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ABSTRACT

This thesis presents én investigation of the buckling
and post-buckling behaviour of plates with cutouts under
uniform compression. The theoretical analysis developed
for this purpose is based on a combined finite element/-
spline procedure which formulates a mathematical represe-
ntation of the membrane stresses within the plate accor-
ding to its flat and unbuckled state. These mathematical
representations are then utilised in the subsequent
energy analysis to determine the point of initial
buckling and in a semi-energy post-buckling analysis to
determine behaviour of plate after initial instability. A
comprehensive study is made with regard to buckling
loads, in-plane displacements, out-of-plane deflections
and the internal stress variations of simply supported
square plates with centrally located circular and square
cutouts. The analysis caters for the nonlinearity due to
changes in the buckled shape in the post-buckling region.
The results have, however, been presented for both single
term and multiterm solutions. An experimental investiga-
tion has also been conducted to obtain information on
displacements and stresses. Plates with circular and
square cutouts have been tested on a rig designed and
manufactured at the College of Aeronautics. The present

theoretical results have been compared with the

ii



theoretical and experimental results of other investiga-
tors. The theoretical results are shown to be in fairly
good agreement with the experimental results of plates

with circular and square cutouts of various sizes.
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INTRODUCTION AND
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INTRODUCTION AND REVIEW OF LITERATURE

1.1 Introduction

A thin flat plate under the action of in-plane compres-
sive loading in its middle plane is deformed but remains
completely flat when the edge forces are sufficiently
small. By increasing the load a state is reached when
the flat form of the equilibrium of the plate becomes
unstable and the plate bends or buckles slightly. The
in-plane load which is just sufficient to keep the plate
in the slightly bent form is referred to as the critical
or buckling load. Beyond this stage the membrane stres-
ses come into play; the load-deflection relationship
exhibits a stable character and the plate is still
capable of carrying increased load without failure,
provided, the post-buckling stresses in the plate remain

in the elastic range.

For the past few decades structural members, fabricated
from thin plates, have been the centre of immense
research activity. During the design of thin walled
structures it is essential to establish whether increased
load can be carried after initial buckling and in order

to understand the behaviour of a buckled structure, the



post-buckling analyses of plates and plated structures

have been a focus of attention of many researchers.

The stressed skin of structures like steel bridges,
aircraft wings and fuselages may contain holes. The know-
ledge of the influence of such holes on stress and defor-
mation patterns is also relevant in the design of thin-
walled structures. The buckling behaviour of perforated

plates has been examined by a number of investigators in

the past [8-31]. The work of the earlier researchers is
summarised by Bulson [3). The subject has also been
reviewed by Preobrazhenskii [17]. The ultimate load car-

rying capacity of plates with cutouts has also been
examined by some of these researchers [10,11,26-30] .
The behaviour of thin plates with holes, with regard to
deformations and internal stress variations in the post-
buckling region, received relatively little attention
[10, 26 & 29] and, therefore, needs to be investigated in

greater detail.

The complexity of the pre-buckling stress distributions
within a perforated plate and the stress free conditions
around the hole boundary, make the buckling and nonlinear
post-buckling analyses of a plate with a cutout a fairly
involved task. The work presented in this thesis investi-

gates the buckling and post-buckling behaviour of plates



with holes prior to collapse. The theoretical analysis
has been developed for simply supported rectangular
plates containing any shape of centrally located cutout
and subjected to in-plane compressive loading. The analy-
sis is, however, able to deal with non centrally located
cutouts as well as any other type or combination of
boundary conditions. The analysis procedure proposed by
the author is briefly described as follows. The pre-
buckling stress distribution is analysed by the finite
element method, which is considered to be more accurate
than the earlier methods where the plate was assumed to
have an infinite length during the stress analysis. The
stress data from the finite element analysis is then used
to obtain a mathematical representation of the stresses
through the application of a bicubic spline analysis,
the details of which are described in chapter three.
There are two major advantages of using bicubic spline
functions in the energy evaluation during the buckling
and post-buckling analyses. Firstly, in the post-buckling
analysis, a very large number of finite elements are
replaced with a relatively small number of spline panels
which reduces computational effort and consequently
allows the nonlinear post-buckling analysis to be
achieved with reduced difficulty. Secondly, because a
continuity up to the second derivative is achieved during

the evaluation of bicubic spline functions, the stress



compatibility at the spline panel junctions greatly
improves the accuracy of the analysis. The deflection
function given by equation 4.1, and the stress functions
obtained from the spline analysis are used 1in the
Rayleigh-Ritz energy approach to obtain the buckling
solution. In the post-buckling analysis, the stresses are
classified into three stress systems as explained in
chapter four. The stresses in system 1 are those obtained
from the applied in-plane displacement assuming no
lateral deflections. Stresses in system 2 are the post-
buckling stresses of an unperforated plate assuming zero
end compression and are obtained by solving the Von
Karman compatibility equation according to an assumed
lateral deflection system. The stress free boundary
condition at the hole edge is achieved by applying back
the post—buckling‘stresses determined from the Von Karman
analysis at the hole boundary to obtain the stresses
within the perforated plate which comprise stress
system 3. Stresses in systems 1 and 3 are evaluated by
the Combined finite element/spline analysis. The
resultant stresses of the three systems are then used in
the subsequent energy minimisation of the semi-energy
post-buckling analysis. The post-buckling analysis is
carried out for the case where buckled shape of the plate
is allowed to change from its initial buckling mode, i.e.

more than one term of the deflection function 1is



considered in the solution process.

Two types of loading - uniform displacement and uniform
stress - have been investigated. Each type results in
different displacement and stress patterns in the plate
and consequently in different buckling behaviour. Figure
1.1 shows a schematic diagram of pre-buckling in-plane
distortions. When a plate is subjected to uniform stress
loading, the in-plane displacement of the loaded edge is
non uniform because of the presence of hole. In the same
way the stress distribution at the loaded edge is non
uniform if the loaded edge is held straight during the
loading process. Figure 1.2 illustrates the variation of
pre-buckling stress Oxat different sections for the two
types of loading conditions according to the same average
applied stress. Different patterns of stress variation
can be noticed from these curves particularly at the
loaded edge and at the minimum section. The uniform
stress loading isseen to result in a higher stress
concentration than the uniform displacement loading. The
buckling analysis has been carried out for both these
types of loading conditions. The post-buckling analysis
has been carried out for the more practical case of
uniform displacement loading. The proposed analysis or
its modification is capable of handling other types of

loading conditions, which generate non-uniform pre-



buckling stresses, in perforated or unperforated plates.
One example is the locally distributed or patch loading

in a propped structure.

The theoretical analysis has been applied to simply
supported square plates with centrally located circular
or square cutout. Experimental buckling and post-buckling
results have also been obtained for these cases. In view
of the fact that openings larger than half the size of
the plates are unlikely to be used in practice, the
theoretical evaluations of the results were confined to
cutouts having a maximum diameter/side(for square cutout)
equal to half the width of the plate. The variation of
buckling load with hole size/shape has been presented and
the theoretical results have been compared with the esti-
mated experimental buckling loads. In the post-buckling
region, load ~ in-plane-displacement behaviour, load ~
out-of-plane deflection behaviour and internal stress
variation have been examined theoretically and compari-

sons have been made with the experimental results.

1.2 Unperforated Plates

The study of post-buckling and ultimate behaviour of

plates and thin-walled structures has drawn the attention



of many investigators in the past four decades [48-58].
Reviews on the subject are also found in these publica-
tions and in references 1,2 and 3. For simple problems of
rectangular plates with regular boundary conditions,
exact solutions of the basic equilibrium equations may be
achieved with little difficulty. Where exact solution is
not possible, approximate energy and other numerical
methods may be found useful. These include the Rayleigh
Ritz energy approach, the Galerkin method, the Lagrangian
multiplier method and more recently the finite element

and finite strip techniques.

At the point of buckling, where out-of-plane deflec-
tions are about to grow, the stretching of the middle
plane of the plate has negligible effect on the internal
stresses in the plate. Thus the differential equations of
equilibrium and compatibility and the energy solutions
become fairly simplified. As the deflections start to
increase, the stresses in the plate are accompanied by
the stretching of the middle plane of the plate. The
effects of these changes have to be taken into considera-

tion in the post-buckling analysis.

In the energy approach, the strain energy due to
bending and twisting is written in terms of approximate

displacement functions which are represented by polyno-



mial or trigonometric series and arbitrary displacement
coefficients. Each of these displacement functions has to
satisfy boundary conditions at the loaded and unloaded
edges. The loss in potential of the in-plane forces is
also expressed in terms of the deflection coefficients
and the Rayleigh Ritz Energy Method minimises the total
potential of the structural system in terms of each of
these coefficients to obtain the buckling solution. The
lateral deflections grow after the initial instability
and the stresses in the structure are due to bending and
twisting as well as membrane action. The total strain
energy stored in the structure is, therefore, the sum of
strain energy due to bending/twisting and the strain
energy due to in-plane forces. The semi-energy approach
used in the post-buckling analysis minimises total strain
energy with respect to the arbitrary deflection coeffi-
cients. The energy methods have been reviewed and used
by many researchers in the past, notably by Rhodes and
Harvey [55] and Loughlan [48], and have been found useful
for the analysis of plates as well as thin walled beams,

struts, columns and other structural members.

Galerkin’s method can be used as an alternative to
Rayleigh-Ritz solution. This requires the deflection
functions to satisfy all the boundary conditions; but

instead of evaluating energies the expression for out-of-



plane deflection is substituted in the basic equilibrium
equation. Since the deflection function is approximate
there is an error which needs to be made as small as
possible. This is achieved by Galerkin’s method . The
method is, however, reported to be difficult to apply in
the case of plates with highly irregular boundaries or

complex loading conditions.

The Lagrangian multiplier method is discussed in
reference 3. The critical stresses evaluated by the
energy methods are always found to be higher than the
true critical stress. In the Lagrangian multiplier method
the approximate solution can be obtained in two ways
which permits the computation of a lower as well as an
upper limit to the true critical stress. In the energy
method the total potential energy is minimised with
respect to the undetermined coefficients in each of the
terms of the deflection function. In the Lagrangian
multiplier method the condition that the series expansion
of the deflection function, as a whole, satisfies the
boundary conditions is satisfied mathematically during
the minimisation process by the use of Lagrangian multip-
liers. For satisfying the boundary condition for the
entire function, as a whole, some constraining relation-
ship has to be introduced. Limiting this relationship in

the Lagrangian multiplier method has the effect of giving

10



the plate a greater edge freedom, thus reducing the
critical stress. The minimisation of the total potential

energy is subject to that relationship.

The finite element method [5,6] has been developed in
the past two decades as a versatile technique of analy-
sing problems associated with the behaviour of
structures. The popularity of this method of analysis is
due to the influx of digital computers and their power of
handling the numerical techniques, as well as its ability
to deal with complex geometries and boundary conditions.
The stability analysis of plates by the finite element
method involves the formulation of the initial stress
stiffness matrix (also known as the geometric stiffness
matrix) and the linear elastic stiffness matrix. These
matrices are formulated by satisfying displacement compa-
tibility at the element boundary and establishing contin-
uity and equilibrium at each node. The linear buckling
problem is a standard eigenvalue solution; the lowest
eigenvalue determines the critical load and the correspo-
nding eigenvector defines the buckled shape. The non-
linear post-buckling analysis is done by developing and
solving incremental equilibrium equations. The variation
of applied load and nonlinearity in the post-buckling
region is solved incrementally or iteratively or by

combinations of iterations and increments [11].

11



1.3 Plates with Holes

Two of the earliest published studies on the instabi-
lity of simply supported rectangular plates with circular
holes were by Levy et al [8] and Kumai [9]. Their work
has been reviewed by Bulson [3] and Ritchie [10]. Levy et
al presented a method for computing the compressive
buckling load of a simply supported plate with a reinfor-
ced circular hole. Plates with unreinforced holes were
also studied. They observed a small decrease in the
buckling stress compared to that of an unperforated
plate, maximum 14 percent, for unreinforced holes Lkut
noticed marked increases in the buckling stress by intro-
ducing hole reinforcements of the doubler type. Kumai [9]
also studied the variation of buckling stress with the
hole size for simply supported plates with circular
holes. He reported 25 percent reduction in buckling load
with respect to an unperforated plate as against 14
percent evaluated by Levy et al for the same plate. The
distribution of pre-buckling stresses were assumed by
these investigators to be the same as those of an
infinite plate with a circular hole under uniform compre-
ssion. The difference between the two types of results is
attributed to the different deflection functions chosen
for each analysis. Kumai’'s experimental results were in

closer agreement with his theoretical results as compared

12



with those reported by Levy et al.

Buckling of simply supported plates with a central
circular hole under uniform edge displacement has been
analysed by A.L. Schlack Jr. [24 & 25]. He assumed
polynomial functions to represent in-plane and out-of-
plane displacements. These functions were used in the
Ritz approach to derive an expression for the potential
energy of the system in terms of the arbitrary constants.
By differentiating with respect to each constant in turn
a set of simultaneous equations was obtained. By putting
the determinant equal to zero an expression for the
critical displacement was found. An average value of end
load corresponding to the critical displacement was used
to evaluate critical loads. His experimental buckling
load, defined as the inflection point on the load deflec-
tion curve, was in good agreement with his theoretical

predictions.

Kawai and Ohtsubo [12] utilised the finite element
formulation to obtain the initial in-plane stress distri-
bution before buckling. Using this information the
critical stress was determined by the Rayleigh-Ritz
procedure. For numerical convenience the double integra-
tion encountered in the energy procedure were transformed

into line integrals with the help of Gauss” theorem. To

13



show the validity of the procedure, Kawai and Ohtsubo
evaluated the buckling strength of perforated square
plates with various boundary conditions and subjected to
uniaxial compression. The out-of-plane deflections were
represented by polynomial functions. The stress distrib-
ution of a square plate under a prescribed edge displace-
ment was first analysed by the finite element formulation
using constant stress triangular elements. The energy
integrals for each element were summed up throughout the
plate to obtain the total energy. The results obtained
for the critical stress of a simply supported perforated
plate subjected to uniform edge displacement were in good
agreement with the theoretical and experimental results
of Schlack [25] and Fujita [l14] for various hole
diameters [Fig. 1.3]. From this figure it is observed
that the in-plane restraint conditions of the side
boundaries has a éonsiderable influence on the buckling
stress of a perforated plate. For plates under uniform
displacement loading with no restraint on the sides the
buckling coefficient decreases first from 4.0 for a solid
plate to 3.7 at ¢/b=0.35 and then increases to over 6 at
c/b=0.7. For plates with a comparatively larger hole
sizes, e.g. ¢/b=0.5 or higher, subjected to uniform edge
compression the stress distribution at the loaded edge is
such that the stresses are concentrated towards the sides

[Fig. 1.2 ]. As explained in reference 12, a plate with

14



larger hole hole size can be represented by a simplified
model of two strips which resist most of the applied
stresses. The buckling coefficient depends on the width
of these strips. The buckling coefficient increases as

the width becomes smaller.

The buckling results presented by Kawai and ohtsubo
[12] have been confirmed by Ritchie and Rhodes [10,26]
who combined the finite element and energy method to
investigate the buckling and post-buckling behaviour of
plates with centrally located circular holes. Experiments
were conducted on square plates with different hole sizes
and comparisons with the theoretical predictions were
given. The pre-buckling stress analysis was accomplished
by the finite element method. Constant strain triangular
elements were used to define the finite element grid.
Stresses in each af the element were evaluated and this
information was used during the subsequent energy evalua-
tion. The buckling analysis was carried out for two types
of loading - the uniform stress and the uniform displace-
ment cases. The buckled shape was assumed fixed along the
loaded direction of the plate and was allowed to change
across the loaded direction. A deflection function of the

following form was chosen to represent the buckled shape.

- kITx N nry _ ,
W = sin S2= :L:’]An COS G n=12,3,
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Using the Rayleigh-Ritz energy approach, the total
strain energy in 1/4 of the plate was calculated from the
energy contribution of each of the triangular elements.
Since the stresses within the elements were constant, the
energy evaluation was straight forward. During the integ-
ration process the limits of integration were set to take
care of the presence of the hole. The minimisation of the
total energy with respect to each of the deflection
coefficients thus leads to the solution of the typical
eigenvalue problem. Ritchie’s theoretical buckling loads
compared reasonably well with other investigators and
with his own experimental results; proving the validity
of his theoretical approach. Figure 1.4 shows the varia-
tion of buckling lcad with the size for the two types of
loading considered and a comparison with the results of
reference 12. The buckling load is seen to reduce with
increase in hole size for the uniform stress loading case

as was reported earlier.

