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ABSTRACT 

The fracture of water ballast tank (WBT) coatings due to thermal stresses is widely 

recognised as an issue. Upon coating fracture, rapid corrosion of the tanker steel 

structure will occur, leading to expensive structure repairs or even tanker scrapping. In 

this project, the fracture behaviour of two experimental WBT coatings, referred to as A 

and B, in the forms of free film and substrated coatings was investigated. Static tensile 

tests and fatigue tests of the substrated coatings were performed. A finite element model 

of coating cracking was developed. Thermal stress and 𝐽 -integral of surface cracking 

defects in substrated coatings were calculated using the model, in which the effects of 

defect size, coating thickness, and thermal strain on coating fracture were investigated. 

For the first time, fracture mechanics was used to explain WBT coating fracture 

behaviour. The 𝐽 -integral of surface defects was used to predict the onset strain of 

coating cracking under mechanical strains in laboratory and under thermal strains in 

service. A theoretical comparison between the cracking drive forces in terms of 𝐽 -

integrals in WBT coatings under thermal strains and mechanical strains was performed. 

Tensile testing of coating free films showed that the tensile strength of coatings A and 

B were 30 and 17 MPa respectively, with corresponding fracture strains of 0.67% and 

0.34%. The measured fracture toughness values of coatings A and B were 1.09 and 0.64 

𝑀𝑃𝑎√𝑚. During tensile testing of substrated coatings, the coatings developed the first 

surface crack at a critical nominal strain, and further increases in mechanical strain led to 

the propagation and initiation of new parallel cracks, lying perpendicularly to the loading 

direction, and the crack number saturated as straining continued. The nominal strain to 

first crack of substrated coatings A and B were found to be 1.04% and 0.64%, which was 

much greater than the ductility of the free films, despite of the presence of thermal 

residual strains. Predictions of failure strains of the coatings A and B made using the 

𝐽-integral of surface cracking defects and coating fracture toughness were found to be 

within 10% and 30% of the experimental values. Coating A was found to be more fatigue 

resistant than coating B in terms of both life to first 2 mm long fatigue crack and total 
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crack growth rate. It was found that the total crack growth rate had a Paris’ Law-like 

correlation with strain range and with 𝐽-integral range. 

The results show the static ductility and fatigue life of the coatings strongly depend 

on toughness, defect size, coating thickness and residual stress. To achieve long life, 

coating formulations should possess high toughness and low residual stress, and in 

application coatings should be as thin as allowed for sufficient anti-corrosion capability. 

Keywords:  
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1. INTRODUCTION 

In recent years, crude oil tankers (COTs) have been required to adopt a double-hulled 

structure to avoid oil leakage due to accidental tanker collision [1,2]. Sandwiched by the 

inner and the outer hull is a water ballast tank (WBT), where sea water is stored as ballast 

when the tanker is free of cargo. In order to protect the tanker steel structure from 

corrosion, organic coatings, normally heavily filled epoxy coatings are applied on the 

inner surface of WBTs. However, it has been observed that sometimes these coatings fail 

before the desired service life of the tanker [3], which leads to the corrosion of the tanker 

structure and poses potential danger to the tanker integrity. Repair of the coating is 

expensive, and sometimes severe corrosion leads to scrapping of the tanker [2]. 

The causes of the failure of WBT coatings are widely known to be stresses developed 

internally such as thermal, hygroscopic and curing stresses due to the mismatch between 

the volumetric changes of coating and substrate subjected to environmental changes, as 

well as stress applied externally such mechanical stress due to tanker hull deformation 

[4,5]. It is also known the thermal stress has the largest contribution [6]. Figure 1 

illustrates 4 major types of stress WBT coatings endure after curing and in service.  

 
Figure 1. Illustration of major types of stress/strain in WBT coatings 
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After curing and before being in service, WBT coatings are in a stable environment, 

and the all types of stresses are constant. During service, the temperature and humidity 

inside WBTs start to vary periodically, and the tanker hull is cyclically deformed by sea 

wave motions, the resultant stresses in WBT coatings become cyclic. Due to this cyclic 

nature of the stresses, the failure of WBT coatings could be caused by fatigue. 

The best way to avoid this problem is to apply suitable coatings in the very beginning. 

Therefore a model that is capable of predicting the life of WBT coatings in the service 

environment would be highly desirable. In order to build the model, an understanding of 

the fracture behaviour of WBT coatings is essential. Therefore, this project was 

established with an aim to understand better the fracture behaviour of WBT coatings 

under both static and cyclic strains. In this work, coating failure was induced by large 

deformation of steel substrate that exceeded the substrate yielding stress. Considering 

that the generation of thermal stress in WBT coatings in service would not cause 

substrate yielding, how experimental characterisation of coating performance can be 

related to service performance was also explored in this work. 

To fulfil the aim, the following objectives had to be performed during this project: 

1) Characterisation of the mechanical and thermal properties of two types of 

coatings provided by International Paint as individual materials; 

2) Observation and quantification of the fracture behaviour of the coatings on 

substrate under both static and cyclic strains; 

3) Thermal stress analysis and fracture mechanics analysis of the coatings on 

substrate using finite element (FE) analysis; 

4) Explanation of the observed fracture behaviour using theoretical predictions; 

5) Prediction of the fracture behaviour of the coatings in service conditions using 

experimental and theoretical results. 

A literature review of the current understanding in the development of stress and the 

coating fracture behaviour is given first. After that, the materials and methods used for 
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the experimental observation are described, followed by the results of the experimental 

investigations. Then, the procedures as well as the results of the FE investigation are 

presented before the discussion, in which the fracture behaviour of coatings in the 

laboratory condition will be explained in detail. Subsequently, the prediction of the 

fracture behaviour of the coatings in service condition is presented in an independent 

chapter before the conclusions. 
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2. LITERATURE REVIEW 

Coating fracture is a common problem encountered in various applications [7]. The 

fracture of polymeric coatings in automotive [8,9] and marine industry [6,10], metallic 

coatings in electronics industry [11–13], and thermal barrier coatings in aerospace 

industry [14–16] has been observed and investigated. The conditions leading to the 

fracture of different coatings vary depending on the configuration of each 

coating/substrate system, but the similarities in the fracture processes analysis should 

remain. This chapter summarises the previous research relevant to the current 

investigation, including both the fundamental and recent developments. However, 

considering the scope of this work, it focuses on WBT coatings. 

A brief introduction to the composition of WBT coatings and its relationship with the 

material properties is given firstly. Following that, the development of internal stresses 

and other influences are introduced. And then, the focus will move on to the fracture 

behaviours and the mechanics of coatings.  And finally, the recent developments in the 

research of fatigue behaviour of coatings is summarised. WBT coatings are essentially 

materials in the form of thin films, and thus this literature review includes the knowledge 

of particulate filled epoxy resins. The significantly unique characteristics of coatings are 

highlighted along the way wherever appropriate.  

2.1. Coating Composition and Main Properties 

In WBTs, organic coatings are usually used for anti-corrosion purposes. These coatings 

use polymers as binders, in which various types of particulate pigments are dispersed. 

Note that fillers in the organic coating industry are normally referred to as pigments. 

Organic coatings are normally diluted by solvents to reduce the viscosity for the 

convenience of application. After application, the coatings solidify by either solvent 

evaporation or a chemical curing reaction or both, and eventually form a solid layer or 

multiple layers. In WBTs, epoxy resins are widely adopted as the binder as epoxies offer 

excellent adhesion to metals, chemical stability and water resistance [17,18]. For better 
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corrosion resistance, various particles are used as pigments [19,20]. Micaceous iron 

oxide, lamellar aluminium pigments, and glass flake pigments [21–23] are used as barrier 

pigments which impede the transport of water molecules by forming a tortuous path for 

diffusion. Besides the anti-corrosive functions, the pigments also modify the original 

properties of the epoxy resins and influence the final properties of the coating systems 

[24]. 

WBT coatings are essentially particulate-filled epoxy resins in the form of thin layers. 

Therefore, one would expect that the influence of the pigments on the properties of 

epoxy coatings to be the same as particulate fillers on epoxy resins. The effects of the 

particulate fillers on the properties of such composites have been studied intensively. 

Many text books such as Landel [25] and Rothon [26], as well as many review papers 

provide comprehensive summaries of relevant developments [27–29]. Perera [30] has 

summarised the effects of pigmentation on organic coating characteristics. Considering 

the integrity of the coatings, the most important mechanical and thermo-mechanical 

properties are Young’s modulus  𝑬 , coefficient of thermal expansion (CTE) 𝜶𝑪
𝑻 , glass 

transition temperature 𝑻𝒈 and fracture toughness. The first three properties determine 

the magnitude of thermal stress in the coating for imposed temperature changes, while 

fracture toughness is a measure of the resistance of a material to crack propagation and 

will be described in detail later. This section will briefly introduce the effects of pigments 

only on the first three properties, and the effects of them on the development of thermal 

stress are introduced in the section regarding thermal stress. The effect of pigments on 

fracture toughness will be introduced in the section summarising fracture mechanisms of 

filled epoxy resins. 

As polymeric thermosetting materials, the physical properties of the epoxy resins vary 

depending on the crosslink density. Normally, the modulus is proportional to the crosslink 

density, while the flexibility is inversely proportional to the crosslink density. Generally 

speaking, cross-linked epoxy resins have a Young’s modulus ranging from 2 to 5 GPa at 

room temperature, while the strain to failure is about 3%, and the CTE is about 
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100 × 10 – 6 /°C. Compared to this, pigments are normally metals and metallic oxides with 

higher Young’s moduli, much less flexibility and smaller CTEs. Pigments in epoxy resins 

cause the properties of the resins to deviate from the initial properties towards the 

properties of the pigments. As a result, the filled epoxy coatings normally possess higher 

Young’s moduli, smaller strain to failure, and smaller CTEs compared to their pristine 

state. Perera and Eynde [31] reported the increase of Young’s modulus of a thermoplastic 

polymer coating with increasing volume content of various types of fillers. Zosel [32] 

studied the elastic modulus of a polyacrylate coating with different volume content of 

titanium oxide pigments, and found similar results. Figure 2 shows the trend of pigment 

reinforcement on an acrylate filled with four types of pigments. The drop in the moduli 

of the acrylate coating filled with talc and yellow iron oxide was due to the excessive 

pigment volume content (PVC), which hindered the formation of a continuous resin 

phase. 

Perera [30] has also reported the significant influence pigments have on the CTE of 

polymeric coatings. In general, the CTEs of polymeric coatings studied decreased with the 

increase of PVC. Figure 3A shows the reduction of CTE of an epoxy coating filled with 

various PVC of TiO2. In the same paper, it is also emphasised that due to the heterogeneity 

of many pigments, such as lamellar shape pigments, the CTE of a filled coating can be 

anisotropic. Figure 3B demonstrates the discrepancy of the CTEs of a filled polypropylene 

coating measured in different directions. CTE is of great importance when determining 

the magnitude of the thermal stress developed inside coatings, and more details are to 

be introduced in the later section regarding internal stress development. 

The glass transition temperature 𝑇𝑔 is the temperature of the transition between the 

glassy and rubbery state of polymeric materials [33]. Below 𝑇𝑔  a polymeric material 

behaves like a glass mechanically with high stiffness and brittle nature, and above 𝑇𝑔 the 

material behaves like a rubber with low stiffness and high flexibility. The influence of 

pigments on the 𝑇𝑔 of polymeric coatings is rather complicated, and it depends on the 

strength of the “inter-phase” between binder and pigment, which is the surface layer of 
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the pigment with binder absorbed [34–36]. If the 𝑇𝑔 of the inter-phase is higher than the 

binder, the 𝑇𝑔 of the pigmented coating will be increased, and vice versa. It has been 

found that in some cases pigments do not have any influence on the 𝑇𝑔 [37,38], or have 

a negative influence on the 𝑇𝑔 [39,40]. However, it is widely considered that pigments 

would increase the 𝑇𝑔  of pigmented coatings [41–43]. 𝑇𝑔  also possesses great 

importance in determining the magnitude of the internal stress in organic coatings, and 

the details are described in the next section. 

 

 

 
Figure 2. Reinforcing effect of inorganic pigments on an acrylate 
coating, adapted from reference [30]. 
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Figure 3. (A) Coefficient of thermal expansion (CTE) of an epoxy coating containing various volume 
content of a TiO2 pigment at 21 °C. (B) Coefficient of thermal expansion (CTE) of a polypropylene 
coating containing wolastonite (50 wt%) as a function of temperature measured in three direction. 
Both figures are adapted from reference [30].  

2.2. Development of Stresses in Organic Coatings 

The primary development of the stress comes from the solidification of the coatings, 

which causes volumetric shrinkage. Due to the adhesion to stiff substrates, the shrinkage 

is constrained, which in result generates an internal stress in the coating. For coatings 

with thermosetting binders such as WBT coatings with epoxy resins as binder, the 

solidification includes the evaporation of solvents and the crosslink reaction of monomers 

into a densely packed structure. Both processes introduce volumetric shrinkage over time 

𝒕. Croll [44] used 𝑇𝑔 to define the solidification point. When the 𝑇𝑔 of a solidifying coating 

reaches the curing temperature, the coating is considered as solidified. The beginning of 

significant stress development starts when the solidification point is reached and the 

coatings develop sufficient modulus. In fact, solidification does not cease after the 

solidification point is reached, and the loss of any residual solvent and/or the reaction of 

unreacted monomers will cause further shrinkage, and thus generate even more stress. 

The development of coating stress due to either solvent evaporation [45–48] or chemical 
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curing [49–56] has been studied intensively. Reviews [57,58] of the stress development 

in organic coatings can also be found. Typical stress development due to solvent loss over 

time and chemical curing has been reported by Vaessen [45] and Stolov [49] respectively. 

Essentially, the magnitude of internal stress developed during solidification 𝝈𝑪
𝑺(𝒕) has 

two time-dependent contributions, the shrinkage strain 𝜺𝑪(𝒕) and the Young’s modulus 

of the coating 𝑬𝑪(𝒕).  

 
𝜎𝐶

𝑆(𝑡) =
𝐸𝐶(𝑡)

1 − 𝜐𝐶
∙ 𝜀𝐶(𝑡) (1) 

Here, 𝝊𝑪 is the Poisson’s ratio of the coating, and equation (1) depicts a biaxial stress 

away from the edge of the coating [59–61].  

For thermosetting coatings such as epoxy coatings, several factors influence the 

magnitude of the internal stress, namely crosslink density, solvent type, curing rate, and 

coating thickness. It is easy to understand why crosslink density plays a role. As the 

crosslink density increases, the final modulus of thermosetting coatings and the amount 

of shrinkage strain will increase [50–52], which would result in a higher internal stress as 

depicted by equation (1). 

The influences of solvent type, curing rate, and coating thickness need to be discussed 

together, as the stress development is a result of their competition. Normally the solvent 

content of thermosetting coatings/solvent solutions is about 20% to 30% [62], which 

generates a very large shrinkage after evaporation. Solvents inside the coatings need to 

diffuse through the thickness to the surface in order to escape from the coating solution. 

If the rates of solvent diffusion and evaporation, as well as chemical curing allow the 

solvent to escape from the system before the densely cross-linked structure is formed, 

the shrinkage due to solvent loss will happen at very low coating modulus [63]. In this 

case, further coating curing, generating little shrinkage, will not lead to the development 

of large internal stress. However if the crosslink reaction finishes while much solvent still 

remains, subsequent slow evaporation of the trapped solvent paired with the already 
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developed high modulus will generate a much greater internal stresses. A thicker coating 

tends to trap more solvent, because it slows down the evaporation as the solvent 

molecule has a longer path to diffuse to the surface. In a solvent-less system, it has been 

found that a slower curing rate would lead to a smaller internal stress, because a longer 

curing time allows the relaxation of the internal stress over time, and vice versa [53]. 

Generally speaking, to avoid undesired high internal stress, the formulation of the coating 

should allow fast solvent evaporation and slow curing rate if possible. 

The internal stress of organic coatings can be measured using the observation of the 

deflection of coated substrates [58]. The earliest analysis of internal stress measurement 

was from Stoney [64] using beam theory. Later, based on Stoney’s analysis intensive 

studies were performed for thin coatings on thick substrates [65–67] and coatings on 

substrate with equal thickness [68–70]. The most widely adopted method to measure the 

internal stress of coatings is to measure the deflection of a bi-layer strip of a coating and 

a substrate. When the internal stress is developed in the coating, both the ends of the 

strip will deflect symmetrically towards the centre. If a tensile or a compressive stress is 

developed in the coating, the strip will defect towards the coating or substrate side 

respectively. The deflection will stabilise when the stress and moment equilibrium of the 

coating/substrate system is reached. Assuming perfect curvature, the deflection of the 

strip can be converted to a radius of curvature, and using this value the internal stress of 

the coating on a non-deflecting strip 𝝈𝑪
𝟎 can be calculated by the equation as follows [68]. 

 
𝜎𝐶

0 =
𝐸𝑆ℎ𝑆

2

6ℎ𝑐(1 − 𝜐𝑆)𝑅
∙

1

1 + 𝑅𝐸𝑅𝐻

× [1 + 𝑅𝐻(4𝑅𝐸 − 1)

+ 𝑅𝐻
2 [𝑅𝐸

2(𝑅𝐻 − 1) + 4𝑅𝐸 +
(1 + 𝑅𝐸)2

1 + 𝑅𝐻

]] 

(2) 

 
𝑅𝐸 =

𝐸𝐶(1 − 𝜐𝑆)

𝐸𝑆(1 − 𝜐𝐶)
, 𝑅𝐻 =

ℎ𝐶

ℎ𝑆
 (3) 
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𝑅 =

𝐿2

8𝐷𝑚𝑎𝑥
 (4) 

Here, 𝒉 is the the thickness, the subscripts 𝑪 and 𝑺 represent coating and substrate 

respectively. 𝝊𝑺 is the Poisson’s ratio of the substrate. 𝑹 is the radius of curvature of the 

deflected strip, and it can be calculated using 𝑳, the length of the strip, and 𝑫𝒎𝒂𝒙 the 

maximum deflection of the ends of the strip with respect to the centre. It is important to 

bear in mind that during the deflection some internal stress is released by the shape 

change of the coating, due to which the equation estimates an internal stress greater 

than when a coating is attached on a deflected substrate. In most of realistic organic 

coating/metal substrate systems, the substrate is not able to be deflected due to their 

much greater thickness and modulus than the coating, therefore this estimation made by 

equation (2) is appropriate. 

In WBTs of crude oil tankers, the failure of commercial protective coatings was 

observed normally after some years in service, and some “inferior” coatings only last 3 

years [71] while the life of WBT coatings is expected to be 15 years or even longer [1,62]. 

One cause of the failure is believed to be the fatigue cracking of the coatings under cyclic 

loadings, which are introduced by changes of temperature and humidity inside WBT 

during service, and sea wave induced tanker structure deformation. Crude oil is normally 

heated up to about 60 °C to reduce the viscosity for the convenience of transport [3], the 

cyclic charging and discharging of hot oil along with discharge and charge of cold sea 

water as ballast, there is a temperature cycle and a humidity cycle. Due to the discrepancy 

in the CTEs and the coefficient of hygroscopic expansion (CHEs) of the coating and the 

steel substrate, the changes of temperature and humidity modify the volumetric 

mismatch between the coating and the substrate, and hence influence the magnitude of 

the internal stress originally generated by curing. During service, the tanker hull structure 

responds to the sea wave motions and deforms cyclically at a frequency of 0.05 to 0.5 Hz. 

This deformation is transferred into the coatings as mechanical stress 𝝈𝑪
𝑴𝒆𝒄, and adds to 
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the internal stress. These types of the stress contributing to the final total WBT coatings 

stress 𝝈𝑪
𝑻𝒐𝒕, can be expressed mathematically as follows [72]. 

 𝜎𝐶
𝑇 = ∫

𝐸𝐶(𝑇)

1 − 𝜐𝐶
(𝛼𝐶

𝑇 −
𝑇1

𝑇2

𝛼𝑆
𝑇)𝑑𝑇 (5) 

 𝜎𝐶
𝐻 = ∫

𝐸𝐶(𝑅𝐻)

1 − 𝜐𝐶
(𝛼𝐶

𝐻 −
𝑅𝐻1

𝑅𝐻2

𝛼𝑆
𝐻)𝑑𝑅𝐻 (6) 

 𝜎𝐶
𝑇𝑜𝑡 = 𝜎𝐶

𝑆 + 𝜎𝐶
𝑇 + 𝜎𝐶

𝐻 + 𝜎𝐶
𝑀𝑒𝑐  (7) 

Here, 𝜎𝐶
𝑇  is thermal stress, 𝜎𝐶

𝐻  is hygroscopic stress, 𝜎𝐶
𝑆  is curing stress, 𝑇 and 𝑅𝐻 are 

temperature and relative humidity respectively, 𝛼𝐶
𝐻  and 𝛼𝑆

𝐻  are the hygroscopic 

expansion coefficients of coating and substrate respectively, 𝛼𝐶
𝑇 and 𝛼𝑆

𝑇 are the thermal 

expansion coefficients of coating and substrate respectively. Due to the cyclic nature of 

the environmental change driven stresses and the sea wave-induced stresses, 𝜎𝐶
𝑇𝑜𝑡  is 

cyclic. Among these environmental stresses, the thermal stress is considered as the 

biggest contribution to the low-life cycle fatigue failure of the coatings [6], and is the one 

considered in this research. The moisture inside WBT in fact reduces the magnitude of 

the stress in the coating by serving as a plasticiser that expands the coating and decreases 

the modulus. The earliest WBT coating failure is normally observed at the fillet welded 

“T” joints of the tanker structure [2], see Figure 4. In such a structure two steel plates 

were perpendicularly joined forming two corners, where the mechanical deformation is 

believed to be small, and therefore the mechanical stress should not be considered a 

dominant factor of the coating failure [6]. The place most likely to have coating failure is 

the welded joint with big changes in temperature from very high to very low and a 

relatively low humidity. 
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Figure 4. Illustration of a fillet welded T joint formed by 
a vertical and a horizontal plate. 

It has been introduced previously that the pigments influence the mechanical and the 

thermo-mechanical properties of the coatings, which results in internal stress of the 

coatings being affected by the type and the amount of pigments involved. For example, 

the incorporation of inorganic pigments usually increase the modulus, which according 

to equation (1) will increase the internal stress. However, pigments also reduce the 

shrinkage of the coatings, such as the reduction of CTE due to pigments, which decrease 

the internal stress. Therefore, to determine whether pigments lead to an undesired 

internal stress one must consider the effects of the pigments on both modulus and 

shrinkage.  

Another crucial factor influencing the properties of organic coatings as well as the 

internal stress is physical ageing, which is due to the molecular re-arrangement of binders 

in a non-equilibrium state, as the binder molecular structure is not in the most compact 

conformation [73–75]. Physical ageing is different from chemical ageing, in which 

molecular configuration is changed permanently, while physical ageing is merely 

conformational changes that can be thermally reversed by reheating the material to a 

temperature greater than 𝑇𝑔 for a sufficiently long time. This also means that physical 

ageing only occurs below 𝑇𝑔 , and the rate of physical ageing increases as the ageing 



CHAPTER 2 – LITERATURE REVIEW 

14 

 

temperature approaches 𝑇𝑔 but not exceeds it. Perera [76] systematically summarised 

the effects of physical ageing on organic coatings. Briefly speaking, the modulus of 

organic coatings increases with physical ageing, while the CTE decrease with physical 

ageing however its effect is well exceeded by the former [77]. The initial phenomenon of 

physical ageing is stress relaxation, meaning that the internal stress that a coating 

experiences drops. The internal stress evolution in organic protective coatings has been 

reported by Hare [78]. It was reported that the internal stress reduces due to stress 

relaxation in months after the solidification of the coatings, then stabilises for years in 

service, and eventually increases due to further physical ageing-caused modulus rise, see 

Figure 5. 

In addition, the most detrimental effect of physical ageing on the structural integrity 

of organic coatings is that of embrittlement of the materials [79–84]. Truong and Ennis 

[84] characterised the effect of physical ageing on the fracture toughness of epoxy resin, 

and they found the fracture toughness of an aged epoxy had a 40 – 50 % reduction 

compared to the un-aged resin. This, along with the increase in the internal stress, 

indicates that the failure of WBT coatings could be caused by the time-dependent 

physical ageing, which degrades the cracking resistance of the coatings to a level 

exceeded by the internal stress [10].  

In summary, the failure of WBT coatings may be caused by either fatigue damage due 

to cyclic stresses or static failure due to physical ageing induced fracture toughness 

degradation or both. Irrespective of the failure mechanism, the knowledge of coating 

fracture mechanics and fracture mechanisms of filled epoxies are essential if coating 

fracture is to be investigated further, and it will be introduced in the following section. 
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Figure 5. Illustration of the Evolution of internal stress in organic coatings. This is adapted from 
[78].  

2.3. Fracture of Epoxies 

2.3.1. Brief description of fracture mechanics 

Before getting into the fracture of epoxies, the fracture mechanics of general 

materials will be briefly reviewed first. 

The onset of the failure of a material from a pre-existing flaw obeys physical rules. The 

most fundamental rule is that of linear elastic fracture mechanics (LEFM). Initially, Griffith 

[85] applied the First Law of Thermodynamics and treated the fracture of material as a 

process from non-equilibrium to equilibrium. Any fracture can occur only if the process 

leads the total energy e of the system to reduce or remain constant. In Griffith’s theory, 

an existing flaw can increase in size only when the sufficient potential energy 𝜫  is 

available in the material to supply the surface energy 𝑾𝑺 required for the new surface 

created due to cracking. For an increment in the crack area 𝒅𝑨, the equilibrium can be 

expressed by the equation below. 
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𝑑𝑒

𝑑𝐴
=

𝑑Π

𝑑𝐴
+

𝑑𝑊𝑆

𝑑𝐴
= 0 (8) 

For a through-thickness flaw with a length of 2𝒂 in a purely elastic thin plate with 

width much greater than 2𝑎 and a thickness much smaller than 𝑎, and given the surface 

energy density of the plate material as 𝛾𝑠 and the plate is loaded in the direction normal 

to the crack, the solution of the fracture stress 𝒇  can be expressed by the equation 

below. Note here 𝛾𝑠 is the energy required to create a surface with a unit area. 

 𝜎𝑓 = [
2𝐸𝛾𝑠

𝜋𝑎
]
0.5

 (9) 

Griffith’s theory is only valid for purely elastic materials, and to expand the theory to 

metals, Irwin [86] and Orowan [87] independently modified Griffith’s solution to take the 

plastic deformation at the crack tip into consideration. In addition to the surface energy 

require for cracking, the energy 𝜸𝒑consumed due to plastic deformation during cracking 

was introduced into equation (9) for a solution for the same problem with the 

consideration of plasticity confined in a small area around crack tip, see equation (10). 

 𝜎𝑓 = [
2𝐸(𝛾𝑠 + 𝛾𝑝)

𝜋𝑎
]

0.5

 (10) 

For convenience in solving engineering problems Irwin [88] further developed 

Griffith’s model by introducing energy release rate, 𝑮 , as a measure of the energy 

available for an increment of cracking. For a wide thin plate in plane stress with a crack 

with a length of 2𝑎 under a remote stress  perpendicular to the crack, 𝑮 can be written 

as below. Essentially 𝑮 is the sum of the required surface energy 𝛾𝑠  and the required 

plastic energy 𝛾𝑝. 

 𝐺𝐼 =
𝜋𝜎2𝑎

2𝐸
 (11) 

In addition to the energy approach, the fracture of materials can also be expressed 

from the aspect of the stress field at a crack tip [89–92]. Consider a sample being loaded 
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in a direction normal to a pre-existing crack, the stress in the sample at the crack tip is 

infinite and decreases on moving away from the crack tip. In this case, the mode I stress 

intensity factor 𝑲𝑰 was employed to quantify the magnitude of a crack tip singularity. For 

the 2𝑎 crack in the thin plate under normal stress, the stress intensity factor at the crack 

tip can be approximated by equation (12). For an edge crack with a length of 𝑎 in a semi-

infinite thin plate, its 𝐾𝐼 at the crack tip can be approximated by equation (13) below.  

 𝐾𝐼 = 𝜎√𝜋𝑎 (12) 

 𝐾𝐼 = 1.12𝜎√𝜋𝑎 (13) 

In LEFM, the mode I stress intensity factor has a unique relationship with the energy 

release rate 𝐺. In equation (14) below, 𝐸 is replaced by 𝐸 (1 − 𝜐2)⁄  for the plane strain 

condition. 

 
𝐺 =

𝐾𝐼
2

𝐸
  (14) 

When the sample with a pre-existing crack failed in mode I at a critical remote stress 

𝑐 , the stress intensity factor reaches a critical value 𝑲𝑰𝑪, which is also known as the 

fracture toughness of the material. It is a material property, and independent from the 

size and geometry of the cracked body. Based on equation (14), a critical value of the 

energy release rate 𝑮𝑰𝑪 can be obtained as an alternative form of the fracture toughness. 

These critical values serve as criteria for the onset of fracture. Consider a cracked body 

with a crack length of 𝑎  loaded with a mode I stress of  , if the 𝐾  or the 𝐺  values 

calculated from the crack length and the stress exceed the 𝐾𝐼𝐶  or the 𝐺𝐼𝐶 respectively, 

the body will fracture. 

In LEFM the plasticity of material is required to be confined in a small area at the crack 

tip, when large plastic deformation takes place in the bulk of material before fracture, 

LEFM will not hold anymore [93]. In order to express the crack-driving force of a defect 

in such materials, 𝐽-integral (𝐽) was developed [94]. If unloading is not considered, elastic-

plastic behaviour can be approximated using non-linear elasticity. Figure 6 illustrates the 
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load-displacement relationship of a purely elastic and a non-linear elastic body extended 

and kept at a constant displacement (∆). In the case where a pre-existing defect grows at 

the constant displacement, the load-displacement relationship is altered and shown by 

the dashed curves. 

 
Figure 6. Load-displacement relationship before and after crack growth at a constant 
displacement in a (A) linear elastic and a (B) non-linear elastic material [93]. 

The potential energy released (∆𝑒) can be seen as the area confined by the load-

displacement curves before and after the growth of the defect. If the defect growth 

create new crack surfaces with an area of 𝐴, the linear elastic energy release rate 𝐺 can 

be described as equation (15) below. In the non-linear case, the non-linear energy release 

rate is replaced with 𝐽, which is described by equation (16).  

 
𝐺 =

∆𝑒

𝐴
  (15) 

 
𝐽 =

∆𝑒

𝐴
  (16) 

Essentially, 𝐺  and 𝐽 both represent the rate of energy release due to a unit crack 

growth. In fact, 𝐽 is a more generic form of energy release rate, while 𝐺 does not account 

for non-linear or plastic material behaviour, and it can be measured by converting the 
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measured stress intensity factor 𝐾 using equation (14). In linear elastic materials, 𝐽 is 

equal to 𝐺 . As the term 𝐽-integral implies, 𝐽  can be described using the integral of a 

contour (Γ) around a crack tip, of which a schematic is shown in Figure 7. 

 

Figure 7. Arbitrary contour 𝚪 around a crack tip [93]. 

Using the coordinate system shown in Figure 7, the 𝐽-integral of the crack under a 

remote stress normal to the crack can be expressed by equation (17) as below [93]. 

 
𝐽 = ∮(𝑤𝑑𝑦 − 𝑇𝑖

∂𝑢𝑖

∂x
𝑑𝑠) (17) 

 
𝑤 = ∫ 𝜎𝑖𝑗𝑑𝜀𝑖𝑗

𝜀𝑖𝑗

0

 (18) 

 𝑇𝑖 = 𝜎𝑖𝑗𝑛𝑗  (19) 

In equation (17), 𝑤 is strain energy density, shown by equation (18), in which 𝜎𝑖𝑗  and 

𝜀𝑖𝑗  are stress and strain tensors. 𝑇𝑖 is the traction vector, shown by (19), in which 𝑛𝑗 are 

the components of the unit vector normal to the contour, and 𝑇𝑖 essentially is the normal 

stresses along the contour. Also in equation (17), 𝑢𝑖  are displacement vector 

components, and 𝑑𝑠 is a unit length increment along the contour. The first half term in 

equation (17) describes the total energy stored in the contour, while the second half 

describes the energy dissipated by the deformation of the contour. Rice [94] has showed 

that the value of the 𝐽 is independent from the contour shape as long as the path starts 

at one side the crack and ends at the other. With the advances in computer-aided 

numerical analysis, the calculation of 𝐽 -integral is now performed routinely by 
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commercial software packages directly incorporating equation (17) and its derivatives 

[95]. 

Despite the similarity between 𝐺 for linear elastic material and 𝐽 for non-linear elastic 

materials, when the plasticity is considered one would bear in mind that the plastic 

deformation will not recover upon cracking or unloading, thus plastic crack wake will be 

generated and plastic deformation in the un-cracked region will remain. In this case, 𝐽 

related energy changes should not be seen as the energy released only, but also the 

energy dissipated by plastic deformation. The 𝐽-integral can also be used as a fracture 

criterion, the fracture toughness of a body with a certain crack length in a given geometry 

can be found as a critical 𝐽 value, 𝐽𝐶 . If the body is under a stress producing a 𝐽 greater 

than the 𝐽𝐶 , fracture will commence and vice versa. Special caution needs to be taken 

here. 𝐽𝐶  is influenced by sample geometry and defect configuration. In a case that the 

sample geometry and defect configuration allow more plasticity before fracture, a 

greater 𝐽𝐶  will be measured than in the case that allows less plasticity. 

2.3.2. Deformation and fracture of epoxy resins 

As a type of polymeric material, epoxy resins share similarities in their mechanical 

behaviour with the rest of polymers. Several textbooks [96–99] systematically 

summarised the deformation and the fracture characteristics of polymers. It is widely 

understood that, due to the viscoelasticity of polymeric materials, the mechanical 

behaviour of polymers is highly influenced by strain rate and temperature [99]. Polymers 

tend to deform in a more ductile manner when loaded at high temperature or tested at 

a sufficiently low strain rate, while they behave in a brittle fashion in the opposite 

conditions. However, due to the polydisperse nature of macromolecules sizes, the 

boundary between the brittle region and the ductile region can be obscure. Lee and Kim 

[3] experimentally demonstrated the influence of temperature on the deformation of an 

epoxy based WBT coating, see Figure 8.  
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Figure 8. Temperature dependence of the stress-strain behaviour of 

an epoxy-based WBT coating. This figure is adapted from [3]. 

As shown in Figure 8, the samples tested at temperatures less than 25 °C exhibited 

rather high moduli and low strain to failure, while with the increasing testing 

temperature, the material exhibited much more ductility before failure and the modulus 

was reduced. 

In terms of the fracture of epoxy resins, several publications [100–105] 

comprehensively reviewed the microscopic and macroscopic aspect of both pristine and 

filled epoxy resins. Based on the fracture surface of two types of pristine epoxy resins and 

the observation of craze fibrils at the crack tips, Morgan and co-workers [106–108] 

suggested that the initiation of cracking in epoxy resins was derived from local crazing 

and the failure of the craze fibrils. Following the initiation, the crack grows slowly with a 

plastic zone at the crack tip due to local stress concentration, and when the crack grows 

to a critical length the epoxy resin will fail with fast and unstable crack growth. Shear band 

deformation rather than crazing was also observed at the crack initiation in epoxy resins 

by Morgan et al. [106] and other researchers [109,110]. The temperature and loading 

rate can strongly influence the initiation mechanism. At higher testing temperature or 

lower loading rate, the initiation tends to be caused by shear band deformation, and at 
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lower testing temperature or higher loading rate the crazing mechanism will prevail 

[100]. In some works [109–111], the crazing phenomenon was not observed, which might 

be due to the fine size of craze fibrils (about 1 m) being difficult to observe optically 

[112].  

