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In recent years water companies have started to adopt catchment management to reduce diffuse
pollution in drinking water supply areas. The heterogeneity of catchments and the range of pollutants
that must be removed to meet the EU Drinking Water Directive (98/83/EC) limits make it difficult to
prioritise areas of a catchment for intervention. Thus conceptual frameworks are required that can
disaggregate the components of pollutant risk and help water companies make decisions about where to
target interventions in their catchments to maximum effect. This paper demonstrates the concept of
generalising pollutants in the same framework by reviewing key pollutant processes within a source-
mobilisation-delivery context. From this, criteria are developed (with input from water industry pro-
fessionals involved in catchment management) which highlights the need for a new water industry
specific conceptual framework. The new CaRPoW (Catchment Risk to Potable Water) framework uses the
Source-Mobilisation-Delivery concept as modular components of risk that work at two scales, source and
mobilisation at the field scale and delivery at the catchment scale. Disaggregating pollutant processes
permits the main components of risk to be ascertained so that appropriate interventions can be selected.
The generic structure also allows for the outputs from different pollutants to be compared so that po-
tential multiple benefits can be identified. CaRPow provides a transferable framework that can be used
by water companies to cost-effectively target interventions under current conditions or under scenarios
of land use or climate change.
© 2015 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Variability in catchment water quality is an issue that impacts
on many aspects of the environment and society. Improvements to
water quality have resulted from the improved regulation of in-
dustries that discharge effluent into thewater environment from an
individual source (e.g. EU Urban Waste Water Directive 91/271/
EEC). However the improved control of point sources means that
increasing attention is being placed on diffuse sources of pollutants
in catchments (Edwards and Withers, 2008). The spatially-diverse
nature of diffuse pollution makes it difficult to pinpoint areas for
regulation and investment and therefore an integrated catchment
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based approach has commonly been adopted for its control (Harris,
2013), e.g. the Watershed Approach Framework (USA) (EPA, 1996),
Catchment Management Authorities (New South Wales, Australia)
(NSW Government, 2003).

In Europe, this integrated approach forms the underlying
management structure of the EU Water Framework Directive
(WFD) which aims to achieve a ‘good’ ecological and chemical
status for all EU water bodies (2000/60/EC; Holzwarth, 2002).
Achieving the required water body status relies on the designated
Competent Body (such as the national environmental regulator)
outlining a programme of measures, within their river basin
management plans, to tackle a range of pollutants which may be
implemented by multiple organisations or stakeholders, which
may include water companies.

Water companies as recipients of poor water quality and with
their own regulatory issues have an increasing interest in control-
ling pollution at source using catchment management rather than
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relying on increased treatment. At the EU level this is consistent
with Article 7 of the WFD which aims at “avoiding deterioration in
their (Water Companies) quality to reduce the level of purification
treatment required in the production of drinking water” (2000/60/
EC). This, combined with encouragement from the water industry
regulatory bodies and the perceived benefits of catchment man-
agement within the water industry (such as reducing costs of
treatment, promoting sustainability and reducing greenhouse gas
emissions) (UKWIR, 2012), have led to all of the major water
companies in the UK adopting some form of integrated catchment
management (Spiller et al., 2013). However despite national con-
cerns about drinking water limits being breached by multiple
pollutants, catchment management investigations have tended to
be reactionary and to focus on a single pollutant issue in isolation.
This potentially means that companies are not realising the full
benefit of an integrated approach to improve raw drinking water
quality.

Drinking water catchments often present an inherent mosaic of
different land uses, soil types, geology and anthropogenic in-
fluences that promote heterogeneity in catchment pollutant pro-
cesses. For catchment management to be effective and sustainable
it is vital that interventions are carefully selected and targeted at
Critical Source Areas (CSAs) that pose disproportionately higher
risk than others (Strauss et al., 2007; White et al., 2009; Doody
et al., 2012). Aside from improved effectiveness and reduced
implementation costs, disruption to other catchment stakeholders
will be reduced when compared to widespread implementation of
interventions (Beharry-Borg et al., 2013).

The selection and targeting of measures has been supported by
the development of a number of conceptual frameworks and
models to aid stakeholder decisions. However, they have largely
been developed with single pollutant issues in mind e.g. the
Nutrient Export Risk Matrix (Hewett et al., 2004, 2009) or the
CatchIS modelling framework (Brown et al., 2002). Frameworks
have also been developed which highlight certain components of
pollutant risk such as the SciMap modelling framework which
makes an assessment of spatial risk based on hydrological con-
nectivity in a catchment (Lane et al., 2009). Frameworks that
concentrate on singular pollutants or risk components however do
not always allow for the assessment of the range of pollutants that
need to be considered by water companies. Where multiple
pollutant frameworks have been produced, they have either been
developed for specific land use and soil types (Granger et al., 2010)
or tend to focus on a single component of risk (e.g. source com-
parison in Dawson and Smith, 2010).