Azizian and Roberts [11,27] presented finite element
solutions for the buckling and geometrically nonlinear
elasto-plastic collapse behaviour of plates with holes.
Triangular elements having three corner nodes and five
degrees of freedom per node were used to model the
plates. Bending action was represented by a nine degree

of freedom polynomial. Established finite element proce-
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dures were followed to find the critical stress and
buckled mode shape. 1In the finite element formulation,
the buckling problem is ultimately reduced to the

solution of the equation:-
1 R
Det (L} +Clugl =

where [KL] is the linear elastic bending and membrane
stiffness matrix, and [KG] is the geometric stiffness
matrix which depends on the membrane stresses prior to
buckling. The lowest eigenvalue C defines the critical
locad factor and the corresponding eigenvector the buckled
shape. The solutions presented in reference 11 cover
square plates with centrally located square and circular
cutouts subjected to uniaxial compression, biaxial
compression and pure shear according to different support
boundary conditions. Azizian and Roberts concluded that
for the simply supported plates subjected to uniaxial and
biaxial compression the buckling load is almost indepen-
dent of the hole size up to half the plate width
(c/b=0.5). Their results, however, show a reduction in
buckling coefficient of 17 percent at c/b=0.4 [Fig. 1.5].
The results presented in ref. 11 give a lower prediction
of the buckling loads than those of ref. 10 and 12 [Figqg.
1.3 and 1.4]. The main reason for this difference is the

way in which uniform displacement of the loaded edge is
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enforced. In the finite element evaluation of the pre-
buckling stresses, uniform compression of the loaded
edges is ensured in references. 10 and 12 by applying
uniform displacement at the nodes and restraining the in-
plane distortion of these nodes. Azizian [11], on the
other hand, constrained the loaded edges to remain
straight in the plane of the plate by introducing very
stiff, two degrees of freedom, shear elements connecting
adjacent nodes. This method cannot possibly ensure that
the loaded edge be kept absolutely straight and nodes
towards the middle of the edge are more likely to distort
as the load is increased. In the uniform stress loading
situation, where the the distortion in the middle of the
edge 1is higher than the sides, the buckling loads reduce
as the hole size becomes large. Since the buckling loads
of ref. 11 1lie between the buckling loads presented in
reference 10 for the two types of loading, uniform stress
and uniform displacement, it is reasonable to conclude
that the introduction of the shear elements could not

rigidly enforce uniform compression of the loaded edge.

The theoretical and experimental results of the
buckling coefficient for simply supported plates with
centrally located circular and square cutouts obtained by
Narayanan and Chow [28] is presented in figure 1.6. The

theoretical buckling loads were computed by the finite
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element method suggested by Sabir and Chow [18]. The
experimental buckling loads were obtained by the inflec-
ticn point method [24]. The inflection point is defined
as the load corresponding to the point where the rate of

change of slope of the 1load deflection curve 1is
minimum. The curves for the variation of the theoretical
buckling results show a reduction in the buckling coeffi-
cient with increase in the hole size which indicate that
the theéretical results were obtained for the plates
subjected to uniform stress loading. The experimental
buckling coefficients are seen to decrease for hole size
up to d/a=0.4 (a’/a for square cutout) and then increase
for d/a=0.5. The scatter in the experimental results for
the plates with same size circular holes indicate the
inaccuracy of the inflection point method for estimating
experimental buckling loads. The variation of the
buckling coefficient for simply supported square plates
with square cutout presented in ref. 22 [Fig. 1.7 II(b)]
show a similar trend to that presented in ref. 28 [Fig.

1.61.

The work presented by different investigators on the
buckling behaviour of perforated plates show that various
methods of analyses exhibit similar trend of results
provided the loading and boundary conditions are kept the

same. The experimental buckling loads are shown to agree
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more closely for the loading condition where the loaded
edges are held straight during the application of the

loads.

Most of the work on perforated plates has generally
been confined to the study of the initial instability
[8-33], particularly for plates with a centrally located
circular or square cutout. Few investigations have been
reported on the post-buckling behaviour of thin plates
with cutouts. The published studies on the post-buckling
behaviour of perforated plates are by Yu and Davis (30])
and Rithchie and Rhodes [10,26). The former reported
experimental investigations on the buckling and the post-
buckling behaviour of thin-walled cold-formed structural
elements with centrally located holes. But a more exten-
sive theoretical and experimental investigations on
square and rectangular thin plates with circular holes

has been carried out by Ritchie [10].

In addition to the boundary conditions at the plate
edges the post-buckling analysis of plates with holes
requires satisfying the stress free boundary conditions
at the hole edge. Ritchie [10] achieved this by applying
stresses at the hole edge which were equal and opposite
to the post-buckling stresses obtained after solving Von
Karman's compatibility equation for the unperforated
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plate. Prior to the complete post-buckling solution, i.e.
minimisation of the total strain energy, these stresses
are evaluated in terms of the deflection coefficients.
For a solution containing more than one term of the
deflection function, the stress resultants to be applied
at the hole edge would have to be evaluated for each
combination of the deflection coefficients in the multi-
term solution. This makes the entire analysis very
laboricus if the deflection function used for the post-
buckling analysis contains more than a single term. To
reduce labour, Ritchie [10] used a single term solution
in the post-buckling analysis, i.e. an approximation was
made that the buckled shape did not change from its
initial buckling mode but that only its magnitude
changed. The theoretical load ~ edge compression plot,
shown in figqure 1.9, illustrates the linearity of the
post-buckling curves due to this assumption. The com-
parison [Fig. 1.8] of the theoretical load ~ deflection
plots with the experimental results show reasonably good
agreement. The most significant feature of his theoreti-
cal analysis, however, 1is the investigation of the
internal stress distribution prior to and after buckling
until collapse. The comparison of the theoretical and
experimental stress variations showed a good agreement
for plates with small holes at all load levels [Fig.

1.10] and for plates with large holes at loads prior to
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or just after buckling. The stress variations at higher
loads for plates with circular holes of size 0.5 and 0.6
times the platé widtﬁ-did not show a good agreement
between his theoretical and experimental results [Figqg.
1.11]. Ritchie attributed this difference to the fixed
buckled shape used in the post-buckling region which also
affects the stress free boundary condition at the hole
edge. In the author’s opinion the use of constant strain
elements which are known to give a poor representation of
the in-plane stresses and the numerical evaluation of the

energies in each of the element could be far more signi-

ficant factors.

A geometrically non-linear analysis was presented by
Azizian [11] for the elasto-plastic post-buckling inves-
tigation of perforated plates to predict the ultimate
load carrying capacity. The analysis was carried out for
uniaxially compressed square plates with width/thickness
ratios from 20 to 80 and assumed initial imperfections.
Since the analysis was limited to relatively thick
plates, 1i.e. lower width/thickness ratios, internal
stress variation associated with the large deflections
have not been investigated and the work was concentrated
on predicting the ultimate load carrying capacity of
perforated plates. The concept of incrementing displa-

cements rather than loads was used to develop incremental
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energy equations. Starting from the initial deflection
the successive positions on the load ~ deflection curve
were reached by incrementing nodal displacements. Each
increment was based on the information of the previous
step. The post-buckling analysis procedure did not take
into account the changes in the buckled shape which
obviously limits the accuracy of the analysis. Another
source of inaccuracy in the analysis is that non-confor-
ming elements were used. The refinement of the finite
element mesh does not considerably improve the inaccuracy
due to the use of non-conforming elements. Besides,
solutions of the elasto-plastic collapse of perforated
plates having low width to thickness ratios was reported
[11] to show very slow convergence with the increasing
number of elements. This is perhaps due to the poor
representation of the membrane stress state by the linear
displacement triéngular elements. In general, all finite
element non-linear solutions are regarded computationally
time consuming and require significant computer storage
and, therefore, the solution proposed in reference 11 may

have limitations in practical use.

An approximate method of predicting the ultimate
carrying cagpacity and post-buckling behaviour of plates
with width to thickness ratio of less than 125 containing

circular and square cutouts under uniaxial compression
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has been presented by Narayanan and Chow [28]. Experi-
ments were conducted to examine four parametric varia-
tions related to the size of the plate, its thickness,
size and shape (circular or square) of the cutout and its
eccentricity. Tests were conducted to measure the
buckling and ultimate loads and were continued well into
the post-peak range. The load ~ deflection behaviour was
monitored in the elastic and plastic zones. The theoreti-
cal elastic analysis developed by Horne and Narayanan
[59] was employed for tracing the elastic loading
behaviour of the perforated plate. The concept of the
redistribution of the stresses at the minimum section of
a perforated plate vis a vis an unperforated plate sugge-
sted by Ritchie and Rhodes [26] was used to compute the
stress distribution across the hole in the post-buckled
range as illustrated in figure 1.12. It is interesting to
note that this.concept was used only to predict the
theoretical elastic loading curve andé the total applied
load was obtained by integrating the approximate post-
buckled stress distribution at the loaded edge of the

perforated plate given by the following equation.

Oy :5!‘ <_5_'ii) T I
h ! 6 +E(6'So) '6—02

at 2
[ 5) s
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4 is the deflection corresponding to the applied load,
30 is the initial deflection, a and b are the sides of a
plate andogris the elastic critical stress of the perfo-
rated plate. The ultimate load was estimated from the
point of intersection of a theoretical elastic loading
curve with the unloading line obtained from the rigid

plastic theory [Fig. 1.12].

The theoretical results presented by Narayanan and Chow
[28] have been compared with their experimental results,
test results of Ritchie and Rhodes [26] and the theoreti-
cal results of Azizian [11]. Figure 1.13 (a) compares the
effect of square and circular holes upon the ultimate
strength of the perforated plates. It is observed from
this figure that there is a drop in strength with the
increasing hole sizes. This corresponds to the loss of
stiffness of the.plate due to the presence of holes. The
ultimate strength of the plates with a square cutout is
seen to have marginally lower strength than the plates
with a circular hole. Figure 1.13 (b) shows a comparison
between the theoretical predictions of Narayanan and Chow
[28] and the test results of Ritchie and Rhodes [26]. It
is pointed out that the theoretical analysis by Narayanan
and chow, which was based on small deflections, was
carried out for thick plates, i.e. width/thickness ratios

of 80 or less, and the plates tested by Ritchie and
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Rhodes were relatively thin, i.e. width/thickness ratio
of 162, and were obviously subjected to large deflections
during these tests. The theoretical predictions of refe-
rence 28 is, therefore, not strictly applicable to the
above tests. The comparison of ultimate strength of
plates with a circular hole between the theoretical
results of Azizian [11] and Narayanan and Chow [28] are
presented in figure 1.13 (c). Azizian computed the ulti-
mate strength of perforated plates using an elasic--
plastic nonlinear finite element formulation whereas
Narayanan and Chow obtained the results by using the
approximate method outlined in the above paragraph. It is
observed from figure 1.13 (c) that there is close agree-
ment between the results obtained by the two methods. The
predictions of the ultimate capacity of the perforated
plates by Narayanan and Chow [28] can be considered to be
reliable on the bésis of comparison between the theoreti-
cal predictions and the experimental results. Since the
analysis presented by them is based on small deflection
theory, the theoretical predictions are not wvalid for
thin plates, i.e. for plates with width/thickness values

in excess of 80 or so.

Thin shear webs containing cutouts are often found in
aircraft wings and fuselage bulkheads, the diaphragms of

box girders and the webs of prefabricated plate girders.
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The behaviour of thick walled webs with cutouts has been
investigated theoretically and experimentally in 60°s and
70°s. With the increasing requirement of thin walled
structures and the need of design optimisation, the
analysis of thin shear webs became the focus of attention
of many investigators. Significant contributions to the
experimental and theoretical investigations aimed at
obtaining detailed information on the post-buckling
strength of perforated thin web plates have been underta-
ken at University College Cardiff since 1977 [35]. These
studies relate to the variation of the buckling coeffi-
cient with hole size for plates with circular and square
cutout under shear loading according to a variety of
boundary conditions. The ultimate shear capacity of plate
girders with openings in webs have also been investigated

[35-371.

The variation of the critical shear stress coefficient
k" with the diameter of a central circular cutout in a
square plate is illustrated in figure 1.15 [38]. The
buckling coefficients decrease with the increase in hole
size for both clamped and simply supported edges. It can
be seen from this figure that for the case of plates
containing circular holes there is a near-linear relatio-
nship between the shear buckling coefficient 'k° and the

diameter/plate width ratio. A similar trend is observed

27



for plates with square and rectangular cutouts from the
graphs shown in figure 1.16. The load corresponding to
elastic critical stress can be considerably improved by
introducing a ring type reinforcement around a circular
hole. It was reported by Narayanan et al [36,37] that in
all cases the critical load equivalent to an unperforated
plate was achieved by employing a relatively small size
of reinforcement ring to a circular hole. For a plate
with a square cutout having a reinforcement strip on two
opposite sides of the cutout, the critical stress of an
equivalent unperforated plate can be achieved if the
total length of each strip is at least 1.5-times the
width cf the cutout and the thickness is at least three
times the thickness of the plate. This is reported to be
true for all practical widths of reinforcement as the
variation of k" with the width of the reinforcement is

very small.

Concentric holes in structural members are most widely
used and, therefore, the majority of researchers have
focused their attention on the stability analysis of
perforated plates with centrally located cutouts. There
are, however, practical situations where it is necessary
to have openings away from the centre of the plate, e.qg.
ligquid containing vessels have flap valves positioned

near the bottom of the partitions to transfer fluid from
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one chamber to another. In a recent publication, Sabir
and Chow [19] presented a study on the elastic buckling
behaviour of plates containing eccentrically located
circular holes. They investigated the effect of the
degree of the eccentricity of a circular hole and its
size on the buckling loads of simply supported and
clamped square plates subjected to uniaxial, biaxial and
shear loads. The location of the hole was kept along a
diagonal of the square plate in all cases. The finite
element method was used to obtain the elastic buckling
loads. The pre-buckling stresses were evaluated using the
triangular and rectangular membrane elements which were
based on assumed strain, rather than displacement,
fields. These elements were combined with bending ele-
ments to carry out the buckling analysis. The results
presented by Sabir and Chow [Fig. 1.14] show a decrease
in the buckling loads of plates with eccentric holes as
the hole size becomes larger. The reduction in the buc-
kling load can also be observed with increase in the
eccentricity of the holes. For concentric holes it has
been demonstrated theoretically and experimentally [10
and 29] that for plate subjected to uniform displacement
loading the buckling load increases with increasing hole
size. The buckling results shown in figure 1.14 corres-
pond more closely to constant stress loading case, i.e.

the buckling loads reducing with increasing hole size.
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The results of Ref. 19 for eccentrically located holes
may, therefore, be limited to smaller hole sizes only for

any practical applications.

1.4 SPLINE ANALYSIS

The discussion on the use of bicubic B-splines for
surface fitting and the subsequent use of these functions
in the current analysis is given in chapters three and
four. The process is concerned with the mathematical
representation of smooth continuous relationships between
variables which are defined initially by a set of data
points. A cubic spline consists of a set of cubic polyno-
mial arcs joined end to end with continuity in magnitude
and in the first and second derivatives at each joint (or
knot). A cubic B—épline is a special type of cubic spline
used in curve fitting and interpolation problems and is
defined to have non zero values at four‘adjacent
intervals between knots and is zero everywhere else (see
chapter 3 for definitions). Because of the localness of
B-splines, the problems of illconditioning associated
with the cubic spline functions have been solved with a
reasonable accuracy. A bicubic B-spline to represent a
surface is obtained by the tensor product of the cubic B-

spline functions defined in the cartesian axis system.
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Bicubic B-splines have been used by the author in the
theoretical analysis to represent the internal membrane
stresses in the plate. B-splines were first introduced
by Schoenberg f43] in 1946 but received little further
attention. Some twenty years later, after the work by
Curry and Schoenberg [44], a number of authors advocated
their use in problems of curve and surface fitting,
smoothing and interpolation. Amongst these researchers
are Cox [39,41], De Boor [42], Hayes and Halliday [40],
who made substantial contributions in this field. These
authors presented basic concepts for the mathematical
representation of cubic and bicubic B-splines, procedures
for their numerical evaluation and techniques for least
square curve fitting. The reader interested in the use of
spline functions may also refer to the publications of

references 45,46 and 47.
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BASIC THEORY

2.1 Introduction

A plate subjected to in-plane compressive loading has
two types of deformations, i.e. in-plane displacements
and out-of-plane deflections. Consequently the stress
system in the plate consists of stress components which
are due to in-plane loading, plate bending and the stret-
ching of the middle surface of the plate. When the
deflections are small, i.e. less than the thickness of
the plate, then the analysis is based on the assumption
that the middle plane of the plate does not stretch
during bending. In this case the loads are entirely
resisted by bending and twisting of the plate elements
and the effects of shear are neglected. For a large
elastic deflection analysis the effect of middle surface
strains, which are present during bending, have to be

taken into account.

2.2 Basic Equations

Consider a plate element acted upon by moments Mx, My
and Mxy, vertical shear forces Qx and Qy, and a distrib-

uted load of intensity g over its upper surface as shown
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in figure 2.1. Consideration of the equilibrium of this
element leads to the following shear and moment equilib-
rium equations corresponding to the longitudinal, tran-
sverse and lateral directions, i.e. the x, y and z

directicns.

gex + gsy + 0 =0 2.1(a)

2.1(b)

ay)
5
*
|
<E
+
£
|
o

M"+ dMx _ Qx=0 2.1(c)

Substituting expressions for Qx and Qy obtained from
equations 2.1(b) and 2.1(c) into equation 2.1(a) we get
the fcllowirg relaticnship for lateral equilibrium in the

z-direction.

D, o 2 -

dx2 ~ dy?  dxdy
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If the lateral deflecticns are represented by w then
the edge moments Mx and My can be expressed in terms of

w by the following relationships.

2 2
Mx = -D( xw +\§@-\!‘l‘> 2.3(a)

My = -D(Q_zl”’_ +§@—2—\-"'-) 2.3(b)

where D:Et3/12(1-v2) ,is known as the rigidity of the
plate. The twisting mcmernts on the plate element can be

expressed in terms of w as follows.

