant risk to be clearly displayed to the end 

user (requirement 9.2 of the criteria). It does this by first of all calculating the risk 

within each module and then combining these to give an overall risk value. Deriving 

risk in this manner gives ultimate transparency to the end user as to where and how 

risk is propagated in a catchment.  

Likewise it gives the added benefit of identifying where particular measures will be 

suited in a catchment rather than only identifying where risks are. The review of 

catchment management interventions in Chapter 2 highlights where different 

measures fit into different parts of the continuum. Thus by highlighting which part of 

the continuum dominates overall risk, the most appropriate measure can be selected 

and targeted.   
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Figure 3.1 - The CaRPoW framework (figure also found in Bloodworth et al. 2015) developed from the water industry defined criteria in table 3.1. 

The framework disaggregates catchment pollutant risk and allows multiple pollutant comparison to aid intervention selection and targeting.
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Within the original S-M-D continuum, components work at a range of differing scales. 

The source component works at the soil profile and field scale, mobilisation at the soil 

profile scale and the delivery component at a range of scales from the soil to the 

catchment (Haygarth et al., 2005). In CaRPoW the scales are much more defined to 

ease process conceptualisation for the end user and simplify modelling processes 

implemented within the framework. CaRPoW is divided into two different scales with 

source and mobilisation working at the field/land unit scale (unique combination of 

land use, soil type and drainage) and delivery/connectivity at the catchment scale. 

The main utility of CaRPoW is as a framework within which to fit modelling 

methodologies to represent each of the three components (source, mobilisation and 

delivery) for each pollutant. The benefit of this approach is that as model capabilities 

and process understanding develop, the models placed within the framework can be 

updated to improve catchment risk representation and understanding. 

However for catchments that do not have the data availability to model pollutant 

processes and subsequently catchment risk at the scales represented by CaRPoW (i.e. 

high resolution data are not available to represent the processes that differentiate 

spatial risk), the framework can be used in a purely qualitative manner to frame 

process understanding and aid decision making.  

Both approaches are demonstrated in this thesis with the modelling approach 

demonstrated in Chapters 4-6 for pesticides, nitrate, phosphorus and sediment and 

the qualitative assessment in Appendix A for DOC. 

The following sections detail each part of the CaRPoW framework and how it works to 

conceptualise overall catchment risk. 

3.4.1 Source risk 

The original source component of the S-M-D refers to how a pollutant is derived in a 

catchment and can be broadly characterised as internal sources i.e. those ‘naturally’ 

derived from the system, external sources i.e. those applied to the soil and cycled 

sources i.e. externally added pollutants that are cycled and redistributed within the 
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system. Some pollutants can be derived from multiple source types (e.g. phosphorus), 

whereas others fall into one category (e.g. externally applied pesticides).  

In CaRPoW the source component does not consider any ‘losses’ of pollutant and is 

therefore considered a source potential. Where in the original S-M-D framework the 

source component works from the soil profile to the field scale in CaRPoW it works at 

the ‘land unit’ scale. In this instance a land unit is defined as an area of land with 

unique land use, soil and drainage characteristics as defined by the input datasets. 

3.4.2 Mobilisation risk 

In the original S-M-D continuum the mobilisation component split phosphorus into 

soluble and particle associated forms and outlines solubilisation and detachment as 

the two key mobilisation processes (Haygarth et al., 2005; Granger et al., 2010). 

Mobilisation in CaRPoW is different to the conventional S-M-D as it considers 

mobilisation as the proportion of the source mobilised to the edge of a field in a given 

year. It therefore not only considers the form of the pollutant (i.e. in solution, 

particulate or incidental), but also the dominant within field delivery pathway. It can 

therefore be considered ‘within field mobilisation’ and consider aspects of both 

mobilisation and delivery within the traditional sense of the S-M-D. 

The importance (and risk) of different mobilisation types and pathways will 

subsequently differ according to the pollutant and land unit typology. For example a 

high sorbing pesticide on a land unit type with a potential for large amounts of runoff 

and high soil erosion will have a high risk of particulate mobilisation. In contrast nitrate 

on a freely draining soil will have a high risk of solubilisation mobilisation.   

3.4.3 Delivery risk 

Delivery or connectivity is similar to mobilisation but it considers movement beyond 

the land unit scale i.e. movement of the pollutant beyond the edge of the field. It aims 

to represent the routing of pollutants from mobilisation at the land unit to the 

receptor (water body). Conceptually, flow routing is driven by topography however 
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there is a consideration for features within the landscape that either enhance or 

restrict connectivity to the receptor. 

Thus the highest risk index in the delivery component will be land units that are on 

direct and enhanced flow routes to the water body. As with mobilisation, delivery 

accounts for the proportion of the mobilised pollutant that reaches the water body. 

3.4.4 Overall risk and pollutant comparison 

In the simplest process risk characterisation the three modules can be considered in 

isolation if interventions that only fit to one type are feasible. However, to further 

delineate risk all three can be considered in conjunction with one another so that the 

areas with the highest risk are sources that are easily mobilised and well connected to 

the water body. Where all three components are considered together, ‘risk’ accounts 

for the total average annual pollutant load contributed by each field to the outlet of 

the catchment (where water is abstracted for drinking water treatment) i.e. the risk 

posed by each field to overall catchment raw water for a certain pollutant. 

Either total risk or each individual risk component can be compared to make an 

assessment of the similarities and differences between the process risk 

characterisations of each pollutant. Risk outputs are compared to test for spatial 

relationships. If risk outputs are positively correlated then there is a potential for 

interventions to have a beneficial impact on both pollutants. If however there is a 

negative correlation then caution should be taken in selecting interventions as there 

may be a potential for pollutant swapping, or at least no potential for multiple 

benefits. 

3.4.5 Selecting interventions 

Selection of different interventions between the three modules will often be indicative 

of other factors not considered in the model. For example, social factors on the ground 

i.e. land owners will have the final say as to which interventions they would be willing 

to implement (Christensen et al., 2011). Nevertheless the recommended interventions 

for individual fields can be determined by making an assessment of the main 



 

49 

component of risk within the field (i.e. source, mobilisation or delivery). An exhaustive 

list of interventions (Table 2.1 for example) can then be cross referenced against which 

risk component they mitigate and for which pollutant.   

3.5 Chapter conclusions 

The inherent need for a new framework that is capable of helping water companies 

make decisions on which measures to target where in a catchment has been 

demonstrated by assessing current available models and frameworks against a water 

company defined criteria. The CaRPoW framework, which key premise is in the 

disaggregation of the components of pollutant risk within a generic framework, has 

been developed with these criteria in mind. The main use of the framework is to model 

each risk component for the spatial delineation of pollutant risk. The framework can 

also be used to conceptualise pollutant risk in a catchment where data availability does 

not permit a modelling approach. The main modelling utility of the framework is 

demonstrated in Chapters 4-6 of the thesis whilst the qualitative conceptualisation is 

demonstrated for a catchment in appendix A. 
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Chapter 4. Development of CaRPoW modelling methodologies 

to define catchment risk for agricultural pollutants 

4.1 Introduction 

Chapter 4 outlines the modelling approaches developed to fit within the CaRPoW 

framework for the agriculturally associated pollutants pesticides, nitrate, phosphorus 

and sediment. DOC modelling approaches are not outlined in this chapter as 

qualitative approaches are discussed in Appendix A. Methodologies have been 

selected and developed according to the criteria developed in conjunction with water 

industry professionals, as outlined in Chapter 3. Where possible as much process based 

understanding has been included within the methods without sacrificing model 

simplicity and introducing over parameterisation. Methods have been selected and 

developed with the view that they can be applied to all catchments with readily 

available input data. Likewise, where possible models have been selected that have 

been developed and tested for UK conditions, or conditions similar to the UK. Non-

catchment specific parameter values are presented along with the models in this 

chapter, whereas catchment specific parameters are detailed in Chapter 5.  

The chapter is split into the following sections: 

• Section 4.2 details where uncertainty is taken into account 

• Section 4.3 describes source methodologies for the key pollutants 

• Section 4.4 outlines the water balance methodology implemented 

as well as pollutant mobilisation methodologies 

• Section 4.5 outlines the hydrological connectivity or connectivity 

methodologies 

• Section 4.6 outlines how final risk is calculated for each field. 

• Section 4.7 concludes and summarises the chapter 

4.2 Incorporating uncertainty 

In some instances it is necessary to incorporate known uncertainties within the 

models. For example, pesticide sorption strength (Koc) and half-life (DT50) are variable 
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within the literature and therefore models are run with the variable parameter ranges. 

Similarly, although the models are based on annual averaged climate data, the models 

are run with an average year as well as a representative ‘dry’ and ‘wet’ year. Thus, 

some of the model outputs are stochastic and are comparable against observed 

pollutant loading values which also incorporate uncertainty (methodology in section 

5.5).  

Uncertainty ranges are discussed in more detail within the relevant model 

methodology and model setup sections (Chapter 4 and 5).  

4.3 Source methods 

The conceptualisation of source processes in Chapters 2 and 3 dictate that source 

methodologies should only consider the potential mass of a pollutant available for 

mobilisation. Methodologies are therefore relatively simple when compared to 

mobilisation and delivery. However there are certain variables that are considered 

within the source methodologies that influence pollutant availability. All source 

methodologies output a mass of pollutant per hectare available for mobilisation unless 

otherwise stated. 

4.3.1 Pesticide source methods 

Key pesticide sources include the load applied to the field, loads potentially available 

for mobilisation during application (i.e. overspray and spray drift) and loads available 

from pesticide sprayer loading and washdown areas (Reichenberger et al., 2007). 

Although sources from sprayer loading and washdown areas may be significant, it 

would be extremely difficult to implement them in a CaRPoW style methodology 

without knowledge of which farms have areas where sprayers are loaded and washed 

down. This source type is therefore discounted within the methodology. Similarly 

applications for amenity purposes (e.g. golf courses) and hard surfaces (e.g. roads and 

railways) are not considered. 

Likewise, it is assumed that correct practices are followed by pesticide users in the 

catchment and therefore unintended losses during application from processes such as 
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spray drift and over spray are deemed negligible and not included in the model. This 

therefore limits the pesticide source term to pesticides that have been applied to the 

field and are therefore potentially available for mobilisation via hydrological processes. 

In its simplest form the application term is the mass of pesticide (g) applied per 

hectare per month. A monthly time step is required for the mobilisation methodology, 

although overall risk is presented annually in the output. 

Equation 4.01 is used to derive this rate. 

 ����	� =	�����	 	�	�	. ���� 4.01 

Where 
���	� is the adjusted application rate for crop � at time �, (kg ha-1 month-1) 


����� 	�	� is the maximum application rate for the crop � at time � (kg ha-1 month-1) 

and ���� is the fraction of the total crop area the product is applied to according to 

pesticide use statistics as not all cropped fields will receive an application. 

Upon application pesticides are assumed to equilibrate instantly between soil solution 

and that sorbed to the soil bulk (Brown and Hollis, 1996). Partitioning between the two 

phases is dependent on the sorption strength to organic carbon of each pesticide and 

the organic carbon content of the soil (equation 4.02). 

 �� =	���	��� (4.02) 

Where �� is the soil organic carbon content adjusted pesticide sorption coefficient (l 

kg-1), ��� is the sorption coefficient for organic carbon (l kg-1) and ��� is the fraction of 

the soil that is organic carbon. 

The proportion of applied pesticide in soil water and bound to the soil is calculated 

with equations 4.03 and 4.04. 

 
������ 	= 	 � ���� + 1  
(4.03) 
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��!�" =	� −���� + 1 + 1 
(4.04) 

 

Where 
������is the proportion of applied pesticides attached to soil and 
��!�"	�the 

proportion of of applied pesticide in soil solution. 

The mass of pesticide in the soluble fraction is assumed to be available for mobilisation 

and is therefore derived from equation 4.05. 

 
���$�"	� =	
���	�	. 
��!�"  (4.05) 

 

4.3.2 Phosphorus source 

Diffuse phosphorus sources are split into those sources internal to the soil both in 

soluble and particulate forms and those that are applied to the soil surface that 

constitute a separate source before incorporation into the soil (Granger et al., 2010). 

The key sources considered in the CaRPoW phosphorus methodology are therefore soil 

soluble phosphorus, soil particulate phosphorus, soluble phosphorus in applied 

fertilisers (both organic and inorganic) and soluble phosphorus in grazing livestock 

excreta. 

The PIT (Heathwaite et al., 2003) and PSYCHIC (Davison et al. 2008) models have been 

developed using a Source-Mobilisation-Delivery in a similar way to CaRPoW. The 

CaRPoW phosphorus methodologies were therefore adapted from these models as 

they have been developed and well tested in the UK using readily available data.  

Soluble phosphorus held within the soil is calculated using equation 4.05. 

 %&'()'*%&+',-�!! = .'/*0,	.		%&+'1	. 2  (4.06) 
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Where %&'()'*%&+',-�!! is the mass of soluble soil P in the soil (mg ha-1), .'/*0, is 

the mass of Olsen P in the soil (mg kg-1), %&+'1 is the soil volume (m3 ha-1) and 2 is the 

bulk density of the soil (kg m-3). 

Within both PIT and PSYCHIC soil soluble phosphorus is based on soil Olsen-P content 

as derived from soil property databases. Unfortunately the Scottish Soil Property 

database does not include data on Olsen-P or any soluble phosphorus fraction. Soluble 

soil phosphorus concentration was therefore based on soil texture and land use using 

default values presented by Davison et al. (2008) shown in Table 4.1. 

Table 4.1- Soil Olsen-P values from Davison et al. (2008) for CaRPoW land use classes 

  Olsen P (mg kg-1) by land use 

Soil category Winter and 

Spring Cereals 

Row Crops Intensive grass Semi-Natural 

and Woodland 

Sandy 42 45 25 21 

Light 32 41 26 21 

Medium/heavy 27 30 22 20 

 

The particulate P source is dependent on the total phosphorus content of the soil, for 

each soil type the mass of total P in the topsoil was calculated using equation 4.07 

 3&�4'%&+',-�!! = 	3&�4'%&+',	.		%&+'1	. 2) (4.07) 

Where 3&�4'%&+',-�!! is the total P mass (mg ha-1), 3&�4'%&+', is the total P mass as 

derived from SSKIB (mg kg-1). 

Total soil phosphorus is based on the soil phosphorus content by soil association as 

documented in the SSKIB (Scottish Soils Knowledge and Information Database).  

Phosphorus potentially sourced from fertilisers is dependent on the application rate of 

both organic and inorganic fertiliser to a field (kg ha-1 yr-1).  

 �*5�+'+/*5, = 60&57,�*5� + .57,�*5� (4.08) 
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Where �*5�+'+/*5, is the potential available soluble P from fertiliser (kg ha-1 yr-1), 

60&57,�*5� is the potential available P from inorganic fertiliser (kg ha-1 yr-1) and 

.57,�*5� is the potential P source available from organic fertiliser (kg ha-1 yr-1). 

In practice the amount of P applied to the land for each crop is dependent on the P 

status of the soil, as determined by regular soil testing (DEFRA, 2010). This makes it 

difficult to derive unique P application values for each field without having access to 

detailed soil P information on field by field basis. Previous investigations have used 

average P fertiliser applications derived from fertiliser surveys conducted by the UK 

government (e.g. Heathwaite et al., 2003, Davison et al. 2008) and from survey data in 

other countries (e.g. Kovacs et al. 2012).  

Data on phosphorus fertiliser application are collated by the Scottish Government for a 

subset of Scottish farms. For each agricultural land use type the average phosphorus 

application rate is given for each. It is difficult to ascertain the proportion of inorganic 

and organic fertiliser for certain catchments and therefore the statistics assume that 

total applied phosphorus includes both organic and inorganic fertiliser in one 

combined value. Application rates are detailed specifically for the River Ugie 

catchment in Chapter 5 using a subset of the Scottish Government statistics. 

P sources from direct livestock excreta are dependent on the stocking rate of each field 

multiplied by the annual output of phosphorus from each livestock type (kg ha-1 yr-1). 

Livestock P sources only account for that available to plants i.e. soluble P. 

 8+1*/�&�9,:��;<� = 8+1*/�&�9=*0/+�>	. 8+1*/�&�9,?4�* (4.09) 

Where 8+1*/�&�9,:��;<� is the annual livestock P available (kg ha-1 yr-1), 

8+1*/�&�9=*0/+�> is the density of livestock (livestock units per ha-1) and 

8+1*/�&�9,?4�* is the annual available P output per unit of livestock per annum (kg 

yr-1). 

Livestock excreta will not cover the whole field and therefore not all of the phosphorus 

excreted by livestock will interact with runoff for potential mobilisation. To account for 

this a reduction factor is introduced based on the Annual Phosphorus Loss Estimator 
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(APLE) Model (Vadas et al., 2009). The reduction factor assumes that 1kg of excreta 

will cover an area of 0.2636 m2 (James et al., 2007). Percentage excreta coverage for 

each field is derived using this value and the excretal mass output which in turn is used 

in the reduction factor equation 4.10. 

 ?*@(��+&0�4��&5 = 	 1.2	(250	. ,*5�E&1*5)(250	. ,*5�E&1*5) + 73.1 
(4.10) 

Where ,*5�E&1*5 is the percentage area coverage of excretal manure in each field. 

The total livestock P source term is therefore calculated as the annual grazing output 

multiplied by the reduction factor (equation 4.11). 

 8+1*/�&�9, = 8+1*/�&�9,:��;<�	. ?*@(��+&0�4��&5 (4.11) 

 

Where 8+1*/�&�9,:��;<� is the total annual P output of livestock when grazing (kg ha-1 

yr-1) and 8+1*/�&�9, is the total annual livestock P available for mobilisation after 

reduction (kg ha-1 yr-1). 

In CaRPoW, total livestock numbers are established from the statistics at a parish level. 

Livestock numbers are divided amongst the grassland fields within each parish 

according to area to give a potential grazing density for both cattle and sheep per field. 

Livestock is assumed to be mixed. The output and P content of livestock excreta is 

determined using lookup values from Chambers et al. (2001) (Table 4.2). Livestock are 

assumed to be overwintered during the months of November, December, January and 

February therefore reducing the annual output by 40% (which is assumed to be 

included in the organic fertiliser source). Note cattle phosphorus outputs values have 

been averaged across the different types of cattle because stocking values for 

individual cattle types is not available at the parish level. 
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Table 4.2 - Livestock excretal mass, available P content and total annual available P output 

for use in CaRPoW phosphorus source models (derived from Chambers et al., 2001) 

Livestock 

Type 

Total 

annual 

excretal 

mass (kg) 

Available P 

content of 

excreta (g 

kg) 

Total 

annual P 

output (kg) 

Cattle 12410 2.1 26.06 

Sheep 1496 1.2 1.80 

 

The Total, soluble and particulate phosphorus source potential is subsequently 

calculated using equations 4.12 to 4.14. 

 3&�4',!�I��< =	3&�4'%&+',-�!! + %&+'%&'()'*, + �*5�+'+/*5,
+ 8+1*/�&�9, 

(4.12) 

 ,45�+�('4�*,!�I��< =	3&�4'%&+',-�!! (4.13) 

 %&'()'*,!�I��< = 	%&+'%&'()'*, + �*5�+'+/*5, + 8+1*/�&�9, (4.14) 

 

Where 3&�4',!�I��< is the total potential P source (kg ha-1 yr-1), ,45�+�('4�*,!�I��< is 

the particulate P source (kg ha-1 yr-1), %&'()'*,!�I��< is the soluble P source (kg ha-1 yr-

1), %&+'%&'()'*, is the total P in soil solution (kg ha-1 yr-1), �*5�+'+/*5, is the total 

applied fertiliser (kg ha-1 yr-1) per field and 8+1*/�&�9, is the total P excreted by 

livestock per field (kg ha-1 yr-1). 

4.3.3 Nitrate source 

Nitrate modelling methodologies can be inherently complex due to the myriad of 

processes that determine the balance of nitrogen in the soil. To maintain model 

simplicity and generalisation a simple nitrate source methodology was developed 

using adapted versions of the Nitrogen Risk Assessment Model Scotland (Dunn et al., 
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2004) and the later Dunn et al. (2013) nitrate model, both of which have been 

developed and tested in Scotland. 

Both methods use a fairly simple nitrate soil balance approach which derives an excess 

of nitrate in the soil available for mobilisation at the end of the growing season. The 

overall nitrate balance is highlighted in equation 4.15. 

 414+'J� =	 (K*5�J�. 	(1 − @*0+�J�	)) − �5&�J� +	L+0*5J� +	@*�J� 
 

(4.15) 

Where 414+'J� is the nitrate available at the end of the growing season per field (kg 

ha-1 yr-1), K*5�J� are nitrate inputs from fertilisers (both inorganic and organic) (kg ha-1 

yr-1), �5&�J� is the nitrate offtake from crops (kg ha-1 yr-1), @*�J� is the atmospheric 

deposition of nitrate (kg ha-1 yr-1), L+0*5J� is the nitrate mineralised from organic 

matter (kg ha-1 yr-1) and @*0+�J� is the proportion of fertiliser denitrified (unitless 

coefficient). 

The majority of farmers will decide how much N fertiliser to use according to soil 

testing, the previous crop grown and advice from agronomists (SAC, 2013). This 

proposes difficulties in assigning indiscriminate fertiliser inputs for different crop types 

in N models. However generalisations can be made from the recommendations 

provided by the Scottish Agricultural College (SAC) in their technical guidance notes 

(SAC, 2013). The guides use information on previous crop type, soil properties and 

rainfall statistics to offer annual N requirement recommendations. The guides are 

similar to the DEFRA fertiliser manual (DEFRA, 2010) but altered for Scottish 

conditions. It is difficult to make a distinction between types of fertiliser applied to 

each field. Interviews with agronomists (methodology and full results detailed in 

Chapter 5 and Appendix D) showed that there was high variability between farms in 

the proportions of organic and inorganic fertilisers used. The SAC methodology can 

circumvent this by only providing a total applied N value that can be derived from 

either organic or inorganic fertilisers. 
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Model testing by Dunn et al. (2013) showed that the best results for livestock grazed 

areas were achieved by assuming a set nitrate excess value of 22 kg ha-1 yr-1, i.e. 

equation 4.15 is not used for livestock and the 22 kg ha-1 yr-1 is set as a coefficient. This 

value was similarly adopted in CaRPoW as well to maintain model consistency  

Crop offtake values were taken from the lookup tables in Dunn et al. (2013) which are 

based on literature values. Offtake values not included in Dunn et al. (2013) such as 

carrots and cabbages were derived from DEFRA (2010) and Sylvester-Bradley (1993). 

Offtake values are shown in appendix B.2 for all crops. 

Nitrogen deposition was set at 8 kg ha-1 yr-1 for all land uses and mineralisation values 

were derived according to land use as per the NIRAMS model (Dunn et al., 2004). 

Denitrification values were based on HOST soil classes so that freely draining soils had 

minimal fertiliser nitrification, soils that were periodically waterlogged had 20% 

fertiliser denitrification and soils with water logging for large periods of the year had 

35% fertiliser denitrification. This is based on work by Vinten (1999) and has been 

adapted to be based on HOST soil classes from the NIRAMS model (Dunn et al., 2004). 

4.3.4 Sediment source 

The erosion methodology combines both the source and mobilisation components in 

one method and is therefore outlined in section 4.4.4. 

4.4 Mobilisation methodologies 

Mobilisation methodologies differ for each of the pollutants, however to maintain 

model consistency hydrological inputs to each of the different methods are based on 

the same field water balance model. 

4.4.1 Field scale soil water balance modelling 

A 1D soil water balance model, WaSim (Hess and Counsell, 2000), is used to generate 

‘runoff’ and ‘drainflow’ values for each soil, land use and drainage combination (herein 

referred to as a ‘field’). WaSim was chosen for its simplicity in implementation and 

transparency in model inputs. The model has also been proven successful at 
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partitioning rainfall into both quick flow and slow flow responses in UK catchments 

(e.g. Hess et al., 2010; Holman et al., 2011) which is its primary function within 

CaRPoW.  

A simplified description of the model for the purposes of CaRPoW is presented below. 

More detailed descriptions of the model are given by Hess and Counsell (2000), 

Holman et al. (2011) and Warren and Holman (2011). 

WaSim splits the soil column into 5 segments. When the soil moisture content exceeds 

field capacity water drains from upper to lower segments. Surface runoff includes both 

infiltration excess (as determined by the SCS curve number method) and saturation 

excess runoff. If drains are present drainflow occurs when the water table rises above 

the depth of drains. In the traditional model set up recharge is determined as the 

water moving from the bottom compartment in freely draining soils without drains. 

However in CaRPoW undrained soils are set up with wide spaced, deep drains to 

represent the slow flow component. Water is removed from the soil via actual 

evapotranspiration (soil evaporation and plant transpiration) using the methods of 

Ritchie (1972), Allen et al. (1998) and Brisson (1998). The model is illustrated by the 

diagram in Figure 4.1. 
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Figure 4.1 - Illustration of the WaSim water balance model used in CaRPoW (adapted from 

Hess and Counsell, 2000 and Warren and Holman, 2011) 

The two climate inputs WaSim requires are daily rainfall and potential 

evapotranspiration. A simple method of calculating potential evapotranspiration with 

limited input parameters was required for applicability to most areas. The temperature 

based method outlined by Oudin et al. (2005) (equation 4.16 and 4.17) was chosen for 

this reason and also because it has been validated against Met Office MORECS data by 

Kay and Davies (2008).  

 ,M� =	 NOP	QR 	STUVWXX       if 

3� + 5 >0 

(4.16) 

 ,M� � 0                     if 

3� � 5 <0 

(4.17) 

 

Where ,M� is Potential Evapotranspiration (mm day-1), ?< is extra-terrestrial radiation 

(MJ m2 day-1), Y is the latent heat flux (set as 2.45 MJ kg-1), 2Z is the density of water 
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(set as 1000 kg m-3) and 3� is the mean daily air temperature (˚C). Note that all 

negative PET values are set to zero in this method. 

To use the equation above ?< was calculated using the method outlined by Allen et al. 

(1994) (equations 4.18 to 4.21).  

 ?< 	� 37.6	@�	(\! sin`" sin a � cos` cos a sin\!) 

 

(4.18) 

Where ?< is total daily extra-terrestrial radiation (MJ m-2 d-1), @�	 is the relative 

distance to the Earth, a is the solar declination, `" is the latitude and \! is the sunset 

hour angle (rad) 

 \! � arccos	(− tan` tan a) (4.19) 

 @�	 � 1 � 0.033 cos 	� 2g365 h 	� 	1. 0.033	cos	(0.0172	J) 
(4.20) 

 a � 0.409	/+0 � 2g365 h − 1.39 � 0.409	sin	(0.0172	h − 1.39) 
(4.21) 

Where J is the Julian Day.  

All of the WaSim model parameter inputs are detailed in appendix B.3 including 

‘Crops’, ‘Soil’, ‘Drainage’ and ‘Soil Curve Number’.  

The 30 year daily output for each field from WaSim is manipulated into a few key 

monthly parameters to be used in the pesticide fate model. The R statistical 

programming language (R Core Team, 2014) is used to derive the parameters in Table 

4.3. 
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Table 4.3 – Derived average monthly values extracted from the 30 year WaSim model run 

used in the CaRPoW mobilisation methodologies 

Parameter Unit Description 

Total  Average Monthly 

Runoff 

mm Average monthly runoff (saturated and 

infiltration excess) 

Total Average Monthly 

Drainflow 

mm Average total monthly slow flow 

component (drainflow in drained soils and 

recharge in freely drained soils) 

Total Average Monthly 

HER 

mm Average total monthly Hydrological 

Effective Rainfall (Runoff + Drainflow) 

Total Average Monthly 

Rainfall 

mm 
Average total monthly rainfall 

Total Average Monthly  

AET 

mm Average total monthly actual 

evapotranspiration 

Days to Runoff 
days Average number of days per month 

between runoff events 

Days to Drainflow 
days Average number of days per month 

between drainflow events 

Runoff Proportion 
proportion (0-

1) 
Proportion of total HER as runoff 

Drainflow Proportion 
proportion (0-

1) 
Proportion of total HER as drainflow 

Topsoil Water Content cm3 cm-3 Average topsoil water content per month 

 

4.4.1.1 Selection of wet and dry years 

All hydrological inputs to the CaRPoW mobilisation and delivery methodologies are 

therefore based on total monthly values averaged from a daily 30 year model run. It is 

also important to assess the differences in model outputs between wet and dry rainfall 

years as well as the average to determine potential uncertainty ranges based on the 

hydrological inputs to the pollutant models.  
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The same 30 year WaSim input rainfall dataset is used to assess the thresholds for 

what are considered wet and dry years within the catchment. Initially the distribution 

of total annual rainfall for the period of the record is assessed to make sure there is a 

relatively normal distribution of total annual rainfall. The years are grouped in 100mm 

incremental rainfall classes from the minimum to the maximum. An example of binned 

rainfall data overlain by a normal distribution curve are shown in Figure 4.2. 

 

Figure 4.2 - Example rainfall distribution (Forehill rain gauge, Peterhead, UK) with normal 

distribution curve overlay. Rainfall has been grouped in 100 mm classes by year. 

Wet years and dry years are selected according to which matches the top and bottom 

20th percentiles closest respectively.  

4.4.2 Pesticide mobilisation 

Pesticide mobilisation is based on the pesticide fate component of the SWATCATCH 

(not to be confused with the Soil Water Assessment Tool) methodology of Brown and 

Hollis (1996) and the methodology of Pullan (2014) (which is an update of 
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SWATCATCH). Both methodologies assess the movement of pesticides within soil 

water following mobilisation via hydrologically effective rainfall on a daily time step.  

Within the CaRPoW pesticide mobilisation methodology the concepts of SWATCATCH 

are adapted to create a monthly assessment of pesticide mobilisation based on the 

first effective rainfall event after pesticide application. This is on the premise that the 

first effective rainfall event is the most important for pesticide mobilisation (e.g. 

Louchart et al., 2001; Guo et al., 2004), an assumption that is tested in Chapter 5.  

The overall equation (4.22) multiplies the concentration of the pesticide in the soil 

water, by the volume of water mobilised within the soil to give a mass flux of pesticide 

per month per hectare. 

 l&)+'+/*@�'(m� =	Eno�. p-�q (4.22) 

 

Where l&)+'+/*@�'(m�		is the mobilised flux (µg ha-1 month-1), Eno� is the 

concentration of pesticide in the interactive water zone at the time of the first runoff 

event (µg l-1) and p-�q is the volume of water mobilised based on average soil water 

content values halfway between field capacity and saturation (l ha-1 month-1). 

The concentration of the pesticide in the soil water at the time of mobilisation is a 

function of its degraded mass at time t and the water content of the interactive 

fraction of the soil.  

 Eno� =	,*/�l4//E&*K!�"�rno�. @�Ns  
(4.23) 

 

Where ,*/�l4//E&*K!�"� is the mass of pesticide in solution after degradation 

(µg),	rno�  is the interactive soil water content (cm3 cm-3) and @�Ns is the depth 

penetrated in the soil before runoff event (mm). 

The mass of pesticide available at time of mobilisation is the soluble source term from 

the pesticide source methodology multiplied by a degradation factor. To maintain 
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model simplicity it is assumed that all pesticide applied is either degraded or mobilised 

within each month, i.e. there is no carry over. 

 ,*/�l4//E&*K!�"� = (	1	.		=*754@4�+&0)		 (4.24) 

 

Where ,*/�l4//E&*KK!�"�  is a coefficient representing the mass of pesticide left in 

the soil after degradation and =*754@4�+&0	is a coefficient derived from equation 

4.25 to represent the mass of pesticide degraded before the first runoff event. 

 =*754@4�+&0 = 	 *tu:�vTwx�y"o(z){S|}  
 

(4.25) 

 

Where =3VX is the half life of the pesticide (days), 
17�  is the mean number of days 

between application and first effective rainfall event per month (days). 

To maintain model simplicity it is assumed that at the time of runoff or drainflow the 

soil moisture content is set half way between field capacity and saturation for every 

event. The reason for doing this is it is difficult to represent the variability in 

antecedent conditions for each drainflow and runoff events using the averaged WaSim 

model outputs. Therefore the interactive water fraction is the difference between the 

soil water content between field capacity and saturation and the water content at 

permanent wilting point. 

 rno� = �r~� +	r!��2  −	r�Z� 
(4.26) 

Where rno�  is the water content of the interactive soil water (cm3 cm-3),  r~�  is the soil 

water content at field capacity (cm3 cm-3), r!�� is the soil water content at saturation 

(cm3 cm-3) and r�Z� is the soil water content at permanent wilting point (cm3 cm-3). 

The depth penetrated by the pesticide is a function of the time between application 

and mobilisation, the unsaturated hydraulic conductivity (calculated using equation 

4.27) and a retardation factor (4.31) (Brown and Hollis, 1996 and Pullan, 2014).  
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 @�Ns = �. ��(r�)?�� � + 2 
(4.27) 

 

Where @�Ns is depth penetrated before runoff event (mm), � is the average time 

between application and runoff event per month (days), �(r�) is the hydraulic 

conductivity at field capacity (mm day-1) and ?�� is the retardation factor (Unitless). 

The hydraulic conductivity at field capacity is calculated after van Genuchten (1980) as:  

 �(r�) = 	�!�� . r∗~�X.V. �1 − �1 − r∗~� W- -�z	 (4.28) 

 

Where �(r�) is the unsaturated hydraulic conductivity of the soil (mm day-1), r∗~� is 

the dimensionless water content at field capacity (-), L is a dimensionless curve 

number and �!�� is the saturated hydraulic conductivity (mm day-1). 

The dimensionless curve number L is calculated using equation 4.29 after van 

Genuchten (1980) 

 L = 1 − �10 	 (4.29) 

Where 0 is the dimentionless van Genuchten parameter related to soil type. 

The dimensionless water content at field capacity can be calculated from equation 

4.30. 

 r∗~� =	 �����	�xT��  y��
�xT�y��    

(4.30) 

 

Where r∗~� is the dimensionless water content at field capacity, r~�  is the water 

content of the topsoil at field capacity (cm3 cm-3), r!�� is the water content at soil 
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saturation (cm3 cm-3) and r� is the water content at residual water content (assumed 

as 0.5 x r�Z�) (cm3 cm-3) 

The unitless retardation factors accounts for any further sorption of the pesticide as it 

penetrates further into the soil column and is a factor of the pesticides sorption 

characteristics (adapted from Brown and Hollis, 1996).  

 ?�� = 1 +	����.���.�qrno�   
(4.31) 

 

Where ?�� 	is the unitless retardation factor, �� is the sorption coefficient of the 

pesticide (l kg-1) and �q is the bulk density of the top soil (g cm-3). 

The volume of water mobilised in the soil is dependent on the volume of the mobile 

fraction, the depth the pesticide has penetrated in the soil and the ratio between the 

unsaturated hydraulic conductivity and the saturated hydraulic conductivity (after 

Pullan, 2014).  

 p-�q =	r-�q . @�Ns . �(r~�)�!��  
(4.32) 

 

Where p-�q is the volume of water mobilised (l day-1),  �(r�) is the unsaturated 

hydraulic conductivity (mm day-1), �!�� is the saturated hydraulic conductivity (mm 

day-1), r-�q is the mobilised soil water content (cm3 cm-3) and @�Ns is the penetrated 

depth between application and mobilisation (mm). 

The mobilised water content is calculated as the difference between the assumed 

water content at time t (month) and the water content at 200 KPa.  

 r-�q =	�r~� +	r!��2  −		rzXX 
(4.33) 
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Where r-�q is the water content of the soil mobilised (cm3 cm-3) and rzXX is the water 

content of the soil at 200 KPa (cm3 cm-3). 

4.4.3 Phosphorus mobilisation 

The different nature of the phosphorus sources represented in CaRPoW (soluble vs 

particulate, within the soil vs. applied to soil) makes it difficult to represent 

mobilisation of the four sources using one methodology. Other phosphorus models 

that attempt to represent the source-mobilisation-delivery continuum such as the 

Phosphorus Indicators Tool (Heathwaite et al., 2003) and the PSYCHIC model (Davison 

et al. 2008) therefore keep the different source and mobilisation methodologies 

separate. In keeping with this CaRPoW also separates them so that transparency in the 

drivers of phosphorus risk is maintained. 

4.4.3.1 Particulate phosphorus 

To maintain model consistency the most appropriate methodology to represent 

phosphorus mobilisation is to use the same Modified Morgan-Morgan-Finney (MMMF) 

erosion modelling approach that has been adopted in the suspended sediment 

methodology. 

This approach therefore simply takes the total phosphorus source potential and 

multiplies it by the amount of eroded soil per year as determined by MMMF (section 

4.4.5).  

 ,, = 3,!�n"	. %*@-�q (4.34) 

 

Where ,, is the annual loss of particulate phosphorus per field (kg), 3,!�n" is the mass 

of total phosphorus contained in the top soil (kg tonne-1) and %*@-�q is the total mass 

of soil eroded per field (tonnes). 

This methodology has been used successfully on a monthly time step in the PSYCHIC 

model (Strömqvist et al. 2008; Davison et al. 2008).   
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4.4.3.2 Soluble phosphorus in soil water 

The mobilisation of soluble phosphorus held within the soil follows the PSYCHIC model 

methodology of Davison et al. (2008). Firstly the soil Olsen P source is converted to a 

concentration in runoff and drainflow using the relationship in equation 4.35 derived 

by Flynn and Withers (2001). 

 %,��o� = 40(.'/*0,)X.�� (4.35) 

 

Where %,��o� is the concentration of soluble P from soil water in runoff or drainflow 

(µg l-1).   

This Figure is then multiplied by runoff or drainflow to give a load of exported soluble 

P. 

 %,�Io�~~ =	%,��o�	. ��Io�~~	. 10y� (4.36) 

 %,���no~"�Z =	%,��o�	. ����no~"�Z	. 10y�. =54+0��<~~ (4.37) 

Where %,�Io�~~ and %,���no~"�Z are the mobilised soluble P in runoff and drainflow 

respectively (kg), ��Io�~~ and ����no~"�Z are the discharge values for runoff and 

drainflow respectively (mm). For the drainflow equation an additional attenuation 

factor is included to represent further attenuation of P during the movement of 

soluble P from soil water to drain. In CaRPoW =54+0��<~~ is set at 0.1 after Davison et 

al. (2008). 

 

4.4.3.3 Soluble Incidental phosphorus mobilisation from fertiliser and excretal 

phosphorus 

The final two P sources considered in CaRPoW are incidental losses from fertiliser and 

manure, i.e. losses directly from fertiliser and excreted manure with the onset of 

rainfall driven runoff and drainflow processes.  
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A method is therefore required that accounts for any degradation and incorporation of 

these sources before they are mobilised as well as the calculation of an actual 

coefficient of mobilisation. Within PSYCHIC (Davison et al., 2008) an attempt is made 

to account for the assumed exponential degradation/incorporation of P from fertiliser 

and manure by deriving a P ‘half-life’ related to cumulative rainfall. However, because 

of the high uncertainty in the timing of fertiliser and excretal phosphorus application at 

the monthly scale, this methodology was deemed unsuitable.  

An alternative methodology that has been developed for an annual time frame is the 

methodology presented by Vadas et al. (2009), known as the Annual Phosphorus Loss 

Estimator. This model provides a medium between the simplistic approaches of PIT for 

example and the more complex physically based approach of PSYCHIC.  

It utilises annual rainfall and runoff values combined with a distribution factor to 

output a value for the amount of P lost in runoff from manure and fertiliser. The 

equations for both manure and fertiliser are shown in equations 4.38 and 4.39. 

 60�+@*0�4',-�oI�< =	,-�oI�<	. (?�ooI�"	/��ooI�"). =+/�-�oI�< (4.38) 

 60�+@*0�4',~<��n"n!<� =	,~<��n"n!<�	. (?�ooI�"	/	��ooI�"). =+/�~<��n"n!<�     (4.39) 

 

Where 60�+@*0�4',-�oI�</~<��n"n!<� is the incidental loss of P (kg ha-1 yr-1), 

,-�oI�</~<��n"n!<� is the P source content of manure/fertiliser (kg ha-1 yr-1), ?�ooI�"  is 

total annual rainfall (mm-1), ��ooI�" is the total annual runoff (mm-1) and 

. =+/�-�oI�</~<��n"n!<� is the distribution factor between runoff and infiltration. The 

distribution factors are calculated using equations 4.40 and 4.41 after Vadas et al. 

(2007) and Vadas et al. (2008). 

 =+/�-�oI�< =	 (��ooI�"/?�ooI�")	X.zzV (4.40) 

 =+/�~<��n"n!<� = 0.034	. *�.�	.(�T���T�/NT���T�) (4.41) 
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4.4.4 Nitrate mobilisation 

The N mobilisation methodology must represent a coefficient of mobilisation for the 

available N at the end of the growing season as determined by the N balance of the 

source methodology.  

The work undertaken by Dunn et al. (2004, 2013) in Scotland for a distributed Nitrogen 

model uses an equation from the NLEAP model (Shaffer et al., 1994) to represent the 

proportion of available N lost via leaching. 

This therefore assumes that N is only lost via leaching processes i.e. slower, through 

the soil drainage. This is based on the general conceptualisation in the literature that 

available N is held within the soil pores in solution and therefore any mobilisation is 

driven by slower processes through the soil as faster hydrological processes bypass 

stored soil water (Quinn, 2004; Granger et al., 2010). 

The equation derived from the NLEAP methodology for N loss via leaching is shown in 

equation 4.42. 

 J-�q = 1 − (*y���	.		(�v�T���xT� )
) 

(4.42) 

 

Where J-�q is the coefficient of N mobilisation (-),�J8 is a leaching coefficient set at 

0.7 for Scottish conditions by Dunn et al. (2004) although the standard set figure for 

the NLEAP method of 1.2 is also tested, ����no is the total drainage in the winter 

period following the growing season (mm) and r!�� is the water content of the soil at 

saturation (mm). 

4.4.5 Sediment mobilisation 

The Modified Morgan-Morgan-Finney (MMMF) model (Morgan, 2001, Morgan and 

Duzant, 2008) has been selected as the best way of representing soil erosion in the 

methodology because of its level of suitable process presentation and application to 

British conditions (Davison et al., 2008). The MMMF comprises two forms of soil 

erosion, that by rain drop action and that by runoff shear. The calculation of erosion by 
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raindrop action adheres to the full methodology of the MMMF. However to align 

modelling methods and keep simplicity the runoff input to the erosion  model is based 

on the runoff values as modelled by WaSim as opposed to the runoff methodology 

used in the MMMF model.  

Using mean values of rainfall over the period for an average year, a selected dry and a 

selected wet year the effective rainfall is calculated as per equation 4.43. 

 ?K = ?(1 − ,6) 1�&/% 
(4.43) 

 

Where ?K is effective rainfall (mm), ? is mean total monthly rainfall (mm), ,6 is 

potential interception (proportion between zero and one) and % is slope (degrees). 

Interception (,6) is based on average values derived from Morgan and Duzant (2008). 

It must be noted that values for ,6 are likely to be variable for crops between months, 

thus ,6 may be over or under estimated for both the cereal type and row crops land 

uses as the ,6 values derived from Morgan and Duzant (2008) are based on averages 

over the growing period. ,6 values for the generalised land use classes are averaged 

from the different vegetation types in each class from Morgan and Duzant (2008), 

these values are shown in Table 4.4. 

Table 4.4 - Variables by land use used in the MMMF (Modified Morgan Morgan Finney) soil 

erosion model (adapted from Morgan and Duzan, 2008) 

Land Use Class ��  CC  PH 

Cereal Type 0.38 0.75 1 

Grassland 0.28 0.85 0.1 

Semi-Natural 0.26 0.82 0.4 

Woodland 0.25 0.96 27.5 

Row Crops 0.16 0.6 0.7 
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Effective rainfall is partitioned between direct throughfall (DT; mm) and leaf drainage 

(LD; mm). Leaf drainage is determined by the proportion of effective rainfall 

intercepted by the vegetation canopy (equation 4.44). 

