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1. INTR ODUCTION

Statistical numerical simulation based on the Monte
Carlo technique is widely used in studies of propaga-
tion of optical radiation in randomly inhomogeneous
turbid media [1]. The Monte Carlo methods developed
in the framework of solving these particular problems
are mainly aimed at calculation of the scattered light
intensity. In recent years, considerable attention has
focused on the effects related to laser light coherence
[2–9]. Coherence is one of the most important parame-
ters of laser light. It characterizes the temporal and spa-
tial stability and quality of the light wavefront. In spite
of the strong multiple scattering typical of most ran-
domly inhomogeneous media, coherent effects still
noticeably reveal themselves, e.g., in the form of
enhanced backscattering, spatiotemporal fluctuations
of the light intensity, etc. Numerical simulation of
effects of this kind requires a special approach.

The theory of radiation transfer in randomly inho-
mogeneous and strongly scattering media, including
the description of coherent and interference effects, has
been successfully developed in the framework of the
transfer or Bethe–Salpeter equations [10]. In this paper,
by comparing the well-known stochastic Monte Carlo
technique with the theoretical approach based on repre-
sentation of the solution of the Bethe–Salpeter equation
as a series expansion in the scattering multiplicities, we
show how this technique can be generalized within a
united method on passing from numerical calculation
of the intensity to calculation of time correlations of the
intensity, coherent backscattering, and other coherent
effects. We consider here the most popular case in the-
oretical studies, that of scattering of optical radiation in
a medium occupying a half-space with a plane inter-

face. For clarity of description of the method, we con-
sider normal incidence of the light beam.

The structure of this paper is as follows. In the sec-
ond section, we describe the Monte Carlo technique as
applied to the calculation of the intensity of multiply
scattered light. In the third section, we consider the
method of calculation of the time correlation function
of the field and the interference component of the back-
scattering in the framework of the Bethe–Salpeter
equation. The fourth section contains a comparative
analysis of the Monte Carlo technique and solution of
the Bethe–Salpeter equation. In the fifth section, we
present the results of modeling of the time correlation
functions and the coherent backscattering peak. In the
conclusion, we discuss the results.

2. CALCULATION OF THE INTENSITY
OF SCATTERED LIGHT 

USING THE MONTE CARLO TECHNIQUE

Numerical simulation of the light propagation in a
randomly inhomogeneous strongly scattering medium
using the Monte Carlo technique is performed in
stages. The distance passed by a photon packet between
successive scattering events is a random quantity that
takes on a value from zero to infinity. The main assump-
tion of the method is that the distribution law has the
form [11]
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dependence of the scattering on particular properties of
the medium—namely, the concentration and size of
scatterers and the difference in the refractive indices of
the scatterers and the medium—is contained, in an inte-
gral way, in a single parameter of the distribution func-
tion, the mean free path length 

 

l

 

.
The light losses are related to the processes of elas-

tic and inelastic collisions of the photons with the mat-
ter:
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re, respectively, the scattering and absorption
lengths.

It follows from the distribution law (1) that the
quantity
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is the cumulative probability that the free path length
exceeds a specified value 

 

s

 

. At the same time, expres-
sion (3) makes it possible to find the inverse depen-
dence and to express the random quantity 

 

s

 

 in terms of
the probability 

 

ξ

 

. By calculating the integral (3) for a
specified distribution (1), we have
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This procedure is one of the key elements of the Monte
Carlo technique, which consists in choosing an arbi-
trary value of 

 

ξ

 

 using a random number generator
within the interval [0, 1].

The change in the direction of motion of the photon
packet in each event of elastic scattering is determined
by the indicatrix, or the scattering phase function,
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Accordingly, the portion of the light scattered into an
elementary solid angle 
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The random walk trajectory of the photon packet

along the path from the source (

 

r

 

S

 

) to the detector (

 

r

 

D

 

)
is shown schematically in Fig. 1. The value of the
detected signal is determined by accumulating statistics
over the trajectories as the total weight of all the photon
packets reaching the photodetector. The problems
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related to the reflection on the interface, discussed in
detail in [12], are outside the scope of the present paper.

Now, we will compare the scheme of numerical sim-
ulation presented above with the theoretical description
of the light propagation in the framework of the Bethe–
Salpeter equation.