2

Mxy = - Myx :D(1 —\3)%73—)[ 2.3(c)

Substitution of the expressions for Mx, My and Mxy into

equation 2.2 then leads to the following equilibrium
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equation.

al'w aL'w

+ =~

L

4L

@_!L + 2 - 51. 2.4
ax“  ax‘ay’  ay D

If in addition to lateral load there are forces applied
at the edge of the plate at the middle surface, the
effect on plate bending can be considerable. If Nx and Ny
are the edge compressive forces per unit length in the x
and y directions respectively and Nxy and Nyx are the
edge shearing forces per unit length as shown in figure

2.2, then the equilibrium of the element in the x and

y directions gives rise to the following equations.

aNx , dNxy -0 2.5(a)

__N_x_y+ —aﬂyL =0 2.5(b)

These equations are independent of the equilibrium

equations considered earlier, i.e. equations 2.1 (a,b &c)
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and due to this independence may be treated separately.
To introduce the effect of these edge forces we consider
the projection of Nx, Ny and Nxy on the z axis as shown
in figure 2.2. The projections of the Nx and Ny forces

are:

@_\1 , ONx dw_
ax2 dx dy Ax  ax dxdy

aW +QN_LaW d
('32 dx dy ay dy dx dy

And those of the shearing forces Nxy and Nyx are:

o dNxy dw ONxy dw
2nya aydx dy + A aydxdy+ 3y adedy

Adding these projections and making use of equations
2.5(a) and 2.5(b) then gives the resultant force in the z

direction as :

Z 2
<N Lw 2Nxa—-+Nyf“;) dxdy
dx dxady dy
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The combined lateral and in-plane loads now give rise to

the following equilibrium equation.

4
aw 26w+€1w
axl' axa ay['

o

*ax? Yaxay ay’

2 2
<Q+Naw 2N aw N'a—vi

The stress resultants Nx, Ny and Nxy can also be defined

in terms of a stress function F and these are expressed

by the following_relationship.

- Nx _dF
5x°f

«?j'

%.4.
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2
Txy = Nxy - _ d°F 2.7(c)

t dxdy

If we now assume that the plate is subjected to in-
plane forces only, then from equations 2.6 and 2.7 the

following equilibrium equation is obtained.

3w 26 W, Q_w -
ax axzay ays

r——

ay? ax? ax? ay?  axdy axdy

i(aFaw aFaw 2a2Fiu)
D

This equation is known as Von Karman equilibrium equation.

Now if the plate is subjected to large deflections,
i.e. a few times greater than the plate thickness, then
the effects of the middle surface strains present during

bending have to be considered.
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If u and v are the in-plane displacements in the x and
y directions respectively and w is the out-of-plane
deflection, then the strain components €x:» €y and ¥yyxy

are given by:

& =+ () 2.50a)

2
~dv 1 aw .
Cy _ay Z(ay) 2.9(b)
Ixy = du_, Qv dw Jw 2.9(c)

~dy ax  adx ay

By taking second derivatives of €x, €y and Yxy with
respect to y, x and X & y respectively and adding the
resulting expressions, we obtain the following single
differential equation which links the middle surface

strains to the out-of-plane deflection w.
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2 2 2

2 2 Z i
fo-fo- S ) -

The strains are now described in terms of the stresses
through the use of the two dimensional stress-strain

relationship for a linear elastic material.

Ex= —‘IE‘(dx "35)') 2.11(a)

Ey:'. -g_(@y -\35)‘) 2.11(b)

Yey= _JG__ Txy = 2(1E®) T xy 2.11(c)

Equations 2.7 and 2.11 can be substituted into 2.10 to

obtain the following equation.

56



4 t. 2 2 2
aF,,

2
aF+ - a Q— 2.12
a%dy? y"' dxdy ax? Qy?

Equations 2.8 and 2.12 were first derived by Von Karman
in 1910 following the original work on large deflections

by Kirchhoff in 1877 and the study of the use of stress

functions by Foppl in 1907.

2.3 Elastic Strain Enerqgy Stored in a Plate during

Bending and Twisting

Consider a plate element under the action of moments Mx
and My as shown in figure 2.3. The strain energy stored
in a plate element is the sum of the work done by the
bending moments Mx dy and My dx. The work done by the
bending moment is 1/2 x moment x angle between the sides
of the element after bending. This is illustrated in
figure 2.4. The angle in the xz plane 9, -8%/9x¢ and in
the yz plane eyunaw/dr'..The negative sign occurs
because a downwards sagging curvature (positive) has a

decreasing slope as x increases.
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The strain energy stored in the plate element due to Mx

and My is therefore given by:

1 (18 ol
W W
dU :'_19” . M J dxdy 2.3
2 Yy 5.2

b~ 2 "ax ay
For the same element loaded by twisting moments Mxy and
Myx as shown in figure 2.5 the strain energy stored is

given by the following equation.

2
ay, = Myxy gx—%y dx dy 2.14

Substituting for the moments Mx, My and Mxy from
equations 2.3 into equations 2.13 and 2.14 and combining,
the strain energy stored in the plate element due to
bending and twisting is thus given by the following

equation.

dUg=dUp +dUy

G (Eflon o
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For the complete plate the strain energy stored due to
bending and twisting is found by integrating the above
equation over the entire plate surface to obtain the

following expression.

Equation 2.16 is the equation for the elastic strain

energy stored in a plate due to bending and twisting.

2.4 Elastic Strain Enerqy Stored in a Plate due to

Membrane Stresses

Now consider a plate element which is subjected to in-
plane stresses Oy, 0y and Txy as shown in figure 2.6. The
strain energy stored in the element due to these mid-

— surface stresses is given by the following expression.
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Un :5* [@ € + 6y €, q,y,,,J dxdy 2.7

Substitution of €y, €y and vyy from equations 2.11 in
terms of Oy Oy and Txy in the above equation we obtain
the following relationship for the membrane energy stored

in the element.

2
Um :z—rE[(éx + 5y) - 2(1 +'8)(§x5y-tx2y):ldxdy 2.18

Substituting now for the stress Ox) Oy and 1 in terms

xy
of the Airy stress function F as defined by equation 2.7
and integrating over the entire plate gives the strain

energy stored in the plate due to membrane action in

terms of the stress function F as follows :




2.5 Total Strain Energy

The total strain energy U stored in the plate is the sum
of the strain energy due to bending and twisting Ug given
by equation 2.16 and the strain energy due to the

membrane strain energy Uy 9iven by equation 2.19.

U ot LJB + lJM

In the post—-buckling analysis the stress function F is
obtained in terms of out-of-plane deflection w by solving
equation 2.12 (Von Karman compatibility equation) and
satisfying the relevant stress conditions at the plate
boundaries. Once F is known in terms of w then the total
strain energy can be determined in terms of unknown
deflection parameters in which out-of-plane deflections
are originally defined. The minimisation of the total
strain energy with respect to each of these parameters
will determine these parameters. The out-of-plane deflec-
tions and internal stresses can then be determined at any

stage in the post-buckling region.
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SPLINE ANALYSIS

3.1 Introduction

The current research is based on the concept of
formulating a mathematical representation of the non-
uniform internal stress distributions associated with
perforated plates. The method developed for the current
work obtains pre-buckling stress values at discrete
points in the perforated plate by the finite element
method and then uses this information to compute a best
fitting spline surface for the mathematical representa-
tion of the stresses. These mathematical functions are
then used in the energy approach for buckling and in the

semi-enerqgy post-buckling analysis.

As discussed in chapter one, the mathematical represen-
tation of the pre-buckling stresses, during the early
period of research [8,9] on the buckling behaviour of the
plates with cutouts, was determined by assuming the plate
to have an infinite length. One example of such represen-
tation is given by Kumai [9] who described the pre-

buckling stresses by the following relationships.
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Oy = 750 gl os2/3 + (2 - 352")[05 LA 3.1(a)

2+ 6 (30523~ (2- 36)cos )| 31

txy :%E—za - Sif‘l?ﬂ *(2' 39.2“>Sin 10/3

3.1(c)

Where o 1is the radius, g the angle measured from the

x-axis, and op is the end compressive stress.

While using an infinite plate length to estimate the
pre-buckling stress variations did not give accurate
results; the more recent finite element methods {10-12]
have shown to require high computer time and to have data
storage limitations, particularly in the non-linear post-
buckling analysis. The present method of obtaining a
mathematical representation of the internal stress
distributions in a perforated plate requires the plate to
be divided into spline panels which are fewer in number
than the elements generally used in a finite element

analysis. The strain energy evaluation thus involves a
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comparatively small number of spline panels to the large
number of finite elements required. The essential princi-
ples of a bicubic spline analysis are discussed and the
basic spline equations are developed in this chapter.
These equations will be used in the theoretical analysis

described in chapter four.

3.2 The Choice of Functions to describe

a Curve or a Surface

A curve can be defined, in a simple way, by polynomial
functions which are computationally straight forward and
fast and whose derivatives and integrals are easily
arrived at. If the slopes change frequently or there are
abrupt discontinuities like vertical tangents within a
curve then polynomial equations may result in inaccura-
cies during computational work. One of the methods to
overcome this problem is to link a number of pieces of
low order (say cubic) polynomial curves. The continuity
of these polynomial functions (also known as the spline
functions) representing these curves and their deriva-
tives are ensured during these functional representa-
tions. The concept can also be extended to describe a
particularly contorted surface by choosing a number of
small patches, each patch represented by suitable polyno-

mial functions. For a simple surface a single patch
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could be sufficient. The selection of the number and
size of these patches or panels, the polynomial represen-
tation within a panel, the joining of the panels together
to ensure the continui£§ of surface being described and
thus of obtaining the overall functional representation
of the entire surface are obviously the important parame-
ters which have to be considered in the spline model

representation of the given problem.

3.3 Cubic Spline Curves

A cubic spline curve consists of a set of cubic
polynomial curve pieces joined smoothly end to end. The
junction between two neighbouring pieces is known as a
knot and each polynomial curve is joined to its neighbou-
ring curve at those knots. Each piece of the curve in a
cubic spline analysis has its own defining third degree
polynomial. When joining the pieces in a cubic spline
analysis, continuity of slope and curvature at the knots
is maintained throughout. A spline function S(x) is
illustrated schematically by the curve shown in figure
3.1 and the knot positions which join the individual

piecces of the curve are indicated by the parameters

where X3 < Ap < A3 < oo $ A

For the curve shown in figure 3.1, h=2.
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S(x) is a function with the following properties

(a) In each of the intervals:

.

x < A

Ao, < x <A

j
A < X

S(x) is a polynomial of degree 3.

j_;‘ JZZ,B,L,"'h

(b) S(x) and its derivatives up to the second order are

continuous.

A cubic spline is considered by the writer to be a
satisfactory function for fitting to data, as it is
thought that continuity of the function and its first and
second derivatives is more than adequate requirement for
most practical problems. Thus a cubic spline consists of
a set of (h+l) cubic arcs joined smoothly end-to-end.
The spline curve is defined within a finite range
a { x ¢ b wherea << 4, , and b > 3, . In practice ‘a’
and ‘b° are normally set as the smallest and largest data
points respectively. Any cubic spline with knot posi-

tions Ay, Ap, A3, ... has a unique representation of

,-Ah

the form:
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3 . h 3
Sx = Lajx'+2 Bi(x-\)
J=0 1=0 e

E when E }0
* 10 when EL O

This representation contains h+4 basis functions, 4
power terms and h one sided cubics, the smallest number
in terms of which the general cubic spline with h knots
can be expressed. With this representation, the curve

fitting problem becomes one of minimising

2
S [stxp) -fe) 3.3

m
=)

with respect to the aj and g, - This can be achieved by

finding a least square solution to the following system

of linear equations.

3 : h 3
Zajx’r* Zﬁ(xr- )\()‘: fr r=1,23,... m 3.4
=0 (=1

The spline representation given by equation 3.2 is
reported in the literature [46] to be computationally

unsatisfactory. In particular, the equations 3.4 for
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determining the aj; and 8. tend to be ill conditioned.
Even if a, and B, have been determined, the subsequent
evaluation of S(x) by means of equation 3.2 can suffer
loss of accuracy through cancellation, as well as taking

an unnecessary amount of computation.

3.4 Cubic B-Spline

A better and computationally more convenient represen-
tation of cubic spline has been provided [44] as the sum
of the basis functions known as B-splines. Cubic B-
splines are not simply joined end to end at knots as for
the cubic splines described previously. A cubic B-spline
is, in fact, a special form of cubic spline with the
characteristic that it is finite over four adjacent
intervals between knots and is zero elsewhere as
illustrated in figure 3.2. Adjacent cubic B-splines
overlap each other by three knot intervals, hence for any
value of x there are four non zero cubic curves (see
figure 3.4). Each cubic B-spline has the form of a cubic
spline curve, i.e. it is a piecewise cubic polynomial
curve, whose pieces, specifically four of them, join at
knots and up to second order continuity exists
throughout. It is, however, defined along the whole real
line - its value outside the four knot intervals being

Zero.
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With reference to figure 3.2 we specifically define a
cubic B-spline M,(x) to be a cubic spline with knots
A, Ap, A3, 0000 » Ay, which is zero everywhere except in the
range A, 4 < X < Ay - This defines M, (x) uniquely except
for an arbitrary constant multiplier which can be chosen
for numerical convenience. M, (X) has the same sign

throughout its range and has a single maximum.

The general cubic spline can be expressed as the sum of
the basis B-spline functions with internal knots
Ag,AgsA3y.+---» M1 | and has a unique representation in

the range a § x & b of the following form

h+d
S(Xv):z CiMi(X) 3.5
=0

Since each B-Spline needs four cubic splines to
describe it, then the B-spline between ‘a’” and Ay will
require three additional knots and so will the B-spline
between \y, and ‘b’. (see figure 3.3). Therefore we need

to introduce six additional knots

A_3 A_p +., and Ans2 *ne3 .3

with A;-a and Ap,y-b
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such that
A3 < A <A, <8
and b < ,(hf Kh*? Khoh

(For the spline curve shown in figure 3.3, h=2.)

These are arbitrary knots and can be chosen for numerical
convenience. Except for possible differences in rounding
error they do not effect the spline in the range of
interest a ¢ x € b. It has been reported in the
literature and also verified by the author during the
computational work that coincident end knots are best for

numerical accuracy i.e.

)\_3 = )\_2'—' }\_1: a

M

+

7 Mg Mg D

To illustrate the previous points discussed, we consider
a cubic spline curve consisting of three pieces of cubic
splines as shown in figure 3.3. This curve has two
internal knots Ay and Ap and a range a § X < b such that

a:lp and b:A3z .Beneath this curve are the six cubic
splines, four more than the number of internal knots,
which are used to define it. It can be seen that all
points along the cubic spline curve are associated with

four cubic B-splines. As a general case if the cubic
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spline curve is to be defined over (h+1) knot intervals,
where h is the number of internal knots, than h+4 cubic
B-spline are required to ensure that each knot interval

has four non zero B-splines defined over it.

In equation 3.5 thecC,; are known as the spline coeffi-
cients. In a curve fitting problem values for these
coefficients are determined during a least sqguare

solution to the following observation equations.

§C|M| (xr):fr r=1,2,--m

where f;, are the data points to which spline curve 1is
being fitted. TheHM, (x) in equation 3.3 are the functional

representations of the cubic B-splines.

In computational dealings with splines the question of
mathematical representation of the basis functions is of
primary importance. In order to compute the values of the
B-spline at data points a stable recurrence relation
provided by Cox and De Boor is proved to achieve best
computational results as compared to other form of
explicit expressions (see refs. 40 - 42 for details).
Most of the properties of B-spline can be derived from

this relationship:-
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Mi,n(X): ~
ioa xI x“n‘1|
}\"‘; ” Mi n-1(X)
A - 3.7
0 14

Where M#; p(x) is the B-spline of degree (n-1), so that
Because of the localness

M, 4:¢x) is the cubic B-spline.

of the B-spline the starting value can be set to be,

(SR Yt

otherwise

L

If we introduce a normalised B-spline Nj p{x)such that

3.9

NLaX)= (A - A M, (X))

and the normalised recurrence is started with

AKX < Ay

NH(X):
otherwise 3.10
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Then equation 3.7 will take the following form:-

N (= XALN (x) e Ml X oy
o X,y "M(X) N )‘.‘+1N'*1'”‘(1X)

3.4.1 Derivation of the MNi1,4(X) for a Typical

Spline Curve

A typical spline curve in the range a £ x & b is shown
in figure 3.4. Using the recurrence relation for norma-
lised B-spline given by equation 3.11, starting with
normalised recurrence of equation 3.10, the following
cubic equations for Ny 4ix), N_ L% iy 44 and Ny 4 (X)

can be derived:-

3
(A ,,-X)
(x)z —td
Nl‘* (Nia=A) (N =Nt (M -A2)

3.12(a)
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2
VT
N ()()- (x |_2)(>\|,1 X)

20T A NN -A)

. Q&z‘x)(x"xi_‘])()\m-)()

'(‘Ai+2-}\i-1) ()‘i+1-)‘i-1)(ki+1—)\i)

2
(A= X ) (X =A;)

' (N2-Ai-DNe2-Ai KN 1=Ai)

2
N3 (x) = (X—)\;_1)(>\',+1—X)
b (Nuz=M AN a-Na) (N -A))
+(X*}\i-1)(>\i+2‘x)(x->\i)
Naz= M) =N DN g =A)

o _(hie3-X)X-N)
(Mie 3-AA2-A) N 1-N)

(X -M)a
N3N 2-M I, 1A

Nh(x)

3.12(b)

3.12(c¢)

3.12(4d)

Each of these B-spline are multiplied with spline

coefficients cy - Cu obtained from least square curve

fitting solution to obtain equation S(x).
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Thus S(x) for the present case would be,

S(X)IC1N1(X)+C2N2(X)+C3N3(x)+[LNQ(X) 3.13

where
N1(X):N1,L’(X) NZ(X)ZNZ,Q(X)

N3(x) =Ny o X1 Ny(XD =N, (X

This formulation is then extended to cover full range
of spline curve for any number of internal knots between

‘\; - M, which is given by the equation 3.3.