 8= = ?K	EE (4.44) 

Where CC is the proportion of canopy cover from 0-1. Canopy cover values have been 

averaged from Morgan and Duzant (2008) using the same land use groupings as for PI 

(Table 4.4). Direct throughfall is therefore the proportion of effective rainfall that is not 

accounted for by leaf drainage. 

 =3 = ?K − 8= (4.45) 

Kinetic energy for both DT and LD are calculated using empirically derived equations 

for UK conditions. The kinetic energy of DT is based on work by Marshall and Palmer 

(1948). 

 �M(=3) = =3(8.95 + 8.44	'&7WX6) (4.46) 

Where �M(=3) is the kinetic energy of DT and 6  (mm hr-1) is the intensity of rainfall 

which is set at 10 mm hr-1 for the UK.  

Kinetic energy of LD is derived as a function of plant height (PH) using techniques 

developed by Brandt (1990). Plant height values are again derived from averages for 

the land use classes (Table 4.4). If plant height is below 0.15 m KE(LD) is assumed to be 

negligible.  

 K&5	,� < 0.15			�M(8=) = 0 (4.47) 

 K&5	,� > 0.15		�M(8=) = (15.8	m	,�X.V) − 5.87 (4.48) 

																																						 
Total kinetic energy of effective rainfall is therefore an addition of KE(DT) and KE(LD) 

 �M = �M(8=) + �M(=3) (4.49) 

Particle detachment is a function of both detachment by raindrop and detachment by 

runoff. In the updated MMMF rain drop detachment is a function of three separate 
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equations according to the sand, silt and clay content of the soil, the stone cover on 

the ground and the kinetic energy of effective rainfall (Morgan and Duzant, 2008). 

Data on these mineral soil properties are not available for all soil types however. 

Therefore the original methodology of Morgan (2001) is used with parameter values 

from Davison et al. (2008) (Table 4.5).   

 ���: = �	m	�M	m	10y� (4.50) 

Where ���: is the detachment of soil by raindrop (kg m-2) and K is the erodibility of the 

soil (g J-1) (as per Davison et al., 2008, Table 4.5). 

 

Table 4.5 - Variables by soil texture class used in the Modified Morgan Morgan Finney 

(MMMF) soil erosion model (adapted from Morgan, 2001 and Davison et al., 2008) 

Soil Texture Class K COH 

Sand 1.2 2 

Loamy sand 0.3 2 

Sandy loam 0.7 2 

Loam 0.8 3 

Silt 1 (-) 

Silt loam 0.9 3 

Sandy clay loam 0.1 3 

Clay loam 0.7 10 

Silty clay loam 0.8 9 

Sandy clay 0.3 (-) 

Silty clay 0.5 10 

Clay 0.05 12 

Organic 0.8 9 
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Detachment by runoff in the MMMF is again dependant on the sand, silt and clay 

concentrations, thus the original method is employed. 

 ���: =  �X.V sin %(1 − ¡E) 10y� (4.51) 

 

Where ���: is the detachment of sediment by runoff shear (kg m-2),   is a factor that 

accounts for the detachability of soils and is derived using equation 4.52, � is the total 

annual runoff (mm), % is the slope angle (degrees) and ¡E is ground cover (unitless 

proportion from 0-1). 

   = 	 1(0.5	E.�) 
(4.52) 

 

Where E.� is the cohesivity of soils (kPa) using values according to Davison et al. 

(2008) (Table 4.5). 

Total soil detachment is derived from the addition of detachment by raindrop and 

runoff. 

 M5&/+&0 = � + � (4.53) 

 

All eroded material mobilised within the field is not likely to be mobilised to the edge 

of the field and may be subject to deposition within the field. To account for this a 

deposition term is introduced based on the equations developed in Morgan and 

Duzant (2008). To maintain model simplicity the bare soil deposition equations were 

implemented in CaRPoW for all land use types as knowledge on soil tillage practices 

was not available on a field by field basis. Initially the flow velocity of runoff is 

calculated using equation 4.54. 

 1 = 10	@X.¢£%X.V 
(4.54) 
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Where 1 is the flow velocity, 0 is the mannings roughness coefficient (set at 0.015 as 

per Morgan and Duzan, 2008), @ is the depth of flow (set at 0.005 m as per Morgan 

and Duzan, 2008) and % is the slope of the field. 

Using this flow velocity value the particle fall number is calculated for each soil particle 

class (silt, sand and clay) using equations 4.55. 

 J~(�, ¥, /) = 	 '	1!(�, ¥, /)1	@  
(4.55) 

 

Where ' is length of the slope (set to 1 metre in CaRPoW) and 1!(�, ¥, /) is the fall 

velocity of clay, silt and sand (m s-1) set at 0.000002 m s-1, 0.00006 m s-1 and 0.0002 m 

s-1 respectively.  

The overall percentage deposition of each particle class is therefore calculated using 

the relationship obtained by Tollner et al. (1976) in equation 4.56. 

 =M,(�, ¥, /) = 44.1(J~(�, ¥, /))X.z� (4.56) 

 

Due to the lack of soil mineral property data the deposition term is averaged over the 

three particle sizes. 

 =M, =	∑J~(�, ¥, /)3  
(4.57) 

 

This equation can give values over 100% which in reality are impossible; thus 

maximum values are set to 100%. 

Total sediment eroded and transported in runoff is therefore calculated using equation 

4.58. 

 3&�M5&/+&0 = 	M5&/+&0	(1 − �=M,100 ) 
(4.58) 
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The transport capacity of the runoff is calculated to account for the ability of runoff 

process to transport detached material. It is derived using equation 4.59. 

 3E = (1 − ¡E)�z sin % 10y� (4.59) 

 

Where 3E is the transport capacity of the runoff (kg m-2). 

The overall erosion rate for the field is the lowest value of the total detachment and 

the transport capacity of runoff, so that the limiting factor i.e. detachment or transport 

is accounted for (Morgan, 2005).  

Within the CaRPoW methodology mobilised sediment is directed in runoff or via sub-

surface preferential flow (artificial drainage). Using the methodology developed in 

Davison et al. (2008) eroded sediment is assigned a pathway according to the 

proportion of rainfall directed as flow in each pathway (from WaSim), see equations 

4.60 and 4.61. 

 M5&/+&0Ns = 	M5&/+&0	. �Ns?  
(4.60) 

 M5&/+&0{��no = 	M5&/+&0	. �{��no? 	. ∝$<�{��no 
(4.61) 

. 

Where M5&/+&0Nsand M5&/+&0{��no represent eroded sediment mobilised in runoff 

and drainflow respectively (kg). �Ns and �{��no flow volume in runoff and drainflow 

(mm), ? is rainfall (mm) and for drainflow an extra coefficient (∝$<�{��no) is added to 

represent sediment entrainment in the soil structure (set at 0.2). 

4.5 Delivery/Connectivity 

Once pollutants are mobilised in the field, flow is routed to the hydrographic network 

using a travel time approach as a measure of connectivity. The premise being that the 

faster any water containing mobilised pollutants can be delivered to the river network 
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the less time it has to degrade and attenuate in the catchment, and the higher the risk 

of delivery. 

The approach used for integrating travel time into a connectivity measure is similar to 

the approach adopted by Buchanan et al. (2013).  The travel time approach is based on 

the integration of the kinematic wave approximation with Manning’s n. This is 

implemented with principles of Variable Source Area hydrology so that more runoff is 

directed to the wetter parts of the catchment. The travel time approach was selected 

over other methodologies because of its inclusion of the Manning’s roughness 

coefficient, which allows for adaptability when including barrier and enhancement 

features within the landscape.  

The WaSim model used in the mobilisation section has already derived runoff values 

using the curve number method for each field. Assuming that saturation is driven by 

topography a topographic wetness index can be used to spatially distribute the WaSim 

runoff output into wetness classes so that the runoff is proportioned to those areas of 

the field most likely to generate the highest proportion of runoff. 

Topographic wetness index is based on the TOPMODEL index with Ksat substituted in 

for transmissivity (as per Buchanan et al., 2013) (equation 4.62). 

 Y = 	 ln � ©�!�� . = . tanª  (4.62) 

 

Where λ is the topographic wetness index (unitless), © is the upslope contributing area 

(m2), �!�� is the saturated hydraulic conductivity of the soil (m day-1), = is the depth of 

the soil (set at 1 metre in this instance) and ª is the topographic slope (m m-1).  

The sum of Y is calculated for each field. The number of cells in each field is also 

calculated in the field calculator by dividing the area of the field by the area of one grid 

cell.  

WaSim runoff is then distributed to wetness classes within each field using equation 

4.63. 
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 ��n!� =	� �	Y∑ Y«n<"� 	 (4.63) 

 

Where ��n!� is the distributed WaSim Runoff (m) and Y«n<"� are topographic index 

values within a field.  

The travel time for each cell is computed from the integrated kinematic wave 

approximation and Manning’s equations (e.g. Melesse and Graham, 2004; Buchanan et 

al., 2013). Firstly the runoff value equated from equation 4.63 needs to be converted 

to a flow velocity as per equation 4.64. 

 ¬ = 	��n!��  
(4.64) 

 

Where ¬ is the flow velocity over the cell (m s-1) and t is the period of the record i.e. 

one year (s). It is important to note that at an annual timescale (as in CaRPoW) 

equation 4.64 will give unrealistic flow velocity values. However the final travel time 

approach is normalised and therefore connectivity is relative within the catchment. 

 33n =	 8X.¢0X.¢
¬X.�ªX.�	 (4.65) 

Where 33 is the travel time across each cell  + (s-1),  8 is the length travelled (i.e. cell 

size), 0 is the Manning’s coefficient and ¬ is the flow velocity (m s-1). 

Manning’s roughness values are varied for each land use class and also for finer 

detailed barrier and enhancement features present in the catchment. For example, 

barrier features at the edge of fields that could potentially slow flow have a higher 

Manning’s n than urban areas where flow is likely to be quickly propagated. Values for 

Manning’s roughness have been derived from Chow (1959) and are detailed in Table 

4.6. 
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Table 4.6 – Manning’s roughness values (Chow, 1959) for CaRPoW mobilisation land use 

classes 

CaRPoW Mob 

Manning’s 

N Related Land Cover from Chow (1959) 

Winter Cereals 0.04  Normal mature field crops  

Spring Cereals 0.04  Normal mature field crops  

Grassland 0.03  Normal short grass  

Semi-Natural 0.06  Normal Light Brush with some trees  

Woodland 0.1  Normal heavy stand of timber, a few down 

trees, little undergrowth, flood stage below 

branches  

Row Crops 0.035  Normal mature row crops  

Roads or Man Made 

Surface 

0.016  Normal smooth asphalt  

Urban 0.016  Normal smooth asphalt  

Boundary Barriers 0.07  Normal medium brush, winter  

Unclassified 0.03  Normal short grass  

 

The measure of connectivity is the cumulative travel time along each flow path. This is 

done by altering the flow path length of each cell to the river network with the travel 

time function as the weighting (Equation 4.66). 

 E&00*��+1+�> = 	­33	.		�'&®,4�ℎ8*07�ℎ (4.66) 

 

Where �'&®,4�ℎ8*07�ℎ is the length along the flow path of each cell to the river (m). 

The connectivity metric is normalised from 0-1 to create a unitless coefficient in the 

final risk equation.  
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4.6 Final risk 

The calculation of the final risk for each pollutant in each field is a simple multiplication 

of the three component modules (as per equation 4.67). 

 ?+/9� =	%&(5�*	�	. l&)+'+/*@E&*K�	.		E&00*��+1+�>	 
 

(4.67) 

Where ?+/9� is the risk (g ha-1 yr-1) and %&(5�*	� is the mass of pollutant source (g ha-1 

yr-1).  

4.7 Conclusions 

This chapter has outlined the modelling methodologies developed to fit within the 

CaRPoW framework for pesticides, phosphorus, nitrate and sediment. Source methods 

relate to potential load of a pollutant in the catchment and have been either newly 

developed (pesticides) or adapted from other methodologies in the literature 

(phosphorus, nitrate and sediment). The hydrological component of all of the 

mobilisation methodologies has been based on derived average monthly outputs from 

the 1D soil water balance model set up for every field (unique combinations of soil, 

land use and drainage characteristics). At the same time a method to extract the 

hydrological characteristics of representative wet years and dry years has been 

outlined. The pesticide mobilisation methodology is based on an adapted version of 

the SWATCATCH model (Brown and Hollis, 1996; Pullan, 2014) that assesses the 

mobilisation of pesticides in the first hydrological event following application. This is 

based on the assumption that the first hydrological event is the most important for 

pesticide mobilisation. Phosphorus mobilisation methodologies are split three ways 

depending on the phosphorus source, with the methodology from the PSYCHIC model 

(Davison et al., 2008) adapted for soil soluble phosphorus and soil particulate 

phosphorus, and the APLE model Vadas et al. (2009) used for incidental soluble 

phosphorus mobilisation from fertiliser and manure. Sediment mobilisation is based 

on the Modified Morgan-Morgan-Morgan-Finney model (Morgan, 2001; Morgan and 

Duzan, 2008). The delivery component uses the same methodology for all pollutants 
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and is based on an adapted version of the Travel Time Approach (Melesse and 

Graham, 2004; Buchanan et al., 2013). The approach was selected because of the 

inclusion of Manning’s roughness values that allow barrier features in the landscape to 

impact on connectivity. Finally the overall risk calculation is presented which multiplies 

the source load by the modelled mobilisation and delivery coefficients to provide a 

total risk load for each field in a catchment. 
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Chapter 5. Application of CaRPoW modelling methodologies in 

the River Ugie to determine multiple pollutant risks 

5.1 Introduction 

Chapter 5 applies the methods outlined in Chapter 4 to a case study catchment, the 

River Ugie in the North East of Scotland. The chapter starts by describing the 

characteristics of the River Ugie catchment and its water quality issues. Catchment 

specific data inputs required that were not outlined in Chapter 4 are identified and 

outlined. The practical implementation of CaRPoW is briefly outlined along with the 

methods used to validate the models. Results are presented for the 4 pollutant 

groupings modelled and validated against spatially distributed pollutant loading data. 

The ability of the models to represent both spatial and temporal loads in the 

catchment are discussed and explanations explored where there are discrepancies.  

The chapter is structured as follows: 

• 5.2 The River Ugie Catchment – a description of the characteristics and 

water quality issues in the Ugie catchment. 

• 5.3 Sources and Selection of Model Input Data – Input data to the model 

are outlined and any data assumptions justified. 

• 5.4 Implementation of CaRPoW – a practical description of how CaRPoW 

has been implemented in the Ugie 

• 5.5 Model validation methodology– an outline of the methods employed to 

validate the CaRPoW modelling methodologies against hydrological and 

water quality data. 

• 5.6 Model results and discussion – Model results are presented and 

discussed for the water balance model component, the validation of the 

pesticide fate model assumptions and the ability of the models to replicate 

total and spatial pollutant load. 

• 5.6 Conclusions – Provides a conclusion to the chapter 
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5.2 River Ugie catchment 

5.2.1 Catchment characteristics 

The River Ugie catchment is situated in the North East of Scotland approximately 40 

km to the north of Aberdeen (Figure 5.1). The catchment drains an area of 335 km2 

from West to East, where it flows into the North Sea at the town of Peterhead. The 

river is split into two main branches, the North and South Ugie, which confluence 

approximately 10km to the west of Peterhead (SEPA, 2011). The catchment is low lying 

with a maximum elevation of 235m in the headwaters, making the catchment 

characteristic of a lowland river system.  

Land use is split between intensive grassland and arable agriculture, with some 

patches of managed forestry and rough grazing. Soil types are strongly characterised 

by parent material, which accounts for the diverse range of soil types found in the 

catchment. To the west of the catchment where elevations are highest soils are 

dominated by the Countesswells, Foudland and Hatton associations, which have 

parent materials of granitic glacial till, argillaceous schist and red sandstone till 

respectively. Countesswells and Foudland mainly comprise free draining iron podzols 

and non-calcareous gleys whereas Hatton consists of iron podzols, non-calcareous 

gleys, peaty gleys and brown forest soils. The lowlands are largely composed of the 

Tarves association which is derived from intermediate and basic gneisses and 

comprises brown forest soils and non-calcareous gleys. Undefined alluvium soils are 

found along the river corridors and there are patches of basin peat on the margins of 

the catchment (Soil Survey of Scotland Staff, 1970-1981).  
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Figure 5.1 - (a) SLM (Sustainable Land Management) monitoring points, (b) SEPA monitoring 

points and (c) the location of the River Ugie catchment. Note river network broken in places 

by lakes not displayed 
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The river is used by Scottish Water as a drinking water source for the town of 

Peterhead and the surrounding area, a population of approximately 40,000 people. 

During certain periods of the year Scottish Water detects pesticide concentrations in 

the raw abstracted water above the regulatory limit of 0.1 µg L-1 as set by the EU 

Drinking Water Directive (98/83/EC). There is no specific pesticide removal process at 

the works, therefore leading to occasional drinking water quality failures at customers’ 

taps. In response to this the Drinking Water Quality Regulator (DWQR) and the 

Economic Regulator (Water Industry Commission for Scotland) in Scotland advised 

Scottish water to reduce the number of water quality failures attributed to pesticides 

in the Ugie.  Scottish Water has adopted a twin track approach by building a new 

granular activated carbon (GAC) process at their works in conjunction with a 

catchment management initiative to reduce pesticide loads in the catchment, in order 

to reduce the operational expenditure of the GAC process. Identified pesticide 

pressures also mean that the catchment is part of the Voluntary Initiative, which 

monitors pesticide concentrations in the river and works closely with farmers to 

reduce the risk of pesticides entering the river. 

The catchment also has nutrient pressures as identified by SEPAs WFD water body 

classification (SEPA, 2011) and is therefore one of SEPAs priority catchments for diffuse 

pollution. Nitrate pressures also mean it has a Nitrate Vulnerable Zone (NVZ) 

designation which restricts the spreading of fertilisers and manure during certain 

periods of the year. 

5.2.2 Measured data 

The Scottish Water catchment management initiative known as Sustainable Land 

Management (SLM) started in 2010 with 6 drinking water catchments in the scheme, 

of which the River Ugie is one. It was recognised that a monitoring strategy was 

required beyond the regulatory water quality samples taken at the treatment works to 

better understand the nature of the problem within the catchment, identify high risk 

sub-catchments and monitor intervention effectiveness. 
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As a result, since June 2011 weekly grab water samples have been collected at 10 

spatially diverse monitoring locations in the catchment (See Figure 5.1a). These 

samples are collected in the same order each week by the Scottish Water sampling 

teams and refrigerated immediately before being analysed for a large suite of 

pesticides and other water quality parameters (see appendix C.2 for the range of 

pesticides).  

To test the assumption that the first hydrologically effective rainfall event following 

pesticide application is the most important for pesticide mobilisation and delivery, a 

programme of storm sampling was initiated in the catchment as part of this research. 

A more detailed description of the sampling and analysis techniques used are outlined 

in Appendix C as only short summary is given here.  

An autosampler was installed at the point where water is abstracted from the River 

Ugie for the Forehill water treatment works (Figure 5.1). The sampler was setup to be 

remotely triggered during storm events. Initially the sampler was setup to collect a 2 

litre sample every 2 hours over a 24 hour period. However it was soon realised that 

this often did not capture the full storm hydrograph and therefore the sampling 

programme was adjusted to a 2 litre sample collected every 4 hours over a 48 hour 

period. A more detailed outline of the field and laboratory methodology can be found 

in Appendix C.  

Data for nitrates, phosphorus and suspended sediment are collected by the Scottish 

Environment Protection Agency (SEPA) as part of their diffuse pollution priority 

catchment work. Sampling locations differ from Scottish Water’s and are detailed in 

Figure 5.1. Sampling is also not as frequent and varies between monitoring points from 

fortnightly to monthly. 

Pollutant sub-catchment loadings were derived using the concentration data in 

conjunction with discharge data collected from the catchment. Discharge data was 

derived from a flow gauge downstream of sample point 10 in Figure 5.1 that is 

operated and maintained by SEPA. The station is cableway rated using the velocity-

area method and has been operating since 1971 (Marsh and Hannaford, 2008).  
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Flow measurements for each individual sub-catchment were modelled using the Low 

Flows Enterprise model (Wallingford Hydro Solutions, 2013). The method for 

calculating flow follows the methodology of Goody et al. (2010), where the LFE model 

is used to find analogous gauged catchments and calculate the daily mean flow for 

each ungauged catchment.  

Modelled discharge values for each sub-catchment were used in conjunction with 

observed concentration values to calculate sub-catchment loads for model validation. 

There are different levels and types of uncertainty associated with the many 

techniques of calculating pollutant load. Generally the fewer measurements there are 

in a record the greater the uncertainty as it is unlikely that the full concentration-

discharge dynamic is fully captured (Defew et al., 2013). A range of load calculation 

methods were therefore implemented using available data to provide a load 

uncertainty range for each pollutant in each sub-catchment. 

5.2.2.1 Loading methods 

Loading methodologies can be split into two types, interpolation and extrapolation 

techniques (Walling and Webb, 1981). Interpolation or numeric integration techniques 

assume that the conditions of the river at the time of sampling are representative of 

the conditions of the river for the period in between samples (Defew et al., 2013). 

Extrapolation techniques define a relationship between concentration and discharge 

that is applied to periods that are not sampled.  

Extrapolation techniques are only applicable where discharge is a driver of pollutant 

load. This is the case for phosphorus and suspended sediment, but because pesticides 

are only applied at certain times of the year and nitrate is generally associated with 

low energy leaching processes extrapolation techniques were not deemed suitable. 

Interpolation methods from Defew et al. (2013) were implemented for all pollutants 

and are outlined in equations 5.01-5.06. 
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² 

(5.04) 

 3&�4'	8&4@ = �∑ (En�n)on±W∑ �non±W ��³³³ 
(5.05) 

 3&�4'	8&4@ = �­(En�n)
o

n±W
 

(5.06) 

 

Where 3&�4'	8&4@ is in kg for nutrients and suspended sediment and g for pesticides, 

� is the time conversion factor (seconds), En is the measured instantaneous 

concentration (mg l-1 or µg l-1), �n is the instantaneous measures discharge (m3 s-1), ��³³³ 

is the average discharge for the period of the record (m3 s-1) and	��³³³³ is the mean 

discharge in between samples (m3 s-1). 

Uncertainty in the loading calculations is heavily dependent on the sampling resolution 

(weekly for pesticides, monthly for nutrients and suspended sediment). Previous 

investigations have determined uncertainty by assessing each against a ‘true load’ 

calculated using high resolution monitoring (e.g. Defew et al., 2013). Such high 

resolution is not available for the Ugie therefore making this impossible in this 

research.   
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Uncertainty was therefore assessed according to the method outlined in Richards 

(1998) which devises upper and lower ranges of loads calculated via interpolation. The 

technique is based on the assumption that concentration changes linearly between 

samples. In the method, concentration values are interpolated linearly by time, to the 

boundary of each observed sample. Each sample observation therefore has three 

associated concentration values, the actual observed concentration and two 

associated concentrations from the linear interpolation. The method assumes that 

within that time period the concentration will not be above the highest of the three 

values or below the lowest therefore giving an upper and lower loading estimate.  In 

reality of course this is unlikely to be true, especially where there are significant 

periods of time between samples, however it does give an estimation of uncertainty.  

For phosphorus and suspended sediment log-log regression equations are derived for 

the relationship between concentration and discharge. Daily discharge values are then 

substituted into the regression equation to derive concentration values for each day. 

Equation 5.07 is then used to calculate annual load. 

 3&�4'	8&4@ = � °­(E���)
o

n±W
² 

(5.07) 

 

Where E� is the estimated daily concentration value (mg l-1 or µg l-1) and �� is the 

mean daily discharge (m3 s-1). 

Uncertainty in the regression equations is based on the confidence intervals of each 

regression equation. At the 95% confidence limit upper and lower values of the 

intercept and slope of each regression are implemented to give upper and lower load 

ranges for each sample location. 

The loading values are adjusted for the sub-catchments that contain a nested sub-

catchment, so that the effect of area is taken away. Consulting Figure 5.1a this means 

that sub-catchment C is adjusted by subtracting the load of sub-catchment E, sub-

catchment I by subtracting the load of sub-catchment H and so on. Likewise loads of 
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phosphorus, nitrate and sediment are adjusted to include loads from wastewater 

treatment works using values from SEPA (2011). 

5.3 Sources and selection of model input data and parameters 

5.3.1 Climate data 

The two key climate data inputs used in CaRPoW are daily rainfall and temperature, 

over a 30 year period for the WaSim water balance model.  Although rainfall is spatially 

diverse, rain gauge measurements represent a single measurement at a single 

location. There are three rain gauges representative of the Ugie at Forehill, Maud and 

Quarryhill where data are available (see Figure 5.1). The Forehill rain gauge was chosen 

because of the length of its record and the fact that temperature measurements are 

also taken. Both temperature and rainfall data were obtained from the British 

Atmospheric Data Centre (BADC) for the period of the WaSim model run (1980-2012). 

5.3.2 Soil data 

Soils data are based on the 1:25000 Scottish Soils dataset from the James Hutton 

Institute, with soil properties obtained from the Scottish Soils Knowledge and 

Information Base (SSKIB) and SEISMIC databases. The soils properties used in CaRPoW 

are outlined in Table 5.1. Soil hydrological properties were also obtained from the 

SEISMIC soils database held at Cranfield University. Within these soil classifications, 4 

broad land use classes are available for each soil series (arable, permanent grass, ley 

grass and other). Model runs were completed for all four soil property types and 

matched to the soil and land use combinations present in the catchment. 

Soil types were assigned HOST classifications according to Boorman et al. (1995). The 

HOST classifications were used in conjunction with land use to make an assessment on 

the presence of artificial drainage, i.e. if the HOST classification relates to a water 

logged, poorly drained soil and the land use is agricultural then field drains are 

assumed to be installed. HOST class was also used to assign each soil an SCS curve 

number depending on 5 different soil conditions and 6 different land uses according to 

Holman et al. (2011). 
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Table 5.1 - Soil properties used in the various CaRPoW methodologies and the symbols 

representing them in the model equations 

Soil Property Symbol Method used in 

Total P (g kg) TotalPSoil Phosphorus Source 

Bulk Density (g cm-3) ρb Phosphorus Source, Pesticide 

Mobilisation 

Water Content at 0kPa, 

5kPa, 200kPa and 

1500kPa (cm3 cm3) 

θsat, θfc, θ200, θpwp Pesticide mobilisation, 

WaSim Model 

Saturated Hydraulic 

Conductivity (m day) 

Ksat Pesticide mobilisation, 

WaSim Model 

van Genuchten n 

parameter (-) 

n Pesticide mobilisation 

Organic carbon content 

(%) 

Foc Pesticide source 

SCS curve number (-) N WaSim Model 

Erodibility of the soil 

parameter (-) 

K Modified Morgan-Morgan-

Finney erosion model 

Cohesivity of the soil 

parameter (-) 

COH Modified Morgan-Morgan-

Finney erosion model 

Soil properties used to 

infer information: 

    

HOST Classification HOST Presence of drains, Nitrate 

Source 

 

5.3.3 Land use 

Land use data has been obtained and adapted from the IACS dataset. This is an 

annually updated dataset created by the Scottish Government from the single farm 

payment application forms completed by land owners across Scotland. Each field 

within a catchment has an associated Land Parcel ID (LPID) that is assigned a land use. 
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The dataset is in an excel spread sheet format and added to the LPID shapefile for the 

Ugie catchment, both provided by the Scottish Government.  

This dataset only covers the land within the catchment that is used for agricultural 

production, meaning other areas of land are classified according to the CEH Land Cover 

2007 dataset (Morton et al., 2011). Land use classes are not concurrent across the two 

different datasets and therefore a CaRPoW land use classification system was 

developed from the amalgamation of the two datasets to accurately capture the detail 

required by the modelling methods.  Two different land use classifications have been 

created for the CaRPoW methodology for both the source and mobilisation 

methodologies. The source classification is more detailed and separates out individual 

crop types at the level required to distinguish between different pesticide and fertiliser 

applications. The mobilisation classification is less detailed and relates to the 

vegetation types modelled in the WaSim soil water balance model (see section 5.3.4). 

Both classifications and the original IACS and CEH land cover map classes they relate to 

are shown in Table 5.2 for the Ugie catchment.  

Table 5.2 - Land use classes for the source and mobilisation methodologies assigned to 

Integrated Administration and Control System (IACS) and Land Cover Map (LCM) land use 

classifications 

IACS and LCM land use classes 

CaRPoW source 

class 

CaRPoW 

mobilisation class 

IA
C

S 
C

la
ss

e
s 

ARABLE SILAGE FOR STOCK FEED Stock Feed Row Crops 

CARROTS Carrots Row Crops 

EX STRUCTURAL SET-ASIDE (AFFORESTED 

LAND ELIGIBLE 

Woodland Woodland 

EX STRUCTURAL SET-ASIDE (AFFORESTED 

LAND ELIGIBLE FOR SFPS) 

Woodland Woodland 

FALLOW Semi-Natural Semi-Natural 

FALLOW LAND FOR MORE THAN 5 YEARS Semi-Natural Semi-Natural 

GRASS OVER 5 YEARS Permanent Grass Grassland 
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GRASS UNDER 5 YEARS Ley Grass Grassland 

KALE AND CABBAGES FOR STOCKFEED Cabbages Row Crops 

LFASS INELIGIBLE ENVIRONMENTAL 

MANAGEMENT 

Semi-Natural Semi-Natural 

MIXED CEREALS Other Cereals Winter Cereals 

NEW WOODLAND  (ELIGIBLE FOR SFPS) Woodland Woodland 

NORMAL SETASIDE - 5 YEAR UNDER WGS Semi-Natural Semi-Natural 

NORMAL SETASIDE - NAT REGEN (AFTER 

CEREALS) 

Semi-Natural Semi-Natural 

NORMAL SETASIDE - NAT REGEN (AFTER 

OTHER CROPS) 

Semi-Natural Semi-Natural 

NORMAL SETASIDE - SOWN GRASS COVER Semi-Natural Semi-Natural 

NORMAL SETASIDE - WILD BIRD COVER Semi-Natural Semi-Natural 

OPEN WOODLAND(GRAZED) Rough Grazing Semi-Natural 

OTHER CROPS FOR STOCK FEED Stock Feed Row Crops 

OTHER VEGETABLES Other Vegetables Row Crops 

POSITIVE ENVIRONMENTAL MANAGEMENT Semi-Natural Semi-Natural 

PROTEIN PEAS Other Vegetables Row Crops 

RAPE FOR STOCK FEED Winter Oilseed 

Rape 

Winter Cereals 

RASPBERRIES Soft Fruit Row Crops 

RASPBERRIES GROWN IN OPEN SOIL UNDER 

TEMPORARY WALK-IN STRUCTURES 

Soft Fruit Row Crops 

ROUGH GRAZING Rough Grazing Grassland 

SEED POTATOES Potatoes Row Crops 

SETASIDE AGRICULTURAL PRODUCTION - 

ARABLE 

Semi-Natural Semi-Natural 

SETASIDE AGRICULTURAL PRODUCTION - 

FORAGE 

Rough Grazing Semi-Natural 

SFPS BEING CLAIMED ON AGRI- Semi-Natural Semi-Natural 
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ENVIRONMENTAL OPTIONS 

SHOPPING TURNIPS/SWEDES Turnips Row Crops 

SPRING BARLEY Spring Barley Spring Cereals 

SPRING OATS Spring Oats Spring Cereals 

SPRING OILSEED RAPE Spring Oilseed 

Rape 

Spring Cereals 

SPRING WHEAT Spring Wheat Spring Cereals 

STRAWBERRIES Soft Fruit Row Crops 

STRAWBERRIES GROWN IN OPEN SOIL UNDER 

TEMPORARY WALK-IN STRUCTURES 

Soft Fruit Row Crops 

STRUCTURAL SETASIDE - WGS, FWPS OR SFGS Semi-Natural Semi-Natural 

TRITICALE Other Cereals Winter Cereals 

TURNIPS/SWEDES FOR STOCK FEED Turnips Row Crops 

WARE POTATOES Potatoes Row Crops 

WHOLE CROP CEREALS Other Cereals Winter Cereals 

WILD BIRD SEED Semi-Natural Semi-Natural 

WINTER BARLEY Winter Barley Winter Cereals 

WINTER OATS Winter Oats Winter Cereals 

WINTER OILSEED RAPE Winter Oilseed 

Rape 

Winter Cereals 

WINTER OILSEED RAPE ENERGY Winter Oilseed 

Rape 

Winter Cereals 

WINTER WHEAT Winter Wheat Winter Cereals 

LC
M

 C
la

ss
e

s 

Arable and horticulture Winter Wheat Winter Cereals 

Bog Semi-Natural Semi-Natural 

Broadleaved, mixed and yew woodland Woodland Woodland 

Coniferous woodland Woodland Woodland 

Freshwater Lochs Lochs 
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Heather Semi-Natural Semi-Natural 

Heather grassland Semi-Natural Semi-Natural 

Improved grassland Grassland Grassland 

Inland rock Semi-Natural Semi-Natural 

Rough grassland Rough Grazing Grassland 

Suburban Urban Urban 

Unclassified Unclassified Unclassified 

Urban Urban Urban 

 

5.3.4 Vegetation parameters 

The WaSim soil balance model requires parameters for each vegetation type in order 

to calculate actual evapotranspiration (Table 5.3). The Julian dates relating to the 

stages of crop growth (planting, emergence, 20% crop cover, full crop cover, max root 

depth, full plant maturity and harvest) were derived from combining local information 

extracted from the agronomist interview (section 5.3.6.1 and Appendix D), information 

from the HGCA crop manuals for cereal crop and oilseed rape (HGCA 2005, 2008, 2012) 

and the crop calendars produced by Holman et al. (2005). Crop parameters for semi-

natural and grassland vegetation types were assumed to be constant year round, i.e. 

max root depth achieved at planting date and no harvest. The woodland vegetation 

type was assumed to follow a pattern of leaf development in the spring (represented 

by planting date) and defoliation in the autumn (represented by harvest). The 

maximum root depth achievable by any of the vegetation type was set at maximum 

soil depth (assumed to be 1.5 metres).  
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Table 5.3 - Vegetation parameters used in the WaSim water balance model (derived 

from Holman et al., 2004) 

Variable Grassland 

Row 

Crops 

Winter 

Cereals 

Spring 

Cereals 

Semi-

Natural Woodland 

Planting Date (Julian 

day) 1 105 273 74 1 74 

Harvest Date (Julian 

day) 365 170 351 175 365 324 

Emergence Date 

(Julian day) 1 31 11 15 1 105 

20% Coverage Date 

(Julian day) 1 46 41 18 1 115 

Full Coverage Date 

(Julian day) 1 92 183 76 1 130 

Vegetation Maturity 

Date (Julian day) 365 133 273 122 365 302 

Maximum Root Depth 

Date (Julian day) 1 92 162 76 1 74 

Planting Depth (m) 0.70 0.08 0.03 0.03 0.35 1.50 

Maximum Root Depth 

(m) 0.70 0.75 1.50 1.50 0.35 1.50 

WaSim Crop 

Coefficient (-) 100 110 110 110 100 114 

WaSim P Fraction (-) 0.5 0.5 0.5 0.5 0.5 0.71 

 

5.3.5 Topography data 

The underlying dataset for topography model inputs (e.g. slope) was the NextMap 5m 

Digital Terrain Model dataset for the River Ugie catchment. Before analysis the dataset 

was hydrologically corrected by filling in pitted artefacts in the dataset using the 

TauDEM pit filling tool (Tarboton, 2012). The DTM was further treated by ‘burning’ the 

detailed river network, so that flow is forced along known drainage channels. The river 
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network dataset burned into the DTM is the Scottish Detailed River Network (SDRN), 

which is based on hydrological features present in the Ordnance Survey (OS) 

Mastermap Dataset. The SDRN was burned into the DTM using the Whitebox GAT 

decay function methodology with a depth of 2m and a decay function of 10m (Lindsay, 

2014). This methodology better directs flow into burned drainage channels than simply 

subtracting the depth of the river network away from the DTM. 

The barrier features implemented within the delivery/connectivity module of the 

methodology (section 4.4) are derived from the OS Mastermap dataset. Within the 

dataset line features are classified with a “physicalPresence” attribute where any line 

classified as an “Obstructing Feature” is above 0.3 metres and obstructs passage by 

foot (Ordnance Survey, 2004). It was assumed that any line feature that is a physical 

obstruction also provides a hindrance to water movement across the landscape and 

thus has a higher Manning’s n value in the connectivity methodology. Barrier features 

were buffered by 5 metres and rasterised to a 5 metre cell size to match that of the 

NextMap DTM.  

5.3.6 Pollutant specific parameters 

Where parameter values are concurrent across all Scottish catchments they are 

detailed in the CaRPoW methodology in section 4. This section outlines the specific 

input parameters used for the River Ugie catchment. 

5.3.6.1 Pesticide specific data 

Two key pesticide property parameters are required by the model, sorption coefficient 

(Koc) and half-life (DT50). The main sources of pesticide property information are from 

the University of Hertfordshire Pesticide Property Database (2015) and the various 

European Food Standard Agency Risk Assessments for the pesticides of interest. 

Parameter values derived from these sources are highly variable (Table 5.4). Thus the 

model was run with the upper, lower and mean parameter values to provide an 

uncertainty range of model outputs for pesticides. 
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Table 5.4 - Pesticide specific CaRPoW model parameters (derived from the Hertfordshire 

Pesticide Properties Database, European Food Safety Agency risk assessments or agronomist 

interviews). 

Pesticide Organic 

carbon to 

water 

coefficient - 

Koc (l kg
-1

) 

Soil DT50 

(Days) 

Crops applied to (according to 

agronomist interviews and EFSA risk 

assessments) 

2, 4-D 16-68 1.2-94.6 Ley Grass, Spring Barley, Spring Wheat 

Chlorotoluron 108-384 26-42 Spring Barley, Winter Barley, Spring 

Wheat, Winter Wheat 

CMPP 20-43 6.3-8.2 Spring Barley, Winter Barley, Spring 

Wheat, Winter Wheat, Spring Oats, 

Winter Oats, Ley Grass 

MCPA 10-157 7-41 Spring Barley, Winter Barley, Spring 

Wheat, Winter Wheat, Spring Oats,, Ley 

Grass, Permanent Grass 

Metaldehyde 34-240 6.6-19.5 Winter Oilseed Rape, Winter Wheat, 

Winter Barley, Potatoes, Ley Grass, 

Brassicas, Other Vegetables 

Metazachlor 29.2-75.1 2.8-21.3 Winter Oilseed Rape, Spring Oilseed 

Rape, Brussel Sprouts, Cabbage, 

Cauliflower, Turnips/Swedes 

 

Application rate and timings have been obtained from a number of different sources. 

Maximum application rates were selected from the British Crop Protection Council 

pesticide manual (BCPC, 2013). At the same time the number of applications allowed 

per year is noted from the BCPC manual so that any restrictions on annual application 

rate are carried through in the model. The application rates used for each pesticide on 

each crop type can be found in Appendix B.  

When assessing the timing of applications it is important to understand the specific 

uses of each pesticide within the study catchment. Although general information is 

available on application timings for various pesticide and crop combinations it has 
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been shown that regional differences can be important (Dolan et al., 2014). Dolan et 

al. (2014) identified agronomists as a key information source for catchment managers 

in order to understand the nature and drivers of pesticide use in individual 

catchments. Using a similar methodology to Dolan et al. (2014) a number of semi-

structured interviews were conducted with agronomists to ascertain the key crop 

rotations, pests and pesticide usage in the River Ugie catchment. The questionnaire is 

shown in Appendix D with questions split into 4 parts: 

1. Cropping practices 

2. Pest Issues 

3. Pesticide usage 

4. Nutrient management 

The first section includes questions relating to cropping practices in the catchment and 

the second relates to specific pest issues for the crops outlined in part one and the 

methods of dealing with them. Part three specifically deals with the 6 pesticides 

highlighted as problematic in Scottish Water’s monitoring data, questions relate to the 

uses of each and potential alternatives. The final section relates to fertiliser application 

for the crop identified in section one.  

To gauge the number of agronomists operating in the River Ugie catchment the author 

attended a meeting arranged with agronomists as part of Scottish Water’s Sustainable 

Land Management Incentive Scheme. A short presentation was given outlining the 

information requirements after which agronomists were asked to express an interest 

in taking part in the study. It was stressed that only independent agronomists were 

wanted for the study to remove bias from agronomists linked to specific chemical 

suppliers. 

The questionnaire driven interview was first of all tested in a pilot with one of the 

agronomists who expressed an interest in the initial meeting. Feedback was requested 

from the participant and amendments made to the questionnaire 
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All interviews were conducted face to face at the offices of the participants. 

Participants were asked to sign a consent form, a copy of which is included in Appendix 

D. The interviews started with the author outlining the purpose of the study and the 

uses of the information acquired. The interview was recording for transcription at a 

later date. Although there was a structure to the interview the author used their 

judgement to ask follow up questions to certain answers and tangents to the questions 

were allowed if they were relevant to the purposes of the study.  

In total three independent agronomists agreed to be interviewed. The relatively small 

number of agronomists sampled reflects the catchment size and the limited number of 

independent agronomists representing farmers in the catchment. An example 

anonymised questionnaire response is outlined in Appendix D.4.  

Using the outputs from the interviews along with other application timing information 

from European Food Standards Agency (EFSA) pesticide risk assessments the 

application timings in Appendix B were devised. If applications had the potential to be 

applied over a two month time window the application rate was split between months 

equally. 

Outputs from the agronomist interviews highlighted the fact that pesticide 

applications are pest dependant and therefore not all fields with the same crop type 

will receive the same application rate, or even an application at all. Without specific 

application rate data from individual farms the best option available was to use the 

Science and Advice for Scottish Agriculture (SASA) pesticide usage statistics (Reay, 

2010; Watson et al., 2012; Watson et al., 2013) to reduce the maximum application 

rate by the proportion of the product applied to each individual crop in the Grampian 

region of Scotland (where the River Ugie is situated). 

5.3.6.2 Nitrate specific parameters 

Nitrate specific parameters relate to the derivation of the values for each component 

of the source equation (equation 4.11 in section 4.2.3). Values for mineralisation, 

denitrification, livestock N and atmospheric deposition have been detailed in the 

nitrate source methodology section (4.2.3). The methods of deriving crop offtake and 
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fertiliser N values are also detailed in section 4.2.3 and the values used in the model 

can be found in appendix B.  

All other parameter values for the nitrate mobilisation methodology are detailed in 

methodology section 4.3.4. 

5.3.6.3 Phosphorus specific parameters 

Phosphorus parameters derived for the River Ugie catchment are mostly inputs to the 

source methodology. Annual fertiliser applications rates have been derived from the 

Scottish Government statistics for phosphorus fertiliser use. Fertiliser application rates 

were matched to the CaRPoW source land use classifications; values for the years 

2008-2012 are detailed in Table 5.5. 

