
FACTORY MODELLING: THE IMPACT OF DATA GRANULARITY ON MANUFACTURING
AND BUILDING ASSET SIMULATION RESULTS QUALITY

Aanand Davé (Manufacturing & Materials Department, Cranfield University, Bedford, UK)

Michael Oates (Integrated Environmental Solutions Limited, Glasgow, UK)

Christopher Turner (Manufacturing & Materials Department, Cranfield University, Bedford, UK)

Peter Ball (Manufacturing & Materials Department, Cranfield University, Bedford, UK)

STRUCTURED ABSTRACT

Purpose – This paper reports on the experimentation of an integrated manufacturing and building model
to improve energy efficiency. Traditionally, manufacturing and building-facilities engineers work inde-
pendently, with their own performance objectives, methods and software support. However, as progress is
made in resource reduction, advances become more challenging. Further opportunities for energy effi-
ciency require an expansion of scope across functional boundaries to encompass manufacturing, utilities
and building assets.

Design/methodology/approach – The impact of modelling methods providing guidance on modelling at
factory level is inductive. The literature review outlines available techniques in simulation modelling at
factory-level for energy efficiency of manufacturing and building assets. It demonstrates that detailed
guidance for such a task is sparse. Therefore, five experiments are undertaken in the combined manufac-
turing and building simulation software IES <VE> to evaluate the impact of time interval granularity on
the modelling of a paint shop process.

Findings – Experimentation demonstrates that time-step granularity can have a significant impact on
simulation model results quality. :Linear deterioration in results can be assumed from time intervals of 10
minutes and beyond. Time interval settings in data capture must be carefully selected in line with the ca-
pabilities of the simulation software.

Practical implications – This work supports progress towards sustainable manufacturing by understand-
ing the impact of time-step granularity used for analysis, on the quality of simulation results. Better un-
derstanding of this impact will guide engineers to use an appropriate level of data and understand the im-
pact of the choices they are making.

Originality/value – This paper reports on the use of simulation modelling tool that links the areas of man-
ufacturing and and buildings, enabling their joint analysis in order to reduce factory resource consump-
tion. Currently, there are few available tools to link these areas together, hence, there is little or no under-
standing of how such combined factory analysis should be conducted to assess and reduce factory
resource consumption.
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1 BACKGROUND

Global energy use has risen by 70% since 1971 and is set to continue its steady 2% increase over the com-
ing decades, fuelled by economic expansion and global development (Clarke and Trinnaman, 2007).
Along with increasing energy use comes consequent emissions of greenhouse gases and the depletion of
finite reserves of natural resources (Sorrell et al. 2010). Finite resources formed by the Earth over millions
of years are being exhausted by a rising global population, and associated increases in manufacturing to
cater for our growing dependence on energy and resource-intensive products (Al-Shemmeri, 2011 pp.13).

Moves toward sustainable manufacturing are driving resource reductions in order to mitigate envi-
ronmental impacts (Seliger et al, 2007). Early interventions and practice adoption seek to prevent and re-
duce resource use of primary-materials, energy, water, and other consumables in localised areas, such as
production lines. Point-solutions found through analysis methods such as lean value stream mapping are
well documented within literature (Antony, 2011). However, as progress is made in resource reduction,
advances become more challenging. Further opportunities for energy efficiency require an expansion of
scope across functional boundaries to encompass manufacturing, utilities and building assets.

1.1 Problem Statement:

Typically work on factory energy reduction is undertaken independently within manufacturing, utili-
ty and building assets (Ball et al, 2009), with each achieving goals based upon their own performance
measures. Firstly, this is because individual asset assessment is a traditional practice for achieving speci-
fied efficiency targets. Secondly there is an absence of methodologies and tools to support collaborative
analysis across factory assets.

Currently, there is little consideration on the impacts of combining manufacturing, utility and build-
ing assets to measure and improve factory-level energy consumption. Decisions made in isolation could
be sub-optimal and inappropriate, e.g. facilities may replace inefficient equipment without giving prior
attention to reductions in manufacturing energy consumption, resulting in oversized equipment. Addition-
ally, due to the complexities associated with factory-level energy analysis, representative modelling
methods and supporting simulation outputs are required to understand the behaviour, feasibility and im-
pact of potential solutions.