The aim of this paper therefore is to develop and demonstrate a
generic conceptual framework that allows comparison of the
spatial and temporal drinking water quality risks associated with
multiple pollutants. This will allow water utilities and their part-
ners to proactively identify critical source areas for multiple pol-
lutants and subsequently better select and target a programme of
interventions.

This paper (i) identifies catchment process similarities between
different pollutants as a basis for integrating multiple pollutants
within a single framework; (ii) proposes a new conceptual frame-
work (CaRPoW e Catchment Risk to Potable Water) to facilitate the
selection and targeting of catchment interventions to address
multiple pollutants, that meets the needs of water companies based
on criteria developed with water company professionals and (iii)
discusses the merits and drawbacks of using such a framework to
select and target interventions.

2. Catchment heterogeneity and multiple pollutant processes

The development of this generic framework is based on the
presumption that different pollutants sometimes show similarities
in either their source, mobilisation or delivery and that this will
result in common critical source areas. Building on work by
Haygarth et al. (2005) and Granger et al. (2010) we took the key
pollutants of concern to drinking water source protection and
reviewed their processes within the Source-Mobilisation-Delivery
continuum framework that describes the cascade of groupings of
pollutant processes that lead to the contamination of drinking
water sources (Haygarth et al., 2005). Source processes concern
whether a pollutant occurs naturally or as a result of human
intervention (Granger et al., 2010). Mobilisation relates to the
mechanism(s) by which a pollutant moves from its source either in
solution and/or attached to particulate matter. Finally the delivery
component refers to the pathway that a mobilised pollutant takes
to reach the receptor (water body). Pollutants reviewed include
pesticides and nitrate, which have regulated limits under the EU
DrinkingWater Directive (98/83/EC), and Dissolved Organic Carbon
(DOC), sediment and phosphorus which cause issues relating to
disinfection by-products, turbidity and reservoir algal blooms,
respectively.

2.1. Pesticides

The importance and strength of the source term for most pes-
ticides depends primarily on the agricultural land use, which in
turn determines the rate, frequency and timing of active ingredient
application. The mobilisation and delivery of the active ingredients
are then often primarily determined by hydrological events which
can affect runoff, leaching and drain-flow (Leu et al., 2004;
Reichenberger et al., 2007). Although less common, spray-drift
and overspraying into water bodies can also result from poor
pesticide spraying practices (Reichenberger et al., 2007).

Mobilisation can be both in particulate and soluble forms, and is
influenced by both soil properties and the sorption strength and
solubility of the pesticide (Wauchope et al., 2002; Gavrilescu,
2005). Soil organic matter and clay content determine sorption
sites and soil physical properties such as porosity determine the
water storage capacity and thus propensity of pesticide sorption
(Spark and Swift, 2002; Arias-Est�evez et al., 2008). Soil texture and
topographical features such as slope, which affect erosion rates,
influence mobilisation in particulate forms (Arias-Est�evez et al.,
2008). Rainfall intensity, duration and timing can influence the
onset of soil detachment (particulate mobilisation), the mobi-
lisation of freshly applied pesticides on the soil surface and pesti-
cides in soil solution when soil moisture content is above field
capacity (Kladivco et al., 2001; Nolan et al., 2008; Lewan et al.,
2009).

Pesticides can be delivered to water bodies by high energy, low
energy and non-hydrological delivery pathways. Again pesticide
properties are key determinands, with low sorbing and soluble
pesticides more likely to be delivered in low energy pathways such
as throughflow and leaching (K€ordel et al., 2008) and stronger
sorbing and less soluble pesticides delivered through higher energy
processes such as surface runoff and preferential flow (Riise et al.,
2004; Reichenberger et al., 2007). Throughflow and leaching pro-
cesses are likely to be more prevalent in lighter, sandier soils (Leu
et al., 2004) and the higher energy runoff and preferential path-
ways associated with heavier clay soils that may be subject to
artificial drainage (Akay and Fox, 2007; Brown and van Beinum,
2009). Precipitation characteristics, especially the timing and
magnitude of the first rainfall event after application (Louchart
et al., 2001; Guo et al., 2004), are important in the delivery of
pesticides. The significance of non-hydrological processes, such as
spray drift and volatilisation, are dependent on the proximity of
application to surface water, spraying technique and the properties
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of the pesticide (Gil and Sinfort, 2005; FOCUS, 2008).

2.2. Nitrogen

Sources of nitrogen on agricultural land include inorganic fer-
tiliser (Domburg et al., 1998), cycled sources such as livestock waste
either directly applied by livestock or in the form of manure or
slurry applications (Hooda et al., 2000), and internal sources such
as nitrate from soil mineralisation (Di and Cameron, 2002). These
sources exist in a number of forms including nitrate and ammo-
nium (Hooda et al., 2000; Granger et al., 2010; Jarvie et al., 2010).
Agricultural sources are generally diffuse with some point sources
associated with farm yards (Edwards et al., 2008) and other non-
agricultural sources, such as Waste Water Treatment Works
(WWTW) discharges and septic tanks. The main determinands of
nitrate sources in a catchment therefore are the type of agriculture
(although it varies with cropping and livestock system, and fertil-
iser and stocking rates) and the presence of any point sources. Ni-
trate concentrations in rivers can be higher inwinter months when
plants are not actively taking nitrate from the soil and leaching
rates are higher (Jarvie et al., 2010).