The crack propagation in epoxy resins has been intensively investigated using notched 

test samples, tapered double-cantilever-beam (TDCB) samples that allows a constant 

crack growth rate are widely used [113–117]. Depending on test temperature, loading 

rate, and the presence of toughening particles, the crack propagation in TDCB specimens 

exhibits three major types of modes. Figure 9 shows the schematics for the load-

displacement behaviour of the macroscopic fracture of pristine epoxy resins in the form 

of TDCB specimens. Figure 9(A) shows the load-displacement behaviour of the first type 

of crack propagation mode characterised by a continuous crack propagation at a constant 

load [100,118]. In this mode, the crack will initiate when the load produces a stress 

intensity factor 𝐾𝐼 that reaches the fracture toughness 𝐾𝐼𝐶 , and propagate at the same 

load till complete fracture. Epoxy resins can also exhibit the second type of crack 

propagation mode demonstrated by Figure 9B. In this mode, a crack initiates when 𝐾𝐼  

reaches 𝐾𝐼𝐵 , which is greater than the 𝐾𝐼𝐶  of the material, then grows rapidly with a 

falling load, and eventually arrested at a load producing a 𝐾𝐼 approximately equal to 𝐾𝐼𝐶 . 

Further crack propagation requires the load to increase and produce a 𝐾𝐼 that reaches 

𝐾𝐼𝐵 again [100,118]. This crack-jump phenomenon is believed to be caused by crack tip 

blunting due to local plastic deformation. Once the crack is initiated the energy stored in 

the material is much higher than that needed for continuous crack propagation, the crack 

will advance very rapidly, and be arrested when the crack tip lose the energy enough for 

further propagation. The second type of crack growth is shown with low strain rate 

and/or high testing temperature, which favour plastic deformation in the material. 

Figure 9C shows the load-displacement behaviour of the third type of crack 

propagation mode. This was observed in the failure of rubber-toughened epoxy resins 

[119,120]. In this mode, a crack propagates slowly and continuously with the requirement 
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of further load input. The reason of this phenomenon is believed to be a progressive 

increase of 𝐾𝐼𝐶  at the crack tip. Kinloch and William [121] argued that one epoxy resin 

can fail by all these modes depending on how much the testing condition favours the 

crack tip blunting. They correlated the 𝐾𝐼𝐵 𝐾𝐼𝐶⁄  ratio with the yielding stress 𝝈𝒚, of which 

a lower value indicates higher degree of crack tip blunting, and they found that the 

epoxies with 𝜎𝑦  greater than 110 MPa tend to fail in a brittle fashion with fast and 

continuous crack growth, and those with 𝜎𝑦 lying between 50 and 110 MPa tend to fail 

in a stick-slip mode, and lastly those with 𝜎𝑦  less than 50 MPa tend to fail in a slow 

continuous mode.  

 
Figure 9. (A) Load-displacement relationship of fast continuous crack growth in epoxy; (B) Load-
displacement relationship of stick-slip type crack growth in epoxy; (C) Load-displacement 
relationship of slow continuous crack growth with increasing 𝑲𝑰𝑪; (D) Illustration of crack front on 
a cross section of a fracture surface. This figure is adapted from [100]. 

Pristine epoxies are widely considered as brittle materials at room temperature (23 

°C), and to toughen epoxy resins, soft rubber particles and rigid inorganic fillers are 

incorporated. In WBT coatings, rigid inorganic fillers are normally added as pigments for 

anti-corrosive purposes, and therefore only the toughening mechanisms of inorganic 
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fillers are briefly summarised here. Three major mechanisms are normally considered as 

the toughening mechanisms [105,122,123]. (1) Crack deflection: By this mechanism, 

crack growth is deflected by the fillers and thus it leads to more surface area created due 

to cracking, causing an increase in the toughness. (2) Plasticity: By this mechanism, fillers 

encourage local shear banding and causes localised yielding and crack tip blunting when 

interacting with the fillers, thus increase the energy requirement for cracking. (3) 

Cracking pinning: By this mechanism the advancing of the crack tip is pinned by an array 

of fillers which act as barriers for crack growth. It has been widely recognised that crack 

deflection mechanism does not offer obvious improvement in toughness, but the 

plasticity and the crack pinning mechanisms sometimes together significantly increase 

the fracture toughness [124,125]. 

2.4.  Fracture Mechanics of Coatings 

Normally, the coating failure produces surface cracks originating from surface flaws, 

which penetrate towards and arrest at the interface, see Figure 10A. Due to the 

dispersion of the flaws, the surface cracks are observed discretely on the coating surface. 

The surface cracks can then propagate across the width of the coatings, and form 

channels, see Figure 10B. The channel cracks do not stop advancing until they get close 

to another channel or an edge. In addition, in the presence of a very tough substrate, the 

coating crack can be deflected and induce de-bonding at the interface, see Figure 10C. 

Throughout this work, 𝑎 represents the depth of defect or crack into the thickness, 𝑙 

represent the length of crack appeared on coating surface, and ℎ  stands for coating 

thickness. 

Different from monolithic materials, the fracture behaviour of coatings is strongly 

influenced by the elastic mismatch of material properties of the coating and the 

substrate. The magnitude of this mismatch is usually quantified by Dundurs’ parameters 

[126] for plane strain problems, see equation (20) and (21). 
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𝛼 =

𝐸̅𝑐 − 𝐸̅𝑠

𝐸̅𝑐 + 𝐸̅𝑠

, (𝐸̅ =
𝐸

1 − 𝑣2
) (20) 

 
𝛽 =

𝜇𝑐(1 − 2𝑣𝑠) − 𝜇𝑠(1 − 2𝑣𝑐)

2𝜇𝑐(1 − 𝑣𝑠) + 2𝜇𝑠(1 − 𝑣𝑐)
 (21) 

𝐸̅𝑐 , 𝐸̅𝑠 are the plane strain moduli of the coating and the substrate respectively; 
𝜇𝑐 , 𝜇𝑠 are the shear moduli of the coating and the substrate respectively; 
𝑣𝑐 ,  𝑣𝑠  are the Poisson’s ratios of the coating and the substrate respectively. 

In equation (20) 𝛼 varies from -1 to 1. For a compliant coating and stiff substrate 

combination, 𝛼 approaches to -1 and for an opposite combination , 𝛼 approaches to 1. It 

has been found that for most practical materials combinations, 𝛽 typically varies from 0 

to 𝛼/4 [127]. For WBT coatings, the coatings are more compliant than the substrate, and 

therefore in this review only the case of compliant coating/stiff substrate combination 

(𝛼 ≤ 0) is considered. 

2.4.1. Penetration of coating cracks 

The earliest solutions, for a vertical crack propagating from coating surface to 

interface, were provided by Gecit [128], and later the solutions were then modified by 

Beuth [129] with an intention of expanding their applications. Zak and Williams [130] 

firstly derived a stress singularity exponent 𝒔, which allowed the traction, just ahead of a 

coating crack tip at the interface, to be expressed. The stress singularity exponent 𝑠, along 

with Dundurs’ parameter 𝛼 and 𝛽 satisfy the relationship as below. 

 
cos(sπ) − 2

α − β

1 − β
(1 − s)2 +

α − β2

1 − β2
= 0 (22) 

In the linear-elastic case, for a coating/substrate combination of certain Dundurs’ 

parameters 𝛼 and 𝛽, the stress intensity factor at the tip of a vertical crack 𝐾𝐼 is found to 

be dependent only on the relative crack depth 𝑎 ℎ⁄ .  

 𝐾𝐼 = 𝜎(𝜋ℎ)0.5 ∙ 𝑓 (𝛼, 𝛽,
𝑎

ℎ
) (23) 
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Figure 10. (A) A surface defect propagates towards interface; (B) a 
vertical crack channel across the width; (C) a fully grown vertical crack 
deflects at interface and causes debonding. 

Here, 𝑓 (𝛼, 𝛽,
𝑎

ℎ
)  is a non-dimensionalised value which reflects the material 

dissimilarity and crack depth, and can also be treated as a non-dimensionalised stress 
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intensity factor. The exact value of 𝑓 (𝛼, 𝛽,
𝑎

ℎ
) can be obtained numerically. For the ease 

of application, Beuth [129] approximated his numerical results with a closed form 

expression. Essentially, 𝑓 (𝛼, 𝛽,
𝑎

ℎ
)  can be treated as a non-dimensionalised stress 

intensity factor. 

𝑓 (𝛼, 𝛽,
𝑎

ℎ
) =

𝐾𝐼

𝜎(𝜋ℎ)0.5
= 1.1215(

𝑎

ℎ
)

0.5

(1 −
𝑎

ℎ
)

0.5−𝑠

(1 + 𝜆
𝑎

ℎ
) (24) 

Here,  is a parameter adopted to increase the accuracy of the fitting and can be 

found in [129] for different 𝛼, and it is rather small over the whole range of 𝛼, 𝛽 and 𝑎 ℎ⁄ , 

thus has little influence on 𝑓 (𝛼, 𝛽,
𝑎

ℎ
). 𝑠  is the same as that shown in equation (22). 

Equation (24) demonstrates that when 𝑎 ℎ⁄ → 0 , meaning a very shallow flaw, 𝐾𝐼  is 

dominated by (
𝑎

ℎ
)

0.5

, and it is similar to a defect in a monolithic material and the crack 

propagation is hardly influenced by the presence of the substrate. As 𝑎 ℎ⁄  increases, 

meaning that the crack tip grows closer to the interface, 𝐾𝐼 becomes more dependent on 

(1 −
𝑎

ℎ
)

0.5−𝑠

, which demonstrates that the influence of substrate significantly increases 

as the crack tip approaches the substrate.  

Based on equation (14) under linear elastic condition the energy release rate of 

penetrating crack propagation 𝑮𝒑 in plane strain can be derived with the 𝐾𝐼, and 𝐸̅𝐶  is 

the plane strain modulus of the coating. 

 
𝐺𝑝 =

𝐾𝐼
2

𝐸̅𝐶

=
𝜋𝜎2ℎ

𝐸̅𝑐

𝑓 (𝛼, 𝛽,
𝑎

ℎ
)

2

 (25) 

2.4.2. Channelling of coating cracks 

The problem of channel cracks in coatings has been treated by a number of 

researchers. The earliest was Gille [131], who tackled the problem theoretically using the 

numerical method at the time. Subsequently, Hu and Evans [132] treated the problem by 

calculations and experiments. The treatment of this problem considers a single through-
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thickness defect with a surface crack, of length exceeds a few times the coating thickness, 

channelling across the coating plane in a steady state, in which the crack front maintain 

constant shape. Recent finite element analysis by Nakamura [133] as well as Xia and 

Hutchinson [134] show that in compliant coating/stiff substrate systems the steady-state 

condition is achieved when the channel crack length reaches roughly twice the coating 

thickness. 

The basic concept to calculate the energy release rate of crack channelling in steady 

state is based on the energy balance of channelling process. The energy release rate at 

the crack front is treated as two plane problems, the planes far ahead and far behind the 

crack tip, see Figure 11. It is calculated by subtracting the energy stored far behind the 

crack tip from that far ahead. 

 

Figure 11. Illustration of an overview of a channelling crack on 
a coating surface. 

The energy release rate for coating crack channelling under steady state 𝑮𝒄𝒉 can be 

described by equation (26) below [129]. Like 𝑓 (𝛼, 𝛽,
𝑎

ℎ
) , 𝑔 (𝛼, 𝛽,

𝑎

ℎ
)  is a non-

dimensionalised value which reflects the material dissimilarity and crack depth. 

 
𝐺𝑐ℎ =

1

2
 
𝜋𝜎2ℎ

𝐸̅𝑐

𝑔 (𝛼, 𝛽,
𝑎

ℎ
) (26) 

Beuth [129] further demonstrated the cracking channelling in dissimilar bi-layer 

structures using numerical methods, and approximated 𝑔 (𝛼, 𝛽,
𝑎

ℎ
) result as follows. 
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𝑔 (𝛼, 𝛽,
𝑎

ℎ
) =

2𝐺𝑐ℎ𝐸̅𝑐

𝜋𝜎2ℎ

= −
2ℎ

𝑎
(1.1215)2[𝑏2−2𝑠 (

1 + 2𝜆 + 𝜆2

2 − 2𝑠

−
1 + 4𝜆 + 3𝜆2

3 − 2𝑠
𝑏 +

2𝜆 + 3𝜆2

4 − 2𝑠
𝑏2 −

𝜆2𝑏3

5 − 2𝑠
)]𝑏=1

𝑏=1−𝑎/ℎ
 

(27) 

Here, the parameters 𝜆 and 𝑠 are the same as those shown in equation (25). Beuth 

[129] treated 𝑓 (𝛼, 𝛽,
𝑎

ℎ
)

2

as a non-dimensionalised energy release rate 𝑔𝑝 (𝛼, 𝛽,
𝑎

ℎ
) for 

crack penetration, and plotted it and the non-dimensionalised energy release rate 

𝑔𝑐ℎ (𝛼, 𝛽,
𝑎

ℎ
) (equation (27))for crack channelling against the relative crack depth 𝑎/ℎ, 

see Figure 12.  

 
Figure 12. Non-dimensionalised energy release rates for both crack penetration and crack 
channelling as a function of relative crack depth. This example uses a compliant coating/stiff 

substrate combination with 𝜶 =  −𝟎. 𝟖, 𝜷 = 𝜶/𝟒 . This figure is adapted from [129]. 

Figure 12 demonstrates that the energy release rate for either the crack penetrating 

or channelling vary with the relative depth of the defect. The biggest energy release rates 

for both processes can be found before the crack penetrates fully through the thickness, 

and 𝑔𝑝 (𝛼, 𝛽,
𝑎

ℎ
) drastically drops after the peak to zero, which indicates that the crack 
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penetration will never reach the interface in theory. In addition, before the intercept of 

the plots 𝑔𝑝 (𝛼, 𝛽,
𝑎

ℎ
)  is greater than 𝑔𝑐ℎ (𝛼, 𝛽,

𝑎

ℎ
) , which indicates that the crack 

penetration is more prone to occur, in other words it requires less stress. 

2.4.3. Interfacial failure 

When a penetrating crack reaches the interface, the crack can either be deflected into 

the interface or carry on penetrating into the substrate, which are two processes in 

competition [135]. Numerous research works have focused on this problem. Mechanics 

solution of interfacial failure was investigated by Malyshev and Salganik [136]. Cook and 

Erdogan [137] as well as Erdogan and Biricikoglu [138] were the earliest to analyse a crack 

in a medium propagating through the interface into the other medium of the same 

material. Goree and Venezia [139] later investigated a crack penetrating through and 

deflected by an interface. Solutions regarding a crack penetrating and deflected by an 

interface joining two dissimilar materials were summarised by He and Hutchinson [140]. 

Failure of the interface is a mixed mode failure due to the asymmetry of the material 

properties. Whether a vertical crack is penetrating into the substrate or being deflected 

and propagating at the interface depends on the relative magnitudes of the tendencies 

of these two processes. The energy release rate for interfacial delamination 𝑮𝒅 can be 

expressed as follows [135]  

 
𝐺𝑑 =

1 − 𝛽2

2
(
1

𝐸̅𝑐

+
1

𝐸̅𝑠

)(𝐾𝐼 + 𝐾𝐼𝐼) (28) 

The criterion for delamination to take place, 𝐺𝑑  needs to satisfy the following 

requirement. 

 𝐺𝐼𝑐.𝑠

𝐺𝑐.𝑑
<

𝐺𝑑

𝐺𝑝
 (29) 

Here, 𝑮𝑰𝒄.𝒔  and 𝑮𝒄.𝒅  are the mode I fracture toughness of the substrate and the 

fracture toughness of the interface respectively. He and Hutchinson [140] numerically 
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demonstrated that the 
𝐺𝑑

𝐺𝑝
 ratio in compliant coating/stiff substrate combinations is much 

higher than that of stiff coating/compliant substrate combinations. This means that the 

interfacial delamination is more prone to take place when the coating is more compliant 

than the substrate, and this is the case for epoxy based WBT coatings. The effect of 

delamination on the crack channelling process was also studied, Mei et al. [141] analysed 

the energy release rate of channelling crack with delamination behind the crack tip, and 

found the energy release rate was increased. This means delamination promotes further 

channelling. 

2.4.4. Multiple cracking and crack interaction 

Multiple cracking of films under unidirectional loading is widely observed. Xia and 

Hutchinson [134], based on the energy approach applied to crack channelling, derived 

the energy release rate of a crack tip among the first array of parallel multiple cracks 

𝑮𝒇𝒊𝒓𝒔𝒕 simultaneously advancing towards the same direction in mode I. 

 
𝐺𝑓𝑖𝑟𝑠𝑡 =

𝑙𝑟𝜎
2

𝐸̅𝐶

tanh (
𝐻

2𝑙𝑟
) , 𝑙𝑟 ≡

𝜋

2
𝐺(𝛼, 𝛽)ℎ (30) 

Here, 𝑯 is the distance between two parallel cracks, 𝑙𝑟  is a reference length that 

reflects the elastic mismatch between the film and the substrate, which increases with 

increasing film stiffness and film thickness. For the second array of parallel multiple cracks 

initiated in the centres of un-cracked film segments, the energy release rate is as follows. 

 
𝐺𝑠𝑒𝑐𝑜𝑛𝑑 =

𝑙𝑟𝜎
2

𝐸̅𝐶

[2 tanh (
𝐻

2𝑙𝑟
) − tanh (

𝐻

𝑙𝑟
)] (31) 

Xia and Hutchinson [134] plotted the relationship between the normalised energy 

release rates for the occurrence of the multiple cracks. Figure 13 demonstrates that the 

reference length 𝑙𝑟  has a strong influence on the driving force of the multiple cracking. 

With constant 𝐻, bigger 𝑙𝑟  means that a lower driving force for the multiple cracking 

under a given stress. This figure also clearly shows that a higher stress is required for the 
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second array of multiple cracks. It is important to notice that in Xia and Hutchinson’s 

solution, it is assumed that the multiple cracks initiate and propagate simultaneously, 

which in reality is not true. Hsueh et al. [142,143] based on energy equilibrium in the 

cracking process of strained coating/substrate systems and a shear-lag model, developed 

an analytical model which describes the relationship between the applied strain and the 

crack density. It also predicts the initiation of the first crack. 

 

Figure 13. Normalised energy release rate of each crack in the first array and the subsequently 

initiated second array. This is adapted from [134].  

In Hsueh’s model, the relationship between the applied strain to the first crack 𝜺𝒄 and 

the fracture energy 𝜞 stored in a strained coating is as (32) below [142]. 𝛤 is essentially 

fracture toughness in the form of 𝐺𝐼𝐶. Here, 𝒉𝒔 is the thickness of the substrate, and ∆𝜺 

is the residual stress. In equations (32) and (33), 𝒍 is the half of the inter-crack distance, 

which equals 𝐻/2. 
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Γ =
𝐸𝑐

2𝛼(1 − 𝜐𝑐)(1 − 𝜐𝑐𝜐𝑠)2
× [

(1 − 𝜐𝑐𝜐𝑠)𝜀𝑐

1 + 𝜐𝑐
−

∆𝜀

1 +
ℎ(1 − 𝜐𝑐𝜐𝑠)𝐸𝑐

ℎ𝑠(1 − 𝜐𝑐)𝐸𝑠

]

2

×

[
 
 
 
 
 

3𝑃1

2
−

𝑃2∆𝜀

(1 − 𝜐𝑐𝜐𝑠)𝜀𝑐

1 + 𝜐𝑐
−

∆𝜀

1 +
ℎ(1 − 𝜐𝑐𝜐𝑠)𝐸𝑐

ℎ𝑠(1 − 𝜐𝑐
2)𝐸𝑠]

 
 
 
 
 

 

(32) 

𝛼 = [
3

2ℎℎ𝑠(1 + 𝜐𝑠)
(
ℎ

ℎ𝑠
+

(1 − 𝜐𝑐
2)𝐸𝑠

(1 − 𝜐𝑐𝜐𝑠)𝐸𝑐
)] 

𝑃1 = (1 + 𝜐𝑐)(1 − 2𝜐𝑐𝜐𝑠 + 𝜐𝑠
2) 

𝑃2 = −2𝜐𝑠(1 + 𝜐𝑐)(1 − 𝜐𝑐
2)𝑄

=
−3𝑃1

2
[

1

1 +
ℎ(1 − 𝜐𝑐𝜐𝑠)𝐸𝑐

ℎ𝑠(1 − 𝜐𝑐
2)𝐸𝑠

−
(1 − 𝜐𝑐𝜐𝑠)𝜀𝑐

(1 − 𝜐𝑐
2)∆𝜀

]

2

− 𝑃2 [
1

1 +
ℎ(1 − 𝜐𝑐𝜐𝑠)𝐸𝑐

ℎ𝑠(1 − 𝜐𝑐
2)𝐸𝑠

−
(1 − 𝜐𝑐𝜐𝑠)𝜀𝑐

(1 − 𝜐𝑐
2)∆𝜀

] 

 

The relationship between the applied strain 𝜀𝑎 and the inter-crack distance 2𝑙 is as 

below [142]. 

𝜀𝑎 =
−(1 + 𝜐𝑐)∆𝜀

1 − 𝜐𝑐𝜐𝑠
{

−1

1 +
ℎ(1 − 𝜐𝑐𝜐𝑠)𝐸𝑐

ℎ𝑠(1 − 𝜐𝑐)𝐸𝑠

+
−𝑃1𝑅1 + [(𝑃2𝑅2)

2 − 4𝑃1𝑅1𝑄]0.5

2𝑃1𝑅1
} 

(33) 

𝑅1 = 4 tanh (
𝛼𝑙

𝑙
) −

𝑒𝛼𝑙 − 𝑒−𝛼𝑙 + 2𝛼𝑙

𝑒𝛼𝑙 + 𝑒−𝛼𝑙 + 2
− 2 tanh(𝛼𝑙) +

1

2

𝑒2𝛼𝑙 − 𝑒−2𝛼𝑙 + 4𝛼𝑙

𝑒2𝛼𝑙 + 𝑒−2𝛼𝑙 + 2
 

𝑅2 = 2 tanh (
𝛼𝑙

2
) − tanh (𝛼) 
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𝑄 =
−3𝑃1

2
[

1

1 +
ℎ(1 − 𝜐𝑐𝜐𝑠)𝐸𝑐

ℎ𝑠(1 − 𝜐𝑐
2)𝐸𝑠

−
(1 − 𝜐𝑐𝜐𝑠)𝜀𝑐

(1 − 𝜐𝑐
2)∆𝜀

]

2

− 𝑃2 [
1

1 +
ℎ(1 − 𝜐𝑐𝜐𝑠)𝐸𝑐

ℎ𝑠(1 − 𝜐𝑐
2)𝐸𝑠

−
(1 − 𝜐𝑐𝜐𝑠)𝜀𝑐

(1 − 𝜐𝑐
2)∆𝜀

] 

2.5. Fatigue of Materials 

Materials also fail by fatigue, and comprehensive knowledge regarding the fatigue 

behaviour of materials has been well documented by several well-known textbooks by 

authors such as Suresh [144] and Schijve [145]. Essentially, fatigue is a process where 

cyclic loading causes progressive failure at stresses less than those to cause static failure. 

Stresses that cause fatigue failure are normally much smaller than the ultimate tensile 

strength of material or even the yielding strength. However, stress can be locally 

magnified by a stress concentration and eventually form micro-cracks. In a structural 

material, fatigue failure starts with the changes in sub-structural and microstructural 

features, and the changes lead to nucleation of permanent damage, which further 

develops into microscopic cracks. The growth and the coalescence of the microscopic 

cracks form dominant cracks, which undergo a stable propagation to a size whereby the 

propagation becomes unstable and eventually leads to complete rupture. 

The classic approach to fatigue of materials is based on total life of materials. In this 

approach, laboratory characterisation of the number of cycles or life to the failure in 

terms of a given cyclic stress/strain range of a sample is carried out [144]. The result 

normally includes the cycle number to the crack initiation and the cycles of crack 

propagation until the catastrophic failure of a test sample. Based on the proportion of 

the cycles to crack initiation within the total life, one can determine if the fatigue failure 

of the material is predominantly controlled by the crack initiation or the propagation. 

Figure 14 illustrates a maximum stress/strain to the cycle life (S-N) curves of a specimen 

under arbitrary stress/strain ranges. 
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Another common approach to the fatigue problem is a defect-tolerant approach. In 

this approach, a critical crack size is defined according to the in-service load of a structure. 

The fatigue life of the substructure is defined as the cycle number to propagate an initial 

crack to the critical crack size. This approach requires the characterisation of the crack 

growth rate, and empirical crack growth laws such as the Paris’ law [146] have been 

developed to allow the prediction of fatigue life, and its expression is as follows, 

 𝑑𝑎

𝑑𝑁
= 𝐶∆𝐾𝑚 , ∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛 (34) 

where, 𝑪 and 𝒎 are empirical constants and functions of material properties, test 

sample geometry and test configurations; 𝑲 is the change of stress intensity factor at 

the crack tip, and is the difference of the stress intensity factors at the maximum and the 

minimum loads. 

 
Figure 14. Arbitrary illustration of S-N curve of crack initiation and propagation to the final failure 

in a normal smooth specimen. Adapted from reference [144]. 

Paris’ law shows that the crack growth per cycle is a function of K, and recall that K 

is a function of far-field stress and crack length, and hence the crack growth rate is also a 

function of the quantities. Figure 15 shows the general shape of a 𝑙𝑜𝑔 (
𝑑𝑎

𝑑𝑁
) vs. 𝑙𝑜𝑔(𝐾) 

curve. The Paris’ law only describes the regime B in Figure 15, where the logarithmic crack 

growth rate increases linearly with the increase of the logarithmic change of stress 
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intensity factor. In the regime A, when the 𝐾 is greater than a critical value, the crack 

growth rate endures a steep increase, and in the regime C the crack growth rate is further 

accelerated and eventually reaches the fracture toughness of the material and causes the 

complete failure. 

 
Figure 15. Schematics of a bi-logarithmic relationship between crack growth rate and change 

of stress intensity factor. Adapted from reference [144].  

2.6. Experimental Observations of Coating Fracture 

Coating fracture has been widely observed experimentally [14,16,147–155]. Although 

the aforementioned theories clearly demonstrate that the fracture of coatings includes 

the vertical crack penetration and the lateral crack channelling, still experimentally 

observed failure normally is the lateral crack channelling and the multiple cracking 

phenomenon. This is understandable as the coatings are usually very thin, from several 

tens of nanometres to several hundreds of microns, the vertical crack penetration is very 

difficult to observe. Nairn and Kim [147] observed the cracking of uni-directionally 

strained poly(methyl methacrylate) (PMMA) coatings on polycarbonate (PC) substrate 

using optical microscopy. They found that the applied strain to first crack decreases with 

the increase of the coating thickness, which can be explained as the increased coating 

thickness causes an increase in the energy release rate for the crack to channel, see 

equation (26). They also found that at higher applied strains the density of multiple cracks 

also decreases with the increase of the coating thickness. This can be explained by a 

shear-lag model where the stress in a coating segment confined by two adjacent cracks 
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is smaller in a thick coating than in a thinner coating. Similar observations have been 

reported by Yanaka et al [149] and Hu and Evans [132].  

To date, most of the coating cracking is observed visually using either camera or 

microscope. A few papers reported coating crack detection using Digital Image 

Correlation (DIC) [14,153] or/and acoustic emission technique [16,155]. Wu et al. [153] 

used DIC to record the in-situ strain evolution over the surface of a ceramic coating on a 

steel substrate subjected to tensile straining. They found that when cracking occurred, 

the local strain at the crack increased drastically compared with the global strain. Further, 

they monitored the side view of the coating under tension, and observed the cracks 

initiated from the coating surface. Similar observation has been reported by Zhou et al. 

[14] who also observed the interfacial debonding of a ceramic coating from its steel 

substrate using DIC. Xu and Mellor [154,155] studied the fracture of an epoxy coating on 

steel substrate subjected to four point bending using acoustic emission. They claimed 

that they established the failure modes from different acoustic emission characteristics. 

However, no evidence has been shown that their technique is capable of accurately 

measuring the applied strain to the first crack. 

Some research [3,62,156] regarding the internal stress of organic WBT coatings has 

been found. Lee and Kim [3] performed probably the most systematic study. They 

characterised the Young’s moduli and the CTEs of two commercial WBT coatings, and 

evaluated the internal stress in these coatings on welded joints due to curing and 

temperature change using a finite element method (FEM). They found that the internal 

stress in the coatings on these structures are much higher that measured on flat strips. 

They evaluated the internal stress induced by curing shrinkage independently, and the 

result indicated that the failure of the coatings was not caused by internal stress prior to 

service. The following evaluation of thermally induced internal stress yielded stresses 3 

fold greater than the curing-induced stress in the coatings of the same thickness, and an 

increasing thickness of the coatings was found to increase the thermally induced internal 
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stress as well. They concluded that if the coatings were applied too thick, the thermally 

induced internal stress would cause the coating failure.  

Fatigue failure of coatings has also been dealt with, however mainly in the field of 

metallic thin films on polymeric substrates [11–13,157–159]. Similar to the research in 

the static failure of coatings, the fatigue failure of coatings are observed indirectly 

through other physical responses of the coatings. Eve et al. [11] investigated gold and 

aluminium thin films supported by PMMA and PC substrates under cyclic mechanical and 

thermal stresses. They adopted an optical method to monitor the fatigue failure, in which 

the dispersion of laser light shining on the coating surface was monitored, and the 

reduction in the reflected laser intensity indicated the appearance of coating cracks. Kim 

et al. [157], Kraft et al. [158] and Zhang et al. [12] investigated the fatigue behaviours of 

several metallic coatings on polymeric substrates by monitoring the change of the 

compliance of the coating/substrate systems. When the coating starts to develop fatigue 

crack(s), the load-bearing capability of the coating will reduce. As a macroscopic result, 

the compliance of the coating/substrate system will start to drop and finally becomes the 

compliance of uncoated substrates. The onset of the compliance reduction was used to 

define the point of fatigue failure.  

In addition, the fatigue failure of metallic coatings was also investigated using the 

electrical responses of the coatings. Sim et al. [13,159,160] put silver and copper coatings 

supported by polymeric substrates under cyclic mechanical stresses, and in-situ 

measured the electrical resistance of the coatings. Upon fatigue cracking, the electrical 

resistance of the coating will increase, and the onset of the resistance increase was 

defined as the failure point. They also measured the following increase of the electrical 

resistance after the failure point, and qualitatively correlated it with the number of 

fatigue cracks as a function of cycle number. All these studies found that the strain-life 

relationship of the metallic coatings satisfied a Coffin-Manson type of relationship, in 

which the life of the coatings increase with the reduction of strain amplitude following 

power-law relationships. Importantly, it has also been observed that thicker coatings tend 
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to have less fatigue resistance [12,13,158]. This is in agreement with the fracture 

mechanics, in which the increase of coating thickness raises the energy release rate of 

cracking. 

The fatigue behaviour of WBT coatings is rarely investigated, the only work found by 

the author was performed by Zhang et al. [156] and Kim and Lee [3]. They simulated the 

temperature cycle in WBTs on 5 types of epoxy based coatings on T-girders that simulate 

the geometry of a welded fillet joint, which is a structure with two steel plate 

perpendicularly joint by welding. The WBT coatings with different thickness from 300 m 

to 1200 m were sprayed onto the corner of the joints. They found that the coating 

thickness played a very crucial role in determining the life of the coatings. The thicker the 

coatings were, the shorter the life to cracking. For the coatings with thickness about 300 

m, no cracking was observed in all types of coatings after 128 cycles, which is roughly 

about 5 years of service time, and for the coating with a thickness about 1200 m, coating 

fatigue failure was observed in 4 types of the coating at different cycle numbers from 6 

to 128. 

2.7.  Summary 

In the current research into the durability study of WBT coatings, factors such as 

internal stress, physical ageing, and thermal fatigue are widely appreciated. However, the 

investigations seem only to use the strength of the coating materials as a criterion of the 

coating failure. The application of fracture mechanics and the adoption of fracture 

toughness are not rooted in the basic methodology of this research yet. Relevant 

research performed by Zhang et al. [156] and Kim and Lee [3] are typical examples of this. 

For the investigation of the effects of coating thickness on the internal stress, Kim and 

Lee [3] deliberately kept the radius of the curvature of the coating surface constant. 

However, this is not the case, the radius of curvature of a coating surface on the welded 

joint varies due to applications and uncured coating rheology, the variation of the 

curvature could introduce more dramatic scenarios. To date, no research addressing this 
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matter has yet been found. In addition, Lee and Kim used the strength of the coatings 

obtained from the tensile tests of free films as the failure criterion of the coatings on 

substrate. It is not be a rigorous treatment, as it has already been found that epoxy 

coatings on substrate will have a different ductility from the free films [161]. There is a 

need to develop their FE model further with fracture mechanics incorporated. 

The fatigue study of the WBT coatings as well can only provide limited information. In 

the research of Zhang et al. [156] and Kim and Lee [3], they merely found that the WBT 

coatings with bigger thicknesses tended to be less fatigue resistant, but no more insights 

regarding the effect of the material properties were proposed. To have more accurate 

prediction of the fatigue failure of WBT coatings, the correlation between the fatigue 

behaviours and the material properties ought to be established. In addition, quantitative 

research regarding the fatigue of polymeric coatings on stiff substrates has not been 

found yet. Even in the published fatigue research of stiff metallic coatings, the crack 

growth was only indirectly measured by other physical responses of the coatings. A 

quantitative coating fatigue crack growth needs investigating. 
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3. CHARACTERISATION OF MATERIAL PROPERTIES 

This chapter will present the characterisation of the material properties of two grades 

of experimental WBT coatings and one type of steel substrate. The substrates were 

designed and manufactured at Cranfield University, and all coatings were prepared at 

International Paint. The experimental work to characterise coating fracture on substrate 

under static and cyclic strains will be described in the next chapter. 

3.1.  Materials and Sample Preparation 

3.1.1. Coating materials and samples manufacture 

For this project, two grades of epoxy-based experimental water ballast tank coating 

were provided by International Paint, and will be referred to as coating A and coating B 

in this thesis. Both coatings were heavily filled with various types of inorganic particulate 

pigments/fillers. The pigment volume contents in the dry state of coatings A and B were 

25% and 29% respectively. Before curing, the coatings contained a high solvent content 

and therefore were in the form of a viscous liquid, and once applied they solidified by 

solvent evaporation and chemical curing. The fully cured coatings A and B possessed 

similar Young’s moduli of about 5 GPa.  

Free film sample for tensile tests 

Free film samples of both coatings with a dog bone shape and a nominal thickness of 

300 m were made for the characterisation of the stress-strain behaviour of the coatings, 

see Figure 16, which shows the dimensions. To manufacture the free films, sheets of the 

coating materials were initially prepared by spraying the uncured coatings on 

polytetrafluoroethylene (PTFE) coated glass plates. After two days of curing at ambient 

temperature, the sheets were partly cured into a form of rubbery solid with low stiffness, 

and then peeled off from the PTFE surface and cut into the dog bone shape by a punch 

mould. After cutting, the free films samples were further cured at ambient temperature 

for another 5 days followed by a post-cure step at 100 °C for another 2 days. The coating 
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spraying was performed at International Paint, the coating thickness was controlled using 

different spraying times, and final coating thicknesses were determined by measuring 15 

samples of each coating in a fully cured state using a micrometre. The average thickness 

coating of coating A free films were 0.29 ± 0.04 mm, and that of coating B free films were 

0.29 ± 0.02 mm. The errors shown here and all errors of mean values to be shown are 

the standard deviations. 

 

Figure 16. Dimensions of free film samples 

Double edge notched free films for fracture toughness measurement 

For the measurement of mode I fracture toughness, double notched free film samples 

have been used previously [162]. A pair of notches with nominally equal lengths (𝑎) from 

1 to 4 mm were introduced on the edges of each sample on a 100 °C hot plate using a 

razor blade, see Figure 17. The lengths of the notches were measured under an optical 

microscope with a calibrated stage, and the crack tips were found sharp under optical 

microscope. A light intensity image showing a typical edge notch tip produced using a 

confocal optical microscope is shown in Figure 18 using a coating B sample as example. 

