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i 

ABSTRACT 

In many regions of the world, untreated wastewater is discharged directly into rivers 

containing sanitary determinands including ammonia, nitrite and organic matter which 

places a demand on dissolved oxygen in the water. The wastewater may also contain 

chemical ingredients of home and personal care products. When sewage treatment is 

lacking, often in developing regions, these sanitary determinands and down-the-drain 

chemicals may be present at high concentrations in surface waters which may 

adversely impact the ecological communities present downstream of the effluent 

outfall. Some studies have studied these ecological effects by sampling the taxa 

present at regular intervals downstream of an wastewater outfall, from which a 

common pattern in terms of macroinvertebrate species richness, dominance and 

diversity throughout the impact zone is evident. The aim of the project was to develop 

a conceptual model in order to predict the ecological composition downstream of an 

effluent outfall, as a result of multiple stressors’ concentration gradients. The model 

combines water quality data and toxicity data of the stressors on aquatic organisms, in 

the form of species sensitivity distributions (SSDs) to predict this impact. The model 

was based on selected stressors: ammonia, nitrite and dissolved oxygen which are 

present, in particular, in untreated wastewater; and two chemical ingredients used in 

home and personal care products which are washed down-the-drain. The model was 

applied to data from a field study on the South Elkhorn Creek in Kentucky, USA. 

Predicted effects on taxonomic composition were in line with field observations, 

although further enhancements to the model could incorporate more environmental 

realism. This was a useful step in the direction to creating a conceptual model of the 

impact zone ecology in rivers.  

Keywords:  

Species sensitivity distributions (SSDs), predictive modelling, untreated wastewater, 

species richness, traits. 
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1 INTRODUCTION 

1.1 Context 

The chemical ingredients used in many domestic cleaning and personal care products 

(e.g. laundry detergents, surface cleaners, soaps, shampoos, etc.) and in 

pharmaceuticals often end up in wastewater. If the wastewater is treated in a sewage 

treatment plant (STP), the concentrations of these chemicals can be significantly 

reduced. However, the emission of untreated wastewater still occurs. The risks posed 

by these “down-the-drain” chemicals are assessed by conducting an environmental 

risk assessment in which the predicted environmental concentration (PEC) is compared 

to the predicted no-effect concentration (PNEC), which is derived from laboratory 

ecotoxicity studies. If the PEC is greater than the PNEC, the chemical is considered to 

pose a risk to the ecosystems of receiving water bodies. This “conventional” risk 

assessment method works well where there is sewage treatment. However, where 

wastewater is emitted into surface waters without treatment which is common 

practice in many regions of the world, the concentrations of other substances may be 

high enough to cause severe ecological effects. These substances may include 

“sanitary determinands” (e.g. ammonia (NH3), nitrite (NO2
-), organic carbon).  The 

presence of these sanitary determinands poses a challenge for conventional risk 

assessment of the chemicals, as they may be at concentrations high enough to cause 

toxicity to aquatic organisms with the impact of the chemicals unknown (Finnegan et 

al., 2009). However, it is not clear which components of this mixture of stressors cause 

toxicity to particular organisms.  

The “impact zone” is a term used to describe the length of a river downstream of an 

effluent outfall in which concentrations of sanitary determinands are high enough to 

cause toxicity to organisms present. There are potential impacts on individuals, 

species, diversity, community structure and ecological function. A resulting main 

hypothesis is that after the end of the impact zone the biological community will 

recover to its original composition and structure (Finnegan et al., 2009). The chemicals 
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in the discharge may have varying effects throughout the impact zone depending on 

their degradation rates and toxicity to aquatic organisms.  

The chemicals considered in this research project are present in home and personal 

care (HPC) products which are washed down the drain after use and disposal by 

consumers. Chemicals in HPC products should not inhibit the natural recovery 

(sometimes called self-purification) of the river (McAvoy et al., 2003) and should not 

cause toxic effects downstream after the end of the impact zone. The emissions of 

sanitary determinands and HPC chemicals occur continuously over time. Hence any 

adverse impact is likely to be chronic (Mason, 2002). It is, however, not practical to 

generate field data for every chemical across multiple river systems. Therefore a 

modelling approach to predict the ecological structural changes in the impact zone 

would be beneficial. 

1.2 Literature review  

There are just a few sources in the literature which report changes in ecological 

composition, immediately downstream of wastewater effluents on a scale relating to 

effects on the biological community (Birge et al., 1989; Avery, 1970; Ortiz et al., 2005).  

1.2.1 The Impact Zone 

The impact zone is the length of river between an initial site of impact (e.g. untreated 

wastewater discharge) and the point where the biological community recovers to an 

expected composition had the sewage not been discharged (McAvoy et al., 2003; 

Limlette III Workshop, 1995). In the absence of sewage treatment, the impact zone is 

typically exposed to high levels of stressors which include suspended solids, 

biochemical oxygen demand (BOD) which depletes dissolved oxygen (DO) levels, NO2
-, 

NH3 and synthetic organic chemicals present in the effluent (Finnegan et al., 2009). 

Self-purification occurs in the impact zone via a number of processes, including 

biodegradation, nitrification, volatilization, sorption and settling. It can even be 

thought of as a sort of natural sewage treatment facility where a sufficient oxygen 

concentration is required for biodegradation to occur (McAvoy et al., 2003). 
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Anthropogenic chemicals should not inhibit this recovery process (Finnegan et al., 

2009).  

1.2.1.1 Nitrogenous compounds in the impact zone 

In the impact zone, the concentration of ammoniacal nitrogen (NH4
+ + NH3) peaks 

shortly after discharge while the NO2
- concentration is low. NO2

- concentration then 

increases downstream as ammonium is nitrified by bacteria such as Nitrosomonas 

species (Figure 1-1) (McAvoy et al., 2003; Jensen, 2003). Further nitrification of NO2
- is 

mediated by other bacteria such as Nitrobacter species to nitrate (NO3
-) (Jensen, 

2003). This causes the concentration of NO2
- downstream to decrease (Finnegan et al., 

2009).  

          
 
                   
                    

  
                     
                  

    

Figure 1-1 Nitrification of ammonia. 

Within the impact zone a number of changes occur as a result of changing 

concentrations of components present in the effluent (Figure 1-2). With the 

introduction of degradable organic effluent, the demand on oxygen (BOD) due to 

biodegradation increases, thereby reducing the concentration of dissolved oxygen. 

Concentrations of NH3 and NO2
- are linked: as NH3 is oxidised, NO2

- forms, thereby 

causing them to peak at different distances downstream. Concentrations of organic 

chemicals (discounting metabolites) peak at the beginning of the impact zone and 

steadily decrease downstream as they are degraded. Stressor degradation rates may 

be influenced by the concentration of oxygen, temperature, the presence of 

competent micro-organisms and chemical-specific properties (e.g. susceptibility of 

bonds to cleavage by enzymes).   
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Figure 1-2 Stressor concentration, chemical concentration and species diversity changes in 

the impact zone, adapted from Finnegan et al., 2009; Whelan et al., 2007;(2007) Dyer et al., 

2003.   

Although called the impact zone in more recent literature, after the term was 

introduced at the Limlette III Workshop (Whelan et al., 2007; Finnegan et al., 2009; 

McAvoy et al., 2003; Limlette III Workshop, 1995), this concept has existed for quite 

some time. Gaufin and Tarzwell (1956), for example, classified three zones in Lytle 

Creek in Ohio, USA, following a sewage outfall: clean water zone, septic zone and the 

zone of recovery. This was based primarily on the concentration of DO along the 

system (Gaufin and Tarzwell, 1956). Even earlier work by Richardson in 1928 on the 
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Illinois River, in Illinois, USA, produced ideas on zones of degradation and recovery in 

terms of the impacts of organic pollution on the macroinvertebrate community 

(Hynes, 1994).  

1.2.1.2 Oxygen in the impact zone 

Oxygen is essential for the survival of many aquatic species. It enters the water course 

mainly by diffusion from the air. The DO concentration is influenced by temperature, 

current speed, turbulence, turbidity (suspended solids), groundwater, in-stream 

vegetation and altitude (Giller and Malmqvist, 1998). At higher temperatures, oxygen 

molecules have more energy and tend to exist preferentially in the gas state so the 

saturation concentration of oxygen is lower. Figure 1-3 shows the relationship 

between the saturation concentration (equilibrium) of DO and temperature.  

 

Figure 1-3 Relationship between DO saturation concentration and temperature. Values are 

based on air pressure of 1 atmosphere and are taken from Gray (1999). 

In the impact zone, DO concentration can fall or “sag”, as the BOD is high with aerobic 

microbes breaking down organic matter (Figure 1-2). The extent of the oxygen sag, is 

dependent on a balance between oxygen consumption (i.e. the rate at which BOD is 

reduced) and reaeration (i.e. the rate at which DO can be replaced in the water). Both 

sets of processes are affected by temperature, dilution and the number and types of 

micro-organisms (Giller and Malmqvist, 1998). Low DO concentration acts as a stressor 
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to organisms, with different species having varying requirements and tolerances for 

DO concentration.  