Table 5.5 - Phosphorus fertiliser application rates per year used in CaRPoW models (derived 

from Scottish Fertiliser Use Statistics) 

  Phosphorus fertiliser application rate (kg ha
-1

 yr
-1

) 

CaRPoW Source Land 

Use 2008 2009 2010 2011 2012 Average 

Cabbages 42 53 48 38 48 45.8 

Carrots 42 53 48 38 48 45.8 

Ley Grass 26 23 28 22 24 24.6 

Other Cereals 42 53 48 38 48 45.8 

Other Vegetables 42 53 48 38 48 45.8 

Permanent Grass 13 12 12 10 10 11.4 

Potatoes 149 145 139 136 109 135.6 

Rough Grazing 0 0 0 0 0 0 

Semi-Natural 0 0 0 0 0 0 

Soft Fruit 0 0 0 0 0 0 

Spring Barley 46 46 48 51 50 48.2 

Spring Oilseed Rape 45 46 39 34 43 41.4 

Spring Wheat 56 52 44 43 47 48.4 
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Spring Oats 26 28 39 38 35 33.2 

Stock Feed 34.5 39.5 39 32 37 36.4 

Turnips 42 53 48 38 48 45.8 

Winter Barley 59 45 50 52 50 51.2 

Winter Oilseed Rape 45 46 39 34 43 41.4 

Winter Wheat 56 52 44 43 47 48.4 

 

P sources from livestock are based on the stocking density and annual phosphorus 

output of each livestock type, as detailed in section 4.2.2. In the Ugie catchment 

stocking density is based on parish level agricultural census data collected annually by 

the Scottish Government. Values for stocking density for each parish are outlined in 

Table 5.6. It should be noted that because of missing data on other livestock types at 

the parish level only cattle and sheep are included in the analysis.  

5.3.6.4 Sediment specific parameters 

There are no Ugie specific sediment parameters derived in the methodology; all 

parameters used in the modelling methodologies have been detailed in section 4.3.5. 
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Table 5.6 - Detailed outline of parish livestock numbers (2012) and how this translates to stocking density in the River Ugie catchment 

Parish 

Parish area 

(ha) 

Total 

cattle in 

parish 

Total 

sheep in 

parish 

Total 

parish area 

within 

Ugie 

catchment 

(ha) 

Percentage 

parish area 

within the 

Ugie 

Adjusted 

cattle 

numbers 

Adjusted 

sheep 

numbers 

Total 

grassland 

area in 

parish (ha) 

Cattle 

stocking 

density 

(animals 

per ha) 

Sheep 

stocking 

density 

(animals 

per ha) 

Aberdour 5809 2894 3035 1887 32 940 305 427 2.20 0.72 

Crimond 2548 1647 2541 166 7 107 7 78 1.39 0.09 

King 

Edward 

7186 2600 4900 30 0 11 0 19 0.55 0.00 

Longside 6984 5850 3923 6469 93 5419 5019 1896 2.86 2.65 

Lonmay 4838 3859 4553 1441 30 1149 342 403 2.85 0.85 

New Deer 10846 12558 11806 5270 49 6102 2965 1676 3.64 1.77 

Old Deer 10933 8949 10555 7945 73 6504 4727 2038 3.19 2.32 

Peterhead 3903 1628 2010 1603 41 669 275 460 1.45 0.60 

St Fergus 3434 1820 1664 525 15 278 43 69 4.02 0.61 

Strichen 5747 8488 6440 4872 85 7195 6099 1226 5.87 4.98 

Tyrie 4633 4289 1834 2924 63 2707 1709 757 3.58 2.26 
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5.4 Implementation of CaRPoW modelling methodologies 

5.4.1 Model implementation format 

All source and mobilisation methodologies were coded in the R programming language 

(R Core Team, 2014) with results outputted as ESRI shapefiles. The equations 

developed in the delivery/connectivity module were coded as python scripts within an 

ArcGIS toolbox. Outputs from the delivery/connectivity module were in a raster format 

that is assigned to the ‘fields’ in the source and mobilisation shapefile outputs using a 

zonal statistics function. The purpose of this was to make sure the outputs from the 

three modules were in the same shapefile format for calculation of final risk using R. 

5.4.2 Data pre-processing 

To achieve the correct data structure for use in the models some of the GIS data inputs 

outlined in section 5.3 require pre-processing. The hydrological correction of the DTM 

for the delivery/connectivity methodology has already been discussed. However the 

most important pre-processing step was the creation of a shapefile which delineates 

‘fields’ within the catchment, the resolution at which the source and mobilisation 

methodologies operate. 

Within CaRPoW ‘fields’ were classified as unique combinations of land use, soil type 

and drainage. However traditional field boundaries as dictated by the IACS dataset are 

also maintained so that model outputs can be easily assigned to physical fields. To 

achieve this, the derived land use dataset, soils dataset and OS Mastermap dataset for 

the catchment were combined.  The OS Mastermap dataset is included so that urban 

areas are appropriately captured within the data structure for the purposes of the 

delivery/connectivity component. An example output of this process is shown in Figure 

5.2. 
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Figure 5.2 - Example of CaRPoW mobilisation land use coverage with integrated OS 

Mastermap features as used in the CaRPoW model. 

5.4.3 WaSim model setup 

Climate, vegetation and soil parameters implemented for the River Ugie catchment 

within WaSim have been outlined in section 5.3.  

Model inputs for the Ugie equated to 26 different soil types each with 4 sets of 

parameters relating to land use (arable, ley grass, permanent grass and other), 5 

different soil conditions that alter the SCS curve number (as per Holman et al., 2011), 6 

different crop types and 2 drainage conditions. In total 6,240 WaSim model runs were 

completed for the Ugie to represent every possible soil, land use and drainage 

combination. 

5.5 Model validation methodology 

All CaRPoW model outputs are validated against the loading data described in section 

5.2.2.1 in two different ways. Firstly the ability of the models to accurately calculate 
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pollutant loads is determined statistically using Root Mean Square Error (RMSE) and 

Relative Error (RE). Both tests have been used previously in diffuse pollution load 

model testing by Strömqvist et al. (2008) for example. The RMSE is used to assess the 

error between the predicted values (modelled load) and the observed values 

(calculated load) for each sub-catchment. The RMSE is calculated using equation 5.08. 

 ?l%M =	´∑ ,n − .non±W 0  (5.08) 

Where	?l%M  is the total RMSE between modelled and observed loads (g for 

pesticides, kg for other pollutants), ,n  are the individual modelled values for each sub-

catchment (g for pesticides, kg for other pollutants),  .n are the individual loading 

values for each sub-catchment (g for pesticides, kg for other pollutants) and  0  is the 

number of sub-catchments. RMSE is assessed across the range of model and load 

values by assessing the different combinations of minimum, median and maximum 

values within the RMSE test.  

Relative error assesses the percentage difference between the modelled and observed 

values and provides a semblance of whether the model under or over predicts 

(negative values are an under prediction, positive an over prediction). RE is calculated 

using equation 5.09 against the same range of values as the RMSE. 

 ?M = 	100	0 ­(,n − .n).n 	 (5.09) 

Where ?M is the relative error between the modelled and observed loads (%). 

The second type of model validation is to assess the accuracy of the model in 

predicting the spatial arrangement of risks in the catchment. Simple linear regression 

analysis is used to assess the best fit relationships within the uncertainty ranges 

between modelled and observed loads as delineated by sub-catchment. It is important 

however to assess how the relationship changes under the different uncertainty 

ranges of both the model outputs and loading calculations. The ANCOVA (Analysis of 

Covariance) method is therefore implemented to assess the difference between the 
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slope values of the regression models of the CaRPoW model outputs and data within 

their associated uncertainty ranges. ANCOVA outputs were interpreted using a 95% 

confidence. When P<0.05, regression models across the uncertainty ranges were 

deemed to be significantly similar and hence the correlation relationships consistent 

across the model and data uncertainty ranges.  

5.6 Model results and discussion 

5.6.1 Water balance model 

Validation of the water balance methodology is difficult as no data are available on the 

runoff, drainflow, recharge or evapotranspiration for individual fields in the River Ugie 

catchment. Similarly the model does not output a river discharge value which is what 

most hydrological models are validated against. Instead the water balance model is 

validated using the methodology of Holman et al. (2011) where an indicative baseflow 

index (BFI) is calculated for each unique soil, drainage and land use combination. These 

are subsequently upscaled according to the proportion of each unique combination in 

the catchment to give an overall predicted BFI. The indicative BFI is derived according 

to the proportion of the long term average Hydrological Effective Rainfall (surface 

runoff and drainflow) to long term average rainfall (equation 5.10). 

 µ�6 = 1 −	 ?�M? (5.10) 

Where µ�6 is the baseflow index (proportion from 0-1), ? is the long term average 

runoff (mm) and �M? is the Hydrologically Effective Rainfall (mm).  

The indicative baseflow index can be compared to the baseflow index for the River 

Ugie as calculated by the methodology of Gustard et al., (1992) which is used for low 

flows estimation in the UK.  

The CEH hydrometric register (Marsh and Hannaford, 2008) states the River Ugie’s 

baseflow index as 0.63. The indicative baseflow index as derived from upscaled WaSim 

outputs is 0.60. The small difference between the two BFI values is encouraging and 

suggests that WaSim and the associated input parameter assumptions provide a good 
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representation of the partitioning between slow and fast flow processes in the 

catchment. This is important to the models utility as the partitioning of flow is 

important for the selection of interventions e.g. increasing soil infiltration to reduce 

runoff versus installation of wetlands at artificial drain outfalls. 

5.6.2 Model functionality within the CaRPoW framework 

The functionality of the model is described and discussed in this section using the 

example of metaldehyde with the dominant land use over the 2008-2012 period. The 

source, mobilisation, connectivity and final risk model outputs are detailed in Figures 

5.3 to 5.6 respectively. The outputs for all other pollutants using land use data from 

2012 and the dominant land use (2008-2012) are shown in Appendix E. Risk is 

classified into 5 groups according to Natural Jenks (Jenks, 1967), with the lowest class 

set to zero i.e. no risk.   
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Figure 5.3 - Annual metaldehyde source risk for dominant land use (2008-2012) in the River Ugie catchment 
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Figure 5.4 - Annual metaldehyde mobilised for dominant land use (2008-2012) in the River Ugie catchment (Source Risk multiplied by Mobilisation 

coefficient) 
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Figure 5.5 - Connectivity risk for dominant land use (2008-2012) in the River Ugie catchment 
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Figure 5.6 - Annual metaldehyde final risk for dominant land use (2008-2012) in the River Ugie catchment
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Visual inspection of the model component outputs for metaldehyde highlights how risk 

changes through the model structure. Understandably, overall risk (Figure 5.6) only 

exists where there is an initial source potential (Figure 5.3).  A proportion of the source 

is mobilised in every field except where organic soils are present. However the highest 

source risks do not necessarily correspond to the highest mobilisation risk. An example 

of this is shown in Figure 5.7 where one field has a higher source risk and lower 

mobilisation risk (0.23% of source mobilised) and the other has a lower source risk and 

a higher mobilisation risk (1.52% of source mobilised).   

Connectivity/delivery risk is highest along the corridors of the hydrographic network, 

which is to be expected as runoff travel times will increase the further away from the 

water body. Pockets of unconnected areas exist within the catchment where areas of 

land drain to water bodies (such as unconnected ditched and ponds) that are not 

connected to the main River Ugie network.  

 

 



 

117 

 

Figure 5.7  - Example of how risk transfers through the models with metaldehyde outputs. 

Note the variability in pesticide mobilisation meaning that the highest source risks do not 

always relate to the highest overall risk. 

The average transfer of risk from source to water body for the catchment is detailed in 

Table 5.7 for each pollutant using the dominant land use classification model output 

(sediment is not included because it does not have a separate source methodology). 

Transfer of source load to the water body is generally low for most pollutants except 

nitrate where around half of the surplus (available source) is delivered to the water 

body. Higher percentage nitrate losses are in line with other studies such as Allingham 

et al. (2002) who found an average 60.1% loss of soil nitrate surplus to leaching.  All of 

the pesticides have less than 1% of the applied load reaching the water body which is 

consistent with field investigations (e.g. Leu et al., 2004; Riise et al., 2004). Fertiliser P 

delivery to the Ugie was around 1% of applied fertiliser, which is in the lower range of 

applied P fertiliser losses identified in a review of literature by Hart et al., 2004 (0.03% 

- 42%). However most of the studies reviewed were plot studies not taking into 
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account P losses at the catchment scale and thus fertiliser P losses in CaRPoW are likely 

to be lower. Percentage mobilisation and delivery of livestock P was lower than 

fertiliser P and corresponds well to the 0.4% loss for solid manure found by Heathwaite 

et al. (1998). It must be noted that this study was based on applied solid manure rather 

than directly excreted manure as no studies could be found on percentage P 

mobilisation from directly excreted manure. Likewise no field studies were found that 

derived the proportion of soil Soluble P and Total P that is mobilised or delivered from 

the source. However it is reasonable to assume that less of the soil P would be 

mobilised as it is locked up in the soil and has less interaction with surface and 

subsurface hydrology than the fertiliser and livestock P. 

Table 5.7 - Average percentage load transfer from source to delivery for each pollutant with 

dominant land use from 2008-2012. 

Pollutant 

Average percentage 

of source load 

mobilised 

Average percentage 

of source load 

delivered 

Average percentage 

of mobilised load 

delivered 

2, 4-D 0.05 0.04 80.00 

Chlorotoluron 0.52 0.39 75.00 

CMPP 0.18 0.14 77.78 

MCPA 0.26 0.2 76.92 

Metaldehyde 0.42 0.31 73.81 

Metazachlor 0.12 0.09 75.00 

Fertiliser P 1.21 0.97 80.17 

Livestock P 0.75 0.61 81.33 

Soil Soluble P 0.004 0.003 75.00 

Soil Total P 0.0004 0.0003 75.00 

Nitrate 64.2 52.16 81.25 

Sediment N/A N/A 78.58 
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The proportion of mobilised pollutants delivered to the River Ugie ranges from 73.81% 

- 81.33%. The variability in percentage delivered is driven by the spatial arrangement 

of mobilisation in relation to areas of high connectivity, as the delivery component is 

the same for all pollutants. 

The fact that the proportion of the source mobilised for each pollutant matches 

literature values well suggests that the models developed and employed within the 

framework are able to reproduce the source-mobilisation-delivery continuum 

reasonably well. 

5.6.3 Testing model assumptions – The first rainfall event in the pesticide 

model 

Most of the models implemented within CaRPoW are based on methodologies that 

have been previously developed and proven in other catchments. The pesticide 

mobilisation model, however, is a new adaptation of a daily pesticide fate model into a 

monthly output (that is aggregated to annual) that assumes the first rainfall event after 

application is the most important for the mobilisation and delivery of pesticides.  

A series of hydrological events were sampled using the methodology outlined in 

section 5.2.2 and Appendix C to test this assumption. The following section details the 

results of the event sampling and discusses them within the context of the CaRPoW 

pesticide modelling methodology.   

Twelve events in total were attempted to be sampled between April 2014 and April 

2015, although on two occasions the sampler failed and no samples were taken 

(events 7 and 10). A variety of event magnitudes were represented with a peak 

discharge of 1.84 m3 s-1 (23/06/2014) for the smallest event and 21.13 m3 s-1 for the 

largest (14/11/2014). The timing of the ten events sampled throughout the year and 

the two failed sample runs are outlined in the time series graph of discharge and 

rainfall in Figure 5.8. 
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Figure 5.8 - Time series of discharge and rainfall for the period of storm sampling for model validation. Note – Events 7 and 9 was triggered but the 

sampler failed 
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Figure 5.6 shows that the majority of the major hydrological events within pesticide 

application periods were captured by the sampling, with the exception of events 7 and 

10 which were missed when the sampler failed.  

All sampled events detected at least one pesticide above the limit of detection 

(variable depending on pesticide), however not all events had pesticides in 

concentrations above the PCV (Permitted Concentration Value) which is 0.1 µg l-1 for 

pesticides (Table 5.8). All of the 6 pesticides identified by Scottish Water as 

problematic (2, 4-D, chlorotoluron, CMPP, MCPA, metaldehyde and metazachlor) were 

observed above the PCV value in at least one event, some of them in multiple events. 

Other pesticides observed above the PCV value not picked up by normal regulatory 

sampling include Clopyralid, Diuron and Triclopyr. 

Table 5.8 - Peak discharge and pesticides detected above the permitted concentration value 

(PCV) for drinking water during storm sampling. 

Event 

Number 

Date 

Sampler 

Triggered 

Peak 

Discharge 

During 

Sampling (m
3
 

s
-1

) 

Pesticides Above PCV 

Limit (0.1 µg l
-1

) 

Pesticides Above 

Limit of Detection  

1 26/06/2014 3.2 CMPP Atrazine, 

Carbendazim, 

Chlorotoluron, 

Clopyralid, Dicamba, 

CMPP, Methiocard, 

Tebuconazole 

2 10/05/2014 3.82 None 2, 4-D, Chlorotoluron, 

MCPA, CMPP, 

Metazachlor, 

Metsulfuron-Methyl 
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3 22/05/2014 3.22 Clopyralid 2, 4-D, Carbendazim, 

Clopyralid, Dicamba, 

Diuron, 

Epoxiconazole, MCPA, 

CMPP, Metazachlor, 

Metsulfuron-Methyl, 

Tebuconazole, 

Tribenuron-Methyl 

4 23/06/2014 1.91 None 2, 4-D, Chlorotoluron, 

Dicamba, MCPA, 

Metazachlor, 

Tebuconazole 

5 20/07/2014 1.99 Diuron 2, 4-D, Chlorotoluron, 

Clopyralid, Diuron, 

Epoxiconazole, 

Isoproturon, MCPA, 

CMPP, Metaldehyde, 

Metazachlor, 

Tebuconazole, 

6 10/08/2014 15.452 Diuron, Triclopyr 2, 4-D, Atrazine, 

Carbendazim, 

Chlorotoluron, 

Clopyralid, Diuron, 

Epoxiconazole, 

Isoproturon, Linuron, 

MCPA, CMPP, 

Metaldehyde, 

Metazachlor, 

Metsulfuron-Methyl, 

Monuron, 

Propiconazole, 

Tebuconazole, 

Triclopyr 

7 

(Sampler 

Failure) 

08/09/2014 30.23 N/A N/A 
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8 04/10/2014 15.96 Metaldehyde, 

Metazachlor 

Carbendazim, 

Chlorotoluron, 

Cyproconazole, 

Diuron, 

Epoxyconazole, 

Isoproturon, MCPA, 

CMPP, Metaldehyde, 

Matazachlor, 

Methiocarb, 

Metsulfuron-Methyl, 

Teuconazole 

9 18/10/2014 7.42 Chlorotoluron Chlorotoluron, MCPA, 

Metaldehyde, 

Metazachlor, 

Tebuconazole 

10 

(Sampler 

Failure) 

06/11/2014 15.83 N/A N/A 

11 14/11/2014 21.13 Chlorotoluron Chlorotoluron, CMPP, 

Metaldehyde, 

Metazachlor, 

Tebuconazole 

12 26/04/2015 4.25 2, 4-D, CMPP, MCPA 2, 4-D, Chlorotoluron, 

Clopyralid, MCPA, 

CMPP, Metazachlor, 

Tebuconazole 

 

Loadings for both the individual storms and the total year (calculated from the 41 

samples taken during the SLM monitoring) were calculated using method E from 

Defew et al. (2013). The aggregated loads from the storm samples and the total loads 

for the year presented in Table 5.9 show that a large proportion of the total annual 

load is derived from the 10 events sampled. This is particularly telling of the 

importance of the storm events considering that the two largest discharge events on 

08/09 and 08/10 were not sampled. The inclusion of these storm events in the 

sampling may have increased the percentage contribution of the storm events to total 

annual load.  



 

124 

The data therefore highlights the importance hydrological events in terms of the total 

annual pesticide load from the catchment. To determine the importance of the first 

event after application the data must be discussed with reference to pesticide 

application dates.   

Table 5.9 - Total annual loads calculated from Sustainable Land Management (SLM) 

monitoring data and total loads from event samples for the 6 problem pesticides in the River 

Ugie 04/2014 – 04/2015 

Pesticide 

Total Loads from event 

sampling (Apr 2014 - 

Apr 2015) (g) 

Total Loads from 

SLM catchment 

monitoring data 

(Apr 2014 - Apr 

2015) (g) 

Percentage 

contribution 

from event 

sampling (g) 

2, 4-D 389 892 43 

Chlorotoluron 975 1294 75 

CMPP 378 691 54 

MCPA 316 563 56 

Metaldehyde 851 1319 64 

Metazachlor 871 1403 62 

 

It is difficult to speculate on which events constitute the “first event after application” 

in general terms for the catchment without exact knowledge of when pesticides were 

applied. However judgement can be made by using the information gleaned from the 

agronomist interviews as outlined in section 5.2.6.1 and Appendix D in conjunction 

with the pesticide loadings of individual events (data not shown). 

2, 4-D and MCPA are applied in the late spring for ragwort in grassland and in the early 

summer for cereal crops. The highest loadings of both substances were found in 

events 6 and 12 which relate to both a summer and spring events respectively. 

Chlorotoluron loads were highest in events 6, 8 and 11. Events 8 and 11 are likely to 

relate to the application of chlorotoluron in winter cereals, and event 6 to the 
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application in some instances to spring barley. Loads of CMPP were highest in events 1 

and 6 which relate to their use on spring cereals. Finally the highest metaldehyde and 

metazachlor loads were present in storms 7 and 9. Metazachlor is applied to oilseed 

rape in this period, and metaldehyde to oilseed rape, winter wheat and potatoes.  

The large contribution of the events to total annual load and the proximity of the 

highest event loadings to the application periods of specific pesticides suggest that the 

first hydrologically effective rainfall event following application is very important to 

overall load contribution and catchment pesticide risk.  The assumptions taken in the 

CaRPoW pesticide fate model are therefore deemed acceptable.  

5.6.4 Model performance – Total and spatial load prediction 

5.6.4.1 Total load prediction 

The ability of the models to accurately predict catchment and sub-catchment pollutant 

loads are discussed in this section. Box and whisker plots for total predicted load and 

total observed load for the whole Ugie catchment are shown in Figures 5.9 and 5.10 

for the years 2012 and 2013. 
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Figure 5.9 - Box and whisker plots of total predicted (CaRPoW) and observed catchment load with uncertainty ranges for pesticides in the years 

2012 and 2013 
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Figure 5.10 - Box and whisker plots of total predicted (CaRPoW) and observed catchment load with uncertainty ranges for Nitrate, Phosphorus and 

Sediment in the years 2012 and 2013 
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Analysis of the box plot for pesticides in Figure 5.9 shows that, within uncertainty 

ranges, the predicted loads are in the same order of magnitude as observed loads with 

the exception of chlorotoluron and 2, 4-D, which the model under predicts by a factor 

of 5. Overall there is a general under prediction in load for all pesticides across the two 

modelled years.  

The results from the comparison of maximum, minimum and mean loads within the 

uncertainty ranges for predicted against observed using Root Mean Square Error are 

shown in Table 5.10. For pesticides the RMSE is generally lower in 2013 than in 2012 

suggesting that the model performs better at predicting overall loads in 2013. When 

the best case scenarios are selected from within the uncertainty ranges of predicted 

and observed load the RMSE is less than 1000g for all pesticides. 

Metaldehyde was consistently the best predicted pesticide over the two years with 

RMSE values of 92g and 21g respectively. Chlorotoluron was the least well predicted 

with RMSE values of 996g and 216g.  

However when the relative error is considered chlorotoluron is predicted favourably 

with -18% and -12% error suggesting that higher RMSE values are likely a result of the 

higher overall loads of chlorotoluron predicted by the model and observed in the 

catchment. With the exception of 2, 4-D in 2012 (-62%) all pesticide predictions are 

below 50% RE when the best scenario of predicted and observed loads are considered 

within the uncertainty ranges. According to Brown et al. (2002), given the constraints 

of modelling pesticides at the catchment scale, predictions within a factor of 10 of 

observed values are generally acceptable for the purposes of policy and regulation. 

Even considering the worst case RE values in Table 5.10 only CMPP and metaldehyde 

in 2013 have RE values over 1000%. Therefore according to the acceptability limits of 

Brown et al. (2002) the model predicts pesticide loads well at the catchment scale. 
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Table 5.10 - Root Mean Square Error (RMSE) (g) and Relative Error (RE) (%) for predicted catchment pesticide load against observed load for the 

years 2012 and 2013 with different combinations of minimum, maximum and median loads within uncertainty ranges (values in green represent 

lowest error and red highest error) – Values rounded to the nearest whole number 

  Minimum, Maximum and Median Predicted and Observed Load Combinations (Predicted - Observed) 

  RMSE (g) 

Pollutant Min Min Min Med Min Max Mid Min Mid Mid Mid Max Max Min Max Med Max Max 

2012 

2, 4-D (g) 376 733 1561 349 705 1534 293 650 1478 

Chloroltoluron (g) 1681 3312 6540 1524 3155 2834 996 4149 5855 

CMPP (g) 375 785 1269 236 646 1130 260 150 634 

MCPA (g) 458 949 1589 375 866 1505 317 174 814 

Metaldehyde (g) 324 596 1601 92 364 1369 1144 873 132 

Metazachlor (g) 490 665 871 399 573 780 205 380 586 

Nitrate (kg) 145628 21488 1250969 171786 4670 1224810 199292 32176 1197305 

Soluble Phosphorus (kg) 3155 2307 7574 4115 3267 6614 6893 6045 3836 

Particulate Phosphorus (kg) 8373 3297 34386 13563 8487 29196 22509 17433 20250 

Sediment (kg) 618131 449468 12672839 1056152 11447 12234818 1785150 717552 11505820 

2013 

2, 4-D (g) 90 130 333 66 106 309 17 57 260 

Chloroltoluron (g) 476 1203 2421 316 856 819 216 2150 1729 

CMPP (g) 361 749 1776 236 623 1651 223 164 1191 

MCPA (g) 129 162 238 55 88 164 556 523 447 

Metaldehyde (g) 73 21 484 304 209 253 1526 1431 968 

Metazachlor (g) 281 380 487 186 285 392 2 97 204 

Nitrate (kg) 174917 34405 1447055 206364 65852 1415608 228207 87695 1393765 

Soluble Phosphorus (kg) 3136 2882 2043 4055 3800 1124 6723 6468 1544 
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Particulate Phosphorus (kg) 9137 7133 40266 14327 12323 35076 23273 21269 26130 

Sediment (kg) 649558 184387 53352034 1080861 615690 52920732 1798167 1332996 52203425 

Relative Error (%) 

2012 

2, 4-D (%) -100 -100 -100 -88 -91 -93 -62 -71 -78 

Chloroltoluron (%) -79 -85 -92 -65 -75 -87 -18 -43 -70 

CMPP (%) -85 -88 -92 -55 -61 -77 56 36 -20 

MCPA (%) -98 -99 -99 -73 -79 -84 146 90 48 

Metaldehyde (%) -44 -58 -70 0 -26 -47 233 145 75 

Metazachlor (%) -99 -99 -100 -78 -84 -88 -34 -51 -62 

Nitrate (%) 119 29 -78 130 65 -55 146 86 -52 

Soluble Phosphorus (%) 375 320 43 472 424 76 773 758 183 

Particulate Phosphorus (%) 863 222 56 1354 379 131 2210 651 262 

Sediment (%) 469 53 -7 760 127 34 1232 254 104 

2013 

2, 4-D (%) -100 -100 -100 -77 -79 -87 -28 -36 -59 

Chloroltoluron (%) -49 -64 -77 -16 -40 -62 93 37 -12 

CMPP (%) -75 -39 -83 -29 120 -47 171 1132 133 

MCPA (%) -97 -97 -98 -37 -49 -61 479 368 260 

Metaldehyde (%) 32 182 -41 137 416 7 692 1620 259 

Metazachlor (%) -99 -99 -99 -67 -76 -82 2 -28 -44 

Nitrate (%) 243 24 -54 279 66 -47 302 80 -44 

Soluble Phosphorus (%) 786 2338 45 981 3137 81 1626 5008 198 

Particulate Phosphorus (%) 3312 380 67 5173 632 155 8336 1062 307 

Sediment (%) 63 83 -44 116 171 -18 208 313 25 
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Visual analysis of loads at the sub-catchment level offers some explanation for the 

error margins in prediction at the catchment scale. Taking CMPP as an example, Figure 

5.11 highlights the effect that an under prediction in sub-catchment H has on the 

prediction of overall loads. Although uncertainty in the observed load is large the 

lowest observed load value is still higher than the largest load prediction by a factor of 

2.5. Whilst not shown, large observed loads for individual sub-catchments are evident 

for 2, 4-D, chlorotoluron and MCPA also. Errors in the model predictions presented in 

Table 5.10 are therefore often a result of large under prediction in one or two sub-

catchments, opposed to large under prediction across all sub-catchments. The only 

pesticide in which the latter is the case is metazachlor which has a general under 

prediction in all sub-catchments (Figure 5.12).  

 

Figure 5.11 - Box and whisker plot of total observed CMPP loads and predicted CMPP loads 

(CaRPoW) with uncertainty ranges for each sub-catchment in the River Ugie for the 2011-

2012 period 
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Figure 5.12 - Box and whisker plot of total observed Metazachlor loads and predicted 

Metazachlor loads (CaRPoW) with uncertainty ranges for each sub-catchment in the River 

Ugie for the 2011-2012 period 

Predicted nitrate loads are within the uncertainty range of calculated observed loads 

for both 2012 and 2013 (Figure 5.13). According to the RMSE values the model is 

better at predicting nitrate load in 2012 (4670 kg lowest RMSE within uncertainty 

range) than in 2013 (34404 kg lowest RMSE within uncertainty range). The RE on the 

other hand suggests that 2013 loads (24 % lowest RE within uncertainty range) were 

better predicted than 2012 loads (29 % lowest RE within uncertainty range). 

Discrepancies between the two error statistics are likely to stem from the very large 

uncertainty range in the calculated observed loads, which makes it difficult to assess 

how well the model has performed. 

Visual analysis of the loads for individual sub-catchments using Figure 5.13 suggests 

that the largest uncertainty in calculated observed load comes from sub-catchments K, 

L and P. Generally however, loads are predicted reasonably well for individual sub-

catchments. Subsequently, this suggests that large RMSE and RE values are a result of 

the high uncertainty range for calculated observed load. 
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Figure 5.13 - Box and whisker plot of total observed Nitrate loads and predicted Nitrate 

loads (CaRPoW) with uncertainty ranges for each sub-catchment in the River Ugie for the 

2011-2012 period 

Soluble phosphorus is over predicted by the model by a factor of approximately 2 

within the uncertainty ranges of the model and calculated observed loads for the two 

years (Figure 5.14). RMSE suggests that the model better predicts 2013 soluble P 

(1123.89 kg for 2013 compared to 2307 kg for 2012); however the RE is much closer at 

42% and 45% for 2012 and 2013 respectively. Analysis of the predictions for individual 

sub-catchments suggests that the RMSE and RE values may be skewed by the large 

calculated observed load range for sub-catchment Q (shown in Figure 5.14). 
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Figure 5.14 - Box and whisker plot of total observed Soluble Phosphorus loads and predicted 

Soluble Phosphorus loads (CaRPoW) with uncertainty ranges for each sub-catchment in the 

River Ugie for the 2011-2012 period 

 

Particulate phosphorus follows a similar pattern to soluble phosphorus with over 

prediction in both years (Figure 5.15). However 2012 loads are predicted better than 

2013 when RMSE and RE are considered (lowest RMSE is 3297 kg for 2012 and 7133 kg 

for 2013, whilst the lowest RE is 55% for 2012 and 67% for 2013).  The same skew in 

the loading for sub-catchment Q is present and somewhat likely to affect both RMSE 

and RE values (similar to soluble phosphorus). 
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Figure 5.15 - Box and whisker plot of total observed Particulate Phosphorus loads and 

predicted Particulate Phosphorus loads (CaRPoW) with uncertainty ranges  for each sub-

catchment in the River Ugie for the 2011-2012 period 

Visual comparison of the two years for suspended sediment (Figure 5.10) suggests that 

the model predicts sediment load well for 2012 and over predicts for 2013. This is 

confirmed by the lowest RMSE and RE values within the uncertainty ranges, 11446.61 

kg and -7% respectively for 2012 and 615690 kg and -18% for 2013. Again sub-

catchment Q has a much higher observed load than the other catchments which is 

under predicted by the model.  
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Figure 5.16 - Box and whisker plot of total observed Sediment loads and predicted Sediment 

loads (CaRPoW) with uncertainty ranges for each sub-catchment in the River Ugie for the 

2011-2012 period 

5.6.4.2 The spatial distribution of loads 

Although predicting total catchment loading is crucial to validating the processes 

represented in the model, the most important aspect in the context of selecting and 

targeting measures is to assess if relative spatial risk is accurately represented. Figures 

5.17 and 5.18 display the percentage median modelled and observed load 

contributions of each sub-catchment in the Ugie for the two years modelled (2012-

2013). 

Visual analysis of Figure 5.17 shows that for the pesticides that do not match as well 

(2, 4-D, CMPP and MCPA), the model generally under predicts sub-catchments with 

much higher contribution in the observed load (e.g. sub-catchments E and F for 2, 4-D, 

sub-catchment H for CMPP and sub-catchment 4 for MCPA). The other three pesticides 

generally match well although Chlorotoluron is over predicted in sub-catchments D 

and F somewhat, but not to the detriment of their ranked contribution (i.e. they still 

have a small overall modelled contribution). 
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In Figure 5.18 nitrate visually matches well to the observed load percentage 

contribution. In contrast, an under prediction in the load contribution of sub-

catchment Q somewhat affects the performance of the model for sediment and 

particulate phosphorus. Equally the spatial representation of soluble reactive 

phosphorus is generally hampered by an under prediction in sub-catchment K and an 

over-prediction in sub-catchments R and S. 
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Figure 5.17 - Stacked bar chart representing percentage contribution of each sub-catchment for each pesticide from the median modelled and 

observed loads (total 2012-2013) 
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Figure 5.18 - Stacked bar chart representing percentage contribution of each sub-catchment for nutrients and sediment from the median modelled 

and observed loads (total 2012-2013). N – Nitrate, PP – Particulate Phosphorus, Sed – Sediment, SRP – Soluble Reactive Phosphorus. 
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The performance of the model in representing pollutant load spatially is assessed 

statistically using the linear regression and ANCOVA methods detailed in section 5.5. 

Figures 5.19 and 5.20 illustrate examples of the variability (for chlorotoluron and 

nitrate) in the linear regression relationships when the uncertainty ranges of modelled 

load and observed load are high. Both figures demonstrate the potential variation in 

the spatial relationships of the modelled and predicted loads when the uncertainty 

ranges are considered for each. The grey area on the two figures represents the 95% 

confidence intervals for the mean value regression equation. In both examples it 

suggests that the uncertainty ranges of each point fall within the 95% confidence 

interval. 

 

Figure 5.19 - Chlorotoluron 2012 scatter plot with median modelled and observed load 

regression best fit line. Modelled and observed load uncertainty ranges are displayed with 

error bars for each point. The grey area represents the 95% confidence interval. 
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Figure 5.20 - Nitrate 2012 scatter plot with median modelled and observed load regression 

best fit line. Modelled and observed load uncertainty ranges are displayed with error bars 

for each point. The grey area represents the 95% confidence interval. 

The R2 and associated significance (p < 0.05) for the best fitting linear regression 

equations between sub-catchment aggregated model and observed load within the 

uncertainty ranges are displayed in Table 5.11.  

Within the uncertainty ranges of both the modelled and observed loads half of the 

modelled loads are significantly correlated to the observed loads. The best matched 

pollutants (i.e. significant relationships across all model runs) are chlorotoluron, 

metaldehyde, metazachlor and nitrate. Others such as 2, 4-D, MCPA and soluble 

phosphorus are significantly correlated on one year but not the other. Modelled 

CMPP, particulate phosphorus and sediment loads do not have any significant 

correlation with observed loads in the two modelled years, although all best fit 

relationships are weak positive correlations. Spatial correlation is generally better for 

2013 than 2012 across all pollutants, with the exception of nitrate and CMPP which are 

better matched to observed loads in 2012.  
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Table 5.11 - Best fit R
2
 values and associated significance for linear regression analysis 

between modelled and observed loads within uncertainty ranges for aggregated sub-

catchments in the River Ugie. 

Pollutant Model run 

Best Fit 

(R
2
) 

Regression 

significance 

(p < 0.05 - 

in bold) 

ANCOVA p 

value 

(difference in 

slope 

insignificant at 

p>0.05 - in 

bold) 

2, 4-D 2012 0.177 0.23 < 0.05 

  2013 0.5 0.02 0.06 

  2012-2013 Total 0.24 0.15 < 0.05 

Chlorotoluron 2012 0.54 0.01 < 0.05 

  2013 0.81 0.0003 < 0.05 

  2012-2013 Total 0.67 0.003 < 0.05 

CMPP 2012 0.07 0.44 < 0.05 

  2013 0.04 0.54 0.94 

  2012-2013 Total 0.08 0.4 0.85 

MCPA 2012 0.38 0.06 < 0.05 

  2013 0.49 0.02 < 0.05 

  2012-2013 Total 0.21 0.18 < 0.05 

Metaldehyde 2012 0.64 0.005 < 0.05 

  2013 0.83 0.0002 < 0.05 

  2012-2013 Total 0.82 0.0003 < 0.05 

Metazachlor 2012 0.41 0.04 < 0.05 

  2013 0.85 0.0001 < 0.05 

  2012-2013 Total 0.66 0.004 < 0.05 

Nitrate 2012 0.93 0.00002 0.99 

  2013 0.61 0.01 0.96 
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  2012-2013 Total 0.79 0.001 0.98 

Soluble Phosphorus 2012 0.34 0.09 0.68 

  2013 0.53 0.02 0.86 

  2012-2013 Total 0.34 0.09 0.71 

Particulate 

Phosphorus 

2012 
0.14 0.32 

0.64 

  2013 0.26 0.16 0.92 

  2012-2013 Total 0.12 0.37 0.88 

Sediment 2012 0.26 0.16 0.16 

  2013 0.26 0.16 0.30 

  2012-2013 Total 0.27 0.15 0.18 

 

Results of the ANCOVA analysis used to assess the variance in the relationship 

between observed and predicted across the uncertainty ranges are also shown in Table 

5.11. Where P < 0.05 there is a significant difference between the slopes of the 

regression relationships and therefore the spatial relationship between the modelled 

and observed loads is variable within the uncertainty ranges. 

ANCOVA results show that the majority of the pesticide linear regression models have 

significantly different linear regression slopes (with the exception of 2, 4-D in 2013 and 

CMPP in 2013 and 2012-2013). The relationship between the modelled loads and the 

observed loads subsequently differs significantly across the uncertainty ranges. Though 

this is not the case for nitrate, both forms of phosphorus and sediment have p-values 

above 0.05, suggesting no significant difference in the relationship between modelled 

load and observed load across the uncertainty ranges.  

While this is the case, it does not necessarily mean that the pesticide modelled loads 

are poorly validated against the observed loads. Instead it suggests there is much more 

variation across the uncertainty ranges for pesticides when compared to the other 

pollutants. Referring back to Figure 5.7, the discrepancies in the ANCOVA analysis are 
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potentially explained by the wide variation in both modelled and observed uncertainty 

ranges for pesticides. 

5.6.4.3 Discussion of total and spatial load results 

Considering the relative simplicity and annual temporal resolution the models provide 

a reasonable prediction of total catchment loads for all of the pollutants. Taking the 

assertion from Brown et al. (2002) that model outputs within a factor of 10 of 

observed values are suitable for regulation and policy use, all models outputs are 

deemed suitable within predicted and observed load uncertainty ranges.  Where 

spatial load predictions are concerned most pollutants match well with the exception 

of phosphorus and sediment which are heavily affected by a large and uncertain 

observed load in one of the sub-catchments. 

Within this section possible explanations for the inconsistencies between some of the 

modelled and observed, total and spatial loads will be discussed. 

The general under prediction in loads across all of the pesticides and the spatial 

mismatch in predicted and observed loads for some pesticides could stem from a 

number of causes. Although the analysis in section 5.6.3 backs the importance of the 

first rainfall event assumption, there is still a percentage of the total annual load not 

accounted for by the events in the analysis. The extra load could be from the carry 

over and loss of pesticides from the soil between hydrological events or via source and 

mobilisation mechanisms not considered by the model. For example only losses from 

pesticides applied to the land and mobilised in hydrological pathways are considered 

and not losses related to poor practice such as spills, incorrect sprayer wash down, 

spray drift and overspray (Reichenberger et al., 2007). Such a mechanism could 

potentially explain the differences between the spatial distribution of CMPP predicted 

and observed load. Examination of the observation data collected by Scottish Water 

for each sub-catchment suggests that a large peak in CMPP concentration (3.65 µg L-1) 

was detected during May 2013 in sub-catchment H (the highest proportional CMPP 

load). Interestingly this does not correspond to a period of high flow (2.54 m3 s-1, which 

equates to Q69 (CEH, 2015)), which potentially suggests a point source either as 
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overspray, spray drift or through poor practice (e.g. a spill, spray wash down). 

Nevertheless this does not explain the poor CMPP relationship in 2013 which could be 

attributed to another source not considered by CaRPoW, such as an amenity use of 

CMPP in golf courses for example which can be a significant source (King and Balogh, 

2010).  

It is also assumed that the percentage of the crop that receives an application is 

representative of the Scottish Pesticide Use statistics. In reality the percentage of crop 

that receives an application may be much higher for certain crops than others in the 

Ugie, meaning that the source term in the model is too low. Such an assertion offers 

another explanation for the poor spatial representation of CMPP which is applied to 

17% of winter barley, 68% of spring barley, 35% of winter wheat, 67% of spring wheat, 

43% of winter oats and 57% of spring oats according to the pesticide use statistics. The 

information gathered from agronomists stipulates that CMPP is mainly used on spring 

crops, meaning the percentage application may be higher for these crops and lower for 

winter barley, winter oats and winter wheat. 

Application type is also an important consideration that may explain the poor spatial 

correlation between predicted and observed loads for 2, 4-D and MCPA. Both 

substances can be broadcast and spot applied (BCPC, 2013). Currently there is no 

information or dataset available that can delineate how the substances are applied in 

the Ugie. Subsequently, establishing the spatial distribution of the source term on land 

use and application rate alone may lead to a poor spatial match. The pesticide use 

statistics reinforce this as only 0-2% and 1-47% of grasslands (depending on type) have 

2,4-D and MCPA applied to them respectively (Reay, 2010).  

The well matched total and spatial load prediction of nitrate loads in the catchment 

suggests that the methodology of Dunn et al. (2004) represents nitrate processes in 

the catchment well. Although originally developed for a coarser scale (1km2) the 

models utility has been proven at the field scale, against aggregated predicted load at 

least. The results also further reinforce the Scotland specific parameters developed 

and implemented by Dunn et al. (2004; 2013). Where differences between observed 
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and predicted are present, they can be attributed to the large uncertainty range in the 

observed loads as outlined in section 5.3.6.1. 

General over prediction in the phosphorus models and the poor spatial representation 

of loads could be due to a number of causes. The low frequency of sampling upon 

which observed loading values are calculated hold the prospect of being  

unrepresentative of true loads in the catchment. This is particularly the case for 

phosphorus where mobilisation and hence the largest quantity of annual load is driven 

by the largest hydrological events (Heathwaite and Dils, 2000). There is a possibility 

that the monthly sampling frequency upon which loads are calculated will not capture 

the most important phosphorus loading event, and thus annual load is 

underrepresented. The high uncertainty in the observed loads may also explain some 

of the poor spatial representation of load for soluble phosphorus. Over prediction in 

sub-catchments R and S and an under prediction in sub-catchment K seem to drive the 

poor relationship. Interestingly the wastewater treatment works (WWTW) with the 

largest total phosphorus load contribution are in sub-catchments R and S (Maud 

WWTW in sub-catchment R contributes 888 kg P per annum and Stuartfield WWTW 

and Mintlaw WWTW contribute 465 and 2294 kg P per annum respectively in sub-

catchment S). When the WWTW phosphorus loads are not subtracted from the 

observed load, the modelled and observed loads are better matched for soluble 

phosphorus (best case linear regression relationship for total load over the 2 years 

within uncertainty ranges is significant at p < 0.05 with an R2 of 0.82). The wastewater 

loading rates are therefore either incorrect and command a lower proportion of total P 

load in the catchment or the overall calculated total P load is under calculated. 

