DIGITAL MANUFACTURING IN FIAT GROUP AUTOMOBILES: VIRTUAL SIMULATIONS FOR PRELIMINARY ERGONOMICS OPTIMIZATION OF WORKCELLS IN THE DESIGN PHASE OF A NEW CAR MODEL

Stefania Spada
Fiat Group Automobiles
Manufacturing Engineering
Ergonomics
Torino (IT)
stefania.spada@fiat.com

Fabrizio Frascà
Fiat Group Automobiles
Manufacturing Engineering
Manufacturing Engineering Southern Italy
Pomigliano d’Arco (IT)
fabrizio.frasca@fiat.com

Fabrizio Sessa
Fiat Group Automobiles
Manufacturing Engineering
Manufacturing Engineering Southern Italy
Pomigliano d’Arco (IT)
fabrizio.sessa@fiat.com

ABSTRACT

New standards on work organization in the automotive industry, require a new concept of design methods: the human centred process. In Fiat Group Automobiles (FGA) the “Digital Manufacturing” (DM) project has started with the goal to create simulation tools and methods to improve the design of new cars’ manufacturing processes giving a special attention to manual operations. The DM approach is based on a detailed “virtual plant” where virtual mannequins interact with digital models of car’s components, equipment, containers, etc. in order to simulate and improve working conditions with many benefits on ergonomics, safety, final product quality, work organization and general production costs. The key factor for this approach is that with DM methodologies, designers and engineers have, already in the design phase of a new car’s manufacturing process, a preliminary estimation of the numerical indices used in the plants to check if workcells are compliant to international standards and regional safety laws. In this way the most important ergonomic indices (like Niosh, Snook & Ciriello, EAWS, etc.) become a “design tool” that allow to change/improve project solutions (designing easy and comfortable work tasks, equipment, tools, etc.) and to distribute the work load in an optimal way between workers.

Keywords: Digital Manufacturing, Digital Human Models, Ergonomic indices.

1 INTRODUCTION

During the last years, the global car market has changed becoming more competitive and unstable due to several factors (legal, financial, environmental, etc.) so that the most important automotive OEM have been obliged to react to this scenario.

In terms of general corporate strategies, partner-ships and joint ventures have been established between different groups/brands to ensure: the presence in the emerging markets, a larger products offer in all market segments, the optimization of the support networks: suppliers, resellers, maintenance. In terms of the products offer, designers and engineers have tried to differentiate solutions in order to get closer to the demands of customers trying also to anticipate new trends and future market requests. The continuous request to produce different new models in few years oblige OEM to develop more flexible assembly lines and better methods for job planning on the same lines. In the meantime, safety norms and product quality reasons request to improve working condition also according to international standards. Therefore Ergonomics and work organization concepts have
received a very strong development and new organizational models have been created using
ergonomics as a guideline to organize and optimize production in the plants. Very important examples
in these area are World Class Manufacturing (WCM) for production theories and European Assembly
Worksheet (EAWS) for ergonomics and work organization (Ergo-UAS).

However, the previous concepts allow to achieve the most important benefits only when they can
be applied in the design phase of a new car’s manufacturing process because, in this case, the whole
production system can be changed and optimized. On the contrary, applications on already existing
systems are less efficient or completely impossible due to technical reasons and to very high costs
requested to change physical tools, equipment, etc.

For this reason, FGA has created the “Digital Manufacturing” project whose final goal, for
manual operations, is to create simulation tool and methods that allow to apply ergonomics and work
organization methods in the early phases of a new project development.

In order to show how to achieve this result, it important to remember that, generally speaking,
ergonomic analyses aim to improve different aspects of the manual work: postures, forces, manual
material handling, etc. They have a different complexity level and perimeter of interest, but all of
them try to define optimal conditions in order to guarantee fast and comfortable work tasks according
to specific numerical ergonomic indices (like the Niosh index for manual material handling) that can
be applied on physical existing workstations.

The DM approach has been based on the process to adapt these ergonomics methods to the
“virtual plant” environment in order to get, already in the design phase, an high correlation between
results obtained by the virtual simulation with those obtained on the physical analysis of the work
tasks. Thanks to this process, it becomes possible to use ergonomic indices as a “design tool” in order
to change/improve project solutions and to distribute the work load in an optimal way between
workers.

2 DIGITAL MANUFACTURING AND HUMAN MODELS

One of the most important aspects of the DM project, is the information’s "active management" that
allows designers and engineers to make detailed virtual simulations in order to improve the car’s
manufacturing process. This concept has requested an important development on the methods used by
FGA Manufacturing Engineering to manage all the information related to the production process:
technological data are available in an unique simulation environment that contains virtual models of
the car components and of the production plant (robots, tools, equipment, etc.). Using this global data
management system, product designers save the car models in a shared environment where process
designers and suppliers can perform manufacturing simulations in a cooperative working environment
using virtual tools working on a completely geometrically faithful representation of the future
production plant.

The key factor to improve DM simulations has been to insert digital human models and “human
centred” simulation methods in the virtual environment in order to perform certified simulations for
all the manual operations that are designed for the production process in the future plant.