1.2.1.3 Ecology in the impact zone  

Following the discharge of wastewater, sensitive species will disappear as they are no 

longer able to survive (Keup, 1966). This is the result of direct toxicity from wastewater 

constituents and/or indirect effects such as loss of their food source or competition for 

resources. Since the concentrations of the stressors follow a pattern of effect and 

recovery in the impact zone, there is also a change in ecological structure and function. 

As self-purification proceeds, species diversity also recovers. 

The length of the impact zone along any individual river will vary, with river discharge 

which velocity is associated to. The end of the impact zone is the point downstream 

where the concentrations of all major sewage related stressors fall below their toxic 

thresholds (Finnegan et al., 2009). At high flow, when velocities are higher, this point 

will be further downstream than at low flow because the processes of degradation and 

reaeration are related to flow time rather than distance. Similarly, the impact zone 

may expand at low temperatures because degradation rates are limited and stressor 

concentrations remain high for a greater distance downstream (Welch, 1992). In the 

example in Figure 1-2, nitrite concentration determines the end of the impact zone, 

where its concentration is has fallen to its PNEC. After this point nitrite no longer has a 

significant effect on aquatic organisms. The stressor which determines the end of the 

impact zone will depend on a number of factors relating to the stressors themselves 

including degradation rate and initial concentration, and to the system including 

dilution (discharge), velocity and temperature. The prevailing pattern of ecological 

effects is as follows: tolerant organisms are initially dominant, then decline in number 

as more sensitive species start to reappear downstream as the system recovers. This is 

presented in Figure 1-4.  
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Figure 1-4 Ecological changes in the impact zone. Adapted from Hynes (1960). 

Secondary ecological effects can also occur because sensitive species, which could be 

predators or prey to other organisms, are no longer present. Tolerant prey species can 

become more abundant as a result of a reduction in the populations of their predators 

(Welch, 1992). Conversely, tolerant predators may disappear if their prey succumb to 

toxic stress. 

The extent of the impact on communities is dependent on the waste type and load, 

dilution and turbulence causing reaeration. Gaufin and Tarzwell (1956) for example, 
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downstream of a sewage outfall (Figure 1-5) (Welch, 1992). Flow and dilution were low 

in late summer and early winter when observed effects were greater. The zone with 

the minimum number of taxa was stretched in winter when temperatures were lower, 

reducing the rate of degradation. 

 

Figure 1-5 Distribution of species abundance at Lytle Creek, Ohio (Welch 1992). Original data 

from Gaufin and Tarzwell (1956). 

1.2.2 Use of macroinvertebrates to assess water quality  

The presence of some macroinvertebrates is considered to be a good ecological 

indicator of water quality because their sensitivity to organic pollution varies, they are 

relatively easy to sample, they are mainly sedentary, their fluctuations in biomass and 

species composition are lower than in plankton and their longevity is greater than fish 

(Resh, 1995; Welch, 1992). Common patterns are often seen in macroinvertebrate 

data in the impact zone, where diversity and species richness decrease as sensitive 

species cannot survive, while fewer more tolerant species survive in abundance (Birge 

et al., 1989; Ortiz et al., 2005).  

Biological indices are widely used and appear to be a valuable tool in monitoring 

macroinvertebrate response to both unimpacted (reference conditions) and 

anthropogenic disturbances in rivers (Lewin et al., 2013). The indices combine the 

relative tolerance of macroinvertebrates present or absent with a numerical 
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expression of the community structure or indicator populations (Welch, 1992). The 

indices are broadly one of three types: biotic (pollution), diversity or similarity.  The 

biotic indices require a judgement on the relative tolerance of the taxa identified, and 

the distribution is then weighted. Diversity and similarity indices relate more to 

community structure rather than relative tolerance; they consider the number of 

species and individuals (Welch, 1992).  

1.2.3 Fundamentals of Ecotoxicology 

The toxicological effects of chemical stressors on species are studied in the field of 

Ecotoxicology. The ultimate aim of ecotoxicology is to determine effects of stressors in 

the environment at large spatial scales (Beketov and Liess, 2012).There are standard 

laboratory assays which provide information on the direct toxic effects of a substance 

on standard species (European Commission, 2003). They usually span trophic levels so 

that effects at different levels of biological organisation are known and therefore some 

relevance to the environment is derived (SCENIHR et al., 2012). The aquatic organisms 

which are usually tested are algae (primary producers), Daphnia magna (primary 

consumers) and fish (predators). Studies are conducted either on a short term (acute) 

or long term (chronic) basis, the latter covering multiple generations and identifying 

effects other than lethality such as changes to reproduction, feeding habits and 

mobility. From these studies, the concentration of a stressor which causes an adverse 

effect on the replicates of a species is determined. The endpoint for acute studies is 

usually LC50 or EC50, which is the concentration at which the chemical causes lethality 

(LC) or an effect (EC) to 50% of the population. The endpoint for chronic studies is 

normally a NOEC (No Observed Effect Concentration). There is some debate about how 

accurate and ecologically relevant extrapolating toxicity data from a few species in the 

lab under standard conditions to multiple species in the field under environmental 

conditions is (SCENIHR et al., 2012; Calow, 2009; Seitz and Ratte, 1991). This is 

discussed in more detail in Chapter 5.  
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1.2.4 Species Sensitivity Distributions 

A Species Sensitivity Distribution (SSD) is a statistical distribution describing the 

variation in toxicity among a set of different species by a given compound (Posthuma 

et al., 2002) (see Figure 1-6). It is based on the recognition that not all species are 

equally susceptible to the same toxicants. The sensitivity values represented in an SSD 

are LC50/EC50s or NOECs from Ecotoxicology studies. Each dot on the curve in Figure 

1-6 represents a species. Moving up the y axis, the potentially affected fraction of 

species (PAF) increases. A PAF value of 1 means that all species are affected. Along the 

x axis, the (log) EC50/NOEC concentration increases. At lower concentrations, only the 

most sensitive species are affected while at higher concentrations of the stressor, a 

greater fraction of species are affected. The SSD can usually be described by a 

mathematical function (a cumulative distribution function - CDF) which can take one of 

various forms (e.g. Vose (2000)). It is common practice to fit a CDF to the data in an 

SSD.  

 

Figure 1-6 An example of a species sensitivity distribution (SSD) (Vighi et al., 2006).   

There are a number of assumptions made when compiling an SSD: 

1. The SSD is modelled well by the selected distribution (CDF); 
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2. The sensitivity of species tested in the laboratory approximates the sensitivity 

of species in the field; 

3. The species in the SSD are weighted equally i.e. their importance to the 

ecosystem is similar (Forbes and Calow, 2002); 

4. The number of species in the SSD is adequate (Forbes and Calow, 2002). For 

use in European risk assessment, the guideline is to use at least ten long-term 

toxicity values covering a range of trophic levels (European Commission, 2003); 

5. The sample of species is a random (or at least a representative) sample 

(Versteeg et al., 1999; Pinto et al., 2010).  

Interactions between stressors or effects at the community-population level are not 

taken into account (Ippolito et al., 2010; van den Brink et al., 2006). However, SSDs are 

a useful tool in representing the toxicity of a substance to many species in probabilistic 

terms. Versteeg et al. (1999) determined that SSDs are good predictors of effects at 

community and ecosystem levels of organisation.  

SSDs were originally used in the USA in the 1970’s to propose environmental quality 

criteria (EQC) which sets a “safe” concentration for a given stressor, above which a risk 

to the environment (e.g. in rivers, soil, sediment) occurs. Their use extended into 

ecological risk assessment in the 1980’s and is still used in both of these applications 

(Posthuma et al., 2002). For both of these purposes, SSDs are used to derive a 

threshold concentration at which a given percentage of species (p%) will be affected. 

This is usually referred to as the hazardous concentration (HCp), the most commonly 

used is the HC5, that is when 5% of species will be affected. Despite being constructed 

using results from single species toxicity studies, the HCp is applied to natural 

ecosystems with multiple species (Maltby et al., 2005). This is set when identifying 

protection goals for the ecosystem being considered (Maltby et al., 2005), for example 

when deriving a predicted no effect concentration (PNEC). The protection goal of a 

PNEC derived from an SSD is community structure (Forbes and Calow, 2002) rather 

than function. However it is assumed implicitly that functional protection will be 

afforded by structural integrity. In this project, SSDs are used in an alternative 
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approach as the basis for a conceptual ecological model which also incorporates water 

quality parameters.  

1.3 Aim and objectives 

The aim of the project was to develop a conceptual model to describe the changes 

in the ecology of rivers (community composition) along multiple stressor gradients 

downstream of a wastewater discharge.  

The specific objectives were: 

 To review ecological data in the literature describing field biomonitoring 

studies in the impact zone in order to inform the conceptual basis for the 

model; 

 To devise a conceptual modelling approach to determine changes in 

community composition throughout the impact zone due to the effects of 

varying stressor concentrations, taking into consideration properties of the 

river system being assessed;  

 To model in parallel concentration changes and associated ecological effects of 

sanitary determinands and HPC product ingredients; 

 To validate the model using field-based ecological data from the literature. 
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2 ANALYSING AVAILABLE ECOLOGICAL DATA  

2.1 Sources of ecological data 

There are few published studies reporting data on changes in the ecological composition 

in the impact zone downstream of either treated or untreated effluent discharges to 

rivers. Some papers describe the ecological changes as a result of treated effluent 

emission in which a zone of impact and recovery is evident, e.g. Ortiz et al. (2005), Birge 

et al. (1989) and Avery (1970). The majority of studies in the literature describe the 

ecology in terms of abundance of particular species at intervals downstream of an 

effluent. Control (or reference) sites which can be upstream or in a similar type of 

stream or river are useful in biomonitoring for detecting effects as they experience 

similar factors caused by changes in current, elevation, temperature and substrata 

(Welch 1992). A number of studies were reviewed and described in the following 

sections.  