1.2 Objectives:

Modelling of process flows in manufacturing is well established and used in industry and research
through tools like Witness, Arena, Simul8. Similarly, modelling of energy in buildings is well established
through tools such as Ecotect, Trimble and IES <VE>. However, there are no commercially available
tools and methods to link these areas together. Hence, as yet there is little or no understanding of how
such modelling can help reduce factory energy consumption. Therefore, the objectives of this work are:

 Develop a factory model that combines manufacturing, utility and building assets

 Use novel simulation tool (IES <VE> THERM) to analyse the impact of time-step granularity

 Provide guidance on the quality of simulation results generated from different time-steps.

Currently, there is a lack of knowledge on combined modelling of manufacturing and buildings assets.
Additionally there is little understanding on how time-step granularities may impact the quality of simula-
tion results within either disciplines of manufacturing buildings design and operation. What knowledge is
available is generalised, based on experience and lacks empirical evidence. This work aims to address this
gap by presenting a combined manufacturing and building asset model, inputs at varying time-step granu-



larities, with a focus on the simulation result quality. The case data was drawn from a UK manufacturing
firm to show how accurately the model emulates its ‘real world’ counterpart.

2 LITERATURE REVIEW

Energy consumption within the industrial sector equates to approximately one third of global energy use
(Saygin et al., 2010). In factories, resource reduction activities have previously focused on point-solutions
for discrete processes within manufacturing and building assets independently. Such solutions have often
been through operational product and process focused improvement methods such as Lean and Six sigma.
Increasingly, more attention is being sought at a factory-level, encompassing energy, material and waste
flows across manufacturing, utilities and building architecture domains.

There are many recognised conceptual approaches that address industrial sustainability at factory-
level. Examples include industrial ecology (Graedel and Allenby, 1995), eco-efficiency strategies of re-
duce, reuse and recycle (Sarkis and Rasheed 1995) and green-supply chain management (Beamon, 2008).
The calculation of energy and material resource efficiency at factory level is complex and difficult to
evaluate using conceptual approaches alone (Oates et al., 2011a). The paucity of literature on implement-
ing the conceptual approaches is due to their abstract nature and in turn improvement opportunities are
limited at factory level due to a lack of analytical tools and methods.

Contrary to the industrial sustainability literature, existing operations management literature provides
detailed improvement methods and tools for product and process optimisation as Six Sigma DMAIC
(Coronado and Anthony, 2002) and Lean VSM (Bicheno and Holweg, 2011). These methods detail be-
haviours and approaches for eliminating waste, measuring production variables and standardizing product
improvement efforts (Schiele and McCue, 2010). However, they address production efficiency of which
environmental improvement is a beneficial side-effect rather than a primary focus of improvement.

Within the field of environmental performance improvement there methods such as Material Flow
Analysis (Yacoob and Friessner, 2006) which have structure but are problematic in considering all parts
of a factory beyond product flow. Cases reported in practice (e.g. by Zero Waste Network, IEMA and
ESKTN) have yielded point-solutions focused on specific manufacturing cells, processes and products.
Although beneficial, they lack documentation of analysis techniques for energy, materials and waste
flows across factory domains (Weinert, et al, 2011). Despite widespread dissemination of improvement
initiatives and several reported studies exemplifying economic, environmental and social benefits, their
implementation barriers continue (Lopes Silva et al., 2012). The literature suggests a lack of systematic
rigour and repeatability in the application of current analysis methods for factory-level improvement.

The gaps in current knowledge on tools for factory analysis are particularly evident for modelling
and analysis. Beyond Lean and Six Sigma there is little guidance to support resource efficiency improve-
ment opportunities across the factory. Some researchers have presented studies on enabling opportunities
to increase energy efficiency (Herrmann & Thiede, 2009), reduce material usage (Abdul Rashid et al.,
2008) and minimise waste output (Chuang & Yang, 2013). In turn these positively affect financial per-
formance (Yang et al., 2011). These few studies capture, through modelling, energy and material re-
sources across production, utilities and building architecture assets.