Defining the crack tip sharpness as the radius of the crack tip, the sharpness of the edge 

notch tips was below 500 nm.  Difference between the lengths of the two notches on 

each sample was found to vary from 0.01 to 0.35 mm, and the average of the notch 
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lengths of each sample were used for fracture toughness calculation. The detailed sample 

dimensions and corresponding notch depths are shown in Appendix i. 

 
Figure 17. Photo of free films of coating A and coating B. the red 
markings illustrates the locations of pre-cracks in double notched 
free film samples. 

 

Figure 18. Typical light intensity map of an edge crack tip produced using a con-focal 
microscope of a coating B sample. 

Cylindrical tablets for thermal property measurement 

For the measurement of the thermal expansion coefficients (CTEs) and glass transition 

temperature ( 𝑇𝑔 ) of the coating materials, cylindrical tablets made of the coating 

materials were prepared, see Figure 19. The tablets were made by casting the uncured 

coatings into a silicon mould. Due to the high solvent content, the casting was done layer 

by layer, and between each casting the solvent was allowed to evaporate at room 

temperature for 1 day. After casting, the samples were cured at room temperature for 7 

days and then at 100 °C for 2 days. For each tablet 5 layers were cast, which gave a final 
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thickness of about 5 mm. Due to the uneven top surface, the samples were cut short to 

provide a flat surface. The samples eventually used for CTE measurement had a diameter 

of 6.27 ± 0.03 mm and a height of 2.79 ± 0.44 mm. 

 
Figure 19. Photo of the coating material tablets for thermal mechanical 
analyses. 

3.1.2. Substrate material and sample manufacture 

The substrate material was a steel to standard EN 10025-2:2004 and was of S355K2+N 

grade. Based on Lloyd’s rules for the classification of offshore units (includes double 

hulled oil tankers) [163], this steel satisfies as structural material for marine structures. 

The substrate steel was purchased in the form of a 6 mm thick sheet. The ladle analysis 

results are shown in Table 1 below. Also given by the manufacture, the minimum values 

of yield stress, ultimate tensile strength, and failure strain of this type of steel were 355 

MPa, 470 MPa, and 20% respectively. 

 

Table 1. Ladle analysis results of S355K2+N steel to standard EN 10025. 

Elemental Analysis (wt.%) 
C Si Mn P S N Al 
0.17 0.33 1.12 0.007 0.003 0.004 0.033 
Cr Ni Mo V Ti Nb Cu 
0.04 0.22 0.01 0.001 0.001 0.03 0.21 
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Substrate dog-bone samples for tensile tests 

For the characterisation of substrate stress-strain behaviour, substrates tensile 

samples were made. The samples were machined from the steel sheet into dog-bone 

shape tensile bars based on ASTM E8/E8M [164] standard and the dimensions are shown 

in Figure 20. 

 
Figure 20. Dimensions of the substrate samples for static tensile tests. 

3.2. Test Procedures 

3.2.1. Tensile tests of coating free films 

The static mechanical properties of the coating free films were characterised by static 

tensile tests using an INSTRON 5500R screw-driven machine with a 250 N load cell. All 

tests were performed at a crosshead speed of 5 mm/min. The tests were run at 

temperatures of -10, 23, 50 and 70 °C achieved by an environmental chamber with a 

temperature controlling error of ± 1 °C attached to the test machine. The extension was 

measured by an INSTRON video extensometer with a measuring resolution of 0.001 mm, 

and the gauge length monitored was 25 mm. Prior to test, all the samples were heat 

treated in an oven at 100 °C for 30 minutes, and cooled down to ambient temperature at 

ambient temperature. 
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The Young’s modulus of the free film (𝐸𝐶 ) was determined using the stress-strain 

curves. Based on ISO 527-1 [165], the slope of a least-square regression line fit of the data 

between strains of 0.05% and 0.2% was used as modulus, which is the same as a secant 

modulus as the stress-strain curve within this range was linear. 

3.2.2. The measurement of fracture toughness of free films 

For the fracture toughness measurement, the double notched free film samples were 

tested at ambient temperature using the INSTRON 5500 screw-driven test machine with 

a load cell of 100 N capacity. All tests were performed at a crosshead speed of 5 mm/min 

to failure. The load and cross-head displacement to fracture of each sample was 

recorded. Considering that the loads to fracture were small, and thus unlikely to cause 

large displacement in the grips, the cross-head displacement should serve well as the 

displacement of the samples between the two gripping points. 

The determination of fracture toughness followed ASTM D5045 [166]. The load-

displacement relationship was used to determine load that initiated crack growth (𝐹𝑄). 

Using 𝐹𝑄, the failure stress (𝜎𝑓) was calculated by incorporating the cross-section area of 

the samples. The critical stress intensity factor (𝐾𝑄 ) at fracture for the double edge 

notched samples was determined using equations (35) and (36) [167] . Here, 2𝑊 and 𝑎 

are the width of the sample and the average of 2 notch lengths. 

 𝐾𝑄 = 𝜎𝑓√𝜋𝑎𝑓 (
𝑎

𝑊
) (35) 
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(36) 

3.2.3. Measurement of free film Poisson’s ratio 

The Poisson’s ratio (𝝂) of the free films at ambient temperature was measured using 

tensile testing of 5 free film samples of each coating using an INSTRON 5500 screw-driven 
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machine with a 5 kN load cell. The coating deformation during testing was recorded by a 

Dantec DIC system at an acquisition rate of 5 frames per second. Figure 21 shows the DIC 

configuration for this measurement. The two cameras had an angle of about 30 between 

them, and their distance to the sample set to cover a length of about 73 mm within 1616 

pixels. The surface of the free film samples were sprayed with a thin layer (about 0.02 

mm) of white primer paint (see Figure 50 on page 91), on top of which black paint dots 

were speckled to form a random pattern. Given the much smaller thickness of the primer 

paint, the primer paint does not affect the properties of the coatings. The strain 

measurement in these tests had an error of ± 0.02%. A description of the DIC system can 

be found in Appendix vii. Note that the maximum load recorded was about 100 N, which 

was about 2% of the capacity of the load cell, thus the recorded load was not used to 

produce the stress response of the coatings. 

According to IS0 527-1 [165] the Poisson’s ratio 𝜐  can be determined using the 

equation below. 

 𝜐 = −
Δ𝜀𝑡

Δ𝜀𝑙
 (37) 

Here, Δ𝜀𝑡 and Δ𝜀𝑙 are the change of strain in transverse and longitudinal direction in 

a longitudinal strain increment. 

 
Figure 21. Configuration of DIC system for the measurement of free film 
Poisson’s ratio. 
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3.2.4. Measurement of coating thermal properties 

The glass transition temperatures (𝑇𝑔) and coefficient of thermal expansion (CTE) of 

the coating materials were measured using thermal mechanical analysis (TMA) based on 

ISO 11359-2 standard [168]. 

The coating tablet samples, 5 samples of each coating, were tested using a TA TMA 

2940 thermo-mechanical analyser. The samples were firstly conditioned at 150 °C for 5 

min and then tested in temperature cycle from 150 °C to -50 °C and back to 150 °C at a 

rate of 5 °C/min. The development of sample height with temperature changes was 

recorded, and used to determine the 𝑇𝑔 and CTE based on procedures described in ISO 

11359-2. 

3.2.5. Free film fracture surface observation 

Free film samples, 3 of each type of coatings were bent to fracture by hand at room 

temperature. For coating A they are referred to as A1, A2 and A3 for coating, and for 

coating B they are referred to as B1, B2, and B3. Under bending the largest tensile stress 

will be on the coating surface, and crack will initiate from that surface. The fracture 

surface of the hand-broken free films were then sputtered with thin Au/Pd coating and 

observed under a Philips XL 30 SFEG Scanning Electron Microscopy under a 10 kV 

accelerating voltage. In addition to the bent free films, the fracture surface of fracture 

toughness measurement samples were also observed. 

3.2.6. Tensile tests of substrates 

The tensile tests of the substrate samples were performed at ambient temperature 

using an INSTRON 5500R screw-driven machine with a 100 kN load cell. Five samples were 

tested under a cross-head speed of 0.5 mm/min. The strain was recorded using an 

INSTRON clip-on extensometer with a gauge length of 25 mm. One sample was initially 

tested to fracture, and then 4 samples were tested to a strain of 3%, which is well below 
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the ductility of the substrate provided in the manufacturer’s data sheet. The surface of 

the substrate sample within the gauge length during test was also recorded by the Dantec 

DIC system with an image acquisition rate of 1 frame per second. The load and 

extensometer strain at each image acquisition were also recorded by the DIC system via 

2 analogue channels from the tensile test machine. The strain distribution of the 

substrate surface was then calculated by ISTRA 4D software. The digital images had 1195 

pixels in the vertical direction, and the distances between the cameras and samples were 

adjusted to contain roughly the central part of the sample with a length of about 36 mm. 

An example of a pair of digital images of a sample surface is also shown in Figure 22. The 

strain measurement using DIC had an error of ± 0.02%, and the measurement of 

displacement using had an error of ± 0.04 mm.  

The Young’s modulus of each sample was determined based on ASTM E111-04 

standard [169], the slope of the linear regression of the stress-strain curve between 0% 

and 0.15% strain was defined as the modulus.  

 

Figure 22. DIC system configuration for the observation of coating fracture on substrate. 
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3.3. Results 

3.3.1. Coating material properties 

Tensile properties of free films under tensile stress 

The failure of coating free films under static tensile load was unstable, as soon as the 

ultimate strength or the ultimate strain to failure was reached the sample 

instantaneously failed completely. Figure 23 shows the typical stress-strain behaviour of 

coatings A and B in the form of free films at 4 different testing temperatures from -10 to 

70 °C. For each temperature, 5 samples were tested. Full sets of free films mechanical 

properties at these temperatures can be found in Appendix ii. 

The stress-strain curves at all temperatures exhibit non-linearity, and the closest to 

linear stress-strain behaviour occurred in the tests at -10 °C. As the testing temperature 

increases, the curves tend to be more non-linear. The temperature dependence of 

coating modulus 𝐸𝐶  is shown in Figure 24A, each data point is an averaged value of 5 

samples, and the error bar represents the standard deviation. The moduli of coatings A 

and B were almost equal at temperature below 23 °C, and increased with the reduction 

of the testing temperature from about 5 GPa at 23 °C to about 6.2 GPa at -10 °C. The 

moduli of the coatings reduced with the increasing testing temperature, and the modulus 

reduction of coating B was greater than that of coating A. The modulus of coating A at 70 

°C was about 3 GPa, while the modulus of coating B at the same temperature was about 

1.7 GPa. The moduli of the free films at 23 °C calculated using the average of 5 samples 

of each coating are shown in Table 2. In Figure 24, the temperature dependence of the 

stress to failure and strain to failure of the free films are also shown in B and C. Similar to 

the modulus, the stress to failure also increased with the decreasing temperature, while 

the strain to failure increased with the increase of the temperature. At 23 C, the stress 

to failure of the free films of coatings A and B was 30 and 17 MPa respectively, while the 

strain to failure of coatings A and B free films was 0.67% and 0.34% respectively.   
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The value of each data point is also an average of the values obtained from 5 samples. 

The figures show that both stress and strain to failure of coating A at almost all testing 

temperatures are greater than coating B. In general, the stress to failure reduced with 

increasing temperature, while the strain to failure increased. The stress and strain to 

failure of 5 free films of each coatings at 23 °C have been averaged and shown in Table 2. 

 

 

 

 

 

 

Table 2. Mechanical properties of coatings at 23 °C 

 E (GPa) 𝜎𝑓 (MPa) 𝜀𝑓 (%) 

Coating A 5.2 ± 0.4 29.7 ± 3.0 0.67 ± 0.06 

Coating B 5.2 ± 0.4 17.2 ± 2.2 0.34 ± 0.06 
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Figure 23. Stress-strain behaviour of the coatings in the form of free films at 4 different testing 
temperatures. In (A), sample number of each curve at each temperature in the order of increasing 
temperature: No.3, No.5, No. 3, and No.1; In (B), sample number of each curve at each temperature 
in the order of increasing temperature: No.3, No.2, No.5, and No.2. 
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Figure 24. Temperature dependence of (A) Young’s modulus, (B) stress to failure, and (C) strain to 
failure of free films of the coatings. 
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Fracture toughness of free films at ambient temperature 

For each coating, 10 samples with different notch lengths from 1 to 4 mm were 

tested. Full sets of data including both sample dimensions and fracture loads can be 

found in Appendix i. The load-displacement relationship of one coating A sample (TA – 1) 

and one coating B sample (TB – 1), both with two 1 mm long edge notches, is shown in 

Figure 25 by the solid black lines. The load-displacement relationship of both samples is 

linear, and the right ends of the plots represent the fracture point. The dashed lines 

plotted in the figure are the 95% stiffness lines, which was produced based on ASTM 

D5045 [166] and they do not intersect with the load-displacement plots over the entire 

displacement ranges. This indicates that during the test neither slow crack growth nor 

large scale yielding took place before fracture. The loads at fracture were used as load to 

initiate crack growth (𝐹𝑄), which were converted into fracture stresses (𝜎𝑓) to calculate a 

critical stress intensity factors to fracture. 

 
Figure 25. Load-displacement curves of fracture toughness samples with notch depth 
of about 1 mm for coatings A (TA – 1) and B (TB – 1). The 95% stiffness plots for each 
sample are also shown. 
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Table 3. Critical stress intensity factor of the coating free films at ambient temperature ( 23 °C). 

 𝐾𝑄  (𝑀𝑃𝑎√𝑚) 

Coating A 1.09 ± 0.07 

Coating B 0.64 ± 0.05 

According to ASTM D5045 [166] standard test methods of fracture toughness of 

polymers, for the provisional critical stress intensity factor (𝐾𝑄) to be a linear elastic plane 

strain fracture toughness (𝐾𝐼𝐶), the dimensions of the specimen, including thickness (ℎ), 

notch length (𝑎), and ligament length (𝑊 − 2𝑎), need to be sufficiently larger than the 

size of plastic zone, characterized by a length 𝑟, around the crack tip. The yielding stress 

𝜎𝑌 is fracture stress of the un-notched free films [166]. 

 
𝑟̅ =

𝐾𝑄
2

𝜎𝑌
2  (38) 

 ℎ, 𝑎, and (𝑊 − 2𝑎) > 2.5 × 𝑟̅ (39) 

 

The 2.5𝑟̅ value for both coatings A and B was found to be about 3.4 mm. As the 

thickness of the samples was only about 0.3 mm, the test samples were closer to be in 

plane stress. As the nominal width (𝑊) of the samples was 12 mm, for sample with 𝑎 = 4 

mm, the notch length satisfied the criterion, but the ligament length failed to satisfy; 

while for samples with 𝑎 ≤ 3 mm, the ligament length satisfies the criterion, but the 

notch length failed satisfy the criterion. Judging from the linear load-displacement lines 

of the notched samples shown in Figure 25 (page 54), there is very little plasticity. The 𝐾𝑄  

can then be considered as a critical stress intensity factor in mode I close to plane stress. 

For both coatings, a critical strain energy release rate/fracture toughness 𝐺𝐶  was 

deduced from 𝐾𝑄  using equation (14) (page 17). For coatings A and B, the 𝐺𝐶 was 228 ± 

34 𝐽/𝑚2 and 79 ± 14 𝐽/𝑚2 respectively. The errors are standard deviations, which were 

produced with the consideration of the standard deviations of both 𝐾𝑄  and modulus 

using the error propagation laws that can be found in a textbook [170]. 
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Poisson’s ratio of free films at ambient temperature 

The transverse and longitudinal strain distributions of free film samples can be directly 

obtained from DIC post-processing. For example, Figure 26 shows the distribution of 

strain in longitudinal (Y) and transverse direction (X) of a coating B free film under a load 

of 105 N in the longitudinal direction. Within the gauge area the sample has an overall 

strain of about 0.48% in Y direction, with some of the area of slightly higher strains to 

about 0.6% maximum; while the overall strain in X direction was about -0.13%. An 

representative examples of the development of strain in Y and X directions as a function 

of time of 1 coating B free film sample out of 5 samples in total is shown in Figure 27, 

which shows that after loading started at about 2 s, the strain in Y direction increases 

linearly with time, while the strain in X direction decreases linearly.  

The Poisson’s ratio was determined using equation (37). A representative example of 

the development of Poisson’s ratios as a function of strain in Y direction of a coating A 

and a coating B free film sample out of 5 samples of each coating are shown in Figure 28. 

It can be seen that the Poisson’s ratios of the free films decreases slightly with an 

increasing strain. The Poisson’s ratio of the free film of each coating was estimated using 

the average of 5 samples, and it is shown in Table 4.  

 

Table 4. Thermal and thermomechanical properties and Poisson’s ratio of coatings and substrate 

 𝑣 (at 23 C) 𝑇𝑔 (°C) 
CTE (× 10-6) 

<𝑇𝑔 >𝑇𝑔 

Coating A 0.30 ± 0.01 65 ± 3 5.7 ± 0.4 12.4 ± 0.1 

Coating B 0.31 ± 0.02 69 ± 2 6.0 ± 0.4 15.0 ± 0.4 

Substrate 0.3 [171] - 1.2 [171] 
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Figure 26. DIC mapping of strain in Y (A) and X (B) direction a coating B free 
film under a load of 105 N. 

 
Figure 27. Strain in Y and X direction of a coating B free film as a function of time 
produced using DIC. 
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Figure 28. Development of Poisson’s ratio of free films as a function strain in Y 
direction. 

Glass transition temperature and thermal expansion coefficient 

The thermal properties of the coatings, mainly the glass transition temperature 𝑇𝑔 

and thermal expansion coefficient CTE were characterised using TMA, which measured 

the change of sample height ∆𝐻′ as a function of temperature. A typical example of ∆𝐻 

– temperature plots of the coatings tested within -50 to 150 °C can be found in Figure 29. 

For both coatings, the height increases as the temperature increases. Both plots 

exhibit a transition of the height change, before and after which the height change is 

linear to the temperature change, and after the transition the slopes of the plots are 

greater than before the transition. The transition of the plots was due to the glass 

transition of the materials. As described in ISO 11359-2, the glass transition temperature 

is measured using the intersect of the linear fits of the plot before and after the transition, 

and the slopes of the linear fits can be used to calculate the linear thermal expansion 

coefficient before and after the glass transition using the equation below, in which 𝐻′0 is 

the original height of the sample at 23 C. 
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𝐶𝑇𝐸 =

𝑆𝑙𝑜𝑝𝑒

𝐻′0
 (40) 

 

 
Figure 29. Change of the height ∆𝑯 of the TMA samples of the coatings as a 
function of temperature. 

The 𝑇𝑔 and CTE were measured from 5 samples for each coating, and the averaged 

results are shown in Table 4. The CTE of the steels substrated was cited from [171]. Note, 

the CTEs of the coatings were greater than that of the steel substrate, which means if the 

coatings were attached the steel substrate, a thermal residual stress will be developed. 

Observation of fracture surfaces of free films 

Figure 30 shows the fracture surface of a coating A and a coating B free film sample 

broken by tension. In Figure 30A, lamellar features (indicated by yellow arrows) aligning 

perpendicular to the plane can be found to be sandwiched by a different phase. These 

lamellar features had smooth surface, and the gaps between these features and the 

surrounding phase can be easily seen. In Figure 30B, angular features (indicated by yellow 

arrows) with sharp edges dispersed in an apparently amorphous phase can be found.  
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Figure 30. SEM images of fracture surface of coating A and B. (A) coating A sample 
No.1 tested at 23 °C; (B) coating B sample No.1 tested at 23 °C. 

These angular features were also found to have a rather clean surface. The clean 

surface of the features in both coatings indicate that the bonding between them and the 

surrounding phases was not optimal as it allowed fracture paths to propagate along the 
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interface. It is known that these coatings contain large amount of particulate fillers, and 

these features should be the fillers. 

Figure 31 A and B shows the fracture surfaces of two coating A free film samples 

broken by bending. Surface breaking thumb-nail shape features located on the tensile 

sides of the samples (see dashed yellow curves) can been seen in both of these figures. 

The height of the planes of these thumb-nail features appeared to be lower than the 

surrounding fracture surface plane. The thumb-nail feature in Figure 31A comprised of 

smaller lamellar features (see yellow arrows) in a common plane, and collectively they 

defined the origin of the thumb-nail feature. Similarly, the thumb-nail feature in Figure 

31B contained one large lamellar feature (see yellow arrow) with clean surface, which 

aligned roughly in the plane of the fracture surface. 

Figure 32 A and B shows the fracture surfaces of two coating B free film samples 

broken by bending. Similar to coating A, surface breaking thumb-nail shaped features 

(see yellow dashed lines) comprised of smaller features with clean surface (see yellow 

arrows) were also found in these samples. Within these features, smaller features (> 50 

m) were found to align almost perpendicular to the surface and either merge or be close 

to the surface, see arrowed features in Figure 31 and Figure 32. Such particles in coating 

A have their plane almost in parallel to the fracture surface. These features were widely 

observed in all manually bent samples. In coating B samples, voids with smooth surface 

area were also found (see blue arrows in Figure 32). In comparison to the angular-shaped 

particles, the effect of the voids on crack initiation will be benign, thus should not be crack 

initiating source with the presence of the angular particles. 

A closer view of these small features (indicated by small arrows) can be found in Figure 

33. Figure 33A shows two of such features each with a size of about 50 m closely 

positioned, and the top one merges with the coating surface. Figure 33B shows a feature 

which seems to be the imprint of a large angular particle with a depth of about 60 m 

from the surface. In a situation where the interface between the particle and resin fails 

by a small energy, the de-bonded interface may act as crack initiation sites. The sizes of 
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such particles in each coating were measured. The average of 10 measurements in 

coating A and B was 60 ± 8 m and 70 ± 17 µm respectively. 

 

Figure 31. Fracture surface of coating A free films broken by manually bending. 
The images show the areas beneath the surfaces under tension. (A) Manually 
bent sample A1; (B) Manually bent sample A2. 
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Figure 32. Fracture surface of coating B free films broken by manually bending. 
The images show the areas beneath the surfaces under tension. (A) Manually 
bent sample B1; (B) Manually bent sample B2. 
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Figure 33. SEM images of the fracture surface of free films of each coating 
broken by manual bending. The images show the areas beneath the surfaces 
under tension. (A) Manually bent sample A3; (B) Manually bent sample B3. 
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3.3.2. Stress-strain behaviour of substrate 

The stress-strain behaviour of the steel substrate sample tested to failure is shown in 

Figure 34. The substrate exhibited a sharp yielding at a stress of about 420 MPa, an 

ultimate tensile strength of about 560 MPa, and a strain to fracture of about 45%, which 

satisfied the minimum values supplied by the manufacturer. After yielding at about a 

strain of 0.2%, the deformation continued at a constant stress of about 400 MPa until a 

strain of 1.7%, after which the work hardening commenced. The modulus of the substrate 

was determined by the linear fit of the stress-strain curve from 0 to 1.5% strain. The 

averaged modulus based on 5 samples was 200 ± 12 GPa. 

 
Figure 34. Stress-strain curve of substrate material. 

The strain distribution in the samples between yielding and the start of work 

hardening was revealed using DIC. As an example of 5 samples tested, Figure 35 shows 

the typical surface strain distribution from extensometer strain of 0.7 to 1.7% of a 

substrate sample. In the figure, the extensometer strain of each frame is shown on the 

top. The white spots shown in the frames are the locations where the DIC system failed 
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to analyse due to large speckle dots, and considering the small number of such spots, the 

results are still good to represent the overall trend. 

 

Figure 35. The distribution of strain in loading direction of a substrate sample (sample 
No.1) at extensometer strains from 0.7 to 1.7%.   

As Figure 35 shows, at 0.7% extensometer strain the substrate developed high strain 

regions with greater local strains of about 1.2%. As the extensometer strain increases, 

the regions expanded, and gradually covered the most of the surface at an extensometer 
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strain of 1.7%. During this period, the local strains within the high strain regions were up 

to 0.3 to 0.5% greater than the extensometer strain of each frame. Some regions outside 

of the regions remained 0.7% or below, while the high strain regions achieved local strains 

in excess of 2% at extensometer strains from 1.4 to 1.7%. This high strain region is likely 

to be Lüder’s band 170, the DIC results revealed the expansion of the band with increasing 

strain. For a coating attached on the surface of this type of substrate, the coating will 

have strains imposed by the substrate deformation, thus it is expected that this uneven 

deformation process of substrate could affect the fracture behaviour of the coating. 

A group of 5 substrate samples were pre-strained to 3% strain, and the tests were 

repeated and the results are also shown here. To distinguish between the pre-strained 

substrates, the substrates without pre-straining are referred to as original substrates. 

Figure 36 shows the typical stress-strain curves of substrates in the pre-strained condition 

to a maximum strain of 3%. In the same figure the stress-strain curve of the original 

substrate is also shown for comparison. 

 
Figure 36. Stress-strain curves of substrate in the original and 3% pre-strained 
conditions up to 3% of strain. 
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The pre-strained substrate yielded at a greater stress of about 500 MPa, and work 

hardening commenced immediately afterwards. This means the post yielding 

deformation with reduced stress was completely eliminated by pre-straining. The strain 

distribution of the pre-strained substrates also differed from that of the original 

substrates. Figure 37 shows the typical surface strain distribution from extensometer 

strain of 0.7 to 1.7% of a pre-strained substrate sample. In the figure, the extensometer 

strain of each frame is shown on the top. 

 
Figure 37. The distribution of strain in loading direction of a pre-strained substrate sample 
at extensometer strains from 0.7 to 1.7%.   
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In contrast to the original substrates, the deformation behaviour of the pre-strained 

substrate was uniform across the entire gauge length, and the extensometer strains were 

close to the local strains indicated by DIC. This means that the uneven deformation of the 

original substrate was completely consumed by pre-straining. The difference in the strain 

distribution of substrates in the original and pre-strained states was found to have an 

effect on the fracture behaviour of coatings under static strains, of which the details will 

be presented in the next chapter. 
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4. TENSILE AND FATIGUE BEHAVIOUR OF SUBSTRATED COATINGS 

As mentioned previously in Chapter 1, the failure of WBT coatings in service is mainly 

caused by thermal stresses. Considering that thermal cycling test of WBT coatings 

normally takes weeks or even months to perform, and the results are usually qualitative, 

in this work mechanical strains were applied to substrated coatings by mechanically 

straining the substrates. The purpose of this was to simulate thermal stresses in service 

using mechanical stresses. The advantage of using mechanical strain is that the 

environment of the test is isothermal, where the coating properties would stay constant 

throughout the tests. However, mechanical tests of substrated coatings introduces large 

substrate deformation that exceeds the elastic limits of the substrate, which is not the 

same as the thermal stresses in service condition. This section details the test samples 

and procedures adopted, as well as the resultant substrated coating failure behaviour 

under static and cyclic strains. Whether or not mechanical strain is a good substitute for 

thermal strain that WBT coatings experience in service will be discussed later. 

It is important to mention here that thermal residual stress developed in both 

substrated coating samples for static tensile and fatigue tests due to the temperature 

reduction after curing. Thus, the initial stress prior to the test inside the coating samples 

was non-zero. The thermal residual stresses of the substrated coatings at ambient 

temperature ( 23 °C) were also measured. The details will also be described first in this 

chapter. After that the tensile and fatigue tests of substrated coatings as well as the 

results will be described in detail. 

4.1. Measurement of Thermal Residual Stress and Results 

4.1.1. Materials and sample manufacture 

Thermal stress as one of the internal stresses in coatings can be measured using bi-

layer strips consists of a coating layer and a substrate layer. Coating/steel bi-layer strip 

samples were prepared at International Paint for the measurement of thermal residual 

stresses of coatings A and B. Steel shims with a length of 267 mm and a width of 12.5 mm 



CHAPTER 4 – TENSILE AND FATIGUE BEHAVIOUR OF SUBSTRATED COATINGS 

71 

 

were used as the substrate of the bi-layer strips. Before coatings were sprayed onto the 

shims, the surface of the shims was roughened by sand paper. For each coating, 3 

samples were manufactured. The average coating thickness of coating A samples was 

0.24 ± 0.05 mm, and the average coating thickness of coating B samples was 0.29 ± 0.01 

mm. The average thickness of the shims of all 6 samples was 0.21 ± 0.003 mm. The errors 

are standard deviation. A photo of these samples can be seen in Figure 38. These samples 

were cured at ambient temperature for 7 days, followed by post-curing at 100 °C for 2 

days. After curing, thermal residual stress developed, and caused the deflection of the 

samples, which can be easily noticed in Figure 38. 

 

Figure 38. Bi-layer strips of Coatings A and B for thermal residual stress measurement. 

4.1.2. Test procedures 

To measure the thermal residual stresses, the coating/steel bi-layer strip samples of 

both coatings were reheated to 100 °C first in an oven for 1 hour. After that the samples 

were removed from the oven and placed on a flat desk to cool down at ambient 

temperature for 15 minutes. Due to the development of thermal residual stress, these 

samples deflected towards the coating side. The deflected samples were then placed on 

a HP commercial office scanner, and the longitudinal sides were scanned, see Figure 39. 

The deflection of the samples was determined optically with image processing software 
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ImageJ. An example of the scanned images can be found in Figure 40. A 1 pound GBP coin 

(22.5 mm in diameter) was scanned at the same time with the samples as reference. 

 

Figure 39. A deflected coating B bi-layer strip sample standing on the longitudinal side on a 
scanner. 

 

Figure 40. Scanned image of a deflected bi-layer strip with coating B at ambient temperature. 

The ends of the deflected sample served as a reference level, see the long dashed 

line. A parallel line was then used to meet the tangent point of the strip that had the 

longest distance from the long dashed line, see the short dashed line. The distance 

between these two parallel lines was used as the deflection of the sample. The thermal 
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residual stress of each test sample was calculated using equations (2) to (4) incorporating 

the measured deflection, coating modulus, and thicknesses of the coating and steel shim. 

4.1.3. Results 

The results including the measured deflection as well as the calculated thermal 

stresses are shown in Table 5. Both coatings developed tensile residual stresses, about 

11 MPa and 14 MPa for coatings A and B respectively. Note the thermal residual stress 

calculated using equations (2) to (4) represent the stress in the coatings as if the samples 

were forced to return to a non-deflected state. In other words, the thermal stresses 

shown in Table 5 represent the thermal stresses in the coatings in thick non-deflecting 

substrates such those used in the current work. 

Table 5. Deflections and thermal residual stresses and strains of coatings A and B at ambient 
temperature caused by a temperature reduction of about 77 °C. The modulus of both coatings at 
ambient temperature was 5.2 GPa. 

Coating 
type 

Sample 
number 

Thickness (mm) 
Deflection 

(mm) 

Coating thermal 
residual stress on 

non-deflected 
substrate (MPa) 

Coating 
thermal 
residual 

strain (%) 
Coating Substrate 

A 

1 0.187 0.205 13.60 11.43 0.15 

2 0.234 0.210 16.40 11.04 0.15 

3 0.285 0.210 18.01 10.31 0.14 

  Average 16.00 10.93 0.15 

  Standard Deviation 2.23 0.57 0.01 

Coating 
type 

Sample 
number 

Thickness (mm) 
Deflection 

(mm) 

Coating Thermal 
stress on non-

deflected 
substrate (MPa) 

Strain (%) 
Coating Substrate 

B 

1 0.272 0.214 27.52 15.55 0.21 

2 0.291 0.205 24.82 13.35 0.18 

3 0.295 0.212 26.00 13.85 0.19 

  Average 26.11 14.25 0.19 

  Standard Deviation 1.35 1.15 0.02 
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In Table 5, the coating thermal residual strain is defined as the strain generated by 

the part of coating volumetric shrinkage constrained by the substrate. This strain is also 

equivalent to the thermal strain mentioned throughout this work. It can be calculated by 

dividing the thermal stress by the biaxial modulus 𝐸/(1 − 𝜈), here, 𝐸  and 𝜈  are the 

Young’s modulus and Possion’s ratio of the coatings, which can be found in Table 2. This 

results indicates that before the substrated coating samples were even tested, they have 

already developed 0.15% and 0.19% equivalent mechanical strain in coatings A and B 

respectively. 

4.2. Mechanical test samples and procedures 

4.2.1. Sample manufacture 

Substrated coating tensile test samples 

For the substrated coating tensile test samples, coating materials were sprayed on 

steel substrates with the dimensions shown in Figure 20 in the last chapter. Considering 

the uneven deformation of the substrate in the original state, some substrates were pre-

strained to 3% strain in the longitudinal direction, of which the purpose was to fully 

consume the uneven deformation after yielding. Here the substrates which did not 

undergo pre-straining will be referred to as original substrates. 

Prior to spraying, the surface of the substrates was shot-blasted to Sa2.5 standard 

[172] in order to cleanse the surface and enhance adhesion. The coating materials were 

sprayed onto one side of substrate at International Paint. The thickness was controlled 

by the same way for the free film spraying mentioned earlier, see 3.1.1 in page 41. The 

nominal thickness of the substrated films was 300 m. The samples were initially cured 

at room temperature for 7 days and then post-cured at 100 °C for 2 days.  
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Substrated coating fatigue test samples 

For the substrated coating fatigue test samples, fatigue substrates were designed 

based on ASTM E606 [173] standard, and the dimensions are shown in Figure 41. The 

spraying of coatings was also performed at International Paint following the same 

procedures to prepare the substrated coating samples for static tensile tests. Some 

fatigue test substrates were also pre-strained to 3% strain, and they were coated only 

with coating B. The curing programme of all fatigue test samples was also the same as 

the substrated tensile samples.  

Including the substrated tensile test samples, the actual coating thickness after curing 

was measured at International Paint using a coating thickness gauge with an accuracy of 

± 2.5 m. Despite substrate geometry, the average thickness of 50 coating A samples was 

300 ± 30 m, and the average thickness of 50 coating B samples was 350 ± 30 m, the 

errors are the standard deviation for the set of measurements. Also including the 

substrated tensile samples, before testing, all samples were reheated at 100 °C for 30 

min in order to eliminate any property change due to physical ageing. All samples were 

then tested within 6 hours after reheating. 

 

Figure 41. The dimensions of coating fatigue test substrates 
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4.2.2. Test Procedures 

Tensile tests 

The substrated coating tensile test samples were tested using the same test setup as 

the tensile tests of substrates shown in section 3.2.6. The tests were run at a crosshead 

speed of 0.5 mm/min to a strain of 3% monitored by a clip-on extensometer with a gauge 

length of 25 mm on the side of the samples, see Figure 22 in page 49. The coating side of 

the samples were covered by a thin layer (<<0.3 mm) of white primer paint finely speckled 

with black paint on the top. During each test, the coating side was monitored by a Dantec 

Digital Image Correlation (DIC) system, which then identified coating cracking in post 

processing. The DIC system configuration was also the same as that described in section 

3.2.6. 

In total, 5 samples of each coating with pre-strained substrate and 3 samples of each 

coating with original substrate were tested. Among all the samples, 2 coating A samples, 

one with pre-strained substrate and the other with original substrate, and 2 coating B 

samples, one with pre-strained substrate and the other with original substrate, had the 

substrate sides recorded simultaneously by another identical DIC system. For these 

samples, the strain distributions of both coating and substrate sides were compared. In 

addition to all of these, another coating B sample on pre-strained substrate was tested 

and the test was terminated at 0.85% strain. The DIC analysed strain distribution of this 

sample was compared to the surface cracking feature. This was used to find out the strain 

distribution that is characteristic of a coating crack. 

The details of coating crack detection will be introduced in the result section. After 

tests, 2 samples of each coating were cross-section along the longitudinal direction using 

an automatic precision saw. The cross-sectioned samples were then potted in clear epoxy 

resin. The cross-section surfaces were polished then observed under an optical 

microscope. 
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Fatigue Tests 

The substrated coating fatigue test samples were tested using a servo-hydraulic 

machine with a load cell of ± 50 kN capacity. The machine was controlled by an INSTRON 

8500+ controller. The tests were run under strain control using a dynamic INSTRON clip-

on extensometer with a gauge length of 10 mm. The samples of both coatings were 

tested under both fully-reversed cycles (R = 𝜀𝑚𝑖𝑛/𝜀𝑚𝑎𝑥 = -1) and zero-tension cycles (R = 

0) with a series of selected strain ranges. A full testing matrix for coating A and coating B 

samples can be found in Tables 6 and 7 repectively. 

