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Abstract 

 

Acoustic Emission (AE) is gaining ground as a Non-Destructive Technique (NDT) for 

health diagnosis on rotating machinery. There are vast opportunities for development of 

the AE technique on various forms of rotating machinery, including gearboxes. This 

paper reviews some recent developments in application of AE to gear defect diagnosis. 

Furthermore, an experimental investigation that examines the effectiveness of AE for 

gear defect identification is presented. It is concluded that application of the AE 

technique to seeded gear defect detection is fraught with difficulties. In addition, the 

viability of the AE technique for gear defect detection from non-rotating components of 

a machine is called into question. 

 

Keywords: Acoustic Emission, condition monitoring, gear fault diagnosis, machine 

health diagnosis. 
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1. Introduction 

 

Application of high frequency Acoustic Emission (AE) technique in condition 

monitoring of rotating machinery has been growing over recent years. This is 

particularly true for bearing defect diagnosis and seal rubbing [1-5]. The main drawback 

with the application of the AE technique is the attenuation of the signal and as such the 

AE sensor has to be close to its source. However, it is often practical to place the AE 

sensor on the non-rotating member of the machine, such as the bearing or gearbox 

casing. Therefore, the AE signal originating from the defective component will suffer 

severe attenuation before reaching the sensor. Typical frequencies associated with AE 

activity range from 20 kHz to 1MHz.  

 

Whilst vibration analysis for gear fault diagnosis is well established, the application of 

AE in this field is still in its infancy. In addition, there are limited publications on 

application of AE to gear fault diagnosis. Siores et al [6] explored several AE analysis 

techniques in an attempt to correlate all possible failure modes of a gearbox during its 

useful life. The gearbox used for this investigation consisted of two spur gear sets of 34 

and 60 teeth and 45 and 20 teeth respectively. The gears were run-in by operating the 

gearbox at 1200 rpm with full load at four one-hour intervals. Failures such as shaft 

misalignment, tooth breakage, scuffing and a worn tooth were seeded during tests. 

Siores correlated the various seeded failure modes of the gearbox with the AE 

amplitude, r.m.s. standard deviation and duration. It was concluded that the AE results 

could be correlated to various defect conditions. 
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Singh et al [8-9] performed three experiments to study the feasibility of applying AE to 

gear fault diagnosis. The first experiment [8] employed two different gearboxes for 

simulated gear pit detection. For both test set-ups, the simulated pit was introduced on 

the pitch line of a gear tooth using an Electrical Discharge Machining (EDM) process. 

An AE sensor with a resonant frequency 280 KHz and an accelerometer for 

comparative purposes were employed in both test cases. It was important to note that 

both the accelerometer and AE sensor were placed on the gearbox casing.  

 

The first gearbox employed was an UH1H “Generator Drive Offset Quill” with a gear 

ratio of 41:55 and rotational speeds of 1400 and 920 rpm. The simulated pit introduced 

was 1.25 mm in diameter and depth. It was observed that the AE amplitude increased 

with increased rotational speed and AE activity was observed with increased pitting. 

The second gearbox was a back-to-back with gear ratio 42:28 and an input speed of 

1775 rpm. During this test, periodically occurring peaks were observed when natural 

pitting started to appear after half an hour of operation. These AE activities increased as 

the pitting spread over more teeth. Singh et al concluded that AE could provide earlier 

detection over vibration monitoring for pitting of gears, but noted it could not be 

applicable at extremely high speeds or for unloaded gear conditions. 

 

For the second experiment, tooth bending tests were carried out using a single tooth 

bending setup. In this test, a sinusoidal load was applied at a frequency of 40Hz. The 

number of cycles and the amplitude of the AE signal were monitored and stored in real 

time until failure occurred.  From this experiment, Singh concluded that AE could 
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detect crack initiation and growth, while the accelerometer could only detect the crack 

growth at a later stage of the crack growth process. 

 

The final experiment performed by Singh et al [9] involved assessment of the 

transmissibility of an AE signal within a gearbox. The tests were performed with 

different torque levels using lead pencil breaks to simulate AE activity in the gearbox. 