3. THE BETHE–SALPETER EQUATION

The radiation transfer in a strongly inhomogeneous
medium with random spatiotemporal fluctuations of the
permittivity is described by the Bethe–Salpeter integral
equation,

 

(6)

 

Here, 

 

Γ

 

(R2, R1, t |ks , ki) is the Green’s function, or
propagator, of the Bethe–Salpeter equation, which
describes propagation of a pair of complex-conjugate
fields, shifted in time by the interval t, from point R1 to
point R2; the fields arrive at the point R1 with the wave
vector ki and emerge from point R2 with the wave vec-
tor ks, k0 = 2π/λ is the wave number; λ is the wave-
length; ks = ki = k = nk0; n is the refractive index of the
medium: n = n1 + in2, where n1 and n2 are, respectively,
the real and imaginary parts of n; and (2n2k0)–1 = l. The
function Λ(R) = R–2exp(–R/l) is the product of a com-
plex-conjugate pair of the Green’s functions of the cor-
responding wave equation and describes the light prop-
agation between two scattering events. The quantity

(q, t) is the Fourier transform of the pair correlation
function of the permittivity fluctuations δε, responsible
for the scattering:

(7)
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Fig. 1. The trajectory of a photon wandering in a random
semi-infinite medium: S, light source; D, photon detector;
si, free path length between the (i – 1)th and ith scattering
events.
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At t = 0, the quantity (q, 0), to within a constant fac-
tor, coincides with the differential cross section of sin-
gle scattering.

The optical theorem connects the scattering length
with the single-scattering cross section integrated over
the angles. In the Born approximation, this theorem
may be written as [13]

(8)

The phase function p(ki – ks) has the form

(9)

By analogy with Eq. (9), let us define the quantity

(10)

At t = 0, this function coincides with the phase scatter-
ing function:

p0(ki – ks) = p(ki – ks). 

With allowance for the optical theorem and defini-
tion (10), let us represent the Bethe–Salpeter equation
in the form

(11)

The Bethe–Salpeter propagator Γ(R2, R1, t |ks, ki)
allows one to calculate the intensity and binary field–
field correlations. Here, as usual, it is assumed that, in
a strongly inhomogeneous medium, the polarization
properties of the electromagnetic field are lost in the
process of multiple scattering and one can restrict one-
self to consideration of the scalar wave equation.

Equation (6) is written in the weak-scattering
approximation (λ � l), which is also referred to as the
ladder approximation because it formally arises after
summation of a series in the scattering multiplicities as
a sum of ladder diagrams.

The main contribution to the scattered light is made
by the ladder diagrams. Physically, they describe two
successive chains of the scattering processes, the same
for both fields E(r, 0) and E*(r, t). In view of the iden-
tity of these two successions of the scattering, the phase
relations between the fields do not change, and the lad-
der diagrams thus describe the incoherent component.
For scattering angles close to 180°, the interference
component, related to the cyclic or fan-shaped dia-
grams, becomes comparable with the main ladder com-
ponent.

For the experimental geometry, with the scattered
light observed at a large distance from the scattering
medium, the time correlation function of the field may
be represented as the sum

(12)
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CE t ks ki,( ) C
L( )

t ks ki,( ) C
V( )
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where C (L) and C (V) are the incoherent and interference
components of the scattered light (for directions ki and
ks close to the normal one).

Let the scattering medium occupy the half-space
z > 0, where z is the Cartesian coordinate normal to the
boundary of the medium. In this case, the main (ladder)
and interference (fan-shaped) components of the coher-
ence function, respectively, have the form

(13)

(14)

where θi is the angle of incidence and θs is the angle of
scattering measured from the backscattering direction.
The incident and scattered beams lie in the (x, z) plane.

The first term on the right-hand side of Eq. (11)
describes the single scattering in the propagator of the
Bethe–Salpeter equation. Since the single scattering
does not contribute to the interference component of
the backscattering, this term is subtracted in the inte-
grand of Eq. (14). For the case of strictly backscattered
light, with ks = –ki , the interference component
C (V)(t |ks, ki) coincides exactly with the main, incoher-
ent, component C (L)(t |ks, ki) before subtraction of the
single-scattering contribution.

When simulating such a geometry using the Monte
Carlo technique, one should fix the directions of the
incident and emerging photon packets at the points rS

and rD lying on the surface of the medium. After that,
the summation is performed over all positions rD.

At t = 0, Eq. (13) describes the intensity of the scat-
tered light. Accordingly, Eq. (14) determines the peak
of the coherent backscattering. The time correlation
function of the intensity is a quadratic form of the cor-
relation function of the field:

(15)

For the experimental geometry with the point source
and photodetector located at the surface of the medium
at the points RS and RD, respectively, the correlation
function of the field is calculated by the formula

C
L( )
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× z1/l θicos– z2/l θscos–( ),exp
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– k0
4
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×
z1 z2+

2l
--------------- 1/ θicos 1/ θscos+( )–exp
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---+ in1k0 x1 x2–( ) θisin θssin–( ) ,

CI t ks ki,( ) CE t ks ki,( ) 2
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(16)

Such an experimental geometry can be modeled in a
standard way: the points RS and RD are fixed, while the
directions kD2 and k1S, as well as the distances R2 and
R1, are selected in a random way.