2.2 Biological community change in UK streams – Hynes (1960)  

The pattern of effects of organic effluents on the ecology of rivers has been known for 

some time. It was described in one of the earliest publications of impact zone ecology by 

Hynes (1960). An idealised plot of changes in water quality and invertebrate ecology 

downstream of a sewage effluent discharge point, derived from studies of Hynes (1960) 

in the impact zone, is shown in Figure 2-1.  
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Figure 2-1 Idealised representation of effects of organic effluent from the study of Hynes 

(1960). Types of changes are A & B: Physical and Chemical, C: Micro-organisms, D: Larger 

animals. 

The physical and chemical changes shown in parts A and B of Figure 2-1 describe 

changes in the impact zone which includes the oxygen sag curve, the initial increase in 

ammonia which then decreases, followed by an increase in nitrate. Parts C and D 

illustrate the general changes in ecology.  

Hynes (1960) presented ecological data from two biomonitoring studies, the first was on 

an unnamed river and the second was conducted on the Welsh River Dee.  

2.2.1 Biomonitoring study on unnamed river 

The first study reported by Hynes (1960) was conducted on a river in the UK receiving 

“mild” pollution. When data from Hynes’ field study were examined in detail, there 

were no biomonitoring data for Asellus or Tubificidae so a direct comparison with Figure 

2-1 is not presented. Tabular data were used to construct graphs of ecological changes 
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with distance (Figure 2-2). The biomonitoring station 91 metres (0.09km) downstream 

of the effluent discharge on the same bank as the outfall exhibited the greatest 

difference from reference sites upstream of the outfall, in terms of the types and 

abundance of macroinvertebrates present. Mayflies and stoneflies were reduced in 

numbers following the effluent outfall while more tolerant organisms, such as non-

biting midges, were much less affected. Caddisflies and biting midges (Ceratopogonidae) 

did not appear to be affected by the presence of the effluent.  

 

Figure 2-2 Changes in the observed abundance of different macroinvertebrate taxa with 

distance downstream of a sewage effluent outfall on a UK stream (Hynes, 1960). Data shown 

for stations upstream of 0km are considered to be reference sites. 

As the data points in Figure 2-2 from 0.5km downstream (where mixing was complete) 

are closely grouped, this area of the graph is shown in more detail in Figure 2-3. 
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Figure 2-3 Changes in the observed abundance of different macroinvertebrate taxa with 

distance downstream, from 0.6km to 1.8km downstream of a sewage effluent outfall in a UK 

stream (Hynes, 1960). 

2.2.2 Biomonitoring study on Welsh River Dee 

The second study reported by Hynes (1960) was conducted on the Welsh River Dee in 

January 1956 and April 1957 receiving mild organic pollution. This study was conducted 

over a longer distance, up to 26km downstream of the effluent outfall. Between 0.3 and 

0.6km upstream of the effluent, there was also a smaller effluent from a dirty brook and 

a rural sewage works. This outfall did not impair the taxa present in terms of 

composition, but some taxa decreased in numbers e.g. stoneflies and caddis worms. The 

abundance of macroinvertebrates from the 1957 study is shown in Figure 2-4. In the 

summer of 1956, a STP was installed near the effluent outfall, so these data are a result 

of ecological effects from treated effluent. This suggests that the treatment efficiency 

was limited.  
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Figure 2-4 Changes in the observed abundance of macroinvertebrate taxa with distance 

following an effluent outfall on the Welsh River Dee in Hynes’ study in 1957 when flow was 

low (Hynes 1960). Negative distances indicate they are upstream of the effluent outfall. The 

effluent was treated by an STP which was installed in the summer of 1956. 

Figure 2-4 does not reflect Hynes’ idealised curves of Figure 2-1. To ascertain if this is 

reflected in specific taxa, the only taxa labelled in both graphs, chironomids, were 

examined in more detail in Figure 2-5. In the idealised curve, the family Chironomidae 

displays a normal distribution downstream, starting from a distance below the effluent 

outfall. In Figure 2-5, the measured numbers of chironomids (Chironomus genus) reflect 

a peak in number a short distance downstream, but there are other peaks and declines 

also.  
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Figure 2-5 Changes in abundance of non-biting midges (Chironomidae) along the Welsh River 

Dee in Hynes’ study in 1957 (Hynes, 1960). The idealised curve for Chironomus is 

superimposed (in blue), although distance and number of organisms are unknown. 

Despite the lack of analysis on the effluent, these studies of Hynes (1960) described 

ecological changes in the impact zone at a time when little was known of it.  

2.3 South Elkhorn Creek – Birge et al. (1989) 

A study by Birge et al. (1989) was conducted on the South Elkhorn Creek which is part of 

the Elkhorn basin in north-central Kentucky, USA in 1983 (Figure 2-6). The only major 

outfall in the system in this study was the Town Branch STP in Lexington, between 

biomonitoring stations TB1 and TB2, on the tributary Town Branch Creek (Birge et al., 

1989; Laflin, 1970). Birge et al. (1989) observed that contributions from Town Branch 

Creek adversely impacted the ecology of the middle and lower reaches of the South 

Elkhorn Creek. The ecology of the upper reaches of the South Elkhorn Creek, which were 

unaffected by the Town Branch tributary, had higher species richness and diversity. This 

suggested that Town Branch Creek was the main source of the impaired quality and 

associated poor ecological status in downstream reaches, although there were some 

lower impact emissions from other sources such as agriculture.   
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Figure 2-6 The South Elkhorn Creek showing the location of sampling stations, the effluent 

outfall in Lexington and the location of reference sites from Birge et al. (1989). 

Upstream of biomonitoring site TB1 storm water run-off entered Town Branch Creek, so 

the system was already ecologically impaired before the STP effluent outfall between 

TB1 and TB2 (Environmental Quality Committee, Town Branch Trail Inc., 2001; Birge et 

al., 1989). Therefore TB1 was not suitable as a reference site. SE1 and SE2 on the South 

Elkhorn Creek which were not impacted, and therefore represented reference 

conditions better than TB1.  

Effects of the effluent discharged from the Town Branch STP are reflected in observed 

macroinvertebrate data (Figure 2-7). These data suggest that the ecosystem was 

severely impaired after the STP but that the ecology recovered with distance 

downstream, in line with expectations from the impact zone concept. 

Macroinvertebrate species richness appeared to be the most sensitive ecological 

endpoint (Birge et al., 1989) since macroinvertebrates were more adversely affected 

than fish, taking longer to recover downstream. 
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Figure 2-7 Observed changes in macroinvertebrate community structure in the South Elkhorn 

Creek expressed in terms of (a) species richness, (b) density, (c) diversity and (d) dominance in 

Birge et al. (1989). Biomonitoring stations are presented in order of their position 

downstream. Reference sites in are white; downstream sites are in black.  

Macroinvertebrate species richness (Figure 2-7(a)) showed a marked decrease following 

effluent discharge, but steadily increased throughout the impact zone. Likewise species 

diversity (Figure 2-7(c)) was adversely affected but by the end of the impact zone 

recovered to a similar extent as seen in reference sites (SE1 and SE2). Simultaneously, 

macroinvertebrate density (Figure 2-7(b)) and dominance (Figure 2-7(d)) increased as a 
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small number of species, best adapted to these conditions, increased in number. This 

was, in part, a result of the decline of sensitive species, which may have reduced 

competition and predation. It may have been assisted by nutrient inputs from the 

wastewater and the tolerance of these taxa to the conditions.  

Birge et al. (1989) reported macroinvertebrates in terms of functional feeding groups 

which give more insight into the changes taking place to ecosystem function and the 

types of invertebrates which appear to show sensitivity or tolerance to the effluent 

(Figure 2-8). This classification is based on the organisms’ food source and how they 

obtain it. Shredders are detritivores which feed on coarse particulate organic matter; 

scrapers (or grazers) consume biofilm or algae by scraping them from rocks or other 

surfaces; predators engulf, pierce or suck their prey; collector-filterers feed on fine 

particulate organic matter using a filter e.g. net of silk or mucous and collector-gatherers 

gather fine particulate organic matter using mouth brushes or other modifications 

(Richardson and Moore, 2010).  

 

Figure 2-8 Distribution of observed macroinvertebrates into feeding groups at different 

stations along the South Elkhorn Creek (Birge et al., 1989). Biomonitoring stations SE1 and SE2 

are reference sites. 
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Immediately downstream of the effluent outfall, only collector-gatherers survived which 

were predominantly Oligochaete worms and Chironomids. Chironomids can tolerate 

sudden changes in habitat conditions and can build populations up rapidly (Solimini et 

al., 2003). They are tolerant of low DO conditions as they contain a substance similar to 

haemoglobin which has a high affinity for oxygen so they can temporarily store it, and 

they can also become dormant during low DO conditions (Rasmussen, 1996; U.S.EPA, 

2009). Collector-gatherers are generalists who have a broader selection of food sources 

they are often referred to as being more tolerant to pollution than specialists whose 

food source may have disappeared (AQEM consortium, 2002).  