Focusing on the resource efficiency of production domains alone is insufficient to capture most 
energy consumption within factory environments. Utilities (electricity, gas, water) and building assets
(lighting, air conditioning and ventilation) consume up to 40% of total factory energy (DECC, 2012).
Thus there is significant potential for resource efficiency improvement by integrating the analysis of these
assets and viewing the factory as an ecosystem (Despeisse et al., 2013). Furthermore, combining energy
focused production analysis with utility and building assets allows consideration of interdependencies and
synergies across the factory (Wischhusen et al., 2003). Different modelling and simulation analysis ap-
proaches can been applied to determine resource efficiency opportunities. These include: thermodynamic
frameworks detailing process work, heat from machinery and material flows into the production environ-



ment (Bakshi et al., 2011), the coupling of building utility and production domain simulation tools (Hes-
selbach et al. 2005) and automated life cycle assessment (Thiede et al. 2011).

Simulation models are widely used within the disciplines of building and production domains engi-
neering. Building fabric and assets are modelled to measure and improve day-lighting lux levels and em-
bodied carbon. However, associated methods focus on energy efficiency during the design and construc-
tion phases of the building lifecycle and not on the management and maintenance of building assets
throughout operations. Manufacturing on the other hand, focuses on in-use environmental performance to
measure and improve lead-times, processing costs, and work-in-progress levels (Brooks, 2010). In turn,
results, although effective, are confined by their scope. Any improvement is therefore confined to func-
tional area assets and not the whole factory. Although previous studies do provide bespoke solutions for
individual assets and/or isolated areas (i.e. product, process or building), currently there is no modelling
method for the whole factory, and so factory level opportunities could be missed. Additionally, the in-
creasing number of simulation tools and analysis methods (DOE, 2011) being utilised across both fields
makes it difficult for managers to choose a suitable tool for achieving energy reduction targets (Oates,
2013).

The complexity of modelling energy and material flow across factory assets has made simulation
control logic a ‘state of the art’ technology, helping analyse and test existing environmental performance
and potential improvement scenarios (figure 9). Control logic; defined as the part of a simulation that de-
fines how a reactive system responds to events or conditional changes (Hamon & Rushby, 2004), is
linked with model granularity level to identify required resource data for simulation. Simulation results
could be used to determine improvement opportunities based on the application of best practices (Smith
& Ball, 2011). Models that incorporate evaluation of energy and material consumptions (European Com-
mission, 2007), environmental impacts and technical performance improve control of factory assets
(Herrmann et al., 2011). Allowing energy efficiency measures, beyond single machine improvement, to
be identified (Patterson, 1996).

Combining factory assets from manufacturing, utilities and buildings into a single model poses
challenges depending on the functionality being modelled (Sarjoughian, 2006). Complex system models
(Pidd, 2004), must account for all quantitative energy flows, asset levels, measurement time-steps and
magnitudes (e.g. low volume of highly volatile non-organic compound). The composition of these attrib-
utes and there associated data-sets captures when and where resource flows occur, and outline available
modelling granularities. Identifying improvement opportunities across factory production, utility and
building assets therefore requires particular attention to data granularity and composability (Davé and
Ball, 2013). This is particularly relevant in the experimentation stage (figures 4-8) of simulation when da-
ta input time-step granularity, will have a direct effect on the ability to manipulate the model and provide
valid outputs (figures 9-13).
It is during model building phases that consideration of granularity factors and composability is required.
Composability; defined as the capability to select and assemble simulation components (assets) in various
combinations to satisfy user requirements (Petty and Weisel, 2003) is directly linked with granularity lev-
el, time-step and magnitude characteristics. Data granularity dictates the analysis capability of the simula-
tion, directly effecting model fidelity and resultant output quality. Granularity can be defined with three
main characteristics. The level relates to the subdivision of assets being modelled, time-step relates to the
data recording interval of measurement taken from selected subdivisions, and magnitude relates to the
type resource data being modelled. Simulation results are shown to change substantially over a range of
data time steps from 1 minute to 30 minutes. Therefore, understanding the relationship between what
time-step is available and what is results are achievable from that data, is important prior to running simu-
lations. Methodologies to support composability have been designed (Pratt et al., 1999). However, guid-
ance is needed on the level and time-step of detail data (granularity) to acquire and cleanse prior to simu-
lation. For example, CNC machines (computer numerical control) and HVAC (heating, ventilation and air
conditioning) could be represented at the same or different levels. Finally, once modelling level is estab-
lished, time-steps must be considered, e.g. whether the time-step for those assets is seconds, minutes or
hours.