3.5 Choice of Knots

The number and position of knot will determine the
accuracy to which a spline curve gives a closer fit. The
two parameters can be chosen by a mixture of trial and
error experience and general knowledge of the shape of
required curve. As a general rule more and closer knots

are needed where the behaviour of the curve changes
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rapidly and less knots where it is changes slowly.
However, with a little experience satisfactory positions

of knots can be easily found after one or two trials; the

exact position is often not too critical.

3.6 Spline Surface

In a surface fitting problem, we are given the data
values t,, of a dependent variable f at points (xp: Y1),
r = 1,2,3,....,m, which are scattered arbitrarily in the
(x, y) plane. To determine a suitable functional repre-
sentation for the surface, we wish to fit to the ity a
bicubic spline function in the variables x and y. As in
the case of one variable where a curve was defined in
the range (a, b) which contained all the data points
within that curve, a rectangle a<x<b,c<y<dis
defined in the (x,y) plane so as just to contain all the
(. ¢ ) in a surface. The two ranges (a, b) and (¢, d)
are then subdivided by sets of knots i, and Mg
respectively where +, correspond to the knot positions
in the x-direction and u; correspond to the knot

positions in the y-direction as shown in figure 3.5 such

that :

= A0<)\1< .. ..<Ahﬂ,:b

3.14

(g
i

Ho<H,<: - - - <y, rd
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To represent the general bicubic spline we need a set
of basis functions. These are derived as follows. The
spline curves in the x-direction are represented by a set
of basis functions based on the knot set A, and those
in the y direction are represented by a set of basis
functions based on the knot set By, - The set of all
cross-products of one function from each set provides a
basis for the bicubic spline. 1In particular, the set B-
splines M, (x) are based on the knots Ay and the correspo-
nding set of B-splines M,(7) are based on the knots k.
Figure 3.6 shows an element of bicubic B-spline with
functions to represent curves in x and y direction. Thus

the B-spline for twc directions are represented by:

MiX) sz, hes

Nity) =12, ket

thus we have a set of (h+4) (k+4) independent basis
functions M;(x) M;(Y) and the bicubic spline can be

represented by the following equation

hels K,

S(xy)= igl ;L;C,'j M;(X)Nj()’)
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where C;,; are spline coefficients corresponding each
spline panel and are determined during the solution of a
least square surface fitting problem.

K,(y)will be governed by similar equations as those for
M,1x), i.e., equations 3.12, where knot positions A, are

replaced by wu;and the equations are now functions of y.

The notations M, (x) and Ny(y) to define a spline surface
differ slightly from those in section 3.4, where M was
used to denote the B-splines as computed by the equation
3.7 and N was used to define the normalised B-splines as
computed by the equation 3.11. Here we use M and N simply
to distinguish between the B-splines in x and those in y;
in practical applications both sets would be normalised

B-splines.

It has been demonstrated in section 3.4 that we need
four basis functions to define a B-spline curve in any
interval with no interior knots. These basis functions
are non-zero between these intervals and are zero
everywhere else (basic definition of the B-spline). In
a similar way, the basis functions M, (x) Nj(y) are each
non-zero only over a rectangle composed of 16 adjacent
panel in a 4x4 arrangement, as shown in figure 3.5.

Specifically,nlxxfn:ly}is non~-zero only wher », 4 < % £ ¥

and Bj.g < Y < u, . Correspondingly uv iy pudlisc
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(x,y), only 16 basis functions are non-zero. If this
point lies in the panel Ryy (say), the non-zero
are those with u < i < u+3, v < j < v+3. Therefore, all
points in a single panel will have same functional repre-
sentation involving 16 basis functions and the correspon-
ding 16 spline coefficients which are pre-multiplied by
each of these functions. The spline coefficients c¢,, are
determined during a solution of least square surface
fitting problem. If we have a set of (h+4)(k+4) indepen-
dent basis functions M, (x) Nj(y) and the bicubic spline
are represented by the equation 3.16, we wish to find the

values of C;, which minimise

_ 2
> [six,y) -]

Y=

-

In other words to find the least square solution to the

following equation

AY = f

The matrix A has m rows and (h+4)(k+4) columns. The rth
row consists of the values at the point ( xp:¥r) of all

the basis functions M, (x) N (Yr The vector C consists of
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unknown coefficients Cyy ordered correspondingly to the

" columns of A, and f contains m data values
The knot positions rg and Wg can be chosen arbitrarily

under the same guidelines as described for the choice of

knots for the spline curves in section 3.5.
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CHAPTER FOUR

THEORETICAL ANALYSIS
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4.1

The
plate
under

study

THEORETICAL ANALYSIS

Introduction

theoretical analysis of the behaviour of a flat
with a centrally located circular or square cutout
edge compression is described in this chapter. The

of the buckling and post-buckling behaviour of

perforated plates involves an accurate prediction of

displacements and of the membrane stresses within a plate

prior

to and after buckling. The analytical procedure to

investigate the deformations and stresses in a perforated

plate

has been developed for the following loading and

boundary conditions.

(a) Prior to Buckling

The plate is loaded in the direction of the x-axis
to ensure that the stresses along the loaded edges
are uniform. The sides x=3%1 are not uniformly
displaced in this case. This case is referred to

as the uniform stress loading.

The plate is loaded in the direction of x-axis in

a manner such that the sides x= %1 are uniformly

displaced. This case will be referred to as the
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uniform displacement loading.

The edges of the plate are simply supported, i.e.
no out-of-plane deflections and no rotational

restraint at the plate edges.

(b) After Buckling

The post-buckling analysis is carried out for the
case of the uniform displacement loading only. The
loaded edges are constrained to be held straight

during the loading process.

All edges are simply supported. The unloaded edges
are free to wave in-plane, i.e. the edgés y=%*b are
free from restraint in the plane of the plate. This
means that the normal direct and shear stresses are

zero at the unloaded edges.

In-plane normal and shear stresses are zero at the

hole edge.
The analysis proposed by the author can be extended to

cover other loading and boundary conditions as well as to

any other shape or location of a cutout.
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To demonstrate the detailed analysis procedure we
consider a rectangular plate with a circular hole whose
dimensions and axis system are shown in figure 4.1. The
analysis has also been applied to a rectangular plate
with a square cutout shown in figure 4.2. The plate

dimensions for the two types of plates are as follows.

Plate Length ........ = 21

Plate Width ......... = 2b

Plate Thickness ..... = t

Hole Radius ......... = c

Cutout Dimensions ....= 2 ¢ (for a square cutout)

The out-of-plane deflection w of the plate is described

by the following equation.

m n
w = Z Z Aij cos 9iTTX COStlLJT_y 4.1
|z J:1 l b
dj =1,35... bj =1,3,5...

The A}, are the unknown deflection coefficients to be
determined to define the deflected shape. The deflection
function in equation 4.1 automatically satisfies the

simple support boundary conditions around the plate

edges.
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4.2 Outline of the Analysis Procedure

The following theoretical procedure has been developed

for the analysis.

4.2.1 Procedure for the Buckling Analysis

(a) The stress variations within a plate containing

(b)

(c)

a cutout are evaluated prior to buckling, by

the finite element method.

Using the information from process (a) above, a
best spline surface fit is formulated to obtain
mathematical expressions for the pre-

buckling stresses.

Using these mathematical representations of the
stresses in conjunction with equation 4.1 for
the deflections the critical load factor and
the buckled shape are thus computed by applying

the principle of minimum potential energy.
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4.2.2 Procedure for the Post-buckling Analysis

(a) For the purpose of analysis, the post buckling
stresses have been divided into the following

three systems:-

Stress System 1 These are the membrane

stresses in a perforated plate with no out~of-
plane deflections and produced by the applied
load/displacement. The stress distribution in
this case is dependent only on the magnitude of
the applied load/displacement. The stresses are
evaluated by the finite element method and the
nodal stresses are then used as data values in
the bicubic spline analysis in order to
formulafe a mathematical representation of the

stress system.

Stress System 2 This includes post-buckling
stress components in an unperforated plate
assuming zero displacements of the loaded
edges. The stresses in this system, which are
dependent on the magnitude of the out-of-plane
deflection, are produced by the stretching of

the middle surface of the plate. The stresses
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in this system are represented by the Airy
stress function F, and are evaluated by solving
the Von Karman compatibility equation. The
boundary conditions at the loaded and the
unloaded edges are satisfied during the

solution.

Stress System 3 While determining the post-

buckling stresses in the stress system 2 we can
satisfy the stress and displacement boundary
conditions at the plate edges. For a post-
buckling analysis of a perforated plate,
however, stress free boundary conditions have
to be satisfied at the hole edge. This can be
achieved by first calculating post-buckling
stresses at the cutout geometry from stress
system 2 and applying these stresses in the
opposite direction at the periphery of the
cutout. The stresses thus generated within the
perforated plate will constitute stress system
3. These stresses are computed under the same
boundary conditions as those for the stress

system 2.

Stresses in system 1 and system 3 are evaluated

in the same manner as the pre-buckling stresses
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(c)

outlined in section 4.3 and the stresses in
system 2 are evaluated from the Airy stress
function by solving the Von Karman Compatibili-
ty equation the details of which are given in

appendix A.

Expressions are then developed for the strain
energy due to bending and twisting and due to
the membrane stresses. The three stress
systems outlined are thus superimposed to
obtain the final stress pattern which is to be

used during the energy calculations.

The total strain energy is then minimised to
obtain the final results for displacements and

stresses.

Pre-buckling Stress Distribution

An accurate representation of the pre-buckling stresses
is essential for the stability analysis. These stresses
have been evaluated by the finite element method. Eight
noded isoparametric elements have been used for the
finite element formulation. Because of the symmetry of

the plate geometry and loading only a 1/4 of the plate is
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analysed. Typical mesh arrangements for square plates
with circular and square cutouts are shown in figures 4.3
and 4.4 respectively. The analysis has been carried out
for the case of simply supported edges and zero in-plane

displacements were enforced on the symmetrical axes.

The nodal stresses obtained from the finite element
analysis were used as data values to fit a bicubic spline
surface for each of the stress components Oxy:0yy and
Yxyt using the procedure described in chapter three.
During the spline fit it was experienced that due to the
abrupt discontinuity of the stresses at the hole edge at
the centre of the plate the fitted values of the data
overshot in the negative direction and the stress values
became zero after few oscillations. It was, therefore,
decided to ignore the the stress discontinuity at the
edge of the hole and let the stresses follow the upward
positive trend. During subsequent energy evaluations, the
energy of the hole portion is obviously excluded and this
is achieved by setting the appropriate integration
limits. Equations 4.2 give the spline representation of
Oy Dy1 203 Txyy v the direct and shear stresses in a
perforated plate produced by uniform in-plane displace-

ment loading and with no out-of-plane deflections

present.
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h4 k+é
= j:'
hey k+4
ov, = Y ¥ Cy. M.(x) N.(y
yi - & ¢ Yij | J
4.2
1=zt =1
h+4 k+4
= Cr.. M(x) N.
tm Zz Tjj |( J y
1={ j:'

Cx1)Cyi1y and Cy,, are the spline coefficients and
are obtained as a result of the least square surface
fitting of the finite element nodal output values for the
stresses Oxt,0yi1 and Txyi respectively. Mj(x) N,(Y) are
the basis functions described in chapter three and are
dependent on the knot positions of the spline mesh arran-
gements for each of these stress components. ‘h” and 'k’
correspond to the number of interior knots in the x and y

directions respectively.

4.4 Buckling Analysis

The Rayleigh Ritz energy method described in chapter
two involves the choosing of a suitable deflected shape
with arbitrary coefficients. The deflection function of
equation 4.1 is used for the present buckling analysis.
The strain energy stored in a plate due to bending and

twisting given by equation 2.16 can be represented in the
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following form :
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Differentiation of w and substitution of the approp-
riate derivatives in equation 4.3 then gives the
following equation for the strain energy due to bending

and twisting.

s [

The loss in potential energy due to the applied compres-

sional displacement is given in the following form :

vp:—% Jw dx dy

r T N 3

W = dw| [ 6x Txy||dw
=1dx dx 4.5

Qv | | Txy gy ||Q™

\ay/ ‘ Jlay |
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The stresses Oy, Oy and Tyy correspond to an arbitrary
applied displacement and have been formulated in the form
of bicubic spline functions. For a specified applied
displacement, a loading parameter @ is introduced which
pre-multiplies equation 4.5 to determine the loss in
potential energy corresponding to the specified applied
displacement. After differentiating w with respect to x

and vy, can be written in the following matrix form.

Vp

The matrices [A1T and [A] relate to deflection parameters
and are same as in equation 4.4. The function within the
integral sign has to be integrated over the surface area
of the plate taking due account of the cutout. Figure
4.6 shows 1/4 of the plate with area A being the portion
of the plate containing the hole and area B being the
rest of the 1/4 plate. The integration limits for the

plate will therefore be as follows :
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c !l

b
dxdy = Jﬁxdy + .j{dxdy 4.7
¢ 0

0oy

Since the stresses are expressed in the form of spline
functions, the energy evaluation is performed by
integrating the functions over the surface area of each
spline panel. The energy contribution of each panel is
then added to obtain the energy stored in the plate.
Figure 4.5 shows a typical spline mesh of 4x4 panels with
panel P11l covering the hole portion. The limits of integ-
ration for the panel Pll are set so as to take account
of the hole portion. The integral for the panel P11 will

thus be given by :

H5 N5
dxdy = 4.8
uA )\[4"' ,cl_yz
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Where Ay and Agusg are the knot positions for the
panel Pll. For the remaining rectangular panels the
limits of integration are governed by the appropriate

A and p knot positions.
if

D11 [M|dxdy

N
T X
oo

w|dxdy

I
A
-

then the total potential energy will be given by

V= UB+ VP

V= [A]T[A] {[KB]+(D [KT}} 4.10
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Minimising the total potential with respect to the Ay,
will then lead to the characteristic eigenvalue problem.
The eigenvalues and the corresponding eigenvectors give
the buckling loads and associated modes according to the
number of degrees of freedom considered with the smallest
eigenvalue corresponding to the point of initial instabi-
lity and the associated eigenvector giving the buckled

mode shape.

4.5 Post-buckling Analysis

In the post-buckling analysis the strain energy due to
bending and twisting given by equation 2.16 is used. The
energy due to in plane forces is described by equation
2.19 containing oy, 0y and Ygxy which are the direct and
shear stresses of the three stress systems described in

section 4.1.

Thus

Ox=0x1 +5X2+(5X3
oy :5y1+6y2+5y3 4.11
Txy =Txy1 +Txy2+Txy3
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The evaluation procedure for the stresses in each of the
three stress systems will now be discussed. The
mathematical formulations will then be used in equation
2.19 to evaluate the strain energy due the membrane

forces.

4.5.1 Evaluation of Internal Stresses

4.5.1.1 Stresses in System 1

These are direct and shear stress components produced
by a prescribed end displacement assuming that there 1is
no out-of-plane deflection. These stresses grow linearly
with increased displacement and the spline functions to
represent the pre-buckling stresses given by equation 4.2
are multiplied by the critical load factor &cr at the
bifurcation point to obtain the internal stresses at the
point of initial instability. These stress functions are
simply augmented by the appropriate load factor to obtain
the stresses in system 1 at any point in the post-

buckling region. Thus :

6x1=¢ 2 & Oxiij MilxINjly)
by1= ¢ 2 2 Onij MilxINj(y) 412
Ixy1=®1,z > Crij Milx) Nj(x)
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Where ’P is the load factor corresponding to a specified

end displacement divided by the critical load factor.

4.5.1.2 Stresses in_ System 2

These are the post-buckling stresses of an unperforated
plate. The stresses in system 2 can also expressed in

terms of stress functions.

2
dF2
OX9 = —==—
27 A2y;
5)’22 GZFZ 4.13
a2y?

d%
Txyzz - —2
=T 5y

The stress function F, is obtained by solving the Von
Karman compatibility equation [2.19]. This equation is

rewritten here for convenience.
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A A A |
a'F,, 20k, OF. ) % ]
ax*  atdy? ady“ axay ax 1.1

The boundary conditions for Fp are stated as follows :

(a) The displacements and the shear stresses are

zero at the loaded edge. For the plate shown in

figure 4.1
U’ xz | =0
a’F,

(b) The unloaded edges are stress free, i.e. the

normal and shear stresses are zero.