Nitrate is mostly mobilised via solubilisation processes (Granger
et al., 2010) due to its high solubility (Di and Cameron, 2002).
However, the solubilisation of nitrate is closely linked to the soil
moisture content which in turn is affected by rainfall and the soil
properties such as texture and porosity (Torbert et al., 1999). Inci-
dental mobilisation of ammonium straight after organic fertiliser
application can locally occur, although this is dependent on sig-
nificant rainfall shortly after application (Smith et al., 2001) and
reduced soil infiltration capacity (e.g. from livestock poaching)
(Butler et al., 2008).

Nitrate is generally delivered via lower energy leaching and
throughflow, with approximately 5 times higher losses of nitrate
via leaching than surface runoff in both intensive and extensive
agriculture (Parn et al. 2012). Nitrate losses via leaching and
throughflow are increased by a soil moisture content high enough
to drive vertical and lateral throughflow; soils with a high hydraulic
conductivity (Bergstr€om and Johansson, 1991); land management
activities such as artificial drainage (Singleton et al., 2001) and the
lack of cover crops (MacDonald et al., 2005). Although these pro-
cesses dominate, ammoniacal-N mobilised incidentally can also be
delivered in high energy surface runoff and preferential flow pro-
cesses (e.g. Ming-kui et al., 2007).

2.3. Phosphorus

Similar to nitrogen, phosphorus can be supplied from external
sources such as the application of inorganic fertilisers; cycled
sources from the direct and indirect application of livestock waste;
and internal sources from the P surplus in many soils (Edwards and
Withers, 1998; Withers et al., 2003; Hodgkinson and Withers,
2007). Diffuse sources occur from fields receiving fertiliser and
slurry whereas point sources can either be losses from livestock
waste in farmyards or effluent discharges from waste water treat-
ment works and septic tanks (Macintosh et al., 2011). The strength
of the source depends on the type of livestock (Smith et al., 1998),
stocking rate (Withers et al., 2001), fertiliser application rate which
can be related to crop type and the P status of the soil, and the
presence of non-agricultural point sources in the catchment
(Macintosh et al., 2011).

P mobilisation has been demonstrated to occur in particulate
form, in solution and incidentally (Granger et al., 2010). Due to the
high sorption capabilities of P, particulate detachment processes
are generally considered the dominant P mobilisation mechanism
(Kleinman et al., 2011). Detachment is dependent on significant
erosional rainfall inputs, but can be exacerbated by other factors
such as soil texture, tillage, soil compaction and livestock poaching.
Solubilisation of P is also possible via the dissolution of P com-
pounds or via desorption when the P sorption equilibrium of the
soil is exceeded (Styles et al., 2006). Variables influencing the
likelihood of P solubilisation include the soil type (sandy soils have
low P sorption coefficients), the organic matter content and the soil
moisture content of the soil (Hooda et al., 2000; McDowell et al.,
2001; Djodjic et al., 2004). Incidental mobilisation occurs when a
slurry or fertiliser application precedes or coincides with a hydro-
logically effective rainfall event, with inorganic fertilisers generally
causing the highest stream P concentrations after incidental
mobilisation (Preedy et al., 2001). This can locally be the dominant
mobilisation form at the field scale but effects are diluted at the
catchment scale (Withers et al., 2003).

High particle associated and soluble P loads can be delivered via
surface runoff in both arable and grassland catchments (McDowell
et al., 2001; Haygarth et al., 2006; Bilotta et al., 2008). Factors
controlling the likelihood of surface runoff P delivery are again
related to effective rainfall inputs (Shigaki et al., 2007), topography,
soil properties such as texture, and land management activities
such as cultivation and soil compaction (Silgram et al., 2010). The
presence of preferential delivery pathways (macropores and
drainflow) have also been shown to deliver P in both soluble and
particulate formats (Heathwaite and Dils, 2000; G€achter et al.,
2004). The likelihood of preferential flow pathways as a P de-
livery mechanism is increased by the presence of artificial drainage
(Hodgkinson et al., 2002) and clay soils (due to the presence of
macropores) (Van Es et al., 2004). Although the dominant delivery
pathways for P are generally thought to be high energy processes
such as surface runoff and preferential flow, P in a soluble form can
be delivered via lower energy pathways, especially in soils with a
low P sorption coefficient, a porous structure and a shallow water
table (B€orling, 2003).