By iterating the Bethe–Salpeter equation, we obtain
the series

(17)

usually illustrated by a series of ladder diagrams
(Fig. 2).

Physically, series (17) is the expansion in the scat-
tering multiplicities. In fact, it is exactly the summation
of such a diagrammatic series, as an operator geometric
progression, that leads to the Bethe–Salpeter equation.

4. COMPARATIVE ANALYSIS
OF THE MONTE CARLO TECHNIQUE 

AND THE SERIES IN THE SCATTERING 
MULTIPLICITIES

Let us compare the method of analytical summation
of iteration series (17) with the Monte Carlo technique
for the stationary case using, as an example, calculation
of the scattered light intensity (t = 0) in the absence of
absorption (l = ls). Note that the first term on the right-
hand side of Eq. (17) describes a single scattering
event; the second term, two scattering events; and so
on. The Monte Carlo technique describes the light
propagation in the same way, as a random process con-
sisting of one, two, …, N scattering events. The addi-
tion, in the theoretical description, of one more link of
the ladder Λ(Rn n + 1)p0(kn n + 1 – kn + 1) is simulated, in
the numerical experiment, by a path of a random length
(characterized by the weight function) to the point of
next collision. In the analytical theory, a chain of N
scatterings corresponds to N coupling factors Λ(Ri i + 1).

The complexity of the analytical calculation is that
the integrals over Ri do not decouple because the phase
functions depend on mutual positions of three scatter-
ing particles. The numerical simulation using the
Monte Carlo technique decouples the chain by specify-
ing a random value of the free path of the photon packet
at each step. By virtue of the normalization condition
for the phase function

(18)

the statistical weight of the photon packet after each
scattering event remains the same.

CE RD RS t, ,( ) Λ RD R2–( )∫=

× Γ R2 R1 t kD2 k1S, , ,( )Λ R1 R2–( ) R2 R2.dd

Γ R2 R1 t ks ki, , ,( ) µs p ki ks–( )δ R2 R1–( )=

+ µs
2
pt ks k21–( )Λ R21( )pt k21 ki–( )

+ µs
3
pt ks k23–( )Λ R23( )pt k23 k31–( )
× Λ R31( )pt k31 ki–( ) …,+

p0 ki ks–( ) Ωd∫ 1=

In the analytical approach, the conservation of the
packet weight is due to the optical theorem. Indeed,

 = 4πl and, therefore, the expansion parame-

ter of the iteration series (17) equals

(19)

In the absence of absorption (l = ls), the quantity µs l
exactly equals unity, which indicates conservation of
the photon packet weight. In the analytical calculations,
it is the condition µs l = 1 that makes the successive
approximation method unsuitable for solution of the
Bethe–Salpeter equation.

The above comparison of the obtained analytical
series (17) with the Monte Carlo technique makes it
possible to generalize the latter to more interesting
cases. Consider the problem of determination of the
scattered light intensity taking into account the absorp-
tion (µal ≠ 0). In this case, in each scattering event, the
statistical weight of the photon packet decreases, in
conformity with Eq. (19), by the factor

(20)

Thus, to take into account the absorption in the Monte
Carlo technique, the weight of each photon packet
should be multiplied by the factor (20). In this way, the
intrinsic absorption can be taken into account exactly.

The calculation of the time correlation function dif-
fers from the calculation of the scattered light intensity
only in that the weight of the photon packet, in the
course of each scattering event, is multiplied by the
phase function pt(kn – kn – 1).

In practice, most known applications [14, 15] deal
with the diffusion mechanism of the time evolution of
inhomogeneities, when the time correlation function of
permittivity fluctuations may be represented in the form
of the product of a statistical correlator and exponential
function, i.e.,

(21)

where Ds is the self-diffusion coefficient. When calcu-
lating the time correlation function in the form (21), it
suffices to make the substitution

(22)

Λ R( ) Rd∫

µs Ωn Ri 1+ Λ Ri i 1+( )p0 ki i 1+ k–( )d∫d∫ µsl.=

µsl 1 ls/la+( ) 1–
.=

G q t,( ) G q 0,( ) Dsq
2
t–( ),exp≈

p0 kn kn 1––( )

p0 kn kn 1––( ) Ds kn kn 1––( )2
t–[ ] .exp

= + +... .Γ

Fig. 2. A chain of ladder diagrams.
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In the diffusion approximation, such a substitution is
replaced by averaging of the momentum transfer,

 

 

where  is the average cosine of the scattering
angle, which is the main parameter characterizing the
anisotropy of the scattering indicatrix,

(23)

One can easily see that, in the case of a strong scattering

anisotropy (1 –  � 1), the factor 2Dsk2(1 – )t
will be sufficiently small even for t/τ ~ 1, where τ =
1/Dsk2 is the characteristic diffusion time of the scatter-
ing particle at a distance of the order of the wavelength.