Figure 1: A virtual model of a production plant.
Digital Human Models are nowadays a standard in simulations software and many commercial products, like “Jack” by Siemens, are available on the market (Stephens, 2006). They give to designers all the most important facilities in order to perform manufacturing task simulations: different anthropometric and biomechanical models, visibility and reach-ability functions, direct and inverse kinematic algorithms, etc.

The fundamental development on which FGA has based the Digital Manufacturing project for human simulations, has been the effort to improve standard digital human modelling software (and the related simulation methods) in order to let them be compliant to FGA’s design standards (based on international technical norms - ISO/EN norms -) and FGA’s production standards that are based on European/Italian legal specifications on safety and ergonomics.

In this way, designers have not only a virtual representation of the future plant but also the virtual tools to validate design solutions. This is very important for ergonomic problems that are usually discovered in the early production moments when product/process changes on physical objects are extremely expensive and don’t bring to optimal solutions.

In order to achieve the above benefits, the first step has been to create virtual mannequins compliant to ISO anthropometric models (ISO 7250/1) and anthropometric measures (ISO 7250/2) for the different populations where FGA production plants are present. Starting from the basic functions to change mannequin’s dimensions, specific sets of virtual humans have been created according to the above measures. Besides, reference frames on these mannequins have been created in order to have specific points on which evaluate body angles, distances, etc. according to the most important ergonomics methods requested by ISO/EN standards (ISO 11226) and by FGA’s standards (like OCRA or EAWS).

3 ERGONOMIC METHODS IN THE VIRTUAL ENVIRONMENT

Ergonomic analysis in a virtual environment have the final goal of reaching an ergonomic optimization of the workstation already in the preliminary phases of product process development. These analyses differ for complexity and for area of interest. The most basic checks are related to
accessibility and visibility tests of the working area/object. For these applications, standard anthropometric measures are very important because they are references that allow designers and engineers to give a final answer on a design solution acceptability. To achieve this result, mannequins dimensions should be close, as much as possible, to the working population that should have to perform the requested assembly task in the future plant.

Figure 4: Visibility and reachability analyses.

Another kind of ergonomic analysis is related to the check of body postures assumed by workers during assembly task. These are very important because they allow to avoid musculo-skeletal disorders and safety problems. Many methods are available in the scientific literature to evaluate working postures but FGA references are: the international standard EN 1005/4, OCRA index and the EAWS method. All of them define a set of acceptable, critical and not acceptable body movements, position, angles.

Using the DM approach, designers and engineers use the advanced mannequins (those that are most close to the working population of the plant) to evaluate the above standards. To achieve this result, they place the virtual mannequins in the reference posture for the analysed assembly task. This posture can be determined also using virtual reality facilities or inverse kinematics algorithms that allow to forecast the most probable posture the worker can assume during his job (Di Pardo et al, 2008). Specific reference points are defined on the mannequins. These are directly related to the body movements and angles defined in the above ergonomic indices so engineers can immediately have a preliminary evaluation of the desired index. This operation is very important in the early design phases of the car manufacturing process because it also allows to define optimal values for the measures that strongly influence ergonomic conditions during the use of equipment, tools, etc. Even general production lines features could be results of these analyses (like, for example, the car’s height along the assembly line).

Figure 5: Sticky 2D representation of a standard virtual mannequin and its postural evaluation according to EN 1005/4 standard.

Finally manual material handling (MMH) analyses are described for ergonomic optimization of virtual workstations. This methodology is applied, in FGA, to all those (manual) assembly task where safety risks for manual handling of loads (lifting, carrying) could be present.

In order to carry out an optimal simulation to analyse MMH critical issues, engineers use to create, in the virtual plant, one (or more) virtual humans in the most important postures related with
the actions / positions that determine critical moments of the MMH assembly task. For example, to simulate a manual lifting of an object, designers can save different postures of the virtual dummy during weights movements. These positions can seriously affect the analysis. In the same way, a correct positioning of the dummy's hands are very important and reference points on them are necessary in order to get results compliant with the ISO standards. With the support of the frames previously placed on the mannequin, it is possible to find the relevant measures for the evaluation of lifting index (NIOSH).

Here again, the lifting index is very important in the design phase because checking the results, it is possible to change equipment dimensions in order to improve ergonomic conditions for the worker.

Figure 6: Critical measures for lifting operations according to Niosh index

4 CONCLUSIONS

In this paper, the authors have shown the approach used in Fiat Group Automobiles based on simulation methods and tools to analyse ergonomics aspects of future workcells inside the Digital Manufacturing Project. The focus has been given to human simulation so principles of Digital Human Modeling (DHM) have been used and implemented inside the simulation tools used in FGA.

The approach is based on a 3D human model that can be quickly used by project designers and plant ergonomics experts. Users input information about working task (dimensions, targets position, etc.) and the tool shows the expected working condition in terms of the most important ergonomics indices. To achieve this result, efforts have been done to deal with two key factors: anthropometric and human movement models. These topics have been improved in order to get them compliant with the international standards that FGA uses for project/process design and physical validation. Using these tools it becomes also possible to do a preliminary ergonomic analysis of the future workcell according to the most important ergonomics indexes (like OCRA and EAWS) in order to get a preliminary ergonomics optimization of workcells during the initial phases of a new product/process.

REFERENCES

Spada, Frascà and Sessa