The impacts of “big-data” gathered from supervisory control and data acquisition (SCADA) systems,
Energy Management Systems (EMS), and manual data loggers challenge the granularity of models. Either
the granularity is too high resulting in potentially time consuming and unnecessary activity for the simula-
tion output required or granularity is too low due to absence of loggers in certain areas questioning
whether a model is representative The usefulness of results is highly dependent not only on the available
data but the decisions made to simplify it. Choosing the appropriate granularity is considered one of the
most difficult aspects of the modelling process (Law and Kelton, 2000). Concerning the availability of da-
ta, typical sources are incomplete or inappropriate for use without manipulation. The modelling method
and tool IES <VE> THERM described in this paper seeks to fulfil the current gap in this area by tackling
the challenge of granularity empirically.

3 METHODOLOGY

The case study presented is motivated by the challenges experienced in factory-level modelling, and the
lack of information and guidance on data granularity characteristics. An inductive approach is used to un-
derstand the impact of simulation result quality based upon time-stepped granularity inputs. Research and
case study data sets are acquired and analysed using the following method:

 A structured literature review is undertaken to gain modelling and data granularity insights.

 The selected case study is an industrial paint-shop that the research group had access to

 Case features a broad scope of factory assets and encounters granularity and modelling chal-
lenges

 Asset data was collated through direct contact with process engineers and SCADA systems

 Data cleansed by addressing and verifying reasons for missing or unclear data points

 Time-step granularities were defined based upon the tool (IES<VE>) requirements

 VE software (IES <VE>, 2013) used to build a model of the paint-shop environment and assets

 Model build presented to the company to verify the correct interpretation of data

 Simulation experimentation undertaken to understand the effect of data granularity on results
quality.

Experimentation runs covered a range time-steps granularities between one to thirty minutes. The choice
of time step was dictated by the functionality of the software. Validation of the base results was through
discussion with company staff. Additionally, comparison runs were face validated by the research team.
Analysis of simulation results was done through numerical and visual procedures described later in this
paper.

4 CASE DESCRIPTION

The industrial paint-shop is composed of three major assets: gas burner, biscuit de-humidifier, a closed
loop steam re-heat, situated within an Air Supply House (ASH) unit. The ASH process conditions exter-
nal air by passing it through a sequence of assets (Figure 1). These assets process the air to achieve tem-
perature and humidity conditions within a psychrometric control window, before supply it to the desired
destination (Figure 2). The data collected and model build (Figure 3) has been simplified for the purpose
of experiments. steam injection and closed loop cooling coil assets do not feature in the created model.
This is because these assets are only active during periods of high temperature and moisture content of the
external air. This weather scenario is rare in temperate countries such as the UK.



Figure 1. Graphical representation of the ASH (Oates, 2013)

Figure 2 illustrates the psychrometric behaviour and sequence of processes in the ASH house. This chart
details the gas burner (1 -2), biscuit humidifier (2-3) and closed loop steam reheat (3-4). The first circle
(1) represents the cold/dry (lower left) inlet condition of the external air. The parallelogram (4) shows the
control window that the air must be in prior to delivery. Depending on the condition of the external air not
all of the sequence is required.

Figure 2. Psychrometric chart with control window (Oates, 2013)



Figure 3 shows the sequence modelled in IES <VE> using ApacheHVAC (2013) module. recorded data
has been collated from site (Table 1). It is possible to emulate the control strategy of the ASH process us-
ing the ApacheHVAC module toolkit. Once built, model simulation can ascertain energy consumption for
each of the three process assets.

Figure 3. The paint shop case study model in IES <VE> ApacheHVAC module (Turner et al., 2012)

Recorded data streams from the manufacture’s SCADA system were collated. Table 1 shows acquired da-
ta, providing detail on wet bulb temperature (Tw), dry bulb temperature (Td) and relative humidity (RH).
The SCADA system records data point at time-steps of approximately 10seconds. However, the simula-
tion tool required a breakdown of these into larger time-steps of a minute and larger. Therefore time-step
granularity was calculated by analysis data points on a per-minute basis across the time-length of the re-
cording. To create an accurate model initial temperature settings (Relative Humidity (RH), in the case of
the biscuit de-humidifier) for each of the assets were required, along with gas consumption data from the
gas burner. All data was collected from the site and composed within the model. Once defined, the com-
posed model and data granularity intervals were verified by process engineers, experts in their field who
understand the detailed data associated with the modelled assets.