At TB4, shredders and scrapers returned in very low numbers, but the ecological 

composition only returned to its original composition approximately 50-60km 

downstream (around SE5 to SE6) of the discharge.  

Classification by functional feeding group is useful as it can overcome the patchy 

distribution of individual species within and between different habitats (Baird and 

Burton, 2001). However, when classifying field data into functional feeding groups there 

is a danger of incorrect classification if conditions are not ideal or food availability varies. 

Some taxa can be opportunistic feeders or can have generalised feeding habits (Baird 

and Burton, 2001). 

An overall finding by Birge et al. (1989) was that species richness was the most sensitive 

indicator of perturbation demonstrated by macroinvertebrates in the South Elkhorn 

Creek system.  

2.4 East Gallatin River – Avery (1970)  

Avery (1970) presented data on aquatic insects in the East Gallatin River in Montana, 

USA at one site upstream of a STP, and four sites downstream as far as 20km of the STP. 

The data were presented in terms of numbers (per 0.9m2) and volumes (as cm3 per m2) 

of the Orders Tricoptera, Ephemeroptera, Diptera, Plecoptera and Coleoptera (Avery, 

1970). Sampling was conducted twelve times in total, from September 1967 until 

November 1968 to determine if there were seasonal differences. 
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Although the effluent was treated it is likely that treatment efficiencies were relatively 

low as a zone of impact was seen in the data. At the second station, 0.72km 

downstream of the sewage outfall, numbers and volumes of Trichoptera, 

Ephemeroptera, Plecoptera and Coleoptera larvae were significantly lower than at the 

first station (0.56km upstream of the outfall). The number of Diptera organisms more 

than doubled at the second station, but the volume decreased to less than half that at 

the first station. This was because larger Diptera organisms were not so prevalent 

downstream whereas a larger number of larvae were present following the effluent 

outfall where conditions for them were favourable. Overall, total numbers of organisms 

increased downstream with some fluctuations at the two sites immediately downstream 

of the STP. Total volumes decreased between the first two sites and then increased at 

the remainder of sites downstream. Average numbers and volumes are shown in Figure 

2-9 and Figure 2-10 to illustrate the overall trend downstream.  

 

Figure 2-9 Insect Orders (as average number of organisms from ten sampling times) present 

upstream and downstream of the Bozeman STP in the East Gallatin River (Avery, 1970). 

Negative distance indicates station is upstream of outfall. 
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Figure 2-10 Average volumes of insect Orders of ten sampling events, present upstream and 

downstream of the Bozeman STP on the East Gallatin River (Avery, 1970). Negative distance 

indicates station is upstream of outfall. 

Some seasonal variation was evident in the taxa present. Overall numbers of organisms 

were highest in September 1967 and August 1968. Overall volumes of organisms were 

highest in November of both sampled years when organisms had grown in size. These 

patterns varied for individual orders although seasonal variations were still evident. The 

numbers and volumes of Diptera over the course of the study are presented in Figure 

2-11 and Figure 2-12. Peak numbers were observed in September 1967 and in August 

1968. Peak volume was observed in November in both years. 
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Figure 2-11 Seasonal variation in numbers of Diptera organisms. Rocky, Bozeman and Bridger 

Creeks are upstream tributaries of East Gallatin River. The STP is located between East Gallatin 

River 1 and East Gallatin River 2. Numbers were highest in September 1967 and August 1968 

(highlighted in orange). 
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Figure 2-12 Seasonal variation in volumes of Diptera organisms. Rocky, Bozeman and Bridger 

Creeks are upstream tributaries of East Gallatin River. The STP is located between East Gallatin 

River 1 and East Gallatin River 2. Peak volume was observed in November 1967 and in 

November 1968 (highlighted in green).  

2.5 Balatuin River – Dyer et al. (2003) 

Most of the studies conducted which assess the effects of organic pollution on 

ecological composition in the impact zone are conducted in temperate regions. Dyer et 

al. (2003) conducted a study in tropical regions to study the effects of untreated 

wastewater on ecological communities in the Balatuin River, Philippines. There were a 

number of effluents being discharged into the river until about 6km downstream of the 

initial sampling site. From 6km downstream, there were no further inputs, velocity 

increased and the river became deeper and wider. Macroinvertebrate samples were 

collected from artificial substrates which were glass slides placed in the river. The results 

presented in Figure 2-13 represent the macroinvertebrate samples collected after 14 

days exposure and illustrate the decline in water quality around 6km downstream, 
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where the community is dominated by oligochaetes and chironomids. Self-purification 

of the river occurred as taxa absent immediately downstream of the effluent outfalls, 

began to re-appear downstream e.g. decapoda. Known pollution-sensitive taxa e.g. 

mayflies and caddisflies, were only present at the first and penultimate sites. DO 

concentrations increased as self-purification occurred. From 13km downstream DO 

concentrations were higher than those at 0km.  

 

Figure 2-13 Macroinvertebrate taxa densities (organisms/m2) in artificial substrates in the 

Balatuin River, Philippines, after exposure time of 14 days. 
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Concentrations of sanitary determinands and the HPC ingredient LAS were measured. 

The concentration of LAS was found to be lower than its PNEC, which was derived as a 

HC5 from an SSD. This supports the idea that an alternative risk assessment method for 

ingredients in consumer products is required as the presence of sanitary determinands 

was of higher risk than LAS to the aquatic communities. 

2.6 La Tordera stream – Ortiz et al. (2005) 

Ortiz et al. (2005) studied the effects of a STP effluent on La Tordera stream in Catalonia, 

Spain. There were three biomonitoring sites, one 1km upstream and two, 60m and 

500m, downstream from the STP. The STP effluent contributed to the river flow, as the 

discharge and velocity were much higher at the downstream sites. The downstream DO 

concentration (4.4 mg L-1) was about half of the upstream concentration (8.7 mg L-1). A 

diurnal pattern in DO concentration was seen with night-time concentrations around 3 

mg L-1. The water temperature of 20°C may have played a part in this. 

Macroinvertebrate abundance increased significantly downstream, as shown in Figure 

2-14. The downstream sites were dominated by chironomids and oligochaetes. Both 

taxa richness and EPT (Ephemeroptera, Plecoptera, Tricoptera – known sensitive Orders) 

richness decreased after the effluent outfall (Figure 2-14). The increase in the relative 

percentage of collector-gatherers and concurrent decrease in the relative percentage of 

shredders and predators, reported in the study of Birge et al. (1989), was also seen by 

Ortiz et al. (2005).  
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Figure 2-14 Changes in macroinvertebrate density, richness, diversity and EPT richness in La 

Tordera stream, Spain, based on data from Ortiz et al. (2005). 

The STP effluent also added nutrients and organic matter which enhanced respiration, 

which in turn caused low DO concentrations in particular at night-time. An unexpected 

recovery in the macroinvertebrate community was seen at 80-90m downstream of the 

STP but this was shortlived as this was not evident at 500m. This may indicate that the 

self-purification capacity was overwhelmed (Ortiz et al., 2005). 

2.7 Cedar Run – Kondratieff et al. (1984) 

Kondratieff et al. (1984) conducted a macroinvertebrate biomonitoring study on a 

second-order stream, Cedar Run, in Virginia, USA. A reference site (upstream of an STP) 

and two reference sites on a tributary, Wilson Creek, were included in the study, along 

with four sites downstream of the STP. There was a second effluent outfall from an 

electroplating plant between site numbers 2 and 3 (Figure 2-15). 

Macroinvertebrates were classified by functional feeding group in Figure 2-15, with 

similar patterns evident as in previous studies (e.g. Birge et al., 1989, Ortiz et al., 2005).  
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Figure 2-15 Macroinvertebrates present as a percentages functional feeding groups present at 

biomonitoring stations. Station 1 is an upstream reference site; stations 6 and 7 are reference 

sites on a tributary, Wilson Creek. Station 2 was downstream of a STP effluent outfall and 

station 3 was downstream of an electroplating plant (EP) effluent outfall (Kondratieff et al., 

1984).  

Collector-gatherers almost completely dominated the community with primarily 

Chironomid and Psychodid flies and oligochaete worms. Overall taxa numbers 

decreased at stations 2 and 3, where the concentration of stressor peaked. Further 

downstream, the abundance of these taxa decreased while scrapers and shredders 

reappeared (Kondratieff et al., 1984).  

2.8 Methods of combining effects of stressors 

Guidance on assessing the risks of multiple stressors has been developed by ECETOC 

(European Centre for Ecotoxicology and Toxicology of Chemicals) (2011). There have 

been efforts to develop frameworks to assess the effects of multiple stressors on 

ecological communities, for example, msPAF and SPEAR. 
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2.8.1 msPAF 

msPAF (multi-substance Potentially Affected Fraction of species) was proposed to 

predict the risk for direct effects of chemical stressors on the composition of species 

assemblages and biodiversity (De Zwart and Posthuma, 2005). SSDs are used to 

calculate the “toxic pressure” which is analogous to the toxic stress or ecological risk 

(Harbers et al., 2006). The PAF values for individual chemicals are aggregated, based on 

the application of two toxicological models, which are concentration addition (CA) and 

response addition (RA) (van Zelm et al., 2007; Harbers et al., 2006). CA is applied to 

stressors with the same mode of action (e.g. ester narcosis), and RA is applied to those 

with different modes of action to predict their combined effect.  