This technique is known as the Nielsen source test. Various AE transmission paths were 

examined. AE sensor was placed on the gear wheel to measure the initial strength of the 

signature and second sensor was mounted on the ball bearing pedestal to capture the 

transmitted signal. It was observed that greater attenuation was experienced for lighter 

loads though attenuation remained rather constant at the high load conditions. Singh et 

al concluded that the attenuation across the gearbox was an accumulation of losses 

across each individual interfaces within the transmission path and the optimum path of 

propagation will be the one with the smallest cumulative loss. 

 

Tandon et al. [10] performed an experiment to correlate AE parameters, such as peak 

amplitude, ringdown count and energy with gear defect size. The experimental set-up 

employed a back-to-back gearbox with a gear ratio of 15:16. An AE sensor with 

resonant frequency of 375 KHz and an accelerometer of natural frequency of 39 kHz 

were employed for this experiment. The tests were performed at a rotational speed of 

1000 rpm under different load conditions. Simulated pits on the pitch-line with constant 

depth (500µm) and varying diameters from 250 to 2200µm were introduced using the 

spark erosion technique. Tandon et al observed that the monitored AE parameters 

increased with defect size (pit diameter) and load. Tandon et al also concluded that AE 
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has a better detection capability over vibration since it was able to detect smaller pit 

sizes. 

 

Whilst the details presented above have related to seeded defect identification some 

observations correlating AE activity to natural pitting have also been reported. Sentoku 

[7] correlated tooth surface damage such as pitting to AE activity. This experiment 

employed a back-to-back gearbox arrangement (25 to 31 teeth) with a pinion speed of 

992 rpm. An AE sensor of resonant frequency 350 kHz was mounted on the gear wheel. 

The AE signature was transmitted from the sensor to data acquisition card across a 

mercury slip ring. A strain gauge was mounted on the tooth root to relate the extracted 

AE parameters with the tooth root strain values. It is important to note that this 

experiment was performed under a constant oil temperature. This eliminated the effect 

of oil film thickness on AE activity. In this experiment, natural pitting occurred at about 

1x106 cycles and it was concluded that AE amplitude and energy increased with 

increased pitting.  

 

Toutountzakis et al [11] presented some interesting observations of AE activity due to 

misalignment and natural pitting. The test was performed on a back-to-back gearbox 

with a spur gear set of 49 and 65 teeth and an the AE sensor used was a resonant type 

placed on the pinion. A sliver contact air-cooled slip ring was employed to transmit the 

AE signal for further processing. Toutountzakis et al concluded that AE technique 

demonstrated the potential for gear fault diagnosis. 
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Although the development of AE in gear diagnosis is in its infancy, the papers reviewed 

have illustrated the potential and viability of AE becoming a useful diagnostic tool in 

condition monitoring of gears. However, more detailed investigations are required to 

ensure this technique is robust and applicable for operational gearboxes. The purpose of 

this investigation was to determine an effective AE indicator for seeded gear defect 

detection. An experimental test-rig was employed that allowed for various sized defects 

to be seeded onto the test gears. 

 

2. Experimental set-up 

 

The test-rig consisted of two identical oil-bath lubricated gearboxes, connected in back-

to-back arrangement, see figure 1. The gears employed were made of 045M15 steel 

without any heat treatment. The gears (49 and 65 teeth) used had a module of 3 mm, a 

pressure angle of 20°, and surface roughness of between 2-3 µm. Each gearbox had four 

identical ball bearings. A simple mechanism that permitted a pair of coupling flanges to 

be rotated relative to each other, and locked in position, was employed to apply torque 

to the gears. The effect of this process was to twist the shafts and lock in the torque 

within the loop of the back-to-back gearbox. The effective torque loading was a 

combination of the static and dynamic (inertia) loading. Three sets of torque were used 

for the experiment: 0 Nm, 55 Nm and 110 Nm. The contact ratio of the gear was 1.77.  

It must be noted that the 0 Nm condition is not literally ‘0 Nm’. There exists a light load 

at this condition due to the bearing friction and losses/resistance associated with the 

rubber seals, gear churning and windage. If a true ‘0 Nm’ condition was obtainable, the 

gear would run in a non-linear manner. An AC three-phase electrical motor (1.1 KW) 
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with speed of 745 rpm was employed to drive the gearbox. The lubricant used was an 

EP SAE 80W-90, GL-4 API mulit-grades gearbox oil so as to keep natural pitting and 

wear to minimum level during the seeded fault tests. 