Other causes for over prediction potentially stem from the parameter values used 

within the models. Fertiliser application rate for example was based on the Scottish 

Fertiliser use statistics for each crop type, which is based on a sub-sample of different 

farm types in Scotland. These figures take no account of the P status of the soil, which 

would be crucial in the selection of P application rate for a farmer (DEFRA, 2010). 

Likewise soil soluble P values were derived from Davison et al. (2008) due to a lack of 

information within the Scottish Soils dataset. In reality soil soluble P will be highly 
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variable according to local land use and soil conditions and not just represented by soil 

texture, as per the Davison et al. (2008) values. 

Particulate phosphorus losses are dependent on the total P values of the Scottish Soils 

Knowledge and Information Base. Such values have been generated from survey data 

collected in the 1970s and 1980s, which may be unrepresentative of current soil P 

status. This is the likely cause of model over prediction for phosphorus P as sediment 

losses (upon which particulate P mobilisation is based) are fairly well represented by 

the model (with the exception of over prediction in 2013).  

The over prediction of sediment load in 2013 may be due to the same low frequency 

validation data issues as phosphorus (i.e. missing peaks in sediment load). An 

alternative explanation is that 2013 was the second driest year (614 mm) within the 30 

year climate record used in the model. Although a representative dry year (1994) is 

included in the uncertainty range of the sediment model there is a possibility this is 

still not able to predict dry year conditions well.  

The poor spatial prediction of particulate phosphorus and sediment loads could stem 

from the same cause as the models are linked. Both models heavily under predict both 

pollutants in sub-catchment Q (Figure 5.18), which again could be related to the 

uncertainty in the observed load calculations. Observed loads in this sub-catchment 

are calculated using the disaggregation procedure outlined in section 5.2.2. Any 

upstream load that is under calculated from the observation data upstream is 

propagated in the disaggregation procedure to calculate observed load in sub-

catchment Q (i.e. the loads of nested catchments are subtracted from sub-catchment 

Q to calculate its load contribution). Hence, the load in sub-catchment Q may be 

calculated higher than it is in reality.  

Aside from the pollutant specific causes for model misrepresentation already discussed 

there are more general model constraints for all pollutants, which could offer 

explanations. Perhaps the largest is the representation of small temporal scale 

processes within CaRPoW. The phosphorus, nitrate and sediment models are all based 

on averaged annual hydrological values for runoff and drainflow, which means the 
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magnitude of frequency of storm events (important for the mobilisation of phosphorus 

and sediment in particular) are not captured.  Although the pesticide methodology 

considers the first rainfall event after application, which does give some sense of sub-

annual temporality, it does so using averaged data. Therefore, this does not account 

for the magnitude and frequency of storm events driving the pollutant dynamics upon 

which the observed loads are calculated. Due to this, averaged observed loads from a 

longer term monitoring programme may well match better to the CaRPoW modelling 

outputs as intra-annual variation would be averaged out (Strömqvist et al., 2008). 

Unfortunately such records were not available at the time of this project. 

Likewise, many of the coefficients and variables considered in the modelling 

methodologies are based on values derived from small scale empirical studies that are 

not specific to the Ugie catchment. Having such generalised parameters forms the 

main essence of the CaRPoW framework i.e. an adaptable framework that can be 

generalised to all catchments. However, their use is likely to be less accurate in 

predicting actual conditions than perhaps catchment specific empirically derived 

parameters would. 

Within the various methodologies there are a number of pollutant sources and 

processes not considered that will have an effect on pollutant loading in the 

catchment. For example, there is no consideration for any in-river processing of 

pollutants. In reality once pollutants are delivered to the river system they are likely to 

undergo biological and chemical breakdown (pesticides) (e.g. Chinalia and Killham, 

2006), be depleted by in-river biological processing (nutrients) (e.g. Jarvie et al., 2005) 

or in the case of sediment become entrained within the river system (e.g. Smith et al., 

2003). Likewise, sources not considered include but are not exhaustive of, the amenity 

use of pesticides, nutrients from septic tank systems and within river sources of 

sediment from bank and bed erosion. 

Finally, there are certain characteristics of the years modelled which may explain some 

of the disparity between observed and modelled loads. For example, although the 

annual rainfall for 2012 was close to the average for the catchment (798.8 mm for 
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2012 compared to the annual average of 790.5 mm) the monthly rainfall totals for 

April and August were much higher than averages for the 1980-2012 period with 79.4 

mm and 104.8 mm of rainfall recorded compared to monthly averages of 47.7 mm and 

61.7 mm respectively. Such high monthly rainfall for these two months has potential 

implications for the source, mobilisation and delivery of the pollutants modelled. High 

rainfall during April for example may increase the proportion of applied 2, 4-D to ley 

grasslands, MCPA to barley and grasslands and CMPP to ley grasslands to be mobilised 

and delivered to water bodies. Likewise, more rainfall in August coupled with mild 

temperatures has the potential to increase slug populations (Choi et al., 2004), which 

in turn could potentially lead to more widespread applications of metaldehyde and 

higher mobilisation and delivery rates. A wet August also has the potential to push 

back the cereal harvest to later in the year which subsequently means that the next 

crop in the rotation is sown later in the year. If the next crop in the rotation if Oilseed 

Rape then metazachlor applications are likely to be later in the year where rainfall is 

likely to be more frequent therefore potentially increasing the likelihood of 

mobilisation and delivery. All pesticides in 2012 were somewhat under predicted and 

even though representative wet and dry years were modelled nuances in monthly 

rainfall totals are not considered. As a result, monthly and annual variations between 

years must be considered as a potential explanation for model discrepancies. 

5.7 Conclusions 

This chapter has outlined how the CaRPoW framework and associated modelling 

methodologies from Chapter 4 have been applied to the River Ugie catchment in the 

North East of Scotland. The water balance model that provides all of the hydrological 

input variables to the models has been shown to reproduce catchment baseflow index 

well against the reference baseflow index for the catchment. It is therefore reasonable 

to assume that averaged hydrological inputs to the models relating to the ratio of fast 

to slow hydrological processes are appropriate for use. 

The transfer of risk throughout the models has been demonstrated with examples 

selected that highlight how high risk fields are derived in the catchment. Interestingly 
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the highest source fields do not necessarily correspond to the highest overall risk 

fields, which suggest that all three risk components play an important role in defining a 

field’s overall risk. The average percentage loss of the sources of most pollutants 

compare favourably to values in the literature. 

The prediction of total load and more importantly the spatial prediction of loads in the 

catchment have been reproduced well for approximately half of the pollutants in the 

catchment. Where the models do not predict total and spatial loads well, it has been 

attributed to either uncertainty in the calculation of observed load or via uncertainties 

associated within the simplified, averaged and generalised CaRPoW methodologies.  

Overall given the complexity in representing catchment risk at the scales attempted 

and the uncertainties associated with various aspects of the methodology, the models 

provide an acceptable reproduction of total and spatial risk within the River Ugie. The 

next phase of the CaRPoW process is to assess the interaction of risk between different 

pollutants and develop a methodology to select appropriate interventions according to 

the dominant component of risk. 
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Chapter 6. Using CaRPoW Model Outputs to Select Measures in 

the River Ugie Catchment 

6.1 Introduction 

Chapter 6 demonstrates and discusses how the CaRPoW risk model outputs can be 

used to select and target interventions in high priority areas. The methodology for 

comparing pollutant risk is outlined, along with model output post-processing used to 

determine the potential for risk to be mitigated within each risk component. The 

methodology is demonstrated and applied to all pollutants to assess the proportion of 

high risk land areas and risk components. A more detailed examination of the process 

is then presented, using the pollutants chlorotoluron and metaldehyde as examples. 

Selected interventions options are discussed in the context of multiple benefits and 

pollution swapping. Finally the limitations of the methodology and the subsequent 

post-modelling requirements for decision making are discussed. The chapter is split 

into the following sections: 

• 6.2 Methodology to select and target interventions 

• 6.3 Application of the intervention selection methodology to the River Ugie 

– Results and discussion 

• 6.4 Limitations of the measure selection process and subsequent post 

modelling requirements 

• 6.5 Conclusions 

6.2 Methodology to select and target interventions 

The purpose of this methodology is to ascertain which fields are the highest risks for 

each pollutant and to select interventions able to mitigate the high risk according to 

the dominant risk component (source, mobilisation or delivery). The process is 

illustrated by the Figure 6.1 and explained in this section. 
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Figure 6.1 - Process of selecting and targeting interventions using CaRPoW model outputs 
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The first step is to identify where pollutant risks are spatially correlated, as a measure 

of potentially obtainable multiple benefits. Spearman’s rank is used to assess the 

spatial correlation of modelled risk outputs between different pollutants. A correlation 

is deemed moderate to strong if r2 is above 0.5 and significant at the 95% confidence 

interval (p < 0.05). 

Once shared risks have been identified the highest risk areas of the catchment are 

delineated. When assessing single catchments the highest risk fields are determined by 

selecting the upper quartile of risk. Consequently the perception of ‘high risk’ is wholly 

relevant in the context of the catchment. If multiple catchments are to be included in 

the analysis then the percentile of risk must be assessed across all catchments. It is 

important that high risk is determined from the pollutant risk per hectare metric (g ha-

1) to reduce the effect of field area.  

Where two or more pollutants are being assessed the high risk field outputs are 

compared to further delimit the number of fields considered to have the highest risk, 

i.e. a field is only deemed high risk if it is high risk for all pollutants. 

After identifying the highest risk fields, potentially appropriate intervention options 

are selected on the basis of which component of risk (Source, Mobilisation or Delivery) 

is the most important to overall risk. This is done by assessing where the particular risk 

component for the field fits within the distribution of the component in all fields across 

the whole catchment. The premise for this is that the highest percentile risk 

components are the dominant component of risk and thus where intervention efforts 

should be focused to mitigate risk. Considering the risk components within their 

overall distribution also presents a spectrum for what is achievable with the 

implementation of certain interventions, i.e. what is the minimum risk that can be 

achieved in the catchment by implementing a particular intervention.  

The groupings for the percentile of each risk component in each field within the overall 

distribution are shown in Table 6.1. Each of the fields that fall within these groups are 

assigned a classification from low to very high potential for intervention. 
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Table 6.1 - Risk component percentile groupings and associated potential for intervention 

classifications from CaRPoW risk model outputs to identify potential of fields for 

intervention. 

Risk Component Percentile 

(per field) 

Potential for Intervention 

80 – 100 Very High Potential 

60 – 80 High Potential 

40 – 60 Moderate Potential 

<40 Low Potential 

 

The different spatial scale at which the delivery component works (sub-catchment) 

merits a slightly different methodology for determining if delivery interventions are 

preferable. For example, a delivery intervention such as an artificial wetland has the 

potential to mitigate risk in more than one field if fields are connected within a sub-

catchment. It may therefore be preferable to use delivery interventions where high 

risk fields are clustered and connected.  

Such an evaluation is conducted by assessing the upstream risk against the area for 

each stream or ditch segment in the catchment. The purpose of this is to judge the 

practicality of connectivity measures such as in ditch wetlands. One of the main 

considerations for the size of wetland implemented is the volume of flow that passes 

through the channel, which in turn is dependent upon the upstream drainage area 

(Millhollon et al., 2009). Thus, it is more practical to target connectivity measures at 

streams and ditches that have comparatively small drainage areas and high pollutant 

risk. Splitting the stream and ditch network into segments and dividing the upstream 

contributing area by the total pollutant risk in that area is the method implemented to 

assess this (equation 6.01).  

 E&00¶��<o�n�" =	?+/94  (6.01) 
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Where E&00¶��<o�n�" is the connectivity potential of the stream segment (g ha-1), ?+/9 

is the total pollutant risk in the upstream area (g) and 4 is the drainage area of the 

stream segment (ha). 

Once the key risk components of each field have been assessed the inventory of 

measures detailed in Chapter 2 (Table 2.1) is referred to. Interventions are selected 

according to the pollutant and risk component targeted. Where multiple pollutants are 

concerned interventions can be selected that mitigate all pollutants considered. At this 

final stage the interventions selected are cross referenced for the potential for 

pollution swapping. This is done by using information on the interventions in the 

inventory and by assessing the risk level in the fields for the pollutants not targeted by 

the intervention. So, if for example the intervention selected increases the risk of 

another pollutant and that pollutant is already of a moderate to high risk in the field, 

the end user may wish to consider an alternative intervention. 

6.3 Application of the intervention selection methodology to the River 

Ugie – Results and discussion 

6.3.1 Pollutant risk comparison 

The results of the Spearman’s rank correlation for the total risk of all of the pollutants 

modelled with the dominant land use 2008-2012 are displayed using the correlation 

matrix in Figure 6.2. Of the 45 pollutant relationships tested 16 are moderately to 

strongly correlated (r2 => 0.5). Whilst a further 15 have significant weak positive 

correlations (0.2<= r2 =<0.5). The remaining 14 are poorly correlated (-0.2<= r2 =<0.2). 

None of the pollutants are weakly, moderately or strongly negatively correlated (r2 => -

0.2).  

The strongest correlation is between particulate phosphorus and sediment (significant 

at r2 0.97), which is unsurprising given the fact that the particulate phosphorus 

methodology is dependent on the erosion methodology. Other notable strong positive 

correlations exist between chlorotoluron and CMPP (r2 = 0.78), chlorotoluron and 

nitrate (r2 = 0.68), metaldehyde and CMPP (r2 = 0.86), CMPP and MCPA (r2 = 0.78), 
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metaldehyde and MCPA (r2 = 0.67) and soluble phosphorus and sediment (r2 = 0.60). 

Some of these relationships are somewhat expected, especially between the pesticides 

which are applied to similar land uses. Likewise nitrate which is weakly or strongly 

correlated to a number of the pesticides has a high risk associated with arable crops, 

upon which many pesticides are applied.  

Further inspection of the scatter plots in Figure 6.2 offers some interesting insights 

into the nature of the relationships between the different pollutants. There appears to 

be a variable that affects the slope of the relationship between some of the pollutants. 

The relationship between nitrate and each of the pesticides chlorotoluron, 

metaldehyde and CMPP, and the relationship between sediment and particulate 

phosphorus highlights this most distinctly. Stepwise linear regression analysis was used 

to determine the variables driving such differences in regression slope.  

The relationships between nitrate and pesticides were best explained by the addition 

of percentage organic matter content (e.g. addition of organic carbon content 

increases r2 from 0.28 to 0.40 for relationship between chlorotoluron and nitrate). The 

important role this variable play in the nature of the relationships is anticipated as the 

organic matter content of the soil affects how much of the applied pesticide source is 

available, which incidentally is not considered for nitrate in the model. The variability 

of the slope regression for particulate phosphorus and sediment was explained by soil 

association (r2 improves from 0.88 to 0.94 with addition of soil association variable).  In 

CaRPoW soil association dictates the phosphorus content of the soil, meaning the 

importance of the soil association in the relationship is anticipated.  

These results highlight instances where risks are spatially concurrent between different 

pollutants (e.g. nitrate and certain pesticides, sediment and particulate phosphorus) 

and thus where there is potential for multiple pollutant mitigation. Equally they 

indicate poor risk relationships between pollutants that must be scrutinised when 

measures are selected to avoid the potential for pollutant swapping. 
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Figure 6.2 - Spearman’s correlation matrix for all pollutants modelled with the dominant land use 2008-2012 (units are g ha
-1

 for pesticides and kg 

ha
-1

 for other pollutants 



 

158 

6.3.2 Selection of interventions 

General catchment wide statistics are presented first of all, which outline the 

designation of the high risk classification for each pollutant and the proportion of the 

high risk classification that contain the highest risk class for the source, mobilisation 

and delivery components. The analysis of dominant components at the catchment 

scale also gives a semblance of the sensitivity of each model to the individual risk 

components. Following this chlorotoluron and metaldehyde are used as examples 

within the catchment to demonstrate how the methodology is used in more detail to 

select and target specific interventions. 

6.3.2.1 General results for all pollutants and model risk component sensitivity 

Table 6.2 details the area of land constituting the highest percentile overall risk (75th 

percentile) and highest risk component potential for each pollutant modelled (80th 

percentile) with the dominant land use classification 2008-2012.  

Table 6.2 - Area of land designated high risk (75th percentile) for each pollutant and the 

proportion of the high risk land area classified as the highest source, mobilisation and 

delivery class (upper 80th percentile) modelled using the dominant land use classification 

2008-2012. 

Pollutant 

Area total high 

risk (Ha) 

Proportion of 

total high risk 

area highest 

source risk 

class (Ha, 

percentage of 

high risk area 

in brackets) 

Proportion of 

total high risk 

area highest 

mobilisation 

risk (Ha, 

percentage of 

high risk area 

in brackets) 

Proportion of 

total high risk 

area highest 

delivery risk 

(Ha, 

percentage of 

high risk area 

in brackets) 

2, 4-D 2155.4 534.4 (24.7%) 58.7 (2.7%) 218.6 (10.1%) 

Chlorotoluron 978.8 727.5 (74.3%) 134.5 (13.7%) 304.7 (31.1%) 

CMPP 3991.6 2262.8 (56.6%) 180.8 (4.5%) 258.8 (6.5%) 

MCPA 5822.7 3403.1 

(58.45%) 

165.1 (2.83%) 555.5 (9.5%) 

Metaldehyde 2509.8 1662.9 (66.2%) 197.1 (7.85%) 377.0 (15.0%) 
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Metazachlor 179.9 36.9 (20.6%) 21.3 (11.88%) 31.0 (17.3%) 

Nitrate 7323.6 5558.0 (75.9%) 6422.0 

(87.68%) 

542.0 (7.4%) 

Soluble 

Phosphorus 

16997.1 Fertiliser - 

5044.8 (68.9%) 

Fertiliser - 0 

(0%) 

1369.2 (8.1%) 

    Excreta - 

16997.1 (100%) 

Excreta - 29.6 

(0.2%) 

  

    Soil Soluble P - 

0 (0%) 

Soil Soluble P 

Runoff - 3100.4 

(18.2%) 

  

      Soil Soluble P 

Drainflow - 

5419.9 (31.9%) 

  

Particulate 

Phosphorus 

18710.5 0 (0%) Particulate P 

Runoff - 5672.4 

(30.3%) 

1277.8 (6.8%) 

      Particulate P 

Drainflow - 

6367.2 (34.0%) 

  

Sediment 6571 n/a Sediment 

Runoff - 4549.2 

(69.2%) 

1465.5 (22.3%) 

      Sediment 

Drainflow - 

2568.7 (39.1%) 

  

 

The land area designated the highest risk is variable for each pollutant, which is a 

reflection of the overall risk load for the whole catchment (i.e. the spatial coverage of 

risk) and the distribution of risk for each pollutant. For example, model results from 

Chapter 5 show that modelled chlorotoluron load (risk) is larger than modelled MCPA 

load (risk). However, the risk classification presented here designates more land to the 

MCPA high risk classification than the chlorotoluron classification does. This suggests 

that for chlorotoluron a smaller area of land contributes a disproportional area of total 
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risk, whereas the risk is more evenly distributed across the catchment for MCPA, i.e. 

more land falls into the highest risk category. Making such an assessment is beneficial 

when mitigating certain pollutants, as fewer interventions are required to reduce 

higher risk for chlorotoluron. 

A large proportion of the high risk areas for many of the pollutants are also designated 

the highest source risk classification. This either suggests that many of the pollutants 

are source driven, i.e. overall risk is highly dependent on the presence of a large source 

availability or the models are overly sensitive to the source component in comparison 

to mobilisation and delivery. 

A few exceptions to this include soil soluble and particulate phosphorus, which both 

have 0% high source risk within the total source risk areas. There is conceivably a 

suggestion here that these models are more sensitive to the mobilisation and delivery 

components, as confirmed by the percentage of high risk areas with high risk 

mobilisation and delivery classifications. Likewise 2, 4-D and metazachlor have lower 

potential for source interventions than the other pesticides suggesting the models are 

either more sensitive to mobilisation and delivery or the models are equally sensitive 

to all three components.  

A large percentage of very high potential mobilisation intervention classifications are 

present for nitrate, particulate phosphorus and sediment. Which suggests 

interventions that limit the movement of these pollutants in field, such as contour 

ploughing and cover crops (Kay et al., 2009; Deasy et al., 2010) may reduce their 

mobilisation and reduce overall risk. 

A large proportion of the high risk land area for chlorotoluron and sediment have a 

very high potential for delivery interventions, suggesting that breaking up transfer 

pathways between the mobilised source and the water body are important for these 

pollutants. The installation of wetlands and in ditch barriers may be useful 

interventions for these pollutants (Gregoire et al., 2008). 
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Such results give an indication of the key risk components for each pollutant at the 

catchment scale, however the real utility of the framework is in the assessment of 

individual high risk areas on a case by case basis for the selection and targeting of 

specific interventions. 

6.3.2.2 Detailed selection of interventions example – Chlorotoluron and 

Metaldehyde 

Chlorotoluron and metaldehyde have been selected as examples for the detailed 

methodology in section 6.2 to be applied. Their selection is based on the fact that their 

risks are well correlated (r2 = 0.60), their loads (risk) are well represented at the 

catchment scale and spatially by the CaRPoW pesticide models (results in Chapter 5) 

and they are both high priority for mitigation in the catchment as designated by 

Scottish Water.  

Results from the shared high risk fields for the two pesticides are displayed in Figure 

6.3. A larger area of land is classified as high risk within the metaldehyde risk 

classification (Figure 6.3a) when compared to the risk classification of chlorotoluron 

(Figure 6.3b). The spatial distributions of high risk areas for metaldehyde are also more 

varied, the majority of the high risk chlorotoluron areas are to the east of the 

catchment and generally along the river corridors.   

In total 842 ha of the catchment has a shared high risk classification for chlorotoluron 

and metaldehyde. Spatially, there are shared high risk fields across the whole 

catchment, however Figure 6.3c shows that there is a larger cluster of shared risk in 

the East of the catchment. Of the shared risk areas 599.0 ha (71%) and 692.1 ha (82%) 

are very high potential for source control for chlorotoluron and metaldehyde 

respectively. These statistics suggest that metaldehyde may better be controlled at 

source across the shared risk areas; however both have a high potential for source 

control. Interestingly the area of land with very high potential for mobilisation 

interventions is 135.5 ha for both substances suggesting similar mobilisation controls. 

What is less surprising is that both substances have 286 ha of land classified as high 

potential for connectivity interventions, as they both use the same connectivity metric. 
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A small subset of the shared high risk fields can be scrutinised further to demonstrate 

the measure selection process. The spatial patterns of source, mobilisation and 

delivery potential for each pollutant are shown in Figure 6.4 for the cluster of high risk 

fields delineated by the black box in Figure 6.3c. For these fields the potential for 

source control is very high across the majority of the fields. Mobilisation potential is 

high for most of fields, with only a few instances of fields with a very high potential for 

mobilisation interventions. The potential for connectivity interventions is much more 

varied across the fields, with only a small number having a very high potential for 

connectivity. Of these a smaller amount are within the catchments of stream segments 

that have a very high potential for connectivity according to the upstream risk over 

area method. 
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Figure 6.3 – CaRPoW modelled (a) high risk areas for chlorotoluron, (b) high risk areas for metaldehyde, (c) shared high risk areas for chlorotoluron 

and metaldehyde 
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Figure 6.4 - Chlorotoluron source (a), mobilisation (b) and delivery (c) potential and 

metaldehyde source (d), mobilisation (e) and delivery (f) potential for shared high risk fields 

within the area highlighted in Figure 6.3c 
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Based on this assessment the most effective intervention strategy for the majority of 

the fields is source control. The inventory of measures in Chapter 2 (Table 2.1) details 

the main source control intervention for pesticides as product substitution. 

Chlorotoluron and metaldehyde serve two different purposes (broad leaf weed and 

slug control respectively), which dictates that two separate product substitutions are 

required to mitigate the source risk. Potential alternatives to the two substances 

include pendimethalin and diflufenican for chlorotoluron (Gerald Banks, personal 

communication) and methiocarb and ferric phosphate for metaldehyde. Issues with 

product substitution for the two substances arise when pollutant swapping is 

considered. Chlorotoluron for example is used to tackle a range of weed problems and 

its substitution may require the use of more than one other substance (Dolan et al., 

2014). Metaldehyde is used over ferric phosphate because of its lower cost (Gerald 

Banks, personal communication) and over methiocarb because of its lower ecotoxicity 

(EFSA, 2010). Even if product substitution mitigates the risk of chlorotoluron and 

metaldehyde there is potential for the risk to be transferred to the substituted 

substances which have the same limits under the EU Drinking Water directive (0.1 µg l-

1). Product substitution therefore should be limited to the highest risk areas and even 

then there is a risk of breaching the total pesticide limit of 0.5 µg l-1 if more substances 

are used within the catchment. Other source control options relate to land use change, 

which is only considered as a last resort in the face of pesticide license removal (Dolan 

et al., 2014), and is therefore an unlikely intervention option for water companies. 

Subsequently, there are more mobilisation intervention options available for the fields 

that have a high or very high mobilisation potential. Before mobilisation intervention 

decisions can be made however a further analysis step is required to determine the 

ratio of slow flow to fast flow within each high risk field, as certain interventions have 

the potential to increase the ratio of slow to fast flow processes (e.g. breaking soil 

compaction). It is important therefore to make sure that fast flow processes are the 

main driver of pollutant mobilisation, especially where artificial drainage is present as 

increasing infiltration through breaking soil compaction for example, may increase risk. 

Of the shared high risk fields only 19.8% are assumed to have artificial drainage using 
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the methodology outlined in Chapter 5 (section 5.3.2). Figure 6.5a details the spatial 

distribution of drained fields and Figure 6.5b the proportion of fast flow processes for 

each shared high risk field. The majority of the fields have a runoff proportion between 

0.6 and 0.8, with no artificial drainage. What is interesting, is that the fields with the 

highest mobilisation are actually the fields with the lowest proportion of fast flow 

processes and have drains present, which implicates the importance of artificial 

drainage in pesticide mobilisation. In the fields that are very high potential for 

mobilisation interventions, with a high fast flow proportion and no artificial drains, 

interventions that increase infiltration such a contour ploughing, reducing compaction, 

strip contouring etc. would be viable options for reducing both chlorotoluron and 

metaldehyde mobilisation. Whereas in the fields that have a very high potential for 

mobilisation intervention, but have a low fast flow proportion and drains present, 

interventions that increase infiltration and hence drainflow may not be recommended. 

Figures 6.4c,f delineate in blue the stream segment sub-catchments within the 

example area that have a very high pollutant potential according to the upstream risk 

over contributing area method (i.e. red coloured stream segments) and contain a 

shared high risk field with a very high potential for both chlorotoluron and 

metaldehyde connectivity intervention. These are the areas that are most important 

for connectivity interventions, where artificial wetlands and ditch seepage barriers are 

potentially best placed in an effort to reduce connectivity and mitigate upstream risk.  
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Figure 6.5 – CaRPoW modelled (a) mobilisation intervention potential and the presence of artificial drainage in shared chlorotoluron and 

metaldehyde high risk fields and (b) the proportion of fast flow processes in shared high risk chlorotoluron and metaldehyde fields 
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Potential pollutant swapping and multiple benefits are assessed by analysing the 

intervention potential of the different risk components for all pollutants in the fields where 

high risk is shared between chlorotoluron and metaldehyde. Table 6.3 presents the 

percentage of the shared high risk fields within each intervention potential class for the risk 

components of all pollutants. Examination of the total risk classifications in the first row of 

Table 6.3 gives an insight as to which pollutants have shared high risks with chlorotoluron 

and metaldehyde in the catchment, and may therefore also be mitigated by selected 

interventions. For example, 60% of the shared high risk fields for chlorotoluron and 

metaldehyde are also high risk for CMPP. Likewise 85%, 80% and 67% of nitrate, soluble 

phosphorus (fertiliser, excreta and soil soluble P) and soil particulate phosphorus 

respectively are also high risk. 

Looking in more detail into the risk components gives some ideas as to which interventions 

might promote such multiple benefits. For instance, 89% of the shared risk fields with 

nitrate have a high source interventions potential, suggesting that the land use changes that 

benefit chlorotoluron and metaldehyde source risk may also benefit nitrate. 77% of the 

shared risk area is of a very high potential for interventions that target fast flow mobilisation 

in undrained areas for soluble phosphorus. Interventions that improve infiltration in these 

areas such as contour ploughing may also be beneficial to soluble phosphorus in these 

areas.  Over 20% of the sub-catchments that contain a shared high risk field for 

chlorotoluron and metaldehyde have a very high connectivity over upstream area potential 

for all pollutants. In these sub-catchments connectivity interventions may provide huge 

multiple benefits across all pollutants (Brix, 1994; Reichenberger et al., 2007; Haygarth et 

al., 2012; Kröger et al., 2012). 
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Table 6.3 - The percentage of the shared risk area for chlorotoluron and metaldehyde in each intervention potential class for all pollutants therefore 

highlighting the potential for multiple benefits or pollution swapping. 

    Percentage area for shared chlorotoluron and metaldehyde high risk fields 

Risk intervention 

potential component Category Chl Metd 2, 4-D CMPP MCPA Metz N FertP ExcrtP SolP PP Sed 

Total risk category High Risk 100 100 0 60 8 0 85 n/a n/a 80* 67 55 

  Lower Risk 0 0 100 30 92 100 15 n/a n/a 20* 33 45 

                            

Source risk intervention 

potential 

Very High 71 82 0 31 0 0 89 100 0 1 0 n/a 

  High 12 1 0 52 21 0 6 0 0 5 1 n/a 

  Moderate 7 17 0 17 20 0 0 0 0 12 5 n/a 

  Low 10 0 100 0 59 100 5 0 100 82 94 n/a 

                            

Mobilisation risk 

intervention potential - 

all drainage types 

Very High 16 16 16 16 16 16 14 2 0 Slow - 14 

Fast - 77 

Slow - 9 

Fast - 41 

Slow - 16 

Fast - 52 

  High 81 81 83 81 81 83 9 12 0 Slow - 3 

Fast - 6 

Slow - 5 

Fast - 8 

Slow - 0 

Fast - 6 

  Moderate 2 2 1 2 2 1 0 26 100 Slow - 0 

Fast - 1 

Slow - 18 

Fast - 14 

Slow - 0 

Fast - 28 

  Low 0 0 0 0 0 0 77 60 0 Slow - 83 

Fast - 15 

Slow - 68 

Fast - 37 

Slow - 84 

Fast - 14 

                            

Mobilisation risk 

intervention potential - 

no artificial drains 

assumed 

Very High 2 2 2 2 2 2 1 2 0 Slow - 2 

Fast - 77 

Slow - 1 

Fast - 38 

Slow - 2 

Fast - 51 



 

170 

  High 78 78 78 78 78 78 2 11 0 Slow - 1 

Fast - 1 

Slow - 1 

Fast - 7 

Slow - 0 

Fast - 2 

  Moderate 1 1 1 1 1 1 0 23 80 Slow - 0 

Fast - 0 

Slow - 16 

Fast - 11 

Slow - 0 

Fast - 25 

  Low 0 0 0 0 0 0 77 44 0 Slow - 77 

Fast - 2 

Slow - 62 

Fast - 24 

Slow - 78 

Fast - 3 

                            

Mobilisation risk 

intervention potential -

artificial drains assumed 

Very High 14 14 14 14 14 14 13 0 0 Slow - 12 

Fast - 0 

Slow - 8 

Fast - 4 

Slow - 14 

Fast - 1 

  High 3 4 5 3 3 5 7 1 0 Slow - 2 

Fast - 4 

Slow - 4 

Fast - 2 

Slow - 0 

Fast - 5 

  Moderate 2 1 0 2 2 0 0 2 20 Slow - 0 

Fast - 1 

Slow - 2 

Fast - 3 

Slow - 0 

Fast - 2 

  Low 0 0 0 0 0 0 0 17 0 Slow - 6 

Fast - 15 

Slow - 6 

Fast - 15 

Slow - 5 

Fast - 11 

                            

Connectivity risk 

intervention potential 

Very High 34 34 34 34 34 34 34 34 34 34 34 34 

  High 27 27 27 27 27 27 27 27 27 27 27 27 

  

Moderate 17 17 17 17 17 17 17 17 17 17 17 17 

  

Low 22 22 22 22 22 22 22 22 22 22 22 22 

                            

Upstream connectivity 

risk potential 

Very High 28 28 21 28 21 0 26 n/a n/a 20 22 24 

  

High 35 34 24 29 25 0 29 n/a n/a 26 25 24 
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Moderate 28 28 24 26 25 0 22 n/a n/a 26 24 23 

  

Low 9 10 31 17 29 100 23 n/a n/a 28 29 29 

 

Chl – Chlorotoluron, Metd – Metaldehyde, Metz – Metazachlor, N- Nitrate, FertP – Fertiliser phosphorus, ExcrtP – Excretal phosphorus, SolP – Soil soluble phosphorus, PP – Particulate soil 

phosphorus, Sed – Sediment 

*Values relate to combined risk for fertiliser P, excreta P and soil soluble P 
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In converse, there are certain interventions that must be selected with caution when the 

risk components of other pollutant components are considered. For example, although not 

delineated in the model, nitrate is predominantly mobilised via slower flow processes. 13% 

of the shared risk area is under drained with a high potential for nitrate mobilisation 

intervention. This suggests that any mobilisation interventions implemented to increase 

infiltration could actually exacerbate nitrate mobilisation (and potentially pesticide 

mobilisation) in these areas. Equally, from a source risk perspective excretal phosphorus 

sources are low in the shared risk fields as they are largely arable. Any conversion of land 

from arable to grassland for the purposes of pesticide source reduction could potentially 

lead to an increase in the risk associated with excretal P, although this must be weighed up 

against reductions in fertiliser P. Synonymous with this are the sources of some of the 

pesticides, where for example a shift from winter cereals (as most of the shared high risk 

areas are) to another land use such as oilseed rape may increase metazachlor use. 

Connectivity interventions may be the most preferable where pollution swapping is 

potentially an issue, as attenuating pollutants with in ditch wetlands for example have been 

shown to reduce load for all of the pollutants modelled (Brix, 1994; Reichenberger et al., 

2007; Haygarth  et al., 2012; Kröger et al., 2012). 

6.4 Limitations of the measure selection process and subsequent post 

modelling requirements 

Although intervention selection results have not been presented for all modelled pollutants, 

the methodology has been demonstrated and discussed for two key example pollutants in 

the context of the highest risk areas, most important risk components and possibility for 

multiple benefits for pollutant swapping. However, there are certain limitations, 

uncertainties and other factors that must be considered when using the outputs in the 

intervention selection and targeting decision making process. 

Primarily all of the uncertainties and limitations identified in the risk models in Chapter 5 are 

carried through to the intervention selection and targeting methodology. The delineation of 

the high risk fields and intervention potential classifications of the risk components are 

dependent on the risk models. Within the uncertainty ranges of the model, there is 

therefore potential variation in the classification of the fields used to select and target 
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interventions. Similarly, a number of the pollutants modelled in Chapter 5 were not 

represented spatially as well as others. Although much of the disparity between modelled 

and observed spatial loads can be attributed to the poor quality of observation data or the 

fact that data are not available to represent processes at the scale desired, the end user 

needs judge whether the models are reliable enough to make intervention decisions. Such 

considerations are common in the use of many models for decision support (e.g. de Kok et 

al., 2008). This also potentially affects the validity of the pollutant spatial risk comparison in 

section 6.3.1. 

Questions must also be asked as to whether the processes represented in the model are 

enough to base intervention selection decisions upon. Referring to the aims in Chapter 1, 

the purpose of the framework is to give water companies a better understanding of where 

pollutant risks are derived in their catchments, and potentially how best to deal with them. 

What the methodology does not do is explicitly determine the potential effectiveness of an 

intervention implemented in a certain catchment location. This is because the models are 

somewhat constrained by the simplicity of the processes and scales they represent. They 

provide more of a guidance in the decision making processes rather than a definitive 

intervention process representation. To do this for mobilisation and delivery interventions 

for example, would require a more detailed assessment of landscape microtopography and 

mobilisation processes (Needelman et al., 2007; Diaz et al., 2012). However, even within the 

relative simplicity of the methodology it is able to break down the components of risk and 

give the end user a better understanding of which intervention grouping is potentially best 

suited to an area.  

The present uncertainties and limitations in the selection process mean there are a few 

recommended steps to be taken before a final intervention decision is made. It is important 

that consultation is sought by the relevant land owner for any intervention recommended 

by the model in a certain area. The socio-economic aspect of intervention selection is not 

considered during model interventions selection, but is crucial in the decision making 

process. Previous studies have highlighted heterogeneity in the preferences of farmers and 

land managers for different interventions and levels of uptake (Espinosa-Goded et al., 2010; 

Christensen et al., 2011; Beharry-Borg et al., 2013). Consequently, one intervention is not 

likely to be acceptable to land owners in all areas and because of this the end user of the 
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model must treat each land owner on a case by case basis. Where land owners are not 

approached to implement interventions on their land, but instead apply willingly to a water 

company funded agri-environment scheme for example, the model outputs can be better 

used to make decisions on which interventions to fund. Such a process is based on the level 

of risk in the area where the application has been made and if the intervention addresses 

the main component of that risk; this method will be explored in more detail in Chapter 7. 

The uncertainties and limitations in process representation within the model structure 

mean that site visits are vital before making final decisions. It is difficult to validate pollutant 

mobilisation and connectivity but any proposed source interventions can be verified with 

land owners, i.e. confirmation of land use, application of contaminant etc. Ground truthing 

can also be used to assess the suitability of mobilisation and delivery interventions. 

Although there is a dearth in guidance on the practical site considerations for many 

interventions, site assessments must be undertaken to make sure that selected 

interventions are practically suitable (Vinten et al., 2005). For example, contour ploughing 

may be recommended by the model where surface runoff mobilisation is high, but 

practically contour ploughing is often not suitable on steep slopes where mobilisation may 

be high (Quinton and Catt, 2004). Likewise, some assumptions in the model relating to the 

presence of artificial drainage must be verified as this will greatly affect the type of 

mobilisation and delivery intervention selected. 

6.5 Conclusions 

In this chapter the methodology used to compare CaRPoW risk outputs for different 

pollutants and select interventions is outlined and applied to the River Ugie catchment. 

Spearman’s rank correlation highlights the pollutants which have a highly correlated spatial 

risk and therefore might be mitigated using the same targeted intervention. Examples of 

such pollutants include certain pesticides such as metaldehyde and chlorotoluron but also 

different pollutant groups such as nitrate and chlorotoluron. Conversely, some of the 

pollutants are poorly spatially correlated where caution must be exercised when selecting 

interventions because of the potential for pollutant swapping. The slope of the correlation 

relationship appears to be affected by soil parameters for a number of the pollutants. 
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Designation of the modelled risk into a high and lower risk category according to the upper 

25th percentile highlights variability in the area of land contributing to the highest risk. In 

relation to risk components the source component has the highest percentage intervention 

potential class (top 20th percentile) for most of the pollutants with the exception of 

particulate phosphorus, which suggests that source strength is the predominant component 

of risk within the models. 

Taking chlorotoluron and metaldehyde as examples only a small area of the catchment (842 

ha) has shared high risk between the two pollutants. In these areas source risk is the 

predominant component of risk, suggesting source control measures are likely to be the 

most effective. However, there are also fields that receive important risk contributions from 

the mobilisation and delivery components as well. More detailed assessment against other 

pollutants highlights areas of land where multiple benefits can be achieved with some 

interventions, but at the same time highlights instances where measures that increase the 

risk of other pollutant, e.g. increasing infiltration may exacerbate nitrate pollution. 

Overall the utility of the methodology for selecting the interventions groupings based on the 

important components of modelled risk has been demonstrated. However, uncertainties 

and limitations in the methodologies mean that decisions based on model outputs also need 

to be considered in conjunction with site assessments of the high risk areas and consultation 

with land owners. 
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Chapter 7. The integration of CaRPoW into Scottish Water’s 

Sustainable Land Management processes – A retrospective 

economic analysis 

7.1 Introduction 

An EngD thesis requires that a section or theme in the thesis is dedicated to a business 

evaluation of the knowledge generated by the research. This can be in the form of a 

marketing, economic, investment, technology management, cost-benefit, or legal 

analysis of the research outcomes in the context of the industry the research is 

undertaken within. Therefore, this chapter assesses the business integration of the 

CaRPoW framework in both Scottish Water and the wider water industry. 

Initially the chapter details the catchment management processes developed by 

Scottish Water thus so far and identifies key aspects of the process where CaRPoW 

could be utilised. A retrospective economic analysis is undertaken to assess theoretical 

savings generated by implementing CaRPoW from the start of Scottish Water’s 

Sustainable Land Management (SLM) scheme. Catchment monitoring locations and 

applications to the incentive scheme are evaluated against CaRPoW model outputs to 

benchmark theoretical savings and missed opportunities for investment between 2011 

and the end of 2014. The analysis has been limited to savings made within Scottish 

Water’s current sustainable land management scheme and is therefore concerned 

with the way in which the efficacy and efficiency of the scheme can be improved. The 

reason for doing this is to limit the analysis to data readily available from the scheme 

and to initially assess what impacts CaRPoW has on the efficiency of the scheme rather 

than the wider benefits of adopting the approach. It is recognised however, that there 

is scope for widening the analysis to assess other benefits of the framework such as 

the reduction in treatment costs, reduction in time spent on the ground by catchment 

officers etc. These analyses would potentially provide further economic benefits to 

Scottish Water, but were not included in the analysis. 

Finally, a redesign of the SLM process and a blueprint for water quality catchment 

management with the full integration of CaRPoW is presented and discussed in 
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relation to how it potentially improves the efficiency, uptake and success of catchment 

management. 

The chapter takes the following structure: 

• 7.2 The Sustainable Land Management project process 

• 7.3 Retrospective economic analysis 

• 7.4 The use of CaRPoW going forward – Redesigning the SLM and water 

industry catchment management processes 

• 7.5 Conclusions 

7.2 The Sustainable Land Management (SLM) process 

7.2.1 The current SLM process 

Scottish Water’s SLM project was set up to improve drinking water quality within a 

number of drinking water supply catchments. Throughout its progression, the project 

has gone through a number of stages that are detailed in the flow diagram in Figure 

7.1. 

All stages of the SLM process are in consultation with other catchment stakeholders. 

For example, the catchment selection process involves engagement with organisations 

such as SEPA and Scottish Natural Heritage (SNH), right the way through to the funding 

of measures which includes close communication with land owners.  

The initial catchment selection process back in 2010 narrowed down a long list of 

catchments identified from the raw water quality report into 6 catchments to be 

included in the project. Catchments were selected according to a number of criteria 

including potential Operational Expenditure (OPEX) (e.g. chemical and energy costs) 

savings, Capital Expenditure (CAPEX) (e.g. investment in new treatment processes) 

savings, opportunity for measure success, if they are within the SEPA priority 

catchment scheme, potential for multiple benefits and presence of a regulatory 

interest. Catchment selection in the second phase of the scheme for Strategic 
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Figure 7.1 – Current Sustainable Land Management flow diagram from catchment selection 

to the funding of measures (processes marked in red are there CaRPoW may be applicable) 

Review 2015 (SR15) is based on water quality trigger levels (half of PCV for 

Trihalomethanes or Total Organic Carbon for example), the proportion of the 

catchment with organic soils, access to the catchment, drinking water safety plan risk 

rating and cost of monitoring. Priority catchments in SR15 are largely related to upland 

water quality issues. 