Harbers et al. (2006) concluded that msPAF is a useful tool to measure the relative likely 

impacts of stressors but does not yet predict absolutely the toxic effects on species 

assemblages. Most studies on mixture toxicity have been conducted on binary mixtures, 

so the effects of more complex mixtures are unknown (De Zwart and Posthuma, 2005). 

De Zwart and Posthuma (2005) concluded that there is still a large difference between a 

mechanistic and a probabilistic (e.g. SSDs are a probabilistic approach) of mixture 

toxicity and the risk posed by mixtures. The disadvantages associated with the use of 

msPAF are similar to those of SSDs, discussed in Chapter 5.  

2.8.2 SPEAR  

SPEAR (SPEcies At Risk) is a bioindicator index which is based on biological traits or 

characteristics of organisms and various contaminant types in freshwater. Three types 

of SPEAR indicators currently exist; SPEARpesticides, SPEARsalinity and SPEARorganic, the latter 

is most relevant to HPC chemicals (Liess and von der Ohe, 2005; Beketov and Liess, 

2008; Schafer et al., 2011). SPEAR is based on the ratio of physiologically sensitive 

species in the macroinvertebrate community (von der Ohe et al., 2009), in other words, 

the fraction of abundance of sensitive individuals in a community for a specific stressor 

(Schafer et al., 2011). It was originally developed to detect the adverse effects of 

pesticides on macroinvertebrates in agricultural streams (von der Ohe et al., 2009). 
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The SPEARorganic index is calculated as the arithmetic mean of species’ acute sensitivities 

to the crustacean Daphnia magna, Sorganic, weighted by the log-transformed abundance 

of the respective species. The sensitivity is that of a taxon to organic toxicants in 

general, rather than to specific organics (Beketov and Liess, 2008). A higher SPEARorganic 

value indicates a higher proportion of sensitive species to organic toxicants present 

(Bunzel et al., 2013). 

This index is dependent on the chemical toxicants mainly and largely independent of 

longitudinal factors, while other biological indices (e.g. Taxa richness, EPT taxa richness 

and Shannon’s diversity index) are dependent on longitudinal environmental factors in a 

river system (Beketov and Liess, 2008). SPEARorganic aims to detect chronic exposure and 

combines the effects of various toxicant stressors, but lacks the possibility of 

discriminating the effects of individual toxicants (SCENIHR et al., 2012). It is a measure 

of sensitivity against continuous organic pollution. The only trait which SPEARorganic is 

based on is that of taxon-sensitivity to organic toxicants.  

Beketov and Liess (2008) in their study in a Siberian stream found it difficult to 

distinguish between the effects of organic toxicants and ammonium and nitrite, 

however the concentrations of the latter two contaminants were below their toxic 

threshold. So far, the only successful application of SPEARorganic was in the Siberian 

system (Bunzel et al., 2013).  

2.8.2.1 Advantages and disadvantages of using SPEARorganic for this project 

 The advantages of using SPEARorganic in this project were:  

 It is based on biological traits rather than taxonomic composition or abundance 

(Beketov et al., 2009); 

 It is recommended for assessing the effects from chronic exposure to organic 

toxicants (von der Ohe et al., 2009); 

 This index is dependent on the chemical toxicants, rather than other stressors.  

 It gives similar results across different ecoregions (von der Ohe et al., 2009); 
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 It is specific for toxicants with a relatively constant exposure regime e.g. 

surfactants and other chemicals which we wish to risk assess (Beketov et al., 

2009)  

 It takes recovery into account (Beketov et al., 2009), however this is dependent 

on the user having sampling data further downstream demonstrating so  

However, there were disadvantages associated with the use of SPEARorganic in this case: 

 The abundance of species at various sampling points is required but is not 

informed by the conceptual model (further detail in Chapter 5), only presence or 

absence of species is known; 

 It is relevant for macroinvertebrate organisms only; 

 Toxic stress (sensitivity) is considered and not other stressors (von der Ohe et al., 

2009), so it is not fully a multi-stressor approach; 

 The user needs to enter data on recovery in binary form, i.e. if recovery occurred 

or not. 

2.9 Gap in the literature 

There are only a few published sources of ecological data with distance along stressor 

concentration gradients in the impact zone, in terms of species diversity and abundance. 

Some more recent studies report only one or two biomonitoring sites in the impact zone 

e.g. Ortiz et al. (2005). The mechanisms behind the tolerance or sensitivity of species are 

not explained in any of the studies cited. A better understanding of the mechanisms of 

impairment would help to predict the impact of effluents in rivers. Integration of the 

fields of ecology and ecotoxicology, which have evolved separately (Relyea and 

Hoverman, 2006), would progress this understanding, and has been suggested by many 

authors in recent years (Calow, 1996; Relyea and Hoverman, 2006; Beketov and Liess, 

2012). The bottom-up approach of ecotoxicology which predicts effects in the 

environment from small-scale experiments should be merged with a top-down 

macroecological approach, of ecological effects at large scales (Beketov and Liess, 2012). 
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The majority of studies in the literature reporting ecological communities downstream 

of an effluent outfall, report numbers (abundance) and types of macroinvertebrates 

present. However, they do not give details about the mechanisms of action of the 

stressors on the aquatic organisms or the mechanisms of recovery. There is a lack of 

ecologically based evidence in modelling to inform this. In the literature, studies on 

recovery appear to focus on a particular group of stressors which is plant protection 

products (e.g. herbicides, insecticides). The type of exposure of these stressors to 

communities differs to that of down-the-drain chemicals. They are often applied at 

particular times of the year (e.g. pre-emergent herbicides) or multiples times 

throughout a growing season (e.g. many insecticides) (Relyea and Hoverman, 2006).  

Regular monitoring of the concentrations of down-the-drain chemical ingredients at 

several locations in a river system is time consuming and expensive. Predictive 

modelling can help to evaluate their impact on the receiving system if the models can be 

shown to provide a good description of the processes operating. McAvoy et al. (2003) 

predicted the concentration of LAS and the recovery of an impacted system in the 

Philippines using the QUAL2E water quality model. The impact on the ecology was 

analysed by the biomonitoring survey by Dyer et al. (2003) but a predictive method on 

the ecological side was not developed.  

 

 

 



 

35 

3 METHOD AND RESULTS FOR THE CONCEPTUAL MODEL 

3.1 Method for a conceptual model of ecological change in the impact 

zone 

The aim of this project was to develop a conceptual model to describe ecological 

changes in river impact zones. This model can also be used to assess the risks 

associated with particular chemicals used in HPC products and to determine the 

relative contribution of individual chemicals to any ecological impact.  

3.1.1 Model overview 

The model calculates the concentration of every defined stressor at each time and 

distance step downstream of a single effluent. The ecological composition is predicted 

in terms of the presence or absence of particular taxa along these concentration 

gradients. The model has been coded in Microsoft Visual Basic for Applications 6.5 

using data in Microsoft Excel 2007. The code is in Appendix A.4. 

3.1.2 Assumptions  

A number of assumptions were made when developing the model: 

 There is only one point source input of effluent in the system; 

 The effluent mixes instantaneously i.e. there is no mixing zone; 

 Stressor removal or reduction via processes other than dilution and 

degradation e.g. removal by sorption to sediment or volatilisation, are not 

included; 

 Ecosystem composition can be represented by the taxa for which toxicity data 

are available;  

 There are no indirect ecological effects i.e. interactions between trophic levels 

such that toxic effects in one level propagate through to changes in taxa in 

another level; 

 Changes in stressor concentrations occur via first order kinetics, except for 

dissolved oxygen which is described using the Streeter-Phelps model (Streeter 

and Phelps, 1925). 
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3.1.3 Scenarios  

The model can be applied to a fictitious generic scenario, or it can be parameterised to 

represent a real river system. A generic scenario was established, based on the 

European scenario set out in Part II of the Technical Guidance Document (TGD) for 

Environmental Risk Assessment in the EU (European Commission, 2003). This 

standardised risk assessment approach considers a hypothetical region of 200km by 

200km with a population of 20 million. Within this region each STP serves a population 

of 10,000 people with each inhabitant using 200 L d-1 of water. The effluent is 

discharged from the STP into a river which is assumed in the TGD to have a 1 in 10 

dilution (Figure 3-1).  

 

 

The TGD scenario primarily considers a situation in which all wastewater passes 

through secondary sewage treatment. However, two scenarios are considered here, 

one assuming the discharge of treated wastewater and another assuming the 

discharge of untreated wastewater.  

3.1.4 Model description 

The model has two main components: 

1. Stressor exposure assessment, and 

Sewage 
treatment 

plant 

Population: 10,000 

Qeff 

Qds 
DF = 10 Qus 

Figure 3-1 Illustration of the generic emission scenario based on the EU exposure assessment 

guidelines (European Commission, 2003). 
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2. Predictions of ecological effects resulting from this exposure. 

This is illustrated in Figure 3-2 and explained in the subsequent sections. 