 

 

 

Figure 1  Test-rig gearboxes in back-to-back arrangement. 

 

3. Sensors and Acquisition Systems 

 

The AE sensors used for this experiment were broadband type sensors with a relative 

flat response in the region between 100 KHz to 1MHz (Model: WD, ‘Physical 

Acoustics Corporation’). One sensor was placed on the pinion (49 teeth) and the other 

on the bearing casing (figure 2) of the pinion shaft. The cable connecting the sensor 

placed on the pinion with the pre-amplifier was feed into the shaft and connected to a 

slip rig, see figure 3. This arrangement allowed the AE sensor to be placed as close as 

possible to the gear teeth. Both sensors were held in place with mechanical fixtures. A 
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PH-12 slip rig manufactured by ‘IDM Electronics Ltd’ was employed. The slip rig used 

silver contacts and could accommodate up to 12 channels. The slip rig had an air intake 

where pressurised air was fed for cooling and cleanliness purposes at a rate of 

0.014kg/mm2 (figure 3). The output signal from the AE sensors was pre-amplified at 

40dB. The signal output from the pre-amplifier was connected (i.e. via BNC/coaxial 

cable) directly to a commercial data acquisition card where a sampling rate of 10MHz 

was used during the tests.  

 

Figure 2 AE sensors located on the pinion and bearing casing. 

 

Sensor 
on Gear 

Sensor on 
Bearing 
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Figure 3 Slip ring coupled with cool compressed air supply. 

 

4. Test Procedures 

 

The gearbox was run-in for more than 15 hours before the actual experiment was carried 

out. Prior to the start of the test, an attenuation test on the gearbox components was 

undertaken in order to understand the characteristics of the test-rig.  

 

The test started with a defect free condition so that the operational background noise 

characteristics were observed. The gearbox was run for 30 minutes prior to acquiring 

AE data for the no load condition. The gearbox was then shut down to adjust to the next 

torque level (55 Nm). After another 30 minutes of continuous running, the AE signal for 

this load condition was acquired.  This procedure was repeated for the load condition of 

110 Nm. 

 

Cool Air 
Supply 
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For the seeded defect condition, a pitch-line defect of 1 mm in diameter (see figure 4) 

was introduced and AE data was collected by repeating the loading procedures detailed 

in the former paragraph. Lastly, the test was repeated for a large addendum defect 

(extended from the pitch-line) measuring 12 mm by 3 mm (see figure 5). Based on the 

sampling rate of 10 MHz, the acquisition time available for recording was 0.0256 

seconds which represented 0.31 revolutions (16 teeth) of the pinion at 745 rpm. The 

seeded defects were introduced on the tooth flank of a tooth using an engraving 

machine. By employing a trigger mechanism, only AE data from the portion of the 

pinion gear wheel where the defect was located was acquired. The trigger system was 

set such that the defective gear tooth was at the mid point of the acquisition window 

(0.0256 seconds), see figure 6. 

 

The application of AE to gear diagnostics is considered to be relatively new. Although 

there are many AE analysis techniques available, selection of a robust technique is of 

paramount importance if AE is to gain acceptability as a diagnostic tool. The AE 

parameter chosen for the gear defect diagnosis analysis was the root mean square 

(r.m.s), a common AE parameter usually employed for diagnosis.  
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Figure 4  Seeded small pitch-line defect. 

 

 

Figure 5 Seeded large addendum defect. 

 

 

 

 

Introduced Pit 
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Figure 6 Sectioning of gear teeth for analysis, 16 teeth captured over 0.0256 

seconds. 

 

5. Attenuation Test 

 

A 0.5 mm diameter and 3 mm length 2H lead pencil was broken at different positions in 

order to establish the attenuation of the AE signal. This technique is known as the 

Nielsen source test. Figure 7 presents the schematic diagram for the attenuation test 

displaying the different simulation positions and different interfaces the AE signatures 

would have to propagate across. Table 1 and figure 8 show the relative attenuation 

values.  The reference signal employed for the attenuation calculations was the AE 

response from a lead break next to the AE sensor on the pinion gear. Five pencil breaks 

were acquired from each position and averaged. 