Table 1. Logged data from assets available in the SCADA system

(1) (2) (3) (4)

Measurement Nodes

(1) = Inlet
(2) = after gas burner
(3) = after biscuits
(4) = after re-heat



5 EXPERIMENTATION

5.1 Design

The simulation model utilises the recorded data, outlined in section 4 of this paper. Recordings were taken
from a seven day period of running in the case study paint shop. The data has been cleansed and defined
into five time-step granularities. The first set contains data points at per-minute intervals, the second set
every two, the third every six, the fourth every ten and the fifth every thirty minutes. The five data point
intervals were decided upon after experimentation with data points between 1 and 30 minutes (with data
intervals above ten minutes showing a marked deterioration in quality). By varying the time-step granu-
larity and therefore data point frequency the impact on simulation result quality can be assessed. This ex-
perimentation can therefore guide other researchers and practitioners in how they understand the accuracy
of their simulation results. This is especially important when using simulation support decision making in
order to minimise risk and test all scenarios before deployment.

5.2 Results

Five temperature profile sets have been generated from the simulation model (one for each data set),
showing the temperature profile (as measured at each of the four nodes shown in Figure 3) over a one day
period are shown in Figure 4 to Figure 8. The data shows distinct shift patterns when manufacturing is
running (assumed to be constant) or stopped. Air temperature node data relates to outside temperature at
the inlet node (shown in Figure 3 as (1)) and air temperature at ‘after gas burner’, ‘after Biscuits’ and ‘af-
ter re-heat’ nodes (shown as nodes (2) and (3) and (4) in Figure 3). The changes in air temperature
throughout the paint shop process is discussed in section 4.

It can be seen in a comparison of the profiles that the two minute profile (shown in Figure 5) shows
little or no deterioration over the 1 minute profile (shown in Figure 4). This is also true of the 6 minute
(Figure 6) and 10 minute (Figure 7) profiles where a some normalisation can be seen in relation to that of
the 1minute profile (Figure 4). It is only in the 30 minute profile (Figure 8) that significant smoothing and
loss of detailed energy data (peaks and troughs) in the simulated data can be noticed. For a more detailed
assessment of the effects of data point interval choice it is necessary to compare the simulation results
with the metered data.



Figure 4. Temperature profiles (relating to Figure 3 flows) - 1min interval data

Figure 5. Temperature profiles (relating to Figure 3 flows) - 2min interval data



Figure 6. Temperature profiles (relating to Figure 3 flows) - 6min interval data

Figure 7. Temperature profiles (relating to Figure 3 flows) - 10min interval data



Figure 8. Temperature profiles (relating to Figure 3 flows) - 30min interval data

Five energy consumption profiles for the gas burner asset are shown in Figure 9 - Figure 13. Data pre-
sented is over a one day period with a graphing for time-step granularity The figures show the experi-
ments in result quality by comparing simulated results against metered data. The red profile shows the
simulated energy consumption profile and the blue shows recorded data from the SCADA system. Figure
9 features the 1 minute interval data set. It can be seen in Figure 9 that there are small deviations in peak
values between the 1 minute time-step granularity and the recorded data values.

Overall the simulated results slightly underperform that of the metered data, however the 1 minute
data is a comparable emulation as shown in the figures. One explanation for result underperformance
could be due to the fact that the simulation does not account for moisture transfer from the gas burner to
the passing air. The gas burner asset is modelled as a heater battery which assumes the air will increase in
dry bulb air temperature at a constant humidity ratio. In reality moisture from the burning of gas will
transfer to the passing air. This in turn increases the air temperature and the humidity ratio of the air con-
dition post gas burner, resulting in a greater enthalpy difference between the inlet and post gas burner air
condition than that of the simulation model. The resulting quality of the simulation still requires some re-
finement if being used to support any decision making. Moisture from the gas burner and inlet assets re-
quire further detailing to replicate the increase in moisture throughout the process. One method for
achieve this is to insert a steam injection asset after the heater battery (i.e. currently representing the gas
burner), injecting moisture into the passing air at a constant dry bulb temperature.

Minor discrepancies between energy consumption patterns at the start and end of manufacturing
shifts between simulated and metered data have been noted. Future work will look to minimise this dif-
ference via improved process controls. Figure 10 demonstrates a very similar picture for the 2 minute da-
ta. Figure 11 and Figure 12 show that 6 minute and 10 minute (respectively) intervals largely follow the
peaks and troughs of the metered data, though some normalising of the simulation profile is more notice-



able in the 10 minute interval (Figure 12). The 30 minute interval shows high levels of normalisation and
a greater degree of smoothing in the profile to the metered data (Figure 13), as is the case of the tempera-
ture profile (Figure 8) when compared against lesser time-step intervals.