 

Figure 3-2 Schematic illustration of the different components of the model showing the 

variables influencing exposure in purple (left hand side) and the variables describing the 

ecological effects in green (right hand side).  

3.1.4.1 Load  

The load refers to the mass of stressor per unit time discharged into the system via 

wastewater at the start of the impact zone. The concentration of each stressor in the 

receiving system will be the quotient of the load and the discharge of the water body 

downstream of the emission, assuming negligible upstream concentration of all 

stressors. 

Key : 
1. Load (kg d-1)
2. Discharge (L s-1)
3. C0: Concentration of stressor in receiving water at time 0 (μg/L) 
4. Degradation (h-1) 
5. Velocity (m s-1) which is used to calculate travel time (h)
6. C(t,x): Concentration of stressor at time t and distance x (μg/L) 
7. SSD: Species Sensitivity Distribution characterised using

μ (mean of lognormal distribution) and σ (standard deviation of lognormal distribution) of 
NOECs (no observed effect  concentration) (μg/L) 

9. PAF: Potentially Affected Fraction of taxa in the system
10. Taxa present (t,x) at time t and distance x

NOEC
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3.1.4.2 Discharge  

Discharge (Q) is the volume of water moving down a channel past a given point per 

unit time. It varies with the size of the drainage basin and the rate of run-off. The 

discharge in the river after effluent is discharged (Qds) is the sum of the effluent (Qeff) 

and upstream (Qus) discharges: 

             (3-1) 

 and the dilution factor (DF) is defined as: 

   
   
    

 
(3-2) 

River width, depth and velocity will vary with discharge, with velocity being 

determined by a combination of the water surface slope and substrate roughness 

(Giller and Malmqvist, 1998).  

Table 3-1 Parameters associated with discharge (European Commission, 2003). 

Parameter 
(units) 

Parameter description Value 

pop  Population connected to STP in the hypothetical “sewer shed” 10000 

Wu  (L cap-1 day-1) Water use per capita per day  200 

DF Dilution factor 10 

Qeff (L s-1) Discharge from sewage treatment plant (STP).  

To calculate multiply Wu by pop, then convert to seconds. 
Equation (3-3) 

23.15 

 

Qus (L s-1) Discharge upstream of effluent input 

Equation (3-4) 

208.33 

Qds (L s-1) Discharge downstream of effluent input.  

Equation (3-1) 

231.48 

 

BODus (mg L-1) BOD concentration upstream of effluent input 2 

Q(x) Mean discharge at any point x in the system Calculated 
by model 
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(3-3) 

               (3-4) 

Discharge generally increases downstream (Gray, 1999) and this should be built into 

the model to increase its realism. However, the TGD makes no assumptions about 

changes in discharge downstream through a river system. Data on mean discharges for 

1996-2000 were taken from the UK’s National River Flow Archive for the river Great 

Ouse at Newport Pagnell (site A) in Buckinghamshire and downstream at Bedford (site 

B). 

Table 3-2 Parameters used to calculate increasing discharge downstream. 

Parameter 
(units) 

Parameter description Value Reference 

QA (L s-1) Mean discharge at site A 4870 Centre for Ecology and Hydrology (2003) 

QB (L s-1) Mean discharge at site B 10200 Centre for Ecology and Hydrology (2003) 

F Fraction of discharge changed (total) 2.09 Equation (3-5) 

Disttot (m) Total distance between sites A and B 60,000 Google Maps – Appendix A.1 

f Fraction of discharge changed per metre 0.000035 Equation (3-6) 

     
     
  

  
(3-5) 

     
          

    
       

  
 

       
 

(3-6) 

  
    

     
          

Here it is assumed that the increase in discharge downstream is linear. Discharge (Q(x)) 

at any location downstream is calculated by: 

                    (3-7) 
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3.1.4.3 Initial concentration of stressors in the receiving water body (C0) 

Stressors include chemical toxicants and other factors which cause stress in an 

ecosystem. These include increased temperature, food limitation, increased salinity, 

low oxygen, UV radiation, predation, competition, lack of food, sanitary determinands 

and anthropogenic chemicals (SCENIHR et al., 2012). As a case study, five stressors 

were considered in the model. Three are ubiquitous in all wastewater effluents; these 

are ammonia, nitrite and low DO. Two are ingredients used in HPC products, namely 

triclosan and LAS. 

To calculate the starting concentration of a stressor (C0) in the receiving water 

immediately after the effluent outfall, the concentration in the effluent (Ceff) was firstly 

calculated, using parameters in. 

Table 3-3. 

Table 3-3 Parameters used to calculate initial concentrations for different stressors in 

treated and untreated scenarios. 

Parameter 
(units) 

Parameter 
description 

Stressor Value Reference  

Treated Untreated 

Craw (μg L-1) Chemical 
concentration in 
raw sewage 

TCS 13.70 Calculated by equation (3-8) 

LAS 12500 Calculated by equation (3-8) 

Chemu           

(μg cap-1 d-1) 
Chemical usage per 
capita per day 

TCS 2739.73 Capdevielle et al. (2008) 

LAS 2,500,000 OECD SIDS (2005a) 

r Removal fraction in 
wastewater 
treatment 

TCS 0.9 0 Capdevielle et al. (2008) 

LAS 0.95 0 HERA (2009) 

Ceff (μg L-1) Chemical 
concentration in 
sewage effluent. 

In an untreated 
scenario Ceff = Craw  

  

Ammonia 

(total) 

4400 27000 Treated: Gray (2004)       
Untreated: Finnegan et al. (2009) 

Nitrite 800 6900 Treated: Gray (2004)       
Untreated: Finnegan et al. (2009) 

TCS 1.37 13.70 Calculated by equation (3-9) 

LAS 625 12500 Calculated by equation (3-9) 
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Ammonia and nitrite Ceff values for treated and untreated effluents were obtained 

from the literature. 

Concentrations of triclosan and LAS in treated and untreated effluents were calculated 

from consumer usage figures, as these figures were readily available. To calculate the 

starting concentration of these stressors from usage data, the following equations 

were used: 

     
     

  
 (3-8) 

                (3-9) 

The terms for these calculations are all defined previously or in. 

Table 3-3. 

Triclosan usage is currently estimated to be approximately 0.0028 g cap-1 d-1 in the UK 

(Capdevielle et al., 2008) and 0.0062 g cap-1 d-1 in the USA (De Zwart et al., 2006). In 

the generic scenario, the UK value is used as it fits best with the European situation. 

The concentrations in the treated situation are: 

     
       

   
   13.70 μg L-1 

                                       1.37 μg L-1 

The concentrations in the untreated scenario are: 

     
       

   
   13.70 μg L-1 

                                     13.70 μg L-1 

LAS usage is currently estimated to be 2.5 g cap-1 d-1 in Western Europe (OECD SIDS, 

2005a) and 3.14 – 3.56 g cap-1 d-1 in the USA (De Zwart et al., 2006; OECD SIDS, 2005a). 

The value for Europe is used in the model for the generic scenario in line with TGD 

parameters. Concentrations in the treated scenario are: 
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   12500 μg L-1 

                                         625 μg L-1 

Concentrations in the untreated scenario are: 

     
       

   
   12500 μg L-1 

                                     12500 μg L-1 

Using Ceff and parameters in Table 3-1 and 3-3, C0 is calculated in equation (3-10). It is 

assumed that some degradable organic matter is present upstream of the effluent, in 

the river.  

   
                   

        
 (3-10) 

Parameters relating to DO are unique to this stressor as are the relevant calculations. 

The initial DO concentration in the river immediately after full mixing of the effluent 

(DOO) is: 

    
                   

        
 

(3-11) 

where DOus and DOeff are the concentrations of DO upstream and in the effluent 

respectively. From this the initial OD at the same point (ODo) is calculated as:  

              (3-12) 

where DOsat is the DO equilibrium (saturation) concentration at the temperature of the 

mixed receiving water. 
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Table 3-4 Stressor initial concentrations calculated in the model. 

Parameter 
(units) 

Parameter 
description 

Stressor Value 

Treated Untreated 

C0 (μg L-1) Starting concentration 
of stressor after mixing 

Ammonia (total) 442 2702 

Nitrite 82 692 

Triclosan 2 3 

LAS 64 1252 

3.1.4.4 Degradation  

Degradation of a stressor within the system can be characterised in terms of its half life 

if we assume first order kinetics. Chemical half life (t½) is the time required for the 

concentration of a chemical to decrease to half its initial. The concentration of a 

stressor at flow time t was calculated (Morrall et al., 2004) as follows: 

                (3-13) 

where k is: 

  
      

  
 

 
(3-14) 

In the case of ammonia, losses are not strictly via degradation. Rather they occur due 

to nitrification which is the process by which ammonium is oxidised to nitrite and, 

subsequently, to nitrate by chemoautotrophic bacteria (Finnegan et al., 2009). Nitrite 

is also removed from the system via nitrification to nitrate. 
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Table 3-5 Degradation parameters. 