 

The greatest attenuation of simulated AE signatures was observed on the bearing. This 

was expected due to the number of interfaces the AE signature would need to propagate 

across. The position of the balls in the loaded zone affects attenuation of the AE signal. 

If a ball is in the loaded zone while the AE waves were travelling through, better 

transmissibility can be expected. Relatively high attenuation was also observed for lead 
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breaks on the wheel (big gear). This was expected as the wheel is furthest away from 

the sensor; however, the attenuation values of lead breaks on the pinion and shaft were 

similar. It was expected that the attenuation would be greater on the shaft due to the 

interface between the shaft and the pinion gear but this was not the case. This is 

attributed to experimental errors and the close proximity at both locations. 

 

 

 

Figure 7  Schematic Diagram for the attenuation test displaying different 

interfaces 
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Figure 8 Relative attenuation values for sensor on the pinion. 

 

 

Table 1 Relative attenuation values 
 

Interface Average Amplitude Relative Attenuation (dB) 

Bearing 0.093 -34.64 

Wheel 0.257 -25.90 

Pinion 1.829 -8.86 

Shaft 2.120 -7.58 

   

Reference Position 5.074 0 
 

6. Results of operational background noise 

 
Figure 9 displays a typical AE signature with corresponding frequency spectrum 

associated with a defect free condition (operational noise). Figure 10 illustrates the time 

domain signatures for the load cases considered. It clearly shows 16 meshing teeth that 
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included the defective tooth. This is the first known published document that presents 

the gear meshing AE transient response in the time domain. The gear mesh frequency 

can also be calculated from the time domain AE signal by inversing the periodic time 

between two subsequent AE bursts. The frequency range of the transient and continuous 

AE signals associated with these tests ranged from 25 kHz to 350 kHz. 

 

For analysis of AE data obtained from these experiments r.m.s values were calculated to 

provide a comparison to other published work but principally because of the simplicity 

and proven robustness of this parameter for machine health diagnosis. 

 

 

 

Figure 9  Time and frequency domain of an AE signature showing clearly the 

AE transient response associated with gear meshing of 16 teeth. 
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Figure 10 Raw AE signal for small pitch-line defect for (a) no load, 

  (b) 55 Nm load and (c) 110 Nm load. 

 

7. Results of defect simulations 

 

The recorded AE time waveform acquired for defect and defect free simulations were 

split into five different regions with each region representing 3-teeth, see figure 6. The 

r.m.s. value of each region was computed and plotted against the three loading 

conditions. It was thought that this method of grouping the data would enhance the 

possibilities of detecting the seeded defect particularly as the defect has been seeded in 

the centre of the acquisition window. A total of 50 data sets, each equivalent to a time 

frame encompassing sixteen teeth, were acquired and averaged in each region. The 

a

b

c
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averaging could be accomplished due to the optical triggering system employed 

ensuring that the acquisition system always started at the same position. 
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Figure 11 r.m.s. against load for defect free condition. (5 regions). 

 

For the defect free simulation r.m.s values calculated showed no discernible trend for 

the three loading conditions, see figure. For the small pitch-line defect condition, the 

centre region C, where the seeded defect was introduced, exhibited the highest r.m.s 

values (figure 12). However, similar observations were not present for the large 

addendum defect (figure 13). It was also noted that for the small defect condition only 

the r.m.s levels increased with increasing load. Furthermore, it was observed that r.m.s 

levels for the large fault condition were relatively lower than defect free and small 

defect conditions. The latter two had similar r.m.s values. These observations were 

rather puzzling, as the literature to date had advocated an increase in AE r.m.s/energy 

with defect size and load. 
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Figure 12 r.m.s. against load for small pitch-line defect condition. (5 regions) 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 13  r.m.s  against loads for large addendum defect condition. (5 regions) 
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In order to confirm the authenticity of these results recorded AE data was split further 

into eight and sixteen different regions with each region representing 2-teeth and 1-tooth 

respectively. This was a similar procedure to that shown in figure 6. The r.m.s. value of 

each region was computed and plotted against the three load conditions for the small 

defect condition, see figure 14 and 15. The small defect condition was specially chosen 

as this showed the most promising results when the teeth were grouped in three’s. From 

figure 14, it was observed that the maximum r.m.s. values did not occur at region D 

where the seeded defect was located based on a grouping of two teeth. From figure 15 

similar observations were noted, the r.m.s. value at the seeded fault tooth, H (based on a 

single tooth demarcation), was not the highest value. The same observations were noted 

for the large defect condition. The inconsistency between the single tooth, 2-teeth and 3-

teeth analysis revealed that either the AE r.m.s or/and the potential for the AE technique 

for defect identification was inappropriate. The results would have been conclusive had 

the r.m.s. levels for the defective tooth been higher than other regions within the 

acquisition window.  