62F2 - 0
5 =
ad x yzeb
aze - 0
ﬂx ay y:tl)
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The post buckling solution offered by the present
research is not limited to a fixed buckled shape after
initial instability. Since the stress function F, is
found in terms of the deflection coefficients Aij Apn,
the loads which are applied back on the hole edge to
ensure the stress free condition would have to be for
each combination of Aij Ay, for some unit value of the
deflection parameters. The evaluations of the stresses
for the stress system 3 in a multiterm post-buckling
solution will have to be for each of these combinations.
The interdependence of the two stress systems, each one
depending on the combinations of Aij A makes the multi-
term post-buckling solution fairly laborious. In order to
reduce labour, the solution is restricted to only two
terms along and multiterms across the loaded direction.
During the application of the theory on square plates
with a centrally iocated circular or square cutout it was
observed that the results of a reasonable accuracy were

achieved by taking only two x and two y terms of the

‘deflection function given by equation 4.1. The deflected

shape chosen for the present analysis is, therefore, of

the following form:

W = (oS aW"ZAUCosb DY

Ty

Cos 22X ‘37-”" T AgjC0S By
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Taking appropriate derivatives of w and substituting in

equation 4.14, we obtain the following equation.

/

(23,4, Sin g%r_x Sin 21X \(: Y;

(4

£ 00 2 s B (AY Y + Ay V)]
: ) ] ]

CE(HE) ST ALA, LY, Y, sindm

]
AR AN e
| J.
Assuming
F2=F2a + F28 + Facp 4.17

Equation 4.16 can be subdivided into the following three

equations.
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V= E (3] T 1 A, A,

[Y Y 2 3T x Y Y (05 mgx 4.18(a)

oS s BT (ﬂ‘.Yi Yj + aliYi \'('j)]

4.18(b)

V'E = E T )ZZ/\Z,A[ L

4.18(c)

Each of the above equations can be solved
independently. The solutions of these equations are
outlined in appendix A. The boundary conditions at the
loaded and unloaded edges of the plate have been
satisfied during the solution of each of these equations.

It may be noted that the stress function Fpo, relates to
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the single term solution, Fpg relates to the second
harmonic and Fpcp correspond to the cross or the coupling
terms. The final equations from the solutions given in

appendix A for Fza, Fpg and Fucp are given on the

following pages.
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Final Equation for F2A

F2a = Fp1a+F224 (0S %@1 X

Faa=Z ¥ AviAgj Cos bi”b_y cgsbjsz

2 2
F22a :(_25_) (—"ﬂ)ﬂ—) 2 2 Ani Ay i ly)

where

fani = ¥ Cosh 22y gy L. sjnn 222ty

£
+kqCos(bj+bi)r y+k2COS(b'!—bi)7Ty
b b

The coefficients are given by the following equations in

appendix A.

YA1 is given by equation A.26
YAa2 is given by equation A.27
Ky 1s given by equation A.22

Kz 1s given by equation A.23
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Final Equation for F2B

= JTd
F6 = Fg* foog cos 2x

_ oy oy
F21B =L LA, AZJ.Cos b, . CosbJ N

2 2
Fag =<%) (%(ﬂg) LAy Ay fzzaij (y)

4.20

where
Y .. 27732
fa28; =l COSh @ y + Fpy Sinh S22y
+ . _7_71 4
K3 COS (DJ +b) ot Kbcos(bj—bi)——bl

The coefficients are given by the following equations in

appendix A.

yB1 1s given by equation A.34
¥ge 1S given by equation A.35
£ is given by equation A.36

Ky is given by equation A.37
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Final Equation for F2CD

beo= Fac oS3, '3‘2)%l + hpcos(a, +az)ﬂll

2 2
E
2 SEIT T Ay Ay e
2 2
0 2(%)@[{‘) %) YL A, Az, 2D,J(y)

4.21
= I cosh(az-cq)]llX * XCZ(%)S‘”h(az’a)Eg

vk cos(bj+bi)ﬂg + kg cos(b; - bi)f%

f

205 = Y coshla, +3ay) o, ’D y)sint1(az+a1)11y

1) D1 b

« T Y
+ kg cos (b +b;) B+ kg costby - b) &
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The coefficients are given by the following equations in

appendix A.

¥Ct is given by equation A.40
ycg is given by -equation A.41
¥pi 1s given by equation A.42
Yype 1s given by equation A.43
Ky is given by equation A.44
Xp is given by equation A.45
ko is given by equation A.46

Kg is given by -equation A.47
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4.5.1.3 Stresses in System 3

Figure 4.3 shows a typical finite element grid to solve
for the stresses in a perforated plate for which loads
are applied at nodal points around the hole edge. These
nodal loads are calculated from stress systems 2 for each
combination of Aij Amn at some unit value. The procedure
for the evaluation of nodal loads from the stress distri-
bution at the hole edge are given in standard finite
element books. Since the present finite element analysis
utilises eight noded isoparametric elements, the proce-
dure given by Cook [5] is used to calculate the nodal
loads. These loads are applied at the hole boundary to
compute the stresses in the plate by the finite element
method. The nodal stresses obtained as a result of the
finite element analysis are used to get a functional

representation by a bicubic spline surface fit. The

stresses in system 3 are thus given by :

mn = 3x

6x3= & L Ai Apn S
6}'3: X Z AU Amn SBY 4.22

Ty= T Ay An Sy
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where

SBX DY ):CXU M. (x) Nj(Y)
Sy = L L Cy MKIN(Y)
Sy = &I MxIN(y

4.5.2 Minimisation of the Total Strain Energy

4.5.2.1 Strain—-Energy Due to-Mid-Plane Stresses

Strain energy in a plate due to mid-plane stresses

given by equation 2.19 is re-written below:-

2
Un = a g} - 2(1 +'8)

where Ox:02F/3y2, ay:3°F/0x% and vyy:-0°F/0X0y comprise
of stresses in the three systems discussed in section
4.4. Equations 4.12, 4.13 and 4.22 are the mathematical
representation of the direct and shear stress components
in the three stress systems. Using the appropriate
deflection and stress equations the strain energy can be

derived. The derivation is given in appendix B.
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The final equation for the strain energy, equation B5

(Appendix B ) is re-written below:-

Uz %H[zzzz PPt -
T LY Mgl A AzaPg +
TE LY Mg AjhgmAgn +
Y EE AgiAgj AmAzn\p «
> 2 20 AtiA2jAamA20\E +
Y22 Y Agi A2jAamAgnlF +
YT Ay Ayg +
20 At A2\ +
20 Aoy AWk }dx dy
where YA t0 ¥x are given by equation (Appendix C)
For the specific case of taking two terms along the

loaded direction i.e., putting b, = 1,3 and i,j,m,n = 1,2

in above expression, we get a fourth order equation in A.
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Since the equations contain bicubic spline function, the
integration has to be performed for each spline panel
(see figure 4.5 for a typical spline grid). The limits
of integration for these panel are discussed in section.
For the panel P11, containing a quarter of the hole the
limits of integration are given by equation 4.8 and for
other panels the integration limits are dependent on the

interior knot positions.

The integration has been done numerically by Gaussian
quadrature technique using NAG routine E02 DAF. It is
obvious that, after integration and adding energy all
spline panels, we obtain Uy which is a function of
quadratic, cubic and quadruple in Ajqr Byge Asq and A,,

or their combinations.
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4.5.2.2 Strain Energy Due to Bending and Twisting

Strain energy due to bending and twisting given by
equation 4.4 is applicable in the post-buckling solution.
For a specific case of bj=l,3, i,j,m,n=1,2 the integra-
tion of this equation panelwise and summation of the
energy contribution of all panel will result in an

expression for Ug which is a function of the product of
A.. and A__.
ij mn

4.5.3 Principle of-Minimum_ Strain Enerqgy

Total strain energy in plate is the combination of
strain energy due to bending and twisting and strain

energy due to in-plane stresses.

U = Ug+ Uy

By applying the principle of minimum strain energy the

coefficients A A in the deflection function can be
1) 823

evaluated. The information about the out-of-plane
deflections corresponding to a prescribed edge compres-
sion are used in the appropriate equations to evaluate

the internal stresses in a plate.
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FIGURE &1 A TYPICAL PLATE WITH CIRCULAR HOLE

122



- et o o e e m e - - e . — - —

2b e
2d
2L
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EXPERIMENTAL INVESTIGATION

5.1 Introduction

An experimental investigation was carried out to obtain
information on the buckling and post-buckling behaviour
of plates with circular and square cutouts. The
experimental work was conduéted through one Msc.
project [29]. The general purpose of the investigation
was to examine the behaviour of perforated plates under
in-plane compressive loading and obtain experimental
results on deflections and internal stresses to
authenticate the validity of the theoretical analysis
given in chapter three and four. The test rig was
designed and manufactured at the College of Aeronautics.
The rig was designed to test the plates under the same
loading and boundary conditions as assumed during the

theoretical analysis, which are:-
(a) The loaded edges are simply supported but are
held straight during the loading process, i.e.

a uniform displacement of the loaded edges.

(b) The unloaded edge are simply supported with no

restraint in the plane of the plate.
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(c) Zero shear stresses on all edges.

5.2 The Test Equipment

The test equipment consists of : -
. The Test Rig
. The Loading Machine

. The Strain Recording Equipment

5.2.1 The Test Rig

The design of the test rig and the test specimen was
constrained by the size of the loading machine. Figure
5.1 shows a photograph of the experimental setup. The
mild steel test rig comprises of a heavy fixed base and
strong vertical support and a loading head (see figure
5.6.1) and was designed with a purpose to achieve

maximum accuracy of the measured deflections and strains.

In order to achieve the simple support boundary
conditions of the unloaded edges with no in-plane
restrains, the unloaded edges were supported by the knife
edge support arrangements. The vertical knife edges were

designed with adjustment facilities for testing plates of

130



different thicknesses. The knife edges were made from
mild steel of dimensions 10"x13/8"x1/2" and were machined
to a small radius and hardened (figure 5.6.3). These were
then fixed to a 13"x11"x1/2" supporting plate. To ensure
horizontal movement of the knife edges, 1/2"x3/8" slots
were machined in the supporting plate as shown in figure
5.6.4. The knife edges and supporting plates were
attached to the vertical supports as shown in the plan
view of the test rig in figure 5.6.2. Each of the two
vertical supports was made from two mild steel 1/2" thick
angle section bars of dimensions 3"x3"x24". A 3"x3"x1/2"
mild steel plate was welded to each of the vertical
support at the lower end in order to attach these

supports to the base (see figure 5.6.5).

The base consisted of a mild steel plate machined to
18"x11"x1" with four 9/16" holes tapped to receive the
vertical supports. Four 9/16" holes were also tapped in
the centre line to house the roller assembly. The

drawing of the base plate is shown in figure 5.6.6.

The loading head of the test rig consisted of two mild
steel plates of dimensions 11 3/4"x5"x1/2", one plate to
attach the loading head of the machine by means of 3/16"
screws and the other to house a roller assembly (figure

5.6.6). The two plates were joined by means of four 3/8"
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cap head screws.

In order to achieve the simple support boundary condi-
tions at the loaded edges, the plate specimen were suppo-
rted by two roller assemblies which consisted of cylin-
drical rollers supported by the needle rollers in a
housing block. Each of the 10" long cylindrical roller of
1V4" diameter was machined from mild steel and hardened.
A flat surface was machined along the whole length of the
roller and a 1/4"x1/4" groove was machined along the flat
surface. Centring strips of dimensions 10"x1/4"x1/4"
containing 1/16"x1/16" central slots as shown in figure
5.6.8 were fitted in the groove to allow the specimen
plates to be located in the centre of the roller. The
cylindrical rollers were surrounded by nineteen needle
rollers of 1/8" diameter and 10" in length. The needle
rollers were made of mild steel and hardened. The rollers
were polished and lubricated to reduce friction and to
achieve free rotation. The cylindrical and needle rollers
were installed in the housing block of dimension
10"x3"x3". The dimensions of the roller assembly block
are shown in figure 5.6.9. Mild steel L-shaped strips of
1/8" thickness were screwed to the edges of the housing
block to house the needle rollers. The edges of these
strips were chamfered to 30 degrees angle for providing

rotational space of the specimen plate. Two 3"x3"x1/8"
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support plates were installed on the sides of the roller
assembly. The detailed drawings of the cylindrical and
needle rollers, the L-shaped strips and the support plate
are given in figure 5.6.7 and the roller assembly

arrangements are shown in figure 5.6.10

The fixed base with a roller assembly, two vertical
supports and the loading head with a roller assembly were
then assembled to form the complete test rig. The dimen-
sions of the rig and manufacturing drawings are shown

from figures 5.6.1 to 5.6.10.

5.2.2 The Loading Machine

INSTRON 1195 testing machine of maximum loading
capacity of 10,000 1bf. was used during the tests. Though
the loading is the uniform displacement type, the applied
load corresponding to each incremental displacement was
measured through load cells of the machine containing

load transducers.

5.2.3 The strain Recording Arrangements

Two types of TML strain gauges, one of foil gauge

series F-FLA-6 and the other of series F-FCA-6 were used
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to measure strains. The former gauges which measure
unidirectional strains were installed on the specimen
plates to estimate the buckling load whereas the latter,
which were two gauge rosette type, were used to record
strains to investigate the internal stress variations in
the perforated plate. The ‘three wire technique’ was
used to connect the strain gauges into a wheatstone
bridge circuit which compensates for changes in resistan-
ce in the leads from the bridge circuit to the gauges
(figure 5.7). The wheatstone bridge circuit was connected
to the data logger and the strain output was pointed on a

paper roll.

5.3 Test Specimens

Test specimens of square plates with a circular or a
square cutout (figures 5.2 & 5.3) made from mild steel
and aluminium sheets of thickness 1.22 mm and dimensions
254 x 254 mm (b/t = 208) were manufactured. Ten plates,
five with a circular and five with a square cutout, were
tested to observe load ~ delectign behaviour. Tests were
conducted on plates with various cutout sizes ranging
from c¢/b (cutout size/plate width ratio) of 0.2 - 0.6 to
obtain data for the load and out~of-plane deflections.

Two plates with c/b=0.5 were used to measure strains at
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various locations. To take advantage of the symmetry,
strain gauges were installed on 1/4 of each plate as
shown in figures 5.4 and 5.5. Initial imperfections were
measured on all the plates by the method described in the
next section. Tensile tests were conducted on the test
specimen to evaluate the material properties. The
specimen plates and the tensile test specimen were made

from the same sheet of material.

5.4 The Test Procedure

5.4.1 Tests to Investigate Load ~ Deflection Behaviour

Dial gauges were used to measure the out-of-plate
deflections and the buckling loads were estimated from
the strain measurements using the method described in the
next paragraph. Following steps were taken prior to the
application of the 1load to ensure accuracy of test

results.

{a) The thickness of the plates was measured at
various points with a micrometer in order to obtain
an average value. A slight variation of thickness

was noticed at different locations of the plate.
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(b) The edges of the plate were checked for
squareness and the hole contour was checked for

uniformity and smoothness.

(c) The initial imperfections were estimated by
placing the specimenon a flat surface and checking
the initial deflections at various locations with
the help of DC-LVDT position transducers. The
output of the transducers was connected to a x-y
plotter and the deflection curves were plotted at
various sections of the plate. The initial imper-
fections were then calculated form the deflection
curves which were found to be varying from 0.053 to

0.258 times plate thickness.

(d) The test specimen were placed on the bottom
rollers and its exact vertical positioning was
ensured. The knife edges were then positioned on
the unloaded edges so as to ensure free in-plane
but zero lateral movement of the plate. The
loading head, which was initially fixed to the
loading machine, was gradually lowered in order to
align the plate upper edge to the centring strip
slot in the roller assembly. A small fraction of
the estimated buckling load was applied on the

specimen and then released so that the specimen is
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properly settled in its supports.

(e) The dial gauges were attached to a stand
having a magnet base and the assembly was placed on
the base plate of the test rig. The dial gauges
were positioned on the hole edge and on diagonally
opposite locations, half way between plate corner
and its centre. For few plates the deflection meas-
urements were also recorded at other locations by

moving these gauges.

The incremental load was applied and deflection and
strain measurements were taken at each increment till the
plate collapsed which was noticed by the reversal of the
load. The buckling loads were estimated from the varia-
tion of the membrane strain with load. The membrane
strains were measured at some point on the plate. The
average strain value from two opposite locations of
strain gauges at that point gave the membrane strain.
The estimation of the buckling load from the strain
measurement was made by comparing pre- and post-buckling
curves of load vs. membrane strain. This method has been
suggested by Coan [52] and used by Ritchie [10]. The
method described by Coan considered that buckling
occurred at the load corresponding to the intersection of

tangents to the pre- and post-buckling load ~ mid surface
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strain curves. In this method only straight lines of
best fit are required to be drawn through the pre- and
post-buckling experimental plots. Figure 5.8 illus-
trates estimation of buckling load by the method

described above.

5.3.2 Tests to Investigate Stress Variation

The investigation of the internal stress variation was
carried out by performing tests on two steel plate
specimen. One plate with a circular hole size of c/b=0.5
and the other with a square cutout of the same size were
tested. Both the plates were extensively strain gauged.
To take advantage of symmetry, strain gauges were
installed on one quadrant of each plate. Forty strain
gauges were installed on each of the plates, twenty on
each side. The strain gauges were connected to data
logger by the ’‘three wire technique’. The incremental
load was applied and the strain measurements were taken
for each increment. The applied load was increased up to
about twice the critical load to allow the plate to stay

in the elastic range for any possible re-use.