 

Table 6. Coating A fatigue test matrix 

Sample type 
and R ratio 

Sample label Strain range (%) 
Total number of 
sample tested 

Coating A 

𝑹 = -1 

FFA – 1 -0.45 ~ +0.45 

7 

FFA – 2 -0.45 ~ +0.45 

FFA – 3 -0.5 ~ +0.5 

FFA – 4 -0.5 ~ +0.5 

FFA – 5 -0.5 ~ +0.5 

FFA – 6 -0.55 ~ +0.55 

FFA – 7 -0.6 ~ +0.6 

Coating A 

𝑹 = 0 

FTA – 1 0 ~ 0.80 

8 

FTA – 2 0 ~ 0.85 

FTA – 3 0 ~ 0.90 

FTA – 4 0 ~ 1.00 

FTA – 5 0 ~ 1.00 

FTA – 6 0 ~ 1.05 

FTA – 7 0 ~ 1.05 

FTA – 8 0 ~ 1.10 
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Table 7. Coating B fatigue test matrix 

Sample type 
and R ratio 

Sample label 
Strain range (%) 

Number of sample 
tested 

Coating B 

𝑹 = -1 

FFB – 1 -0.16 ~ 0.16 

12 

FFB – 2 -0.2 ~ 0.2 

FFB – 3 -0.22 ~ 0.22 

FFB – 4 -0.23 ~ 0.23 

FFB – 5 -0.24 ~ 0.24 

FFB – 6 -0.24 ~ 0.24 

FFB – 7 -0.25 ~ 0.25 

FFB – 8 -0.25 ~ 0.25 

FFB – 9 -0.30 ~ 0.30 

FFB – 10 -0.32 ~ 0.32 

FFB – 11 -0.35 ~ 0.35 

FFB – 12 -0.45 ~ 0.45 

Coating B 

𝑹 = 0 

FTB – 1 0 ~ 0.40 

9 

FTB – 2 0 ~ 0.425 

FTB – 3 0 ~ 0.425 

FTB – 4 0 ~ 0.45 

FTB – 5 0 ~ 0.45 

FTB – 6 0 ~ 0.48 

FTB – 7 0 ~ 0.48 

FTB – 8 0 ~ 0.50 

FTB – 9 0 ~ 0.58 

Coating B on 
pre-strained 

substrate 

𝑹 = 0 

FTBP – 1 0 ~ 0.40 

6 

FTBP – 2 0 ~ 0.40 

FTBP – 3 0 ~ 0.50 

FTBP – 4 0 ~ 0.50 

FTBP – 5 0 ~ 0.55 

FTBP – 6 0 ~ 0.60 

The test frequencies varied from 0.5 to 3 Hz depending on the strain amplitude. At 

small strain amplitudes, higher frequencies were adopted, and vice versa. The 
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temperature at the coating surface of some samples were monitored using a 

thermocouple, it was found that at greater testing frequencies or strain amplitudes the 

temperature was slightly greater than ambient with a maximum 2 C increase. This means 

the effect of temperature change on the coatings during the fatigue tests can be ignored 

as the small temperature variation would not introduce coating property changes. 

The load and corresponding strain were recorded using a National Instrument data 

acquisition device with a recording rate of 1000 data points per second. The data was 

later used to produce the hysteresis loops and cyclic stress-strain curves of the 

substrates. The development of surface cracks were recorded at various cycle intervals 

from 10 to 5000 by a Microset RT101 surface replication compound, and the cracking 

development was then measured using optical microscopy with a measuring error of ± 

2m (standard deviation from 10 measurements of standard length references). For each 

surface feature recording to be taken, the tests had to be paused at the mean strain, and 

then the surface replication compound was applied and cured for 5 minutes. After that, 

cycling was resumed. The surface replicas were observed under an optical microscope, 

and the crack lengths were measured, of which the details will be described in the results. 

4.3. Results of Tensile Testing of Substrated Coatings 

4.3.1. Fracture process 

As the load bearing capacity of the coatings was almost negligible compared to the 

substrate, the stress in the coatings and its changes due to coating cracking during the 

tests were not able to be measured. The behaviour of the coatings were characterised in 

terms of the overall strain measured by extensometer, and locally in terms of DIC strain 

distribution. In all the measurements, coating cracks initially were detected as the 

extensometer strain reached a critical value. Coating cracks were found to align 

perpendicular to the load axis and grew in both length and number as the extensometer 

strain increased. An example of crack development with increasing extensometer strain 
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is given for a coating B sample with a pre-strained substrate under extension to an 

extensometer strain of 0.85%, see Figure 42, in which the extensometer strains are 

indicated at the top of each image. 

Images A to E in Figure 42 were produced using the DIC system and show the 

development of high strain bands with increasing extensometer strain. These high strain 

bands had local strains greater than 2% in the centre, and about 1% at the ends. On either 

side of each high strain band are regions roughly 0.5 mm wide, which had strains less 

than 0.6%, the smallest in the contour shown and even smaller than the extensometer 

strain. Image F is a photograph of the actual surface the same area at the same 

extensometer strain (0.85%) as image E. Coating cracks, features enhanced by blue ink, 

were in image F. The close correspondence of cracks and DIC high strain pattern can be 

seen, which provided evidence that the high strain bands observed by DIC were indication 

of surface cracks. 

In reality, a crack does not really possess any strain, but a big displacement given by 

the opening of the crack. As DIC interpreted such crack opening as displacement on the 

surface, the high strain bands were produced. It is important to bear in mind that the high 

strains shown at the cracks are not “true”, and only served as an indication of crack 

opening. For this sample the first crack initiation was observed at 0.68% of extensometer 

strain, and as the strain increased the length and number of the cracks increased, and 

eventually grew into a multiple crack pattern. Similar crack development of coating A up 

to an extensometer strain of 1.6% and 1.7% can be found in Figure 43 and Figure 44. It is 

worth noting here that the images show a progressive, rather than unstable, crack growth 

in the coatings on substrate under increasing static tensile strains. In other words, the 

cracks did not propagate across the entire length of the sample immediately after 

initiation. 
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4.3.2. Coating crack pattern on different substrate types 

The DIC strain distribution mapping also revealed the difference between the 

distribution of coating cracks in coatings on the original and pre-strained substrates. 

Figure 43 and Figure 44 also show the development of coating cracks in increasing 

extensometer strain of coatings on an original and a pre-strained substrate respectively. 

 
Figure 42. DIC Strain distribution mapping of a coating B substrated coating sample with a pre-
strained substrate extended 0.85% strain (A to E). The photograph of the actual surface of the 
coating at 0.85% with features enhanced by blue ink (F). Photograph (G) shows the part of the 
sample within gauge length being analysed.  



CHAPTER 4 – TENSILE AND FATIGUE BEHAVIOUR OF SUBSTRATED COATINGS 

82 

 

The coating on the original substrate developed high strain regions corresponding 

directly to the high strain regions developed in the substrate. The first cracks in the 

coating initiated within the high strain region, for example in the lower right region in 

Figure 43. As the substrate yielding band spreads with the increasing extensometer 

strain, more cracks were initiated and mainly within the high strain regions. Before 

coating cracks completely covered the entire coating surface, the distribution of the 

cracks resembled the strain distribution of the substrate. 

In contrast, as shown by Figure 44 the substrate did not develop high strain regions, 

and the strain distribution in the coating was also rather even in comparison to that in 

Figure 44. Consequently, the initiations of coating cracks in the coating on the pre-

strained substrate did not locate within a particular high strain region. The wide spread 

cracks with lengths shorter than 2 mm shown on the central top image at an 

extensometer strain of 1.2% in Figure 44 is a good demonstration. Eventually the cracks 

cover the entire gauge area by joining with other cracks. 

4.3.3. Determination of strain to first crack 

The ductility of substrated coatings is defined as the strain to the onset of the first 

coating crack observed within the sample gauge length. Both extensometer and DIC gave 

strain measurements; the former provided the overall strain over the gauge length and 

the latter provided the local strains surrounding the cracks. 

The locations of first cracks can be found in DIC strain distribution, such as Figure 42B. 

Using ISTRA 4D software, two points, 𝑃1  and 𝑃2 , 0.5 mm apart were located on the 

opposite sides of the crack, as shown by Figure 45A. A second identical pair of points (𝑃1
′ 

and 𝑃2
′) were assigned on the rear substrate surface of the sample opposite to the first 

pair of points as shown in Figure 45B. The change of displacement (∆𝑑) between the pair 

of point on the coating surface and opposite substrate surface of a coating B sample can 

be found in Figure 46B. 
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Figure 43. DIC strain distribution mapping of coating surface and the corresponding substrate surface at rear of a substrated coating A sample with the 
original substrate at various extensometer strains. The photograph on the left shows the part of the sample within gauge length being analysed. 
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Figure 44. DIC strain distribution mapping of coating surface and the corresponding substrate surface at rear of a substrated coating A sample with the pre-
strained substrate at various extensometer strains. The photograph on the left shows the part of the sample within gauge length being analysed.
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An abrupt change of gradient was observed at an extensometer strain of about 0.6%. 

A comparison with Figure 42B, this shows that this corresponds to the appearance of a 

coating crack. The strain at the onset of the crack can be accurately found at this sharp 

transition. For coating A sample, see Figure 46A the transition of coating side 

displacement across the first crack was less pronounced, but using a gradient fitting 

construction shown the strain at the onset of crack can be identified. 

Having defined the start point of deviation, hence the onset of cracking is defined, the 

strain to the onset of first crack can be produced. For an onset, an extensometer strain 

(𝜺𝑬𝑿𝑻) and a ∆𝑑 can be recorded from the extensometer and DIC analysis respectively. 

The DIC produced ∆𝑑 was used to calculated a local strain (𝜀𝐿𝑜𝑐𝑎𝑙) to the onset of first 

crack by dividing the ∆𝑑 at the start of deviation using the original virtual gauge length 

(𝑑0). 

 
𝜀𝐿𝑜𝑐𝑎𝑙 =

∆𝑑

𝑑0
× 100% (41) 

 

 

Figure 45. (A) Illustration of two points 0.5 mm apart located across a coating crack; (B) Illustration 
of an identical pair of points on the substrate side directly opposite to the pair on the coating side. 

For each coating, 5 samples with pre-strained substrate and 3 samples with original 

substrate were used for the calculation of averaged extensometer strain and local strain  
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Figure 46. Change of displacement of the point pair across coating first crack and 
the second pair of points opposite to the former on the substrate side. (A) A 
coating A sample (STAP-4) and (B) a coating B sample (STBP-1). 

to the onset of first crack. The results are also shown in Table 8, in which the free film 

strain to failure was also shown for comparison. Coating A had greater strains to first 

crack than coating B. The samples on pre-strained substrate had the same strain to first 

crack irrespective of the strain determination method, while strain to first crack of 

coatings on the original substrate depended on the strain determination method. In fact, 
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DIC local strains to first crack were the same for coating on both substrate states. This 

indicates that local strain determined the onset of cracking rather than extensometer 

strains. The strain to first crack of each sample measured can be found in Appendix iii. 

The strain to first crack of both coatings were also found greater than the failure strains 

of their free films. In fact, the free film failure strains were about half of the DIC local 

strains to first crack in substrated coatings. 

Table 8. Strain to first crack of the substrated coatings on both original and pre-strained substrate 
measured by both extensometer and DIC technique. 

Strain to first crack 
onset (%) 

Coating A Coating B 

Substrate state Original Pre-strained Original Pre-strained 

𝜀𝐸𝑋𝑇  0.70± 0.09 1.04 ± 0.05 0.49 ± 0.16 0.64 ± 0.10 

𝜀𝐿𝑜𝑐𝑎𝑙  1.21 ± 0.11 1.21 ± 0.05 0.66 ± 0.07 0.73 ± 0.06 

Free film 0.67 ± 0.06 0.34 ± 0.07 

4.3.4. Determination of coating crack spacing 

The spacing between each of the multiple parallel cracks was quantified. As the 

coating crack opening generated a local high strain band, the number of cracks along the 

loading direction was determined by counting the number of high strain regions. Figure 

47A shows the DIC strain distribution of a coating B sample on a pre-strained substrate 

under an applied strain of 3%. Three paths marked as ‘L’, ‘M’ and ‘R’, which refer left, 

middle and right respectively are shown in Figure 47A. Each peak in Figure 47B 

corresponds to a high strain region that the M path in Figure 47A lies over. The number 

of cracks along all the paths can be counted by counting the number of peaks similar to 

those shown in Figure 47B. The reason three paths rather than one are defined here is 

that many coating cracks did not cross the entire sample width, and for a more accurate 

measurement, three paths increase the sampling number from each coating sample. 

It was found that the number of coating cracks increased with increasing strain. As an 

example, Figure 48 shows the development of the number of coating cracks along the M 

path of 5 samples of coating A and coating B on pre-strained substrate under an 
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increasing extensometer strain. For both coatings, the number of cracks increased 

roughly linearly with strain once the first crack was initiated. The number of cracks 

eventually reached a maximum value and remained unchanged till the end of test at 3% 

extensometer strain, which can be seen as the horizontal portion of the plots in Figure 

48. This behaviour of reaching a maximum number of cracks reflected the saturation of 

crack number, and the extensometer strain at the start of saturation for each coating was 

calculated by averaging the results from the 5 samples shown in Figure 48. It was 1.94 ± 

0.22 % for coating A and 1.42 ± 0.20 % for coating B. 

 
Figure 47. (A) Distribution of longitudinal strain within a 20 mm gauge region of a coating B 
substrated on a pre-strained substrate under an extensometer strain of 3%. (B) Plot of DIC 
longitudinal strain along the middle path marked ‘M’ in (A). Photograph (C) shows the part of the 
sample within gauge length being analysed.. 

The saturation of crack numbers shown in Figure 48 indicates that there was a 

minimum spacing between each pair of adjacent cracks in coating A and B with a 

thickness of about 0.3 mm under tensile strain. The crack numbers after saturation of 

coating A and B were counted using the DIC strain distribution at 3% of extensometer  
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Figure 48. Number of cracks along the mid-paths of a coating A and a coating B 
substrated sample under increasing applied strain. Each graph shows the response 
of 5 samples of each coating. 

strain. The number of cracks along all three paths of 5 samples of both coatings was 

counted and averaged to produce the results. For coating A, the critical crack number 

was 17 ± 3 and for coating B it was 17 ± 2. Consider a situation where each crack is 

confined in a region with a width equal to 𝑑, and the crack lies in the centre of the region, 
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see the regions defined by the dash lines in Figure 49. Thus the critical crack numbers 

translate to a 𝑑 of 1.25 mm. This can be interpreted as that the cracks grow in separate 

but adjacent regions with equal size, which in this case would be 1.25 mm. As this value 

was calculated using the crack number after saturation, the value defines the minimum 

crack spacing for coatings A and B with a nominal thickness of 0.3 mm under static strains. 

 

Figure 49. Illustration of a gauge area divided into 5 equally sized 
regions by 6 cracks. 

4.3.5. Cross section of coating static cracks 

The longitudinal cross-sections of substrated coatings with static cracks at the end of 

a test were observed using optical microscopy. For each coating, 2 samples were 

observed.  

Within the same type of coating, one sample had the original substrate and the other 

had the pre-strained substrate. No difference in the crack cross-sections was found due 

to the different states of substrate. The typical cross-sections of coating cracks in coatings 

A and B after being tested to 3% of strain are shown in Figure 50. 

The layer in white on the surface of the coatings is the primer paint used as 

background for DIC image capturing. The thickness of the primer paint shown in these 

figures is less than 10% of the coating thicknesses. The images in Figure 50 show a vertical 

crack penetrating from the coating surface towards the interface, where crack deflection 
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occurred. These deflections indicate that coating debonding from existing cracks took 

place in both coatings. Some voids are shown near the interface of coating B samples, in 

fact such voids were seen at other sites of coating B, while nearly no voids were found in 

coating A. 

 

Figure 50. Coating cracks shown in the longitudinal cross sections of substrated coating A and 
B samples subjected to 3% of substrate strain. 

4.4. Results of Fatigue testing of Substrated Coatings 

During the fatigue tests, the coatings were subjected to cyclic strains imposed by the 

substrates. The largest strains of the strain cycles were below the static strain to first 

crack of the coatings, and fatigue cracks were observed on coating surface when 

sufficient number of cycles was achieved. Similar to the observation of coating cracking 

during the static tests of substrated coating samples, the coating stress and its change 

due to cracking could not be directly measured. In the current work, the fatigue cracking 

of coating was recorded mainly by surface replication, and for a small number of samples 

by a digital camera with a resolution of 1.4M Pixels. A typical coating cracking process 

under cyclic strains is demonstrated by Figure 51, which shows digital images of the 

evolution of surface cracks of a coating B sample (FFB – 5) with the original substrate 

under a fully reversed cycle with amplitude of ± 0.24%. Also to be noted here is that  
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Figure 51. Coating crack development of a Coating B sample (FFB-5) under a 
constant strain amplitude of ± 0.24% at ambient temperature. 

similar images showing fatigue cracking process of coating A cannot be produced using 

digital images as the colour of coating A had a low contrast to coating cracks even when 

enhanced by the dark ink. For coating A samples, surface replication only was used to 

record surface crack features. 

In Figure 51A, two cracks were initially observed with lengths of about 0.2 mm at 3000 

cycles, see inside of the red circles. As the cycling continued, these cracks grew in length 
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and at 4500 cycles another crack was found initiated at a different site, see blue circle in 

image B. As the test continued, the cracks on surface grew both in length and number, 

and eventually formed a multiple crack pattern with almost parallel cracks with different 

lengths. All samples shared similar cracking behaviour under cycle strains. It was also 

found that the number of cycles to the observation of first cracks as well as the rate that 

existing crack grew depended on the size of strain range. The details will be described 

later. 

Fatigue failure of substrates also occurred. When substrate failure took place the 

substrates separated into two parts by a substrate crack and developed large plastic 

strains near the crack. In this section the substrate response to cyclic strains will be 

introduced first. Following this the effect of strain range on both cycle number to coating 

fatigue failure and crack growth rate will be introduced in detail. 

4.4.1. Substrate response during fatigue test 

It is well known that under cyclic strains the stress-strain behaviour of steel is different 

from that under static strains [144]. In the current case, the steel substrates softened 

during cycling, which means the maximum stresses at the maximum strains reduced 

compared to a substrate that is extended monotonically to the same strains. Each strain 

cycle from the minimum strain to the maximum strain then back to the minimum strain 

formed a hysteresis loop. As softening took place, the shape of hysteresis loops changed 

and eventually achieved a stable state. The stabilised hysteresis loops of the current 

substrates under fully reversed strain cycles with various amplitudes, from ± 0.25% to ± 

0.6%, are shown in Figure 52.  

In Figure 52, the hysteresis loops became larger as the amplitude increased, which is 

typical for elastic plastic materials under fully reversed strain cycles. Figure 53 shows the 

stabilised hysteresis loops of original substrate under zero-tension cycles with maximum 

strains from 0.4% to 1.05%. There hysteresis loops also become larger as the amplitude 

increases, and the tensile and compressive portions of the loops remain symmetric. In 
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the zero-tension cycles, the compression was caused by the plastic deformation 

generated in the loading branch of the cycles. 

 
Figure 52. Stabilised hysteresis loops of original substrate under fully reversed 
cycles. The strain amplitudes from the inner circle outwards are ± 0.25%, ±0. 
28%, ± 0.4%, ± 0.5% and ± 0.6%. 

Figure 54 shows the stabilised hysteresis loops of pre-strained substrate under zero-

tension cycles with maximum strains from 0.3% to 0.6%. The loops also become larger 

when the maximum strain increases. Different from the original substrates, the maximum 

and minimum stress of the loops of the pre-strained substrate appeared to be 

asymmetric to the horizontal axis. For the loop with the maximum strain of 0.3%, the 

portion of the loop in compression is only about 25% of the entire loop. As the maximum 

strain increased, the portion of loop in compression increased. However, till the 

maximum strain of 0.6%, the portion of the loop in tension still exceeds that in 

compression. This might be caused by the pre-straining process of the substrates.  

The cyclic stress-strain curve of the steel substrate was produced using the definitions 

given in Suresh [144], and it is in Figure 55. The data points were half stress ranges 
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(∆𝜎 2⁄ = 𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛)  against half strain ranges ( ∆𝜀 2⁄ = 𝜀𝑚𝑎𝑥 − 𝜀𝑚𝑖𝑛) . The cyclic 

stress-strain curve is the best fit of data points based on Ramberg-Osgood relationship 

173. In Figure 55, the static stress-strain curve of the substrate is also plotted. It can be 

seen that the substrate softened for half strain ranges below 0.6%, and hardened above 

0.6%. 

 

 

 

 
Figure 53. Stabilised hysteresis loops of original substrate under zero-tension cycles. The maximum 
strain from the leftmost circle rightwards are 0.4%, 0.43%, 0.45%, 0.48%, 0.6%, 0.8%, 0.9%, 1.0%, 
and 1.05%. 
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Figure 54. Stabilised hysteresis loops of pre-strained substrate under zero-tension cycles. The 
maximum strain from the leftmost circle rightwards are 0.3%, 0.4%, 0.5%, 0.55%, 0.6%. 

4.4.2. Strain-life relationship in fatigue 

Fatigue failure scenarios 

One purpose of the fatigue test of substrated coatings was to characterise the fatigue 

lives of the coatings for different strain ranges. During the tests, it was found that the 

strain range dependence of the fatigue life of the substrate was different from that of the 

coatings, and interfered with the measurement of coating fatigue lives. Ideally, the 

substrate should remain intact throughout the entire test. Unfortunately, substrate 

failure often occurred before coating cracking took place. Figure 56A illustrates this ideal 

scenario, in which test was stopped where sufficient coating fatigue fractures were 

observed and prior to the rupture of substrate. This normally happened for coating B 

samples tested at high strain ranges.  
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Figure 55. Cyclic stress-strain curve and static stress-strain curve of the substrate steel. 

 

As illustrated by Figure 56B, sometimes the fatigue test was stopped due to the 

rupture of substrate after the first 2 mm coating crack was observed. This scenario was 

acceptable as it allowed the characterisation of the coating life as well as some degree of 

coating crack propagation after that. This happened in all successfully measured coating 

A samples as well as some coating B samples. However, the worst scenario, illustrated by 

Figure 56C, was that the rupture of substrate occurred before the appearance of the first 

2 mm coating crack, sometimes even before the appearance of any observable coating 

cracks. This was classified as an unsuccessful test as it did not give any coating life 

characterisation. This normally happened in coating A samples tested at strain amplitudes 

(half of strain range) below 0.5%, and in coating B samples tested at strain amplitudes 

below 0.2%. 
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Figure 56. Illustration of (A) the ideal scenario, (B) an Acceptable scenario, and (C) 
the worst scenario, in the fatigue test of substrated coatings. 

Strain-life relationship of the substrate in fatigue 

The strain-life (𝜀-N) relationship of the substrate of all samples, where the substrate 

failure occurred, is plotted in , which shows the life of substrate increased as the strain 

amplitudes reduced. Full data of substrate lives can be found in Appendix iv. 

The data points were obtained from samples of both coatings under fully reserved 

and zero-tension cycles, and that all data points fit the same trend means that the mean 

value or the mode of strain cycles did not affect the life of the substrate. This plot is highly 

important, because it defines the limit that the coating fatigue failure could be observed. 

For a certain strain amplitude, if the life of coating is greater than that of the substrate, 
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such as the worst scenario described in Figure 56C, the coating fatigue cannot be 

observed due to the failure of the substrate. 

 
Figure 57. S-N curve of substrate at various strain amplitudes. 

Strain-life relationship of the coatings in fatigue 

The life of the coatings was defined as the number of cycles where the longest surface 

crack achieved 2 mm in length. Assuming coating surface cracks were semi-elliptical, in a 

0.3 mm thick coating a crack with surface length greater than twice the thickness (0.6 

mm) would have completely penetrated the coating thickness. In this work, the failure 

point definition should ensure a full thickness penetration. 

The lengths of coating cracks at different cycles were measured primarily from the 

surface replica using an optical microscope. The microscope had a travelling stage with 

two micrometres controlling the movement in X and Y directions with a controlling 

resolution of 1 µm. The replicas were observed under a magnification of 100 times, and 

the coordinates of the two end points for each crack were recorded. The distance 
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between each pair of end points was used as the crack length. The measurement had an 

error of ± 2 µm. Note, before the first crack reached 2 mm, it might have already 

penetrated the thickness. Also, before the first 2 mm crack was observed, in most of the 

tests there had already be some cracks with smaller lengths. Full data sets of coating 

fatigue lives can also be found in Appendix iv. Figure 58 shows that the strain-life (𝜀-N) 

relationship of coatings A and B with original substrate under fully reversed cycles.  

 
Figure 58. S-N curves of coatings A and B samples under fully reserved strain cycles. 
The power regression of the substrate life data is also shown. 

In Figure 58, the 𝜀-N plot for coating B is well below that of coating A under fully 

reversed strain cycles. At a strain amplitude of 0.45%, the life of coating A was about 2 

orders of magnitude longer than that of coating B. For a life of 1500 cycles, it required an 

amplitude of about 0.45% to cause failure in coating A while it only required an amplitude 

of about 0.3% for coating B to fail. This shows that coating A was more fatigue resistant 

than coating B. The substrate fatigue failure line is the data fitting line shown in Figure 

57. At strain amplitudes smaller than the intersections of the coating lines and the 

substrate failure line, the substrate life is shorter than the life to coating first 2 mm 

coating crack, and therefore the fatigue life of the coating cannot be measured. This is 
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illustrated by the worst scenario illustrated in Figure 56C. The intersections defined the 

lower strain amplitude limits that the fatigue of the substrate coatings could be studied. 

For coatings A and B, the limits were about 0.4% and 0.2% respectively. 

The samples of both coatings were also tested under zero-tension cycles, and the 𝜀-N 

plots of them are shown in Figure 59, in which the life data of the samples tested under 

fully reversed cycles is also plotted. The data points of coating A under zero-tension cycles 

are also well above those of coating B under zero-tension cycles, which also indicates that 

coating A was of greater fatigue resistance than coating A also under zero-tension cycles. 

Figure 59 also shows that the life of coating A samples was not affected by the mode the 

cycling was performed. The data points of coating A tested under zero-tension cycles are 

not significantly different from those of coating A tested under fully reversed cycles in 

the positions shown in the figure. In contrast, the data points of coating B tested under 

these two modes of cycling are clearly two separate sets of results. The coating B data 

points obtained from the fully reversed tests are above those from the zero-tension tests 

before a life of about 104 cycles, after that these two sets of data seem to merge. The life 

of coating B under zero-tension cycles was 2 order of magnitude shorter than that under 

fully reversed cycles at a strain amplitude of 0.23%, while at amplitudes smaller than 

about 0.2% the life of the coating was not sensitive to the cycle mode anymore. 

The static failure strains of both substrated coatings, representing fatigue life at 1 

cycle for the samples tested under zero-to-tension cycles, are shown as the red points in 

Figure 59. As the strain axis in Figure 59 is plotted as amplitude which is half of the total 

strain range, static strain to failure is similarly represented as half of the applied strain to 

cause failure. Both data points are below the extrapolated trends of the strain-life line of 

each corresponding coating. This means that the fatigue data predicts a greater 

resistance for 1 cycle. Note that the fatigue failure of the coatings were defined as the 

cycles to 2 mm crack, while the static failure strain was defined as the strain to first 

cracking onset, where the crack length was smaller than 2 mm. The discrepancy between 
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the static failure strains and the fatigue strain data reflects the difference in the 

definitions of coating failure in the static tensile and the fatigue tests. 

 
Figure 59. S-N plots of coating A and B fatigue samples under both fully 
reversed and zero-tension cycles at various strain amplitudes. The power 
regression of the substrate life data is also shown. 

The fatigue life of coating B on both original and pre-strained substrates under zero-

tension cycles is shown in Figure 60. In this figure, the power regressions of the plots 

intersect at a life about 1000 cycles. Before this number of life, the plots of coating B 

samples on pre-strained substrate are above the coating B samples on non-pre-strained 

substrate. This means the coating B on a pre-strained substrate had a longer life than that 

on a non-pre-strained substrate at the same strain amplitude. For the data points after 

the life of 1000 cycles, if the trends of the plots hold for both types of the samples, the 

life of coating B on a non-pre-strained substrate would be longer than that on a pre-

strained substrate at the same amplitude. 
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Figure 60. S-N plots of coating B samples with non-pre-strained and pre-
strained substrate under zero-tension strain cycles. The power regression 
of the substrate life data is also shown. 

Proportion of cycle to initial crack observation in the life to first 2 mm crack 

Before the cycle to 2 mm crack, cracks with a length smaller than 2 mm were observed 

at smaller cycles. Table 9 lists the cycle to initial crack observation (𝑁𝑖𝑛) and the cycle to 

first 2 mm crack (𝑁2𝑚𝑚) of some samples of both coatings A and B. The proportion of 

cycle to initial observation in the life to first 2 mm crack is defined as the ratio of 𝑁𝑖𝑛 to 

𝑁2𝑚𝑚, which is also shown in the table. 

It can be seen that 𝑁𝑖𝑛/𝑁2𝑚𝑚 ranges from 11% to 100%. There is no obvious effect of 

strain range on the 𝑁𝑖𝑛/𝑁2𝑚𝑚  ratios of the samples of both coatings. The average 

𝑁𝑖𝑛/𝑁2𝑚𝑚 of all coating A samples shown in Table 9 is 38% with a standard deviation of 

9%, whilst the average 𝑁𝑖𝑛/𝑁2𝑚𝑚 coating B samples is 63% with a standard deviation of 

30%. The results indicate that the life of coating A was predominately determined by the 

propagation of fatigue cracks after initiation, while the life of coating B was 

predominantly determined by the life to the initiation of coating cracks. Note, there was 
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not any definition of the initiation of coating cracks, and the cycle number to the initial 

observation was also influenced by the intervals chosen to pause testing and collect data. 

Table 9. Cycle number to the initial observation of coating fatigue cracks and to the first 2 mm 
cracks. 

 
Sample 
number 

Strain range 
(%) 

Cycle to initial 
observation 

(𝑁𝑖𝑛) 

Cycle to first 
2 mm crack 

(𝑁2𝑚𝑚) 

𝑁𝑖𝑛/𝑁2𝑚𝑚 
ratio 

C
o

at
in

g 
A

 

FTA - 2 0 – 0.85 600 1350 44% 
FTA - 3 0 – 0.9 50 200 25% 

FTA - 4 0 – 1.0 100 300 33% 
FTA - 5 0 – 1.0 200 450 44% 

FTA - 6 0 – 1.05 100 300 33% 
FTA - 7 0 – 1.05 200 400 50% 

C
o

at
in

g 
B

 

FFB - 5 -0.24 – 0.24 3000 4500 67% 

FFB - 7 -0.25 – 0.25 2000 2550 78% 
FFB – 8 -0.25 – 0.25 200 1800 11% 

FFB - 10 -0.3 – 0.3 400 1500 27% 
FFB - 12 -0.35 – 0.35 800 800 100% 

FFB - 13 -0.45 – 0.45 10 10 100% 

C
o

at
in

g 
B

 

FTBP - 1 0 – 0.4 5000 7500 67% 

FTBP - 2 0 – 0.4 3000 6000 50% 
FTBP - 3 0 – 0.5 100 150 67% 

FTBP - 4 0 – 0.5 250 500 50% 
FTBP - 5 0 – 0.55 10 25 40% 

FTBP - 6 0 – 0.6 10 10 100% 

4.4.3. Crack interaction 

Due to the presence of multiple coating cracks, independent cracks and their growth 

were found to interact with other cracks nearby. The visual examination of the digital 

images of coating surfaces at different stages of cycling revealed that there are 4 types 

of crack interaction, see Figure 61.  

Type I – independent cracks are those grewing independently without other cracks in 

their vicinity of 1 mm radius, see Figure 61A. This was normally observed in newly 

initiated cracks.  
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Type II – coalescing cracks are those originally independent cracks coalesced with 

other co-linear cracks when they grew longer, see Figure 61B. 

Type III – confronting cracks are those originally independent cracks where the crack 

tips grew into the vicinity of a co-linear crack but did not coalesce and continued to grow 

at a much reduced rate, Figure 61C.  

Type IV – Double initiated cracks are those initiated with another initiation in vicinity 

and grew only to the direction away from the initiation site, see Figure 61D. 

 

Figure 61. Four types of cracks depending on their interactions with other cracks. These 
images were taken from a coating B sample tested at ± 0.25% (FFB-7). 

4.4.4. Single crack growth 

Growth of single cracks before interaction 

A typical crack length growth as a function of cycle number of an independent crack 

without any interaction with other cracks or crack tips is shown in Figure 62 and Figure 

63. Figure 62 shows an example from a coating A sample under a fully reversed cycle of 

± 0.55%, and Figure 63 shows an example from a coating B sample under a fully reversed 
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cycle of ± 0.6%. The cracks were initially observed at a cycle number of 250 with a length 

of about 0.8 mm for the coating A sample, and at a cycle number of 600 with a length of 

about 0.5 mm for the coating B sample. After that, these cracks grew in length with the 

cycle number in an effectively linear fashion. This linear relationship between crack length 

and cycle number was widely observed in independent cracks on all samples. The crack 

used as example in Figure 63 was found to eventually coalesce with another crack at 2000 

cycles. Due to the coalescence, one tip of the crack merged with the tip of another crack, 

and therefore the figure only plots the growth when it was still independent (till 1500 

cycles). 

 
Figure 62. The growth of an independent crack on the surface of a coating A sample 
(FFA – 6) under fully reversed cycles with an amplitude of ±0.55%. 

Growth of single cracks in interaction 

A typical example of crack growing into interaction with other crack can be found in 

Figure 64 and Figure 65 for a coating A sample and a coating B sample respectively. In 

both figures, the crack length increased linearly with the cycle number before both of 

their crack tips grew into the vicinity of another two crack tips about 1 mm away at 300 
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cycles for coating A and 10000 cycles for coating B. After that, the growth rates 

significantly reduced, which can be seen as the reduction of the slope of the plots. 

 
Figure 63. The growth of an independent crack on the surface of a coating B sample 
(FFB – 12) under fully reversed cycles with an amplitude of ±0.6%. 

 
Figure 64. The growth of an independent crack confronting another two cracks 
on the surface of a coating A sample (FTA-5) under a zero-tension cycle from 0 
to 1%. 
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Figure 65. The growth of an independent crack confronting another two cracks 
on the surface of a coating B sample (FTBP-2) under a zero-tension strain cycle 
with a range of 0 – 0.4%. 

Varying growth rates of single cracks of the same sample 

The growth of single cracks on the same sample has also been investigated. In all 

samples, it was observed that the single cracks within the same sample grew in different 

rates. Figure 66 and Figure 67 shows the growth of 5 single cracks within the same coating 

A samples under zero-tension cyclic strains with maximum strains of 0.9% and 1.05%. 

Figure 68 and Figure 69 show the growth of 5 single cracks within the same coating B 

samples under zero-tension cyclic strains with maximum strains of 0.45% and 0.58%. 

Based on these 5 cracks, 5 different crack growth rates could be calculated using the 

slope of the linear fits of each data set. It can be seen that each single crack shows 

constant crack growth rate, but there is a big variation in the fatigue crack growth rates 

of single cracks within each sample. The standard deviation of the crack growth rates can 

be as high as 90% of the mean growth rate.  
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Figure 66. Growth of 5 single cracks with increasing cycle number in a coating B 
fatigue sample with original substrate under a strain range of 0 – 0.9% (FTA-3). 

 

 
Figure 67. Growth of 5 single cracks with increasing cycle number in a coating 
B fatigue sample with original substrate under a strain range of 0 – 1.05% (FTA-
6). 
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Figure 68. Growth of 5 single cracks with increasing cycle number in a coating 
A fatigue sample with original substrate under a strain range of 0 – 0.45% (FTB-
4). 