2.4. Sediment

The water industry considers sediment to be an important
pollutant as it causes turbidity (regulated under the DrinkingWater
Directive (98/83/EC)) and it provides a conduit for other pollutants
such as pesticides and phosphorus (Bilotta and Brazier, 2008).
‘Naturally’ derived sediment is produced from erosive processes on
the land and from bank and bed erosion in streams and rivers
(Walling, 2005). Vegetation cover plays an important role in con-
trolling erosion and sediment loss from land, and thus arable ro-
tations that include periods of minimal vegetation cover often have
a high disproportional sediment load contribution (Collins et al.,
2009). In lowland river systems inputs from both urban areas and
sewage treatment effluent can also provide a significant source of
sediment, for example Carter et al. (2003) report annual percentage
sediment load values of 19e22% from roads and 14e18% from
sewage effluent.

The mobilisation of sediment sources depends on significant
energy inputs that enable detachment processes (Granger et al.,
2010). The detachment of land based sources is usually via rain
drop action or hydraulic detachment from runoff processes
(Morgan, 2005). Where livestock is present, poaching can also
detach sediment both from land based and river bank sources
(Skinner et al., 1997).

The dominant form of sediment delivery is associated with high
energy runoff processes. The proportion of mobilised sediment
delivered tosurfacewaters is therefore reliantupon runoff processes
havingenoughenergy tomaintain sediment suspensionor saltation.
Since energy along runoff pathways is often not maintained, sedi-
ment can be deposited before reaching surface waters (Morgan,
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2005). Thereforeadisproportionate amountof sediment is delivered
in the highest energy stormevents. Although runoff is the dominant
delivery process, studies such as Deasy et al. (2009), have demon-
strated that significant macro-pore connections in the soil subsur-
face can result in fine sediment delivery in sub-surface drains.

2.5. DOC/colour

The majority of DOC (Dissolved Organic Carbon) in surface
waters is sourced from the dissolution of organic matter in soils,
with some inputs from atmospherically deposited carbon (Dawson
and Smith, 2007). Hence, there is a relationship between the
organic carbon content of a soil and the DOC concentration/load in
the surface waters that drain the soil (Clark et al., 2004; Holden,
2005; Buckingham et al., 2008). The largest source of DOC in
British surface waters is from catchments with a high fraction of
peat soils (Holden et al., 2007; Billet et al., 2010).

By its nature DOC is mobilised via solubilisation processes with
the rate of solubilisation dependent on the rate of organic matter
decomposition (Dawson and Smith, 2007). In peatland catchments,
decomposition is regulated by temperature, pH and water table
depth (Bonnett et al., 2006). The temperature driven nature of DOC
production and mobilisation means there is often a distinct
observed seasonality with higher loads and concentrations in soil
and surface water in the summer-autumn when compared to the
winterespring (Dawson et al., 2011). Whilst these controls explain
intra-annual variations in surface water DOC concentrations they
do not explain the increase in DOC that has been observed in sur-
face waters over the last 40 years (Evans et al., 2005). Explanations
for this include increases in temperature (e.g. Freeman et al., 2001);
a reduction in acid deposition due to controls over sulphur emis-
sions (e.g. Evans et al., 2006); CO2 enrichment from increased
emissions (e.g. Freeman et al., 2004); and changes to upland land
management such as increases in drainage and moorland burning
that influence local hydrology (e.g. Yallop and Clutterbuck, 2009),
although no single driver fully explains trends in all catchments.

In peatlands DOC is transported by both low energy through-
flow processes and high energy surface runoff and preferential flow
(Clark et al., 2008; Holden, 2005) including through macropores or
soil pipes in peatlands (Holden et al., 2012). The perceived domi-
nance of each process in the literature is variable but a few studies
have quantified the importance of runoff events for intra-annual
DOC flux with Clark et al. (2007) showing that 50% of annual DOC
exports for a peatland catchment were in the highest 10% of runoff
events.

2.6. Pollutant process links

If the same processes within the Source-Mobilisation-Delivery
modules control the behaviour of different pollutants then it is
reasonable to assume that there is a potential for shared critical
source areas. In turn this highlights possibilities for the imple-
mentation of interventions within a catchment to have a positive
impact on more than one pollutant. Conversely if pollutant pro-
cesses are different then it acts as a warning for potential pollutant
swapping with certain interventions (Stevens and Quinton, 2009).
Fig. 1 highlights the dominant process similarities between the
different pollutants of direct (or indirect) interest to water com-
panies. Source processes are characterised according to the domi-
nant land uses they are associated with; mobilisation processes to
whether pollutants are mobilised in solution, attached to particles
and/or incidentally after application; and delivery is characterised
by the important pathways to drinking water bodies.