The experimental results to investigate the load

deflection behaviour and the variation of the internal
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stresses at different applied loads have been presented

and discussed in chapter six.
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PRESENTATION OF RESULTS AND DISCUSSION

The theoretical analysis described in chapter four has
been applied on square plates with centrally located
circular and square cutouts. The results thus obtained on
the displacements and internal stress distribution in
these plates and their comparison with the theoretical
and experimental results of other investigators [10,11 &
29] are described in this chapter. The results are prese-

nted and discussed under the following headings.
6.1 Buckling Results

6.2 Post-Buckling Results
6.2.1 Load = Out-of-plane deflections
6.2.2 Load ~ edge compression

6.2.3 Internal stress distributions

The detailed breakdown of the presentation, showing the
figure and page numbers of each type of result is
tabulated as shown in table 6-1. All the results presen-
ted are for simply supported square plates subjected to
in-plane compressive loading. The cutout sizes considered
range from c/b=0.2 to 0.5; these being the most commonly

used sizes inthe practical situations.

158



6.1 Buckling Results

The theoretical analysis described in chapter four,
sections 4.4, is used to obtain the buckling results of
simply supported square plates with centrally located
circular and square cutouts. For plates with a circular
hole the results are presented for the two types of
loading, i.e. the uniform displacement loading and the
uniform stress loading. For plates with a square cutout
the results are presented for the case of uniform displa-
cement loading only. The results are plotted for K/Ku VS.
c/b , where K and K, are the buckling coefficients for
the perforated and the;unperforated plates respectively,
c is the hole radius and b is the half plate width. The
buckling coefficients have been calculated using the

following equation :-

éﬂr - K

PE ot 2
|

12(1-v%)\ b

O;ris the average stress at any section parallel to the
loaded edge corresponding to the applied load/displace-
ment at the time of buckling. When a perforated plate is

subjected to uniform edge compression the stresses vary

along the loaded edge. The stress g Ccorresponding to the
X
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critical edge displacement 1is integrated along the y-
axis, at any section in the plate, to evaluate the criti-
cal stress per unit width which is substituted in the

above equation to obtain the buckling coefficient.

The experimental buckling load has been estimated by
the method described in section 5.3.1. This method which
was first described by Coan [52] considered that the
buckling occurred at the intersection of the tangents to
the pre- and post-buckling load ~ mid surface strain

curves.

6.1.1 Buckling Results of Plates with Circular Holes

The variation of the buckling coefficient with the hole
size for a simply supported square plate with a centrally
located circular hole is presented in figure 6.1. The
theoretical results plotted for the two types of loading
show a different pattern of curves, similar to those

presented by the other investigators [10,12].

For the case of uniform stress loading the buckling
coefficient decreases with the increase in hole size. The
loaded edges of a perforated plate in this case are
unrestrained and the in-plane distortions are non

uniform. The variations in the edge displacements is
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proportional to the hole size, and thus the critical
loads becomes smaller as the hole size is increased. For
plates subjected to the uniform displacement loading, the
loaded edges are constrained to be held straight which
results in a non uniform stress variation along the
loaded edge. For plates with larger cutout sizes the
stresses at the loaded edges are higher towards the
corners and are lower towards the centre. For a perfo-
rated plate with c¢/b=0.5 the pre-buckling stress 6; at
the centre of the loaded edge is almost negligible as can
be seen in figures 6.71 and 6.72. A plate with a larger
hole size can be represented by a simplified model of two
strips. Most of the load is carried by these strips whose
width d depends on the plate dimensions and the hole size
and is given by d=b-c, where b is the length of the side
of the plate and c is the radius of the hole as illustra-
ted in figure 6.6.1. It has been shown [12] that the
critical load increases as the width of these strips
becomes small. Therefore, for plates under the uniform
displacement loading the buckling load increases with the
increase in the cutout size. The experimental results
shown in figure 6.1 show a trend which is similar to the

theoretical curve, thus validating the above argument.

The buckling results have been compared with the other

investigators. The theoretical and experimental results
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presented by Ritchie [10] are compared with the author’s
theoretical results in figure 6.2. The variation of the
buckling load for plates under the uniform stress loading
is the same for both the investigations. For plates under
uniform displacement loading, variation of the buckling
load is almost identical for smaller holes, up to about
c/b=0.35, beyond which the author’s buckling loads give a
more conservative prediction. One of the reasons for
this difference is the type of elements used to evaluate
the pre-buckling stresses. The constant strain triangular
finite elements used in ref. 10 is reported [11] to
exhibit a relatively poor representation of the in-plane
stresses than the eight noded isoparametric elements used
by the author. The subsequent spline representation of
these stresses, which has been used in the current
analysis, ensures continuity of stress functions up to
second derivative. Furthermore, the buckled shape chosen
by the author allows for changes along the loaded direc-
tion compared to a single term solution used in ref. 10.
During the buckling analysis it was observed that by
including a second harmonic along the x-direction, i.e. a
second x term in the deflection function (equation 4.1),
the eigenvalue reduced considerably for larger hole
sizes. In addition to the theoretical comparisons, figure
6.2 also shows the experimental results of ref. 10.

Though there is a scatter in the experimental results for
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the plates with the same hole size, the general trend of
increasing buckling load with the hole size can be

clearly seen from this figure.

The variation of the buckling load with the hole size
for a uniform displacement loading presented by Azizian
[11], Kawai and Ohtsubo [12] and Ritchie [10] are plotted
along with the author’s results in figure 6.3. The
results presented by Azizian give a lower prediction of
the buckling loads for all hole sizes as compared to the
author and the other two investigators. The main reason
for this difference is the methods used to constrain the
loaded edges to remain straight during the application of
the load. In the finite element evaluation of pre-
buckling stresses by the author, uniform compression of
the loaded edges is ensured by applying uniform displa-
cement at the nodes and restraining in-plane distortion
of these nodes. Azizian [11] constrained the loaded
edges to remain straight in the plane of the plate by
introducing very stiff, two degrees of freedom, shear
elements connecting adjacent nodes. This method of
restraining the loaded edges cannot possibly secure the
edges to remain absolutely straight and nodes towards the
middle of the edge are likely to distort as the load is
increased. This is confirmed by the fact that the curve

representing the buckling load presented by Azizian [11]
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lie between the buckling curves of the two loading cases.
the uniform displacement and uniform stress loading,

presented by the author (fig. 6.1).

6.1.2 Buckling Results for Plates with Square Cutouts

The variation of the author’s theoretical buckling
loads with the cutout size has been compared with the
experimental results of Baig [29] in figure 6.4. The
comparison is similar to the plates with a circular hole.
The author’s theoretical results has also been compared
with theoretical results presented by Azizian [11] in
figure 6.5. It is observed that the buckling results of
Azizian [11] are lower than the author’s results as was

the case for the circular holes.

The pre-buckling stress distribution for a plate with a
square cutout evaluated for the uniform displacement
loading is similar to that of a plate with a circular
hole except near the edge of the cutout, where local
stresses are higher for the circular case. Consequently,
the buckling loads of the plates with a square cutout
exhibit an identical behaviour to plates with a circular
hole of the same nominal size. This is particularly true

for smaller size cutouts. For larger cutouts, however,
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the buckling loads for plates with a square cutout were
found to be higher than plates with a circular hole of
the same dimension (c/b) as shown in figure 6.6. The
reason for this difference is attributed to the cutout
geometry and its effects on the pre-buckling stress dis-

tributions in the plate.

6.1.3 Overview of the Buckling Behaviour of Perforated

Plates

For a perforated plate the non-dimensional buckling
coefficient K, defined by equation 6.1, depends on the
loading and boundary conditions at the plate edges and
also on the ratio of the size of the cutout to the side
of the plate. The study of the figures 6.1 to 6.6 clearly
show that for square perforated plates subjected to
uniform edge compression the value of K decreases only
by a small percentage for smaller cutout size(c/b < 0.35)
and then increases for larger cutout sizes. Similar trend
has also been observed in the experimental investiga-
tions. Because of the practical limitations and the
initial imperfections the estimation of the experimental
buckling loads may not be very accurate. This is demon-
strated by the scatter in the experimental buckling loads

presented in reference 10 for different plates of the
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same dimensions and hole size. However, the trend of
increasing buckling loads with the hole size can be
clearly observed for both circular and square holes for
current theoretical and experimental results and those

presented by other investigators.

6.2 Post-Buckling Results

The behaviour of a plate with regards to displacements
and stresses, their relationship with each other and with
the applied loading are obviously the important parame-
ters to be investigated in any post-buckling analysis.
The slope at any point in the load =~ edge compression
curve is a measure of the plate’s axial stiffness. The
purpose of investigating the load ~ out-of-plane deflec-
tion behaviour and the comparison between the theoretical
and experimental results is to establish the accuracy to
which these deflections are predicted. The internal
stress variations are examined to find out how the stress
distributions vary with increase in the applied load and
also to predict the ultimate load carrying capacity of a

plate.

The theoretical post-buckling analysis described in

chapter four, section 4.5, has been used to investigate
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the behaviour of simply supported square plates with
cutouts when subjected to loads beyond 1its critical
point. The eigenvectors found in buckling analysis are
used to define the buckled shape at the start of the
analysis. The post-buckling solution has been found for

the following cases :-

(a) The buckled shape does not change from the
initial buckling mode, but only its magnitude
changes. This case will be referred to as a
"single term solution".

(b) The buckled shape changes along the Y’

axis, but remains fixed along the "X’ axis.

(c) The buckled shape changes along the 'X’

axis,but remains fixed along the Y™ axis.

(d) The buckled shape is allowed to change in
both the directions. This case will be referred

to as a "multiterm solution”.
Though the solutions have been found for all the cases

mentioned above, the results are presented for case (a)

and (d), i.e. for single and multiterm solutions only.
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The theoretical and experimental post-buckling results
and their comparison with the results of other
researchers are described under the following three sub-
headings :-

Out-of-plane deflection behavigur.

In-plane displacement behaviour.

Internal stress distribution.

6.2.1 Load ~ Out-of-Plane Deflections

A proper study of the post-buckling behaviour of a
plate depends on the ability of the theoretical analysis
to accurately predict the out-of-plane deflections. The
values of the coefficients Aij in the deflection function
used in the current analysis (equation 4.1) shall
determine the magnitude and shape of the deflection. The
evaluation of the out-of-plane deflections involves
computation of deflection coefficients for each increment
of the applied edge displacements which can then be
substituted in equation 4.1 to find deflection at any

point in the plate for that displacement.

Experimentally the deflections are easily measurable by
dial gauges or deflection transducers and can be conveni-
ently plotted on the plotter directly linked to the

measuring system.
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The load ~ deflection plots for square plates with circu-
lar and square cutouts are shown in figures 6.7 to 6.14.

The non-dimensionalised load P/P is plotted against

cu
w/t, where w is the out-of-plane deflection at points
shown in the diagrams and t is the plate thickness. The
applied load P is computed by integrating stresses at the
loaded edge corresponding to a prescribed edge displace-
ment.Pcuis the critical load of an unperforated plate.
The theoretical analysis assumes the plate to be perfec-
tly flat, and the deflections remain zero until the
applied load equals the buckling load. Because of the
initial imperfections the experimental deflections are
recorded from the onset of loading and can be observed
from the load ~ deflection curves. In the experimental
setup all the edges are simply supported with unloaded
edges free to wave in-plane. The knife edge supports
provide an good simulation of the simply support boundary
conditions, but the roller assembly attached to the

loading head and the base had its limitations which

influenced the experimental results.

6.2.1.1 Oout-of-Plane Deflections for Plates with

a Circular Hole

Figures 6.7 to 6.10 show plots of load = deflection for
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a range of plates with circular hole sizes of c¢/b = 0.2,
0.3, 0.4 and 0.5. The experimental deflections below the
critical point indicate the effect of local imperfec-
tions. At higher loads the theoretical deflections are in
good agreement with the experimental ones; particularly
at locations away from the edges. In all these graphs
the point near the edge of the hole on the centre line,
i.e. point No. 1, show a closer agreement between the -
theoretical and experimental deflections. A small diffe-
rence between the experimental and the theoretical defle-
ctions at these points is attributed to the approximation
used in the assumed deflection function given by equation
4.1. Though the deflection function used in the multi-
term theoretical analysis consist of two terms along and
two terms across the loaded direction, truncation of the
remaining terms in the series has contributed towards

small errors in the theoretical deflections.

At other points closer to the edges, i.e. points 2 and
3, the comparison is not as good as for the points closer
to the centre of the plate. The load ~ deflection
behaviour of plate with hole size c/b = 0.5 shows that
for two diagonally opposite locations, points 2 and 3 in
figure 6.10, the experimental deflections are different.
The deflections at these points should ideally be the

same as seen from the theoretical curve. The difference
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between the measured deflections at these points 1is
because of the inconsistency in the boundary conditions
at the two loaded edges. In spite of the smoothness of
the needle rollers, the roller assembly cannot possibly
generate a frictionless surface. Besides, there is a
small offset between the pivot point and edge of the

plate (fig. 5.6.10) in the roller assembly.

An interesting feature observed during the deflection
measurements is that a change in the wave form was
noticed for plate with hole size of c/b=0.4, prior to
collapse, as shown in figure 6.9. This phenomenon has
been experienced generally for larger hole sizes both for

the circular holes [10,29] and the square cutouts [29].

6.2.1.2 Out-of-Plane Deflection of Plates with

Square cutouts

Load ~ deflection behaviour of plates with a square
cut-out is illustrated in figures 6.11 to 6.14 and is
similar to that of the plates with a circular hole. The
deflection plots reveal that, like the circular holes,
the theoretical curves and experimental data points were
in closer agreement at the centre point in the plate,

i.e. at point no. 1 for all hole sizes. For diagonally
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opposite points near the loaded edges the experimental
deflections are not the same. The experimental results
of plate with hole size-c¢/b=0.5 show a change in the wave

form prior to collapse.

The results tend to agree more closely at higher loads
both for circular and square cutouts. This is because the
effect of initial deflections present in the plates used
for experimental work diminishes as the load and conseqg-

uently deflections start to increase.

6.2.2 Load -~ Edgqe Displacements

The relationship between load and edge compression is a
measure of the plate stiffness. The slope of load displa-
cement curve is constant prior to the bifurcation point.
The plate loses its stiffness after buckling. The loss
in stiffness is measured by the ratio of slopes of the
load ~ displacement curves after and prior to buckling.
If the buckled shape is assumed to remain unchanged from
its initial buckling mode, this ratio is constant and is
0.408 for a simply supported unperforated plate with
sides free to wave in-plane. If the buckled shape 1is
allowed to change, the load ~ displacement curve is non-

linear and the plate continues to lose its stiffness
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with increase in the applied load.

Figures 6.15 and 6.16 illustrate the load displacement
behaviour of plates with a circular and square cutout
respectively. In both these graphs the curve of an unper-
forated plate is drawn as for reference. All the results
shown are for a multiterm solution. The critical load and
displacement of an unperforated plate, ,Pcu/ and ,Ucu,’
are used to non-dimesionalise applied displacement and
the corresponding end load. Since at Pcu the displacement
of the perforated plates vary with the hole size, the
plate stiffness prior to buckling is different for each
type of plate; the stiffness reducing with increasing
hole size. The nonlinear load displacement curve in the
post-buckling region indicate constantly reducing plate
stiffness with increase in the applied displacement. The
slope of these curves reduce more rapidly with the
increase in the hole size for plates with a circular as
well as square cutout. The edge compression could not be
measured during the experimental work and, therefore, the
accuracy of the theoretical analysis vis—a-vis experimen-—
tal results can only be judged from the deflection

behaviour and internal stress variation.

173



6.2.3 Internal Stress Distribution

The variation of the internal stress distribution in
thin plates in the post-buckling region has not been
investigated extensively or has not been published with
the exception of few. Ritchie [10] presented the theore-
tical and experimental post-buckling stress distribution
in plates with circular héle which, to the author’s
knowledge, is the only comprehensive published informa-
tion available on the variation of stresses in a
perforated plate. His results cover square and rectan-
gular plates with a centrally located circular hole.
His theoretical post-buckling analysis 1is limited to a
fixed buckled shape. The current research extends the
analysis to cater for changes in the post-buckled shape.
The stress variation in plates with a circular as well as
square cutout has been investigated for the different

cutout sizes and at different sections as stated below:

(a) For plates with a circular hole the stresses
are plotted at the minimum section and at the
loaded edge for hole sizes of ¢/b = 0.2, 0.3, 0.4

and 0.5.

(b) For plates with a square cutout the stresses

are plotted at the minimum section, near the hole
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edge and near the loaded edge for hole sizes ¢c/b =

0.2, 0.3, 0.4 and 0.5.

The non-dimensionalised stress Pcu O;bt/Pcu plotted
against y/b. Uy is the stress in the x-direction at any
load, pcuis the critical load of an unperforated plate
and b and t are the plate dimensions. The stresses are
plotted for different levels of applied displacements U.
The experimental stresses are presented in reference 10
and 29 for different values of the applied loads P and,
therefore, theoretical curves are also plotted for the

same values of P for a direct comparison.

The non-uniform pre-buckling stresses in a perforated
plate are redistributed as the applied load is increased
beyond its critical point. The theoretical stress dis-
tribution is obtained by superimposing the three stress
systems described in chapter four. At a desired 1load
level the stresses in system 1, which are independent of
out-of-plane deflections, are evaluated by multiplying
the B-spline functions by appropriate load factor. At
each point in the plate these stresses vary linearly with
changed applied loads. The stresses in systems 2 and 3
depend on the deflection parameters which are obtained
after minimisation of the total strain energy. The

stresses in these systems are, therefore, evaluated after
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determining these deflection parameters at any load
level. The three stress systems are then superimposed to
get the final stresses. The process is repeated at each

load obtained by a small increment to the previous load.