Once catchments are included in the SLM project, a monitoring programme is designed 

to determine spatial water quality patterns and develop a more detailed picture of 

water quality dynamics in the catchment. A pragmatic approach is taken to monitoring 

in order to capture the necessary spatial variance in water quality at a reasonable cost, 

at sites that are easily accessible. 

The incentive scheme has so far gone through two iterations, with changes in the way 

interventions are funded and additions made to the list of funded items. 31 items are 

available for funding in the latest incentive scheme, these are documented in Table 2.1 
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in Chapter 2. Certain interventions are only eligible in some catchments depending on 

the water quality issue.  

Applications to the scheme are assessed against set criteria following confirmation 

they are within the incentive scheme catchment. Farms with applications are subject 

to a visit by a catchment liaison officer who completes a determination report with the 

help of decision trees to make judgments as to whether to fund the items in the 

application. The decision trees prioritise certain sub-catchments for intervention 

according to results from the monitoring programme and if the interventions applied 

for will mitigate the pollutants of concern in the catchment. An example of a decision 

tree for pesticides in the Ugie is shown in Figure 7.2 in section 7.3. A final decision is 

made on an application at a determination meeting involving the catchment liaison 

officer and the catchment management technical lead. 

Monitoring continues over the course of these processes to assess the potential effect 

implemented interventions have on raw water quality.  

7.2.2 CaRPoW and the current SLM process 

There are a number of parts of the current SLM process that may benefit from the 

application of the CaRPoW framework. The processes marked in red in Figure 7.1 have 

been highlighted as examples of such processes. 

During catchment selection CaRPoW could be used in two ways. Firstly, it can be used 

to define overall pollutant risks between different catchments. Identifying which 

catchments have the highest total risk may inform which catchments to include in the 

SLM programme. Secondly, the spatial distribution of risk in the catchment may inform 

whether SLM is feasible within each catchment. If, for example, risks are concentrated 

to one area of a catchment the perception may be that targeted efforts in a small high 

risk area may realistically mitigate the issue. Whereas distributed risk across the whole 

catchment (especially in large catchments) may be more difficult to mitigate from a 

practical and economic perspective.  
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Once catchments have been selected CaRPoW can be used in the design of the 

monitoring programme. Given the uncertainties and limitations of some of the 

modelling methodologies it may be unacceptable to remove monitoring entirely from 

some areas of the catchment. However, CaRPoW could be used to distribute the 

frequency of monitoring between low and high risk areas, e.g. to make decisions on 

which catchment areas are monitored weekly and which are monitored fortnightly. 

This is particularly beneficial for pesticide monitoring which has very high analytical 

costs relative to other pollutants.  

The main application of CaRPoW and the purpose for which it was developed is to 

make decisions on which applications to the incentive scheme should be prioritised for 

funding. Applications to the scheme can be assessed against the CaRPoW outputs to 

see if they are within high risk areas for the pollutant they aim to mitigate, target the 

dominant component of that risk and determine if they provide any mitigation or 

enhancement of other pollutants. Again, the framework should be used in conjunction 

with the analysis of monitoring data and possibly a farm visit (although applications 

may not require a farm visit if they are in a low risk area according to CaRPoW and the 

monitoring data).  

The outputs of CaRPoW are useful from the standpoint of stakeholder engagement, 

especially as a tool to communicate pollutant issues in a catchment. The high 

resolution of the model outputs allows land owners to visualise where there land sits 

within the pollutant risk for the whole catchment. Such visual engagement may prove 

important in the decision of the land owner to apply to the scheme or even change 

practices at their own initiative. 

7.3 Quantifying the benefit of CaRPoW in the current process – 

retrospective economic analysis 

To demonstrate and quantify the economic effect of including CaRPoW in the 

processes detailed in section 7.2 a theoretical retrospective economic analysis can be 

undertaken using the costs accrued by the SLM project from 2010 – 2014. Presently, 

the River Ugie catchment is at the stage of assessing scheme application and funding 
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measures. Therefore the model outputs will first of all be used to assess theoretical 

savings generated by using CaRPoW to design the monitoring programme in the Ugie 

catchment. Following this, CaRPoW outputs will be included in the scheme application 

decision making process and mock decisions made on which applications to fund. The 

catchment selection process is not included in the analysis as CaRPoW has only been 

applied to the River Ugie catchment in this project. 

7.3.1 Operational cost savings from catchment monitoring 

From June 2011 until August 2011, the ten monitoring locations in the catchment were 

sampled on a fortnightly basis. The initial fortnightly programme was not deemed high 

enough resolution to capture temporal variability in pesticide concentrations, which is 

the reason it was switched to a weekly sampling programme in August 2011. 

Budgetary restraints and the identification of problem sub-catchments meant that 

sampling was moved back to a fortnightly basis from March 2015. 

The catchment was sampled 172 times from June 2011 until the end of 2014, giving a 

total of 1720 samples. In total it costs £450 to sample all ten locations in the same visit. 

Each of these samples costs £141.73 to process and analyse for the full suite of 

pesticides, meaning that Scottish Water spent £321,175.60 on sampling and analysis in 

the Ugie catchment from June 2011 until the end of 2014. 

In section 7.2 it was hypothesised that the CaRPoW outputs could be used to assess 

the monitoring requirements in a catchment by determining which sub-catchments 

were high risk and therefore designing a monitoring programme around this. Taking 

the ten sub-catchments monitored in the Ugie for SLM, the average modelled risk 

(load) per hectare can be calculated to give an idea as to which catchments are on 

average higher risk for the 6 pesticides modelled. Results are presented in Table 7.1 

alongside the results from the first year of monitoring as an extra validation step for 

using the CaRPoW approach to design monitoring strategies. 

The first possibility is to assess whether any sub-catchments are consistently low risk 

for all pesticides and could therefore be removed from monitoring completely. Across 
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all pesticides, sub-catchment D stands out as consistently low risk based on CaRPoW 

outputs. However, results from the first year of monitoring show that the sub-

catchment had a high load of MCPA which was not represented by CaRPoW.  Due to 

the uncertainties in some aspects of the CaRPoW approach detailed in Chapter 5 (e.g. 

capturing intra-annual variability, representing point source risk), removing monitoring 

from all sub-catchments completely may be too uncertain. 

Thus, the second possibility is to assess whether the frequency of sampling can be 

reduced for certain pesticides in certain low risk sub-catchments. This allows costs to 

be reduced but also reduces the associated uncertainties of not sampling in all sub-

catchments all together. Tailoring the monitoring programme frequency first requires 

an understanding of which pesticides are grouped in analysis suites together as they 

are not tested for individually. In the case of the priority pesticides in the Ugie 2, 4-D, 

MCPA and CMPP are in the same suite, with chlorotoluron and metazachlor together 

in a different suite. Only metaldehyde has its own separate test. 

Sub-catchments in which theoretical savings can be made from reduced monitoring 

according to both CaRPoW risk and validated by the first year of monitoring can be 

selected on the basis that all pesticides in the suite are relatively low risk. Consulting 

Table 7.1, certain sub-catchments stand out as low risk across the different pesticide 

suites. For example, sub-catchment B is low risk across the pesticides 2, 4-D, CMPP and 

MCPA which are in the same suite. Likewise, sub-catchments D, E and G are low risk 

for the pesticides chlorotoluron, metaldehyde and metazachlor. A case could therefore 

be made for removing these analyses from these sub-catchments completely or 

reducing the frequency in which these analyses are undertaken on samples from these 

sub-catchments. The potential savings of either removing these analyses or reducing 

the frequency over the course of the monitoring period are shown in Table 7.2.  
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Table 7.1 -  Predicted and observed load for each pesticide and all sub-catchments, numbers in brackets are sub-catchment rank for predicted and 

observed load 

(a) Predicted/Observed Load (g ha
-1

)   

Sub-

catchment 

2, 4-D     Chlorotoluron CMPP MCPA Metaldehyde Metazachlor 

  CaRPoW Year 1 

Sampling 

CaRPoW Year 1 

Sampling 

CaRPoW Year 1 

Sampling 

CaRPoW Year 1 

Sampling 

CaRPoW Year 1 

Sampling 

CaRPoW Year 1 

Sampling 

A 0.0002  

(8) 

0.0173 

(6) 

0.1235  

(4) 

0.6337 

(3) 

0.0395 

(7) 

0.0943 

(6) 

0.0056 

(9) 

0.0770  

(3) 

0.0365 

(4) 

0.1422 

(4) 

0.0045  

(6) 

0.0348  

(9) 

B 0.0001 

(10) 

0.0131 

(8) 

0.1342  

(3) 

0.2753 

(5) 

0.0201 

(10) 

0.0192 

(10) 

0.0043 

(10) 

0.0322  

(5) 

0.0384 

(3) 

0.2201 

(1) 

0.0113 

(2) 

0.0676  

(5) 

C 0.0002  

(6) 

0.0187 

(5) 

0.1791  

(1) 

1.3253 

(1) 

0.0510 

(5) 

0.2697 

(1) 

0.0102 

(4) 

0.0239  

(6) 

0.0487 

(1) 

0.1691 

(3) 

0.0084  

(4) 

0.1170  

(3) 

D 0.0002  

(7) 

0.0231 

(4) 

0.0382 

(10) 

0.0223 

(10) 

0.0233 

(9) 

0.0305 

(8) 

0.0072 

(8) 

0.4150  

(1) 

0.0114 

(10) 

0.0305 

(10) 

0.0004  

(9) 

0.0192 

(10) 

E 0.0001  

(9) 

0.3240 

(2) 

0.0686  

(9) 

0.2319 

(7) 

0.0282 

(8) 

0.1045 

(3) 

0.0073 

(7) 

0.0511  

(4) 

0.0195 

(9) 

0.0545 

(7) 

0.0021  

(8) 

0.0367  

(8) 

F 0.0003  

(3) 

0.3535 

(1) 

0.1221  

(5) 

0.1460 

(9) 

0.0747 

(1) 

0.0998 

(5) 

0.0131 

(3) 

0.0195  

(8) 

0.0346 

(5) 

0.0365 

(8) 

0.0034  

(7) 

0.0410  

(7) 

G 0.0004  

(2) 

0.0173 

(7) 

0.0833  

(8) 

0.1576 

(8) 

0.0626 

(2) 

0.0275 

(9) 

0.0168 

(1) 

0.0216  

(7) 

0.0232 

(8) 

0.0340 

(9) 

0.0004 

(10) 

0.0442  

(6) 

H 0.0002  

(5) 

0.0110 

(10) 

0.0859  

(7) 

0.2376 

(6) 

0.0507 

(6) 

0.1029 

(4) 

0.0076 

(6) 

0.0933  

(2) 

0.0341 

(6) 

0.1015 

(6) 

0.0270  

(1) 

0.0978  

(4) 

I 0.0004  

(1) 

0.0578 

(3) 

0.0905  

(6) 

0.4858 

(4) 

0.0617 

(3) 

0.1813 

(2) 

0.0140 

(2) 

0.0000  

(9) 

0.0292 

(7) 

0.1319 

(5) 

0.0083  

(9) 

0.1355  

(1) 

J 0.0003  

(4) 

0.0113 

(9) 

0.1378  

(2) 

0.9942 

(2) 

0.0549 

(4) 

0.0482 

(7) 

0.0092 

(5) 

0.0000  

(9) 

0.0450 

(9) 

0.2200 

(2) 

0.0106  

(3) 

0.1263  

(2) 
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Table 7.2 - Theoretical cost savings made by tailoring the monitoring programme according 

to CaRPoW risk outputs (validated by results from first years of monitoring) 

Pesticide and Sub-

catchment 

Retrospective theoretical 

cost savings made by 

switching to fortnightly 

monitoring (2011-2014) 

Retrospective theoretical 

cost savings made for 

removing analysis from 

monitoring location 

completely (2011-2014) 

2, 4-D, CMPP and CMPA - 

Sub-catchment D £2,435.52 £4,871.04 

Chlorotoluron and 
Metazachlor - Sub-

catchments D, E and G £7,322.04 £14,633.08 

Metaldehyde - Sub-

catchments D, E and H £6,277.14 £12,554.28 

Total savings £16,034.70 £32,058.40 

 

The largest savings are generated by reducing the frequency of analysis or removing 

the analysis for chlorotoluron, metazachlor and metaldehyde in sub-catchments D, E 

and G. This is arguably the least uncertain option for tailored monitoring also as these 

pollutants are consistently low risk across both CaRPoW and in the results from the 

first year of monitoring used for validation.  

Overall aggregated savings generated by either lowering the sampling frequency or 

removing the analysis from identified low risk sub-catchments using CaRPoW 

represent approximately 5% and 10% of the total monitoring spend respectively. The 

analysis therefore outlines significant theoretical cost savings by using CaRPoW to 

tailor the monitoring program in the Ugie, without detriment to the overall quality of 

the monitoring program.  

7.3.2 Assessment of SLM scheme applications against CaRPoW 

The first applications to the SLM incentive scheme in the Ugie catchment came 

through in October of 2012 and since then 29 applications have gone through the full 

SLM process. This includes the generation of a determination report that details all 

capital items applied for and if the application is accepted according to the decision 
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tree process detailed in Figure 7.2. The 29 applications were for items totalling 

£116,737.24, of which £42,233.17 have been funded. A full break down of the types of 

interventions applied for and funded is shown in Table 7.3. 

Table 7.3 - Interventions applied for and funded within the Sustainable Land Management 

Incentive Scheme in the River Ugie catchment since October 2012 

Intervention Total Applied 

Funding 

Total Accepted 

Funding 

Alternative livestock watering £61,338.80 £20,462.75 

Livestock fencing £35,429.44 £10,953.42 

Pesticide loading area £680 £408 

Pesticide biobed £18,999 £11,399 

Gate relocation £290 £0 

Total £116,737.24 43,223.17 

 

The current SLM decision making process for the River Ugie catchment using the 

decision tree approach (shown in Figure 7.2) is in place so that preference is given to 

interventions that mitigate pesticide risk in high risk catchments (according to the 

monitoring results). The tree goes through a number of decisions to classify 

applications as very high, high, moderate, moderate-low, low priority or rejected. 

There are a few decisions in the tree that could benefit from using CaRPoW outputs, 

these are highlighted by the red boxes in Figure 7.2.  

The decision marked (a) in Figure 7.2 determines if the intervention is in a high risk 

sub-catchment. The risk outputs from CaRPoW can be used in this decision to prioritise 

interventions if they are classified as high risk (75th percentile) for pesticides and if the 

risk component they target has a very high potential for intervention. In decision (b), 

CaRPoW can be used to assess if indirect pesticide interventions are within high risk 

and high potential for intervention areas. Decision (c) assesses if the intervention 

mitigates risk for other pollutants. Here, the CaRPoW outputs for the other pollutants 

(nitrate, phosphorus and sediment) can be used in a similar manner to pesticides to 

decide if the application is low priority or rejected. 
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Figure 7.2 - Scottish Water’s decision tree for prioritising capital items applied for in the River Ugie in the Sustainable Land Management Incentive 

Scheme. Processes highlighted in red are potential parts of the decision tree where CaRPoW outputs could be used in the decision making process. 
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A retrospective analysis can be conducted that uses CaRPoW within the decision tree 

process to categorise interventions into the priority classes. For confidentiality reasons 

applications cannot be discussed individually and therefore applications are analysed 

collectively. The outputs of the decision making process using CaRPoW for each 

decision category are presented in the graph in Figure 7.3. 

 

 

Figure 7.3 - Graph to show the value of interventions within each category of the SLM 

decision tree for (a) value of interventions recommended/rejected by CaRPoW in total, (b) 

value of interventions recommended/rejected by CaRPoW that have been funded, (c) value 

of interventions funded but not recommended by CaRPoW and (d) interventions neither 

funded or recommended by CaRPoW. * This category represents the total value of 

interventions either recommended (a), funded (b and c) or not funded (d) 
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Of all the measures applied for only one item, a pesticide biobed, directly mitigates 

pesticide risk and falls within a CaRPoW high risk area for any of the 6 pesticides. 

Therefore, this is the only item that is of a very high priority (according to the SLM 

priority classes) for funding. Although this is the case, it is the largest value single item 

at £18,999.00 and therefore constitutes 16% of the total funding applied for.  

The only other measure that directly addresses pesticide risk from the applications is a 

pesticide loading area. However, according to the outputs of CaRPoW this does not fall 

within a high risk area for any of the 6 pesticides and therefore is only a high rather 

than very high priority for funding if CaRPoW is used to make the decision. It must be 

noted however that both of the items that directly address pesticide issues mitigate a 

point source risk, which is not represented by the CaRPoW risk outputs. For this reason 

it may be decided that both or neither are of a very high priority.  

Of the other interventions applied for only the gate relocation and livestock fencing 

have potential indirect mitigation impacts on pesticides, as both potentially limit 

runoff losses. Of the £35,429.44 of livestock fencing applied for, only £2741.48 is 

within a high risk pesticide area with a very high potential for pesticide delivery 

mitigation according to CaRPoW. These livestock fencing items are therefore given a 

moderate preference for funding. The single application for gate relocation is not in a 

CaRPoW high risk pesticide area and is therefore not given moderate priority. 

The largest proportion of the total funding applied for is given a low priority 

classification by CaRPoW. These are predominantly applications for alternative 

livestock watering and livestock fencing that do not mitigate pesticide risk indirectly 

but do mitigate a high risk of phosphorus, nitrate or sediment. A total of £48,598.74 is 

allocated to this low priority status, with £30,461.20 and £18,137.54 of this consisting 

of alternative watering and livestock fencing respectively. 

The remaining interventions applied for are rejected by CaRPoW on the grounds that 

they do not mitigate pesticide risk directly or indirectly, and are not located in the 

CaRPoW high risk areas of the catchment for other pollutants modelled. The 



 

190 

intervention types that fall into this category are alternative livestock watering, 

livestock fencing and the one application for gate relocation. 

Compared to the actual number of interventions funded the addition of CaRPoW to 

the decision making process generally increases the level of funding recommended. An 

extra £21,186.10 of items are recommended for funding by CaRPoW over what was 

funded using the decision tree. There are a number of possible reasons for this. Firstly, 

the percentage contribution of funding Scottish Water can provide to measures 

changed in 2014 to a higher percentage contribution of 60%, which means a 

proportion of the interventions before this time would receive less funding than the 

75% value used in this retrospective analysis. Secondly, there is a likelihood that 

interventions would be placed in a lower priority category if they did not fall in a high 

risk sub-catchment as delineated by the monitoring. The addition of CaRPoW removes 

the constraints of sub-catchments by detailing specific high risk fields. There may be 

for example a small number of high risk fields within overall low risk sub-catchments 

(as determined by monitoring) that are suitable for intervention. Finally, the decision 

tree approach was only adopted towards the end of 2013, meaning many of the 

decisions on funding were not made with this approach and therefore items may have 

been funded in less preferable areas. 

The use of CaRPoW within the approach also highlights interventions that were funded 

and not recommended by CaRPoW. In total £21,488.53 or approximately 50% of the 

total funding given to land owners would not have been recommended by CaRPoW. 

Such a large proportion of measures funded in lower risk areas potentially means that 

investment was made in areas on interventions that may not have a significant effect 

on raw water quality. Interestingly this figure is close to the extra investment 

recommended by CaRPoW for interventions that were not funded, suggesting that the 

level of investment was correct just for the wrong applications. 

Contrary to the monitoring, the retrospective analysis of the scheme application 

decision making process with CaRPoW outputs does not highlight where Scottish 

Water could have saved money but instead where they may have missed opportunities 
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to reduce pollutant risk by rejecting or funding certain applications recommended or 

not recommended by CaRPoW. The extra detail the addition of the CaRPoW outputs 

provides in the decision making process allows for more informed decision to be made 

beyond that of the current decision tree methodology. 

7.4 The use of CaRPoW going forward – Redesigning the SLM and 

catchment management process 

Sections 7.2 and 7.3 define where CaRPoW can fit within the current SLM process from 

catchment selection to the funding of measures. But what if the whole SLM process 

and other catchment management schemes had been designed around the principles 

of CaRPoW from the beginning? Although many water companies in the UK have 

adopted catchment management (Spiller et al., 2013), each company’s approach has 

been slightly different. For example Scottish Water have developed an incentive 

scheme method where land owners are voluntarily encouraged to apply for funding 

from Scottish Water, herein referred to as the ‘incentive scheme approach’. Other 

companies such as Wessex Water have adopted a more targeted approach where 

specific high risk land users in their catchments are offered funding for alternative  

practices that limit impact on water quality (Wessex Water, 2011). Within this section 

this is herein referred to as the ‘targeted funding approach’. A different approach 

entirely has been adopted by Yorkshire Water for example, where full collaboration is 

sought with a multitude of stakeholders and land users are encouraged to adopt 

practices that are low impact on water quality without large financial incentives from 

the water company (Yorkshire Water, 2015), herein referred to as the ‘targeted 

engagement approach’. Although these approaches differ they all require targeted 

monitoring and interventions. This section provides a potential blueprint going 

forward, based on the original SLM process, which is applicable to the three identified 

catchment management approaches, making full use of the CaRPoW approach. 

A few key steps have been added to the current SLM process flow diagram that 

maximise the use of CaRPoW in every possible decision making process. The updated 
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framework from catchment selection to measure targeting is shown in Figure 7.4, 

boxes coloured red are where CaRPoW is used. 

 

Figure 7.4 - Reworking of the SLM (Sustainable Land Management) process chain to 

maximise CaRPoW use in the decision making process and create a blueprint for the 

catchment management process. Solid arrows represent processes with the SLM approach 

(i.e. an incentive scheme approach), dashed line arrows represent alternative approaches 

(i.e. targeted funding and targeted engagement approaches). 

The identification of problem catchments is no different to the original SLM process, 

with catchments identified according to the analysis of raw water quality data from 

regulatory monitoring at drinking water treatment works. Where CaRPoW is 

introduced is in the delineation of problem catchments into those potentially not 

suitable for catchment management and those potentially suitable for catchment 
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management. Here, CaRPoW risk models are generated for each problem catchment 

and analysed to assess the feasibility of catchment management. If risks are 

concentrated, easily defined and the components of risk mitigated with the 

interventions available then catchment management may be deemed feasible and the 

catchment moves to the next phase. If risks are highly dispersed then it may be 

economically unviable to mitigate risks with catchment management interventions and 

the catchment is deemed unfeasible for catchment management. This approach is 

applicable to all three of the identified approaches. 

Initially, monitoring programs are designed for suitable catchments that provide the 

necessary spatial coverage to capture all major branches in the hydrological network. 

Likewise samples are analysed for all pollutants of concern in the catchment. Such 

monitoring runs until a suitable enough dataset is obtained to (i) validate CaRPoW 

modelling outputs against and (ii) identify opportunities for the frequency of 

monitoring to be downgraded. Once this dataset is established it is used in conjunction 

with CaRPoW outputs to redesign the monitoring programme so that frequency of 

monitoring is reduced in identified low risk areas to lower expenditure without 

compromising data integrity (as per the analysis in section 7.3.1). This is seen as an 

iterative process and is likely to alter year on year, especially in arable catchments with 

variable crop rotation patterns (Ulén et al., 2005). Monitoring is required by all three 

catchment management approaches. 

For the SLM approach the incentive scheme of each catchment can be designed in a 

way so that it is tailored according to the risk profile determined by CaRPoW. In the 

scheme at present a large range of different measures are offered, many of which do 

not mitigate the pollutant of concern. This means that a lot of effort is made by the 

land owner to apply for measures that will never be accepted at the application 

assessment stage. Previous research has highlighted the importance of reduced 

paperwork in the likely participation of farmers in agri-environment schemes (Ruto 

and Garrod, 2009). Introducing CaRPoW into the design of the incentive schemes to 

limit the interventions available may reduce the amount of applications made by 

farmers who are unlikely to be successful in securing funding, i.e. increasing the 
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percentage of overall applications funded. One way of doing this is to first of all limit 

the areas of the catchment in which applications can be made, i.e. stipulating in the 

incentive scheme guidance where preference will be given to applications based on 

the high risk parts of the catchment delimited by CaRPoW. Secondly, the dominant 

components of risk in these areas can also be identified in the incentive scheme 

documentation, so that land owners are encouraged to apply for interventions that 

target the specific component of risk in high risk areas. This approach not only reduces 

the amount of effort required on the part of the land owner but it also increases the 

likelihood of targeted measures mitigating the pollutant issue. For catchment 

management approaches that do not have an incentive scheme (targeted funding and 

targeted engagement approaches), high risk areas are identified at this stage for 

targeted funding or stakeholder engagement.  

Following the design of the incentive scheme, stakeholders within the catchment can 

be proactively encouraged to apply for funding. This highlights the benefits of a 

tailored scheme as catchment liaison officers can target high risk areas and promote 

interventions in these areas that tackle the key component of risk. Again, the benefits 

of this targeted approach are that less applications are likely to be made for funding 

that are unlikely to be accepted, which reduces the use of resources in both promoting 

the scheme and processing applications. Likewise, reducing the amount of rejected 

applications is likely to improve the credibility and reputation of the water company 

with catchment stakeholders. At this stage the visit by a catchment liaison officer will 

also provide an opportunity to ‘ground truth’ the outputs of CaRPoW. For the other 

two approaches stakeholders in high risk areas are either approached and offered 

funding for specific interventions (targeted funding approach) or are proactively 

encouraged to adopt low impact practices off their own initiative (targeted 

engagement approach). 

Applications for funding can subsequently be assessed using the current decision tree 

approach with the addition of CaRPoW as per the methodology used on section 7.3.2. 

If previous processes that prioritise certain areas of the catchment and interventions 

have been successful there should be less applications at this stage, but the 
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applications should be for interventions that have a higher likelihood of being at a very 

high priority. 

Monitoring of water quality in the catchment continues to assess the effectiveness of 

interventions implemented in all three approaches. At this stage the implementation 

of interventions can inform the regular reassessment of monitoring needs.  

The key benefits of adopting the cascade of processes detailed in Figure 7.4 for 

catchment management making full use of the CaRPoW framework for the decisions 

discussed can be summarised in the following points: 

• Optimising selection of catchments suitable for catchment management based 

on distribution of risk in a catchment rather than total risk (derived from water 

quality data) improves overall efficacy of catchment management. 

• A tailored monitoring programme using CaRPoW captures necessary water 

quality parameters without the need for a full extensive catchment wide 

monitoring programme and therefore saves costs. 

• Tailoring which measures are targeted where in a catchment based on high 

risks and the potential for intervention reduces disruption to catchment 

stakeholders, and potentially increases the successful number of applications in 

the incentive scheme approach. 

• CaRPoW outputs provide tools for catchment staff on the ground to proactively 

engage land owners in high risk areas. It allows for the illustration of the 

problem and how it can best be mitigated. 

• Implementing CaRPoW in the decision tree process further informs and 

strengthens the decision making process. 

7.5 Chapter conclusions 

This chapter has assessed the current SLM process from catchment selection to the 

funding of measures to determine where CaRPoW could be utilised best. Within the 

current process CaRPoW could be used for catchment selection, monitoring 

programme design and the selection of interventions. To test these assertions a 

retrospective economic analysis was used to evaluate theoretical savings and missed 
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opportunities in the River Ugie catchment, using data from the SLM scheme since its 

inception in 2010 through to the end of 2014. The analysis shows that Scottish Water 

could have made savings up to around £32,000 (accounting for uncertainties) by using 

CaRPoW to design the monitoring programme. In the assessment of funded scheme 

applications the analysis showed that Scottish Water invested approximately £21,000 

in measures in low risk areas according to CaRPoW that could have been invested on 

interventions in higher risk areas. 

The analysis presents a first step in assessing the economic benefits of using the 

CaRPoW approach with data that were readily available to be used in the analysis. 

Further, more in depth analysis where data are available such as determining potential 

reductions in treatment costs, reducing the time spent on the ground by catchment 

officers or undertaking a cost-benefit analysis against other selection and targeting 

approached for example will strengthen the case for CaRPoW to be adopted by Water 

companies wanting to better select and target interventions.  

On the back of these analysis and using lessons learned from the current SLM 

processes along with the development of CaRPoW, a new blueprint for SLM and 

catchment management in the future has been developed. The new process cascade 

utilises CaRPoW fully to maximise the efficiency of the catchment management 

process to improve its efficacy and improve collaboration with other catchment 

stakeholders. 
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Chapter 8. Integration of findings and conclusions 

8.1 Introduction 

The research detailed in each of the chapters in this thesis relate to at least one of the 

objectives set out in the introduction. Subsequently all chapters contribute to the main 

aim of the thesis which is: 

“to develop a conceptual framework and associated modelling methodologies 

capable of identifying and comparing high risk areas in catchments for multiple 

pollutants so that catchment management interventions can be effectively selected 

and targeted.” 

To directly address this aim the final chapter collates the findings and conclusions from 

the chapters to assess whether each objective has been met and the overall aim of the 

thesis achieved. 

Following this, findings are integrated and discussed within the context of the thesis’ 

contributions to (i) the water industry and (ii) the wider scientific community 

surrounding catchment management research. Recommendations for future work are 

outlined as a result of the integration of findings in the context of both industry and 

research. Finally, overall conclusions from the thesis are presented.  

The final chapter therefore takes the following structure: 

• 8.2 – Have the aim and objectives of the research been met? -  integration 

of research findings 

• 8.3 – Contributions the research findings make to industry and wider 

catchment management decision making and pollutant modelling research 

• 8.4 - Recommendations for future work 

• 8.5 – Conclusions 
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8.2 Have the aim and objectives of the research been met? -  Integration 

of research findings 

Objective 1 - Assess the feasibility of considering multiple pollutants within the 

same conceptual framework by reviewing the processes that constitute catchment 

risk for the pollutants mitigated in water industry catchment management schemes 

(Chapter 2).  

The review of pollutant processes framed within the Source-Mobilisation-Delivery 

continuum covered in Chapter 2 highlighted the dominant processes that constitute 

pollutant risks in a catchment. Various similarities and differences between the 

processes of each pollutant within each component of the continuum were identified. 

For example, the majority of the pollutants, with the exception of DOC, are associated 

with agricultural land uses (arable and grassland). Although this is the case, the 

processes that dominate their mobilisation and delivery are often distinctly different. 

For nitrate and phosphorus this is the case, with the former largely associated with 

slower leaching processes in solution and the latter with higher energy runoff and 

preferential flow processes in particulate form. 

Interventions were similarly reviewed within the context of the S-M-D continuum and 

the multiple pollutants considered by water industry catchment management 

schemes. The review highlighted a variety of interventions that target different aspects 

of the continuum and are capable of mitigating multiple pollutants. At the same time, 

there were a small number of interventions reviewed that provided positive benefits 

for some pollutants and negative for others, i.e. there is potential for pollutant 

swapping. 

The identification of parity and disparity between the processes of the pollutants of 

concern to the industry and with different interventions highlights the potential for (i) 

pollutants to be considered in the same conceptual framework and (ii) the potential 

for multiple benefits to be achieved by the careful selection and targeting of certain 

interventions. Subsequently, the review confirms the feasibility of including multiple 
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pollutants in the same conceptual framework for the purposes of defining pollutant 

risk and targeting interventions, and therefore objective 1 is met. 

Objective 2 - Develop criteria with water industry professionals to outline the 

industry requirements for a conceptual modelling framework (Chapter 3). 

The criteria developed in Chapter 3 details the requirement for a conceptual 

framework capable of defining pollutant risk for the selection and targeting of 

interventions from a water industry perspective. A few key examples include: 

• A focus on surface drinking water sources. 

• To be able to operate at the field scale. 

• Represent the components of pollutant risk individually so that the main 

component of pollutant risk can be determined. 

• Assessment of spatial and temporal variations in the components of pollutant 

risk. 

• Ability to compare the risks of different pollutants. 

• GIS based modelling framework with the potential to be used qualitatively to 

improve conceptual understanding. 

Current frameworks and models that define risk and/or select and target interventions 

were assessed against the criteria to determine if a new framework was required. 

None of the 12 frameworks and models assessed met the criteria fully. Generally they 

were either focused on single pollutants or did not disaggregate pollutant risk into its 

constituent components in order to make decisive intervention decisions. 

The developed criteria therefore provide a blueprint for what the water industry 

requires in order to make decisions on which interventions to target where.  
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Objective 3 - Critique current methodologies and frameworks against the industry 

defined criteria and outline a new conceptual framework (Chapter 3). 

The niche identified by objective 2 led to the development of a new framework that is 

capable of meeting the requirements of the industry defined modelling criteria, the 

Catchment Risk to Potable Water (CaRPoW) framework. 

The framework disaggregates the risk posed by a pollutant into its constituent parts 

according to the principles of the S-M-D continuum. There are a few key differences 

however. Within CaRPoW both the source and mobilisation components work at the 

field scale (unique combination of land use, soil type and drainage). The mobilisation 

component represents the proportion of the source component that is mobilised to 

the edge of the field and therefore includes both the form the pollutants takes (soluble 

or particulate) and the within-field pathway (slow or fast flow pathway). The delivery 

component works at the sub-catchment scale to determine the proportion of pollutant 

mobilised to the edge of the field that reaches the water body and is based on 

principles of hydrological connectivity. All of these three components combine to 

provide overall pollutant risk for each field within a catchment. 

The framework therefore allows for appropriate interventions to be selected based on 

the main component of risk. The subsequent development of modelling 

methodologies for each component for each pollutant also allows for pollutants’ risks 

to be compared for the purposes of determining where multiple benefits or pollution 

swapping may exist. The framework can also be used as a way of conceptualising 

pollutant risk in a catchment qualitatively, where data availability does not allow for 

appropriate process representation with modelling.  
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Objective 4 - Develop modelling methodologies to populate the conceptual 

framework developed in objective 3, capable of representing the components of risk 

using a quantifiable metric (Chapter 4). 

The main purpose of CaRPoW is as a modelling framework, with models that represent 

each component of the framework (source, mobilisation and delivery). Models were 

developed for each pollutant mitigated by Scottish Water’s SLM scheme with the 

exception of DOC.  

Methodologies have been selected and adapted from the literature to represent the 

various components of risk within CaRPoW. A soil water balance model (WaSim) was 

used to represent any hydrological inputs to the pollutant mobilisation and delivery 

models. Hydrological inputs were based on averages from a 30 year model run (1980-

2010) and for a representative wet year and dry year for each unique combination of 

land use, drainage and soil. A range of parameters were extracted from the model 

outputs to be used in a number of the risk models. Examples include annual runoff, 

annual drainflow, and average number of days between runoff events for example.  

Source models provide an output in mass (grams for pesticides and kilograms for other 

pollutants) of the pollutant per hectare per year. Some of the source models are 

simple and only provide the mass of a pollutant applied to the field or present in the 

soil (e.g. phosphorus), others are slightly more complex and account for the 

partitioning of an applied pollutant between soluble and particulate (e.g. pesticides) or 

are part of a balance with the source term being the surplus from the balance (e.g. 

nitrate).  

The mobilisation methodologies are variable for each pollutant but the outputs 

provide coefficients that represent the proportion of the source term that is mobilised 

to the edge of the field per year. For certain pollutants, e.g. pesticides and soluble 

phosphorus the WaSim soil water balance model is used to proportion the 

mobilisation of the pollutant into slow and fast hydrological pathways (i.e. runoff vs 

drainflow or leaching).  
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The delivery component is based on the representation of hydrological connectivity, 

developed using a travel time approach methodology similar to Buchanan et al (2013). 

The methodology varies the Manning’s roughness value in the travel time equation 

according to land use, with barrier features (e.g. field boundaries) included. Travel 

time is normalised into a coefficient (0-1) therefore meaning that connectivity is 

relative to the catchment. 

Final catchment risk is calculated by multiplying the three different model outputs 

together to give a risk value to each field in kg ha-1 yr-1. 

Overall the methodologies have been developed to be applicable to any catchment 

that has a high resolution input data. The idea behind the CaRPoW approach however, 

is that different models can be used within each of the components depending on the 

level of process understanding or data availability in the catchment. The models 

developed here fulfil the requirements of the criteria outlined in objective 2.  

Objective 5 - Apply the framework and associated modelling methodologies to the 

River Ugie catchment and assess the utility of the framework for representing 

multiple pollutant risk against catchment water quality data (Chapter 5). 

The models developed in objective 4 were applied and validated in the River Ugie 

catchment, in the North East of Scotland. Six pesticides, nitrate, soluble phosphorus, 

particulate phosphorus and sediment were modelled in the catchment using specific 

land use data from 2012 and a derived land use dataset selecting the dominant land 

use classification in each field from 2008-2012. The models were validated against sub-

catchment pollutant load data collected by either SW or SEPA.  

The water balance model performed well when the predicted baseflow index was 

compared against the known baseflow index for the catchment. This suggests 

hydrological inputs to the models derived from WaSim provided a reasonable 

representation of hydrological conditions in the catchment over the period of the 

model run.  
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The models predicted total loads within the catchment reasonably well within the 

ranges of uncertainty for the models and the calculated observed loading data. Where 

there were discrepancies between the total modelled and observed loads, it was 

generally a result of a high load from a particular sub-catchment in the observed 

dataset that was not represented by the models. This was hypothesised to either be a 

result of poor temporal resolution in the observed water quality data or the fact that 

the models are based on annually averaged hydrological inputs from a 30 year dataset, 

which is unlikely to represent intra-annual variations in hydrology and therefore 

mobilisation and delivery year on year. 

The prediction of spatial loads within the catchment was more varied with around half 

of the pollutants modelled, represented well spatially. Spatial disparity between the 

predicted and observed loads of the other pollutants was generally a result of a large 

under or over prediction in one particular sub-catchment, which again is a function of 

the limitations of representing variable loads between years with averaged models. 

For some of the pesticides that were poorly represented (2, 4-D, MCPA, CMPP), it was 

also hypothesised that the spot application method these pesticides are generally 

applied by could not be well represented by the land use defined source term alone. 

Land use data could not distinguish application differences between fields with the 

same land use, which may explain some of the spatial disparity in loads.  

Given the relative simplicity of the models and the complexity of the processes driving 

pollutant movement in a catchment, the models provide a reasonable representation 

of pollutant loads and hence total and spatial risk in the catchment.  

Objective 6 - Compare the risk outputs of different pollutants to identify where 

multiple benefits and pollutant swapping may be prevalent and develop a 

methodology to select and target interventions using model outputs in the River 

Ugie catchment (Chapter 6). 

A methodology was developed to use the outputs from the models in the Ugie to 

select and target catchment management interventions based on the upper quartile of 

risk for each pollutant. Spearman’s rank analysis was used to highlight pollutants that 
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have shared spatial risks and therefore the potential to be mitigated with single 

interventions. At the same time pollutants that were not well correlated were flagged 

as potential for pollutant swapping. 

Analysis of the highest risk areas for each pollutant within the distribution of overall 

risk showed some interesting results. For example, the highest risk for the pesticide 

chlorotoluron was distributed to a much smaller area than other pesticides, potentially 

suggesting fewer interventions are required to mitigate the highest risk. Assessment of 

the components of risk in the highest risk areas for each pollutant at the catchment 

scale demonstrate that many of the pollutants (with a few exceptions) have high 

source risk, suggesting source interventions may be the most suitable or models are 

most sensitive to the source component.  

A more in depth application of the intervention selection methodology was applied to 

the pesticides chlorotoluron and metaldehyde. Firstly the shared high risk areas of the 

catchment were delineated and fields within the shared risk classification analysed for 

the dominant risk component. This allowed for interventions to be selected depending 

on the main component of risk in each field. Intervention selection was further 

delineated by assessing the risks of other pollutants in the shared risk fields in an 

attempt to select interventions with multiple mitigation benefits. 

Intervention selection using the model outputs are subject to the limitations and 

uncertainties of the models themselves. As a result there are a number of steps 

recommended to be taken, centred on ground truthing visits to sites designated high 

risk before final intervention decisions are made. 

Objective 7 - Determine how the framework fits in with conventional catchment 

management processes and conduct a retrospective economic analysis to quantify 

the benefits of implementing the methodologies developed (Chapter 7). 

Scottish Water’s catchment management processes were scrutinised to determine 

where CaRPoW could be used to improve their efficiency and efficacy. It was 

hypothesised that CaRPoW could be used in the catchment selection process, the 
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design of monitoring strategies and in the decision making process for which 

interventions to fund from applications to the incentive scheme. 

To test these hypotheses a retrospective economic analysis was undertaken to 

determine theoretical savings or opportunities missed by implementing CaRPoW. 

Firstly, the monitoring programme in the River Ugie was assessed from 2010 – 2014. It 

was determined that within the bounds of acceptable uncertainty using CaRPoW to 

design the monitoring programme could have saved Scottish Water approximately 

£32,000. The analysis of scheme applications using CaRPoW with Scottish Waters’ 

decision tree process showed that around £21,000 was actually invested in 

interventions that were of a low priority according to CaRPoW. Interestingly 

interventions amounting to a similar figure were not funded by Scottish Water, but 

were of a higher priority within CaRPoW and would be recommended for funding. This 

analysis theoretically highlights where in the current process CaRPoW generates 

savings and aids in the decision making process. 

The catchment management process, from catchment selection to making decisions 

on interventions, was redesigned for all water industry catchment management 

approaches with the full integration of CaRPoW. Overall the implementation of 

CaRPoW determines which catchments are best suited for a catchment management 

approach, the most effective monitoring strategy, the areas of the catchment most at 

risk for different pollutants and the main components of risk so that incentive 

schemes, targeted interventions or stakeholder engagement can be tailored according 

to the risk profile of the catchment. The potential benefit of this new blueprint for 

catchment management with CaRPoW reduces the costs of implementation, improves 

efficacy of the approach and limits disruption to other catchment stakeholders. 

Overall the findings and learning generated under each objective have meant that the 

main aim of the thesis has been achieved. 
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8.3 Contributions and implications of the research findings to the water 

industry and wider catchment management research 

8.3.1 Water industry 

The increased uptake of catchment management by water companies (Dolan et al., 

2012; Spiller et al., 2013) has exposed a requirement for a new methodology capable 

of aiding in the intervention selection and targeting decision making process (Naden et 

al., 2013). The key contribution this thesis makes to the water industry (and its main 

aim) is the development of the CaRPoW framework which occupies this identified 

niche. Beyond this main contribution there are a few key findings generated under the 

thesis objectives that provide further contributions and implications to industry. 

The majority of current catchment management programmes within water companies 

are reactionary and therefore generally focussed on single pollutant issues. By 

identifying process links between a range of problem pollutants the thesis 

demonstrates that water companies can be more proactive and pragmatic in their 

approach to intervention selection and targeting. By doing this, the pollutants of 

concern to the water company can be mitigated as well as other pollutants, which 

provide wider environmental benefits when legislation such as the WFD (60/2000/EC) 

are considered. This further strengthens the reputation of the water company and 

provides opportunities for collaboration with other organisations wanting to improve 

catchment water quality (e.g. NGO’s, government agencies etc.). 

The application of the framework and associated modelling methodologies to the River 

Ugie catchment effectively demonstrates the usefulness of the approach to the water 

industry, but also offers a few key considerations. The application of the approach in a 

modelling context is only applicable if data are available at a scale capable of 

representing key pollutant processes. A few key cases within the thesis highlight this 

implication. For example, the pesticides 2, 4-D and MCPA were poorly represented 

spatially as the distribution of their application in the catchment was not well 

represented by land use data alone. In these circumstances it may be beneficial for 

CaRPoW to be used in a qualitative sense for conceptual understanding as 
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demonstrated by the use of the framework for colour in the Amlaird catchment 

(Appendix A). 