Parameter 
(units) 

Parameter 
description 

Stressor  Value Reference  

DT50 (h) Chemical half life  
(t ½) 

Ammonia  29.7 NH4 zero order half life. 
Whelan et al. (1999) 

Nitrite 9.0 Finnegan et al. (2009)  

Triclosan 11.3 Morrall et al. (2004) 

LAS 12.0 HERA (2009) 

k (h-1) Biokinetic rate 
constant of 
oxidation 

 

Ammonia  0.02 Equation (3-14) 

 Nitrite 0.08 

LAS 0.06 

Triclosan 0.06 

3.1.4.5 Velocity 

The velocity of the river (m s-1) is influenced by discharge. In general, river velocities 

increase with discharge because of the reduced effect of bed and bank resistance on 

the flow. The travel time (t) of a stressor downstream to a distance (d) is:  

  
 

 
 

(3-15) 

where velocity (v) is calculated using the empirical equation from Round et al. (1998):  

                
       

    

   
 

     

 
(3-16) 

3.1.4.6 Concentration of stressor at time t and distance x steps 

The distance interval (dx) is arbitrarily assigned as 200m meaning that each point along 

the river system (x) is equally spaced apart by 200m.  

 

Outfall

1 32 54

200
x:
Distance: 600 1000800400

dx: 200m 
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The distance (d) from the effluent outfall is measured at each location, x, in metres and 

can be calculated: 

       (3-17) 

The concentration of a stressor at each point is calculated in equation (3-13) from the 

initial stressor concentration, the rate of degradation and flow time (Morrall et al., 

2004), where C is the concentration at that point (μg L-1), C0 is the starting 

concentration (μg L-1), k is the degradation rate constant (h-1) and t is flow time (h). 

Ammonia  

In surface waters, an equilibrium is assumed to be reached between ionised 

ammonium (NH4
+), unionised ammonia (NH3) and hydroxide ions (OH-): 

            
        (3-18) 

The equilibrium, and therefore the proportion of NH3 and NH4
+ present are pH and 

temperature dependent (Hellawell, 1986). As pH and temperature increase, the 

equilibrium is shifted towards the NH3 species (Broderius et al., 1985; U.S.EPA, 1986).  

NH3 is more toxic than NH4
+, so the proportion of NH3 present determines the toxicity 

of total ammonia (De Zwart et al., 2006).  

Therefore, the concentration of ammonia at t and x is converted from that of total 

ammonia (unionised NH3 and ionised NH4
+) to the concentration of NH3 (Finnegan et 

al., 2009). The temperature and pKa of the system are required to calculate this. 
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Table 3-6 Parameters in NH3 calculation. 

Parameter 
(units) 

Parameter description Value Reference 

α Fraction of N in NH4
+ 0.78 Finnegan et al. (2009)   

temp(°C) Water temperature 12 Standard temperature – European 
Commission (2003)  

pKa Temperature dissociation 
constant. Equation (3-20) 

9.66 US E.P.A. (2013) 

pH Measure of acidity or basicity 7 Standard pH – European Commission (2003) 

 

       
    
 

 
 

              
  

(3-19) 

where     is the concentration of total ammoniacal nitrogen (µg N L-1). 

             
       

          
  

(3-20) 

where temp is temperature in °C. 

3.1.5 SSD construction  

SSDs were constructed for all stressors using data from toxicity studies on aquatic 

organisms from the literature. The methods for creating the SSDs themselves are 

described in section 3.1.6. The first step in creating the SSDs was to obtain toxicity data 

for the five stressors in the model.  

3.1.5.1 Ammonia 

Ammonia is an inorganic stressor. Unionised ammonia exerts toxicity to aquatic 

organisms, including the following effects in fish (McKenzie et al., 2003; Camargo and 

Alonso, 2006): 

 asphyxiation resulting from damage to the gill epithelium; 

 reduction in blood oxygen-carrying capacity; 



 

47 

 disruption of blood vessels and osmoregulatory activity affecting the liver and 

kidneys; 

 repression of the immune system increasing susceptibility to bacterial and 

parasitic diseases; 

 lower nervous system function; 

 hyperexcitability. 

Chronic or long term, toxicity data are available in the EPA’s report on ambient quality 

criteria of ammonia (U.S.EPA, 2013) and are reported as EC20 values which is the 

concentration at which 20% of the population are adversely affected (Table 3-7). 

Lower EC20 values suggest that the species is more sensitive to ammonia. These data 

demonstrate that ammonia is most toxic to bivalves and least toxic to other 

invertebrates.  
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Table 3-7 Ammonia toxicity data (U.S.EPA, 2013). The EC20s were normalised to pH7, and to 

20°C for invertebrates. 

Group Common name Species EC20  

(μg Total Ammoniacal 
Nitrogen L-1) 

Invertebrate (Bivalve) Wavy-rayed 
lampmussel 

Lampsilis fasciola 1408 

Invertebrate (Bivalve) Fatmucket Lampsilis siliquoidea 3211 

Fish Bluegill Lepomis macrochirus 3273 

Invertebrate (Bivalve) Rainbow mussel Villosa iris 3501 

Fish Rainbow trout Oncorhynchus mykiss 6663 

Invertebrate (Bivalve) Long fingernail clam Musculium transversum 7547 

Invertebrate (Mollusc) Pebblesnail Fluminicola sp. 7828 

Fish Fathead minnow Pimephales promelas 9187 

Fish Sockeye salmon Oncorhynchus nerka 10090 

Fish Smallmouth bass Micropterus dolomieui 11070 

Fish White sucker Catostomus commersonii 11620 

Fish Green sunfish Lepomis cyanellus 14630 

Fish Common carp Cyprinus carpio 16530 

Fish Northern pike Esox lucius 20380 

Fish Channel catfish Ictalurus punctatus 21360 

Fish Lahontan cutthroat 
trout 

Oncorhynchus clarkii 
henshawi 

25830 

Invertebrate (Amphipod) Amphipod Hyalella azteca 29170 

Invertebrate (Water flea) Water flea Daphnia magna 41460 

Invertebrate (Water flea) Water flea Ceriodaphnia dubia 45080 

Invertebrate (Water flea) Water flea Ceriodaphnia acanthina 64100 

Insect Stonefly Pteronarcella badia 73740 

3.1.5.2 Nitrite 

Nitrite is formed by the nitrification of ammonia by the bacteria nitrosomonas species 

(Figure 1-1) in aquatic systems. In freshwater aquatic organisms, particularly fish and 

crayfish, nitrite exerts toxicity by entering the organism via the gills and then 

converting oxygen-carrying pigments so that they are incapable of carrying oxygen 
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resulting in hypoxia and ultimately death. In fish, iron atoms are oxidised (Fe2+ is 

converted to Fe3+) when nitrite enters the red blood cells and functional haemoglobin 

is converted to methaemoglobin which cannot release oxygen into tissues as the 

dissociation constant is high. In crayfish, copper atoms are oxidised (Cu+ is converted 

to Cu2+) resulting in haemocyanin being converted into methemocyanin which is 

unable to bind reversibly to oxygen (Camargo and Alonso, 2006). Other effects of 

nitrite toxicity are evident in fish and crayfish (Camargo and Alonso, 2006; Jensen, 

2003) and include: 

 effects on neurotransmission, skeletal muscle contractions and heart function 

 formation of mutagenic and carcinogenic N-nitroso compounds; 

 damage to the mitochondria in liver cells causing tissue oxygen shortage; 

 repression of the immune system; 

 hyperventilation. 

Fish and crayfish can recover from nitrite exposure by eliminating it via the gills and 

urine if the exposure is reduced significantly or eliminated (Jensen, 2003). 

There are limited chronic toxicity data available for nitrite, in particular for organisms 

other than fish. Invertebrates are, however, sensitive to acute nitrite exposure 

suggesting there is another mechanism of action other than via gills (fish and crayfish) 

(Soucek and Dickinson, 2012). Insects were found to be more sensitive than 

crustaceans which in turn were more sensitive than molluscs (Soucek and Dickinson, 

2012) suggesting that the chronic toxicity dataset (Table 3-8) is not complete. The data 

presented are in terms of NOECs. As with EC20 values, lower NOEC values represent 

higher toxicity. The toxicity values for nitrite were converted to equivalent units to 

ammoniacal nitrogen values i.e. in terms of nitrite-nitrogen (NO2-N). 
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Table 3-8 Nitrite toxicity data. 

Group Common name Species NOEC (NO2-N)    
(μg L-1) 

Reference 

Fish  Rainbow trout Oncorhynchus mykiss 3 Kroupova et al. (2008) 

Fish  Common carp Cyprinus carpio 2130 Kroupova et al. (2010) 

Fish Fathead minnow Pimephales promelas 2730 Adelman et al. (2009) 

Fish Silver perch Bidyanus bidyanus 2780 Frances et al. (1998) 

Fish Topeka shiner Notropis topeka 4450 Adelman et al. (2009) 

Fish Zebrafish Danio rerio 12174 Voslářová et al. (2008) 

Algae Green algae Desmodesmus subspicatus 20290 OECD SIDS (2005b) 

 

3.1.5.3 Triclosan 

Triclosan (TCS) is a broad spectrum anti-microbial agent present in consumer products 

(Capdevielle et al., 2008; ECETOC, 2007). Triclosan exerts a toxic effect beyond a 

baseline narcotic mode of action. It has many intracellular and cytoplasmic target sites 

and may influence transcription of genes associated with amino acid, carbohydrate 

and lipid metabolism. In bacteria, it blocks lipid biosynthesis by specifically inhibiting 

the enzyme enoyl-acyl-carrier protein reductase, which is involved in the fatty acid 

synthesis, FASII, enzyme system. Fatty acid synthesis pathways are similar in plants 

(Health Canada and Environment Canada, 2012). The FAS II enzyme is not present in 

higher vertebrates and based on available data is also not thought to be present in 

aquatic invertebrates (ECETOC, 2007). This supports observations that TCS does not 

appear to be as toxic to these organisms as it is to bacteria and algae. TCS does, 

however, act on less specific targets such as the cell membrane (Nietch et al., 2013). 