 

 
Figure 69. Growth of 5 single cracks with increasing cycle number in a coating 
A fatigue sample with original substrate under a strain range of 0 – 0.58% (FTB-
9). 
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Growth of co-linear cracks in interaction 

It was also found that the growth of originally co-linear and later interacting cracks, if 

treated as one crack, will also be of linear relationship with cycle number. The 

morphology of 3 such cracks under an increasing cycle number is shown in Figure 70B. 

Crack A was initially an independent crack until 3500 cycles, at which another two cracks 

B and C initiated at either tip of crack A. The crack growth plot shown in Figure 70A shows 

that the growth of crack A significantly slowed down upon the initiation of cracks B and 

C, which then grew independently at their own rates. Considering the number of crack 

tips growing independently after the appearance of cracks B and C was the same as 

before, these cracks were then treated as one crack, of which the length increase with 

the cycle number is also plotted in Figure 70A. The linear relationship of the total crack 

length of these 3 cracks with increasing cycle number indicates a constant growth rate 

for a constant number of crack tips not in interaction. 

 

 

Figure 70. (A) Lengths of three interacting cracks observed on a coating B sample (FFB-
8) tested at a strain amplitude of ±0.25%. (B) An illustration of the morphology of the 
cracks. 
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4.4.5. Total crack growth 

Considering the multiple cracking behaviour of the coatings as well as the wide spread 

of single crack growth rate within each sample under cyclic strain, the fatigue damage of 

the coatings was quantified using the total length of the cracks (𝐿𝑡𝑜𝑡𝑎𝑙 ), which is the sum 

of the length of all cracks measured over an area 12.5 × 8 mm2 within the gauge length, 

see equation (42). Full data set of total crack development of all measured samples can 

be found in Appendix v. 

 
𝐿𝑡𝑜𝑡𝑎𝑙 = ∑𝑙𝑖

𝑁

𝑖

 (42) 

Here, 𝑙𝑖 is the length of a single crack, and 𝑁 is the number of crakcs. 

Typical total crack length development 

A typical total crack length evolution with increasing cycle number is shown in Figure 

71A, which shows the total crack lengths of a coating B sample tested at a strain 

amplitude of ± 0.35%. The plot shows that the damage was first recorded at 700 cycles, 

and then increased almost linearly with the cycle number to 2000 cycles. After that, the 

increase rate of the total crack length significantly reduced. This trend reflects the surface 

crack development shown in Figure 71 B to E. At 800 cycles, the first crack with a length 

of about 1.5 mm initiated, and soon after that at 1500 cycles more cracks initiated and 

longer cracks also appeared. This trend continued until at 2000 cycles where long cracks 

formed a multiple crack pattern across the width of the sample. This pattern did not 

change much until the finish of the test at 4500 cycles. At the cycle number of 2000, it is 

believed that the total crack length reached a relatively saturated state, and thus the 

growth rate of total crack length significantly reduced. 

For most tested samples, especially coating A samples, the substrate failed by fatigue 

crack growth, but the saturation of coating fatigue cracks was not observed. A typical 

example is given in Figure 72, which shows the total crack length of a coating A sample  



CHAPTER 4 – TENSILE AND FATIGUE BEHAVIOUR OF SUBSTRATED COATINGS 

113 

 

 
Figure 71. (A) The development of total crack length of a coating B sample (FFB-11) tested 
at a strain amplitude of ±0.35%, the test was stopped at 4500 cycles; (B) to (E) are the 
representation of surface crack morphology at 4 selected cycle numbers. 
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Figure 72. (A) The development of total crack length of a coating A sample (FTA-5) 

tested at a strain range from 0  1%. The test was stopped at about 800 cycles due to 
substrate failure; (B) and (C) are the illustration of surface crack morphology at 2 
selected cycle numbers. 

tested under zero-tension cycles with a strain range of 1%. The substrate failed at about 

800 cycles before the next planned recording. The plot shown in Figure 72 shows a linear 

relationship between the total crack length and cycle number, indicating a constant total 

crack growth rate. The Figure 72 B and C show the surface crack development at the 

appearance of the first crack at 200 cycles and the last recording at 700 cycles, at which 

the cracks did not saturate the coating surface, and therefore the total crack length still 

grew linearly with the cycle number. 
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Strain range dependence of total crack length 

It was found that the size of strain range had an effect on the total crack length 

development, Figure 73 plots the total crack length of samples of both coatings A and B 

under different cyclic strain magnitudes. For coating A, all the samples did not reach the 

saturation of surface cracks, and therefore they all appeared to be linearly proportional 

to the cycle number. For coating B, the sample tested at ± 0.3% did reach surface crack 

saturation, however in a much smoother fashion than the sample tested at ± 0.35%, and 

therefore did not show a drastic slope change in the plot. For the sample tested at ± 0.2%, 

the plot appears to be linear also because that the saturation was not achieved. For all 

the samples, the slopes of the linear region of the plots reflected the rate of total crack 

length development before surface crack saturation, and the figure shows that the 

samples tested under bigger strain amplitudes or ranges have steeper slopes than those 

tested under smaller strain amplitudes and ranges. 

Total crack growth rate and correlation with strain range 

A total crack growth rate was determined using the slope of the linear portion of the 

total crack growth development with cycle number (such as FFB – 11 shown in Figure 

73B), if no saturation occurred, i.e. the total crack growth curve remained linear, the 

entire curve was used (such as those in Figure 73A). The full data set of total crack growth 

rate for all measured fatigue samples can be found in Appendix vi. Figure 74 shows the 

relationship between the total crack growth rate and strain range of all samples. Here, 

strain range is the difference between the maximum and minimum strain of a cycle. 

In general, the data points of coating B are to the left of those of coating A, which 

means that to achieve the same total crack growth rate coating B required a smaller strain 

range than coating A. This indicates coating A was more resistant to fatigue crack growth 

than coating B. For both types of coatings, the data points of the samples tested under 

both fully reversed and zero-tension cycles did not show a distinctive difference. For 
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coating B, the state of substrate did not appear to affect the total crack growth rate 

either. 

 

Figure 73. The total crack length development with an increasing cycle number. 
(A) Coating A samples under zero-tension cycles; (B) Coating B samples under 
fully reversed cycles 
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Figure 74. Total crack growth rate as a function of strain range. 

The data has been fitted to a Paris’ Law – like relationship by equation (43). Here 
𝑑𝑎

𝑑𝑁
 

is the total crack growth rate per cycle, ∆𝜀  is the strain range, and 𝐶  and 𝑚  are two 

empirical factors determined by fitting. The fitted lines are shown as dashed lines in 

Figure 74, the resultant fitting parameters 𝐶 and 𝑚 are shown in Table 10. The 𝑅2 values 

of the fittings were 0.63 and 0.64 for coatings A and B, which indicate the scattering 

nature of fatigue test results. The 𝑚 factor of coating A is about 2.5 times that of coating 

B, indicating that the sensitivity of the total crack growth rate of coating A is greater than 

that of coating B. This can be seen in Figure 74.  

 
 
𝑑𝑎

𝑑𝑁
 = 𝐶(∆𝜀)𝑚 (43) 

Table 10. Resultant parameters of fitting total crack growth rate - ∆𝜺 to equation (43). 

 𝐶 (µ𝑚/𝑐𝑦𝑐𝑙𝑒) 𝑚 

Coating A 1.82 × 1030 14.4 

Coating B 2.12 × 1015 6.25 
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4.4.6. Crack number and average crack length quantification 

In addition to the total crack length development, the number of coating cracks 

developed within gauge length during the fatigue tests was quantified. Here, a crack is 

defined as a crack with only two tips, and if two cracks coalesced the cracks were then 

counted as one crack. Figure 75 and Figure 76 serve as an example showing typical crack 

number development with increasing cycle number in coating A and coating B 

respectively. Full crack number data for all samples measured can be found in Appendix 

v. 

Figure 75 and Figure 76 show that in both coatings the number of cracks increased 

with cycling. There is a general trend that the increase of crack number is more rapid in 

samples tested under greater strain ranges. A stabilisation of crack number increase was 

observed in both coatings, and it was more marked in coating B. 

 

 
Figure 75. Number of cracks as a function of cycle number in a coating A samples under 
zero-tension cycles  
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Figure 76. Number of cracks as a function of cycle number in a coating B under a 
zero-tension cycles. 

The average crack length (𝐿𝑎𝑣𝑔 ) was calculated by dividing the total crack length 

(𝐿𝑡𝑜𝑡𝑎𝑙 ) using the number of cracks (𝑁𝑐𝑟𝑎𝑐𝑘), see equation below. 

 
𝐿𝑎𝑣𝑔 = 𝐿𝑡𝑜𝑡𝑎𝑙/𝑁𝑐𝑟𝑎𝑐𝑘 = ∑ 𝑙𝑖

𝑁

𝑖

/𝑁𝑐𝑟𝑎𝑐𝑘 (44) 

As an example, Figure 77 and Figure 78 show the average crack length as a function 

of cycle number of coatings A and B samples. It can be seen that in both coatings the 

average crack length increased with cycle number, reflecting the growth of single cracks. 

However, there is no clear evidence of any effect of strain range on the development of 

average crack size. In comparison to coating B, the average crack length of coating A was 

below 1 mm throughout the tests, while the average crack length of coating B reached 

above 2.5 mm.  

As the strain-life relationship in Figure 59 (page 102) shows that the coatings had very 

distinctive resistance to fatigue cracking, the characterised fatigue cycle ranges of 

coating A (about 2000 cycles maximum) were much more limited than that of coating B 
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(to a maximum about 20000 cycles), whilst the strain ranges applied to coating B samples 

were about only 50% of those applied to coating A sample. 

 
Figure 77. Development of average crack length with increasing cycles in coating A samples 
under zero-tension cycles. 

 
Figure 78. Development of average crack length with increasing cycles in coating B samples 
under zero-tension cycles. 

In order to make direct comparisons, the crack number and average crack length 

results shown from Figure 75 to Figure 78 were re-plotted against total crack length, 
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which is shown in Figure 79, in which the symbols with solid lines represent coating A 

samples, while those with dashed lines represent coating B samples. 

 
Figure 79. Number of fatigue cracks (A) and average fatigue crack length (B) as a function of total 
crack length in coatings A and B. 

Figure 79A shows the relationship between crack number and total crack length of 

coatings A and B. It can be seen that in both coatings the number of cracks increases 

almost linearly with the total crack length. Again, no obvious effects of strain range was 

observed. It is clear that the development of crack number in coating A is much faster 

than coating B. At a total crack length of about 50 mm, the number of cracks in coating A 
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could be about 3 times the number of cracks in coating B. Figure 79B the relationship 

between average crack length and total crack length of coatings A and B. The trend of 

average crack length is opposite to that of the crack number. Coating B tended to develop 

greater average crack length than coating A, and at a total crack length of about 50 mm, 

the average length of fatigue cracks in coating B could be about 3 times that in coating B. 

 



 

123 

 

5. NUMERICAL MODELLING OF SUBSTRATED COATING SAMPLE FAILURE 

As introduced before, the coating fracture is treated as two processes, namely crack 

penetration and channelling. For coating cracks under uniform remote normal stresses, 

Beuth [129] developed close-form approximations for the energy release rates of these 

two processes, see equations (23) - (27). Based on these equations, the energy release 

rates of crack penetration and channelling from a defect can be calculated when the 

modulus and Poisson’s ratio of both coating and substrate, as well as the defect depth 

and coating thickness are known. These equations only deal with situations where the 

material properties are constant. However, the stress-strain behaviour of the coatings 

and substrate has shown non-linearity under an increasing strain, which means the 

moduli of both coating and substrate were not constant. Given this, calculations using 

Beuth’s equations with constant elastic modulus would not be appropriate when the 

material deformation exceeds the linear region. In the current work, numerical modelling 

was performed to investigate the fracture process of substrated coating beyond the 

linear elastic region during the mechanical testing. 

5.1. Finite element fracture mechanics model 

Adopting the same treatment for coating cracking used in several previous works 

[128,129,174], the coating crack penetration process is treated as a 2D plane strain 

problem, and a 2D FE model in plane strain was developed, see Figure 80. This model 

simulates half of a 25 mm long and 5.5 mm thick substrate supporting a 0.3 mm thick 

coating covering the whole top surface of the substrate. The actual length of the model 

was only 12.5 mm as the other half was symmetric to the model, with the left edge 

serving as longitudinal centre. A vertical defect with a depth of 𝑎 was introduced to the 

coating surface at the left edge of the model. Apart from the crack, the rest of the left 

edge including both coating and substrate sections was assigned with X-symmetry, which 

constrained movement of the left edge but allowed the crack to open under tensile 

stresses. As the neutral axis of the system is not in the centre of the substrate, the system  
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Figure 80. 2D plane strain model for the calculation of J-integral of crack penetration in coating on 
a 5.5 mm flat substrate. (A) shows the dimensions of the model; (B) shows the mesh near the crack; 
(C) shows the mesh and dimension of the crack tip contour region. 

will bend under a tensile stress. Considering that the modulus and thickness of the 

substrate are much greater than the coating, thus any bending will be small, and the 

bottom of the model was assigned with Y direction constraint, this assumed the model 

will not bend under stress. Mechanical strain was applied uniformly on the right edge of 

the model. To include thermal residual stress, a temperature reduction can be applied to 

the model. All the elements were 8-node rectangular plane strain elements, and at the 

crack tip the elements were collapsed into triangle shape with two nodes at the tip. 
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In ABAQUS, energy release rate is calculated in terms of 𝐽-integral with linear material 

properties, as energy release rate and 𝐽-integral are equivalent in linear elastic situations. 

𝐽-integral can be calculated directly using a contour integral method included in the 

software package. Details of the formulations used for calculation are clearly described 

by Brocks [95], and they can also been found in ABAQUS documentation [175]. It 

essentially uses the expression of 𝐽-integral developed by Rice [94], see equation (17). In 

theory, the accuracy of 𝐽 calculation using contour integral depends on the size of the 

contour integral region. In the current model, as shown by Figure 80C the contour integral 

region had a radius of 0.03 mm, which was found sufficiently large to have accurate 𝐽 

calculation, as the 𝐽  calculated using bigger contour integral regions was found 

unchanged. In the 2D model, only the 𝐽 -integral for crack penetration ( 𝐽𝑝 ), can be 

calculated directly using the contour integral technique. 

The 𝐽-integral for the crack channelling process (𝐽𝑐ℎ), in which the crack growth is in 

the direction perpendicular to the X-Z plane shown in Figure 80, can be calculated 

indirectly only by using the remote stress and crack opening induced by the applied strain. 

The calculation procedure has been used and reported by Beuth and Klingbeil [174], of 

which a brief description is given as below. 

Under a uniform normal stress, a crack with a depth of 𝑎 in a coating with a thickness 

of ℎ will open, see Figure 81A. When the crack tip channels a unit length (𝑑𝑙), a slice of 

crack will develop the profile like that shown in Figure 81A, and the slice will have a 

thickness of 𝑑𝑙. Thus the energy released due to cracking can be treated as the difference 

between the energy stored in the un-cracked material far ahead of the crack tip and the 

work done (𝑊′) for the generation of the slice of crack opening far behind of the crack 

tip [129,174]. 

At each position along the y direction of the coordinate defined in Figure 81A, the 

crack face has an opening displacement of 𝛿(𝑦). A collective crack face opening ∆′ can 

be expressed by equation (45). To achieve this ∆’, a stress of 𝜎(∆′) is needed. A schematic 

relationship between 𝜎 and ∆′ can be found in Figure 81B. 
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∆′ = ∫ 𝛿(𝑦)

𝑎

0

𝑑𝑦 (45) 

 
Figure 81. (A) Illustration of coating crack opening under a uniform normal stress; (B) Schematic 
relationship between stress and corresponding collective crack face opening displacement. 

This crack opening is a cross section of a channel crack far behind the crack tip, the 

energy consumed for the development of the slice of crack opening 𝑊′, can be expressed 

by equation (46). 

 
𝑊′ = ∫ 𝜎(∆′)

∆

0

𝑑∆′ (46) 

𝑊′ is essentially the area below the 𝜎-∆′ curve. The energy stored far ahead of the 

crack tip can be simply found as the product of 𝜎 and ∆′. Then the energy released by the 

cracking (𝑑𝑒) can be found using equation (47), and it is essentially the area above the 𝜎-

∆′ curve.  

 𝑑𝑒 =  ∆′𝜎 − 𝑊′ (47) 

Following above, the 𝐽-integral of crack channelling (𝐽𝑐ℎ) in the steady state can be 

expressed. 

 
𝐽𝑐ℎ = 

𝑑𝑒

𝑎
 (48) 
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5.2. Benchmarking of Linear Elastic Numerical Model 

In this section, the FE fracture mechanics model will be benchmarked to Beuth’s 

equations. As Beuth’s equations are only valid for linear cases, the linear stress-strain 

behaviour of coating A and steel substrate were used. According to Table 2, the modulus 

of the coatings, 5.2 GPa, and the Poisson’ ratio 0.3 was used. The substrate modulus of 

200 GPa, and Poisson’s ratio of 0.3 was used. A series of defect sizes 𝑎 from 30 to 300 

m were investigated, and the ratio of defect size to coating thickness, 𝑎/ℎ, was from 

0.1 to 1. A uniform tensile strain of 1% was applied on the right edge of the model. The 

𝐽-integral of crack penetration (𝐽𝑝) and channelling (𝐽𝑐ℎ) for selected defect sizes were 

calculated using the methods described in the last section. Recall that in linear elastic 

case, 𝐽-integral is equivalent to energy release rate (𝐺). 

The same linear material properties, coating thickness, and defect depths were used 

in Beuth’s equations to calculate the energy release rates of crack penetration and 

channelling. Using the Young’s modulus and Poisson’s ratios of the materials, the 

Dundur’s parameters were determined using equations (20) and (21), and 𝛼 was found 

to be -0.95 and 𝛽 was found to be -0.27, which reflect that it was combination of a high-

modulus substrate and a low-modulus coating. The Dundur’s parameters were then 

employed into to equation (22), and the singularity exponent 𝑠  was calculated to be 

0.302. These parameters along with a series of 𝑎/ℎ ratios ranging from 0 to 1 were then 

introduced into equations (24) and (27), which produced the values of 𝑓 and 𝑔 factors 

for different 𝑎/ℎ ratios. The values of 𝑓 and 𝑔 factors can be introduced to equations 

(25) and (26) to calculate the energy release rates. In the current calculations the energy 

release rates were non-dimensionalised by rearranging equations (25) and (26) into 

equations (49) and (50) shown below. In these equations, 𝑁𝐷(𝐺𝑝) and 𝑁𝐷(𝐺𝑐ℎ) are 

non-dimensionalised energy release rates for crack penetration and channelling 

respectively. 

 
𝑁𝐷(𝐺𝑝) =

𝐸̅𝐶𝐺𝑝

𝜋𝜎2ℎ
= 𝑓 (𝛼, 𝛽,

𝑎

ℎ
)

2

 (49) 
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𝑁𝐷(𝐺𝑐ℎ) =

𝐺𝑐ℎ𝐸̅𝑐

𝜋𝜎2ℎ
=

1

2
 𝑔 (𝛼, 𝛽,

𝑎

ℎ
) (50) 

The non-dimensionalisation eliminated the direct influence of coating thickness ℎ and 

stress 𝜎 , and only kept the Dundur’s parameters representing the coating/substrate 

stiffness mismatch, and 𝑎/ℎ ratio representing the depth of crack tip relative to the 

interface. The non-dimensionalised values can be directly calculated by introducing the 

values of 𝑓 and 𝑔 factors into equations (49) and (50) respectively. Similarly the results 

produced using the FE model can also be non-diminsionalised using the middle terms of 

equations (49) and (50). The non-dimensionalised linear 𝐽-integrals of crack penetration 

and channelling as a function of 𝑎/ℎ ratio, produced by both the FEA model and Beuth’s 

equations are shown in Figure 82. 

 
Figure 82. Non-dimensionalised J-integral of crack penetration and channelling calculated using 
Beuth’s equations and the 2D FEA plane strain model. Linear material properties were used.  

The FEA results demonstrate the same trends as the results calculated using Beuth’s 

equations. The two sets of results show a very good match, the maximum difference 

between them is about 3% of the set calculated using Beuth’s equations. For the results 

calculated using both methods, the penetration plot exhibits a near parabolic shape, it 

peaks at an 𝑎/ℎ ratio of about 0.7 and decreases afterwards and approaches 0 as the 
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𝑎/ℎ ratio approaches 1. The channelling plot increases for most of the 𝑎/ℎ range until 

an 𝑎/ℎ of about 0.93, where it intersects with the penetration plots. After that, the 

channelling plot value slightly reduces to about 98% of the maximum. Before the 

penetration plots reach the peak, it is more than 70% higher than the channelling plots 

and becomes lower than the channelling plot after their intersection. Figure 82 indicates 

that for defects with 𝑎/ℎ  ratio less than 0.93 the penetration process is favoured 

compared to the channelling process.  

5.3. Material Properties Use for Non-linear Elastic Modelling 

During the substrated tensile tests, both coating and substrate experienced non-

linear deformation, hence had changing stiffness mismatch at different strains, which 

would influence the calculation of the 𝐽-integrals [129]. To include the effect of changing 

stiffness mismatch, the elastic stress-strain behaviour of the materials ought to be 

incorporated. As 𝐽-integral is calculated using deformation plasticity, the elastic-plastic 

stress-strain behaviour is represented for monotonic loading as non-linear elasticity. 

The non-linear stress-strain behaviour of the materials at ambient temperature (23 

°C), shown in Figure 23 (page 52) for the coatings and in Figure 36 (page 67) for the 

substrate, were employed in a form depicted by the Ramberg-Osgood relationship [176] 

as follows. 

 
𝐸𝜀 = 𝜎 + 𝜃 (

|𝜎|

𝜎𝑌
)

𝑛−1

𝜎 (51) 

Here, 𝜎𝑌  is the yield stress of the material, 𝜃  is the “yield” offset, and 𝑛  is the 

hardening exponent. The parameters 𝜃 and 𝑛 can be found by fitting the expression to 

the known material stress-strain curves. Note, the Ramberg-Osgood relationship is 

normally used to describe the elastic-plastic deformation of materials, however, in the 

current work, it was used only to describe the material stress-strain curves for the FE 

analysis. The factors 𝜎𝑌 , 𝜃 , and 𝑛  are used as fitting parameters without physical 

meanings. 
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Given that the measured stress-strain behaviour of the coatings are similar, the 

coating A stress-strain behaviour at ambient temperature was adopted for both coatings. 

Also, in all the calculations, the deformation of substrate was considered to be uniform, 

and therefore only the stress-strain behaviour of the pre-strained substrate was used. 

Five stress-strain curves of free film samples of coating A and 5 stress-strain curves of 

pre-strained substrates were used to fit equation (51) using Matlab. To give the best fits, 

the yielding stresses of the coating and substrate were chosen as 15 and 500 MPa 

respectively, which achieved the best fits of the data. The results of 𝜃 and 𝑛 are shown in 

Table 11. The stress-strain curves described by the employed Ramberg-Osgood 

relationships are shown in Figure 83. In ABAQUS the material deformation was described 

as non-linear elasticity, which under monotonically increasing stress or strain is an 

appropriate approximation of both coatings and substrate. Note, the actual coating strain 

to failure was about 0.74%, thus the stress-strain behaviour described using Ramberg-

Osgood equation beyond the fracture strain is an extrapolation. 

Table 11. Ramberg-Osgood parameters of the materials employed in the FEA models for non-linear 
analysis. 

 Modulus 𝐸 
(GPa) 

𝜎𝑌 (MPa) 𝜃 𝑛 

Steel substrate 200 500 1.554 23.370 

Coating A 5.2 15 0.016 4.422 

 
Figure 83. Stress-Strain curves of substrate and coating at 23 C 
employed for numerical calculations. 
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5.4. Validation of Thermal Stress Calculation 

In the substrated coating samples, the coatings developed thermal residual stresses 

after curing, see section 4.1. To model the fracture of substrated coatings, this thermal 

residual stress ought to be included in the calculation of 𝐽-integrals. A thermal residual 

stress model was set up to calculate residual stress in the current coatings at 23 C, of 

which the results were compared to the experimental values. 

5.4.1. Simulation of bi-layer strip deflection due to thermal stress 

A 3D model simulating the coating/substrate bi-layer strip samples for thermal stress 

measurement was developed. The actual model simulated a quarter of the strip sample 

shown in Figure 84A. The edges at the centre lines were assigned with symmetry 

boundary conditions, see Figure 84B. The bottom edge of the transverse centre was fixed 

in Z direction movement, see Figure 84C, which simulated that the sample was supported 

on a surface with only a line contact. The average coating thicknesses of the strip samples, 

0.24 mm and 0.29 mm for coatings A and B respectively, as well as the average substrate 

thickness of 0.21 mm were used for both coatings. All elements were 20-noded quadratic 

bricks. In the XY plane, the elements have the same length and width of 0.45 mm, and in 

Z direction (thickness direction) three elements were assigned in each layer. In ABAQUS, 

thermal strains/stresses can be induced by applying temperature reduction to a model 

with different thermal expansion coefficients being included as material properties. The 

deflection of the model under temperature reduction was compared to the measured 

values. 

For the calculation of residual stress, the non-linear stress-strain curves of the 

materials were used. The thermal expansion coefficients of the coatings and steel 

substrate presented in Table 2 were used. For both coatings, temperature reductions 

from 𝑇𝑔 to 23 °C were applied, for coating A it was 65 to 23 C, and for coating B it was 

69 to 23 C. Here, the 𝑇𝑔 was considered as the thermal stress free temperature, rather 
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than 100 C, because above 𝑇𝑔 the modulus of the coatings was so small that the thermal 

stress generated was negligible. 

 

Figure 84. Illustration of the 3D model simulating a quarter of a coating/steel bi-
layer strip sample. (B) shows the length and width dimension of the model; (C) 
shows a close-up view the centre of the model. 

The deflections of the models with coatings A and B under the applied temperature 

reductions are shown in Figure 85. The result shows the entire 267 mm length of an actual 

bi-layer sample by mirroring the models. The deflections of the models were found to be 

20.42 and 27.22 mm for coatings A and B respectively. The deflections along with the 
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material properties and other dimensions were also employed into equations (2) to (4) 

(page 10) to produce thermal stresses and equivalent mechanical strains, and the results 

are shown in Table 12, in which the measured values are also shown for comparison. 

 

Figure 85. Deflections of the models under the applied temperature reduction from 𝑻𝒈 to 

23 °C. This figure shows the entire length of 267 mm by mirroring the models. 

Table 12. Bi-layer deflections and corresponding thermal stresses and strains produced using FE 
modelling in comparison of experimental results. 

 FE modelling Experiment (average of 3 samples) 

Coating 
Calculated 
Deflection 

(mm) 

Thermal 
residual 
stress 
(MPa) 

Thermal 
residual 

strain (%) 

Measured 
Deflection 

(mm) 

Thermal 
residual 
stress 
(MPa) 

Thermal 
residual 

strain (%) 

A 20.42 12.80 0.17 16.00  
± 2.23 

10.93  
± 0.57 

0.15  
± 0.01 

B 27.22 14.67 0.20 26.11  
± 1.35 

14.25  
± 1.15 

0.19  
± 0.02 

The results show that the deflections calculated using the FE models are greater than 

those measured experimentally. The deflection of coating A model is about 28% greater 

that the measured deflection, while the deflection of coating B model is only about 4% 

greater than the measured value. When the calculated deflections are converted into 

thermal stresses and equivalent mechanical strains, the differences between the 

calculated and measured values become smaller. The thermal stress and equivalent 

mechanical strain of coating A calculated using FE-produced deflection is about 17% 

greater than those measured experimentally, while the thermal stress and equivalent 
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mechanical strain of coating B calculated using FE-produced deflection is only about 3% 

greater than the experimental values. The reason why the FE model of coating A 

overestimated the thermal stresses might be that stress relaxation occurred in the 

coatings during the actual cooling process, which was not considered in the model. There 

are several other factors that could possibly influence the results. If the measured 

thermal expansion coefficient and 𝑇𝑔 overestimated the actual values, they can produce 

overestimated thermal stresses. Also, the coating thickness in the models was uniform, if 

the measured coating thickness of the samples was overestimated compared to the 

average thickness along the sample length, this could also lead to an overestimated FE 

modelling results. In general, the FE model produced deflections similar to those 

measured experimentally, which provided confidence to use the measured thermal 

properties of the coatings in the calculation of 𝐽 -integrals of coating cracks under 

thermally induced stresses. 

5.4.2. Comparison between 2D and 3D models 

Thermal stresses in coatings generated due to temperature changes are in a biaxial 

state, in which the stress in one direction equals the stress in a direction perpendicular 

to the first direction in the same plane. A 3D FE model would be the most appropriate to 

simulate stress development in such situations. However, in this work, the 𝐽-integrals of 

coating cracks under stress were evaluated using a 2D plane strain model. Thus there was 

a need to prove a 2D plane strain model was able to produce correctly thermal stress in 

the required direction. For this purpose, a 2D and a 3D model of a 0.3 mm coating on a 

5.5 mm thick substrate were developed to calculate thermal stress and strain under the 

same temperature reduction, see Figure 86. The 2D model is essentially the FE fracture 

mechanics model. The 3D model simulates a quarter of a structure with a length of 25 

mm and a width of 12.5 mm, which represent the gauge length of a substrated coating 

sample for static tensile tests. The 2D model is essentially a XY plane of the 3D model with 

no thickness in Z direction. 
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Figure 86. A 2D and a 3D model of a 0.3 thick mm coating on a 5.5 mm thick substrate. The 
dimensions of the 2D model are the same as those of the XY plane of the 3D model. 

For the 3D model, the XY and YZ central planes were assigned with symmetries in Z 

and X directions respectively. Similar to the 2D model, a Y direction constraint was 
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assigned to the bottom surface of the 3D model, and the YZ plane at the other end was 

limited to keep perpendicular to the bottom surface at all time. The XY plane opposite to 

the central XY plane did not have any constraint, which simulated the free edge of a 

substrated coating sample.  

For this calculation, the non-linear stress-strain behaviour of coating A and substrate 

was used. A temperature reduction from the 𝑇𝑔 of coating A to 23 °C was applied. The 

resultant thermal stresses in X and Y directions along paths on coating surface are shown 

in Figure 87. The paths are illustrated by the orange arrowed lines, of which 0 

corresponds to the start of the path. 

Figure 87A shows that the thermal stresses in X direction produced by both models 

were independent from the position along the paths. This is because the models 

simulated infinite length, and there was no edge effect. Both models produced thermal 

stresses of about 13.8 MPa, while the thermal stress produced by the 2D model was 0.2% 

smaller than that by the 3D model. Figure 87B shows that the thermal stresses in Z 

direction produced by both models, and in the figure only the path in the 3D model could 

be defined as the 2D model had no dimension in Z direction. The thermal stress in Z 

direction produced by the 2D model was about 16.4 MPa, which was about 19% greater 

than the maximum thermal stress in Z direction produced by the 3D model. The reason 

for this was that the 2D model was in plane strain, which does not allow any deformation 

in the Z direction, thus the volumetric shrinkage of the coating was completely 

constrained and translated into thermal stress. In contrast, in the 3D model, part of the 

coating volume shrinkage was accommodated by the shrinkage of the substrate, and only 

the rest of coating shrinkage that exceeded the substrate shrinkage was constrained, and 

therefore produced smaller thermal stress. Near the edge of the 3D model (position > 4 

mm), the thermal stress was found to be much smaller, and it was in compression within 

0.25 mm from the edge. This was due to the edge coating being only constrained by the 

interface, and nothing else in the Z direction. As the position moves inward from the edge 

for about 2 mm, the effect of the edge became insignificant, and the thermal stress  
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Figure 87. Thermal stresses in X and Z directions produced by the 2D and 3D 
models. 

become constant. The maximum stress in Z direction of the 3D model equalled to that in 

the X direction, which indicates that the coating was under biaxial thermal stress state.  
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As the thermal stress in the X direction produced by the 2D model was equivalent to 

that produced by the 3D model, this means that the 2D model can be used to evaluate 

the 𝐽-integrals due to thermal strains. 

5.5. Calculation of 𝐽-integrals of Coating Crack under Static Strain 

To understand the stress field around defects at the cracking onset in the coatings, 

the Von Mises stress in coating containing a defect at the measured strains to first crack 

was calculated using the FE fracture mechanics model (section 5.1) incorporating the 

non-linear elastic stress-strain curves of the materials. To simulate the samples, the 

thicknesses of coating A and B were 300 and 350 µm, and the defect depths were 60 and 

70 µm respectively. A temperature reduction from 𝑇𝑔 to 23 C was applied, introducing 

thermal residual strains of 0.17% and 0.2% in coatings A and B. Mechanical strains of 

1.04% and 0.64% were then applied. The resultant Von Mises stress distributions around 

the crack tips are shown in Figure 88. The picture on the right is an enlarged view of the 

area around the crack tips. 

In both cases, the maximum Von Mises stress reached more than 200 MPa at a 

location about 5 µm from the crack tips, and for the sake for presentation, the maximum 

stress in the colour scale is chosen to be 110 MPa to show enough contrast between 

different stresses. Figure 88 shows that the local stress in both coatings at the applied 

strains exceeds the remote nominal fracture stresses of the free films. In crack tip regions, 

the stresses are more 60 MPa, indicating the materials are well into the non-linear region 

of the stress-strain curves. Smooth stress contours were achieved. This means that the 

stresses calculated by the model were adequate to produce reliable 𝐽 -intergrals for 

cracking. 

5.5.1. 𝐽-integrals at measured strain to first crack 

To investigate 𝐽-integral values of coating cracks at different defect depths at the 

measured strain to first crack of each coating, the 𝐽-integrals of crack penetration (𝐽𝑝) 
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and channelling ( 𝐽𝑐ℎ ) at various defect depths, with 𝑎/ℎ  ratios from 0 to 1 were 

calculated using the model. To simulate the substrated coating tensile tests, the coating 

thickness of the model was replaced by the average coating thickness, 0.3 mm for coating 

A, and 0.35 mm for coating B. The same thermal and mechanical strains applied to 

calculate the Von Mises stress field were applied. These strains were the strains to first 

crack of each coating during tensile tests measured by extensometer. 

 
Figure 88. Von Mises stress field around coating surface crack tips. (A) 60 µm deep defect in 300 
µm thick coating A; (B) 70 µm deep defect in 350 µm thick coating B, both under a combination of 
thermal residual and mechanical strains simulating the conditions to the onset of first cracks in the 
tensile tests. 

Figure 89 shows the calculated defect depth dependence of 𝐽𝑝 and 𝐽𝑐ℎ in a substrated 

coating A sample at 1.04% mechanical strain, and Figure 90 shows the same in a 
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substrated coating B sample at 0.64% mechanical strain. The relationship between the 

defect size and 𝐽-integrals shown in these two figures resembles the linear case shown in 

Figure 82. For almost the entire range of defect depth, 𝐽𝑝 is greater than 𝐽𝑐ℎ, meaning 

penetration will always start before channelling. The 𝐽-integral for crack channelling (𝐽𝑐ℎ) 

is smaller than 𝐽𝑝 for both coatings at defect depths below 295 and 345 m. Although 𝐽𝑐ℎ 

increases with increasing 𝑎, 𝐽𝑐ℎ at a fixed depth will be independent of the surface crack 

length, according to equation (26). 

 
Figure 89. 𝑱𝒑  and 𝑱𝒄𝒉  of defect with various sizes in a 300 m thick coating A 

under a mechanical strain of 1.04% in the substrated coating tensile test. 