Results from the validation of the modelling against calculated loads in the catchment 

highlighted uncertainty in some of the model results and perhaps more importantly in 

the loading calculations. Model uncertainties arise from the generic, average approach 

adopted which was a key requirement of the water industry defined criteria in Chapter 

3. Whereas uncertainties in the loading data come from the relatively low frequency of 

water quality monitoring upon which pollutant loads are derived. There is an argument 

that catchment management decisions should not be made using models with 

systemic uncertainty, but instead with a general agreement between stakeholders as 

to which action going forward is best (Bevan and Alcock, 2012). However, Bevan and 

Alcock (2012) argue that the use of such models negates the potential disagreement in 

priorities between different stakeholders and provides better insights into which 

measures are likely to be most appropriate.  If models such as CaRPoW are to be used 

for decision making, it is vital that such uncertainties are considered by water 

companies. With this in mind it would be prudent for water companies to follow up 

any recommendations CaRPoW makes with suitable field based investigations.  

The findings from the comparison of SLM incentive scheme applications to the 

CaRPoW outputs highlight an important disparity between the dominant components 

of catchment risk and the interventions applied for. The analysis showed that the 

majority of interventions applied for within the scheme (livestock fencing and 

alternative watering) do not actually directly mitigate pesticide risk, and the uptake of 

interventions that do directly address pesticide risk components (product substitution 

and artificial wetlands) was very poor. This finding affirms an important aspect of 

catchment management, which is the willingness of land managers and farmers to 

implement interventions (Blackstock et al., 2010; Beharry-Borg et al., 2013). Arguably, 

the interventions in the scheme that directly mitigate pesticides are more disruptive to 

the land owner than some of the others that may potentially add value to the farm 

(e.g. livestock fencing), which has potentially limited their uptake (Espinosa-Goded et 

al., 2010). Increasing the awareness among farmers of their impact on water quality 
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and the importance of certain interventions is therefore required to increase the 

uptake of interventions that mitigate the dominant risk components of problem 

pollutants and improve catchment water quality (Merrilees and Duncan, 2005). 

The contributions and implications of the research to water industry catchment 

management schemes are also applicable to other organisations wanting to 

characterise diffuse pollution processes for the purposes of intervention selection and 

targeting. For example Catchment Sensitive Farming officers in England could use the 

framework and models to assess risk on farms wanting to apply for a grant from the 

Countryside Stewardship scheme (Natural England, 2015), such a use also extends to 

SEPAs diffuse pollution priority catchment work where farmers are encouraged to 

apply for funding from the Scottish Rural Development Fund (DPMAG, 2012). Similarly, 

the framework can also be used by other catchment management organisations to 

define risks and prioritise interventions e.g. Rivers Trusts and NGO’s (e.g. the RSPB). 

8.3.2 Catchment management decision making and pollutant modelling 

research 

The findings generated within the thesis also have wider contributions and 

implications to general catchment management decision making and catchment scale 

pollutant modelling research outside of the specific application to the water industry. 

Beven and Alcock (2012) argue that within catchment management decision making 

there is a need for “models of everything everywhere”. That is, there is a need for 

simple models capable of being applied in many places in order to drive understanding 

and learning about complex catchment processes. The development of CaRPoW and 

its associated methodologies can be seen as the development of a model for 

everything (multiple pollutants), everywhere (generic application).  

To a certain extent, the findings from the thesis have developed learning on catchment 

pollutant processes by identifying the successes and limitations of the methodologies. 

For example the simple pesticide fate model developed upon the basis of the first 

rainfall event after application was successful at representing pesticide loading in the 

catchment for a number of the pesticides modelled. These outcomes further build on 
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the understanding of pesticide mobilisation dynamics and suggest that simple models 

provide a reasonable representation of pesticide mobilisation (as validated by the 

storm sampling). In converse, the poor spatial representation of some of the pesticide 

source processes (i.e. spot applied pesticides) suggests that higher resolution input 

data are required to effectively represent source processes at the field scale. 

Therefore, there is a development in understanding in what can and cannot be 

represented with the generally applied modelling approaches of CaRPoW. In turn this 

drives future model development and catchment process understanding. 

Comparing the risk of multiple pollutants within the same modelling framework also 

adds to understanding on the shared risk components of different pollutants. 

Subsequently, this builds on emerging research on the interactions of different 

pollutants within a catchment and the phenomena of multiple pollutant benefits from 

interventions and pollutant swapping (Stevens and Quinton, 2009). For example, the 

spatial concurrence of nitrate risk with some of the pesticides outlines potential for 

multiple benefits with single interventions, especially in the shared high risk areas that 

have a high potential for mobilisation and delivery interventions. Not only are spatial 

interactions in the risks of these pollutants highlighted, but also the interactions of 

their source, mobilisation and delivery processes. A comparison approach of this kind 

has rarely been utilised in other models and is something that is unique within 

CaRPoW for the purposes of decision making. 

The novel approach taken in the representation of pollutant delivery at the catchment 

scale also adds to the literature on hydrological connectivity representation. A variety 

of different modelling approaches have been developed previously (Bracken et al., 

2013). Many of the methodologies developed are based on topography as a driver of 

water movement across a catchment, where the steeper the slope and the shorter the 

distance to a water body the higher the connectivity (e.g. Lane et al., 2009; Buchanan 

et al., 2013). However, very few of the methods include physical landscape features 

that either enhance (e.g. ditches) or reduce (e.g. hedged field boundaries) 

connectivity. The approach developed within the thesis explicitly considers such 

landscape features within a topographical representation of hydrological connectivity 
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and therefore builds upon the capabilities of topography based hydrological 

connectivity models. 

8.4 Recommendations for future work 

There are a number of recommendations for future research that aim to reduce the 

uncertainty in the modelling methods, initiate the implementation of CaRPoW or 

develop new research tangents using the CaRPoW approach. These include but are not 

exclusive of: 

• Applying the CaRPoW methodology in more drinking water source 

catchments to test the generic applicability of the approach and models. 

Specifically, testing the methodology in catchments with different 

characteristics to the River Ugie. The framework could also be implemented 

outside of the UK context for drinking water source protection in both 

Europe and Internationally. 

• Using the CaRPoW framework to assess the risks of more pollutants than 

those in this thesis. Potential candidates (and pollutants that concern the 

water industry in some catchments) include bacteriological pollutants (e.g. 

faecal indicator organisms, cryptosporidium, E.coli etc.) and heavy metals 

(e.g. manganese). 

• The criteria developed in chapter 3 was for Scottish catchments where the 

predominate drinking water sources are from surface water catchments. 

Future work could therefore go into adapting the framework for 

groundwater sources where mobilisation concerns the movement of a 

pollutant through the soil and into an aquifer and delivery the transit time 

of the pollutant across the aquifer to the borehole from which water is 

abstracted. Such work will widen the applicability of the framework to areas 

that are dominated by groundwater. 

• Higher resolution data needs to be collected on the risk components of 

certain pollutants to improve the load prediction. For example, a more 

detailed understanding of where spot applied pesticides are likely to be 
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applied. Integrating local knowledge from agronomists and farmers may 

elucidate this understanding (Dolan et al., 2014). Similarly, detailed data on 

vegetation patterns and the condition of peat soils (Parry et al., 2015) 

would allow DOC and colour modelling within the CaRPoW approach. 

• A better methodology is required to collect water quality data against 

which to validate the spatial CaRPoW models. The grab samples and 

targeted storm events were still open to high uncertainty when calculating 

annual loads with the various load calculation methods. The use of passive 

samplers for pesticides (e.g. Alvarez et al., 2008) and real time turbidity and 

nutrient sensors (e.g. Owen et al., 2012) could be a useful future research 

avenue for spatial model validation.  Similarly the automated water quality 

sampling stations implemented in the Demonstration Test Catchment (DTC) 

project (e.g. Outram et al., 2014) represent a key step forward in high 

resolution monitoring and will provide a much more reliable dataset against 

which to validate models such as CaRPoW. 

• Likewise more research is required to better understand some of the 

processes represented by CaRPoW at the catchment scale. Hydrological 

connectivity for example is not fully understood and no unified theory of 

connectivity at the catchment scale is accepted (Bracken et al., 2013). As 

monitoring improves (e.g. with the DTC project) and more is understood, 

models can be updated within the CaRPoW approach which will better be 

able to represent risks in drinking water catchments. 

• Research on the potential impacts of future scenarios of environmental 

change (climate change and land use change, e.g. Dunn et al., 2012) on the 

risks posed by multiple pollutants can be undertaken using the CaRPoW 

framework to determine future risks to potable water supplies. 

• The development of a methodology within CaRPoW to assess the 

effectiveness of interventions is recommended. Involving the incorporation 

of field data on the effectiveness of measures at reducing multiple pollutant 

loads would be one possible way of achieving this (e.g. Cherry et al., 2008). 
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By doing this, a further dimension to the decision making process would be 

added, allowing the effectiveness of different intervention scenarios to be 

assessed. 

 

8.5 Conclusions 

In conclusion, this thesis has demonstrated the development of a water industry 

defined methodology capable of identifying multiple diffuse pollution risks within a 

catchment for the selection and targeting of catchment management interventions. 

The CaRPoW framework has been developed on the basis that catchment diffuse 

pollution processes can be disaggregated into source, mobilisation and delivery 

groupings. The relative dominance of these process groupings defines the risk posed 

by an area of land within a catchment and interventions can be selected according to 

the most dominant risk component in each land area. Modelling methodologies were 

developed for each risk component and implemented in a case study catchment. Over 

half of the models represented the spatial distribution of pollutant loads successfully 

within the limits of uncertainty for both the models and the validation data. The 

unsuccessful model predictions were hypothesised to be because of the simple 

averaged nature of the model methods developed or uncertainty in the poor 

resolution of water quality data against which models were validated. Future work 

therefore lies in the collection of higher resolution model input and model validation 

data. When a real world catchment management programme was compared against 

model outputs theoretical savings and missed opportunities for intervention 

investment were identified. Overall the approach developed gives water companies 

and other implementers of catchment management a better insight into the spatial 

distribution of diffuse pollution risks within their catchments, and a mechanism to 

prioritise parts of the catchment for certain interventions.



 

213 

REFERENCES 

ADAS. 2001. Making better use of livestock manures on grasslands. Booklet 2, 

Managing Livestock Manures. 1-24. 

Akay, O., Fox, G. A., 2007. Experimental Investigation of Direct Connectivity between 

Macropores and Subsurface Drains during Infiltration. Soil Sci. Soc. Am. J. 71, 

1600. 

Allen, R.G., Smith, M., Pereira, L.S. and Perrier, A., 1994. An update for the calculation 
of reference evapotranspiration. ICID Bulletin. 43:2, 35-92. 

Allen, R., L. S Pereira, Raes, D and Smith, M., 1998. Crop evapotranspiration. Guidelines 

for computing crop water requirements, Irrigation and drainage paper 56. FAO, 
Rome. 

Allingham, K.D., Cartwright, R., Donaghy, D., Conway, J.S., Jarvis, S.C., Goulding, K.W.T., 

2002. Nitrate leaching losses and their control in a mixed farm system in the 
Cotswold Hills, England. Soil Use Manag. 18, 421–427. 

Alvarez, D.A., Cranor, W.L., Perkins, S.D., Clark, R.C., Smith, S.B., 2008. Chemical and 

toxicological assessment of organic contaminants in surface water using passive 
samplers. J. Environ. Qual. 37, 1024–1033. 

Arias-Estévez, M., López-Periago, E., Martínez-Carballo, E., Simal-Gándara, J., Mejuto, 

J.-C., García-Río, L., 2008. The mobility and degradation of pesticides in soils and 
the pollution of groundwater resources. Agric. Ecosyst. Environ. 123, 247–260. 

Armstrong, A., Holden, J., Kay, P., Foulger, M., Gledhill, S., Mcdonald, A.T., Walker, A., 

2009. Drain-blocking techniques on blanket peat : A framework for best practice. 
J. Environ. Manage. 90, 3512–3519. 

Beharry-Borg, N. Smart, .J.C.R., Termansen, M., Hubacek, K., 2013. Evaluating farmers ’ 

likely participation in a payment programme for water quality protection in the 
UK uplands. Reg. Environ. Change.13,  633–647. 

Bergström, L.F. and Johansson, R. 1991. Leaching of nitrate from monolith lysimiters of 

different types of agricultural soils. Journal of Environmental Quality. 20:4, 801-
807.  

Beven, K.J., Alcock, R.E., 2012. Modelling everything everywhere: a new approach to 

decision-making for water management under uncertainty. Freshw. Biol. 57, 124–
132. 



 

214 

Billett, M., Charman, D., Clark, J., Evans, C., Evans, M., Ostle, N., Worrall, F., Burden, a, 

Dinsmore, K., Jones, T., McNamara, N., Parry, L., Rowson, J., Rose, R., 2010. 

Carbon balance of UK peatlands: current state of knowledge and future research 
challenges. Clim. Res. 45, 13–29. 

Bilotta, G.S., Brazier, R.E., 2008. Understanding the influence of suspended solids on 
water quality and aquatic biota 42, 2849–2861. 

Bilotta, G.S., Krueger, T., Brazier, R.E., Butler, P., Freer, J., Hawkins, J.M.B., Haygarth, 

P.M., Macleod, C.J.A., Quinton, J.N., 2010. Assessing catchment-scale erosion and 

yields of suspended solids from improved temperate grassland. J. Environ. Monit. 
12, 731–9. 

Blackstock, K.L., Ingram, J., Burton, R., Brown, K.M., Slee, B., 2010. Understanding and 

influencing behaviour change by farmers to improve water quality. Sci. of the Tot. 
Env. 408:23, 5631-5638. 

Blake, W.H., Ficken, K.J., Taylor, P., Russell, M.A., Walling, D.E., 2012. Tracing crop-

specific sediment sources in agricultural catchments. Geomorphology 139-140, 
322–329. 

Bloodworth, J.W., Holman, I.P., Burgess, P.J., Gillman, S., Frogbrook, Z., Brown, P., 

2015. Developing a multi-pollutant conceptual framework for the selection and 

targeting of interventions in water industry catchment management schemes. J. 
Environ. Manage. 161, 153–162. 

Bonnett, S.A.F., Ostle, N. and Freeman, C. 2006. Seasonal variations in decomposition 

processes in a valley-bottom riparian peatland. Science of the Total Environment. 

370:2-3, 561-573.  

Boorman, D.B., Hollis, J.M., Lilly, A., 1995. Hydrology of soil types: a hydrologically 

based classification of the soils of the United Kingdom. Report Number 126, 
Institute of Hydrology, Natural Environment Research Council, Wallingford.  

Börling, A., 2003. Phosphorus Sorption , Accumulation and Leaching: Effects of long-

term inorganic fertilization of cultivated soils. Unpublished PhD Thesis. Uppsala 
University. 

Bracken, L.J., Wainwright, J., Ali, G. a., Tetzlaff, D., Smith, M.W., Reaney, S.M., Roy, a. 

G., 2013. Concepts of hydrological connectivity: Research approaches, pathways 
and future agendas. Earth-Science Rev. 119, 17–34. 

Brandt, C.J., 1990. Simulation of the size distribution and erosivity of raindrops and 
throughfall drops. Earth Surface Processes and Landforms. 15, 687–98. 



 

215 

Brisson, N., 1998. An analytical solution for the estimation of the critical available soil 

water fraction for a single layer water balance model under growing crops. 
Hydrology and Earth Science Systems. 2, 221-231. 

British Crop Protection Council., 2013. The UK Pesticide Guide. [online]. Available from 
http://www.ukpesticideguide.co.uk/ 

Brix, H., 1994. Use of contructed wetlands in water pollution control: Historical 

development, present status and future perspectives. Wat. Sci and Tech. 30:8, 
209-223. 

Brown, C.D., Bellamy, P.H., Dubus, I.G., 2002. Prediction of pesticide concentrations 
found in rivers in the UK. Pest Manag. Sci. 58, 363–73. 

Brown, C.D., Hollis, J.M., 1996. SWAT—A Semi-empirical Model to Predict 

Concentrations of Pesticides Entering Surface Waters from Agricultural Land. 
Pestic. Sci. 47, 41–50. 

Brown, C.D., van Beinum, W., 2009. Pesticide transport via sub-surface drains in 
Europe. Environ. Pollut. 157, 3314–24. 

Buchanan, B.P., Archibald, J. A., Easton, Z.M., Shaw, S.B., Schneider, R.L., Todd Walter, 

M., 2013. A phosphorus index that combines critical source areas and transport 
pathways using a travel time approach. J. Hydrol. 486, 123–135. 

Buckingham, S., Tipping, E., Hamilton-Taylor, J., 2008. Concentrations and fluxes of 
dissolved organic carbon in UK topsoils. Sci. Total Environ. 407, 460–70. 

Butler, D.M., Ranells, N.M., Franklin, D.H., Poore, M.H. and Green J.T. 2008. Runoff 

water quality from manured riparian grasslands with contrasting drainage and 

simulated grazing pressure. Agriculture Ecosystems and Environment. 126, 250-
260. 

Carter, J., Owens, P.N., Walling, D.E., Leeks, G.J.L. 2003. Fingerprinting suspended 

sediment sources in a large urban river system. Science of the Total Environment. 
314-316, 513-534. 

CEH. 2015. National River Flow Archive. [online]. Available from 
http://nrfa.ceh.ac.uk/data/station/info/10002 

Cherry, K. A, Shepherd, M., Withers, P.J. A, Mooney, S.J., 2008. Assessing the 

effectiveness of actions to mitigate nutrient loss from agriculture: a review of 
methods. Sci. Total Environ. 406, 1–23. 



 

216 

Chinalia, F.A., Killham, K.S., 2006. 2,4-Dichlorophenoxyacetic acid (2,4-D) 

biodegradation in river sediments of Northeast-Scotland and its effect on the 
microbial communities (PLFA and DGGE). Chemosphere 64, 1675–83. 

Choi, Y., Bohan, D., Powers, S., Wiltshire, C., Glen, D., Semenov, M., 2004. Modelling 

Deroceras reticulatum (Gastropoda) population dynamics based on daily 
temperature and rainfall. Agric. Ecosyst. Environ. 103, 519–525. 

Chow, V.T., 1959. Open-channel hydraulics. New York, McGraw-Hill, 680 p. 

Christensen, T., Pedersen, A.B., Nielsen, H.O., Mørkbak, M.R., Hasler, B., Denver, S., 

2011. Determinants of farmers’ willingness to participate in subsidy schemes for 
pesticide-free buffer zones-A choice experiment study. Ecol. Econ. 70, 1558–1564. 

Clark, J.M., Lane, S.N., Chapman, P.J., Adamson, J.K., 2007. Export of dissolved organic 

carbon from an upland peatland during storm events: Implications for flux 
estimates. J. Hydrol. 347, 438–447. 

Clark, J.M., Lane, S.N., Chapman, P.J., Adamson, J.K., 2008. Link between DOC in near 

surface peat and stream water in an upland catchment. Sci. Total Environ. 404, 
308–15. 

Clark, M.J., Cresser, M.S., Smart, R., Chapman, P.J., Edwards, A. C., 2004. The influence 

of catchment characteristics on the seasonality of carbon and nitrogen species 
concentrations in upland rivers of Northern Scotland. Biogeochemistry 68, 1–19. 

Collins, A.L., Anthony, S.G., Hawley, J., Turner, T., 2009. Catena The potential impact of 

projected change in farming by 2015 on the importance of the agricultural sector 
as a sediment source in England and Wales. Catena 79, 243–250. 

Comber, S.D., Smith, R., Daldorph, P., Gardner, M.J., Constantino, C., Ellor, B., 2013. 

Development of a chemical source apportionment decision support framework 
for catchment management. Environ Sci Technol. 47(17), 9824-9832. 

Council Directive 91/271/EEC of 21 May 1991 concerning urban waste-water 
treatment. 

Council Directive 98/83/EC of 3 November 1998 on the quality of water intended for 
human consumption as amended by Regulations 1882/2003/EC and 596/2009/EC. 

Council Directive 2000/60/EC of the European Parliament and the Council of 23 

October 2000 establishing a framework for Community action in the field of water 
policy. 

Crossman, J., Whitehead, P.G., Futter, M.N., Jin, L., Shahgedanova, M., Castellazzi, M., 

Wade, a J., 2013. The interactive responses of water quality and hydrology to 



 

217 

changes in multiple stressors, and implications for the long-term effective 
management of phosphorus. Sci. Total Environ. 454-455, 230–44. 

Davison, P.S., Withers, P.J.A., Lord, E.I., Betson, M.J., Stro, J., 2008. PSYCHIC – A 

process-based model of phosphorus and sediment mobilisation and delivery 

within agricultural catchments . Part 1 : Model description and parameterisation. 
J. of Hydrology. 350, 290–302. 

Dawson, J.J., Smith, P., 2010. Integrative management to mitigate diffuse pollution in 
multi-functional landscapes. Curr. Opin. Environ. Sustain. 2, 375–382. 

Dawson, J.J.C., Smith, P., 2007. Carbon losses from soil and its consequences for land-
use management. Sci. Total Environ. 382, 165–90. 

Dawson, J.J.C., Tetzlaff, D., Speed, M., Hrachowitz, M., Soulsby, C., 2011. Seasonal 

controls on DOC dynamics in nested upland catchments in NE Scotland. Hydrol. 
Process. 25, 1647–1658. 

De Kok, J.-L., Kofalk, S., Berlekamp, J., Hahn, B., Wind, H., 2008. From Design to 

Application of a Decision-support System for Integrated River-basin Management. 
Water Resour. Manag. 23, 1781–1811. 

Deasy, C., Brazier, R.E., Heathwaite, A.L., Hodgkinson, R., 2009. Pathways of runoff and 

sediment transfer in small agricultural catchments. Hydrol. Process. 1358, 1349–
1358. 

Defew, L.H., May, L., Heal, K. V., 2013. Uncertainties in estimated phosphorus loads as 

a function of different sampling frequencies and common calculation methods. 
Mar. Freshw. Res. 64, 373–386. 

Department for Environment Food and Rural Affairs (DEFRA). 2010. Fertiliser Manual 
(RB209), eighth ed., June 2010. 

Di, H.J., Cameron, K.C., 2002. Nitrate leaching in temperate agroecosystems : sources , 

factors and mitigating strategies. Nut, Cyc. Agroecosystems 46, 237–256. 

Diaz, F.J., O'Geen, A.T., Dahlgren, R.A., 2012. Agricultural pollutant removal by 

contructed wetlands: Implications for water management and design. Agri. Wat. 
Manag. 104, 181-183. 

Djodjic, F., Börling, K., Bergström, L., 2004. Phosphorus leaching in relation to soil type 
and soil phosphorus content. J. Environ. Qual. 33, 678–84. 

Dolan, T., Parsons, D.J., Howsam, P., Whelan, M.J., Varga, L., 2014. Identifying 

Adaptation Options and Constraints: The Role of Agronomist Knowledge in 
Catchment Management Strategy. Water Resour. Manag. 28, 511–526. 



 

218 

Domburg, P., Edwards, A.C., Sinclair, A.H., Wright, G.G., Ferrier, R.C., 1998. Changes in 

fertilizer and manurial practices during 1960 – 1990 : implications for N and P 

inputs to the Ythan catchment , N . E . Scotland. Nutr. Cycl. Agroecosystems 19–
29. 

Doody, D.G., Archbold, M., Foy, R.H., Flynn, R., 2012. Approaches to the 

implementation of the Water Framework Directive: targeting mitigation measures 

at critical source areas of diffuse phosphorus in Irish catchments. J. Environ. 
Manage. 93, 225–34. 

DPMAG, 2012. Rural diffuse pollution plan for Scotland. [online]. Accessed on 

24/01/2016. Available at http://www.sepa.org.uk/media/37557/rural-diffuse-
pollution-plan-scotland.pdf 

Dunn, S.M., Lilly, a., DeGroote, J., Vinten, a. J. a., 2004. Nitrogen Risk Assessment 

Model for Scotland: II. Hydrological transport and model testing. Hydrol. Earth 
Syst. Sci. 8, 205–219. 

Dunn, S.M., Brown, I., Sample, J., Post, H., 2012. Relationships between climate, water 

resources, land use and diffuse pollution and the significance of uncertainty in 

climate change. J. Hydrol. 434-435, 19–35. 

Dunn, S.M., Johnston, L., Taylor, C., Watson, H., Cook, Y., Langan, S.J., 2013. Capability 

and limitations of a simple grid-based model for simulating land use influences on 
stream nitrate concentrations. J. Hydrol. 507, 110–123. 

Edwards, A. C., Withers, P.J. A., 2008. Transport and delivery of suspended solids, 

nitrogen and phosphorus from various sources to freshwaters in the UK. J. Hydrol. 
350, 144–153. 

Edwards, A.C., Kay, D., Mcdonald, A.T., Francis, C., Watkins, J., Wilkinson, J.R., Wyer, 

M.D., 2008. Farmyards , an overlooked source for highly contaminated runoff. J. 
Env. Manag. 87, 551–559. 

Edwards, A.C., Withers, P.J.A., 1998. Soil phosphorus management and water quality: 
A UK perspective. Soil Use and Manag. 14, 124-130. 

EPA., 1996. The Watershed Approach. EPA 840-S-96-001. 

Espinosa-Goded, M., Barreiro-Hurlé, J., Ruto, E., 2010. What do farmers want from 

agri-environmental scheme design? A choice experiment approach. J. Agric. Econ. 
61, 259–273. 

European Food Safety Authority., 2010. Conclusion on the peer review of the pesticide 
risk assessment for the active substance metaldehyde. EFSA Journal. 8:10, 1856. 



 

219 

Evans, C.D., Chapman, P.J., Clark, J.M., Monteith, D.T., Cresser, M.S., 2006. Alternative 

explanations for rising dissolved organic carbon export from organic soils. Glob. 
Chang. Biol. 12, 2044–2053. 

Evans, C.D., Monteith, D.T., Cooper, D.M., 2005. Long-term increases in surface water 

dissolved organic carbon: observations, possible causes and environmental 
impacts. Environ. Pollut. 137, 55–71. 

Flynn, N.J., Withers, P.J.A., 2001. The Environmental Impact of Phosphorus from the 

Agricultural Use of Sewage Sludge. Proj. Rep. SL-02. The United Kingdom Water 
Industry Research Ltd, Queen Anne’s Gate, London, United Kingdom. 

FOCUS., 2008. Pesticides in air: considerations for exposure assessment. Report of the 

FOCUS Working Group on Pesticides in Air, EC Document Reference 

SANCO/10553/2006 Rev 2 June 2008. 327 pp. 

Foster, J.A., Mcdonald, A.T., 2000. Assessing pollution risks to water supply intakes 
using geographical information systems ( GIS ). Env. Mod. and Softw. 15, 225–234. 

Freeman, C., Evans, C.D., Monteith, D.T., Reynolds, B., Fenner, N., 2001. Export of 
organic carbon from peat soils. Nature 412, 785. 

Freeman, C., Fenner, N., Ostle, N.J., Kang, H., Dowrick, D.J., Reynolds, B., Lock, M. A, 

Sleep, D., Hughes, S., Hudson, J., 2004. Export of dissolved organic carbon from 
peatlands under elevated carbon dioxide levels. Nature 430, 195–8. 

Gascuel-Odoux, C., Aurousseau, P., Cordier, M.-O., Durand, P., Garcia, F., Masson, V., 

Salmon-Monviola, J., Tortrat, F., Trepos, R., 2009. A decision-oriented model to 

evaluate the effect of land use and agricultural management on herbicide 
contamination in stream water. Environ. Model. Softw. 24, 1433–1446. 

Gavrilescu, M., 2005. Fate of Pesticides in the Environment and its Bioremediation. 
Eng. Life Sci. 5, 497–526. 

Geohring, L.D., Mchugh, O. V, Walter, M.T., Steenhuis, T.S., Akhtar, M.S., Walter, M.F., 

2001. PHOSPHORUS TRANSPORT INTO SUBSURFACE DRAINS BY MACROPORES 
AFTER MANURE APPLICATIONS. Soil Sci. 166, 896–909. 

Gil, Y., Sinfort, C., 2005. Emission of pesticides to the air during sprayer application: A 
bibliographic review. Atmos. Environ. 39, 5183–5193. 

Goody .N, Gosling .R, Copestake P., 2010. Time series flow modelling at ungauged 

sites: a simple transformation approach to aid water resources regulation. In: 

Proceedings of BHS Third International Symposium, Managing Consequences of a 
Changing Global Climate, Newcastle 2010. 



 

220 

Gooday, R.D., Anthony, S. 2010. Mitigation method centric framework for evaluating 
cost-effectiveness. Defra project WQ0106 (Module 3). 

Gooday, R.D., Anthony, S.G., Chadwick, D.R., Newell-Price, P., Harris, D., Duethmann, 

D., Fish, R., Collins, A.L., Winter, M., 2014. Modelling the cost-effectiveness of 

mitigation methods for multiple pollutants at farm scale. Sci. Total Environ. 468-
469, 1198–209. 

Granger, S.J., Bol, R., Anthony, S., Owens, P.N., White, S.M., Haygarth, P.M. 2010. 

Towards a Holistic Classification of Diffuse Agricultural Water Pollution from 

Intensively Managed Grasslands on Heavy Soils. Advances in Agronomy. 105, 83-
115. 

Graves, A.R., Burgess, P.J., Liagre, F., Terrueax, J.-P., Dupraz, C., 2005. Development 

and use of a framework for characterising computer models of silvoarable 
economics. Agroforestry Systems. 65, 53-65. 

Grayson, R., Kay, P., Foulger, M., Gledhill, S., 2012. A GIS based MCE model for 

identifying water colour generation potential in UK upland drinking water supply 
catchments. J. Hydrol. 420-421, 37–45. 

Gregoire, C., Elsaesser, D., Huguenot, D., Lange, J., Lebeau, T., Merli, A., Mose, R., 

Passeport, E., Payraudeau, S., Schütz, T., Schulz, R., Tapia-Padilla, G., Tournebize, 

J., Trevisan, M., Wanko, A., 2008. Mitigation of agricultural nonpoint-source 

pesticide pollution in artificial wetland ecosystems. Environ. Chem. Lett. 7, 205–
231. 

Guo, L., Nordmark, C.E., Spurlock, F.C., Johnson, B.R., Li, L., Lee, J.M., Goh, K.S., 2004. 

Characterizing dependence of pesticide load in surface water on precipitation and 

pesticide use for the Sacramento River watershed. Environ. Sci. Technol. 38, 
3842–52. 

Gustard, A., Bullock. A., Dixon, J.M., 1992. Low flow estimation in the United Kingdom 
– IH Report 108. 

Harris, B., 2013. The Catchment Based Approach. IAH (Irish Group) Conference 
“Groundwater & Catchment Management”, Tullamore. 1-8. 

Hart, M.R., Quin, B.F., Nguyen, M.L. 2004. Phosphorus runoff from agricultural land 
and direct fertiliser effects: A review. J. of Env. Qual. 33, 1954-1972. 

Haygarth, P.M., and S.C. Jarvis., 1999. Transfer of phosphorus from agricultural soils. 
Adv. Agron. 66, 195–249. 



 

221 

Haygarth, P.M., Apsimon, H., Betson, M., Harris, D., Hodgkinson, R., Withers, P.J. A, 

2012. Mitigating diffuse phosphorus transfer from agriculture according to cost 
and efficiency. J. Environ. Qual. 38, 2012–22. 

Haygarth, P.M., Bilotta, G.S., Bol, R., Brazier, R.E., Butler, P.J., Freer, J., Gimbert, L.J., 

Granger, S.J., Krueger, T., Macleod, C.J.A., Naden, P., Old, G., Quinton, J.N., Smith, 

B., Worsfold, P., 2006. Processes affecting transfer of sediment and colloids , with 

associated phosphorus , from intensively farmed grasslands : An overview of key 
issues. Hydrol. Process. 4413, 4407–4413. 

Haygarth, P.M., Condron, L.M., Heathwaite, A.L., Turner, B.L., Harris, G.P., 2005. The 

phosphorus transfer continuum: linking source to impact with an interdisciplinary 
and multi-scaled approach. Sci. Total Environ. 344, 5–14. 

Heathwaite, A.L., Griffiths, P., Parkinson, R.J. 1998. Nitrogen and phosphorus in runoff 

from grassland with buffer strips following application of fertilisers and manures. 
Soil Use and Land Management. 14, 142-148. 

Heathwaite, A., Dils, R., 2000. Characterising phosphorus loss in surface and subsurface 
hydrological pathways. Sci. Total Environ. 251-252, 523–38. 

Heathwaite, A., Fraser, A. I., Johnes, P.J., Hutchins, M., Lord, E., Butterfield, D., 2003. 

The Phosphorus Indicators Tool: a simple model of diffuse P loss from agricultural 
land to water. Soil Use Manag. 19, 1–11. 

Hess, T., Counsell, C., 2000. A water balance simulations for teaching and learning - 

WaSim. ICID British section irrigation and draiange research day 29 March 2000, 
HR Wallingford. 

Hess, T.M., Holman, I.P., Rose, S.C., Rosolova, Z., Parrott, A., 2010. Estimating the 

impact of rural land management changes on catchment runoff generation in 
England and Wales. Hydro. Proc. 24, 1357-1368. 

Hewett, C.J.M., Quinn, P.F., Heathwaite, A. L., Doyle, A., Burke, S., Whitehead, P.G., 

Lerner, D.N., 2009. A multi-scale framework for strategic management of diffuse 
pollution. Environ. Model. Softw. 24, 74–85. 

Hewett, C.J.M., Quinn, P.F., Whitehead, P.G., Heathwaite, A. L., Flynn, N.J., 2004. 

Towards a nutrient export risk matrix approach to managing agricultural pollution 
at source. Hydrol. Earth Syst. Sci. 8, 834–845. 

Hodgkinson, R., Chambers, B., Withers, P.J., Cross, R., 2002. Phosphorus losses to 

surface waters following organic manure applications to a drained clay soil. Agric. 
Water Manag. 57, 155–173. 



 

222 

Hodgkinson, R.A., Withers, P.J.A., 2007. Sourcing , transport and control of phosphorus 
loss in two English headwater catchments. Society 23, 92–103. 

Holden, J., 2005. Peatland hydrology and carbon release: why small-scale process 
matters. Philos. Trans. A. Math. Phys. Eng. Sci. 363, 2891–913. 

Holman, I.P., Quinn, J.M.A., Konx, J.W., Hess, T.M., 2005. National groundwater 

recharge assessment – crop calendar dataset. R & D Technical Report. Institute of 

Water and Environment, Cranfield University and Environment Agency, Bristol. 

Holman, I.P., Hess, T.M., Rose, S.C. 2011. A broad-scale assessment of the effect of 

improved soil management on catchment baseflow index. Hydro. Proc. 25, 2563-
2572. 

Holzwarth, F., 2002. The EU Water Framework Directive – a key to catchment-based 
governance. Water Sci. and Tech. 45:8, 105–112. 

Hooda, P.S., Edwards, A.C., Anderson, H.A., Miller, A., 2000. A review of water quality 
concerns in livestock farming areas. Sci. Total Environ. 250, 143–67. 

Hunt, J.W., Anderson, B.S., Phillips, B.M., Tjeerdema, R.S., Richard, N., Connor, V., 

Worcester, K., Angelo, M., Bern, A., Fulfrost, B., Mulvaney, D., 2006. Spatial 

relationships between water quality and pesticide application rates in agricultural 
watersheds. Environ. Monit. Assess. 121, 245–62. 

James, E.E., Kleinman, P.J.A., Veith, T., Stedman, R., Sharpley, A.N. 2007. Phosphorus 

contributions from pastured dairy cattle to streams. J Soil Water Conserv. 62, 40–
47 

Jarvie, H.P., Jürgens, M.D., Williams, R.J., Neal, C., Davies, J.J.L., Barrett, C., White, J., 

2005. Role of river bed sediments as sources and sinks of phosphorus across two 

major eutrophic UK river basins: the Hampshire Avon and Herefordshire Wye. J. 
Hydrol. 304, 51–74. 

Jarvie, H.P., Lycett, E., Neal, C., Love, A., 2002. Patterns in nutrient concentrations and 

biological quality indices across the upper Thames river basin, UK. Sci. Total 
Environ. 282-283, 263–294. 

Jarvie, H.P., Withers, P.J.A., Bowes, M.J., Palmer-Felgate, E.J., Harper, D.M., Wasiak, K., 

Wasiak, P., Hodgkinson, R.A., Bates, A., Stoate, C., Neal, M., Wickham, H.D., 

Harman, S.A., Armstrong, L.K., 2010. Streamwater phosphorus and nitrogen 

across a gradient in rural–agricultural land use intensity. Agric. Ecosyst. Environ. 
135, 238–252. 

Jenks, G.F., 1967. The Data Model Concept in Statistical Mapping. International 
Yearbook of Cartography. 7, 186-190 



 

223 

Kay, A. L., Davies, H. N., 2008 Calculating potential evaporation from climate model 

data: a source of uncertainty for hydrological climate change impacts. Journal of 
Hydrology, 358:3-4, 221-239. 

Kay, P., Edwards, A.C., Foulger, M., 2009. A review of the efficacy of contemporary 

agricultural stewardship measures for ameliorating water pollution problems of 
key concern to the UK water industry. Agric. Syst. 99, 67–75. 

Keirle, R., Hayes, C., 2007. A review of catchment management in the new context of 
drinking water safety plans. Water Environ. J. 21, 208–216. 

King, K.W., Balogh, J.C., 2010. Chlorothalonil and 2,4-D losses in surface water 
discharge from a managed turf watershed. J. Environ. Monit. 12, 1601–1612. 

Kinniburgh, J.H., Barnett, M., 2009. Orthophosphate concentrations in the River 
Thames: reductions in the past decade. Water Environ. J. 24, 107–115. 

Kladivco, E.J., Brown, L.C., Baker, J.L. 2001. Pesticide transport to subsurface tile drains 

in humid regions of North America. Critical Reviews in Environmental Science and 
Technology. 31:1, 1-62. 

Kleinman, P.J.A., Sharpley, A.N., McDowell, R.W., Flaten, D.N., Buda, A.R., Tao, L., 

Bergstrom, L., Zhu, Q., 2011. Managing agricultural phosphorus for water quality 
protection: principles for progress. Plant Soil 349, 169–182. 

Koehler, A.-K., Murphy, K., Kiely, G., Sottocornola, M., 2009. Seasonal variation of DOC 

concentration and annual loss of DOC from an Atlantic blanket bog in South 
Western Ireland. Biogeochemistry 95, 231–242. 

Kördel, W., Egli, H., Klein, M., 2008. Transport of pesticides via macropores (IUPAC 
Technical Report). Pure Appl. Chem. 80, 105–160. 

Kovacs, A., Honti, M., Zessner, M., Eder, A., Clement, A., Blöschl, G., 2012. Science of 

the Total Environment Identi fi cation of phosphorus emission hotspots in 

agricultural catchments. Sci. Total Environ. 433, 74–88. 

Kröger, R., Pierce, S.C., Littlejohn, K.A., Moore, M.T., Farris, J.L., 2012. Decreasing 

nitrate-N loads to coastal ecosystems with innovative drainage management 

strategies in agricultural landscapes: An experimental approach. Agri. Wat. 
Manag. 103, 162-166. 

Lane, S.N., Reaney, S.M., Heathwaite, a. L., 2009. Representation of landscape 

hydrological connectivity using a topographically driven surface flow index. Water 
Resour. Res. 45, 1-10. 



 

224 

Lawler, D.M., Petts, G.E., Foster, I.D.L., Harper, S., 2006. Turbidity dynamics during 

spring storm events in an urban headwater river system: the Upper Tame, West 
Midlands, UK. Sci. Total Environ. 360, 109–26. 

Leo, P., Eijsackers, H.J.P., Koelmans, A.A., Vijver, M.G., 2008. Ecological effects of 

diffuse mixed pollution are site-specific and require higher-tier risk assessment to 

improve site management decisions: a discussion paper. Sci. Total Environ. 406, 
503–17. 

Leu, C., Singer, H., Stamm, C., Müller, S.R., Schwarzenbach, R.P., 2004. Variability of 

herbicide losses from 13 fields to surface water within a small catchment after a 
controlled herbicide application. Environ. Sci. Technol. 38, 3835–41. 

Lewan, E., Kreuger, J., Jarvis, N., 2009. Implications of precipitation patterns and 

antecedent soil water content for leaching of pesticides from arable land. Agric. 
Water Manag. 96, 1633–1640. 

Lindsay, J. 2014. The Whitebox GAT project. [online]. Available from 
http://www.uoguelph.ca/~hydrogeo/Whitebox/ 

Louchart, X., Voltz, M., Andrieux, P., Moussa, R., 2001. Herbicide transport to surface 

waters at field and watershed scales in a Mediterranean vineyard area. J. Environ. 
Qual. 30, 982–91. 

Macdonald, A. J., Poulton, P.R., Howe, M.T., Goulding, K.W.T., Powlson, D.S., 2005. The 

use of cover crops in cereal-based cropping systems to control nitrate leaching in 
SE England. Plant Soil 273, 355–373. 

Macintosh, K.A., Jordan, P., Cassidy, R., Arnscheidt, J., Ward, C., 2011. Low flow water 

quality in rivers; septic tank systems and high-resolution phosphorus signals. Sci. 
Total Environ. 412-413, 58–65. 

Marsh, T. J. and Hannaford, J. (Eds). 2008. UK Hydrometric Register. Hydrological data 
UK series. Centre for Ecology and Hydrology. 210 pp. 

Marshall, J.S. and Palmer, W.M., 1948. Relation of rain drop size to intensity. Journal of 
Meteorology. 5, 165–6. 

Mcdowell, R.W., Sharpley, A.N., Condron, L.M., Haygarth, P.M., Brookes, P.C., 2001. 

Processes controlling soil phosphorus release to runoff and implications for 

agricultural management. Nut. Cyc. Agroecosystems. 59, 269–284. 

Melesse, A.M., Graham, W.D., 2004. Storm runoff prediction based on a spatially 

distributed travel time method utilizing remote sensing and GIS. J. Am. Water 
Resour. Assoc. 40:4, 863–879. 



 

225 

Merrilees, D., Duncan, A., 2005. Review of attitudes and awareness in the agricultural 
industry to diffuse pollution issues. Water Sci. Technol. 51, 373–81. 

Millhollon, E.P., Rodrigue, P.B., Rabb, J.L., Martin, D.F., Anderson, R.A., Dans, D.R., 

2009. Designing a Constructed Wetland for the Detention of Agricultural Runoff 
for Water Quality Improvement. J. Environ. Qual. 38, 2458. 

Morgan, R.P.C., 2001. A simple approach to soil loss prediction: a revised Morgan– 

Morgan–Finney model. Catena. 44, 305–322. 

Morgan, R.P.C. 2005. Soil erosion and conservation. Blackwell, Oxford. pp 1-316. 

Morgan, R.P.C., Duzant, J.H., 2008. Modified MMF (Morgan–Morgan–Finney) model 

for evaluating effects of crops and vegetation cover on soil erosion. Earth Surf. 
Process. Landforms 33, 90–106. 

Ming-kui, Z., Li-ping, W., Zhen-li, H.E., 2007. Spatial and temporal variation of nitrogen 
exported by runoff from sandy agricultural soils. J. of Env. Sci. 19, 1086–1092. 

Naden, P. 2013. Spatial targeting of agri-environmental measures for mitigating diffuse 

water pollution: report of a workshop held on 16th July 2013. [online]. Avialable 

from http://www.demonstratingcatchmentmanagement.net/wp-
content/uploads/2013/11/DTC_workshop_on_spatial_targeting_report.pdf 

Natural England, 2015. Countryside Stewardship manual. [online]. Accessed on 

24/01/2016. Available from 

https://www.gov.uk/government/uploads/system/uploads/attachment_data/file
/480442/cs-manual-print-version.pdf 

Needelman, B.A., Kleinman, P.J.A., Strock, J.S., Allen, A.L. 2007. Improved management 

of agricultural drainage ditches for water quality protection: An overview. J. of 
Soil and Water Cons. 62:4. 171-178. 