Analysis of Fig. 1 highlights similarities in the dominant process
characterisations between pollutants. For example sources of
nutrients, pesticides and sediment are likely to be spatially similar
as they are dominated by both grassland and arable land uses.
Regarding mobilisation of these sources PP, sediment and some
pesticides are inherently linked and SRP and N could potentially be
mobilised in similar circumstances (mobilisation of soil pore wa-
ter). Pesticides have the potential to be delivered in the same
pathways as any of the other pollutants, whilst sediment and PP are
associated with high energy delivery pathways and N and SRP with
sub surface delivery pathways.

The process similarities therefore suggest that there is potential
for pollutants to be considered within a single generic framework
for the purposes of defining catchment risk. Furthermore process
similarity could also be used as the conceptual basis for selecting
and targeting interventions in an attempt to abate catchment
pollutant risk for priority pollutants.

3. A conceptual framework of multiple pollutant processes

Any new framework developed for water company catchment
management projects clearly requires input from the end users of
the framework within its development. Hence a set of criteria,
informed by Graves et al. (2005), were developed in collaboration
with water company professionals involved in catchment man-
agement, water quality regulation and the delivery of the Water
Framework Directive.

The criteria are divided into nine key sub-sections (Table 1). End
users were presented with guidance information and the list of
sub-sections in Table 1 and asked to each devise criteria. Following
further discussion the final criteria were collated (the second col-
umn in Table 1) which formed the basis of the conceptual frame-
work development.

3.1. Assessing current modelling frameworks

Models and frameworks previously conceptualised for under-
standing the linkages of risk between different pollutant processes
were selected for assessment against the criteria in Table 1 on the
basis that they represented at least one of the key pollutants of
concern, accounted for spatial risk, included some form of consid-
eration for interventions (even if just implied) and have been
applied to UK or Northern European countries.

Various limitations in the associated pollutants, represented
scales and modelling typologies mean that none of the models and
frameworks assessed in Table 2 fully matches the criteria. In some
respects this is unsurprising as the outline criteria are bespoke to
the needs of the water industry which many of the models and
frameworks were not developed for, with the exception of SaGIS,
CatchIS, Foster and MacDonald (2000) and Grayson et al. (2012).
These models that were developed from the viewpoint of a water
utility are either focused on single pollutant issues (CatchIS,
Grayson et al., 2012) or do not represent the necessary processes
within the Source-Mobilisation-Delivery continuum required to
select and target specific interventions (SaGIS, Foster and
MacDonald, 2000). The Territ'eau framework (Gascuel-Odoux
et al., 2009) considers the ‘fate’ and ‘transfer’ of phosphorus, ni-
trates and pesticides to the river network, but has modules for
individual pollutants rather than process modules (that are applied
to all pollutants) which makes it difficult to compare risks for
different pollutants. This limits the identification of potentially
appropriate interventions or pollutant swapping.

This review has highlighted the need for a framework that
meets the water utility criteria outlined in Table 1, notwithstanding
the greater need for generic frameworks at the catchment scale to
assess multiple diffuse pollutants for the purposes of risk
identification.



Fig. 1. Process linkages between the water industry priority pollutants framed within the (a) Source, (b) Mobilisation and (c) Delivery continuum (adapted from Granger et al.,
2010). Pest e Pesticides, PP e Particulate Phosphorus, SRP e Soluble Reactive Phosphorus, N e Nitrate, Sed e Sediment, DOC e Dissolved Organic Carbon.
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3.2. The CaRPoW framework

The Catchment Risk to Potable Water (CaRPoW) Framework
(Fig. 2) has therefore been developed in response to the need for a
Table 1
Criteria framework used to define conceptual framework with input from water industry

Criteria sub-sections Water co

1. Background e General information on framework/model 1.1 Oper
1.2 Supp

2. Systems Modelled e Components of the system represented
by framework/model

2.1 Repr
dom

2.2 Focu
made

3. Objectives 3.1 Char
drink

3.2 Asse
3.3 Class
3.4 Com
3.5 Selec

4. Viewpoint of analysis e Who the methodology is being
developed for

4.1 Mod
abstr

5. Spatial scale and arrangement 5.1 Field
6. Temporal scale 6.1 Mon
7. Generation and use of data e How the framework/model is used 7.1 GIS m

7.2 Poten
8. Platform and interface 8.1 Initia
9. Inputs and outputs 9.1 Inpu

9.2 First
9.3 Seco
9.4 Third
9.5 Inter

post-
generic framework applicable to key drinking water protection
concerns. The core basis of the framework is centred on the Source-
Mobilisation-Delivery continuum (Haygarth et al., 2005) which has
previously been developed for phosphorus and applied to other
professionals (adapted from Graves et al., 2005).

mpany defined criteria

ate in English
orting methodology for drinking water source protection decisions
esents lowland and upland systems; arable, grassland and moorland
inated systems
s on surface water systems although consideration of groundwater
in some capacity

acterise dominant diffuse pollution processes from source to delivery in
ing water catchments
ss spatial and temporal variation in process characterisations
ify risk of pollutant characterisations
pare risk classifications between different pollutants
t and target interventions according to the high risk areas
elled from the viewpoint of a water company with a focus on
acted raw water quality
/land unit scale
thly for some model components but output to be seasonal or annual risk
ethodology with potential to derive information from other models if necessary
tial for framework to be used in a qualitative assessment
l development in spatial modelling platform
ts are spatial-temporal datasets and parameters defined by user
output is modular (source, mobilisation and delivery) process risk
nd output combined total risk output with all three modules
output is risk comparison between pollutants

vention options selected according to process characterisation in
processing of outputs 9.1e9.3



Table 2
Evaluation of existing frameworks and models against the water company criteria components.