The fracture toughness of the coatings in terms of critical strain energy release rate 

(𝐺𝐶) are indicated by the horizontal lines in Figure 89 and Figure 90 for each coating. For 

coating A, at the measured strain to first crack of 1.04%, the 𝐽𝑝 for defect depth between 

75 µm and 290 µm is greater than the 𝐺𝐶 value, while the 𝐽𝑐ℎ does not reach the 𝐺𝐶 value 

even for a fully penetrated crack (𝑎 = 300 µm). For coating B at the measure strain to first 

crack of 0.67%, the 𝐽𝑝 for defect depth between 40 µm and 345 µm is greater than the 

𝐺𝐶 value; the 𝐽𝑐ℎ reached the 𝐺𝐶 for 𝑎 > 110 µm, and becomes about twice the 𝐺𝐶 for a 

fully penetrated crack (𝑎 = 350 µm). The development of 𝐽𝑝 and 𝐽𝑐ℎ with 𝑎 in comparison 

to the fracture toughness values will give discussed in chapter 6. 
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Figure 90. 𝑱𝒑  and 𝑱𝒄𝒉  of defect with various sizes in a 350 m thick coating B 

under a mechanical strain of 0.64% in the substrated coating tensile test. 

Figure 89 and Figure 90 also show that the calculated 𝐽 -integrals had a strong 

sensitivity to the defect depth. For example, the 𝐽𝑝 of a 60 m deep defect in coating A 

at 1.04% strain was twice the 𝐽𝑝 of a 30 m deep defect, but only about 2/3 of the 𝐽𝑝 of 

a 90 m deep defect. An estimation of the effect of defect depth on strain to first crack 

requires the knowledge of the strain dependence of 𝐽𝑝 of different defect depths, this is 

shown in the next section. 

5.5.2. Defect depth dependence of 𝐽𝑝 under increasing strain 

The development of 𝐽𝑝  at different defect depth during substrated coating tensile 

tests was calculated. For coating A, defect depths of 30, 60, and 90 m, and for coating 

B defect depths of 40, 70, and 100 m were studied. A temperature reduction from the 

𝑇𝑔 to 23 C was applied first, followed by a mechanical strain to 3%. 

The development of 𝐽𝑝 of defects with the three studied depths in coatings A and B 

as a function of increasing mechanical strain is shown in Figure 91 and Figure 92. In both 
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coatings, an increase or a decrease in defect size caused significant increase or decrease 

in 𝐽𝑝. For example, in coating A at a strain of 1%, the 𝐽𝑝 of the 60 m defect was about 

90% greater than that of the 30 m defect, and was about 70% of the 𝐽𝑝 of the 90 m 

deep defect. A similar situation can be found in coating B. 

The fracture toughness (𝐺𝐶) of the coatings are also indicated in Figure 91 and Figure 

92. It can be seen that the mechanical strain required for the 𝐽𝑝  to achieve the 𝐺𝐶 

increases with decreasing defect depth. In the order of decreasing defect depth, the 

mechanical strain required are 0.93%, 1.18% and 1.83% for coating A, and are 0.33%, 

0.43% and 0.64% for coating B. The indication of the defect depth dependence of the 𝐽-

integrals on the ductility of substrated coatings will be discussed later. 

 

 
Figure 91. Development of 𝑱𝒑 of defects with 3 different sizes in a 0.3 mm thick 

coating A under an increasing mechanical strain. 
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Figure 92. Development of 𝑱𝒑 of defects with 3 different sizes in a 0.35 mm thick 

coating B under an increasing mechanical strain. 

5.5.3. 𝐽-integral calculated with different coating thicknesses 

The effect of coating thickness on 𝐽-integral of crack penetration (𝐽𝑝) was investigated 

over a range of coating thickness from 0.1 to 1.5 mm. In this calculation, a fixed crack 

depth of 60 m and only coating A were considered. A temperature reduction from the 

𝑇𝑔 to 23 C was applied first, followed by a mechanical strain to 3%. 

The 𝐽𝑝 under an increasing mechanical strain in coating A with different thicknesses is 

shown in Figure 93. It can be seen that bigger coating thicknesses led to the steeper 

increase of 𝐽𝑝, and the effect of coating thickness was found to become smaller as the 

coating thickness increases. At a strain of 3%, the difference between the 𝐽𝑝 of 0.1 mm 

and 0.2 mm thick coatings was about 170 𝐽/𝑚2, while the difference between 𝐽𝑝 of the 

0.6 mm and 0.2 mm thick coatings was only about 150 𝐽/𝑚2. Indeed, as the coating 

thickness reached 0.9 mm, the effect of further thickness increase become so small that 

the plots representing thicknesses 0.9, 1.2, and 1.5 mm practically overlap together.  
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Figure 93. 𝑱𝒑 of a 60 m deep defect under increasing mechanical strain in coating 

A with different thickness. 

 
Figure 94.  𝑱𝒄𝒉 of a through-thickness crack under increasing mechanical strain in 
coating A with different thicknesses. 

The effect of coating thickness on 𝐽 -integral of crack channelling ( 𝐽𝑐ℎ ) was also 

investigated. The same model and coating thicknesses were used, while only through 
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thickness cracks were considered. The calculated 𝐽𝑐ℎ under an increase mechanical strain 

in coating A with different thicknesses is shown in Figure 94. Similar to the effect of 

coating thickness on 𝐽𝑝, the 𝐽𝑐ℎ of thicker coatings was found greater than that of thinner 

coatings. Unlike, the effect of thickness on 𝐽𝑝, the increase of 𝐽𝑐ℎ due to coating thickness 

increase was significant. To demonstrate this, the dependences of 𝐽𝑝 and 𝐽𝑐ℎ on coating 

thickness at a constant mechanical strain of 1.04% are shown in Figure 95. The 

stabilisation of 𝐽𝑝  at about 210 𝐽/𝑚2  above 0.9 mm can be clearly seen, while the 

increase of 𝐽𝑐ℎ due to coating thickness increase showed a linear relationship, and 𝐽𝑐ℎ 

overtook 𝐽𝑝 at a coating thickness of 0.3 mm. 

 
Figure 95. Thickness dependence of 𝑱𝒑 of a 60 m deep crack and 𝑱𝒄𝒉 of a through-

thickness crack under increasing mechanical strain of 1.04% in coating A with 
different thicknesses. 

The fundamental reason why 𝐽𝑝 becomes insensitive to thickness increase above 0.9 

mm is that the defect depth in comparison to the coating thickness becomes tiny. Thus, 

the thickness increase will not have noticeable effect on 𝐽𝑝 as the substrate interface is 

moving away from the defect tip. The linear dependence of 𝐽𝑐ℎ  of through-thickness 

crack on coating thickness can be explained as follows using the channelling crack energy 

balanced described in section 5.1. Suppose two through-thickness coating cracks O and 
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T are in separate coatings with thicknesses, ℎ𝑜 and ℎ𝑡, and ℎ𝑡 = 𝑛ℎ𝑜 with 𝑛 > 1, meaning 

ℎ𝑡  > ℎ𝑜. The through-thickness cracks under the same normal stress (𝜎) in these two 

coatings will have geometrically similar cross-section profiles. Because of this, the crack 

opening along crack T (𝛿𝑡) will also be 𝑛 times that of crack O (𝛿𝑜), thus according to (45) 

the collective displacement of crack T (∆′
𝑡) will be 𝑛2 times that of crack O (∆′

𝑜). As the 

energy stored in front of a channelling crack is 𝜎 ∙ ∆′ (section 5.1), the energy stored in 

front of crack T will be 𝑛2 times that stored in from of crack O. Similarly, according to 

equation (46) the work down (𝑊′) for crack T opening will also be 𝑛2 times that of crack 

O. Thus, the energy released (𝜎 ∙ ∆′ − 𝑊′) due to a unit channelling growth of crack T 

(𝑑𝑒𝑡) will also be 𝑛2 times that of crack O (𝑑𝑒𝑜). According to equation (48), 𝐽𝑐ℎ = 𝑑𝑒/ℎ 

for through-thickness cracks, the ratio of the 𝐽-integral for the channelling of crack T 

(𝐽𝑐ℎ_𝑡) to that of crack O (𝐽𝑐ℎ_𝑜) can be expressed. 

 
𝐽𝑐ℎ_𝑡

𝐽𝑐ℎ_𝑜
=

𝑑𝑒𝑡

ℎ𝑡
𝑑𝑒𝑜

ℎ𝑜

⁄ =
𝑑𝑒𝑡

𝑑𝑒𝑜
∙
ℎ𝑜

ℎ𝑡
= 𝑛2 ∙

1

𝑛
= 𝑛 (52) 

Equation (52) clearly shows that 𝐽𝑐ℎ_𝑡  to 𝐽𝑐ℎ_𝑜 ratio is the same as ℎ𝑡 to ℎ𝑜 ratio, and 

thus explains the linear dependence of 𝐽𝑐ℎ on thickness. 
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6. DISCUSSION OF COATING FRACTURE IN EXPERIMENTS 

This chapter will discuss the coating fracture behaviour observed in the mechanical 

tests under both static and cyclic strains. During mechanical testing, coating fracture was 

primarily caused by mechanical strains in addition to a thermal residual strain. This is 

different from WBT coating failure in service where thermal strain is predominant. 

Following this chapter, the numerical calculations regarding the coating failure under 

thermal strains in service will be introduced, and then the relevance of the current 

experimental work to the coating failure in service will be discussed.  

6.1. Properties of Coatings and Substrate  

The temperature dependence (Figure 24) of all these properties of the coatings has 

been widely observed in other polymeric materials [33] including some WBT coatings [10] 

tested at various temperatures. The increased temperature leads to the expansion of the 

free volume between the molecular chains, which causes a reduced resistance of the 

molecular chain movement under deformation, and it is then reflected by the increase of 

the ductility and the decrease of modulus of the material [33].  

The measured modulus of steel of about 200 GPa is typical, and can be found in 

textbooks or reference books [177]. The high strain bands developed in non-pre-strained 

substrated (Figure 35) should be Lüder’s bands [178]. This is also typical, and widely found 

in low-carbon steel, and some aluminium alloys [178].  

Due to the non-linear stress-strain behaviour of the coating and substrate, the 

stiffness mismatch will vary depending on the strain. Defining the effective stiffness as 

the tangent modulus at different strains, the effective stiffness of coatings and substrate 

as a function of strain can be produced using the stress-strain curves of the coating and 

substrate, see Figure 96. As the Dundur’s parameter 𝛼 quantifies the stiffness mismatch, 

the effective stiffness of the coatings and substrate was employed in equation (20) (page 

25) to calculate 𝛼 at various strains, which is also shown in Figure 96. 
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The effective stiffness of both coatings and substrate reduces as the strain increases. 

Below 0.2% strain, the effective stiffness of the coatings and substrate was the same as 

the Young’s modulus; while at 3% strain, the effective stiffness of the coatings and 

substrate reduced to 0.6 and 1 GPa respectively. The reduction of the effective stiffness 

of the substrate was much greater than that of the coatings, leading to the reduction of 

stiffness mismatch. Below 0.2% strain, the Dundur’s parameter 𝛼 was about -0.95, and 

as the strain increased to about 1%,  𝛼  increased to about -0.2. As the reduction of 

substrate effective stiffness was about 43 times the reduction of coating effective 

stiffness, the increase of 𝛼  should be primarily caused by the change of substrate 

effective stiffness. 

 
Figure 96. Strain dependence of the effective stiffness of coatings and substrate, 
and corresponding Dundur’s parameter 𝜶.  

The effects of coating/substrate stiffness mismatch on the fracture of coatings have 

been theoretically explored by several researchers [129,174,179,180], and it has been 

found that an increase of 𝛼 encourages coating fracture. Therefore the adoption of non-

linear stress-strain behaviour of the materials in the FE analysis of 𝐽-integrals for coating 
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cracking shown was more appropriate than assuming the materials were linear-elastic. In 

service, substrates will not experience stresses beyond yielding point, and therefore the 

modulus will remain constant, thus 𝛼 will also remain roughly constant at about -0.95.  

6.2. Fracture of Coating Free films 

The stress-strain curves of un-notched free films at ambient temperature (Figure 23 

on page 52) suggests that at the fracture of free films of both coatings A and B the 

deviation from linear elasticity was small. Thus, it can be assumed that the fracture 

toughness (𝐺𝐶) of the coating free films at the fracture strain of the un-notched samples 

were the same as those measured using the double notched samples. Using the 𝐺𝐶, the 

defect size in the un-notched free films can be estimated. There were three types of 

defects that might be present in the un-notched free film samples, and they were: 1) 

through-thickness edge defect, 2) semi-circular surface defect, and 3) internal defect, see 

Figure 97, which illustrates these possible defects in a section of a free film. As internal 

defects have smaller 𝐾 or 𝐺 to initiate cracking in comparison to the other two types of 

defects for the same sizes [93], thus they were unlikely to cause failure. The sizes of 

defects as in surface semi-circular and through-thickness edge defects were estimated. 

Strain energy release rate for a semi-circular surface defect (𝐺𝑠𝑢𝑟𝑓) with 𝑎 = 𝑐 and a 

through-thickness edge defect (𝐺𝑒𝑑𝑔𝑒) in mode I can be expressed by the equations (53) 

[181] and (54) [167] respectively. Here, 𝜎 is the remote normal stress, 𝐸𝑐  is the coating 

modulus. The other symbols are shown in Figure 97. 𝑓𝑠𝑢𝑟𝑓  and 𝑓𝑒𝑑𝑔𝑒  are geometry 

correction factors, which are shown following the respective equations. 

 
𝐺𝑠𝑢𝑟𝑓 =

𝜋𝜎2𝑎

2.464𝐸𝑐
𝑓𝑠𝑢𝑟𝑓

2 (53) 
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𝐺𝑒𝑑𝑔𝑒 =

𝜋𝜎2𝑎

𝐸𝑐
𝑓𝑒𝑑𝑔𝑒(𝑎/𝑊)2 (54) 
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Figure 97. Schematic of possible defects in un-notched free film samples. 

Using the equations above, the relationship between the energy release rate (𝐺) and 

defect size (𝑎) for both surface semi-circular and through-thickness edge cracks at the 

failure strain of the coatings can be produced. For the calculation, a nominal thickness ℎ 

of 0.3 mm and a nominal width 𝑊 of 12 mm were used. Figure 98 and Figure 99 show 

the results for free films of coatings A and B respectively. In both figures, 𝐺𝑠𝑢𝑟𝑓 and 𝐺𝑒𝑑𝑔𝑒  

is shown by a red solid line and a dashed line respectively; the defect size 𝑎 for the surface 

semi-circular defect ranges from 0 to 0.29 mm, as 𝑎  needs to be smaller than the 

thickness (0.3 mm) in order to remain in a surface crack. 
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The 𝐽 -integral of through-thickness edge defects ( 𝐽𝑒𝑑𝑔𝑒 ) was also calculated 

numerically using a 2D plane stress free film model (see appendix viii) incorporating both 

linear and non-linear stress-strain curves of the coatings shown in section 5.3 (page130). 

The results are also shown in Figure 98 and Figure 99 for each coating. The 𝐽𝑒𝑑𝑔𝑒  values 

calculated using linear elastic stress-strain curves are shown by empty square data points. 

The results are the same as the 𝐺𝑒𝑑𝑔𝑒  produced using equation (54). The 𝐽𝑒𝑑𝑔𝑒  values 

produced using non-linear stress-strain curves are shown by solid black circles linked by 

a black solid line, and they are found to be 6% and 9% greater than the 𝐺𝑒𝑑𝑔𝑒  for coatings 

A and B respectively. The small difference between 𝐽𝑒𝑑𝑔𝑒  and 𝐺𝑒𝑑𝑔𝑒  indicates that the 

effect of non-linearity at crack tip on strain energy release rate was small. 

 
Figure 98. Strain energy release rate (𝑮) and J-integral (𝑱) as a function of 
defect size at the measured failure strain (0.67%) of coating A free film at 
ambient temperature. The empty squares are data points calculated using 
FE method incorporating linear elastic stress-strain behaviour. 

Normally, when 𝐽-integral is used to predict fracture, a fracture toughness measured 

in terms of critical 𝐽-integral at fracture (𝐽𝐶) is required. Given that the effect of stress-

strain non-linearity on the cracking drive forces is found to be small, it is assumed here 

that the 𝐽𝐶  of the coatings is the same as the 𝐺𝐶, and the measured 𝐺𝐶 values will be used 

as the fracture toughness values of the coatings throughout this thesis. 
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Figure 99. Strain energy release rate (𝑮) and J-integral (𝑱) as a function of 
defect size at the measured failure strain (0.34%) of coating B free film at 
ambient temperature. The empty squares are data points calculated using 
FE method incorporating linear elastic stress-strain behaviour. 

It can be seen that for both coatings, the maximum 𝐺𝑠𝑢𝑟𝑓 was still much less than the 

𝐺𝐶, meaning that defects in the form of semi-circular surface defect should not be the 

source that initiated the fracture of free films. In comparison, the 𝐺𝑒𝑑𝑔𝑒  of through-

thickness edge defect exceeded the 𝐺𝐶 as the defect size 𝑎 exceeded 0.25 mm and 0.34 

mm in coatings A and B respectively. Using 𝐽𝑒𝑑𝑔𝑒 , the 𝑎 of through-thickness edge defect 

giving the current fracture strains was found to be 0.23 mm and 0.32 mm for coatings A 

and B respectively. 

The estimated defect sizes in both coatings had a small difference of about 0.09 mm, 

this may indicate that the defects were introduced in the same way. The predicted sizes 

of these defects were much greater than the possible surface defects observed from the 

locally bent free films (Figure 31 and Figure 32 on page 62) by a factor of about 3 to 4. 

During the tensile tests, the entire gauge length was stressed equally, and fracture would 

occur from the defects with the largest available strain energy release rate within the 
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bulk. In the current case, the defects might be through-thickness edge defects introduced 

due to sample cutting. 

6.3. Fracture of Substrated Coatings 

The observation of coating cracking in mechanical tests similar to that performed in 

the current work can be found in a number of publications [14,16,147–155]. Previous 

work has shown that the nominal strain to first crack of substrated coatings could be 

either greater [182,183], in agreement of the current test results, or smaller [161] than 

free film fracture strain. It is unclear why there should be this anomaly, since the 

substrated coatings contained residual tensile strains of about 0.2%, due to which the 

ductility of the substrated coating ought to be consistently smaller than the free films. 

A fracture mechanics approach [129,135] predicts that the strain to first crack of 

substrated coatings will depend on 1) defect size, 2) coating thickness, 3) residual stress 

level. There is a further factor of substrate inhomogeneous strain distribution (Figure 35 

on page 66), which can result in local strain at the onset of cracking being much greater 

than the nominal strain measured using the entire gauge length (Table 8). For similar tests 

in the future, the yield behaviour of substrates ought to be reported. It is not clear yet 

how other substrates would behave. A reliable measurement of strain to fracture should 

be made only based on local strains or on nominal strains of pre-strained substrates. This 

however is a laboratory issue only, because in reality the failure of the current coatings is 

primarily caused by thermal stress/strains, and substrate will not yield. The discussion 

that follows will assume homogeneous substrate deformation.  

In addition, there is also a difference between the defects in free films and substrated 

coatings. Free films are likely to have edge defects introduced due to sample cutting 

during manufacturing. In contrast, substrated coatings are unlikely to have crack initiating 

defects away from the edges, as there is no need to cut them from a bigger sheet. That 

cracking initiation in substrated coatings always occurred away from sample edges 

(Figure 42) is a good demonstration. The defect size of free film depends on the 
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manufacturing process, and the defect size of substrated coatings may vary depending 

on the size of fillers. The strain dependence of the energy release rate of these two types 

of defects may be highly different. Thus, it is recommended to use the failure strain of 

one type of sample to predict the failure strain of the other.  

6.3.1. Fracture mechanics prediction of substrated coating fracture behaviour 

Different from cracks in monolithic service applications, where the crack drive force 

(𝐺 or 𝐽) increases monotonically with crack depth [93], the 𝐽𝑝 for crack penetration is not 

monotonic with an increasing crack depth (Figure 89 and Figure 90). This behaviour in 

substrated coatings reflects the increased constraining effect of the substrate as the crack 

tip approaches the coating/substrate interface [129]. At the measured strain to failure, 

Figure 89 and Figure 90 predict that penetration will start at defect depths (𝑎) of about 

75 µm and 40 µm in coatings A and B, because the fracture toughness is reached by 𝐽𝑝. 

The penetration crack will propagate unstably and stop before reaching the interface, as 

𝐽𝑝 falls below the toughness. 

In the case of coating A, 𝐽𝑐ℎ does not exceed the measured 𝐺𝐶 when the penetration 

process is complete, meaning channelling will not start at the measured strain to first 

crack. This is illustrated by the crack front 1 shown in Figure 100A, which shows a 

penetrated crack before the onset of channelling at an applied strain of 1.04%. As the 

applied strain increased further, and 𝐽𝑐ℎ exceeds 𝐺𝐶, the crack front 1 will spread to crack 

front 2, leading to a large surface crack length increase. 

In the case of coating B, 𝐽𝑐ℎ exceeds the measured 𝐺𝐶 as the surface crack unstably 

penetrates to an 𝑎 greater than 110 m. This indicates that crack channelling should start 

immediately after the onset of penetration in coating B without the need of any further 

increase in applied strain. Figure 100B illustrates this process. The difference between 

the channelling cracking behaviour of the coatings may explain the more abrupt crack 

opening observed for the first crack in coating B (Figure 46), as a greater crack opening 

can be caused by immediate crack channelling after penetration initiated.  
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Figure 100. Illustration of cracking process in substrated coatings A and B. 

In this work, the penetration and channelling of cracks were treated as two 

independent 2D processes. In reality, a single surface crack will contain both penetration 

and channelling components, as shown in Figure 100. The respective values of 𝐽𝑝 and 𝐽𝑐ℎ 

will depend on the crack front profile. In linear elastic fracture mechanics of monolithic 

materials, the effect of surface crack geometry on stress intensity around the crack front 

has been studied intensively [184], whilst for shape similar to the original coating defect 

with depth similar to half of surface length, stress intensity is approximately equal all the 

way along the crack front. For the shape adopted in crack front 1 shown in Figure 100A 

with depth considerably greater than surface crack length, the largest stress intensity 

would be at the surface, equivalent to 𝐽𝑐ℎ. Assuming this behaviour can be extrapolated 

to the behaviour of cracks in coatings, the initial 𝐽𝑐ℎ may be insufficient for channelling 

crack extension. However, the crack penetration will change the crack front profile which 

in turn will increase 𝐽𝑐ℎ at the surface relative to 𝐽𝑝. 

As 𝐽𝑐ℎ  is independent of the surface crack length ( 𝑙 ), channelling cracks should 

propagate across the entire sample width once the coating toughness is reached. 
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However, this was not observed, and instead the crack channelling in the current 

substrated coating samples required an increasing strain to proceed, see Figure 42 (page 

81). There are two reasons that might have caused this. 

Firstly, the current coatings were not linearly elastic, and it is conceivable that crack 

tip blunting occurred at the tips of channelling cracks. Kinloch and Williams [121] have 

reported that crack tip blunting in test samples with constant stress intensity factors 

(similar to channelling cracks in coatings) was likely to occur for epoxy resins with yield 

stresses less than 50 MPa. In this case, the crack growth requires a continuously 

increasing strain, as the increase of crack length enhanced the crack blunting, thus also 

increased the effective critical stress intensity factor as crack length increased. The 

current coatings with yielding stresses smaller than 50 MPa are in this category. Thus, 

this might be the reason that channelling crack growth required a continuous strain 

increase. Secondly, the current coatings are microscopically heterogeneous with fillers 

within the scale of the crack. It is very likely that the front of channelling crack was pinned 

at the fillers [124,125], thus the fracture toughness was effectively increased. 

6.3.2. Effect of defect depth on strain to first crack 

Coating cracking in the current samples should start by surface defect penetration, of 

which the strain to the onset is strongly influenced by defect depth via its effect on 𝐽-

integral for penetration ( 𝐽𝑝 ). Figure 91 (page 142) and Figure 92 have already 

demonstrated a high sensitivity of coating ductility to the defect size, and a reduction in 

defect size can lead to an increased coating ductility.  

Photographs in Figure 31 and Figure 32 (page 62) suggest that the fillers in the current 

coatings were associated with filler or agglomeration of fillers with clean surfaces. As 

fillers de-bond from the surrounding resins they could act as defects [26], and the size of 

de-bonded filler could determine the size of defect. Song et al. [161] have already shown 

that a larger filler, which could also be a large defect, leading to the reduction of the 

fracture strain of some epoxy based coatings. As the strain to penetration onset is 
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predicted to reduce significantly with the small increase of defect sizes, WBT coatings 

adopting smaller fillers could therefore have a reduced defect size and an increased 

ductility. 

Note, the onset of penetration will not necessarily lead to channelling as the the 𝐽-

integral for channelling ( 𝐽𝑐ℎ ) in the coatings could still be smaller than the coating 

toughness, such as the case of coating A shown in Figure 89. 

6.3.3. Effects of coating thickness on strain to first crack 

Another important parameter in the application of coatings is the coating thickness. 

For different applications of coatings, different thickness ranges are usually 

recommended, and excessive coating thickness normally leads to pre-mature failure of 

the coatings [58,78]. The thickness dependence of 𝐽-integrals of coating cracking has 

been explored in the section 5.5.3 (page 143). 

Figure 95 indicates that the effect of coating thickness the initiation of crack 

penetration is significant only below a thickness about 0.3 mm. An increase of thickness 

from 0.3 mm to 1.5 mm will only lead to a 12% increase in the 𝐽𝑝, translating to a 12% 

reduction in strain to first crack. However, it has been well understood [185] that an 

increase in thickness will lead to the increase of residual stress of epoxy coatings after 

curing. This suggests that for the current coatings, if the thickness increases to, for 

example, 1.5 mm, the reduction of strain to first crack should be greater than just 12% 

due to the increased residual stress. 

Using Figure 95 the effect coating thickness on the onset of crack channelling can be 

inferred. Between ℎ of 0.07 and 0.3 mm the  𝐽𝑐ℎ of a though-thickness crack is smaller 

than the  𝐽𝑝 , which means that as 𝐽𝑝  reaches the coating fracture toughness and 

penetration takes place, forming a through-thickness crack, of which the  𝐽𝑐ℎ will still be 

smaller than the toughness, and thus channelling will not start until further strain/stress 

is applied. This is similar to the case shown in Figure 100A for coating A. As ℎ exceed 0.3 

mm, 𝐽𝑐ℎ  will exceed 𝐽𝑝 . In this case, once penetration occurs and forms a through-
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thickness crack, the 𝐽𝑐ℎ will also be greater than the coating toughness, which will lead to 

channelling cracking immediately. This is similar to the case of coating B shown in Figure 

100B. This indicates the cracking behaviour observed on the current coating A samples 

may be changed by increasing coating thickness ℎ, as an increased thickness encourages 

channelling to occur immediately after penetration starts.  

Since the change of coating thickness will lead to the change of 𝑎/ℎ  ratio for a 

constant 𝑎, reduction of thickness towards defect size will lead to the increase of 𝑎/ℎ 

ratio.  When 𝑎/ℎ ratio is greater than 0.93, meaning nearly through-thickness crack, the 

𝐽-integral for channelling (𝐽𝑐ℎ ) will be greater than the 𝐽-integral for penetration (𝐽𝑝 ) 

(Figure 82). This means that cracking will commence by channelling, and thus the strain 

to failure will be determined by strain to channel. This means by changing coating 

thickness, the cracking initiation mode can be altered. Experimental evidence for this has 

been provided by Chai [179], who successfully predicted the thickness dependence of the 

measured strain to failure of a type of epoxy coating on metallic substrate using 2D 

models, and found a critical coating thickness, below which the strain to failure depended 

only on the channelling 𝐽𝑐ℎ. 

For the current coatings, such critical thickness can be calculated using the 𝑎/ℎ ratio 

of 0.93. As the defect depths in coatings A and B were about 60 and 70 µm, the critical 

thickness for these coatings would be 65 and 75 µm respectively, below which the 

cracking initiation mode should always be channelling. However, WBT coatings in service 

are often several hundred micrometres in thickness, this means the cracking initiation 

mode in service should be crack penetration. As thickness increase above 300 µm will 

have insignificant effect on crack initiation strain, the initiation strain will primarily 

depend on defect size. This again highlights the importance of minimising defect size. 

6.3.4. Contribution of thermal residual stress to coating cracking 

As the thermal expansion coefficients of the coatings were greater than that of the 

substrate (Table 4 on page 56), tensile thermal residual stress/strain was developed in 



CHAPTER 6 – DISCUSSION OF COATING FRACTURE IN THE EXPERIMENT 

159 

 

the substrated samples. The possible contribution of the thermal residual stress in the 

static fracture of the coatings has been evaluated by calculating the 𝐽 -integral for 

penetration (𝐽𝑝) with and without the presence of thermal residual stress. Figure 101 

shows the development of the 𝐽-integral for penetration (𝐽𝑝) of a 60 m deep defect in a 

0.3 mm thick coating A and a 70 m deep defect in a 0.35 mm thick coating B with and 

without initial thermal residual stress under an increasing mechanical strain. For both 

coatings, the 𝐽𝑝 without initial residual stress is smaller than that with initial stress at all 

strains. In the absence of residual stress, it requires a mechanical strain of 1.42% and 

0.72% for the respective defects in coatings A and B to achieve a 𝐽𝑝 the same as the free 

film fracture toughness (𝐺𝐶 ). These strains are about 20% and 70% greater than the 

predicted strains with residual stresses. This indicates that the contribution of thermal 

residual stress to the static fracture of substrated coating B should be greater than that 

to coating A. 

This also implies that the strain to first crack of coating B is more sensitive to the 

thermal residual stress than that of coating A. Thus a change of thermal residual stress, 

such as stress relaxation in the substrated samples might increase the measured strain to 

failure more significantly in coating B than in coating A. 

6.3.5. Fracture mechanics prediction of substrated coating fracture strain 

The discussion before this section focuses on the dependence of 𝐽𝑝 and 𝐽𝑐ℎ on defect 

depth, coating thickness, and residual stress. By comparing these two 𝐽 values to fracture 

toughness, the fracture behaviour of coatings A and B samples can be explained. With 

known defect depth, coating thickness, residual stress, as well as fracture toughness, 

predictions of the strain to failure of the coatings can also be made. Figure 102 shows the 

development of 𝐽-integral of penetration (𝐽𝑝) of a 60 m deep defect in a 0.3 mm thick 

substrated coating A and a 70 m deep defect in a 0.35 mm thick substrated coating B 

under increasing mechanical strain with initial thermal residual stress at 23 C. 
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Figure 101. Development of 𝑱 -integral of penetration ( 𝑱𝒑 ) under increasing 

mechanical strain with and without initial thermal residual stress. 
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These defect depths (𝑎) are the mean values of the measured defect depths in the 

coatings. It can be seen that the 𝐽𝑝 of the defects reach the measured fracture toughness 

(𝐺𝐶) of free films at mechanical strains of 1.18% and 0.43% for coatings A and B. As crack 

penetration occurs as 𝐽𝑝 reaches 𝐺𝐶, these critical mechanical strains can be seen as a 

prediction of the fracture strain of each coating during the tensile tests. These predicted 

values are about 10% greater and 30% smaller than the measured strain to first crack of 

substrated coatings A and B. 

The discrepancy between predicted values and measured values of strain to first crack 

may originate from the following factors. 

1) The coating stress-strain curves used for the 𝐽 calculations were approximated 

using extrapolation of the known free film stress-strain relationships. There may 

be an error in the calculated 𝐽 values at strains beyond the fracture strain of the 

coating free films. 

2) The thermal residual stress calculated in the FE models may be an overestimate 

of the actual residual stress level. There may be possible relaxation of the residual 

stress in the sample after re-heating and before being tested. 

The extent of the influence of these factors is difficult to assess without further 

research. However, the current results predict 1) a smaller strain to first crack of coating 

B on substrate than coating A; 2) greater ductility than free film samples even with 

residual stress included. These predictions are consistent with the observations. 

6.4. Fracture of Substrated Coatings under Cyclic Strains 

Only two pieces of published work regarding fatigue of substrated polymeric coatings 

were found [156,186], the fatigue cracking of epoxy coating under cyclic thermal stresses 

was observed in these works, but neither reported any quantitative studies of fatigue 

crack growth in the coatings. The current work is believed to be the first quantitative 

investigation into the fatigue failure of WBT coatings.  
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In this section, the fatigue lives of the substrated coatings to the first 2 mm surface 

crack under cyclic mechanical strains will be compared. After that, the coating fatigue 

crack growth in terms of single crack length and total crack length will be discussed 

separately. 

 
Figure 102. Development of 𝑱-integral of penetration (𝑱𝒑) of defects with depth of 𝒂 

in coatings A and B under an increasing mechanical strain with initial thermal 

residual stress at 23 C. 

6.4.1. Fatigue crack development from surface defect 

The thumb-nail shape feature at the coating surface (section 3.3.1) along with the 

observation of the association between coating fatigue cracks and surface spots (Figure 

51) strongly suggests that the fatigue cracks might initiate from the surface thumb-nail 

features. These cracks then propagate longer progressively under strain cycles with 

maximum strains less than the static strain to failure of the coatings. Figure 103 shows an 

ideal fatigue case of crack development that is similar to the static case. 

In this ideal case, a fatigue crack penetrates towards the interface with an elliptical 

crack front geometry, the surface crack length (𝑙) will be twice the depth of the crack. As 

the crack fully penetrates the entire thickness, 𝑙 will equal twice the coating thickness (ℎ) 
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for a semi-circular crack. After that, the crack will not penetrate into the substrate, but 

will channel sideways. 

The details of the crack shapes in coatings A and B might differ from this ideal 

scenario. The relationship between the crack depth and surface crack length during 

fatigue was not able to be observed. However, as fracture mechanics predicts that 

penetration crack will not reach the interface (Figure 82), it is highly possible that the 

surface crack length might be smaller than twice the coating thickness when the coating 

is fully penetrated, in another words the surface crack length being less than 0.6 mm 

when a 0.3 mm thick coating is fully penetrated. Therefore, the current definition of the 

first 2 mm surface crack as the criterion of fatigue failure will overestimate the cycles to 

the full penetration of coating. 

 

Figure 103. Schematic of the fracture surface of a first 2 mm fatigue crack in the current 
coating. 

6.4.2. Comparison between the fatigue lives of the coatings 

Previous research [187–189] regarding the effect of fracture toughness on fatigue life 

has already shown that monolithic epoxy-based composites with greater fracture 

toughness exhibited greater fatigue lives under the same loading conditions. Thus it is 
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not surprising to see in the current work that the substrated coating A was clearly more 

fatigue resistant than the substrated coating B in terms of lives to the first 2 mm crack. 

Effect of R ratio 

To understand the R ratio dependence of the fatigue lives of coating B, the measured 

lives are plotted with strain amplitude and corresponding maximum strain. Figure 104A 

shows the original strain-life relationship of coating B in terms strain amplitude (∆𝜀/2), 

and Figure 104B re-plots the data using maximum strain (𝜀𝑚𝑎𝑥). 

In Figure 104A, the power-fit lines of the data show that the lines come together at 

lower strains with larger lives, while in Figure 104B the lines come together at larger 

strains with smaller lives, and the lines extrapolate to a maximum strain of about 0.5% 

for a life of 1 cycles, which is the same as the measured strain to failure of coating B on 

non-pre-strained substrate. This indicates that at smaller strains the coating life is more 

prone to be dominated by the cyclic component, while at larger strains the life is more 

prone to be dominated by the static component. In comparison, the strain-life 

relationship of coating A (Figure 59, page 102) was insensitive of the R ratio, this might 

indicate that the life of coating A is dependent on the cyclic component. 

 
Figure 104. Replot of strain-life behaviour of coating B under fully reversed and zero-
tension cycles using strain amplitude (A) and maximum strain (B) as vertical axis. 
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Effect of substrate uneven deformation 

The difference between the fatigue resistances of coating B samples on pre-strained 

and non-pre-strained substrates (Figure 60) may be due to the Lüder’s bands developed 

in the non-pre-strained substrates. The effect of these bands on the fatigue cracking 

should be similar to that on static cracking (Table 8). The fatigue samples with non-pre-

strained substrates would have experienced larger strain cycles locally above the Lüder’s 

bands, and thus developed fatigue cracks at shorter lives than the samples with pre-

strained substrates under the same nominal strain cycles. Although, the local 

deformation of original substrate under 0.7% strain was not directly observed, it is likely 

that the yielding of the substrate leads to local high strains causing earlier initiation of 

cracks. 