6.2.3.1 Stress Variation for Plates with Circular Hole

The author’s theoretical stress distribution has been
compared with the experimental results of ref. 10 and
ref. 29. The stress variation for a plate with size
c¢/b=0.2 is presented from figures 6.21 to 6.24 at the
minimum section and from figures 6.25 to 6.28 at the
loaded edge. These figures show stresses at different
loads both for single and multiterm solutions. At the
minimum section the concentration of stresses are at the
hole edge for loads prior to or just after buckling. In
this situation, since there is no or very little deflec-
tion, the effect of change in the buckled shape is insig-
nificant. Therefore, very little difference is observed
between the two solutions. At higher loads the effect of
change in the buckled shape is noticeable from the diffe-
rence between single and multiterm solutions in figures

6.23, 6.24, 6.27, 6.28, 6.31 and 6.32.
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Consider figure 6.32 which compares the author’s theo-
retical stress distribution with the experimental results
of reference 10 for the plate with a circular hole of
size c/b=0.2. The applied load in this case is 2.03 times
the critical load of an unperforated plate. The curve
pattern shows a reduction in stress level from a higher
value at the edge of the hole to a minimum at y/b=0.27
and then a sharp rise towards the plate edge. The compa-
rison between the two types of solutions, single and
multiterm, show that the stresses are relatively higher
towards the edges for a multiterm solution. Since the
stress distributions in a plate are correlated to the
deflected shape, the difference in the stress variations
for the two types of solution is obvious. The comparison
of theoretical stresses at the minimum section with the
experimental results of ref. 10 in figures 6.29 to 6.32
show good agreement between the experimental and theore-
tical results at all load levels; thus verifying the

validity of the current theoretical analysis.

The distribution of stresses at the loaded edge for the
plate with hole size c¢/b=0.2 is illustrated from figures
6.25 to 6.28. The stress variation along the edge at
loads prior to buckling is non uniform. As the load is
increased the stresses start to grow towards the edges

and become relatively smaller in the middle. The pattern
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of stresses at applied edge displacement few times the
critical displacement is observed to be similar to a

plate without hole.

The theoretical stress variation for a plate with hole
size c¢/b=0.3 is shown from figures 6.33 to 6.36 at the
minimum section and from 6.37 to 6.40 at the loaded edge.
The comparison of internal stress distribution with the
experimental results of ref. 10 is shown in figures 6.41
- 6.43. The experimental results in these cases are lower
than the theoretical predictions but the general pattern
of stress distribution is identical to the other hole

sizes.

In the absence of any experimental results for plates
of hole size c¢/b=0.4 only theoretical results are
presented. These have been shown from figures 6.44 to
6.47 at the minimum section and from figures 6.48 to 6.52
at the loaded edge. The redistribution of stresses after
buckling and their general pattern is similar to other

plates.

The results for a plate with circular hole size c¢/b=0.5
are presented from figures 6.53 to 6.81 at two sections,
the minimum section and the loaded edge. Some of these

figures also show comparisons between the present
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theoretical results and the experimental results of
reference 10 and 29. Consider figures 6.53 to 6.58 where
the theoretical stresses are presented at the minimum
section. It is obvious from these figures that the
changes in the buckled shape had considerable effects on
stress distribution at higher loads as was observed for
other size holes, but the effect is more significant for
the plate under discussion, i.e. for ¢/b = 0.5. From this
observation we can infer that allowing for changes in
the buckled shape improved the post-buckling results more
significantly for larger holes. Another important point
which these curves reveal is that the multiterm solution
gave a more conservative prediction of the peak stresses
than the single term solution. Since the difference
between the two types of solution has been caused by the
out-of-plane deflections, the functional representation
of deflections 1s important in any post-buckling

analysis.

The stresses at the minimum section have also been
compared with the experimental results of reference 29
shown from figures 6.65 to 6.70 and those of reference 10
shown from figures 6.78 to 6.8l. The pre-buckling
stresses lie below the theoretical curves (figures 6.65
and 6.66) except for a point near the unloaded edge. This

is primarily due to the effects of local imperfections.
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The experimental post-buckling stresses lie below theo-
retical curves at all loads, but the difference reduces
with the increased applied load. In addition to the
effects of local imperfections which have more influence
on deflections and stresses at lower loads, the main
reasons for the discrepancy between theoretical and expe-
rimental stress distribution are attributed to the
truncated terms of the deflection function used in the
theoretical analysis and practical limitations in achie-
ving ideal boundary conditions during experimental inves-
tigations. Both theoretical and experimental results show
a similar trend of redistribution of stresses with change

in the applied load.

The author’s theoretical stresses at the loaded edge
have also been compared with the experimental results of
reference 29 shown from figures 6.71 to 6.77. The pre-
buckling stresses are almost zero at the middle of the
loaded edge. The experimental pre-buckling stress values
are lower than the theoretical stresses except a point
near the plate corner. This is caused by the inability of
the roller assembly to achieve simply support boundary
conditions at the loaded edge. This effect has been
noticed at all loads and it was observed that the
yielding of plate material had first occurred at the top

two corners of the plate. In spite of this discrepancy
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the comparison between the theoretical and experimental
results at the loaded edge show a similar trend of stress

distributions.

6.2.3.2 Stress Variations for Plates-with Square Cutout

The internal stress variation for plates with a square
cutout are presented from figures 6.82 to 6.113 for the
cutout sizes of c¢/b= 0.2,0.3,0.4 and 0.5. The stresses
are presented in these figures at the minimum section and
at sections AA and section BB as shown in each of these
figures. The comparisons of the stress variation between
the plates with a circular and a square cutout of the
same size reveal that the stress distribution follow a
similar trend for both the shapes of cutouts. It 1is,
therefore, not intended to discuss each type of plate
with a square cutout. From the examinations of the stress
plots few observations are, however, made about the
stress distributions in plates with a square cutout.

These are discussed as follows.

The redistribution of stresses at the centre section of
the plate (referred as the minimum section in fig. 6.82-
87,6.93-99,6.103-108 and 6.111-113) follow the same trend
as that of plates with a circular hole except for loca-

lised stresses near the hole edge. Therefore the comments
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written for the circular case are applicable here.

For plate with a squaré cutout the stresses are also
plotted at section AA. The fluctuation of the theoretical
curves at section AA, observed in figures 6.88, 6.89,
6.101, 6.102, and 6.110, is due to the limitation of B-
spline surface fitting to obtain a proper fit in the case

of an abrupt discontinuity.

Comparisons have been made with the experimental
stresses for the plate with cutout size of c¢/b=0.5 at the
minimum section, the intermediate section (AA) and near
the loaded edge (BB). Figures 6.114 to 6.117 show the
comparison at the minimum section. The stresses do not
compare well at the lower loads of P/P.,;=1.33 and 1.67.
The experimental stresses in these cases are relatively
higher than the theoretical stresses towards the unloaded
edges, possibly because of the initial deflections and
the effects of experimental boundary conditions at the
plate edges. The comparison of stresses in figure 6.117,
for P/Pcu=2.03 is, however, better than the other two
cases. The effects of initial imperfections are less
dominant in this case and the stress distribution in the
plate 1s due to large deflections caused by the increased
loads. Similar trend of behaviour is observed at other

sections. The comparison of stresses at the intermediate
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section shown in figures 6.118 to 6.121 are reasonably
good except at the location near the unloaded edge (i.e.
at y/b=0.9). In all theée graphs the stresses at this
point are consistently higher than the theoretical
stresses. This is due to the limitations of the experi-
mental setup to achieve ideal boundary conditions at the
plate edges. Figures 6.122 to 6.125 illustrate pattern of
behaviour near the loaded edge. The experimental stresses
in this case also tend to rise towards the edges with a
greater slope than the theoretical stresses for the same

reasons as mentioned for the other sections.

6.2.3.3 General Discussion on Internal Stress Variations

The comparison of stress variation between theoretical
and experimental results show a close agreement for all
plates investigated i.e. plates with all sizes containing
circular and square cutouts; at different sections in the
plate and at all load levels. The differences observed
between the theoretical and experimental stresses, parti-
cularly at lower loads are attributed to the limitations
of both theoretical analysis and experimental set-up.
Experimental membrane stresses are calculated from the
measured strains, the accuracy of which depends on the
gradient of the strain field over the gauge area and on

the magnitude of the strain. For higher strains, the
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constant measurement error becomes proportionately small.
This is one of the reason of better comparison between
the theoretical and experimental results at higher loads.
The second reason is the influence of the initial imper-
fections on the stresses in the plate at loads in the
vicinity of or just above the critical loads. At higher
loads the effects of initial imperfections on stresses
decrease and because of the increase in the magnitude of
deflections, the membrane stresses due the stretching of
the middle surface start to dominate. One of the primary
reasons for the discrepancy is the boundary conditions
under which the two types of results are obtained, 1i.e.
the ideal boundary conditions used during theoretical
analysis and experimental difficulties to simulate these
conditions. Another important factor is that the deflec-
ted shape obtained as a result of theoretical analysis is
not the same as the actual shape formed during the tests.
The deflection function used in the theoretical analysis
does not accurately represent the experimental deflected
shape. The size of the cutout alters pattern of the
stress curve, but the redistribution of stresses in the
post-buckling region show a similar trend for all sizes
and shapes of cutouts, both for the theoretical and
experimental investigations, which confirms applicability
of the theoretical analysis to formulate stresses for

plates with cutouts.
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TABLE 6-—1

PRESENTATION OF RESULTS

RESULTS FIGURE PAGE
NO. NO.
BUKLING RESULTS

Plates with a circular hole 6.1 - 6.3 187
Plates with a square cutout 6.4 - 6.5 190
Variation with the cutout shape 6.6 192

POST BUCKLING RESULTS
LOAD ~ OUT-OF-PLANE DEFLECTIONS
Plates with a circular hole 6.7 - 6.10 194
Plates with a square cutout 6.11 - 6.14 198
LOAD =~ EDGE COMPRESSION

Plates with a circular hole 6.15 202

Plates with a square cutout 6.16 203
INTERNAL STRESS VARIATION

Plates With a Circular Hole

Hole Size c¢/b=0.2
Stresses at the minimum section 6.21 - 6.24 204
Stresses at the loaded edge 6.25 - 6.28 208
Comparison with experimental 6.29 - 6.32 212
minimum section [ref. 10]
Hole Size c¢/b=0.3
Stresses at the minimum section 6.33 - 6.36 216
Stresses at the loaded edge 6.37 - 6.40 220
Comparison with experimental 6.41 - 6.43 224
minimum section [ref. 10]
Hole Size c/b=0.4
Stresses at the minimum section 6.44 - 6.47 227
Stresses at the loaded edge 6.48 - 6.52 231
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RESULTS FIGURE PAGE

NO. NO.

Hole Size c¢/b=0.5

Stresses at the minimum section 6.53 - 6.58 236

Stresses at the loaded edge 6.59 - 6.64 242

Comparison with experimental 6.65 - 6.70 249

minimum section [ref. 29]

Comparison with experimental 6.71 - 6.77 255

loaded edge [ref. 29]

Comparison with experimental 6.78 - 6.81 262

minimum section [ref. 10]

INTERNAL STRESS VARIATION

Plates With a Square Cutout

Cutout Size c¢/b=0.2

Stresses at the minimum section 6.82 - 6.87 266

Stresses at section AA 6.88 - 6.89 272

Stresses at the loaded edge 6.90 - 6.92 274

Cutout Size c¢/b=0.3

Stresses at the minimum section 6.93 - 6.99 277

Stresses at section AA 6.101 - 6.102 284

Cutout Size c¢/b=0.4

Stresses at the minimum section 6.103 - 6.108 286

Stresses at section AA 6.109 - 6.110 292

Cutout Size c¢/b=0.5

Stresses at the minimum section 6.111 - 6.113 294

Comparison with experimental 6.114 - 6.117 297

minimum section [ref. 29]

Comparison with experimantal 6.118 - 6.120 301

section AA [ref. 29]

Comparison with experimental 6.122 - 6.125 305

loaded edge [ref. 29]
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CONCLUSIONS

The following conclusive remarks are made on the basis
of investigations carried out on the buckling and post-
buckling behaviour of simply supported square plates with

centrally located circular and square cutouts.

1. Two types of loading cases investigated in buckling
analysis, the uniform stress and uniform displace-
ment loading, result in different variations of
the buckling loads with the cutout size. For the
uniform stress loading case the buckling loads was
observed to decrease with the increase in the
cutout size. For a more practical case of uniform
displacement loading the variation in the buckling
load is not significant up to a cutout size of
about c¢/b=0.4, beyond which a marked increase in

the buckling load is observed.

2. For cutout sizes up to about c/b=0.35 the variation
of the buckling load is the same for plates with a
circular and square cutout. For larger cutouts,
however, the buckling locads of plates with a square
cutout is noticed to be relatively higher than
plates with a circular hole of the same nominal

size.
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The present theoretical Out-of-plane deflections
and internal stresses variations are in good agree-
ment with the experimental results from two diffe-
rent investigations [10,29]; for plates with a
circular and square cutout of all the cutout sizes
and at all levels the applied loads. This authenti-
cates the validity of the current theoretical

analysis.

It is observed that, in the post buckling region,
the difference between the theoretical and experi-
mental deflections and stresses reduced with the

increase in the applied loading.

Both pre- and post buckling axial stiffness of the

plate reduces with the increase in cutout size.

The redistribution of internal stresses after
buckling occur in a manner similar to a plate with
no cutout except around the hole boundary where the
stress concentration because of the geometric
discontinuity can be noticed at all levels of

applied loads.

The theoretical analysis and experimental inves-

tigations show similar trend of redistribution of
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membrane stresses in the post-buckling region for
all types of plates investigated proving the effec-
tiveness of the theoretical analysis in predicting

these stresses.

Solutions where buckled shape was allowed to change
improved the accuracy of the post-buckling analysis
compared to those where buckled shape was kept

fixed after the initial instability.

SUGGESTIONS FOR THE FUTURE WORK

The current work relates to the study of thin
plates with simply supported loaded and unloaded
edges and subjected to uniform compressive loading.
The analysis procedure proposed may be extended to
cover other types of loading and boundary condi-

tions.

Plates with centrally located cutouts have been
investigated. The analysis may be applied to study
the post-buckling behaviour of plates with

eccentric cutouts.
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The analysis may be extended to carry out post-
buckling analysis of plates with reinforced

cutouts.

During the application of the current analysis
finite element packages were used to evaluate the
in-plane stresses. A massive data handling was
required particularly for the multiterm solution to
transfer the information from the finite element
output to the spline data input. A finite element
algorithm to carry out two dimensional stress
analysis may be coupled with the current computer

programme to avoid data handling.
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COMPATIBILITY EQUATION
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SOLUTION OF THE VON KARMAN COMPATIBILITY EQUATION

This appendix describes the solution of the Von Karman
compatibility equatioh for a simply supported
unperforated plate. The derivations have been carried out
in conjunction with the theoretical analysis described in
chapter four. The stress functions used during the
analysis relate to the stress system 2 [section 4.5.1.2]
which represents the post-buckling stresses in an
unperforated plate assuming zero displacement of the

loaded edges.

Consider a plate of length 21, width 2b and thickness t,
as shown in figure A.1. The deflection function used in
chapter four for the theoretical analysis is rewritten

here for convenience.

- . Qi TT X b7y i
VJ - zz ZZ /\EIC:OS——E—— C:Os—ig—“ A.l

where Aij are the deflection coefficients,a; =1,3,5 etc.
and bj=1,3,5 etc. The deflection function automatically
satisfies simple support boundary conditions at the
loaded and unloaded edges. To simplify the derivations

we will assume two terms along the loaded direction, 1i.e.

putaiﬂ43 in equation A.l.
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w& = C:OS .él{;ﬁ A.2

Equation 4.1 can now be written in the following form :

W = Cosaﬂzx Z Aij YJ+

Cos lerx Z Azd VJ

The Von Karman compatibility given by equation 2.19 is

rewritten below :

o NE L ¥E | SF
vp—éx’+26fajl+ég4

SRR X R

Taking the appropriate derivatives of w in equation A.3
and substituting in equation A.4 , we obtain the

following equation.
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VIE = E (%) 23 Ac Ay
[ YY) Sint 22 4y, Cod 2]

+ B <‘1—>ZZ Z A AzJ‘

[20-.0- Sin2TX Gin o.Trx YL/Y‘/

+ Cos a'?x Cosg%(af\(iﬁ-}-a’;ﬁﬁ)] A5

* ECE) 2 2 A Asj [ VY] Sness
+ YiY] Codemx ]

Assuming F' - FA + FB + FC

The equation A.5 can be divided into the following

three equations.

2 A A,

[Y YJ S T+ Y Y] Cod 2= )
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Y

4

(CF) 2.2 A Ay

[2 a,Q, Sing-iél—% Sinf'-‘-g—x- Yz'/ Y:

+ Cos 2% Coshax (N, Y. 4 YV )]

V= B 20 Au Asj [ Y] SR e

. QT X
+%nCme ]
Equations A.6, A.7, and A.8 are the diffecrential equa-

tions in F F_and F and can be solved indepen-

A" B CD

dently; each one satisfying the boundary conditions at
the loaded and unloaded edges. It may be noted that
these equations have been derived by taking the first two
X terms of the deflection function (A.1). 1f, however,
more than two terms are desired along the the loaded
direction, more differential equations of the similar
type will emerge. For a special case of a fixed buckled
shapekh and F,.are zero and a solution of the equation

CDh
A.6 will be needed.
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Solution of the Equation A.6

E ) 22 Ad Ay

’ y 2 o.TTx.]