Related criteria sub-sections 1, 4 2 2 2 3 3 3 3 5, 6 7, 8, 9

Framework/
model

Reference Drinking
water
specific?

Land uses
represented

Pollutants represented Hydrological
systems
represented?

Separate
source-
Mobilisation-
Delivery?

Pollutant
comparison?

Intervention
targeting?

Transferable,
generic
methodology?

Spatio-temporal
scale?

Platform and
outputs

Phosphorus
Indicators
Tool

Heathwaite
et al. (2003)

7 Upland and lowland
e grassland, arable,
semi-natural,

Soluble and particulate phosphorus Surface
water

S-M-D 7 7 7 (principles
could possibly
be generic)

1 km2 e Annual GIS risk maps e
total and
component risk

FARMSCOPER Gooday
et al. (2014)

7 Lowland e

grassland and arable
Soluble and particulate phosphorus,
nitrate, sediment, pesticides

Surface
water and
groundwater

S-M-D ✓ ✓ ✓ Farm scale e annual Numerical
assessment

Granger et al.
(2010)

Granger
et al. (2010)

7 Upland and lowland
e grassland

Soluble phosphorus, particulate
phosphorus, nitrate, nitrite, ammonia,
fine sediment

Surface
water and
groundwater

S-M-D ✓ 7 ✓ n/a Qualitative
classification

NERM Hewett
et al. (2004)

7 Upland and lowland
e grassland and
arable

Nitrate and phosphorus Surface
water and
groundwater

7 ✓

(Potentially
Implicit)

✓ ✓ Farm scale e n/a Qualitative
classification

SNIFFER e

Diffuse
Pollution
Screening
Tool

Sniffer
(2006)

7 Upland and lowland
e grassland, arable,
semi-natural

Phosphorus, nitrate, sediment,
pesticides, metals

Surface
water and
groundwater

7 7 7 ✓ 1 km2 e annual GIS risk maps

SCiMap Lane et al.
(2009)

7 Upland and lowland
e grassland, arable,
semi-natural

Potential for all pollutants Surface
water

D 7 7 ✓ User defined e n/a GIS risk maps e
total risk

SAGIS Comber
et al. (2013)

✓(but not
exclusively)

Upland and lowland
e grassland, arable,
semi-natural

Phosphorus, nitrate, sediment, metals Surface
water

7 7 7 ✓ Catchment scale e

Annual
GIS risk maps e
total risk

CatchIS Brown et al.
(2002)

✓ Lowland e

grassland, arable,
semi-natural

Pesticides, nitrate Surface
water and
groundwater

7 7 7 7 Catchment scale e

Daily (time series),
Annual (spatial risk)

GIS risk maps e
total risk

Foster and
MacDonald
(2000)

Foster and
MacDonald
(2000)

✓ Upland and lowland
e grassland,
arable,semi-natural

Cryptospridium, pesticides, oil and
grease, colour, trace metals, faecal
bacteria, lead, phosphorus, nitrate

Surface
water

7 7 7 ✓ Catchment scale e

annual
GIS risk maps e
total risk

Grayson et al.
(2012)

Grayson
et al. (2012)

✓ Upland e grassland
and semi-natural

DOC and water colour Surface
water

7 7 7 7 Catchment scale e

annual
GIS risk maps

PSYCHIC model Davison
et al.(2008)

7 Upland and lowland
e grassland, arable,
semi-natural

Soluble phosphorus, particulate
phosphorus and sediment

Surface
water

S-M-D 7 7 7 1 km2 grid (Tier 1),
farm scale (Tier 2) e
monthly

GIS risk maps e
total and
component risk

The Territ'eau
framework

Gascuel-
Odoux et al.
(2009)

7 Upland and lowland
e grassland, arable,
semi-natural

Phosphorus, nitrate, sediment and
pesticides

Surface
water

7 7 ✓ ✓ Field to catchment
scale e annual

GIS risk maps e
total risk
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agricultural pollutants in heavy soil grassland systems by Granger
et al. (2010). The selection of the continuum as the key basis for
the framework is centred on the need to disaggregate pollutant
processes from how pollutants are derived (Source) to how they
reach a water body (Mobilisation and Delivery), so that interven-
tion decisions are informed by the main component of risk.
3.2.1. Defining pollutant risk
The CaRPoW framework takes a novel approach to the spatial

application of the three modules of the Source-Mobilisation-
Delivery continuum in order to determine pollutant risk. The
source and mobilisation modules are both implemented at the
‘field scale’ as the key scale for agronomic intervention. Within
CaRPoW ‘field scale’ relates to areas of land that share common
land use, soil and drainage characteristics i.e. the smallest scale at
which differences in substance source strength and mobility might
exist using available spatial datasets. However these are also still
separated by ‘real world’ field delineations to give a mosaic of
spatial units across the catchment each with a unique source and
mobilisation risk.