6.4.3. Coating fatigue crack development  

Growth of single crack 

Fracture mechanics of coating cracks predicts that the 𝐽-integral for crack channelling 

(𝐽𝑐ℎ) is invariant of surface crack length [129]. Thus it is expected that the fatigue crack 

growth rate of single coating cracks would be constant. Based the literature survey 

conducted by the author, it is the first time that this behaviour is observed experimentally 

(section 4.4.4).  

Xia and Hutchinson [134] theoretically demonstrated that as the tips of two coating 

cracks approach each other, the strain energy release rates of both tips will reduce as the 

distance between the tips is smaller than a critical distance (𝐻𝑐), which can be expressed 

as, 

 𝐻𝑐 = 2𝜋𝐺(𝛼, 𝛽)ℎ (55) 

here, 𝐺(𝛼, 𝛽) is a non-dimensionalised value of a through-thickness crack which reflects 

the material dissimilarity, ℎ  is coating thickness. 𝐺(𝛼, 𝛽)  can be determined using 

equation (27). For the current coating A and B samples, with thicknesses of 0.3 and 0.35 
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mm, the 𝐻𝑐  can be determined as 1.29 and 1.5 mm respectively using equation (55). 

When the growth rate reduction of single cracks was observed in the current work, such 

as those shown in Figure 63 (page 107) and Figure 64, the cracks were found within the 

𝐻𝑐  of other surrounding cracks. Therefore it is highly possible that the slowing down of 

single crack growth was due to interaction with other nearby cracks. Looking at a greater 

scale, the slowdown of single crack growth due to interaction can also explain the 

slowdown of total crack length development as a reflection of the majority of single 

cracks being in interaction. 

It was unexpected to observe that the fatigue crack growth rates of single cracks 

within the same sample varied significantly from crack to crack, see Figure 66 (page 109) 

to Figure 69. This may be caused by 1) microstructural inhomogeneity; 2) thickness 

variation; 3) crack interaction; 4) a combination of all these above. 

Number of cracks and average crack length 

The faster growth of number of cracks in the coatings at greater strain ranges (Figure 

75 and Figure 76) is expected. Because given the distribution of defect sizes in the 

coatings, larger strains will lead to the crack initiations from both large and small defects, 

while at a small strain crack will only initiate from large defects. 

To understand the difference between the developments of the number and average 

of cracks in coatings A and B (Figure 79), a possible explanation may be given using the 

magnitude of 𝐽 -integral of crack channelling ( 𝐽𝑐ℎ ) with respect to that of crack 

penetration ( 𝐽𝑝 ). Figure 105 shows the 𝐽𝑝  of a surface defect and 𝐽𝑐ℎ  of a through 

thickness crack in coating A and B at different static strains. 

It can be seen that over the entire tested maximum strains, in coating A the 𝐽𝑐ℎ was 

about 16% greater than the 𝐽𝑝, while in coating B the 𝐽𝑐ℎ was about 55% greater than the 

𝐽𝑝. In comparison to coating A, the drive force for channelling of coating B relative to the 

drive force of penetration is much greater. Thus in coating B the propagation of already 
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existing cracks should be more dominant over the initiation of new cracks, which leads to 

the appearance of smaller number of cracks with longer lengths. 

 
Figure 105. (A) Static strain dependence of the 𝑱𝒑 of a 60 m deep defect and the 𝑱𝒄𝒉 of a 

through-thickness defect in a 0.3 mm thick coating A on substrate; (B) Static strain 

dependence of the 𝑱𝒑 of a 70 m deep defect and the 𝑱𝒄𝒉 of a through-thickness defect in 

a 0.35 mm thick coating B on substrate. 

6.4.4. Calculation of 𝐽-integral Range in Fatigue Tests 

In the studies of fatigue crack growth of metallic materials, the correlation between 

crack growth rate and stress intensity range (∆𝐾 = 𝐾𝑚𝑎𝑥 − 𝐾𝑚𝑖𝑛) under linear elastic 

conditions is usually constructed [144]. 𝐾𝑚𝑎𝑥  and 𝐾𝑚𝑖𝑛  stand for the stress intensity 

factors at the maximum and minimum stresses. Fatigue crack growth rate (𝑑𝑎/𝑑𝑁) is 

normally correlated with ∆𝐾 using the Paris Law [146], see equation (34) on page 35. 

Crack growth rate can be predicted with known ∆𝐾. As the stress-strain curves of coating 

A and B exhibited non-linearity over the applied strain ranges, 𝐽 -integral range (∆𝐽 ) 

needed to be used to correlate with crack growth rate instead of ∆𝐾. Good correlation 

between the total crack growth rate of the coatings and cyclic strain range has been 

shown in Figure 74 on page 117. As it has been discussed that coating thickness influence 

the 𝐽-integrals of cracks in coatings at the same strain (section 6.3.3), thus a correlation 

between ∆𝐽  and total crack growth rate would generalise the current fatigue crack 
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development results and expand the applicability of the current data to the coatings in 

other configurations such as different thickness. 

For metallic materials undergoing large cyclic plastic deformation, many, such as 

Dowling [190,191], demonstrated that growth rate of long [190,192,193] and short 

[191,194] cracks can be correlated with 𝐽-integral range (∆𝐽). In contrast to ∆𝐾, ∆𝐽 does 

not equal to 𝐽𝑚𝑎𝑥 − 𝐽𝑚𝑖𝑛 [195]. Similar to 𝐽 under static loading, ∆𝐽 can be treated as a 𝐽-

integral under cyclic loading [196]. For ∆𝐽 of a crack under a cyclic normal stress, an 

expression similar to the static 𝐽 -integral expression (equation (17) on page 19) 

developed by Rice [94] has been developed by Lamba [196], see equations below. 

∆𝐽 = ∮(𝜙(Δ𝜀)𝑑𝑦 − Δ𝑇𝑖

∂𝑢𝑖

∂x
𝑑𝑠) (56) 

𝜙(Δ𝜀) = ∫ Δσ ∙ d(Δ𝜀)

Δ𝜀

0

 (57) 

Here, the symbol ∆ refers to the change of the parameter between two states, and 

all the other symbols are consistent with those in equation (17). The term 𝜙(Δ𝜀) shown 

in equation (57) is the change of strain energy density between the two states. Figure 

106 shows an arbitrary cyclic hysteresis loop. The two states of this loop are the top and 

bottom turning points, at the maximum and minimum strains. 

Using the bottom turning point as the origin of a new coordinate, with the changes of 

stress (∆𝜎) and strain (∆𝜀) as Y and X axis respectively, the change of strain energy density 

𝜙(Δ𝜀) can be seen as the area below either the loading, see the shaded area in Figure 

106. By this definition, 𝐽 -integral range ( ∆𝐽 ) were calculated numerically [195] or 

analytically [190,191]. Dowling [191] dealt with the growth of single semi-circular surface 

short crack on smooth surface of monolithic A533B steel samples during low-cycle 

fatigue, and developed an approximation to calculate the ∆𝐽 based on the loading path 

of the stress-strain hysteresis loop, see equation below.  

∆𝐽 ≈ 3.2∆𝑊𝑒𝑎 + 5∆𝑊𝑝𝑎 (58) 
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Here, ∆𝑊𝑒  and ∆𝑊𝑝 are the changes in the elastic and plastic portions of strain energy 

respectively, and can be calculated with known hysteresis loops; 𝑎 is the surface crack 

length, which implies that ∆𝐽 of such cracks will be crack length dependent. Treatment of 

fatigue crack growth in coatings on a plastic deforming substrate has not yet been 

developed. 

 
Figure 106. Illustration of an arbitrary cyclic hysteresis loop and the 
definition of the change of strain energy density. 

As the total crack growth rate was measured only from coating crack channelling, the 

calculation of ∆𝐽 of the coating under cyclic strains only considered the crack channelling 

of through-thickness cracks, thus the 𝐽 -integral range for channelling ( ∆𝐽𝑐ℎ ) The 

calculation of ∆𝐽𝑐ℎ requires the knowledge of the hysteresis loops of the coatings under 

strain cycles. This could not be measured experimentally. To approximate the hysteresis 

loops of the coatings during fatigue, it will be assumed that the coatings were cyclically 

stable and the cyclic stress-strain curve was the same as the monotonic stress-strain 

curve as being described using Ramberg-Osgood relationship shown in section 5.3 (page 

129). It has been widely observed in many metallic materials in a stable state during 

fatigue tests, the unloading path of a hysteresis loop has geometric shape the same as 
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the loading path being rotated for 180, and both of them are twice the size of the cyclic 

stress strain curve of the fatigue cycle [197]. This phenomenon is widely recognised as 

the Masing’s hypothesis or rule [198]. In this work, the Masing’s hypothesis is adopted. 

Figure 107 shows an approximated hysteresis loop of a substrated coating A sample 

under a fully reversed load with a strain range of 1.2% for R = -1. 

 
Figure 107. Estimated hysteresis loop of substrated coating A sample (FFA – 7) 
under a fully reversed cycle with a strain range of 1.2%. 

The change of stress in the figure is associated with the change of mechanical strain 

only. The initial loading curve 1 starts with a thermal residual stress of 14 MPa and ends 

at the upper turning point at the maximum strain of 0.6%. Following that, the strain 

reduces to the lower turning point at minimum strain of -0.6% with the minimum stress 

of about -16 MPa, and forms the unloading branch shown by curve 2. After that, the strain 

travels 1.2% strain back to the upper point, see curve 3, and forms a complete hysteresis 

loop with the unloading path. Hysteresis loops of the coatings under other strain 

amplitudes can be produced in the same way. Note in reality, hysteresis loops often shift 

as a response to the change in material [144]. 
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6.4.4.1. 𝐽-integral range calculation 

In this work, the load increasing paths of hysteresis loops were used to calculate ∆𝐽𝑐ℎ. 

Shifting the lower turning point to the origin at 0 stress and strain, the change of stress 

and strain of the cycle will be the maximum stress and strain of the shifted upper turning 

point. Thus using the shifted loading paths as the stress-strain curve, the 𝐽-integral at the 

maximum stress/strain (upper turning point) calculated in a single loading would be the 

∆𝐽𝑐ℎ of the cycle.  

During the fatigue tests, the substrates also had large plastic deformation. As 

discussed in section 6.1 (page 147), the effective stiffness of both substrate and coating 

changes during straining, resulting in changes in stiffness mismatch. As the 𝐽-integral of 

channelling (𝐽𝑐ℎ) is influenced by stiffness mismatch via Dundur’s parameters 𝛼 and 𝛽, 

see equation (26) (page 28), the loading paths of substrate hysteresis loops ought to be  

incorporated in the calculations as well. Figure 108 shows the load increasing paths of 

the measured substrate hysteresis loops under different strain cycles in terms of stress 

range (∆𝜎) – strain range (∆𝜀) curves, in which the lower turning points of all curves were 

shifted to the origin. Given the similar shapes of all the curves, a representative curve was 

produced using the Ramberg-Osgood fitting of all the curves, and the fitted parameters 

are shown in Table 13. The loading path of the coatings in terms of stress range (∆𝜎) – 

strain range (∆𝜀) were essentially the coating static stress-strain curve being enlarged by 

a factor of 2, of which the Ramberg-Osgood parameters for the coatings are also shown 

in Table 13. The parameters apart from the modulus in Table 13 are different from Table 

11. The reason is that these parameters represent the loading path of the hysteresis loops 

of the materials, which are different from static stress-strain curves. The 𝑛 parameter of 

the substrate under cyclic strain is about 1/3 of that under static strain. This indicates the 

cyclic softening behaviour of the steel substrate during fatigue. The reason why 𝜎𝑌 of the 

coatings is twice that in Table 11 is that the loading branch of the coating hysteresis loop 

is geometrically double the coating static stress-strain curves.  
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Table 13. Ramberg-Osgood parameters for the cyclic stress-strain behaviour of substrates. 

Cycle type 
Modulus 
𝐸(GPa) 

𝜎𝑌 (MPa) 𝜃 𝑛 

Substrate 200 400 0.015 8.75 

Coating A & B 5.2 30 0.016 4.422 

 
Figure 108. ∆𝝈 -∆𝜺  curves derived from the load increasing paths of the hysteresis loops of 
substrate under both fully reversed and zero-tension cycles with different strain ranges from 0.3% 
to 1.05%. 

The same FE models used for the calculation of 𝐽-integral of coating cracks under 

static strains was used, see section 5.1 (page 123). The ∆𝐽𝑐ℎ was calculated in the same 

way as the 𝐽𝑐ℎ  under static strain was calculated.  The calculation of ∆𝐽𝑐ℎ  under cyclic 

strains had two major differences from the calculation of 𝐽 under static strains. First, the 

material properties reflected only the changes of stress and strain during cycling. Second, 

since the thermal residual strain did not contribute in the change of 𝐽 -integral, no 

temperature reduction was applied. For both coatings, a maximum strain of 1.5% was 

applied to the models. From 0 to 1.5% strain, 30 numerical calculation steps were 

assigned with an equal increment of 0.05% strain. This calculated the ∆𝐽𝑐ℎ for different 

strain ranges up to 1.5%. The results are shown in Figure 109. 
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In the fatigue tests of the coatings, the strain ranges were all smaller than 1.5%. The 

∆𝐽𝑐ℎ of coating B appeared to be 17% greater than that of coating A due to the average 

thickness of coating B being 50 m bigger than that of coating A. It needs to be noted 

here that ∆𝐽𝑐ℎ is the same as 𝐽𝑐ℎ that the value is independent of surface crack length. 

For a fixed strain range, the ∆𝐽𝑐ℎ value is constant. 

 
Figure 109. The development of ∆𝑱𝒄𝒉 as a function of strain range calculated by FEA. 

6.4.5. Correlation between 𝐽-integral range and total crack growth rate 

For each coating, the ∆𝐽𝑐ℎ at each tested strain range was interpolated from Figure 

109. Figure 110 shows the total crack growth rate plotted against ∆𝐽𝑐ℎ. Similar to the 

correlation between the strain range and total crack growth rate (Figure 74 on page 117), 

the total crack growth rate increased with the increase of ∆𝐽𝑐ℎ, and the data points of the 

samples tested do not show strong dependence on the R ratio. To correlate total crack 

growth rate (𝑑𝑎/𝑑𝑁) with ∆𝐽𝑐ℎ, the Paris’ law can be rewritten [93,144], see equation 

(59). 

𝑑𝑎

𝑑𝑁
= 𝐶( ∆𝐽𝑐ℎ)𝑚 (59) 
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Here, 𝐶  and 𝑚 are empirical constants to be determined experimentally. Both the 

data sets of coatings A and B were fitted to equation (59), and the resultant parameters 

𝐶 and 𝑚 are shown in Table 14. 

 
Figure 110. The correlation between total crack growth rate and ∆𝑱  of both 
coatings under cyclic strains. 

Table 14. Resultant parameters of fitting total crack growth rate - ∆𝑱 to equation (59). 

 𝐶 (µm/cycle) 𝑚 

Coating A 5.30 × 10-17 7.77 

Coating B 3.97 × 10-5 3.03 

Good correlations between the 𝐽-integral range (∆𝐽𝑐ℎ) and total crack growth rate 

have been shown, and coating B showed an inferior resistance to total crack growth to 

coating A. Note, the 𝑅2 values of the correlations shown in Figure 110 are the same as 

the power-law correlations between total crack growth rate and strain range (Figure 74 

on page 117). This means that the correlation using ∆𝐽𝑐ℎ does not reduce the scatter of 

the data. 
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At a ∆𝐽𝑐ℎ of about 100 𝐽/𝑚2, the total crack growth rate of coating B is about 250 

times that of coating A. Hsieh [188] experimentally demonstrated that the fatigue crack 

growth rates in carbon/epoxy composites is greater in the composites with smaller 

fracture toughness. Thus, as the fracture toughness of coating B is only about 34% the 

toughness of coating A, that coating B has a greater total crack growth rate than coating 

A is consistent with the results of Hsieh [188].  

However, the total crack length development of coatings encompasses the initiation 

and propagation of multiple cracks, see Figure 51 (page 92), and this is different from the 

case for monolithic materials, in which only a single fatigue crack is investigated [144]. 

Whether the dependence of the total crack growth rate on ∆𝐽𝑐ℎ of these coatings can be 

used to predict the fatigue crack growth of the coatings in other configurations, such as 

different coating thickness and different substrate geometry, requires further 

investigation. Nevertheless, the ∆𝐽𝑐ℎ – total crack growth rate data can still be used to 

predict the total crack growth rate of the coatings with similar thickness to the current 

thicknesses of the current test samples. These results are valuable for future studies into 

the thickness effect on the total crack growth behaviour of the coatings under cyclic 

strains. 

6.5. Recommendations on Coating Design 

The results have implications on the design of coating formulation, the application of 

coatings in service, as well as the fracture investigation into new formulations. 

It has been concluded that the strain to first crack of WBT coatings is affected by 

fracture toughness, residual stress, and defect size. The superior ductility and fatigue 

resistance of coating A derives from its greater toughness in comparison to coating B. 

This highlights the crucial role of improving toughness in designing coating formulations 

against cracking. As CTE strongly affects the residual stress level in coatings, hence affects 

the ductility, new formulations also ought to reduce the CTE in order to reduce residual 

stress. Since debonded filler/matrix interface could act as a crack initiator, the maximum 
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size of the fillers used in coatings could also be the maximum defect size. Thus, reducing 

the size of fillers in new formulations may also improve the strain to first crack. 

From the application point of view, coating thickness is the only factor can be 

controlled by coating users. As thicker coatings tend to have greater 𝐽 -integrals for 

cracking, coating users should try to keep the coating thickness as small as sufficient anti-

corrosion performance can be maintained. 

It has been demonstrated in the current work, that the free film tensile fracture 

strains underestimated the fracture strain of the coatings on substrates. Only when 

fracture toughness was used, the predictions of strains to first crack of substrated 

coatings being greater than the free film fracture strains are consistent with the 

observations. The reason for this observation may be that the defects in the free films 

may be different from those in substrated coatings in both location and size, as the 

sample manufacturing methods were different. This highlights that future studies of WBT 

coating fracture should adopt a toughness-based approach. This is because that the 

fracture of coatings is influenced by various factors, and the strength or ductility 

measured from one type of sample is likely to be transferrable for other sample 

geometries or service conditions.  
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7. CALCULATION OF 𝑱-INTEGRALS OF COATING CRACKING UNDER THERMAL STRAINS 

In service, the failure of WBT coatings is mainly caused by thermal strains with 

associated stresses generated due to temperature cycles, which is intrinsically different 

from the current mechanical tests at a constant ambient temperature, where the coating 

failure was caused by mechanical strains. Thus it is crucial to understand the relevance of 

the current coating mechanical tests to coating failure in service. If thermal and 

mechanical strains are equivalent in terms of the effect on cracking, the 𝐽-integrals for 

coating cracking at the same thermal and mechanical strain should also be the same. 

 For this purpose, finite element analysis of 𝐽-integrals of coating cracking purely due 

to thermally induced stress/strain was performed. The results are compared to the 𝐽-

integrals of coating cracking during the mechanical tests, which has been calculated in 

section 5.5 (page 138). In this chapter, the material properties used for the FE analysis 

under thermal strains are introduced first, followed by an introduction to the models 

used. The procedures and results of calculations are described in separate subsections. 

7.1. Material Properties Used for Calculation 

The modulus of epoxy is temperature-dependent [33], thus when calculating thermal 

stress at different temperatures a temperature-dependent stress-strain behaviour of the 

material ought to be used. In the current calculations the modulus of the coatings was 

assumed to be temperature dependent. As the measured stress-strain curves of the 

coating free films at -10 C were linear (Figure 23 on page 52), it is also assumed that the 

stress-strain curves used for calculation are linearly elastic at a fixed temperature. 

The temperature dependence of both coating elastic modulus from 70 to -10 C has 

been shown in Figure 24 (page 53). The modulus between each pair of adjacent data 

points was interpolated linearly. Deng et al. [199] have shown that the temperature 

dependence of the modulus of a silica-filled epoxy below 𝑇𝑔 to about – 80 C was almost 

linear. Based on this, the temperature dependence of the modulus of both current 

coatings below – 10 C was approximated using the linear trend formed by the modulus 
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at -10 and 23 C, and as coatings A and B had the same moduli at these two temperatures, 

it was also assumed these coatings had the same modulus below – 10 C, see Figure 111. 

Figure 29 (page 59) shows the dimension change of both coatings due to temperature 

reduction below 𝑇𝑔 to – 50 C are linear. Thus in the calculations the thermal expansion 

coefficients were also treated as constant, and the same as those used in Chapter 5. In 

addition to this, the glass transition temperature and Poisson’s ratios were the same as 

those used in Chapter 5. 

 
Figure 111. Temperature dependence of modulus of the coatings and the 

approximation below – 10 C. 

7.2. Finite Element Models for the Calculation of 𝐽-integrals under thermal strain 

Figure 112 shows the right half of a T section model symmetric to the left vertical 

edge, and this model simulates a cross-section of fillet weld joint. The coating and 

substrate are shown in red and grey respectively. The model itself is also symmetric to 

the centre line. The transition between the vertical and horizontal arms is a central flat 

region forming 135 inner angles with each arms. The two ends of the central flat region 

connect with each arms with a surface curvature with a radius of curvature of 2 mm. The 
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coating layer was designed to be constant in thickness (ℎ) along the substrate surface. 

The elements used in the model were all 2D plane strain quadratic quadrilateral CPE8 

elements, which consist of 8 nodes for each element. To simulate such structure in a 

much larger ballast tank structure, symmetry boundary conditions were assigned to the 

left and bottom edges of the model, and the top and right edges were constrained to be 

permanently horizontal and vertical respectively. 

Previously, Zhang et al. [156] and Kim and Lee [3] performed calculations of thermal 

stress in epoxy coatings on steel fillet weld joints with geometries similar to the current 

model using FE analysis, and found that the maximum stress/strain developed at the 

surface curvature region of the coatings. Current work also focused on this region. A 

magnified view of the top corner is shown in Figure 112B, which also shows a fine mesh 

in this region.  

When the 𝐽-integral was calculated, a surface crack with a depth of 𝑎 was introduced 

to the centre of coating surface curvature at the top corner, and it was aligned in the 

radial direction. Figure 112C shows the location of and the mesh around the crack. For 

the calculation of 𝐽-integral for crack penetration (𝐽𝑝), the contour integral technique was 

used, and the contour at a crack tip had a radius of 30 m. To calculate the 𝐽-integral for 

crack channelling ( 𝐽𝑐ℎ ), the same method based on crack opening displacement, 

described in section 5.1 (page 123), was used. 

7.3. Calculation of 𝐽-integral of Penetration in Coating on Flat Steel Substrate 

To investigate the effect of thermal strains on the cracking of the coatings, the 𝐽-

integral of crack penetration (𝐽𝑝) under pure thermal strains was calculated. The model 

of coating on flat steel substrate was used. The coating thicknesses of 0.3 mm and 0.35 

mm for coatings A and B respectively, and the defect depths of 60 and 70 m were 

introduced to simulate current samples. Temperature reduction from the 𝑇𝑔 to minimum 

temperatures of – 150 and – 100 C were applied to coatings A and B respectively. When 
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tensile thermal stress is developed in the coatings, substrate compressive stress occurs 

in order to keep the coating/substrate system in load balance. 

 
Figure 112. 2D plane strain welded joint model with 0.6 mm thick coating as an example. 
(A) Boundary conditions; (B) Mesh in the coating around the crack; (C) Crack tip contour 
and mesh. 

It was found that the greatest compressive stress developed in the substrate in the 

studied temperature range was - 9 MPa, which is trivial and means that the substrate 

deformation was within the elastic limit. This is different from the substrate stress during 
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the mechanical tensile testing, in which large unidirectional tensile strain up to 3% was 

applied to the substrate, inducing a mechanical stress up to 600 MPa, which was well 

beyond the elastic limits. The resultant 𝐽𝑝  is plotted against thermal strain and 

temperature in Figure 113 for coating A and Figure 114 for coating B. 

 
Figure 113. 𝑱𝒑 of a 60 m deep surface defect in a 0.3 mm thick coating A as a 

function of total coating strains generated by temperature reduction and during 
the mechanical testing.  

The 𝐽𝑝 of a defect with the same size generated during mechanical testing at 23 C 

was extracted from Figure 91 (page 142) and Figure 92 for coatings A and B, and it is also 

plotted against total coating strain in the figure for each coating. Note, here total coating 

strain for the pure thermal case is thermal strain, while for the mechanical test case the 

total coating strain includes the thermal residual strain of about 0.2% at 23 C, and the 

additional total coating strain was induced by the mechanical straining of the substrate.  
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Figure 114. 𝑱𝒑 of a 70 m deep surface defect in a 0.35 mm thick coating B as 

a function of total coating strains generated by temperature reduction and 
during the mechanical testing. 

It is clear that at the same total coating strains greater than about 0.2% thermal 

strains induce greater 𝐽𝑝 than mechanical strain, and the gap widens with increasing total 

coating strain. As penetration will start when 𝐽𝑝 exceeds coating fracture toughness, the 

results predict that the total coating strain to fracture under pure thermal strains of the 

current substrated coating samples will be smaller than the total coating strain to failure 

during mechanical tensile tests at 23 C of coatings A and B respectively. 

Based on equation (25), the ratio of penetration 𝐽-integral of a defect in a substrated 

coating caused by pure thermal strain due to temperature reduction (𝐽𝑝
𝑡ℎ), to that caused 

by mechanical straining during mechanical testing at 23 C (𝐽𝑝
𝑚𝑠) is shown as below. 

 
𝐽𝑝
𝑡ℎ

𝐽𝑝
𝑚𝑠 =

𝜎𝑡ℎ

𝜎𝑚𝑠
∙
𝑓𝑡ℎ

2 (𝛼, 𝛽,
𝑎
ℎ)

𝑓𝑚𝑠
2 (𝛼, 𝛽,

𝑎
ℎ)

 (60) 
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Here, 𝜎𝑡ℎ and 𝜎𝑚𝑠 are the coating stresses at the same total coating strain caused by 

a pure thermal strain and by a mechanical strain respectively. The 𝑓𝑡ℎ
2  and 𝑓𝑚𝑠

2  are two 

dimensionless factors in these two cases respectively. As introduced before this factor is 

a function of the stiffness mismatch of the coating and substrate, quantified by Dundur’s 

parameters (𝛼, 𝛽), and the crack depth to coating thickness ratio (𝑎/ℎ). As in the current 

case, the 𝑎/ℎ in the pure thermal case and mechanical tests is the same, 0.2, the𝑓2 factor 

is only a function of the stiffness mismatch. Equation (60) shows the 𝐽𝑝
𝑡ℎ  to 𝐽𝑝

𝑚𝑠 ratio is 

mainly affected by the stresses and stiffness mismatch. 

7.3.1. Effect of source of stress on 𝐽-integral 

Figure 115 shows the stress in a substrated coating A due to thermal strain under 

temperature reduction and due to mechanical straining during mechanical test. The data 

for the purely thermal case was extracted from the calculation of 𝐽 -integrals under 

thermal strain shown in section 7.3 (page 179), and the data for the mechanical straining 

case was extracted from the calculation of 𝐽-integrals during mechanical tests shown in 

section 5.5 (page 138). 

Figure 115 shows that the trends of the development of coating stresses under 

thermal strain and during mechanical tests are similar to that of the development of 𝐽𝑝 

shown in Figure 113. At a total coating strain of 0.7% for instance, the stress produced by 

thermal strain is about 100 MPa, while the stress produced by mechanical straining is 

only about 35 MPa. This gives a 𝜎𝑡ℎ/𝜎𝑚𝑠 of about 2.86, which means even if for the same 

𝑓𝑡ℎ
2  and 𝑓𝑚𝑠

2 , the 𝐽𝑝
𝑡ℎ  caused thermally would be 2.86 times the 𝐽𝑝

𝑚𝑠  produced in 

mechanical testing. 

There are two major reasons why there should a difference between 𝜎𝑡ℎ and 𝜎𝑚𝑠. 

Firstly, the development of thermal strain was achieved by reduced temperature. As the 

coating modulus used for thermal stress calculation increases with the reduction of 

temperature. For example, at the predicted total coating strain of 0.7% to thermal failure 

of coating A, a -110 C is required, at this temperature the modulus used for thermal 
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stress calculation can be found to be about 9.3 GPa in Figure 111 (page 178). While during 

mechanical straining, the temperature was constant 23 C, the modulus of the coating 

was only 5.2 GPa, see Figure 96 (page 148). Secondly, the development of thermal stress 

is biaxial, according to Hook’s law for plane stress [200] the stress in one direction is 

amplified by the perpendicular direction, and thus the modulus of the coating under 

thermal strain needs also to be factored by 1/(1 − 𝜐), as 𝜐 is 0.3 this further increases 

the coating modulus under thermal strains. 

 
Figure 115. Stress in coating A under pure thermal strain due to temperature 

reduction and by mechanical straining during mechanical test at 23 C. 

7.3.2. Effect of stiffness mismatch on 𝐽-integral 

During mechanical straining the substrate plastically deformed, and in the calculation 

of 𝐽𝑝
𝑚𝑠  the effect of material non-linear deformation on coating/substrate stiffness 

mismatch due to both reduced coating and substrate stiffness (Figure 96 on page 148) 

was considered. While during the calculation of 𝐽𝑝
𝑡ℎ  under pure thermal strains, the 
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substrate did not experience yielding, thus the modulus would remain unchanged as 200 

GPa, and the modulus of coating increased as temperature was reduced.  

Again using substrated coating A sample as an example, at the same total coating 

strain of 0.7%. In the thermal case, a temperature of – 110 C is needed, and the modulus 

of coating A is about 9.3 GPa, while the substrate modulus is 200 GPa. The 𝑓𝑡ℎ
2  (𝑎/ℎ = 0.2) 

can be calculated using using equations (21) (page 25), (22), and (24), and it is 0.245. At 

a total coating strain of 0.7% during mechanical tests, the effective stiffness (tangential 

modulus) of coating and substrate can be found to be 3.1 and 6.2 GPa, and the 𝑓𝑚𝑠
2  can 

be calculated to be 0.247. This will give an 𝑓𝑡ℎ
2 /𝑓𝑚𝑠

2  ratio of 0.994. 

It can also be found that the 𝜎𝑡ℎ/𝜎𝑚𝑠 ratio is about 3 times the 𝑓𝑡ℎ
2 /𝑓𝑚𝑠

2  ratio, this 

means the difference between the calculated 𝐽𝑝
𝑡ℎ  and 𝐽𝑝

𝑚𝑠  may be mainly due to the 

effect of the different source of the stress. In other words, that main reason why the 

coatings are predicted to be more prone to cracking under thermal strains might be that 

the thermal strains could induce greater stresses than mechanical strains. Note, here only 

the case where 𝑎/ℎ = 0.2 is investigated. At an increased 𝑎/ℎ ratio, the effect of stiffness 

mismatch (i.e. 𝑓𝑡ℎ
2 /𝑓𝑚𝑠

2  ratio) might be greater. 

7.4. Analysis of Coating on Fillet Welds 

7.4.1. Stress analysis of coating on fillet welds 

The stress in the current coatings on fillet welds due to temperature reductions was 

calculated using the model of coating on fillet weld introduced earlier. Three different 

coating thicknesses, 0.3, 0.6 and 0.9 mm were investigated. Temperature reductions 

from the 𝑇𝑔  to 23 C and 0 C were applied to coatings A and B respectively. The 

temperature 23 C represents an as-cured state before being in service, and the 

temperature 0 C represents the minimum temperature the coating could experience in 

service. An assessment of the thermal stress and related 𝐽 -integrals at these 

temperatures can suggest the integrity of the coating in these two scenarios. 
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As an example, Figure 116A shows the stress/strain distribution along the surface of 

coating A at a temperature of 0 C. As the structure was symmetric, the stress distribution 

of only half of the entire surface was shown. The location is normalised by the coating 

surface length of half of the model, and marked by a path shown in the same figure. It 

can be seen from the figure that 1) the coating thickness does not have any effect on the 

thermal stress and strain along the flat portion of the structure; 2) the maximum local 

thermal stress and strain are at the midpoint of the coating surface curvature directly 

above the weld corners; 3) the maximum stress/strain in thicker coatings are greater than 

thinner coatings. For a thickness of 0.9 mm, the maximum stress/strain on the curvature 

is about 100% great than the stress/strain in the flat region.  

As it can also been seen from the diagram of Figure 116B, there is a noticeable stress 

gradient through the coating thickness at the weld corners, while no noticeable 

through-thickness stress gradient is seen in the flat portion of the weld. Figure 117 shows 

the through-thickness stress distribution of coating A from the midpoint of coating 

surface curvature to the midpoint of interface curvature. The locations along the path is 

normalised by thickness, the coating surface is 0 and the interface is 1. It can be seen 

from the figure that 1) the strain decreases from surface towards interface; 2) a greater 

thickness leads to a greater strain gradient; 3) the strains at the interface for all 

thicknesses are about 0.26%. 

The stress gradient in the coating at the weld corners as well as its sensitivity to 

coating thickness are not seen in coatings on the flat region. This means that the stresses 

in the coating test samples with flat substrates should be different from those on weld 

corners in service. 
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Figure 116. Estimated stress and strain distribution along the surface of coating A with thicknesses 

of 0.3, 0.6, and 0.9 mm on a fillet weld at 0 C. 
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Figure 117. Estimated strain distribution along the through-thickness paths in coating A with 

thicknesses of 0.3, 0.6, and 0.9 mm on a fillet weld at 0 C. 

7.4.2. Calculation of 𝐽 -integrals of defects in coatings on fillet weld at two critical 
temperatures 

To investigate the process of cracking the current coating under thermal stresses, the 

𝐽-integrals of penetration (𝐽𝑝) and channelling (𝐽𝑐ℎ) of surface defects with various depths 

(𝑎) in the current coatings on the fillet welds under thermal stresses/strains induced by 

temperature reductions from 𝑇𝑔  to two critical temperatures, 23 and 0 C, were 

calculated. Three coating thicknesses (ℎ), 0.3, 0.6, and 0.9 mm were investigated. The 

defects with 𝑎/ℎ ratios from 0.1 to a through-thickness depth were incorporated.  

In result, the 𝐽𝑝 and 𝐽𝑐ℎ as a function of  defect depth in coating A are shown in Figure 

118 for 23 C and Figure 119 for 0 C, and the 𝐽𝑝 and 𝐽𝑐ℎ as a function of  defect depth in 

coating B are shown in Figure 120 for 23 C and Figure 121 for 0 C. The trend of 𝐽𝑝 and 

𝐽𝑐ℎ calculated using the model of coating on fillet welds under thermal strains are similar 

to those calculated for coatings on flat substrate during mechanical testing shown in 

Figure 89 on page 140. 
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It can be seen from Figure 118 to Figure 121 that for coatings on the corner of fillet 

welds: 

1) The 𝐽𝑝  values are greater than the 𝐽𝑐ℎ  for crack depths with 𝑎/ℎ ratios below 

about 0.9. This also means that for the current defect sizes of 60 and 70 m in 

coatings A and B respectively, the penetration will start first in coating, with 

thickness greater than 0.3 mm, on fillet welds. 

2) For the same coating type with the same thickness, the 𝐽𝑝 and 𝐽𝑐ℎ are greater at 

0 C than those at 23 C. This should be due to greater thermal strains induced at 

0 C. 

3) For the same coating type at the same temperature, the 𝐽𝑝 and 𝐽𝑐ℎ estimated for 

a greater thickness are larger than those estimated for a smaller thickness.  This 

should be due to greater thermal strains caused by increased thickness as shown 

by Figure 116 (page 187). 