XYYJ ZQ'ITJ(.+Y1\{J 0$ )

a
Assume an = —Z—T%__'-
A.9
Then
2 Tral z au 1
S' = S‘n _i—- = —2—('- COSQNX)

~

2 Ya 2
1

(os WG X _ (s Gu = 4 () +Cosax)

! =

Substituting the above expressions in equation A.6 and

separating the resulting equation as a function of y and

as a function of x and y, we obtain the following

equation.

s (5)(5) 3 3 Achy 1Y + %)

—(YiYJ‘-YLYj>COS O~n-‘>f—} A.10

The solution of the above equation may be written in the

following form :

Fa= Fu+ Fa2a Cos O X
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Fia and F,, are functions of y only. Substitution of
equation A.ll into equation A.10 and separating the final
equation into its component parts gives the following two

and F

equations from which the solutions of F1A op are

obtained.

t1s]

F = (5) (%) Z ZA;'L Ajj (Yi/\f," + Y, Wj)’”z

s

FM ‘ZCLi Fz;: + al Fa = (%)(%1)2 Z z
A AaJ (Yz’ \j o Yl’ﬁi}v |

BecauseFlA is a function of y only, any derivative of

3

FlA with respect to x is zero, Fia producing a stress in
the x direction only, this being 02F ,mwz or F, ,".
1A 1A
Equation A.12 shall be solved up to second derivative, a
sufficient derivation to describe stresses in the x

direction.

The function Fla is found by substituting equation A.2
into equation A.12 integrating twice, utilizing the
standard procedure for integration by parts. The equation

thus obtained will be of the following form.
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V4

Fia

I

NE) S A A j Cos b

Cos ngrH + C":] " C2

The constants of integration ¢, and C, are obtained by

satisfying the boundary conditions at the loaded edges.

Substitution oniand Yj from equation A.2 into equation

A.13 will lead to the following equation.

w77

Faa Za,, FZA + O~,, Foa = - (%)(%_&)L

'{;L) Z Z A A'J {(bf‘*‘ bibJ)Cos bz Y
+(bj - bibj) Cos bay |

where

bia :(bj_bbi}'"' A.16

and

= _let;tE;hI A.17
b
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Assuming

pa
Far J(2) () Yar s

H
N\
Nm

and substituting it in equation A.15 we obtain the

following differential equation.

/147

v 2&“ \H_A +O...‘W2_A - z ZA.iA;j

g( by b b) (os by +( Ble’ o bj)Q)Sb'gj

The equation A.19 has a particular integral and a

complimentary function solution. Thus

\Fz_A - LVZA R1 + 1-‘)?_A C.E A.20

The particular integral solution of equation A.19 is of

the following form.

q"zA = Z Z A /A\.J Ki Cos bzla + Ky Cos bnzy

A.21

Substituting equation A.21 into equation A.19 and

equating the coefficients of the resulting equation, we
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obtain the following expressions for the constants

K = - bilhi-b)

(b% +at) A-22

_ b)(bjﬁ'bl) A.23
(bli + CL% ]

K, =

The complimentary function of equation A.19 is given by

(WZA)C f— z Z A A,J' b/A{COS ha..g “”2542(\%") Sinh a,d

where )"Uand XAzare constants to be obtained by applying
the appropriate boundary conditions. The solution for
is given by the sum of the particular integral and
complimentary function solutions given by equations A.23

and A.24 respectively which can be substituted in
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equation A.20 to obtain the following equation.

Yoa = Z z A AU [ ¥ Cos h Qw4
+ a2 (‘E‘)Sln a,y + K, Cos bz_«j

+K2_ Cos En_'j ] |

Constants of the Complimentary Function

These constants can be evaluated by applying zero normal
and shear stress boundary conditions at the unloaded

edge. These are

(j)jzo ’T;j::O

SEa _ o SEa _ 4
d I x Y

Since Fppis a function of y only, we can write

FJ.A =0 F.n =0

/
1‘Vz/s. =0 LPZA =0 atf’:—;“

Substituting equation A.24 into the above equations , and
then solving the two resulting simultaneous equations we
obtain the following expressions for the constants of the

complimentary functions.
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_Q_1| Ou = Q,,,
XA\ = - —2 Cos E Smh X A.26
A2

Oy S“" Ci.._l:_:_

‘X“_ _ Tank%h[K. Cos B, + K, COSB:}

.27

a:'l'[;s}nha%b"f'%(:os 9%&—%5- o... Tcmka"b

Evaluation of the Constants C1 and C3

Constants Cl and C2 can be determined by applying
boundary conditions at the loaded edge which are zero
shear and zero edge displacement.

i.e.,
u=0 at x=1/2

Using equation 2.9(2), chapter two,

S - _a_u + — C)Zh)
Cx - dx 2 dx*

we obtain the following equation for the in-plane

displacement u.

o= |- (22) Jus

@)



The stress — strain relationship given by the equation

2.11(a), chapter two, is rewritten below.

£ :%—[G;‘Ugﬂl

The stresses O; and O; can also be expressed in terms

of the Airy stress function .

SFa _JdFa
dx = a jl. O/j - a 12—

Using these relations, the following equation for u can

be derived.

x

XFa SR _ 1 (2wY ] 4x
- {%(3\“)1 ‘))—3—;,.) ‘7_(&1)}(11;.28

o

The out-of-plane deflection w is given by

= 2 Ay Cor =7 Y,

Differentiating w with respect to x and squaring we

get

sujo 55 Ag Ay Cosfesz) Sitara vy

2
W . . .
Substituting (2—) from above equation and derivatives of
ox

FA from equation A.1ll1 in equation 4.28, 1integrating
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between the limits 0 - 1/2 and putting u=0 we get:

fe: [ Cy + C‘] =9

Since the displacement is zero across the plate:

Ca=0 and, therefore, C2=0

Final Expressions for Fa

After obtaining the constants of particular integral
and complimentary functions, following expression for

can be written.

Fa

F—IA + [__ZA COS an x

FT: = ZZ A A.J' Co(y)

C.9) = Cos B (Cop Y

b

Fr = (BXENE) DD AwAuj fany(9)

]CZALJ-(3> = ZAICOS a,y+ XA2 (%)S'” Gu Y
+ Ku COS bzag + Kz. CO‘ blzy

Xkland Xklare given by the equations A.26 and A.27.
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Solution of the Equations A.7 and A.8

Since Equations A.6 - A.8 are identical, the solution
procedure of A.6 given above can be followed to solve
equations A.7 and A.8, each one independently satisfying
boundary conditions at the loaded and the unloaded edges.
The final solutions for Fp and Feop are given on the

following pages.
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FB = HB + F)B COS Qg X

- 2ma
A2 = Z

/

Fo = 2 ) Asi AgCuly)

F'—ze p (%)(a£‘>l(jg—)l Z ZAz'L AZJ {zatj(ﬂ)

fZBij (}J) z XBI Cos l"a-ufj + b/ez (’%") S]nl‘w a2 Y
+ KB COS ba y + K4 Cos bn y

% Cos h? 4 L Ginhaul’

xe = - 2 Y,,

! Q;; Sinh _O_‘Zi?-_l?

Tanh 22 (K Cas B2+ ka (0 34)

w
o
!

a
_ b"L(b_';-b‘l)
KS i bZ + az
_ bi(by+ba)
K4 b; + Ozzz
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L5 Smh 25 + £ Cosh 858 - 3 5ah A0 Tanh®g2

.31

.32

.33

n.34

A.35

.36

.37



ED = FC Cos Qg X + FD Cos Qg X

AT
]
pofm
7
N1
1]
>
e
o
<

{C(H) - 8 Coshapy + ¥ea (’%‘) Snh Ay

+ Ks COSb;_.H + KG COSBQB

‘FD(S) = Yo Cosh aay + ¥y (%) Sin h oy Yy

+ K7COS b2,5+ Kg COS b;za
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¥ Cosh®® + £ Sinh 2P

- .40
XC' T an S{r\hg‘z_‘b }XCZ ;

- Tonha"zb [Ks Cos B2+ K¢ Cos Bl] A.41
¥ca

T 1 gah 92k T cab _ L Q| SbT | dub
0,2_1; Sml‘\ > +*7 COS h 7 2 Sinh 2 Tanh >
A.41

—_—

¥ Cosh®® + £ Sinh P
an Sl'l’\hg—'d) XDZ

2

Yo = -

- Tanh%b—[K7 Cos Bz"' Kg Cos B,]
8o =

, ' 2 | : b 2 b
(‘;l‘i‘ Sm"\ u‘“ié *% Cos \,\Q_Z_L__i_ Sin h%T&n"]gﬁ—

2

A.43

K - bQLbe'b"Z A.44

K, = bj(by+ba) A.45

6 b:i + Cl:;')_ .

K, - b; (b - bi) A.46
7 : b; 4 Clz% '

by(by+ b1 ) A.47

2 Pl
blz + ay
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A TYPICAL UNPERFORATED PLATE
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APPENDIX B

DERIVATION OF THE
ENERGY EXPRESSIONS
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DERTIVATION OF THE STRAIN ENERGY

DUE_TO MEMBRANE STRESSES

Equation for the strain energy due to membrane stresses

given by the equation 2.19, and is rewritten below:

Vo = o[ [0t 6 - 20 o gy +2(+ W) Toyfdndy o

The stresses Ox., O} and Tky relate to the direct and
shear stresses and are evaluated by combining the
stresses from the three stress systems described in
chapter four, section 4.2.2.

Thus

Ox = O},4—CTxL +.Cr&3

Oy = CT%, + 032 + c)“'.j3 B.2
T’“j = TX5.+Txg1+ Txgs

The mathematical expressions for the stresses of the
three stress systems derived in chapter four and appendix

A are represented in the following paragrphs.
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The stress system 1 consist of the stresses Oxl, 0§1 and
Txylwhich are generated in a perforated plate due to the
applied displacement assuming no out-of-plane deflec-
tions. These stresses are independent of the deflection
coefficients Aij . These stresses arg represented by the
bi-cubic B-spline functions as described in chapter four,
section 4.5.1.1. The stresses evaluated at the time of
buckling can be multiplied by a load factorq?correspon—

ding to any load level in the post-buckling region.

Thus:

O‘KI = ¢pSlK

Ty, =c1>'p S:y

-txg,z(e’s'f B-3
Si= 2,2 cxy M, (x) N; y)

Siy :ZZC3U' Mi(x) N;(y)

Sit= 2.2, Ce,i M6 N;(y)
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The stresses in system ?, 5;2, 0§2 and Tky2 are the
post-buckling stresses of an unperforated plate assuming
zero in-plane displacement of the loaded edges. The
solution of Von Karman compatibility equation to obtain
these stresses is given in appendix A. These stresses are

expressed in the following form:

O, = Zz Adi Aﬁ S2xay "’Z Z Az Azj Saxg, +
; Z A\iAgj Szxcbj

Sy, = 2. 2. Aty R 2 ARy Sy

DD AsAy Sage,

T’”-‘jz: Z Z A A Sl“g +Z z Agi Ay oy F
z Z An’.Azj SZTCq
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where

; ' i SF

Saxa. = 2Fa , Soya.=—2  Sota,= LTA
Toay? 5 dxE ST axdY

. 2 (3
SZXB,‘J": &?’ , SZYB' _ _B_F_-E! SZTBB - a___Fﬂ
QY ! X2 dxdY

2
Szxcij: QE-CD, SZYc,J _ i_':co) pTC - O Fe,
bYZ oX2 ') Ix JY

Expressions for Fa FB and Fcpcan be found in appendix A,

equations A.25, A.34 and A.38 respectively.

The stresses in system 3, O0x3, J§3 and Txy3 are the
stresses which are obtained after applying stresses from
system2 at the hole edge for each combination of

for a unit value. Therefore, Ox3, Oy3 and Txy3 are

functions of Aji4, Amn.
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Thus :

dx, - z z An A'JSBIAU +z Z Asi /\zj S3xaﬂ.
+ Zz A,i AzJ' S-Bxcy

d33 = Z z Ai Ay SByAH M z Z AZ‘IAZJ 53599'
+Z Z Ay AZJ-Ssch

+Z ZAIZ SsTCU o

S3x = ZZ Csxu- ML(X) NJ-(U)
S3y = ZZngg M, 6o N ()

ST - 20, Cory M0 N, (3

348



Subtitution of the above expressions for the three stress
systems from the equations above in equation B.l1 and
further simplifications to combine like terms together
gives rise to the following equation for the strain

energy due to membrane stresses.

UM=%EH[ZZZZA”AUAmAmwA +
2L Ayt An Aan\Pg +
22T Y Agi ArjAom Azl .
LEEL AiAgj AmAzny
ZZZZ A1i A2j Aam A0\
2222 A2i A2j AamAgn\UF +
20 Ay +
22 AiA2j\y +
2L Az A\ de dy

1%to WY are given by the equations B.6 to B.14 in

the following pages.
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WA

V3

= 52XAij

+ S2XAij

+ S3YAij

Saxa, + S3mHj

S3xa,, + S2YAij

S3YA , + S2YAj

S3XApn
S2vya

S3va,,

-2V [ Soxa, . Sava_ + SZXAij S3YAmn

+ Sa2va_ .
ij

J

S3xa + S3xa. .
mn ij

+ 2(1+V) [S,ZTAi- Sara,, +

J

S3YAmn]

S3TAij S3Ta,,

S3xCy,

Szxcmn

S3YCmn

_Szycmn

3

Sa2xc

Save,

S3xcmn]

S3TAij S3rC,,

S20c,]

+ 2 S2TAij S3TtA ]

= SZXAij Saxcy, + S3XAij
+ SZXAij S3xCp, + S3XAij
+ SZYAij Saye  + S3YAij
+ SZYAij S3ve,, + S3YAij
- 29 [SZXAij Savc, + S2vA;. S2xCy,
+ 52XAij S3vc,, + S3YAij
+ SZYAij S3xCy, + S3XAij
+ S3xA;5 S3VCH, + S3YAy4
v a1+ | S2TAyy S2TCp, +
+ SZTAij S3TC,, + S3TAij
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'14[[= S2XAij S2xB_ + S3XAij S3xB,

+-

Szx1>.ij S3Xan + S3XAij 52Xan

+

Szmij Saye . + S3YAij S3vB__

+

SZYAij S3yB_ + SBYAij S2vB,

2y [Saxa;y S2ve, + S2va;y S2xey,

+

SZXAij S3vyp, + SBYAij S2xB_

+

S2YAij S3Xan + S3XAij S2vB

S3x1xij S3Yan + S3YAij S3Xan]

-+

+

4(1+Y) [SZTAij S2Tan + S3TAij S3Tan

+

S2TAij SBTan + S3TAij S2Tan]

Szxcij Sa2xcy, + S3xcij S3xc,

Wo

+

Szxcij S3xc,, + Szycij Szycmn

+ S3YCij S3yc,, + Szycij S3vyc

2Y{S2xcij Savey, + S2xcyy S3¥C,

Savc; S3xc,, + S3xc:ij S3chn]

+

2(1+Y) [SzTCij SZTCmn + S3Tcij S3rc,,

+

+ <z v el . . o - il ]
ij mn
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We~

-+

+

+

+ +

<+

<

+

+

Sleaij Saxc,, + S3x13ij S3xCy,
52XBij S3xCp, + S3x13ij Saxc,,
Szyaij Save  + SBYBij NEN(I
SZYBij S3vc,, + S3YBij Save,

2y [Szxaij Savey, + S2vB;y S2XCpp
S2x13ij S3ve  + S3YBij S2xc
Szyaij S3xc,, + S3xBij Save,
SBXBij S3yc _ + SBYBij S3xcmn]
4(1+V) [S2TBij Sarc,  + S3TBij S3TC,,
Sare;; S3TC,, + S3TBjj Sarc,, |
Szxsij Sa2xB,, + S3XBij S3xB_,
Szx3ij S3xB |+ Szysij S2vB__
SBYBij S3vB, + Szysij S3YB

2y [ S 2xB; S2yB, + S2XBj S3YB_
SavBy, S3XBy, + S3XBjj S3ve, ]

2(1+Y) [SZTBij SZTan+ S3TBi-

S ZTBij S 3Tan]
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WG= 2<b[51x( Szxp.i.j + S3XAij— Yy ( Szmij + S3YAiJ-

+ S1v( S2vag,

j o+ SBYAij- y ( S2xa . + S3xa;.))

] ]

+ 2 S1T(1+Y) SaTAyy + S3TAij)]

Wiy - 2¢[S 1x( Sa2xcyy + S3xc; 4+ Y ( Savcyy + S3vc;y))

+ S1y( S2vc,. J ;

J

+2 Sita+)) ( S21C -

5+ S3TC-1-)]

J

WK=24> [Slx( Szxaij + S3XBij‘\)( Szmij + SBYBij))
+ S1y( Szyeij + S3YBij—.)) ( Szxsij + S3xB;J))

+ 2 S1T(14Y) ( SZTBij + S3TBij)]
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