New South Wales Government. 2003. Catchment Management Authorities Act 2003 

No 104. 

Newell Price, J.P., Harris, D., Taylor, M., Williams, J.R., Anthony, S.G., Duethmann, D., 

Gooday, R.D., Lord, E.I., Chambers, B.J., Chadwick, D.R. and Misselbrook, T.H., 

2011.  An Inventory of Mitigation Methods and Guide to their Effects on Diffuse 

Water Pollution, Greenhouse Gas Emissions and Ammonia Emissions from 

Agriculture.  Defra report WQ0106 

Nolan, B.T., Dubus, I.G., Surdyk, N., Fowler, H.J., Burton, A., Hollis, J.M., Reichenberger, 

S., Jarvis, N.J., 2008. Identification of key climatic factors regulating the transport 
of pesticides in leaching and to tile drains. Pest Manag. Sci. 944, 933–944. 



 

226 

Ordnance Survey. 2004. OS Mastermap User Guide. [online]. Available from 

www.geos.ed.ac.uk/~gisteac/proceedingsonline/Source%20Book%202004/SDI/N

ational/UK/Ordnance%20Survey/MasterMap/OS_Mastermap_User%20Guide_Ref
erence%20Section_v5-1_Feb04.pdf ordnance survey user guide 

Orr, P., Colvin, J., King, D., 2006. Involving stakeholders in integrated river basin 
planning in England and Wales. Water Resour. Manag. 21, 331–349. 

Oudin, L., Hervieu, F., Michel, C., Perrin, C., Andréassian, V., Anctil, F., Loumagne, C., 

2005. Which potential evapotranspiration input for a lumped rainfall–runoff 
model? J. Hydrol. 303, 290–306. 

Outram, F.N., Lloyd, C.E.M., Jonczyk, J., Benskin, C. McW. H., Grant, F., Perks, M.T., 

Deasy, C., Burke, S.P., Collins, A.L., Freer, J., Haygarth, P.M., Hiscock, K.M., Johnes, 

P.J. & Lovett, A.L., 2014. High-frequency monitoring of nitrogen and phosphorus 

response in three rural catchments to the end of the 2011–2012 drought in 
England. Hydrology and Earth System Sciences. 18, 3429-2014. 

Owen, G.J., Perks, M.T., Benskin, C.M.H., Wilkinson, M.E., Jonczyk, J., Quinn, P.F., 2012. 

Monitoring agricultural diffuse pollution through a dense monitoring network in 

the River Eden Demonstration Test Catchment, Cumbria, UK. Area 44, 443–453. 

Pärn, J., Pinay, G., Mander, Ü., 2011. Indicators of nutrients transport from agricultural 
catchments under temperate climate: A review. Ecol. Indic. 

Parry, L.E., Chapman, P.J., Palmer, S.M., Wallage, Z.E., Wynne, H., Holden, J., 2015. The 

influence of slope and peatland vegetation type on riverine dissolved organic 
carbon and water colour at different scales. Sci. Total Environ. 527-528, 530–539. 

Preedy, N., McTiernan, K., Matthews, R., Heathwaite, L., Haygarth, P., 2001. Rapid 
incidental phosphorus transfers from grassland. J. Environ. Qual. 30, 2105–12. 

Pullan, S. 2014. Modelling of pesticide exposure in ground and surface waters used for 
public water supply. Unpublished PhD thesis. Cranfield University. 

Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W.N. & Bemment, C.D., 2008. Nitrate 

attenuation in groundwater: A review of biogeochemical controlling processes. 
Water Research. 42, 4215-4232. 

Ruto, E., Garrod, G., 2009. Investigating farmers’ preferences for the design of agri- 

environment schemes: a choice experiment approach. Journal of Environmental 
Planning andManagement. 52:5, 631–647. 

Quinn, P., 2004. Scale appropriate modelling: representing cause-and-effect 

relationships in nitrate pollution at the catchment scale for the purpose of 
catchment scale planning. J. Hydrol. 291, 197–217. 



 

227 

Quinton, J.N., Catt, J.A., 2004. The effects of minimal tillage and contour cultivation on 

surface runoff, soil loss and crop yield in the long-term Woburn Erosion Reference 

Experiment on sandy soil at Woburn, England. Soil Use and Management. 20, 
343–349. 

Reay, G. 2010. Pesticide use in Scotland: Grassland and fodder crops. Science and 
Advice for Scottish Agriculture. 

Reichenberger, S., Bach, M., Skitschak, A., Frede, H.-G., 2007. Mitigation strategies to 

reduce pesticide inputs into ground- and surface water and their effectiveness; a 
review. Sci. Total Environ. 384, 1–35. 

Richards, P.R. 1998. Estimation of pollutant loads in rivers and streams: A guidance 

document for NPS programs. Estimation of Pollutant Loads in Rivers and Streams. 

US EPA Grant X998397-01-0. 

Riise, G., Lundekvam, H., Wu, Q.L., Haugen, L.E., Mulder, J., 2004. Loss of pesticides 

from agricultural fields in SE Norway--runoff through surface and drainage water. 
Environ. Geochem. Health 26, 269–76. 

Ritchie J. T., 1972. Model for predicting evaporation from a row crop with incomplete 
cover. Water Resources Res., 8:1204-1213. 

Roberts, W.M., Stutter, M.I., Haygarth, P.M., 2009. Phosphorus retention and 
remobilization in vegetated buffer strips: a review. J. Environ. Qual. 41, 389–99. 

SAC. 2013. Technical Note TN651: Nitrogen recommendations for cereals, oilseed rape 
and potatoes. Edinburgh, UK.  

Schulz, R. 2004. Field studies on exposure, effects, and risk mitigation of aquatic 
nonpoint-source insecticide pollution: a review. J Environ Qual. 33, 419–48. 

SEPA, 2011. Phase One Characterisation Report for the River Ugie Priority Catchment. 

Shaffer, M.J., Wylie, B.K., Follet, R.F., Bartlett, P.N.S., 1994. Using climate/weather data 
with the NLEAP model to manage soils nitrogen. Agr. Forest Meterol. 69, 111-123. 

Shigaki, F., Sharpley, A., Prochnow, L.I., 2007. Rainfall intensity and phosphorus source 

effects on phosphorus transport in surface runoff from soil trays. Sci. Total 
Environ. 373, 334–43. 

Silgram, M., Jackson, D.., Bailey, A., Quinton, J., Stevens, C., 2010. Hillslope scale 

surface runoff, sediment and nutrient losses associated with tramline wheelings. 
Earth Surf. Process. Landforms 706, 699-706. 



 

228 

Singleton, P.L., McLay, C.D.A. and Barkle, G.F. 2001. Nitrogen leaching from soil 

lysimeters irrigated with dairy shed effluent and having managed drainage. 
Australian Journal of Soil Research. 39:2.,385-396.  

Skinner, J.A., Lewis, K.A., Bardon, K.S., Tucker, P., Catt, J.A., Chambers, B.J., 1997. An 

Overview of the Environmental Impact of Agriculture in the U.K. J. Environ. 
Manage. 50, 111–128. 

Smith, B., Naden, P., Leeks, G., Wass, P., 2003. The influence of storm events on fine 

sediment transport, erosion and deposition within a reach of the River Swale, 
Yorkshire, UK. Sci. Total Environ. 314-316, 451–474. 

Smith, D.R., King, K.W., Johnson, L., Francesconi, W., Richards, P., Baker, D., Sharpley, 

A.N., 2015. Surface Runoff and Tile Drainage Transport of Phosphorus in the 

Midwestern United States. J. Environ. Qual. 44, 495. 

Smith, K. a, Jackson, D.R., Pepper, T.J., 2001. Nutrient losses by surface run-off 

following the application of organic manures to arable land. 1. Nitrogen. Environ. 
Pollut. 112, 41–51. 

Smith, K.A., 1998. Organic manure phosphorus accumulation, mobility and 
management. Soil Sci. 154–159. 

SNIFFER, 2006. Diffuse pollution screening tool: stage 3. SNIFFER project WFD 277 

Spark, K.M., Swift, R.S., 2002. Effect of soil composition and dissolved organic matter 
on pesticide sorption. Sci. Total Environ. 298, 147–61. 

Spiller, M., McIntosh, B.S., Seaton, R.A.F., Jeffrey, P., 2013. Implementing Pollution 

Source Control-Learning from the Innovation Process in English and Welsh Water 
Companies. Water Resour. Manag. 27, 75–94. 

Stevens, C.J., Quinton, J.N., 2009. Diffuse Pollution Swapping in Arable Agricultural 
Systems. Crit. Rev. Environ. Sci. Technol. 39, 478–520. 

Strauss, P., Leone, A., Ripa, M.N., Turpin, N., Lescot, J.-M., Laplana, R., 2007. Using 

critical source areas for targeting cost-effective best management practices to 

mitigate phosphorus and sediment transfer at the watershed scale. Soil Use 
Manag. 23, 144–153. 

Stromqvist, J., Collins, A.L., Davison, P.S., Lord, E.I., 2008. PSYCHIC – a process-based 

model of phosphorus and sediment transfers within agricultural catchments. Part 
2. A preliminary evaluation. Journal of Hydrology. 350, 303–316. 



 

229 

Styles, D., Donohue, I., Coxon, C., Irvine, K., 2006. Linking soil phosphorus to water 

quality in the Mask catchment of western Ireland through the analysis of moist 
soil samples. Agric. Ecosyst. Environ. 112, 300–312. 

Sylvester-Bradley, R., 1993. Scope for more efficient use of fertilizer nitrogen. Soil Use 
Manag. 9, 112–117. 

Tollner E.W., Barfield B.J., Haan C.T., Kao T.Y., 1976. Suspended sediment filtration 

capacity of simulated vegetation. Transactions of the ASAE. 19:4, 678-682. 

Torbert, H.A., Potter, K.M., Hoffman, D.W., Gerik, T.J. and Richardson, C.W. 1999. 

Surface residue and soil moisture affect fertilizer loss in simulated runoff on a 
heavy clay soil. Agronomy Journal. 91(4), 606-612.  

UKWIR. (2012). Quantifying the benefits of catchment management. UKWIR report 
12/WR/26/10. 

Ulén, B., Aronsson, H., Torstensson, G., Mattsson, L., 2005. Phosphorus and nitrogen 

turnover and risk of waterborne phosphorus emissions in crop rotations on a clay 
soil in southwest Sweden. Soil Use Manag. 21, 221–230. 

University of Hertfordshire., 2015. Pesticide Property Database. [online]. Available 
from http://sitem.herts.ac.uk/aeru/ppdb/en/ 

Vadas, P.A., Gburek, W.J., Sharpley, A.N., Kleinman, P.J.A, Moore, P. A., Cabrera, M.L., 

Harmel, R.D., 2007. A model for phosphorus transformation and runoff loss for 
surface-applied manures. J. Environ. Qual. 36, 324–332. 

Vadas, P.A., Owens, L.B., Sharpley, A. N., 2008. An empirical model for dissolved 

phosphorus in runoff from surface-applied fertilizers. Agric. Ecosyst. Environ. 127, 
59–65. 

Vadas, P.A., Good, L.W., Moore, P.A., Widman, N., 2009. Estimating phosphorus loss in 

runoff from manure and fertilizer for a phosphorus loss quantification tool. J. 

Environ. Qual. 38, 1645–1653. 

Van Es, H.M., Schindelbeck, R.R., Jokela, W.E., 2004. Effect of manure application 
timing, crop, and soil type on phosphorus leaching. J. Environ. Qual. 33, 1070–80. 

van Genuchten, M.T.,1980. A closed-form equation for predicting the hydraulic 

conductivity of unsaturated soil. Soil Science Society of America Journal. 44, 892 – 
898. 

Van Oost, K., Govers, G., de Alba, S., Quine, T.A., 2006. Tillage erosion: a review of 

controlling factors and implications for soil quality. Prog. Phys. Geogr. 30, 443–
466. 



 

230 

Vinten, A.J.A., 1999. Predicting nitrate leaching from drained arablle soil derived from 
glacial till. J. Environ. Qual. 28, 988-996. 

Vinten, A.J.A., Towers, W., King, J.A., McCracken, D.I., Crawford, C., Cole, L.J., Duncan, 

a., Sym, G., Aitken, M., Avdic, K., Lilly, A., Langan, S., Jones, M., 2005. Appraisal of 

rural BMP's for controlling diffuse pollution and enhancing biodiversity. Final 
Report, Project No WFD13. 

Waddington, J.M., 2008. Dissolved organic carbon export from a cutover and restored 
peatland 2224, 2215–2224. 

Wallage, Z.E., Holden, J., McDonald, A.T., 2006. Drain blocking: an effective treatment 

for reducing dissolved organic carbon loss and water discolouration in a drained 
peatland. Sci. Total Environ. 367, 811–21. 

Walling, D. E., and Webb, B. W., 1981. The reliability of suspended sediment load data. 

In ‘Erosion and Sediment Transport Measurement’. (Eds D. Walling and P. 
Tacconi.) IAHS Publication no. 133, pp. 177–194. (IAHS Press: Wallingford, UK.) 

Walling, D.E.T., 2005. Tracing suspended sediment sources in catchments and river 
systems. Science of the Total Environment. 344, 159–184. 

Wallingford HydroSolutions, 2013.The Low Flows Enterprise Model. 

Warren, A.J., Holman, I.P., 2011. Evaluating the effects of climate change on the water 
resources for the city of Birmingham , UK 1–10. 

Watson, J., Reay, G., Thomas, L. 2012. Pesticide usage in Scotland: Outdoor Vegetable 
Crops 2011. Science and Advice for Scottish Agriculture. 

Watson, J., Hughes, J., Thomas, L., Wardlaw, J. 2013. Pesticide use in Scotland: Arable 
crops 2012. Science and Advice for Scottish Agriculture.  

Wauchope, R.D., Yeh, S., Linders, J.B.H.J., Kloskowski, R., Tanaka, K., Rubin, B., 

Katayama, A., Kördel, W., Gerstl, Z., Lane, M., Unsworth, J.B., 2002. Pesticide soil 

sorption parameters: theory, measurement, uses, limitations and reliability. Pest 
Manag. Sci. 58, 419–45. 

Webb, R.M.T., Wieczorek, M.E., Nolan, B.T., Hancock, T.C., Sandstrom, M.W., Barbash, 

J.E., Bayless, E.R., Healy, R.W., Linard, J., 2004. Variations in pesticide leaching 

related to land use, pesticide properties, and unsaturated zone thickness. J. 
Environ. Qual. 37, 1145–57. 

White, M.J., Storm, D.E., Busteed, P.R., Stoodley, S.H., Phillips, S.J. 2009. Evaluating 

nonpoint source critical source area contributions at the watershed scale. J. 
Environ Qual. 38(4), 1654-1663. 



 

231 

Withers, P.J.A., Jarvie, H.P., Stoate, C., 2011. Quantifying the impact of septic tank 
systems on eutrophication risk in rural headwaters. Environ. Int. 37, 644–53. 

Withers, P.J.A., Edwards, A.C., Foy, R.H., 2001. Phosphorus cycling in UK agriculture 
and implications for phosphorus loss from soil. Soil Use Manag. 17, 139–149. 

Withers, P.J.A., Ulén, B., Stamm, C., Bechmann, M., 2003. Incidental phosphorus 

losses– are they significant and can they be predicted? J. Plant Nutr. Soil Sci. 166, 

459–468. 

Wu, Q., Riise, G., Lundekvam, H., Mulder, J., Haugen, L.E., 2004. Influences of 

Suspended Particles on the Runoff of Pesticides from an Agricultural Field at 
Askim, SE-Norway. Environ. Geochem. Health 26, 295–302. 

Yallop, a R., Clutterbuck, B., 2009. Land management as a factor controlling dissolved 

organic carbon release from upland peat soils 1: spatial variation in DOC 
productivity. Sci. Total Environ. 407, 3803–13. 

 

 





 

233 

APPENDICES 

Appendix A - Using CaRPoW to conceptualise pollutant processes 

without modelling – Water colour in the Amlaird Catchment 

A.1 Introduction 

In Chapters 4-7 of the thesis, the CaRPoW framework has been used with models to 

represent catchment processes for pesticides, nutrients and sediment in the River Ugie 

catchment. There are however, pollutants and catchments where data availability means 

that the catchment pollutant processes that define spatial risk cannot be represented by 

models. In these instances CaRPoW can be used by end users to frame conceptual 

understanding of processes in the catchment, attempt to explain catchment monitoring 

results, better understand the nature of potential spatial risks and get a better idea overall 

of how best to mitigate the problem.  

One such pollutant that falls into this category is Dissolved Organic Carbon (DOC), which is 

linked to water colour issues in drinking water supply catchments (Grand-Clement et al., 

2014). The analysis of pollutant processes from Chapter 2 of the thesis shows that the 

source and mobilisation of DOC, within the relatively small upland catchments that they are 

a problem, is heavily dependent on small scale processes driven by differences in 

vegetation, microtopography and soil structure (Holden, 2005). Models that can represent 

DOC losses spatially are subsequently either highly parameterised process based models 

such as the ECOSSE model (Smith et al., 2007) or are simple GIS based methodologies that 

use generic datasets, but operate at scales unable to delineate intra-catchment risk (e.g. 

Grayson et al., 2012). At present there are no simple models that use generic datasets 

applicable to the CaRPoW framework for DOC. 

Therefore, this appendix applies the CaRPoW framework in a conceptualisation capacity to 

the Amlaird drinking water supply catchment which is characterised by high water colour. 

Results from monitoring are outlined and discussed to highlight spatial-temporal patterns of 

DOC losses in the catchment. Such patterns are then discussed in reference to the 

components of the CaRPoW framework to give the end user a better understanding of the 

water colour problem in Amlaird and offer insights into potential spatial differences in risk.   
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A.2 Catchment characteristics and field methodology 

The Amlaird catchment is a small, 9.3 km2 catchment to the south of East Kilbride in Central 

Scotland, United Kingdom. The catchment contains two connected reservoirs (Lochgoin and 

Craigendunton) that supply the Amlaird Water Treatment works. The catchment has a 

unique hydrology that is illustrated in Figure A-1. An intake pipe connects numerous 

locations in the catchment to the Lochgoin Reservoir, which subsequently supplies 

Craigendunton. A large proportion of the area to the east and north of the catchment is 

therefore connected to the Lochgoin Reservoir, as well as the Birk Burn. The catchment is 

relatively homogenous with soil types consisting of predominantly blanket peatland with 

only a small area of mineral soil to the north of Lochgoin and organo-mineral soils along the 

stream corridors. Land uses are limited to rough moorland with some plantation forestry to 

the south of the catchment. Topographically the catchment sits high upon a plateau with a 

maximum elevation of 356 metres to the east of the catchment, with drains to a minimum 

elevation of 244 metres at the Craigendunton Reservoir. This makes the catchment 

relatively flat considering its elevation.  Anthropogenic influence is widespread as the 

catchment houses a large proportion of the Whitelee Windfarm, which began construction 

in 2005 and consists of 215 turbines and 90km of gravel road infrastructure.  

The water treatment works at Amlaird (approximately 3 km to the south west of the 

catchment) experiences high levels of water colour during certain periods of the year which 

causes disinfection by-product issues when water is treated with chlorine. The catchment 

was originally included within Scottish Water’s Sustainable Land Management scheme and 

subsequently a fortnightly monitoring programme was set up in mid-2011 to monitor 

various points in the catchment for Colour, Dissolved Organic Carbon, Total Organic Carbon 

and Manganese. As part of this EngD research two water level loggers were installed at the 

Loch Burn and Birk Burn monitoring locations (sites selected according to ISO 1100-1) and 

rating curves were developed (using BS EN ISO 748:2007 and ISO 1100-2) so that discharge 

data from the catchment could be derived.   
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Figure A-1 – Mapped outlined of the Amlaird drinking water supply catchment with unique catchment piped hydrology illustrated by red arrows 

(location of intake pipe)
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A.3 Presentation and discussion of monitoring results 

The results from the monitoring are presented in this section to frame the problem and to 

extricate some of the processes that may be operating on DOC dynamics in the catchment 

before the CaRPoW framework is applied. For ease of analysis the monitoring points can be 

split into three groupings, those that drain the catchment (the 3 drainage ditches, Lochgoin 

Intake, Birk Burn, Myers Burn, Maidenmire Burn, Wildcat Sluice and Flow Moss), those that 

are either reservoirs or drain from the reservoirs (Lochgoin, Craigendunton, Raw Water 

Main and Raw Water Tap) and those that have both reservoir and catchment inputs (Loch 

Burn). DOC concentrations averaged over the three groups for the period of monitoring are 

plotted against rainfall and discharge form the Loch Burn Gauge and Air Temperature from 

the nearby Auchincruivie climate station in Figure A-2.  

A distinct seasonal pattern is evident with the highest DOC concentrations in the summer 

and early autumn and the lowest in the winter. The pattern corresponds to temperature 

with a slight time lag between peak temperatures and peak DOC concentration. Such 

patterns have been observed in other Scottish catchments (Dawson et al., 2008; Dawson et 

al., 2011; Dinsmore et al., 2013) and catchments in other temperate areas (Koehler et al., 

2009), suggesting a causal link between temperature and DOC concentration in surface 

waters.  
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Figure A-2 – DOC (Dissolved Organic Carbon) concentrations for Amlaird averaged across multiple 

monitoring points, plotted against air temperature from the Auchincruive Gauge and Discharge 

from the Loch Burn gauge 

There also appears to be a lag in the peak DOC concentration in the monitoring points that 

drain from the reservoirs or are a mixture of the two when compared to those that drain the 

catchment alone. In the three years of monitoring, peak concentration in the catchment 

draining monitoring points is generally in July, whereas in the other points peak 

concentrations are in September or early October. This lag phenomenon is consistent with 

research in larger lake catchments, such as those found in North America (Goodman et al., 

2011; Lottig et al., 2013), where lakes in the stream network act as ‘hydrological buffers’ to 

DOC concentration discharge dynamics. If the discharge-concentration dynamics of the Loch 
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Burn (fed by the Lochgoin reservoir) are analysed this phenomenon holds true for Amlaird 

also. With no lag, the correlation coefficient between discharge and DOC concentration is -

0.056, i.e. an insignificant (at 95% confidence interval), very weak negative correlation. 

Using a cross correlation function, a lag time of 1 month gives a significant correlation 

coefficient of 0.463 between discharge and concentration. This potentially suggests that the 

Lochgoin reservoir lags DOC dynamics in the catchment by 1 month. The discharge-

concentration relationship for the Birk Burn (which is not fed by a reservoir) is somewhat 

affected by the fact that there are very few high discharge events at the times samples were 

taken, making it difficult to pass judgement on the poorly correlated relationship. 

When the relationship between discharge and DOC load is considered the picture is a little 

different. DOC loading has been calculated for the Loch Burn and Birk Burn streams using 

the loading methodologies outlined in Defew et al. (2013); more detail on the methods is 

presented in Chapter 5 in the main thesis. In both the Birk and Loch burns, instantaneous 

DOC flux correlates well with discharge over the period of the record (least square linear 

regression R2 values of 0.72 and 0.98 are significant at p < 0.05 for Loch Burn and Birk Burn 

respectively). Interestingly, DOC loads are highest during the winter months when 

concentrations are lowest. This is likely a reflection of the higher discharge values in the 

winter and/or the fortnightly grab sampling missing key storm events in the summer and 

autumn when high DOC production in the soil coincides with high discharge. Other studies 

have however found similar higher loads in UK catchments in the winter (Buckingham et al., 

2008). 

The average (over the 7 load calculation methods used) total annual DOC loads for the full 

three years of sampling are shown in Table A-1. Across the 3 years Loch Burn consistently 

contributes approximately four times more DOC load to the Craigendunton reservoir than 

the Birk Burn. This is likely to stem from the larger discharge values found in the Loch Burn 

which are around a magnitude larger than the Birk Burn.  
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Table A-1 - Annual DOC (Dissolved Organic Carbon) loads and average discharge for the Loch and 

Birk burns over the three years of monitoring 

  Annual DOC Load (kg) Average Discharge (m
3
 s

-1
) 

Year Loch Burn Birk Burn Loch Burn Birk Burn 

2012 111041 27978 0.24 0.03 

2013 104337.93 27559 0.23 0.03 

2014 94451 25773 0.22 0.03 

 

Given the relatively sparse temporal resolution of the water quality sampling regime the 

annual loads must be treated with some caution. The reason for this is at certain periods of 

the year the Birk Burn has a higher discharge than the Loch Burn (as illustrated in Figure A-

3). None of the water quality samples were taken on days where the flow was higher in the 

Birk Burn which may suggest that the annual loads calculated may be underestimated.  This 

is especially prevalent considering the many examples in the literature that highlight the 

important contribution of individual storm events to annual DOC flux (e.g. 50% of flux 

transported during 10% of the time, Clark et al., 2007). 
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Figure A-3 - Recorded discharge of the Birk and Loch burns over the period of monitoring using a 

derived ratings curve. 

A.4 Applying CaRPoW to conceptualise DOC processes in the Amlaird 

Catchment 

Using the review of processes from Chapter 2 of the thesis, available spatial data and 

knowledge gathered from field work the CaRPoW framework is used to conceptualise the 

processes that potentially explain the spatio-temporal patterns detailed in section 3.  

A.4.1 Source 

Chapter 2 of the thesis highlights the importance of high soil organic carbon content and in 

particular the presence of peat soils. Of the 9.35 km2 land area in the catchment, 6.89 km2 is 

classified as blanket peat, 0.87 km2 are organo-mineral soils (peaty podzols and gleys) and 

0.85 km2 are mineral soils according to the Scottish 1:25000 scale soil classification (the 

remainder of the catchment constitutes the two reservoirs). The dominance of peat and 

organo-mineral soils perhaps explains why there is a water colour issue, but does not give 

much insight into the spatial differences of source risk within the catchment i.e. based on 

soil classification alone source risk is largely equal across the catchment. Spatial differences 
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in DOC sources based on soil are therefore likely attributed to smaller scales not 

represented by the soil classification data alone. One such small scale variability may be the 

vegetation type found on the peat.  

The best available land cover data for the Amlaird catchment comes from the Land Cover 

Map 2007. According to the LCM 2007, the catchment consists of 5.20 km2 of ‘Bog’, 1.85 

km2 of ‘Coniferous Forestry’, 0.59 km2 of ‘Acid Grassland’ and 0.55 km2 of ‘Heather 

Grassland”, with the rest of the catchment made up of either the reservoirs or a small area 

of ‘Improved Pasture’. The coniferous forestry proportion of the catchment is largely 

positioned in the Birk Burn proportion of the catchment as detailed in Figure A-4. Thus, the 

main distinct differences in vegetation type from the LCM classification that can be made 

are the plantation forestry in the south of the catchment and the moorland vegetation types 

such as Calluna, Sedges, Molinia and Sphagnum found in the moorland land covers 

(Armstrong et al., 2012). Although few studies have been conducted on the difference in 

DOC concentration and fluxes under forested and moorland peat it has been shown that 

concentrations of DOC are higher under forests but fluxes higher from moorlands 

(Buckingham et al., 2008). Bearing this in mind, source risk under the forested sites may be 

higher (as concentrations are higher) but overall risk (i.e. flux) which depends on 

mobilisation, may be lower. Where greater variability within the source component may be 

present is in the DOC concentrations under different moorland vegetation species which are 

not delineated by the best available land cover data. Armstrong et al. (2012) for example, 

found that soil and catchment drainage water DOC concentrations were highest under 

Calluna vulgaris (heather) and Sedges than under Sphagnum and Molinia. However, this 

study is one of the only investigations into DOC production under different vegetation types 

and the causality of the difference between vegetation types is not confirmed, only 

speculated. Although there is some delineation between heather grassland and bog land 

covers there is not enough detail in the LCM dataset to make formative decisions on source 

strength based on vegetation type.  

It has been well documented that DOC production in the soil is often associated with a 

lowering of the water table and aeration of the peat which increases microbial activity (Clark 

et al., 2009). Such draw down has been associated with activities such as the construction of 

drainage channels (Gibson et al., 2009), moorland burning (Yallop et al., 2009) and more 
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recently wind farm activities (Waldron et al., 2009). The catchment has a complex drainage 

network that is a relic of agricultural drainage and it has also housed a large proportion of 

the Whitelee wind farm since 2005. Although more research is required on the effects of 

such activities on DOC production they must be considered as a contributor to the potential 

variation in source risk. At present the drainage networks have not been extensively 

mapped in the catchment, nor are updated maps on the wind farm infrastructure and 

associated forestry activities available. Without these datasets it is difficult to attribute 

spatial patterns to them; however they must be considered as potential contributors to 

spatial risk in the catchment going forward. 

 

Figure A-4 - Land cover map 2007 classifications (Morton et al., 2011) for the Amlaird drinking 

water supply catchment 

A.4.2 Mobilisation 

DOC mobilisation is largely associated with fast flow runoff events where DOC held in the 

soil is ‘flushed’ by rainfall inputs (Worral et al., 2002). Such a relationship is found in the 

Amlaird catchment, with the significant (p < 0.05) positive relationships observed between 
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DOC load and discharge in both the Loch and Birk Burns. Spatially defining where runoff 

processes are more prevalent in the catchment is more difficult for a catchment like Amlaird 

when compared to the Ugie for example. The relative homogeneity of the soil and land 

cover datasets mean that the differentiation of runoff processes by unique combinations of 

soil type and land use will not define runoff processes at a scale small enough to potentially 

determine mobilisation risk. A different analysis is therefore required to make some 

inferrals on which parts of the catchment may contribute more runoff than others.  

One possible indication of runoff generating areas could be to use the Topographic Wetness 

Index, as originally developed by Kirkby (1975). The topographic wetness index calculates 

the ratio of the slope to the specific upslope contributing area to give a semblance of which 

parts of the catchment are most likely to generate runoff when topography is the main 

control (Sørensen et al., 2006). Topographic wetness index is shown in Figure A-5 for the 

Amlaird catchment using a 5 m resolution NextMap DTM with slope calculated using the D-

infinity method (Tarboton, 1997). The relatively flat nature of the catchment means TWI is 

fairly consistent across the catchment apart from a few places such as the areas surrounding 

the burns, the slope to the north of Lochgoin and the area known as Myers Hill in the 

eastern part of the catchment that have higher TWI values. Based on topography alone 

these areas may be associated with a higher DOC mobilisation risk. However, there is one 

key variable in the mobilisation of DOC that is not accounted for by TWI. In recent years the 

presence of macropores or ‘peat pipes’ have been found to be key factors in the rapid 

mobilisation of DOC from peat soils (Holden et al., 2012). It is difficult to determine where 

peat pipes are prevalent in a catchment using generic datasets, although there is evidence 

to suggest the formation of pipes is more prevalent in degraded or drier peat (Holden et al., 

2012; Smart et al., 2013). Hence, the same land management activities that relate to the 

DOC source term (drainage, burning, wind farms and forestry activities) may also increase 

the mobilisation of DOC as well. 
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Figure A-5 - Topographic Wetness Index in the Amlaird catchment using NEXTMap 5m DTM 

A.4.3 Delivery/Connectivity 

Determining which areas of the catchment are most connected to the Craigendunton 

reservoir is complicated by the unusual hydrology of the catchment. As outlined in Chapter 

2, an intake pipe takes water from a number of burns in the eastern half of the catchment 

and delivers it into the Lochgoin Reservoir. This effectively means that a proportion of water 

draining from this part of the catchment drains straight into the Craigendunton Reservoir 

(well connected) and another portion drains into Lochgoin (less well connected). The 

proportion of discharge from these intakes that is delivered to Lochgoin is not known. But 

based on visual field observations the intake pipe only has significant flow during periods of 

heavy rainfall, suggesting water is only transmitted through the pipe above a certain 

discharge threshold in the burns. 

As a result, catchment connectivity is complicated given that the majority of DOC load is 

transmitted during periods of elevated discharge. Employing a methodology to assess 

connectivity such as that used in the Ugie for example would be inaccurate, as the area to 
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the east of the intake points would have a higher connectivity score than its actual 

connectivity would suggest. 

The influence of the reservoirs in catchment connectivity is also an important consideration. 

The data analysis in Chapter 3 has shown the approximate 1 month lag effect the Lochgoin 

and Craigendunton Reservoirs have on concentrations in the catchment when compared to 

the water bodies draining straight from the catchment. There is a large body of literature 

that shows the effects of lakes on DOC losses from the hydrological continuum, with Molot 

and Dillon (1997) finding between 38-70% loss of DOC inputs within lakes. One way of 

assessing this for Amlaird is to look at the flow and DOC load contributions for the Loch and 

Birk Burns as this gives an indication of proportional contribution of DOC when related to 

discharge contribution. Taking total discharge from 2014, the Loch Burn contributes 85% of 

the total flow into the St Mary’s loch (which feeds Craigendunton) but only contributes 

73.8% of the DOC load. Although this does not factor for differences in source inputs it does 

potentially highlight retention or loss of DOC in the Lochgoin reservoir and hence provides 

evidence for lower connectivity risk. Conversely, the discrepancy could be a result of the 

high uncertainty in the loading calculations and no significant difference between the two 

systems is evident. 

The presence of artificial drainage channels must also be considered as features that 

enhance connectivity in the catchment. Drainage channels have been shown to increase 

flow velocities above overland flow rates and therefore increase the speed at which water is 

delivered to the natural stream network, even though they actually reduce maximum flood 

peak because of dryer antecedent conditions (Lane and Milledge, 2013). The speed at which 

the drainage channels deliver water, along with increases in overall water yield from the 

drains when compared to blocked drains or intact peat across the full range of hydrological 

conditions, consequently increases connectivity and DOC export (Turner et al., 2013). 
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A.4.4 Overall risk 

Based on the outcomes of the process conceptualisation, within the three CaRPoW 

components the highest risk areas of the catchment are likely to be Calluna land cover 

on disturbed and drained blanket peat, in the wettest parts of the catchment, in an 

area that does not drain through the Lochgoin reservoir.  

Based on this, potential candidate sites for the highest risk classification are the area of 

the catchment that drains Myers Hill (shown in Figure A-6) which has a mixture of peat 

and peaty gley soil types, heather and acid grassland LCM classification, the highest 

TWI value in the catchment and partly drains directly into the Craigendunton 

Reservoir. Unfortunately the Wildcat Sluice and Myers burn sample locations detailed 

in Figure A-1 were only sampled 10 times because of access issues. Nevertheless 

during these sampling periods average DOC concentrations were the first and fourth 

highest respectively, when compared to the other sampling points, potentially 

suggesting that the area of the catchment detailed in Figure A-6 is high risk. 
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Figure A-6 - Potential high risk area for DOC in the Amlaird catchment based on process 

conceptualisation within the CaRPoW framework 

 

A.5 Conclusions 

Where data are unavailable or not detailed enough to be used to model pollutant risk 

in a catchment, the CaRPoW framework can be used to conceptualise pollutant 

processes with data that is avaialbe and give end users a better insight into where risks 

might be in a catchment. These principles were applied to an analysis of the Amlaird 

catchment which is a small upland reservoir catchment with a water colour issue. 

Results were presented from 3 years of monitoring to outline the nature of the 

problem  and discussed within the context of the CaRPoW framework where DOC 

processes were conceptualised and explanations offered for the patterns observed in 

the monitoring data.  
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Source processes could be spatially defined to a certain extent using available soil and 

land use data, although more detailed data on land cover and peat disturbance would 

have provided more detail. Spatial catchment wetness was defined using the TWI but 

this did not give any indication of mobilisation pathway which required more 

information on peat structure and condition. Connectivity was hard to define because 

of the complex hydrology in the catchment, although the lag and loss of DOC caused 

by the Lochgoin reservoir was observed in the data. 

Bringing the three components together, an area of the catchment known as the 

Myers Hill to the east was specualted as the highest risk area of the catchment and 

where peatland restoration should be focused. However to make more formative 

decisions on where to focus efforts more detailed data is required on the condition of 

the peat and the spatial arrangement of human activities (wind farm and drainange) in 

the catchment.  
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Appendix B CaRPoW model input parameters 

B.1 Pesticide parameters 

Table B-1 - CaRPoW pesticide model input parameters (crops applied to, application rate and 

application timing). Data derived from maximum application rates as per produce guidance 

and application date from agronomist interviews. 

Pesticide Crop 

Application 

Rate (g ha
-1

) Application Date 

2, 4-D Spring Barley 10 May/June 

  Spring Wheat 12.5 May/June 

  Ley Grass 33 April/May and August/September 

Chlorotoluron Spring Barley 35 April/May 

  Winter Barley 1260 October 

  Winter Wheat 1085 October/November 

  Spring Wheat 175 April/May 

CMPP Spring Barley 538.2 May/June 

  Winter Barley 374.4 May/June 

  Winter Wheat 388.8 May/June 

  Spring Wheat 552 May/June 

  Spring Oats 593.4 May/June 

  Winter Oats 552 May/June 

  Ley Grass 41.4 April/May 

MCPA Spring Barley 82.5 April/May 

  Winter Barley 16.5 April/May 

  Winter Wheat 8 September/October 

  Spring Wheat 346.5 September/October 

  Spring Oats 49.5 April/May/June 

  Ley Grass 247.5 April/May/June 

  Permanent Grass 16.5 April/May/June 

Metaldehyde Winter Oilseed Rape 750 August/September/October/November 

  Winter Barley 750 August/September/October/November 

  Winter Wheat 750 August/September/October/November 

  Potatoes 750 August/September/October/November 

  Ley Grass 7.48 August/September/October/November 

  Brussles Sprouts 750 August/September/October/November 

  Cabbage 750 August/September/October/November 

  Cauliflower 750 August/September/October/November 

  Lettuce 750 August/September/October/November 

  Turnips 750 August/September/October/November 

  Other Veg 750 August/September/October/November 

Metazachlor Winter Oilseed Rape 1250 August/September 

  Spring Oilseed Rape 750 April/May 
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  Brussles Sprouts 735 April/May 

  Cabbage 705 April/May 

  Cauliflower 750 April/May 

  Turnips 652.5 April/May 

 

B.2 Nitrate CaRPoW parameters 

Table B-2 - Crop nitrogen offtake values (Derived from Nix, 2013) 

Crop Type 

Nitrogen Offtake 

Value (kg ha
-1

) 

Cabbages 72 

Carrots 255 

Ley Grass 0 

Lochs 0 

Other Cereals 140 

Other Vegetables 63 

Permanent Grass 0 

Potatoes 115 

Rough Grazing 0 

Semi-Natural 20 

Soft Fruit 22 

Spring Barley 110 

Spring Oilseed Rape 100 

Spring Wheat 110 

Spring Oats 105 

Stock Feed 20 

Turnips 20 

Unclassified 0 

Urban 0 

Winter Barley 140 

Winter Oats 140 

Winter Oilseed Rape 130 

Winter Wheat 170 

Woodland 20 
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Table B-3 - Nitrogen fertiliser application rates according to crop type, previous crop type 

and soil texture class (Derived from SAC technical guidance notes) 

  Nitrogen fertiliser application rate (kg ha
-1

) 

  Soil texture class 

Crop type and 

previous crop 

number 

Clay 

Loam 

Loamy 

Sand Organic 

Sandy 

Loam 

Sandy Silt 

Loam 

Cabbages           

0 340 340 340 340 340 

1 340 340 340 340 340 

2 330 330 330 330 330 

3 320 320 320 320 320 

4 300 300 300 300 300 

5 250 250 250 250 250 

6 210 210 210 210 210 

Carrots 230 230 230 230 230 

0 60 60 60 60 60 

1 60 60 60 60 60 

2 50 50 50 50 50 

3 40 40 40 40 40 

4 20 20 20 20 20 

5 0 0 0 0 0 

6 0 0 0 0 0 

Ley Grass           

0 290 290 290 290 290 

1 290 290 290 290 290 

2 290 290 290 290 290 

3 290 290 290 290 290 

4 290 290 290 290 290 

5 290 290 290 290 290 

6 290 290 290 290 290 

Other Cereals           

0 200 200 80 200 200 

1 200 200 80 200 200 

2 190 190 70 190 190 

3 180 180 60 180 180 

4 160 160 40 160 160 

5 130 130 10 130 130 

6 90 90 0 90 90 

Other Vegetables           

0 0 0 0 0 0 

1 0 0 0 0 0 

2 0 0 0 0 0 
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3 0 0 0 0 0 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 0 0 0 0 0 

Permanent Grass           

0 0 250 250 250 250 

1 0 250 250 250 250 

2 250 250 250 250 250 

3 250 250 250 250 250 

4 250 250 250 250 250 

5 250 250 250 250 250 

6 250 250 250 250 250 

Potatoes           

0 100 100 100 100 100 

1 100 100 100 100 100 

2 90 90 90 90 90 

3 80 80 80 80 80 

4 70 70 70 70 70 

5 50 50 50 50 50 

6 0 0 0 0 0 

Soft Fruit           

0 40 40 40 40 40 

1 40 40 40 40 40 

2 30 30 30 30 30 

3 20 20 20 20 20 

4 0 0 0 0 0 

5 0 0 0 0 0 

6 0 0 0 0 0 

Spring Barley           

0 130 130 50 130 130 

1 130 130 50 130 130 

2 120 120 40 120 120 

3 110 110 30 110 110 

4 90 90 10 90 90 

5 60 60 0 60 60 

6 20 20 0 20 20 

Spring Oats           

0 130 130 50 130 130 

1 130 130 50 130 130 

2 120 120 40 120 120 

3 110 110 30 110 110 

4 90 90 10 90 90 

5 60 60 0 60 60 

6 20 20 0 20 20 
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Spring Oilseed Rape           

0 100 100 20 100 100 

1 100 100 20 100 100 

2 90 90 20 90 90 

3 80 80 0 80 80 

4 60 60 0 60 60 

5 30 30 0 30 30 

6 0 0 0 0 0 

Spring Wheat           

0 130 130 50 130 130 

1 130 130 50 130 130 

2 120 120 40 120 120 

3 110 110 30 110 110 

4 90 90 10 90 90 

5 60 60 0 60 60 

6 20 20 0 20 20 

Stock Feed           

0 110 110 110 110 110 

1 110 110 110 110 110 

2 100 100 100 100 100 

3 90 90 90 90 90 

4 70 70 70 70 70 

5 40 40 40 40 40 

6 0 0 0 0 0 

Turnips           

0 110 110 110 110 110 

1 110 110 110 110 110 

2 100 100 100 100 100 

3 90 90 90 90 90 

4 70 70 70 70 70 

5 40 40 40 40 40 

6 0 0 0 0 0 

Winter Barley           

0 180 180 80 180 180 

1 180 180 80 180 180 

2 170 170 70 170 170 

3 160 160 60 160 160 

4 140 140 40 140 140 

5 110 110 10 110 110 

6 70 70 0 70 70 

Winter Oats           

0 180 180 80 180 180 

1 180 180 80 180 180 

2 170 170 70 170 170 



 

258 

3 160 160 60 160 160 

4 140 140 40 140 140 

5 110 110 10 110 110 

6 70 70 0 70 70 

Winter Oilseed Rape           

0 230 230 110 230 230 

1 230 230 110 230 230 

2 210 210 90 210 210 

3 190 190 70 190 190 

4 140 140 40 140 140 

5 110 110 0 110 110 

6 70 70 0 70 70 

Winter Wheat           

0 200 200 80 200 200 

1 200 200 80 200 200 

2 190 190 70 190 190 

3 180 180 60 180 180 

4 160 160 40 160 160 

5 130 130 10 130 130 

6 90 90 0 90 90 
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B.3 WaSim model inputs 