4) For coatings with the same thickness at the same temperature, the 𝐽𝑝 and 𝐽𝑐ℎ of 

coating B are greater than those of coating A. This should be due to the thermal 

expansion coefficient and 𝑇𝑔  of coating B being slightly greater than those of 

coating A, leading to greater thermal strains in coating B. 
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Figure 118. 𝑱𝒑 and 𝑱𝒄𝒉 of cracks in coating A with different thickness on fillet welds 

joint under temperature reductions from 𝑻𝒈 to 23 °C. 
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Figure 119. 𝑱𝒑  and 𝑱𝒄𝒉  of cracks in coating A with different thickness on fillet 

welds joint under temperature reductions from 𝑻𝒈 to 0 °C. 
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Figure 120. 𝑱𝒑 and 𝑱𝒄𝒉 of cracks in coating B with different thickness on fillet welds 

joint under temperature reductions from 𝑻𝒈 to 23 °C. 



CHAPTER 7 – CALCULATIONS OF 𝐽-INTEGRAL OF COATING CRACKING UNDER 
THERMAL STRAINS 

193 

 

 
Figure 121. 𝑱𝒑 and 𝑱𝒄𝒉 of cracks in coating B with different thickness on fillet welds 

joint under temperature reductions from 𝑻𝒈 to 0 °C.
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The thermal strain concentration at the surface of the coating on the corners of fillet 

welds is reflected by the 𝐽-integrals of crack penetration (𝐽𝑝). For example, the calculated 

𝐽𝑝 of a 60 µm deep defect in 0.3 mm thick coating A on the corner of fillet welds at 23 C 

can be found in Figure 118 (page 190) to be about 10 𝐽/𝑚2, which is 43% greater than 

the 𝐽𝑝 (7 𝐽/𝑚2) of the same coating on a flat substrate with the same defect depth and 

thickness. This predicts in terms of 𝐽-integral of coating cracking that coatings on the 

corners of fillet welds in WBTs are more likely to have fracture than those on the flat 

regions. This agrees with the observation of WBT coating failure in service [2]. It was also 

found that at the same temperature the 𝐽𝑝 in 0.6 and 0.9 mm thick coatings can be 60% 

to 120% greater than that in a 0.3 mm thick coating. This predicts that on fillet welds 

thicker coatings are more vulnerable to failure than thinner coatings, which is also in 

agreement with experimental and service observation 3. 

The calculations of 𝐽𝑝 as a function of defect depth (Figure 118 on page 190 to Figure 

121) have also shown that the maximum 𝐽𝑝 of defects of all sizes in coating A on fillet 

welds at 0 C are smaller than the measured fracture toughness (𝐺𝐶) of coating A (228 

J/m2), this predicts that coating A with a thickness up to 0.9 mm will not have static 

fracture in service. The same situation is also predicted for coating B (𝐺𝐶=78 J/m2) with 

thickness up to 0.9 mm at 23 C, and thickness up to 0.6 mm at 0 C. Thus, any failure of 

these in service might be caused by thermal fatigue due to temperature cycles. The 

prediction of the coating fracture on fillet welds at 0 C is based on the fracture toughness 

(𝐺𝐶) measured at ambient temperature. As the temperature difference is only about 23 

C, it is assumed that the 𝐺𝐶 at 0 C is the same as that at 23 C.  

As shown in Figure 121A, at 0 C the 𝐽𝑝 of a 78 m deep defect in a 0.9 mm thick 

coating B reaches the measured fracture toughness (𝐺𝐶 ) of about 78 𝐽/𝑚2 . As the 

measured defect depth in coating B was about 70 m, the result predicts that a 0.9 mm 

thick coating B on the curvature of the fillet weld may have static cracking at 0 C in 

service. Similar to that predicted in coatings on flat substrate subjected to mechanical 
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straining, once static cracking occurs in coating B the crack is predicted to propagate 

unstably to a depth of about 0.88 mm, at which the 𝐽-integral of crack channelling (𝐽𝑐ℎ) 

will also be well above the 𝐺𝐶  (Figure 121B), leading to channelling immediately after 

penetration takes place. 

Figure 121A also shows that in 0.6 mm coating B at 0 C the 𝐽𝑝 will reach the measured 

fracture toughness (𝐺𝐶) when the crack depth reaches 108 m. Assuming that the initial 

defect size is the same as the measured defect depth (70 µm), the coating will not 

experience static cracking at 0 C. However, as the defect penetrates deeper by thermal 

fatigue, and reaches 108 µm, static fracture will be allowed. This predicts that for this 

coating the failure in this case might be a combination of an initial thermal fatigue crack 

propagation and subsequent unstable static fracture when the fatigue crack reaches the 

critical depth. 

Predictions of fatigue lives of coatings in service can be made when more definitive 

information is available, such as coating fatigue crack initiation process, effects of coating 

thickness on fatigue cracking and fatigue crack growth rates. It needs to be mentioned 

again that the fracture toughness values used for the predictions were measured at 

ambient temperature. A more accurate prediction may be made when the fracture 

toughness at 0 C known. 
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8. CONCLUSIONS 

Based on the experimental and numerical results obtained in the work, the following 

conclusions can be drawn: 

(1) Tensile testing of free films of a brittle and a tough epoxy coating established that 

the tensile strength, the stiffness, and the strain to failure were all temperature 

dependent. For coating A, stiffness decreased from 6.2 GPa at -10 C to about 3 

GPa at 70 C, tensile strength decreased by 13 MPa from -10 to 70 C. In contrast, 

ductility increased from 0.67% to 1.35%. For coating B, stiffness decreased from 6.2 

to 1.7 GPa from -10 to 70 C, tensile strength decreased by 6 MPa from – 10 to 70 

C, and ductility increased from 0.34% to 1.5%. 

(2) Toughness measurement using double edge notched coating samples for the same 

two coatings gave toughness values (𝐾𝐶) at 23 C of 1.07 𝑀𝑃𝑎√𝑚 for coating A and 

0.64 𝑀𝑃𝑎√𝑚 for coating B. 

(3) Measurements of thermal residual stress in coatings at ambient temperature using 

bi-layer beam methods showed that coating A developed a thermal stress of 11 

MPa and a thermal strain of 0.15%; coating B developed a thermal stress of 15 MPa 

and a thermal strain of 0.19%. 

(4) Observations of the cracking process during tensile testing of substrated coatings 

showed first coating cracks initiated at a critical nominal strain. Further increases in 

strain led to rapid growth of the original crack and initiation of new cracks across 

the gauge section. Eventually further initiation of cracks stopped and saturation of 

multiple parallel cracks occurred. The critical strain to first crack of coatings A and 

B were 0.70% and 0.49%. This is significantly greater than the strains to failure 

measured on the free films 

(5) Digital image correlation observation of substrate yielding and coating crack 

development revealed that in the original condition the substrate exhibited 

heterogeneous yielding causing local concentration of strain. This initiated cracking 
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at local strain levels greater than global strains measured via an extensometer. 

These differences were eliminated by pre-straining the substrate. The critical strain 

to first crack of coatings A and B on pre-strained substrates at ambient temperature 

were 1.04% and 0.64%. 

(6) Fracture surface observation on free films using SEM showed the presence of near-

surface anomalies associated with second phase/particles. They were 

characterised by locally smooth fracture surfaces, indicating low energy fracture. 

Their sizes were about 60 and 70 µm deep in coatings A and B. 

(7) The observed fracture behaviour of substrated coatings is consistent with a model 

that coating fracture initiation occurs when the applied 𝐽 at a defect tip exceeds the 

measured coating toughness value. Using measured values of free film coating 

toughness and defect size together with non-linear tensile stress-strain properties 

of the coatings and the steel substrate; a calculation of 𝐽  integral made by the 

fracture model allowed prediction of substrated coating strain to first crack. The 

prediction was within 10% of the experimental value for coating A and 30% of the 

experimental value for coating B. The model predicts that the coating strain to 

failure will be determined by defect size, coating thickness as well as residual 

strains. 

(8) Observations of the cracking process of substrated coatings under cyclic 

mechanical strains showed fatigue cracks initiated at discrete locations on the 

sample gauge length. Further cycling led to the propagation of coating fatigue 

cracks and initiation of further parallel cracks. At long lives, fatigue testing of the 

coating was terminated by fatigue cracking of steel substrate. 

(9) Using a definition of coating failure where the longest crack achieves 2 mm surface 

length, for the same life coating A required double the applied strain range 

compared with coating B. The life of coating A was insensitive to the mean strain, 

while coating B showed some sensitivity at very small fatigue lives. 

(10) Observations of coating surface fatigue crack behaviour showed single cracks grew 

at constant growth rates independent of surface length, while the growth rates of 
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single cracks within the same sample varied significantly, and the standard 

deviation can be as high as 90% of mean growth rate. Interaction of cracks occurred 

as single cracks grew longer, the growth rates of interacting single cracks reduced 

greatly. 

(11) The use of individual crack growth rates as a means of quantifying surface cracking 

development was not possible. Instead, quantification of total crack length (sum of 

all single cracks within gauge length) showed an initial linear relationship between 

the total crack length and cycles number. 

(12) Measurement of surface crack numbers and average crack length showed that 

coating A developed a larger number of cracks with smaller average length than 

coating B for the same total crack length. The number of cracks in coating A was 

about 3 times greater than that in coating B at the same total crack length. Although 

the crack patterns of the coatings appeared to be different, they are not crucial in 

terms of coating cracking in service. Because the anti-corrosion capability of the 

coatings will be compromised once a through-thickness crack forms regardless of 

the pattern of the cracks. In the light of this, the fatigue lives of the coatings are the 

crucial criterion to rank coating integrity in service. 

(13) A linear correlation was found between the logarithmic total crack growth rates 

(𝑑𝑎/𝑑𝑁) and logarithmic applied strain ranges (∆𝜀), following an equation of 
𝑑𝑎

𝑑𝑁
=

𝑐(∆𝜀)𝑚 . An approach has been developed to calculate the 𝐽 -integral range of 

channelling (∆𝐽𝑐ℎ). A linear correlation was found between the total crack growth 

rates (𝑑𝑎/𝑑𝑁) and logarithmic ∆𝐽𝑐ℎ , following an equation of 
𝑑𝑎

𝑑𝑁
= 𝑐(∆𝐽𝑐ℎ)𝑚. It 

was found that at the same ∆𝐽𝑐ℎ the 
𝑑𝑎

𝑑𝑁
 of coating B can be about 250 times the 

𝑑𝑎

𝑑𝑁
 

of coating A. The fitted 𝑚  parameter was about 3 and 8 for coatings A and B, 

implying fatigue cracking would be highly sensitive to applied strain range and ∆𝐽𝑐ℎ. 

(14) The correlation between ∆𝐽𝑐ℎ  and 
𝑑𝑎

𝑑𝑁
 incorporates both thermal and mechanical 

strains as well as the effects of coating thickness and substrate geometry, and it is 
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more generalised and thus more applicable than a strain range based correlation 

for applications outside of a laboratory. 

(15) Calculations of 𝐽-integrals of coating crack penetration (𝐽𝑝) under thermal strains 

showed that thermal strain induced greater 𝐽𝑝  values than mechanical straining. 

This predicts that the thermal strain required to the failure of coatings A and B are 

50% and 30% smaller than strain required from mechanical straining, implying 

coatings are more likely to fracture under thermal strains. 
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9. FUTURE WORK 

Based on the finding of the current work, some aspects worthy of further study are 

recommended as below: 

(1) Incorporation of full range stress-strain data for fracture mechanics analysis 

The current work used approximated strain-strain curve to calculate the 𝐽-integrals of 

coating defects under strain beyond the known stress-strain data. This inevitably 

introduced errors in the results. It would be worthwhile to use sufficient stress-strain data 

that contains the entire range of strains that are required. To overcome the problem of 

being too brittle in tension, the full range stress-strain curve can be determined indirectly 

using shear testing [179]. This will improve the accuracy of the prediction of the fracture 

coating on substrates. 

(2) Three-dimensional modelling of crack penetration 

The current work used a simplified 2D model to analyse the penetration process of 

coating surface defects, which is in fact a 3D problem. The 2D model neglected the 

influence of crack front shape the cracking process. It is recommended that a 3D crack 

penetration model should be developed to investigate the stress intensity factor along 

the crack front, and determine the change of crack front during penetration, and how 

this influence coating ductility. The modelling result can be compared to experimental 

work. This will also allow more accurate prediction of coating failure. 

(3) Effect of thermal ageing on fracture 

It is known that thermal ageing changes the material properties of epoxy coatings, 

and in a long term it increases residual stress and reduces toughness. The effect of 

thermal ageing on fracture can be studied by artificially ageing samples using 

temperatures slightly below 𝑇𝑔. The amount of ageing can be quantified using thermal 

analysis techniques, and it can be correlated to fracture behaviour. As WBT coatings 
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experience thermal ageing in service, this work will allow predictions of coating failure in 

a long term.  

(4) Effect of filler on fracture 

The current work suggests that the size of fillers in coatings may determine the defect 

size, as de-bonded filler/resin interfaces can act as crack initiators. Further work can look 

into the effect of filler size on the coating ductility. Since a change in filler size may as well 

modify the mechanical properties and the anti-corrosion capability of the coatings. A 

clear mapping of the effect of filler size on coating properties, anti-corrosion capability, 

and ductility needs to be established. This will allow the selection of optimum filler sizes. 

(5) Thermal fatigue of coatings with different thicknesses 

The current work investigated the fatigue of the coatings under mechanical strain 

cycles. It is known that WBT coatings in service encounter thermal strain cycles. The FE 

analysis of thermal strain induced 𝐽 -integral perform in this work showed that the 

coatings should be more susceptible under thermal strains than mechanical strains. The 

FE results also showed that thicker coatings are more likely to fail than thinner ones. This 

highlights the importance of performing thermal fatigue tests on coatings with different 

thicknesses. This can be done using welded joints sprayed with coatings with different 

thicknesses. The temperature ranges – life data can be obtained for different coating 

thicknesses. Also, using finite element models the temperature ranges can be converted 

to other quantities such as strain/stress range, strain energy ranges, and energy release 

rate ranges. By correlating these different parameters to the life data, one might be able 

to establish the factor controlling coating life. 
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Appendix i – Fracture toughness data 

Table A  1. Load to fracture of fracture toughness samples with different thicknesses and notch 
lengths. 

 Label 
Width 

(mm) 
thickness (mm) 

Notch length 

(mm) 

Fracture load 

(N) 

C
o

at
in

g 
A

 

TA - 1 11.60 0.48 1.16 85.28 

TA - 2 11.78 0.29 1.26 52.84 

TA - 3 11.66 0.40 1.39 72.03 

TA - 4 11.72 0.32 2.01 49.54 

TA - 5 11.68 0.33 2.09 47.54 

TA - 6 11.63 0.40 2.34 53.51 

TA - 7 11.75 0.36 2.97 35.84 

TA - 8 11.71 0.30 3.28 30.49 

TA - 9 11.58 0.49 3.86 39.60 

TA - 10 11.61 0.46 4.07 38.38 

C
o

at
in

g 
B

 

TB - 1 11.66 0.39 1.04 42.66 

TB - 2 11.81 0.40 1.10 44.59 

TB - 3 11.88 0.38 1.13 45.85 

TB - 4 11.83 0.40 2.35 29.77 

TB - 5 11.76 0.33 2.45 22.43 

TB - 6 11.81 0.35 2.70 23.37 

TB - 7 11.82 0.40 3.40 25.72 

TB - 8 12.11 0.39 3.58 23.53 

TB - 9 11.85 0.40 4.29 17.08 

TB - 10 11.83 0.40 4.06 15.85 
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Appendix ii – Mechanical properties of free films 

Table A  2. Mechanical properties of Coating A free films at various temperatures. 

Temperature: -10 °C 

Sample number Young's modulus (GPa) Fracture stress (MPa) Fracture strain (%) 

1 6.2 32.7 0.62 

2 6.7 31.9 0.58 

3 5.9 38.3 0.72 

4 6.3 38.3 0.74 

5 5.7 33.9 0.58 

Temperature: 23 °C 

1 5.4 32.7 0.74 

2 5.4 32.3 0.72 

3 4.9 29.7 0.65 

4 5.2 25.4 0.59 

5 5.0 28.5 0.66 

Temperature: 50 °C 

1 4.9 25.6 0.74 

2 4.3 21.5 0.79 

3 4.1 21.6 0.71 

4 4.0 23.8 0.81 

5 4.0 18.4 0.93 

Temperature: 70 °C 

1 3.2 22.2 1.29 

2 2.7 18.6 1.33 

3 2.8 19.1 1.43 

 

 

 



 

219 

 

 

Table A  3. Mechanical properties of Coating B free films at various temperatures. 

Temperature: -10 °C 

Sample 

number 

Young's modulus 

(GPa) 

Fracture stress 

(MPa) 

Fracture strain 

(%) 

1 5.7 18.6 0.33 

2 6.2 16.9 0.26 

3 6.3 17.1 0.28 

4 6.2 15.4 0.25 

5 6.9 14.8 0.21 

Temperature: 23 °C 

1 5.1 16.9 0.31 

2 5.7 17.9 0.33 

3 4.6 13.6 0.26 

4 5.0 19.0 0.40 

5 5.4 18.8 0.42 

Temperature: 50 °C 

1 3.8 16.1 0.56 

2 4.1 15.4 0.50 

3 3.6 17.3 0.69 

4 3.7 15.7 0.53 

5 4.1 16.2 0.53 

Temperature: 70 °C 

1 1.8 12.0 1.37 

2 1.8 12.2 1.50 

3 1.6 11.5 1.63 
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Appendix iii – Ductility of substrated coatings at room temperature 

Table A  4. Strain to the onset of first crack of coatings A and B on original and pre-strained 
substrated at ambient temperature. For both coatings, label ending with letter ‘P’ or ‘N’ refer to 
sample with pre-strained or original substrate respectively. 

 Strain at the onset of first crack  - Coating A 

Label 
Strain by 

extensometer 

Strain by DIC 

Virtual gauge 

length (mm) 

Gauge extension at 

onset (mm) 
Strain 

STAP - 1 0.99% 0.54 0.0066 ± 0.0002 1.22% 

STAP - 2 1.10% 0.52 0.0064 ± 0.0002 1.23% 

STAP - 3 0.99% 0.54 0.0061 ± 0.0002 1.13% 

STAP - 4 1.05% 0.54 0.0069 ± 0.0001 1.28% 

STAP - 5 1.08% 0.54 0.0065 ± 0.0002 1.20% 

STAN - 1 0.79% 0.48 0.0061 ± 0.0004 1.27% 

STAN - 2 0.62% 0.52 0.0066 ± 0.0001 1.27% 

STAN - 3 0.70% 0.51 0.0055 ± 0.0001 1.08% 

 Strain at the onset of first crack - Coating B 

Label 
Strain by 

extensometer 

Strain by DIC 

Virtual gauge 

length (mm) 

Gauge extension at 

onset (mm) 
Strain 

STBP - 1 0.54% 0.52 0.0035 ± 0.0002 0.67% 

STBP - 2 0.73% 0.49 0.004 ± 0.0002 0.82% 

STBP - 3 0.68% 0.49 0.0035 ± 0.0002 0.71% 

STBP - 4 0.52% 0.54 0.0037 ± 0.0003 0.69% 

STBP - 5 0.71% 0.64 0.0048 ± 0.0002 0.75% 

STBN - 1 0.56% 0.49 0.0034 ± 0.0002 0.69% 

STBN - 2 0.31% 0.6 0.0035 ± 0.0005 0.58% 

STBN - 3 0.61% 0.57 0.004 ± 0.0003 0.70% 
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Appendix iv – Fatigue lives of coating on substrate 

Table A  5. Fatigue lives of coating and substrate measured from coating A on original substrate 
under fully reversed cycles. 

Label 
Coating 

thickness 
(µm) 

Strain range 
(%) 

Strain 
amplitude (%) 

Cycle to 
coating 
failure 

Cycle to 
substrate 

failure 

    2 mm  

FFA – 1 338 
-0.45 ~ 
+0.45 

0.45 1500 1800 

FFA – 2 337 
-0.45 ~ 
+0.45 

0.45 - 1286 

FFA – 3 334 -0.5 ~ +0.5 0.5 100 1400 

FFA – 4 333 -0.5 ~ +0.5 0.5 200 772 

FFA – 5 310 -0.5 ~ +0.5 0.5 600 870 

FFA – 6 278 
-0.55 ~ 
+0.55 

0.55 300 1200 

FFA – 7 305 -0.6 ~ +0.6 0.6 - 500 

Table A  6. Fatigue lives of coating and substrate measured from coating A on original substrate 
under zero-tension cycles. 

Label 

Coating 

thickness 

(µm) 

Strain range 

(%) 

Strain 

amplitude 

(%) 

Cycle to 

coating 

failure 

Cycle to 

substrate 

failure 

    2 mm  

FTA – 1 283 0 ~ 0.80 0.40 1750 2451 

FTA – 2 280 0 ~ 0.85 0.425 1350 1468 

FTA – 3 273 0 ~ 0.90 0.45 200 1193 

FTA – 4 273 0 ~ 1.00 0.5 300 674 

FTA – 5 282 0 ~ 1.00 0.5 450 784 

FTA – 6 299 0 ~ 1.05 0.525 300 357 

FTA – 7 278 0 ~ 1.05 0.525 400 512 

FTA – 8 289 0 ~ 1.10 0.55 - 699 
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Table A  7. Fatigue lives of coating and substrate measured from coating B on original substrate 
under fully reversed cycles. 

Label 

Coating 

Thickness 

(µm) 

Strain range 

(%) 

Strain 

amplitude 

(%) 

Cycle to 

coating 

failure 

Cycle to 

substrate 

failure 

FFB – 1 371 -0.16 ~ 0.16 0.16 - 151952 

FFB – 2 362 -0.2 ~ 0.2 0.2 8000 75434 

FFB – 3 384 -0.22 ~ 0.22 0.22 - 21539 

FFB – 4 365 -0.23 ~ 0.23 0.23 - 32896 

FFB – 5 330 -0.24 ~ 0.24 0.24 4500 - 

FFB – 6 383 -0.24 ~ 0.24 0.24 2600 9800 

FFB – 7 352 -0.25 ~ 0.25 0.25 3000 - 

FFB – 8 340 -0.25 ~ 0.25 0.25 1550 - 

FFB – 9 396 -0.30 ~ 0.30 0.3 1500 8568 

FFB – 10 357 -0.32 ~ 0.32 0.32 50 - 

FFB – 11 332 -0.35 ~ 0.35 0.35 800 5253 

FFB – 12 350 -0.45 ~ 0.45 0.45 10 858 

 

Table A  8. Fatigue lives of coating and substrate measured from coating B on original substrate 
under zero-tension cycles. 

Label 

Coating 

Thickness 

(µm) 

Strain range 

(%) 

Strain 

amplitude 

(%) 

Cycle to 

coating 

failure 

Cycle to 

substrate 

failure 

FTB – 1 380 0 ~ 0.40 0.2 40000 - 

FTB – 2 351 0 ~ 0.425 0.213 6000 - 

FTB – 3 362 0 ~ 0.425 0.213 17000 - 

FTB – 4 417 0 ~ 0.45 0.225 500 23983 

FTB – 5 415 0 ~ 0.45 0.225 100 32896 

FTB – 6 318 0 ~ 0.48 0.24 1000 - 

FTB – 7 353 0 ~ 0.48 0.24 100 - 

FTB – 8 370 0 ~ 0.50 0.25 10 - 

FTB – 9 347 0 ~ 0.58 0.29 1 - 
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Table A  9. Fatigue lives of coating and substrate measured from coating B on pre-strained substrate 
under zero-tension cycles. 

Label 

Coating 

Thickness 

(µm) 

Strain range 

(%) 

Strain 

amplitude 

(%) 

Cycle to 

coating 

failure 

Cycle to 

substrate 

failure 

FTBP – 1 336 0 ~ 0.40 0.20 7500 - 

FTBP – 2 339 0 ~ 0.40 0.20 6000 - 

FTBP – 3 341 0 ~ 0.50 0.25 150 - 

FTBP – 4 321 0 ~ 0.50 0.25 400 - 

FTBP – 5 337 0 ~ 0.55 0.275 25 - 

FTBP – 6 316 0 ~ 0.60 0.30 10 - 
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Appendix v– Development of total crack length, number of cracks 
and number of non-interacting crack tips in the coatings during 
fatigue tests. 

Coating A – Fully reversed 

Coating A - FFA - 5 

Fully reversed: ± 0.5% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks  

Number of non-interacting 
tip 

200 2.33 10 12 

300 20.51 56 9 

500 29.91 79 5 

700 47.54 90 5 

900 52.83 93 2 

1100 61.62 99 0 

1300 74.64 127 0 

 

Coating A - FFA - 6 

Fully reversed: ± 0.6% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

250 3.62 12 20 

300 6.28 21 28 

350 10.03 32 43 

400 15.27 37 37 

450 16.58 50 48 
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Coating A – Zero-tension 

Coating A - FTA - 2 

Zero-tension: 0-0.85% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

600 0.45 1 2 

800 1.78 3 6 

1000 3.68 5 8 

1200 5.12 8 12 

1300 6.09 7 12 

 
 
 

Coating B - FTA - 3 

Zero-tension: 0-0.9% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks  

Number of non-interacting 
tip 

50 0.74 2 4 

100 2.40 11 13 

200 5.18 13 15 

300 8.56 23 24 

500 14.17 31 34 

750 17.97 31 33 

1000 18.64 31 34 

 

Coating B - FTA - 4 

Zero-tension: 0-1% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

100 1.13 4 4 

150 3.81 9 4 

200 8.17 20 9 

300 24.74 49 8 

400 35.33 62 11 

500 41.97 61 8 

600 48.78 67 4 
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Coating B - FTA - 5 

Zero-tension: 0-1% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks  

Number of non-interacting 
tip 

200 2.81 11 18 

300 9.23 18 22 

450 10.89 24 28 

500 13.53 24 28 

650 17.32 27 34 

700 17.89 33 40 

 
 
 

Coating B - FTA - 6 

Zero-tension: 0-1.05% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

100 1.36 7 7 

150 4.24 13 7 

200 7.58 18 6 

250 9.25 23 7 

300 11.23 18 7 

 
 
 
 
 
 

Coating B - FTA - 7 

Zero-tension: 0-1.05% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

200 1.87 9 10 

250 3.38 12 16 

300 3.95 13 18 

400 6.18 15 18 
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Coating B – Fully reversed 

Coating B - FFB-2 

Fully reversed: ± 0.2% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks  

Number of non-interacting 
tip 

1500 0.87 3 4 

2000 2.32 5 4 

2500 4.87 9 4 

3000 5.64 9 6 

4000 6.88 8 5 

5000 7.59 10 8 

6000 8.54 11 9 

7000 9.70 10 9 

8000 10.57 11 9 

 
 
 
 

Coating B - FFB-5 

Fully reversed: ± 0.24% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks  

Number of non-interacting 
tip 

3000 0.35 2 4 

3500 0.65 3 6 

4000 0.90 3 6 

4500 1.36 3 6 

5000 1.99 4 8 

6000 4.52 10 18 

7000 7.81 14 17 

8000 10.66 16 19 

9000 14.84 17 17 

10000 17.43 18 17 
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Coating B - FFB-7 

Fully reversed: ± 0.25% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks  

Number of non-interacting 
tip 

2000 0.27 13 26 

3000 11.21 26 32 

4000 17.98 23 30 

5000 22.79 28 25 

6000 25.80 31 28 

 
 
 
 

Coating B - FFB-8 

Fully reversed: ± 0.25% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

200 0.19 2 4 

300 0.50 2 4 

500 1.91 5 10 

1000 6.08 17 12 

1550 13.26 24 15 

2000 17.31 26 11 

2500 21.34 25 11 

3000 25.85 27 13 

3500 30.60 30 12 

4000 34.03 29 9 

4500 37.69 31 8 

5000 40.05 34 8 
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Coating B - FFB-9 

Fully reversed: ± 0.3% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks  

Number of non-interacting 
tip 

400 0.51 3 4 

600 1.05 4 8 

1000 4.20 8 16 

1500 7.46 11 16 

2000 13.90 19 15 

3000 22.84 26 14 

4000 32.75 27 14 

6000 41.22 29 5 

8000 48.30 27 2 

10000 52.03 27 3 

 
 
 
 
 
 

Coating B - FFB-11 

Fully reversed: +- 0.35% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks  

Number of non-interacting 
tip 

800 2.32 2 4 

1000 6.73 4 6 

1500 27.22 26 25 

1750 42.76 38 21 

2000 57.86 41 8 

2500 63.45 44 8 

3000 66.31 42 8 

4000 67.62 50 6 

4500 68.54 63 5 
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Coating B – Zero-tension 

Coating B - FTB - 4 

Zero-tension: 0 - 0.45% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

500 5.16 6 8 

1058 9.91 6 10 

1500 13.23 9 14 

2000 16.47 11 14 

3000 24.53 15 20 

4500 32.97 14 14 

6000 38.99 13 8 

9000 44.11 15 10 

11000 47.09 15 9 

13000 51.01 15 9 

15000 52.54 16 9 

17000 55.84 16 9 

19000 59.03 16 7 

 
 
 
 
 

Coating B - FTB - 6 

Zero-tension: 0 - 0.48% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

400 0.90 2 4 

1000 4.94 9 8 

2000 11.47 10 5 

3000 13.69 10 9 

4000 20.25 14 10 

5000 23.06 14 6 

6000 27.44 16 10 

7000 32.42 18 11 

8000 35.27 17 6 

10000 40.03 16 4 

14000 42.48 16 4 
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Coating B - FTB - 8 

Zero-tension: 0 - 0.5% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

10 9.81 2 0 

2000 9.96 4 2 

3000 10.61 6 6 

4500 15.37 7 8 

5500 19.00 7 8 

6500 24.95 11 14 

7500 31.69 11 9 

8500 34.98 13 7 

9500 37.01 13 7 

10500 38.05 13 7 

12000 40.24 13 7 

14000 42.83 13 7 

16000 44.06 13 6 

 
 
 
 
 

Coating B - FTB - 9 

Zero-tension: 0 - 0.58% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

10 16.96 3 1 

100 21.25 8 3 

250 25.40 12 9 

500 29.67 15 13 

1000 35.55 16 10 

1500 37.72 16 12 

2000 39.10 16 9 

3000 46.58 17 11 

4000 50.05 18 12 

5000 54.43 20 13 

6000 57.66 22 12 
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Coating B – Zero-tension (pre-strained substrate) 

Coating B - FTBP - 1 

Zero-tension: 0 - 0.4% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

5000 2.01 2 4 

7500 9.81 8 14 

10000 17.49 8 12 

15000 27.57 9 7 

30000 36.01 9 7 

 
 
 

Coating B - FTBP - 2 

Zero-tension: 0 - 0.4% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

3000 2.92 4 6 

4000 6.73 7 14 

7000 21.98 12 18 

10000 33.07 11 10 

15000 39.24 10 6 

20000 41.56 10 3 

 

Coating B - FTBP - 3 

Zero-tension: 0 - 0.5% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

250 0.86 2 4 

500 8.89 6 6 

1000 25.40 16 17 

1500 35.27 23 18 

2000 43.91 26 15 

3000 51.82 25 11 
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Coating B - FTBP - 4 

Zero-tension: 0 - 0.5% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

100 1.32 2 4 

150 2.57 2 4 

250 6.57 7 12 

500 15.25 9 18 

1000 30.43 13 15 

1500 37.44 12 13 

2000 41.96 13 7 

2500 44.35 13 7 

 

Coating B - FTBP - 5 

Zero-tension: 0 - 0.55% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

10 0.81 1 2 

25 3.45 2 4 

100 6.90 3 6 

250 11.37 7 12 

500 18.02 17 14 

750 25.39 18 16 

1000 28.96 19 16 

1500 35.59 21 15 

2000 39.55 24 10 

 

Coating B - FTBP - 6 

Zero-tension: 0 - 0.6% 

Cycle 
number 

Total crack length 
(mm) 

Number of 
cracks 

Number of non-interacting 
tip 

10 21.82 11 15 

250 31.28 16 19 

500 40.88 24 12 

750 51.10 25 7 

1000 54.20 24 9 

1500 59.22 22 5 

2000 61.49 23 7 
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Appendix vi – Total crack growth rate of coatings A and B under 
various cyclic strains 

Table A  10. Total crack growth rate of coatings A and B under various cyclic strains 

Coating Type Sample label R ratio Strain range Total crack growth rate (µm/cycle) 

C
o

at
in

g 
A

 

FFA – 5 -1 1.00% 53.0 

FFA – 6 -1 1.10% 61.9 

FTA – 1 0 0.80% 0.2 

FTA – 2 0 0.85% 8.1 

FTA – 3 0 0.90% 29.9 

FTA – 4 0 1.00% 102.4 

FTA – 5 0 1.00% 23.8 

FTA – 6 0 1.05% 49.5 

FTA – 7 0 1.05% 20.8 

C
o

at
in

g 
B

 

FFB – 2 -1 0.40% 1.0 

FFB – 5 -1 0.48% 2.6 

FFB – 6 -1 0.48% 5.6 

FFB – 7 -1 0.50% 5.5 

FFB – 8 -1 0.50% 9.0 

FFB – 9 -1 0.60% 9.4 

FFB – 11 -1 0.70% 50.9 

FTB – 4 0 0.45% 7.4 

FTB – 6 0 0.48% 4.2 

FTB – 8 0 0.50% 5.2 

FTB – 9 0 0.58% 24.9 

FTBP – 1 0 0.40% 2.5 

FTBP – 2 0 0.45% 4.4 

FTBP – 3 0 0.50% 34.3 

FTBP – 4 0 0.50% 32.8 

FTBP – 5 0 0.55% 29.4 

FTBP – 6 0 0.60% 43.8 
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Appendix vii‐ Digital Image Correlation 

In the current work, a Dantec digital image correlation (DIC) system was used 

intensively to measure strain distribution on sample surfaces. A comprehensive reference 

book of DIC technique has been produced by Sutton[201]. A DIC system is a digital image 

based technique that is capable of measuring the strain distribution of the surface of a 

deformed sample. To facilitate the correlation, sample surfaces are normally required to 

have a random black-and-white speckle pattern, normally made by spraying black paint 

dots on to a thin white primer that covers the required area. During tests, DIC system 

captures the images of speckled surface continuously and records the deformation 

process. Normally the images are post-processed by a computer software after testing. 

For the Dantec system used in the current work, an ISTRA 4D software was used. In post-

processing, the software divide the observed surface into a grid made of equally-sized 

square facets. Each facet has a characteristic grey value given by the speckle pattern it 

contains, and the location of the facet was tracked by the software. The deformation and 

displacement of each facet are calculated by comparing the deformed facets to their 

initial non-deformed states in a reference image. Based on the analysed deformation and 

displacement, the strains in any required directions can be calculated within the 

software. 

For the tests under static loads in this work, a 3D DIC configuration was adopted. Two 

identical digital cameras with a resolution of 1 MP were used to capture the image of a 

sample surface simultaneously. A typical setup is shown in Figure 122. The cameras had 

an angle of about 30between them and were placed in front of samples. The relative 

location of the cameras was calibrated using a standard target recognisable to the 

software. The manufacturer claims that the Dantec DIC system has spatial resolution of 

0.1 pixel. 
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Figure 122. A photo of a typical DIC system setup for mechanical testing. 
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Appendix viii‐ Free film model for edge crack 𝑱‐integral calculation 

For the calculation of 𝐽-integral of edge crack in free film samples, a 2D plane stress 

free film model was built using ABAQUS. Figure 123 shows the model with a 150 µm long 

edge crack meshed with 2D plane strain elements. The model has a length of 29 mm, 

simulating half of the free film gauge length of 58 mm. The width of the model is 12 mm. 

The bottom edge of the model represented the centre of the gauge length, and a 

symmetry boundary condition was assigned for the calculations. A crack perpendicular to 

the length (indicated by the red line) was assigned to the right side of the bottom of the 

model. No boundary condition was assigned along the crack to allow crack opening under 

tensile strain. 

 

Figure 123. 2D Free film model with edge crack. 
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At the crack tip, a contour integral region with a radius of 0.05 mm was defined and 

meshed with 40 elements in the radial direction. Mechanical strain was applied by 

applying displacement on the top edge of the model, and the 𝐽-integral at the crack tip 

was calculated using the contour integral technique within ABAQUS. 
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