 

The raw AE signal from small pitch-line defect is displayed in figure 10. This shows the 

non-consistent observation of AE bursts in relation to the defect position. The biggest 

burst of the AE signal did not always occur in the centre region of the window where 

the seed fault was located. Hence, it was not possible to detect the seeded defect using 

the AE r.m.s. This contradicts the work of a few researchers [8, 10, 11] whom claimed 

AE energy, which is proportional to r.m.s, could clearly identify a simulated pit. Based 

on these observations the authors undertook further experiments in an attempt to 

understand the reasons for this, see section on discussions. 
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Figure 14   r.m.s  against loads for small pitch-line defect condition. (8 regions) 

 

Figure 15 r.m.s against loads for small pitch-line defect condition. (16 regions) 
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8. AE Observations from the Bearing Housing 

 

The AE sensor on the pinion and bearing casing was synchronised and as such when the 

data acquisition system was triggered, both AE sensors captured data simultaneously. 

 

During the test, it was noted that the AE bursts relating to the gear mesh, as detected on 

the sensor fixed onto the pinion, were also observed from the sensor on the bearing 

casing, see figure 16. However, continuous observations of the AE sensor on the 

bearing casing showed intermediate loss of the AE bursts associated with the gear mesh. 

The reason for this is attributed to the position of the bearing ball/roller elements during 

rotation. It is postulated that when the ball/roller is at bottom dead centre, i.e. directly in 

the load path, transmission of the AE bursts to the sensor on the bearing casing was 

achievable and only under this circumstance. As the relative attenuation ranged from 

44dB to 26dB (depending on the particular gear mesh AE burst, see figure 16), in 

addition to the high probability of loss of transmission path through the bearing, see 

figure 17, the authors see identifying gear defects from the bearing casing as fraught 

with difficulties, again contrary to other investigators [6,8].  



 22

0 0.005 0.01 0.015 0.02 0.025

-2

-1

0

1

2

Vo
lts

0 0.005 0.01 0.015 0.02 0.025
-0.06

-0.04

-0.02

0

0.02

0.04

0.06

Time (seconds)

Vo
lts

Sensor on gear 

Sensor on bearing case 

 

Figure 16 AE bursts detected on pinion sensor were observed on bearing  

  casing sensor, load 55Nm. 
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Figure 17   Loss of transmission path at particular gear mesh positions observed 

on bearing casing sensor, load 55Nm. 
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9. Discussion 

 

The relationship between AE r.m.s and defect location presented thus far was 

considered unsatisfactory. This resulted in additional tests to explain the discrepancies, 

particularly as other authors had supported the applicability of these parameters to gear 

defect detection. These new tests were carried out using the same test set-up but with 

new gear sets. It was thought prudent to establish if the oil temperature had an influence 

on AE activity. For this investigation the AE r.m.s data were monitored and recorded 

continuously while oil temperature in the gearbox was also measured at fifteen minute 

intervals. 

 

Continuous AE r.m.s values were calculated in real time by the Analog to Digital 

Converter (ADC) controlling software. This software employed a hardware accelerator 

to perform calculations in real time. The hardware accelerator takes each value from the 

ADC and squares it. These results are added into an accumulator for a programmable 

time interval set by the user, 100 ms in this instance. The accumulator is cleared at the 

start of the time interval, and the accumulator value will only be stored at the end of the 

time interval. The r.m.s is then calculated by taking the square root of the sum of the 

accumulated squared ADC readings. The time interval for acquisition was also set at 

100 ms.  

 

These additional tests were run at three load conditions until the AE r.m.s. and oil 

temperatures stabilised. The tests were terminated when the AE parameters and oil 
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temperatures had been stable for one hour. Stabilisation of the oil temperatures was 

achieved when the temperature remained within 0.20C for the duration of one hour. 