Figure 9. Gas burner energy consumption profiles actual -vs- simulated - 1min interval data

Figure 10. Gas burner energy consumption profiles actual -vs- simulated - 2min interval data
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Figure 11. Gas burner energy consumption profiles actual -vs- simulated - 6min interval data

Figure 12. Gas burner energy consumption profiles actual -vs- simulated - 10min interval data

E
n

e
rg

y
(k

W
)

Time (hr)

Metered Data 6min simulation data

0 24

E
n

e
rg

y
(k

W
)

Time (hr)

Metered Data 10min simulation data

0 24



Figure 13. Gas burner energy consumption profiles actual -vs- simulated - 30min interval data

From the simulated temperature profiles (Figure 4 to Figure 8) and simulated versus metered gas con-
sumption data (Figure 9 - Figure 13) it is fair to surmise that the 1 minute data profile provides the small-
est deviance in time-step granulation and closest simulation result, in regard to emulation of the recorded
data. Though use of the 2, 6 and even 10 minute data intervals will still enable the generation of profiles
that show the variation required to generate results from the simulation model. The 30 minute profile is
more appropriate for the identification of broad trends in the data.
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Figure 14 illustrates 1 minute consumption profile for the gas burner over a seven day period. The figure
compares simulated data against metered data, with the red profile showing the simulated energy con-
sumption profile and the blue the metered data. No manufacturing occurred during days 3 and 4. Though
it is more difficult to compare the simulated and metered results in relation over this time period, the pat-
tern of the two results are correlated with one another. This shows that 1 min data (being the highest value
accepted by the simulation tool) is the most appropriate granularity time-step for building this type of
simulation model.

Figure 14. Gas burner energy consumption profiles actual -vs- simulated - 1min interval data (7days)

Table 2 provides an overview of the simulated results for 1,2,6,10 and 30 time step intervals against me-
tered data over 1 and 7 days in two ways, percentage difference and root mean square error (RMSE). The
table indicates that over 1 and 7 days’ period of analysis, the 30 minute data has a lower percentage dif-
ference than the 1,2,6 and 10 minute data sets. The smoothing of the metered and simulated data reduces
the percentage difference between the two results. This is not a true reflection of what is happening on
site, and can be seen when comparing the metered data of the 1 minute (Figure 9) and that of the 30 mi-
nute (Figure 13) data sets. The percentage differences for the time step intervals of 1,2,6 and 10 minutes
are similar, providing solace in the summary of the graphed data in Figure 9 to Figure 13. Similarities to
the percentage difference shown in Table 2 are also displayed for the RMSE across the datasets.

Table 2. Gas burner energy consumption metered data compared against simulated results

6 DISCUSSION AND CONCLUSIONS

This work has sought to support the progress towards sustainable manufacturing by understanding the
impact of data granularity and data quality used for analysis on the accuracy of the analysis. With better
understanding of the impact rules and guidance can be developed for engineers to seek to use an appro-
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priate level of data and understand the impact of the choices they are making. The experimentation fea-
tured in this paper demonstrates that the granularity of time intervals will have a significant impact of the
quality of results obtained from the simulation model. A gradual linear deterioration in results, can be as-
sumed from time intervals of 10 minutes and beyond. Therefore, to use of a simulation model to support
decision making means time-step granularity must emulate process assets feasibly to minimise uncertain-
ty and risks.

Time-step granularity is a pre-requisite task that requires justification during data analysis and model
building phase. Most simulation tools will dictate the maximum time-step capability manageable by the
software. Modelling methods such as numerical analysis must be used to measure the simulation result
quality against recorded data. Comparing results to understand their accuracy as in the case of the gas
burner asset. Future work includes research to better understand granularity characteristics (level, time-
step and magnitudes) to show how they impact the simulation results. Additionally, work is being carried
out on data cleansing such as minimising the presence of noise/outliners in composed data. Further work
is also required in the detailing of assets and their connection with resource data in modelling tools. This
includes assets such as the gas burner, in order to better replicate required data so as to build confidence
in the model and its simulated results.
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