As with the traditional Source-Mobilisation-Delivery continuum
the source module of CaRPoW refers to the mass of pollutant
potentially available formobilisation, as not all of the sourcemay be
available for mobilisation (e.g. pesticides bound to the soil, nitrate
taken up by crops). This can consist of a single source (e.g. pesti-
cides applied to fields) or multiple sources (e.g. phosphorus from
manure, inorganic fertiliser and/or the soil) depending on the
pollutant.

The mobilisation module represents the proportion of the
available source module output that is mobilised and delivered to
the edge of the field. It is therefore dependent on the initiation of
runoff and drainflow processes and hence the field's soil water
balance. For some pollutants such as pesticides the time factor
between source availability and the initialisation of mobilisation
processes is also important for source degradation and is therefore
considered within the mobilisation module.

The delivery module accounts for the movement of mobilised
pollutants from field edge to the water body (such as a river or
reservoir) from which drinking water is abstracted, and represents
Fig. 2. The CaRPoW Framework. Risk is defined within the three modules for pollutant A and
have shared high risk between different pollutants are prioritised for intervention.
the scale of opportunity for boundary feature and water course
management to influence pollutant loads. It therefore incorporates
principles of hydrological connectivity, i.e. the better connected a
field is to the water body the more likely mobilised pollutants will
be delivered. This gives a coefficient of delivery to each field within
the catchment i.e. the fraction of mobilised pollutant that is
delivered to the water body.

The combination of these three modules provides the overall
risk as the mass of pollutant delivered to the water body per annum
(Equation (1)).

Riskt ¼ Sourcet$KMobt$KDeliveryt (1)

where Riskt is the mass of pollutant delivered to the water body (kg
ha yr�1), Sourcet is the mass of pollutant potentially available for
mobilisation (kg ha yr�1), KMobt is the coefficient of mobilisation
(dimensionless proportion between 0 and 1) and KDeliveryt is the
coefficient of delivery (dimensionless proportion between 0 and 1).

CaRPoWs main utility is as a generic modelling framework in
which modelling methodologies are implemented in the source
and mobilisation components for each pollutant. The delivery
component however is based on the same principles of hydrolog-
ical connectivity for all pollutants. This largely stems from the fact
that the movement of different pollutants beyond the field scale is
much less understood (Haygarth et al., 2005), along with un-
certainties over the accepted processes and complexities of hy-
drological connectivity within the literature (Bracken et al., 2013).
One of the benefits of a generic modular modelling framework such
as CaRPoW is that, as understanding of pollutant processes im-
proves and better modelling methodologies are developed, the
framework components can be updated.

3.2.2. Pollutant comparison and measure selection
Once risk has been assessed for each of a range of pollutants,

comparisons can be made to determine if the risks are spatially
concurrent between pollutants. The root cause of risk can be
assessed for individual high risk fields by determining which of the
three modular components is the most dominant in the high risk
classification. Once determined, interventions can be referenced
from an inventory (e.g. Newell Price et al., 2011) that is classified by
Pollutant B so that risks can be compared overall and between components. Areas that
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risk component and the pollutants mitigated.
It is also important to be aware of pollutants that do not have

spatially consistent risk as there may be potential for pollutant
swapping. Although CaRPoW does not explicitly incorporate
intervention effectiveness i.e. how risk changes after intervention
implementation, it is important for the end user to make assess-
ments of where potential pollutant swapping might occur when
selecting interventions for one pollutant. For example if a change in
land use is the intervention deemed best for a certain field it is
important for the end user to judge if this will increase the risk for
another pollutant. This is particularly prevalent for pesticides
where changing from one crop to another may lead to product
substitution. Overall the framework provides the end user infor-
mation on the potential pre-conditions of multiple pollutant risk,
uponwhich decisions about the most appropriate intervention in a
particular area can be made.

4. Discussion e Is CaRPoW fit for purpose?

4.1. Benefits and potential uses of CaRPoW

A key advantage of the CaRPoW approach is that it provides the
end user (a water company), more insight into their drinking water
supply areas. Where catchments are large, heterogeneous and
water is abstracted from a river system it is often difficult for water
companies to ascertain the catchment processes that dominate
pollutant risks (Spiller et al., 2013).