 

Figure 18 illustrates that the gearbox system only reached a stabilised temperature after 

at least 5 hours of continuous running. The starting point for all three test conditions 

investigated was dependent on the ambient temperature prior to testing. From figures 19 

to 21, it was noted that the AE r.m.s varied with time as the gear box reached a 

stabilised temperature. This implied that depending on what time the AE data was 

captured for a given speed and load condition, the variation in AE activity r.ms could be 

as much as 33%. For these particular tests the point at which the data was captured is 

highlighted in figures 19 to 21. Thus, the AE signals captured during seeded defect tests 

were ‘snapshots’ that are largely influenced by load, oil temperature and system 

dynamics. As ‘snapshots’ only provide information at an instant in time, the 

consistencies of the derived AE parameters will be subject to considerable variation. 

The influence of load and oil temperature on AE activity is directly linked to the oil film 

thickness between the meshing gears. The oil film thickness will influence the rate of 

wear and asperity deformation, both of which generate the AE activity. Therefore, it is 

important to determine and establish when the AE signal should be recorded for usage 

on comparative defect analysis.  

 

The complications of the effect of oil temperature on AE activity have far reaching 

consequences, particularly as most of the published work to date has not taken 

cognisance of this effect. The authors of this paper believe it is fundamentally flawed to 

compare AE activity from defect free and simulated defect conditions under varying 

loads without accounting for the influence of oil temperature. The effect of oil 
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temperature variation on the generation of AE activity is currently under investigation 

and will be the subject of future publication. It may be worth stating that the influence 

of oil temperature on AE activity for higher rotational speeds has shown far greater 

variations for similar load conditions than stated in this paper. 
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Figure 18  Oil temperatures monitoring with no-load, 55 Nm-load and 110 Nm-

 load conditions. 
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Figure 19  Continuous AE r.m.s values for no-load condition. 

 

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Time (hours)

r.m
.s

 (v
ol

ts
)

 

Figure 20  Continuous AE r.m.s values for 55Nm load condition. 
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Figure 21  Continuous AE r.m.s values for 110Nm load condition. 

 

Taking cosignance of the fact that AE activity is generated during the sliding and rolling 

of the gears, principally due to asperity contacts, the introduction of a seeded defect 

which removes surface material digresses from the basic source of AE generation. 

Therefore the authors argue that identification of seeded defects of this nature cannot be 

accomplished with the AE technique. This statement will hold true if the seeded defect 

involved the removal of material from the surface. However, other authors [8, 10, 11] 

have claimed success and it is argued that the most likely reason for this is as follows: It 

is highly possible that in the process of material removal from the gear face ‘mounds’ or 

‘protrusions’ will be formed at the boundaries of the seeded defect, see figure 22. These 

are created due to the displacement of material from the region of material removal. The 

authors postulate that it is these ‘protrusions’ that were responsible for AE activity. 

However, this activity will only last until the ‘protrusions’ are flattened during the 

operation of the gear, see figure 23. In the latter instance, AE will be generated by 

Acquisition time for 
the test  
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asperity contacts. These postulations are based on the assumption that a suitable grade 

of lubricant is employed. On this basis the authors question the repeatability of seeded 

defect identification tests over a prolonged period using the AE technique. 

 

Figure 22 Mounds or Protrusions of the gear surfaces in contact during 

rotation 

 

Figure 23  Flattened protrusions of gear surfaces. 

 

The pitting process of gears involves initiation of micro-cracks, crack growth and the 

removal of tiny particles from the gear surface, all of which emit AE activity. 
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Furthermore, the removed wear particles or debris trapped between mating gear surfaces 

will create third-body abrasions. This condition will further enhance generation of AE 

signatures. For a better assessment on the detection capability of AE, it is recommended 

that experiments are undertaken in conditions, which allow natural pitting or wear rather 

than seeded defect test.   

 

10. Conclusion  

 
This paper has demonstrated that seeded gear defect detection with AE is fraught with 

difficulties and the reasons have been presented. This work is part of an ongoing 

program which aims to investigate some of the drawbacks detailed and establish if the 

technique is relatively robust for natural wear detection on gears. 
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