According to Eq. (14), to simulate the peak of the
coherent backscattering, one has to repeat the chain
(12) in the same way as when calculating the scattered
light intensity distribution, by specifying the direction
from the source ki and the direction to the detector ks.
Note that, when calculating the detected signal, one has
to exclude the cases of single scattering because they do
not contribute to the cyclic diagrams. Finally, one has to
perform summation over the positions rD because the
effect of coherent backscattering is observed only in the
geometry of plane incoming and outgoing waves.

Consider the problem of simulation of the interfer-
ence component of the backscattering. In the case of
normal incidence and a small value of the backscatter-

Ds kn kn 1––( )2
t

Ds kn kn 1––( )2
t 2Dsk

2
1 θcos–( )t,=

θcos

θcos Ωs p ks ki–( ) θs/ Ωs p ks ki–( ).d∫cosd∫=

θcos θcos

ing angle θs, we may assume that (ks + ki)/2 = ki and
cosθs ≈ cosθi = 1. According to Eq. (14), the entire dif-
ference from the expression for the intensity of the
incoherent component consists in the presence of the
factor exp[iq⊥ (r1 – r2)]. In view of the translational
invariance with respect to the (x, y) coordinates along
the plane interface (in the geometry of scattering from
a plane layer), this factor may be substituted as follows:

exp[iq⊥ (r1 – r2)]  cos(q⊥ r12). 

Thus, when separating out the intensity of the coher-
ent component of the backscattering, one has to multi-
ply the amount (or total weight) of the photon packets
arriving at the interface with the wave vector ks at a dis-
tance of ρ from the point of entrance by the factor
cos(q⊥ r) and to sum over the entire surface, i.e., over
all values of ρ.

5. THE RESULTS OF SIMULATION

Figure 3 shows the results of simulation of the time
correlation function of the field for three scattering
media with different values of the anisotropy factor

 = 0, 0.5, and 0.9. We have chosen the value l =
3.3 µm, which corresponds, for the given values of

, to the values of the transport length l* = 3.3 µm
for the isotropic case and 333 µm for the case of strong

anisotropy (  = 0.9). In terms of , the time
correlation function virtually does not depend on the
single-scattering anisotropy. Note also a good agree-
ment with experimental data [15]. The correlation func-

θcos

θcos

θcos t/τ

0.1

1

0.2 0.4

g1

t τ0⁄0

Fig. 3. The time correlation function of the field backscat-
tered by a semi-infinite medium as a function of the argu-

ment  for three values of the anisotropy factor g =

: g = 0 (squares), g = 0.5 (circles), and g = 0.9 (trian-
gles).

t/τ
θcos

0

100
g1

0.2 0.4

1

2

t τ0⁄

10–1

Fig. 4. The time correlation function of the field backscat-
tered by a layer of finite thickness with L = l* (1) and

10l* (2) for three values of the anisotropy factor:  = 0
(squares), 0.5 (circles), and 0.9 (triangles).

θcos
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tion obtained can be well approximated by a formula of
the type

(24)

proposed in the above paper.
Figure 4 shows the results of simulation of the time

correlation functions of the field for layers of finite
thickness with different values of the anisotropy factor.
In this case, virtually all specific properties of the scat-
tering system are seen to be also taken into account on
passing to the description in units of the characteristic
time τ. For the layer thickness L ~ l*, the behavior of
the correlation function, up to t ~ 0.25τ, remains prac-
tically unaffected upon changes of the scattering anisot-

ropy ( ). For the layer L = 10l*, the time correla-
tion function decreases faster in the case of strong
anisotropy. Note that the obtained dependences on the
layer thickness L agree well with the predictions of the
diffusion theory.

Figure 5 shows the results of calculation of the
angular dependence of the coherent backscattering

peak, also for the values  = 0, 0.5, and 0.9. Let
B = 1 + ICBS(θs = 0)/I(θs = 0) be the parameter describ-
ing the enhancement of the backscattering. In our cal-
culations, we obtained B = 1.87 for isotropic scattering,
which agrees well with the value Btheor = 1.88 obtained
in [16] on the basis of the generalized Milne solution.