For example Scottish Water is currently implementing an agri-
envrionment scheme in the River Ugie catchment in the North
East of Scotland in order to reduce pesticide concentrations in
abstracted river water. The catchment covers an area of approxi-
mately 330 km2, has a mixture of arable and grassland farming and
approximately 400 different farm holdings which poses challenges
for water company staff administering the scheme. The catchment
size and number of farmers makes it extremely difficult for Scottish
Water staff to conduct whole-catchment walkovers to gain the
comprehensive spatial understanding of risks needed to prioritise
interventions from themany land owners applying for finance from
the scheme. This is further highlighted by Spiller et al. (2013) who
found that water companies in England andWales weremore likely
to implement catchmentmanagement schemes if catchments were
small, relatively homogenous and the risks are “easy” to identify. By
using CaRPoW, water companies can gain a better understanding of
how and where catchment management may contribute to
reducing water quality risks in the larger more heterogeneous
catchments that they previously may have overlooked.

Although CaRPoWs main purpose is to be used as a modelling
framework, it can also be used in a purely qualitative manner by
industry experts to conceptually frame pollutant risks into the
three components when initiating catchment management
schemes. The benefits of disaggregating risk into its constituent
components in a holistic, systems-based way cannot be gained
from other frameworks and models that just define overall risk.

The framework has potential uses in addressing other key
catchment management based questions. A big uncertainty in
catchment management is where both short to longer term future
risks may arise (Pal et al., 2010). This is particularly relevant to
pollutants such as pesticides where the location of sources is likely
to vary spatially and temporally depending on crop rotations
(Balderacci et al., 2008) or changes in crop profitability associated
with climate, agronomic or economic change. The framework en-
ables the user to make assumptions, incorporate knowledge gath-
ered from farmers and agronomists, or implement land use/
cropping scenarios to predict risk. By having a better understanding
of future catchment risks, water companies should be able to plan
water abstraction regimes more effectively.

4.2. Potential limitations of CaRPoW

As with any framework or approach, the limitations of CaRPoW
should be clearly addressed and communicated. One such limita-
tion is the uncertainty associated with the lack of an accepted and
cohesive theory of hydrological connectivity which forms the basis
of the delivery component. Bracken et al. (2013) highlight this
succinctly in their review of five different approaches to investi-
gating hydrological connectivity (soil moisture connectivity, flow
process connectivity, terrain connectivity, connectivity modelling
and indices of connectivity), that are all influenced by different
conceptual understandings. There is also much to be said about the
difference between structural connectivity which is more easily
represented in spatial modelling approaches and themore dynamic
functional or process-based connectivity which looks at temporal
variance in connectivity which is less understood and thus more
difficult to model (Bracken and Croke, 2007; Bracken et al., 2013).

The capabilities of CaRPoW to identify where sub-catchment
scale interventions should be prioritised in small, homogenous
catchments, such as in parts of Scotland and Northern England
where drinking water is abstracted from upland reservoir systems
with water colour issues, are likely to be limited. Such catchments
are often fed by comparatively small hydrologically ‘flashy’ catch-
ments, with homogenised moorland land uses, peat soils and
extensive agricultural drainage ditch networks. Previous modelling
studies have demonstrated that these catchments are high risk to
water colour as a whole when compared against other catchments
(e.g. Aitkenhead-Peterson et al., 2007; Grayson et al., 2012), but
there is a dearth of studies that investigate spatial risk within these
catchments.

5. Conclusions

In the face of deteriorating raw water quality from a number of
diffuse pollution pressures, water companies have started to adopt
catchment management interventions for the provision of clean
drinking water. Catchment heterogeneity dictates that supply
catchments are a mosaic of different land uses, soil typologies and
hydrology making it difficult for water companies to ascertain the
components and spatial nature of pollutants risks. Thus for in-
terventions to be effectively targeted, conceptual frameworks are
required that are able to assess the risks of the multitude of pol-
lutants that must be removed from raw drinking water. We
demonstrate that catchment risk from pollutants of concern to the
water industry can be split into three constituent components of
risk (Source-Mobilisation-Delivery). Highlighted key linkages be-
tween different pollutants present opportunities for shared spatial
risk and therefore multiple benefits from interventions.

Criteria were developed with water industry catchment man-
agement professionals for a new conceptual framework that can
uniquely be used to identify pollutant risk, compare risks between
different pollutants of water-industry concern and select in-
terventions according to the main components of risk. The Catch-
ment Risk to Potable Water (CaRPoW) framework was specifically
created for the water industry to split the components of pollutant
catchment risk into Source-Mobilisation-Delivery at field-to-
catchment scales. Although modular modelling methodologies
are unique for each pollutant their outputs can be compared to
assess where spatial risk is shared, under current or future condi-
tions. Once the highest risk fields for multiple pollutants are
defined, the dominant components of risk can be ascertained and
cross referenced against an inventory of interventions to determine
the potentially most suitable intervention. CaRPoW provides a
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valuable, transferable framework for water utilities to better un-
derstand the linkages between a range of pollutant risks in their
water supply catchments and hencemakemore informed decisions
on financing interventions.
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