Table B-4 - WaSim crop input parameters (Derived from Holman et al. 2004) 

Crop Type 

Planting 

date 

(Julian 

Day) 

Harvest 

Date 

(Julian 

Day) 

Emergence 

Date 

(Julian 

Day) 

20% 

crop 

coverage 

date 

(Julian 

(Day) 

Full 

Cover 

Date 

(Julian 

Day) 

Crop 

Maturity 

Date 

(Julian 

Day) 

Maximum 

Root 

Depth 

Date 

(Julian 

Day) 

Planting 

depth 

(m) 

Maximum 

root 

depth (m) 

Maximum 

coverage 

(%) 

WaSim 

Crop 

Coefficient 

P 

Fraction 

Grassland 1 365 1 1 1 365 1 0.7 0.7 100 100 0.5 

Row Crops 105 170 31 46 92 133 92 0.08 0.75 100 110 0.5 

Winter 

Cereals 273 351 11 41 183 273 162 0.03 1.5 100 110 0.5 

Spring Cereals 74 175 15 18 76 122 76 0.03 1.5 100 110 0.5 

Semi-Natural 1 365 1 1 1 365 1 0.35 0.35 100 100 0.5 

Woodland 74 324 105 115 130 302 74 1.5 1.5 100 114 0.71 
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Table B-5 - WaSim soil input parameters (Derived from SEISMIC soil properties databse) 

Soil Association, HOST 

Number and Land Use 

Type 

Water 

content at 

saturation 

(%) 

Water 

content 

at field 

capacity 

(%) 

Water 

content at 

permanent 

wilting 

point (%) 

P 

Fraction 

Tau 

Drainage 

Coefficient 

Hydraulic 

Conductivity                     

( m day
-1

) 

Alluvial Soils 7 - AR 0.42 0.336 0.137 0.5 0.36 1.36 

Alluvial Soils 7 - LE 0.425 0.34 0.139 0.5 0.36 1.41 

Alluvial Soils 7 - OT 0.435 0.348 0.137 0.5 0.36 3.58 

Alluvial Soils 7 - PG 0.425 0.34 0.139 0.5 0.36 1.41 

Corby 5 - AR 0.3475 0.278 0.094 0.5 0.69 0.6 

Corby 5 - LE 0.35125 0.281 0.0957 0.5 0.69 0.6 

Corby 5 - OT 0.40375 0.323 0.121 0.5 0.69 9.28 

Corby 5 - PG 0.35125 0.281 0.096 0.5 0.69 0.6 

Countesswells 17 - AR 0.3675 0.294 0.118 0.5 0.69 0.4 

Countesswells 17 - LE 0.37125 0.297 0.12 0.5 0.69 0.41 

Countesswells 17 - OT 0.45 0.36 0.14 0.5 0.69 9.26 

Countesswells 17 - PG 0.3625 0.29 0.12 0.5 0.69 0.41 

Countesswells 14 - AR 0.3675 0.294 0.118 0.5 0.69 0.4 

Countesswells 14 - LE 0.37125 0.297 0.12 0.5 0.69 0.41 

Countesswells 14 - OT 0.45 0.36 0.14 0.5 0.69 9.26 

Countesswells 14 - PG 0.3625 0.29 0.12 0.5 0.69 0.41 

Countesswells 15 - AR 0.3675 0.294 0.118 0.5 0.69 0.4 

Countesswells 15 - LE 0.37125 0.297 0.12 0.5 0.69 0.41 

Countesswells 15 - OT 0.45 0.36 0.14 0.5 0.69 9.26 

Countesswells 15 - PG 0.3625 0.29 0.12 0.5 0.69 0.41 

Durnhill 15  - AR 0.4925 0.394 0.16 0.5 0.36 11.65 

Durnhill 15 - LE 0.4925 0.394 0.16 0.5 0.36 11.65 

Durnhill 15 - OT 0.4925 0.394 0.16 0.5 0.36 11.65 

Durnhill 15 - PG 0.4925 0.394 0.16 0.5 0.36 11.65 

Foudland 14 - AR 0.4075 0.326 0.14 0.5 0.36 0.29 

Foudland 14 - LE 0.41125 0.329 0.142 0.5 0.36 0.29 

Foudland 14 - OT 0.4875 0.39 0.16 0.5 0.36 9.27 

Foudland 14 - PG 0.4 0.32 0.14 0.5 0.36 0.29 

Foudland 17 - AR 0.4075 0.326 0.14 0.5 0.36 0.29 

Foudland 17 - LE 0.41125 0.329 0.142 0.5 0.36 0.29 

Foudland 17 - OT 0.4875 0.39 0.16 0.5 0.36 9.27 

Foudland 17 - PG 0.4 0.32 0.14 0.5 0.36 0.29 

Hatton 24 - AR 0.28625 0.229 0.12 0.5 0.36 0.4 

Hatton 24 - LE 0.3775 0.302 0.122 0.5 0.36 0.41 

Hatton 24 - OT 0.425 0.34 0.139 0.5 0.36 8.91 

Hatton 24 - PG 0.37875 0.303 0.122 0.5 0.36 0.41 

Hatton 6 - AR 0.28625 0.229 0.12 0.5 0.36 0.4 
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Hatton 6 - LE 0.3775 0.302 0.122 0.5 0.36 0.41 

Hatton 6 - OT 0.425 0.34 0.139 0.5 0.36 8.91 

Hatton 6 - PG 0.37875 0.303 0.122 0.5 0.36 0.41 

Hatton 15 - AR 0.28625 0.229 0.12 0.5 0.36 0.4 

Hatton 15 - LE 0.3775 0.302 0.122 0.5 0.36 0.41 

Hatton 15 - OT 0.425 0.34 0.139 0.5 0.36 8.91 

Hatton 15 - PG 0.37875 0.303 0.122 0.5 0.36 0.41 

Peterhead 24 - AR 0.43375 0.347 0.217 0.5 0.06 0.08 

Peterhead 24 - LE 0.44125 0.353 0.219 0.5 0.06 0.09 

Peterhead 24 - OT 0.44125 0.353 0.218 0.5 0.06 0.09 

Peterhead 24 - PG 0.44125 0.353 0.218 0.5 0.06 0.09 

Skelmuir 24 - AR 0.495 0.396 0.219 0.5 0.06 12.79 

Skelmuir 24 - LE 0.495 0.396 0.219 0.5 0.06 12.79 

Skelmuir 24 - OT 0.495 0.396 0.219 0.5 0.06 12.79 

Skelmuir 24 - PG 0.495 0.396 0.219 0.5 0.06 12.79 

Skelmuir 26 - AR 0.495 0.396 0.219 0.5 0.06 12.79 

Skelmuir 26 - LE 0.495 0.396 0.219 0.5 0.06 12.79 

Skelmuir 26 - OT 0.495 0.396 0.219 0.5 0.06 12.79 

Skelmuir 26 - PG 0.495 0.396 0.219 0.5 0.06 12.79 

Strichen 24 - AR 0.37375 0.299 0.118 0.5 0.36 0.38 

Strichen 24 - LE 0.3775 0.302 0.12 0.5 0.36 0.38 

Strichen 24 - OT 0.45625 0.365 0.144 0.5 0.36 7.82 

Strichen 24 - PG 0.37875 0.303 0.12 0.5 0.36 0.38 

Strichen 17 - AR 0.37375 0.299 0.118 0.5 0.36 0.38 

Strichen 17 - LE 0.3775 0.302 0.12 0.5 0.36 0.38 

Strichen 17 - OT 0.45625 0.365 0.144 0.5 0.36 7.82 

Strichen 17 - PG 0.37875 0.303 0.12 0.5 0.36 0.38 

Tarves 17 - AR 0.37125 0.297 0.124 0.5 0.36 0.33 

Tarves 17 - LE 0.375 0.3 0.126 0.5 0.36 0.34 

Tarves 17 - OT 0.3975 0.318 0.132 0.5 0.36 0.32 

Tarves 17 - PG 0.375 0.3 0.126 0.5 0.36 0.34 

Tarves 24 - AR 0.37125 0.297 0.124 0.5 0.36 0.33 

Tarves 24 - LE 0.375 0.3 0.126 0.5 0.36 0.34 

Tarves 24 - OT 0.3975 0.318 0.132 0.5 0.36 0.32 

Tarves 24 - PG 0.375 0.3 0.126 0.5 0.36 0.34 

Tarves (BRANK) - AR 0.4725 0.378 0.162 0.5 0.36 0.15 

Tarves (BRANK) - LE 0.49 0.392 0.17 0.5 0.36 0.17 

Tarves (BRANK) - OT 0.47125 0.377 0.131 0.5 0.36 0.58 

Tarves (BRANK) - PG 0.49 0.392 0.126 0.5 0.36 0.34 

Tarves (HG) - AR 0.39875 0.319 0.149 0.5 0.36 0.25 

Tarves (HG) - LE 0.4075 0.326 0.152 0.5 0.36 0.28 

Tarves (HG) - OT 0.4375 0.35 0.146 0.5 0.36 0.35 

Tarves (HG) - PG 0.4075 0.326 0.152 0.5 0.36 0.28 

Tipperty - AR 0.4725 0.378 0.238 0.5 0.06 0.06 
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Tipperty - LE 0.48125 0.385 0.24 0.5 0.06 0.07 

Tipperty - OT 0.54875 0.439 0.305 0.5 0.06 0.01 

Tipperty - PG 0.48 0.384 0.24 0.5 0.06 0.07 

Organic Soils 12 - AR 0.7625 0.61 0.3 0.5 0.06 2.79 

Organic Soils 12 - LE 0.7625 0.61 0.3 0.5 0.06 2.79 

Organic Soils 12 - OT 0.7625 0.61 0.3 0.5 0.06 2.79 

Organic Soils 12 - PG 0.7625 0.61 0.3 0.5 0.06 2.79 

Organic Soils 29 - AR 0.7625 0.61 0.3 0.5 0.06 2.79 

Organic Soils 29 - LE 0.7625 0.61 0.3 0.5 0.06 2.79 

Organic Soils 29 - OT 0.7625 0.61 0.3 0.5 0.06 2.79 

Organic Soils 29 - PG 0.7625 0.61 0.3 0.5 0.06 2.79 

North Mormond 24 - AR 0.473 0.36 0.157 0.5 0.36 0.215 

North Mormond 24 - LE 0.482 0.373 0.164 0.5 0.36 0.242 

North Mormond 24 - OT 0.805 0.617 0.303 0.5 0.36 50.94 

North Mormond 24 - PG 0.482 0.376 0.165 0.5 0.36 0.251 

Mixed Bottom Land 7 - 

AR 0.42 0.336 0.137 0.5 0.36 1.36 

Mixed Bottom Land 7 - LE 0.425 0.34 0.139 0.5 0.36 1.41 

Mixed Bottom Land 7 - 
OT 0.435 0.348 0.137 0.5 0.36 3.58 

Mixed Bottom Land 7 - 

PG 0.425 0.34 0.139 0.5 0.36 1.41 

Boyndie 5 - AR 0.545 0.359 0.128 0.5 0.69 1.29 

Boyndie 5 - LE 0.59 0.389 0.135 0.5 0.69 1.99 

Boyndie 5 - OT 0.801 0.612 0.301 0.5 0.69 50.55 

Boyndie 5 - PG 0.593 0.391 0.199 0.5 0.69 2.05 

 

Table B-6 - WaSim drainage input parameters 

Drainage 

scenario 

Diameter 

(m) 

Depth 

(m) 

Spacing 

(m) 

Depth to 

impermeable 

layer (m) 

No 

drains 0.11 0.5 75 1.5 

Drains 0.11 0.5 20 1.5 
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Table B-7 - WaSim soil curve number parameter inputs (Derived from SEISMIC soil property 

database) 

    Curve number based on land use 

Soil Association, HOST 

Number and Land Use 

Type 

Soil 

Condition Grassland 

Row 

Crops 

Winter 

Cereals 

Spring 

Cereals 

Semi-

Natural Woodland 

Alluvial Soils 7 - AR 1 58 70 69 69 58 55 

  2 61 75 73 73 61 55 

  3 69 78 75 75 69 60 

  4 79 81 76 76 79 66 

  5 86 88 84 84 86 77 

Alluvial Soils 7 - LG 1 58 70 69 69 58 55 

  2 61 75 73 73 61 55 

  3 69 78 75 75 69 60 

  4 79 81 76 76 79 66 

  5 86 88 84 84 86 77 

Alluvial Soils 7 - OT 1 58 70 69 69 58 55 

  2 61 75 73 73 61 55 

  3 69 78 75 75 69 60 

  4 79 81 76 76 79 66 

  5 86 88 84 84 86 77 

Alluvial Soils 7 - PG 1 58 70 69 69 58 55 

  2 61 75 73 73 61 55 

  3 69 78 75 75 69 60 

  4 79 81 76 76 79 66 

  5 86 88 84 84 86 77 

Corby 5 - AR 1 30 61 58 58 30 30 

  2 39 65 61 61 39 30 

  3 49 67 63 63 49 36 

  4 68 72 65 65 68 45 

  5 79 81 76 76 79 66 

Corby 5 - LG 1 30 61 58 58 30 30 

  2 39 65 61 61 39 30 

  3 49 67 63 63 49 36 

  4 68 72 65 65 68 45 

  5 79 81 76 76 79 66 

Corby 5 - OT 1 30 61 58 58 30 30 

  2 39 65 61 61 39 30 

  3 49 67 63 63 49 36 

  4 68 72 65 65 68 45 

  5 79 81 76 76 79 66 

Corby 5 - PG 1 30 61 58 58 30 30 

  2 39 65 61 61 39 30 
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  3 49 67 63 63 49 36 

  4 68 72 65 65 68 45 

  5 79 81 76 76 79 66 

Countesswells 17 - AR 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Countesswells 17 - LG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Countesswells 17 - OT 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Countesswells 17 - PG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Countesswells 14 - AR 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Countesswells 14 - LG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Countesswells 14 - OT 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Countesswells 14 - PG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Countesswells 15 - AR 1 71 77 77 77 71 70 
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  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Countesswells 15 - LG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Countesswells 15 - OT 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Countesswells 15 - PG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Durnhill 15  - AR 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Durnhill 15- LG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Durnhill 15 - OT 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Durnhill 15 - PG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Foudland 14 - AR 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 
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Foudland 14 - LG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Foudland 14 - OT 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Foudland 14 - PG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Foudland 17 - AR 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Foudland 17 - LG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Foudland 17 - OT 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Foudland 17 - PG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Hatton 24 - AR 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Hatton 24 - LG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 
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  5 89 91 88 88 89 83 

Hatton 24 - OT 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Hatton 24 - PG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Hatton 6 - AR 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Hatton 6 - LG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Hatton 6 - OT 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Hatton 6 - PG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Hatton 15 - AR 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Hatton 15 - LG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Hatton 15 - OT 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 
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  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Hatton 15 - PG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Peterhead 24 - AR 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Peterhead 24 - LG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Peterhead 24 - OT 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Peterhead 24 - PG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Skelmuir 24 - AR 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Skelmuir 24 - LG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Skelmuir 24 - OT 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Skelmuir 24 - PG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 
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  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Skelmuir 26 - AR 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Skelmuir 26 - LG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Skelmuir 26 - OT 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Skelmuir 26 - PG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Strichen 24 - AR 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Strichen 24 - LG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Strichen 24 - OT 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Strichen 24 - PG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Strichen 17 - AR 1 71 77 77 77 71 70 
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  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Strichen 17 - LG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Strichen 17 - OT 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Strichen 17 - PG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Tarves 17 - AR 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Tarves 17 - LG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Tarves 17 - OT 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Tarves 17 - PG 1 71 77 77 77 71 70 

  2 74 82 81 81 74 70 

  3 79 85 83 83 79 73 

  4 86 88 84 84 86 77 

  5 89 91 88 88 89 83 

Tarves 24 - AR 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 
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Tarves 24 - LG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Tarves 24 - OT 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Tarves 24 - PG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Organic Soils 12 - AR 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Organic Soils 12 - LG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Organic Soils 12 - OT 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Organic Soils 12 - PG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Organic Soils 29 - AR 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Organic Soils 29 - LG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 
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  5 89 91 88 88 89 83 

Organic Soils 29 - OT 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Organic Soils 29 - PG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

North Mormond 24 - AR 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

North Mormond 24 - LE 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

North Mormond 24 - OT 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

North Mormond 24 - PG 1 78 80 80 80 78 77 

  2 80 86 85 85 80 77 

  3 84 89 87 87 84 79 

  4 89 91 88 88 89 83 

  5 89 91 88 88 89 83 

Mixed Bottom Land 7 - 

AR 1 58 70 69 69 58 55 

  2 61 75 73 73 61 55 

  3 69 78 75 75 69 60 

  4 79 81 76 76 79 66 

  5 86 88 84 84 86 77 

Mixed Bottom Land 7 - LE 1 58 70 69 69 58 55 

  2 61 75 73 73 61 55 

  3 69 78 75 75 69 60 

  4 79 81 76 76 79 66 

  5 86 88 84 84 86 77 

Mixed Bottom Land 7 - 
OT 1 58 70 69 69 58 55 

  2 61 75 73 73 61 55 
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  3 69 78 75 75 69 60 

  4 79 81 76 76 79 66 

  5 86 88 84 84 86 77 

Mixed Bottom Land 7 - 

PG 1 58 70 69 69 58 55 

  2 61 75 73 73 61 55 

  3 69 78 75 75 69 60 

  4 79 81 76 76 79 66 

  5 86 88 84 84 86 77 

Boyndie 5 - AR 1 30 61 58 58 30 30 

  2 39 65 61 61 39 30 

  3 49 67 63 63 49 36 

  4 68 72 65 65 68 45 

  5 79 81 76 76 79 66 

Boyndie 5 - LE 1 30 61 58 58 30 30 

  2 39 65 61 61 39 30 

  3 49 67 63 63 49 36 

  4 68 72 65 65 68 45 

  5 79 81 76 76 79 66 

Boyndie 5 - OT 1 30 61 58 58 30 30 

  2 39 65 61 61 39 30 

  3 49 67 63 63 49 36 

  4 68 72 65 65 68 45 

  5 79 81 76 76 79 66 

Boyndie 5 - PG 1 30 61 58 58 30 30 

  2 39 65 61 61 39 30 

  3 49 67 63 63 49 36 

  4 68 72 65 65 68 45 

  5 79 81 76 76 79 66 

 

Appendix C Pesticide storm sampling methodology 

Chapter 5 of the thesis uses the data generated from a storm sampling regime in the 

River Ugie to test the assumption that the first rainfall event after application is the 

most important for pesticide mobilisation and delivery. The chapter only covered a 

simplified methodology for the sampling and analysis of samples collected during the 

storm events. This appendix therefore provides a detailed account of the methodology 

employed. 
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C.1 Storm sampling methodology 

Samples were collected using an ISCO 6712 Portable Autosampler (Teledyne ISCO, 

2010) from the sampling location detailed in Figure C-1. The sampler was configured 

with 24 1 litre Polypropylene bottles, with two bottles filled per sample as per 

analytical requirements. The sampler was triggered remotely via GPRS at the onset of a 

rainfall event rather than being linked to a rain gauge or river level monitor directly. 

The reason for this was to limit the sampler triggering during periods where no 

pesticides are likely to have been applied. Rainfall was therefore monitored using a 

Detectronic remote GPRS tipping bucket rain gauge (0.2mm bucket size, ± 1% accuracy 

at 26 mm hr-1 rainfall intensity (Detectronic, 2015)). The use of such a gauge allowed 

for real time rainfall data to be used in making decisions on when to trigger the 

sampler. Initially the sampler was configured to take a sample every 2 hours over a 24 

hour period. It was soon realised however that this setup often missed the peak and 

descending limb of the hydrograph and hence the sampler was reconfigured to collect 

a sample every 4 hours over a 48 hour period.  
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Figure C-1 - Location of the autosampler field site within the River Ugie catchment 

 

Upon triggering samples were retrieved from the sampler within 48 hours and the 

samples divided into a number of different bottle configurations for analysis. Each 

sample was transferred into the following bottles for analysis: 

• 2 x 500ml glass duran bottles treated with sodium thiosulphate 

• 2 x 40ml amber glass vials treated with sodium thiosulphate 

• 500ml clear plastic bottle 

The plastic autosampler bottles were rinsed with deionised water and field blanks 

were prepared (with deionised water) following rinsing to make sure no pesticide 

residue was left in the rinsed autosampler bottles (methodology similar to Tediosi et 

al., 2012). All of the field blanks analysed were below the limits of detection for all 

pesticides.  
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C.2 Laboratory analysis 

All samples were analysed in Scottish Water’s UKAS accredited laboratory by 

professional laboratory staff. The total suite of pesticide analysed for are detailed in 

Table C-1 along with the concentration ranges capable with the analysis. 

Table C-1 - Suite of pesticides analysed for and achievable concentration ranges (µg l
-1

) 

Pesticide 

Concentration range (µg 

l
-1

) 

Monuron 0.003-0.200 

Chlorotoluron 0.003-0.200 

Monolinuron 0.005-0.200 

Diuron 0.005-0.200 

Isoproturon 0.003-0.200 

Linuron 0.011-0.200 

Chloroxuron 0.005-0.200 

Carbofuran 0.003-0.200 

Methiocarb 0.003-0.200 

Cyproconazole 0.004-0.200 

Epoxyconazole 0.004-0.200 

Propiconazole 0.004-0.200 

Tebuconazole 0.003-0.200 

Simazine 0.003-0.200 

Atrazine 0.004-0.200 

Propazine 0.002-0.200 

Trietazine 0.005-0.200 

Quinmerac 0.006-0.200 

Chloridazon 0.004-0.200 

Metazachlor 0.002-0.200 

Clopyralid 0.012-0.200 
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Dicamba 0.008-0.200 

Bentazone 0.004-0.200 

Bromoxynil 0.005-0.200 

2,4-D 0.003-0.200 

MCPA 0.004-0.200 

Ioxynil 0.004-0.200 

Dichloroprop 0.004-0.200 

Mecoprop 0.003-0.200 

Triclopyr 0.015-0.200 

2,4-DB 0.004-0.200 

MCPB 0.005-0.200 

Metaldehyde 0.006-0.200 

 

All substances were analysed using liquid chromatography-mass spectrometry using an 

Agilent 1200 high performance liquid chromatographer and an Agilent 6410 Triple 

Quad Mass Spectrometer. The exception is metaldehyde which is analysed using a 

Perkin Elmer Clarus gas chromatrograhy-mass spectrometry system. No tests were 

conducted for chemical sorption to the autosampler plastic bottles as all blank samples 

were below the limits of detection and therefore sorption to the plastic bottles was 

deemed negligible. The analysis assumed that limited transformation of the substances 

when the samples are in storage in the field takes place. 

 

Tediosi A, Whelan MJ, Rushton KR, Thompson TRE, Gandolfi C, Pullan SP, 2012. 

Measurement and conceptual modelling of herbicide transport to field drains 

in a heavy clay soil with implications for catchment-scale water quality 

management. Sci Total Environ 438, 103–112 
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Appendix D Agronomist interview methodology and results 
 

This appendix details the methodology, ethics information, questionnaire and answers 

used in Chapter 5 of the thesis to obtained detailed pesticide and nutrient 

management information about the River Ugie catchment. 

D.1 Questionnaire Methodology 

The development of the CaRPoW framework and associated models highlighted the 

need for specific information on crop types, pesticide use and fertiliser management in 

the River Ugie catchment. 

The need for such information includes: 

• Obtaining knowledge of specific crop rotations in the catchment. 

• Having knowledge of specific pesticide preferences in the catchment for 

specific crops so that source potential values can be properly assigned to 

certain land uses. 

• From the perspective of Scottish Water to get a better understanding of the 

uses of the 6 pesticides observed in high concentrations from monitoring data. 

• Understanding fertiliser management in the catchment to determine if there 

are any specific preferences in the catchment or whether the catchment 

follows rules outlined in the literature (e.g. SAC crop guidance). 

Previous work has demonstrated the value of obtaining such information from 

agronomy experts for the purposes of catchment management research (e.g. Dolan et 

al., 2014).  

The methodology adopted to obtain such information has been adapted from previous 

work by Dolan et al. (2014). The Dolan et al. (2014) study was conducted in the Anglian 

region and the main driver was to ascertain the agronomic drivers of pesticide use. The 
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present study, although similar, has a narrower focus and is largely concerned with 

obtaining information for use in a water quality model. In Dolan et al. (2014) data 

acquisition was conducted over three stages: 

1. Determining the current behaviour and strategies to cope with pests in the 

regions crops 

2. Assess how changes in future pesticide legislation would impact of chemical 

usage, cultural behaviour and land use in the region 

3. Validate responses to stage two in a wider internet questionnaire. 

Stages one and two were conducted using a semi-structured face to face interview 

technique and stage three with an online questionnaire. In this investigation it was 

deemed unnecessary to conduct two sets of face to face interviews and an internet 

based questionnaire when the geographic size of the Ugie catchment is much smaller 

(less agronomists working in the catchment) and the focus of the investigation 

narrower.  

Therefore a semi-structured questionnaire driven face to face interview methodology 

was deemed appropriate to obtain the required information. The questionnaire is 

shown in section D.3.3 with questions split into 4 parts: 

5. Cropping practices 

6. Pest Issues 

7. Pesticide usage 

8. Nutrient management 

The first section includes questions relating to cropping practices in the catchment and 

the second relates to specific pest issues for the crops outlined in part one and the 

methods of dealing with them. Part three specifically deals with the 6 pesticides 

highlighted as problematic in Scottish Water’s monitoring data, questions relate to the 
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uses of each and potential alternatives. The final section relates to fertiliser application 

for the crop identified in section one.  

To gauge the number of agronomists operating in the River Ugie catchment the author 

attended a meeting arranged with agronomists as part of Scottish Water’s Sustainable 

Land Management Incentive Scheme. A short presentation was given outlining the 

information requirements after which agronomists were asked to express an interest 

in taking part in the study.   

The questionnaire driven interview was first of all tested in a pilot with one of the 

agronomists who expressed an interest in the initial meeting. Feedback was requested 

from the participant and amendments made to the questionnaire 

All interviews were conducted face to face at the offices of the participants. 

Participants were asked to sign a consent form, a copy of which is included in section 

D.3.2. The interviews started with the author outlining the purpose of the study and 

the uses of the information acquired. The interview was recording for transcription at 

a later date. Although there was a structure to the interview the author used their 

judgement to ask follow up questions to certain answers and tangents to the questions 

were allowed if they were relevant to the purposes of the study.  

Dolan, T., Parsons, D.J., Howsam, P., Whelan, M.J., Varga, L., 2014. Identifying 

Adaptation Options and Constraints: The Role of Agronomist Knowledge in 
Catchment Management Strategy. Water Resour. Manag. 28, 511–526. 
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D.2 Ethics sign off 

 

The following details the consent form signed by all participants in the questionnaire. 

• PARTICIPANT CONSENT FORM 

 

 

Participant number: _____________ 

 

Date: _____________ 

 

 

I, ___________________________________________ (please print your name in 

block capitals) confirm that I agreed to participate in the “Determining Crop, Pest, 

Pesticide and Fertiliser Usage Information in the River Ugie Catchment for Use in 

a Catchment Management Model project” which forms part of the STREAM EngD 

project “The characterisation of catchment scale multiple pollutant processes to 

inform water industry catchment management”, which has been described to me 

as:  

 

• This study aims to collate information using an interview driven 
questionnaire on the cropping, pesticide and nutrient management 
practices in the River Ugie Catchment. 

• Data collected will be used to form the basis of inputs to a water quality 
model to determine risks to raw drinking water sources from land 
management activities. 

 

I understand that all personal information that I provide will be treated with the strictest 

confidence and I have been provided with a participant number to ensure that all raw 

data remains anonymous. 

 

I understand that although the information I provide will be used by Cranfield University 

and Scottish Water for research purposes, it will not be possible to identify any specific 

individual from the data reported as a result of this research.  
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I understand that the data collected will only be used for research purposes as part of 

the STREAM EngD project “The characterisation of catchment scale multiple 

pollutant processes to inform water industry catchment management”.  The 

results will be written up as a thesis/academic paper/sponsor report. I further 

understand that my raw data will be accessible only to the researcher and the 

supervising staff at Cranfield University. All data collected will be stored in accordance 

with the UK Data Protection Act (1998). 

 

I understand that I am free to withdraw from this project at any stage during the session 

simply by informing a member of the research team, for whom contact details have 

been provided. I also understand that I can also withdraw my data for a period of up to 

7 days from today, as after this time it will not be possible to identify my individual data 

from the aggregated results. 

 

 

I confirm I have read and completely and fully understand the information 
provided on this form and therefore give my consent to taking part in this 
research. 

 
If you have any questions about the research, or wish to withdraw your consent, please 

do not hesitate to ask to member of the research team via the contact details provided. 

 

 

 

 

Signature: ___________________________________   Date: _________________ 

 

 

Full name: ___________________________________  Contact number: _________________________ 

  

Address:  ____________________________________   Email address:   _________________________ 
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D.3 Questionnaire 

 

The following details the questionnaire given to all participants 

Determining Crop, Pest, Pesticide and Fertiliser Usage Information in the 

River Ugie Catchment for Use in a Catchment Management Model 

 

Questionnaire to Agronomists 

 

Before starting the questionnaire please complete a consent form 

 

Part 1 – Cropping Practices 

1. What area (in ha) of the Ugie Catchment do you provide cropping and pesticide advice 

for? 

 

2. In terms of land area (in ha) what are the land uses and crop types that you cover? 

 

3. In terms of profit what are the most dominant crops in the catchment that you cover? 

 

4. What are the most common crop rotations that you are aware of in the catchment? 

 

Part 2 – Pest Issues 

1. Of the land uses and crops outlined in part 1 which ones do you provide management 

advice for (please expand on each): 

• Pests 

• Diseases 

• Weeds 

 

2. Which of the following recommendations do you make for the above problems (please 

answer per land use crop type and expand on each if necessary): 

• Chemical 

• Cultural management 

• Integrated crop management 

If you make no recommendations, please answer why 

3. Could you please rank the priority recommendations for each crop. 
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4. Are the management options crop specific, or do you have options that are suitable for 

a range of crops? 

Part 3 – Pesticide Usage 

Scottish Water have identified 6 difference substances in high concentrations in the River Ugie: 

1. 2, 4-D 

2. Chlorotoluron 

3. CMPP 

4. MCPA 

5. Metaldehyde 

6. Metazachlor 

Please answer the following questions on each of the substances outlined above (please 

include the name of the pesticide in place of “pesticide x” in each question): 

1. On which crop(s) is pesticide X used on? 

 

2. For what reason is pesticide X used on these crops? 

 

3. For each crop pesticide X is used on at what stage in the growth cycle of the crop (time 

of year) is the substance likely to be applied? 

 

4. Do you recommend pesticide x for the reasons outlined in question 2? If yes please 

answer questions 5-9 and 12, if not please answer questions 10-12 

 

Answer these questions if you answered yes to question 4 

5. If you recommend pesticide x what are your reasons for doing so? For example: 

i. It is the only product available 

ii. It is the most cost effective product 

iii. It is part of a mix of substances used in a resistance management strategy 

iv. Other (please specify) 

 

6. Do you recommend the use of pesticide x in conjunction with any other active 

substances in either a combined strategy or in a product that contains more than one 

active substance?  

 

7. Are there any alternatives to pesticide x? 

 

8. If so why do you not recommend these substances? 

i. Product is more expensive than pesticide x 

ii. Product is not as effective as pesticide x 

iii. Combination of the above 

iv. Other (please specify) 
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9. If pesticide x is recommended what advice do you provide for when it should not be 

applied e.g. when heavy rain is forecast or fields are saturated? 

 

 

Answer these questions if you answered no to question 4 

10. For what reasons do you not recommend the use of pesticide x? 

 

11. What pesticide do you recommend using as an alternative to pesticide x? 

 

Answer this question if you answered either yes or no to question 4 

12. Do you have any further comments on pesticide x? 

 

Part 4 – Nutrient Management in the Ugie 

1. Do you provide advice on nutrient management for the crops outlined in part 1? 

(please identify which crops) 

If yes please answer the remaining questions in part 4 

2. For the land uses and crops identified in question 1 what fertiliser practices do you 

recommend? (e.g. inorganic fertiliser application, manure application etc.) 

 

3. If inorganic fertilisers are recommended what are the most common types for each 

crop identified in question 1? (e.g. nitrate, phosphate, compound etc.) 

 

4. How are decisions made on the application rate of fertilisers for each crop identified in 

question 1? 

 

5. For each of the crops identified in question 1 at what period of the growth 

stage/approximate time of the year are the fertilisers outlined in question 2 applied? 

 

6. When recommending fertiliser practices what advice do you provide for when 

fertilisers should not be applied e.g. when heavy rain is forecast or fields are 

saturated? 

 

Thank you for answering the questionnaire. 
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D.4 Example questionnaire response 

The following provides an example of the answers to the questionnaire provided a participant 

within the ‘A Priori’ questionnaire template.  

Participant A Responses in ‘A Priori’ Template 

1. Cropping Practices 

1. Catchment area 

• 60% of Ugie farmed area 

• Approximately 1000 spring hectares 

 

2. Area of land uses and crop types 

• Approx 50% of that is combinable crop and the rest is grassland of some sort of 

another with a couple % of potatoes and swedes. 

 

3. Dominant crop types in terms of profit 

• Majority of the catchment is mixed farms 

• Approx 6 dairy farmers 

• Of the beef farmers half might have suckler cows and most of them will be finishing 

beef cattle 

• Perhaps 30% would be purely arable 

 

4. Common crop rotations 

• Split into two types of farms professional arable farmers who will largely follow an 

OSR – WW – SB – WB rotation 

• Wheat needs to follow a break crop (OSR). OSR follows winter barley because it has 

to be sewn in September. 

• People opt for 4 crop rotation because of problems with club root 

• The other type of farmer will be livestock who grow a bit of barley for feed (spring 

barley) 

• Occasionally there will be spring barley grown commercially for malt. 

• So all in all it is 4 crop rotation or spring barley.  

 

5. Crop sowing, emergence and harvest times 

• Sowing – OSR before 7
th

 Sept,, WB before 25
th

 Sept, WW Sept/Oct and Spring 

Barley March/April 

• Harvest – WB first fortnight august, OSR last fortnight of August, SB September, 

Wheat mid-September, Oats  second week September. 

2. Pest issues 

1. Management advice for (including Chemical, Cultural Management and ICM) 
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1. Pests 

• 30,000 Geese in the Ugie eat wheat, winter barley and grass. Purely a 

scaring policy 

• Slugs – Heavier land helps slugs as fine seed beds prevent them moving, 

problem in OSR, Wheat and potatoes – Biggest controlling factor is 

moisture. Metaldehyde pellets put down. 

• Crane Fly – Damage in spring barley as they hatch in the spring – They lay 

their eggs in grass so problem is in grass fields that are ploughed for next 

crop in rotation. – Sprayed with Clopyrifos 

• Also issue with N.Ireland Crane Fly and Frit Fly that lay eggs in OSR and 

decimate WW. Sprayed with Clopryifos 

2. Diseases 

• Worst diseases are the ones that like cold, damp conditions 

• OSR is sprayed for Leaf Spot – in spring this is light leaf spot followed by 

Sclerotinia. 

• In Wheat Septoria is the biggest issue which is rain splash spread – gets 3-4 

sprays a year from March to July – extra spray in Scotland because 

harvested later – Azole Fungicides(prolenem metconizole, opus etc.) 

• For Barley Rinasporium is most common – controlled first thing in spring 2-

3 sprays with Azole Fungicides (prolenem metconizole, opus etc.) – WB will 

have more sprays because it is there for more of the year. 

• Club root in OSR – Controlled by rotation 

3. Weeds 

• Meadow grass is the main issue – used to be controlled by IPU and now 

CTU and PDM with some mixed with DFF. (Diflufenican) 

• Can be some issues with bromes but that’s only with mintill – most farmers 

here plough. 

• Winer crops get a spray in autumn and then again in spring – Some will get 

CMPP if chick weed is a problem in OSR in March. 

• SB gets a sulphinide urea at a lot dosage together with CMPP – application 

varies per product some go on in Autumn some in spring. Used on 80-90% 

of barleys but low application rate. 

• 50% of crops will be sprayed with glyphosate pre harvest to bring up and 

do away with any ‘greens’.  

• Ploughing reduces the risk of grass weed growth.  

2. Priority Rank Recommendations 

3. Crop specific or blanket management options? 

3. Specific Pesticides 

1. 2, 4-D 

1. Crop type 

• Grassland and cereals 

2. Reasons for use 
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• Control rushes and ragwort 

3. Stage applied 

• Can be at any time for rushes in grasslands but largely during the summer 

– Ragwort in april/may and August/September. 

• In Cereals may/june 

4. Do you recommend usage 

• Yes 

Answer if yes to 4 

5. Reasons for recommendation 

• Cheap 

6. In combination with other substances 

• MCPA 

7. Alternatives 

• MCPA 

8. Recommend alternatives 

• Yes 

9. Advice for use in respect to water contamination 

• Very soluble so with rushes you have to be careful as they grow in 

wetlands. But Rushes are also a sign of low pH. 

Answer if no to 4 

10. Reasons for not recommending 

11. Which alternative 

 

12. Further comments 

2. Chlorotoluron 

1. Crop type 

• Used extensively on cereals but is now finished 

2. Reasons for use 

• Control of meadow grass and other weeds 

3. Stage applied 

• Applied pre-emergence or early emergence. 

4. Do you recommend usage 

• Used to but now banned 

Answer if yes to 4 

5. Reasons for recommendation 

• Cheapest and most effective option 

6. In combination with other substances 

• Used with PDM and DFF 

7. Alternatives 

• PDM and DFF 

8. Recommend alternatives 

9. Advice for use in respect to water contamination 

Answer if no to 4 
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10. Reasons for not recommending 

11. Which alternative 

 

12. Further comments 

3. CMPP 

1. Crop type 

• Base phenoxy herbicide for all spring crops. 

2. Reasons for use 

• Control of chick weed and other weeds. 

3. Stage applied 

• 11-31 weeks so for spring crops mid-May to early June. 

4. Do you recommend usage 

• Yes 

Answer if yes to 4 

5. Reasons for recommendation 

• Cheap and covers a broad weed spectrum – does have weaknesses though 

that are covered by HBN or Starain. 

6. In combination with other substances 

• HBN and Starain where there are problems with fat hen weed. 

7. Alternatives 

• Sulphinile Urea 

8. Recommend alternatives 

9. Advice for use in respect to water contamination 

• Highly soluble so yes. Don’t apply when there is likely to be a heavy dew 

Answer if no to 4 

10. Reasons for not recommending 

11. Which alternative 

 

12. Further comments 

4. MCPA 

1. Crop type 

• Largely grasses but also cereals. 

2. Reasons for use 

• Control of weeds in Grasses and sometimes cereals 

3. Stage applied 

• Can be at any time for rushes in grasslands but largely during the summer 

– Ragwort in april/may and August/September. 

• For other grass weeds such as buttercups and nettles in June/July 

• In Cereals may/june 

4. Do you recommend usage 

• Yes 

Answer if yes to 4 

5. Reasons for recommendation 
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• Cheap 

6. In combination with other substances 

• 2, 4-D 

7. Alternatives 

• 2, 4-D 

8. Recommend alternatives 

9. Advice for use in respect to water contamination 

• Same as 2, 4-D, CMPP 

Answer if no to 4 

10. Reasons for not recommending 

11. Which alternative 

 

12. Further comments 

5. Metaldehyde 

1. Crop type 

• OSR, Wheat and potatoes on heavy soils 

2. Reasons for use 

• Control of slugs 

3. Stage applied 

• Largely in the autumn depends on slug numbers although some people will 

apply them in a precautionary sense. 

4. Do you recommend usage 

• Yes 

Answer if yes to 4 

5. Reasons for recommendation 

• Most effective and cheapest available 

6. In combination with other substances 

• Not usually 

7. Alternatives 

• Ferric Phosphate 

8. Recommend alternatives 

• Only if part of stewardship scheme otherwise too expensive. 

9. Advice for use in respect to water contamination 

• Follow advice provided by VI and MSG but often advice doesn’t get through 

to people applying from quad bikes etc. There is often not the appreciation 

of the impact of the pellets on water. 

Answer if no to 4 

10. Reasons for not recommending 

11. Which alternative 

 

12. Further comments 

6. Metazachlor 

1. Crop type 
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• Winter OSR – 95% of OSR sprayed 

2. Reasons for use 

• Effective for broad spectrum of weeds in OSR 

3. Stage applied 

• Within 36 hours of being sewn so mid august to first week in sept. 

4. Do you recommend usage 

• Yes 

Answer if yes to 4 

5. Reasons for recommendation 

• Best available for weed spectrum 

6. In combination with other substances 

7. Alternatives 

• Butisan and propyzamide 

8. Recommend alternatives 

• Propyzamide is used a lot down south to control black grass but this is not 

a problem in Scotland. 

9. Advice for use in respect to water contamination 

Answer if no to 4 

10. Reasons for not recommending 

11. Which alternative 

 

12. Further comments 

4. Nutrient Management 

1. Nutrient advice for crops/land use in part 1 

• Yes all of them 

If yes answer remaining parts 

2. Recommended fertiliser practices 

• It really depends on the farm. 

• If they have livestock they will use their slurry 

• There is often trades and selling between farmers who have slurry and 

chicken muck. 

• Anything that slurry cannot provide is topped up with out of the bag 

fertiliser – this will be on a field by field basis though depending on the 

previous rotation, NVZ limits and timing limits. Winter cereals have big 

problems with being under the NZV limit because limits set too low. 

3. Common inorganic fertilisers 

• More people having farms GPS mapped and basing phosphate and potash 

application on this. 

• Some people still variable spread phosphate but it’s very expensive.  

• Most Scottish soils are acidic and naturally low in phosphate and lime so these 

are often toped up.  

• Nitrate levels are as per crop requirement and are rotationally driven.  
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4. Application rate of fertilisers 

• Variable 

5. Period of growth stage 

• OSR, WB and WW top dress with N and sulphur, then a second and possibly 

third dose depending on previous rotation.  

• For SB the majority goes in the seed bed when its sown and then top dressed 

with 80-100 kg per hectare in total.  

• These are also limited by NVZ limits – can’t put N after 1
st

 sept for inorganic 

and 1
st

 oct for organic fertiliser. 

6. Advice on when not applied 

• Obviously dictated by NVZ and control on application to snow etc.  
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Appendix E Example CaRPoW model outputs for each pollutant 

This appendix provides examples of CaRPoW model outputs for each pollutant 

modelled.  

 

Figure E-1 - CaRPoW modelled 2, 4-D risk (dominant land use pattern 2008-2012) 
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Figure E-2 - CaRPoW modelled chlorotoluron risk (dominant land use pattern 2008-2012) 
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Figure E-3 - CaRPoW modelled CMPP risk (dominant land use pattern 2008-2012) 
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Figure E-4 - CaRPoW modelled MCPA risk (dominant land use pattern 2008-2012) 
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Figure E-5 - CaRPoW modelled metaldehyde risk (dominant land use pattern 2008-2012) 
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Figure E-6 - CaRPoW modelled metazachlor risk (dominant land use pattern 2008-2012) 
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Figure E-7 - CaRPoW modelled nitrate risk (dominant land use pattern 2008-2012) 
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Figure E-8 - CaRPoW modelled particulate phosphorus risk (dominant land use pattern 2008-

2012) 
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Figure E-9 - CaRPoW modelled soluble phosphorus risk (dominant land use pattern 2008-

2012) 

 



 

302 

 

Figure E-10 – CaRPoW modelled sediment risk (dominant land use pattern 2008-2012) 