For  = 0.9, we obtained B = 1.99, which also
agrees with the anticipated theoretical value B = 2 at

  1. The dependence obtained for  = 0.9

g1 t( ) γ 6t/τ–( ),exp∝

θcos

θcos

θcos

θcos θcos

is close to that obtained in [9]. The flat region appears
to be slightly lower because the value of l* = 333 µm is
larger than the value of l* = 314 µm used in [9].
As in the case of time correlations, the calculated angu-
lar dependence of the coherent backscattering peak, in
terms of a dimensionless variable  = kl*sinθs, appears
to be universal (Fig. 6) and described sufficiently well
by the formula ICBS ∝ exp(–γkl*sinθs) at γ = 2. Note
that this dependence essentially differs from the depen-
dence predicted by the diffusion approximation [17]

 

at kl*sinθs � 1, where z* = 0.71(1 – )–1. This for-

mula yields the slope γdif = 2.3 at  = 0 and γdif =

0.71 at   1 [18]. Thus, in contrast to the diffu-
sion approximation, which predicts a decrease in the
linear slope factor of the coherent backscattering peak
with increasing anisotropy, the dependence obtained in
this paper indicates a universal nature of the decrease,
virtually independent of the anisotropy.

6. CONCLUSIONS

We have shown the possibility of describing coher-
ent effects within a united stochastic approach under
the condition of multiple scattering. In simulating these
effects, we used the Henyey–Greenstein phase func-
tion. Calculations of this kind may be performed, with-
out difficulty, for suspensions, usually represented as

q̃

ICBS
dif

1 2
1 z*+( )2

1 2z*+
----------------------kl* θs,sin–∝

θcos

θcos

θcos

0

2.0
ICBS,  rel. units

0.05 0.15

1

2

3

0.10
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1.6
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Fig. 5. The enhancement of the backscattering B = 1 +
ICBS(θs)/I(θs) as a function of the angle θs. ICBS(θs) is the
intensity of the coherent backscattering, and I(θs) is the total
intensity; the peak height in relative units equals 1.873 for

g = 0 (1), 1.979 for  = 0.5 (2), and 1.995 for g = 0.9 (3).θcos

0

ICBS,  rel. units

0.4 0.8
P,  rel. units

0.8

0.4

Fig. 6. The universal dependence of the coherent backscat-
tering on the dimensional angular parameter P = kl*sinθs.

λ = 0.6 µm; l = 33 µm; and  = 0 (squares), 0.5 (cir-
cles), and 0.9 (triangles). The solid line is the approximation
by exp(–2kl*sinθs).

θcos
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systems of rigid spheres [19–25]. The phase function in
such a system is described as a product of the Mie form
factor and the Percus–Yevick structure factor.

The analysis has shown that only for the calculation
of intensity in a nonabsorbing semi-infinite medium is
the scattering of a multiple nature. In all other cases, in
the numerical method of calculation, the weight factor
arising after each scattering event leads to a fast decay
of the wave packet. In particular, to provide a multiple
regime of radiation transfer, for an absorbing medium,
the parameter ls/la ≈ l/la should be small, and, for time-
dependent functions with diffusion-type fluctuation

decay, the parameter  = 2(t/τ)(l/l*) should be
small. It is noteworthy, however, that, in the case of
strong anisotropy of the phase function, the manifesta-
tions of coherent effects may turn out to be significant
in spite of the smallness of these parameters. Indeed,
the dependence of the intensity on absorption is con-
trolled by the parameter l*/la, which may be rather
large compared with l/la. Similarly, the decay of the
time correlations of the intensity is controlled by the
parameter t/τ, which may substantially exceed the
parameter (t/τ)(l/l*). It is for exactly this reason that
the correlation functions of intensity are described
within the theory of multiple scattering even when they
are reduced by two orders of magnitude.

A similar situation takes place for coherent back-
scattering. The trajectories simulated in the calculations
of cyclic diagrams should involve a great number of
scattering events if the parameter klsinθs (where θs is
the backscattering angle) is small. Note that the
decrease of the coherent backscattering peak is deter-
mined by the much larger parameter kl*sinθs.

The comparative analysis performed in this paper
makes it possible to significantly simplify simulation of
radiation transfer and coherent effects in randomly
inhomogeneous strongly scattering media, such as liq-
uid crystals, biological tissues, etc., and to considerably
widen the area of application of these methods.
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