The differences in sensitivity of algae and bacteria to fish are evident from the toxicity 

data shown in Table 3-9. 
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Table 3-9 Triclosan toxicity data. 

Group Common name Species NOEC 
(μg L-1) 

Reference Primary 
Reference 

Algae  Pseudokirchneriella 
subcapitata 

0.2 Lyndall et al. (2010) Yang et al. (2008)  

Protozoa/ 
metazoa 

Wheel animals Rotifer sp. 0.5 Health Canada & 
Environment 
Canada (2012) 

Lawrence et al. 
(2009) 

Macrophytes Devil's Beggartick Bidens frondosa 0.6 Health Canada & 
Environment 
Canada (2012) 

Stevens et al. 
(2009) 

Macrophytes Coffeeweed Sesbania herbacea 0.6 Health Canada & 
Environment 
Canada (2012) 

Stevens et al. 
(2009)  

Cyanobacteria  Anabaena flos-
aquae 

0.67 Lyndall et al. (2010) Orvos et al. 
(2002) 

Algae  Scenedesmus 
subspicatus 

0.69 Lyndall et al. (2010) Orvos et al. 
(2002) 

Cyanobacteria  Lyngbya sp. 1 Lyndall et al. (2010) Lawrence et al. 
(2009) 

Cyanobacteria  Microcystis 
aeruginosa 

1 Lyndall et al. (2010) Lawrence et al. 
(2009) 

Cyanobacteria  Oscillatoria tenius 1 Lyndall et al. (2010) Lawrence et al. 
(2009) 

Algae  Scenedesmus 
quadricauda 

1 Lyndall et al. (2010) Lawrence et al. 
(2009) 

Algae  Dunaliella 
tertiolecta 

1.6 Lyndall et al. (2010) DeLorenzo and 
Fleming (2008) 

Macrophytes False daisy Eclipta prostrata 2.2 Health Canada & 
Environment 
Canada (2012) 

Stevens et al. 
(2009) 

Invertebrate Amphipod / lawn 
shrimp 

Hyalella azteca 5 Dussault et al. 
(2008) 

— 

Algal & 
bacterial 
community 

 Algal & bacterial 
community 

10 Health Canada & 
Environment 
Canada (2012) 

Lawrence et al. 
(2009) 

Algae  Ulothrix sp. 10 Lyndall et al. (2010) Lawrence et al. 
(2009) 

Algae  Navicula pelliculosa 10.7 Lyndall et al. (2010) Orvos et al. 
(2002) 
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Group Common name Species NOEC 
(μg L-1) 

Reference Primary 
Reference 

Fish Rainbow trout Oncorhynchus 
mykiss 

34.1 Lyndall et al. (2010) Orvos et al. 
(2002) 

Invertebrate Water flea Daphnia magna 40 Lyndall et al. (2010) Orvos et al. 
(2002) 

Invertebrate  Brachionus 
calyciflorus 

50 Lyndall et al. (2010) Ferrari et al. 
(2002)   

Fish Mosquitofish Mosquitofish 76.6 Health Canada & 
Environment 
Canada (2012) 

Raut and Angus 
(2010)  

Insect Midge Chironomus 
tentans 

80 Health Canada & 
Environment 
Canada (2012) 

Dussault et al. 
(2008) 

Algae  Ankistrodesmus 
falcatus 

100 Lyndall et al. (2010) Lawrence et al. 
(2009) 

Cyanobacteria  Glaucocystis 
nostochinea 

100 Lyndall et al. (2010) Lawrence et al. 
(2009) 

Cyanobacteria  Nostoc sp. 100 Lyndall et al. (2010) Lawrence et al. 
(2009) 

Algae  Synedra sp. 100 Lyndall et al. (2010) Lawrence et al. 
(2009) 

Fish Japanese medaka Oryzias latipes 156 Lyndall et al. (2010) Ishibashi et al. 
(2004)  

Fish Zebrafish Danio rerio 160 Lyndall et al. (2010) Tatarazako et al. 
(2004)  

Algae  Closterium 
ehrenbergii 

250 Lyndall et al. (2010) Ciniglia et al. 
(2005) 

Invertebrate Midge Chironomus 
riparius 

440 Lyndall et al. (2010) Memmert (2006)  

3.1.5.4 LAS 

Linear alkyl benzene sulphonate (LAS) is a surfactant used globally in household 

detergents (Boeije et al., 2000). The mode of action of LAS is not specific, but via 

general narcosis, or baseline toxicity, causing a non-specific disturbance to the 

structure and function of cell membranes (Zhang et al., 2010; Escher et al., 2011). 

Recovery often occurs in organisms affected by baseline toxicity, although slow 

respiration can limit diffusion to excretory membranes and increase the time to 
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recovery (Escher et al., 2011). A review of available chronic toxicity data are presented 

in terms of NOECs (HERA, 2009) in Table 3-10. The range of sensitivity of LAS is 

different to other stressors e.g. algae are sensitive to triclosan but less sensitive than 

other organisms to LAS.  

Table 3-10 LAS toxicity data (HERA, 2009) 

Group Species NOEC (μg L-1) 

Fish Tilapia mossambica  250 

Fish Oncorhynchus mykiss 340 

Algae Microcystis spec 800 

Fish Pimephales promelas  870 

Crustacean Daphnia magna  1400 

Fish Brachydanio rerio  2300 

Insect Chironomus riparius  2800 

Crustacean Ceriodaphnia spec. 3200 

Fish Poecilia reticulata  3200 

Insect Paratanytarsus parthenogenica 3400 

Algae Chlorella kessleri 3500 

Algae Selenastrum spec.  3800 

Algae Scenedesmus subspicatus 7700 

Algae Chlamydomonas reinhardi  12000 

Algae Plectonema boryanum  15000 

3.1.5.5 Dissolved oxygen  

Uptake of oxygen by aquatic invertebrates from the water generally occurs by passive 

diffusion, which is driven by the difference in oxygen partial pressure between the 

animal (internal) and the water (external) (Rostgaard and Jacobsen, 2005). The 

discharge of organic wastewater places a demand on DO in the system (Dunnivant, 

2004; Welch, 1992) (Figure 3-3). A measure of this demand is the amount of DO 

utilised to degrade the organic matter present in a sample in a given period of time at 

a given temperature i.e. the BOD. In streams, reaeration is a function of current 
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velocity and water depth (U.S.EPA, 2012). The oxygen deficit (OD) is DO concentration 

in relation to the oxygen saturation at that temperature (Gray, 1999). 

The Streeter-Phelps model describes the change in OD in a river via two primary 

mechanisms which influence the concentration of DO, deoxygenation and 

reoxygenation (Streeter and Phelps, 1925). Deoxygenation occurs as a result of 

biochemical oxygen demand resulting from the decomposition of organic matter by 

microbes in the system (Gotovtsev, 2010; Nas and Nas, 2009). Reaeration 

(reoxygenation) results from oxygen input from the atmosphere to the water which is 

enhanced by turbulence. Photosynthesis can also introduce oxygen into the water 

column during the day (Nas and Nas, 2009). Although this can be an important 

process, particularly in the tropics, it is not considered explicitly here. Initially following 

effluent discharge, the rate of deoxygenation exceeds the rate of reaeration. Further 

downstream deoxygenation equals reaeration and subsequently the rate of reaeration 

exceeds the deoxygenation rate resulting in recovery (Gray, 2004). The pattern is 

known as the DO sag curve and is illustrated schematically in Figure 3-3. The Streeter-

Phelps model relates to a steady state scenario i.e. concentrations do not change with 

time, with one dimensional flow (Noutsopoulos and Kyprianou, 2014).  

 

Figure 3-3 Streeter-Phelps DO sag curve. OD0: oxygen deficit in river after mixing of effluent 

in river; Dc: critical/minimum DO concentration (i.e. maximum deficit); ODt: oxygen deficit at 

any point at flow time tdownstream. Adapted from Dunnivant (2004) and Gray (1999). 
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It is assumed that the reaeration rate is directly proportional to the size of the deficit. 

Deoxygenation is assumed to be proportional to BOD (Nas and Nas, 2009).  

The oxygen deficit is described by Streeter-Phelps (1925) as 

      

  
                        

(3-21) 

which has the solution: 

    
        

              
                                                    

(3-22) 

where 

 ODt is the oxygen deficit (mg L-1) at any point in the flow at flow time t 
downstream of a point pollution source  

   is the flow time (distance travelled / mean velocity) in days 

 BOD0 is the BOD (mg L-1) immediately after full mixing of the effluent and the 
river (mixing is assumed to be instantaneous and complete) 

 OD0 is the oxygen deficit in the river (mg L-1) immediately after full mixing of 
the effluent 

 kBOD is the degradation rate constant for BOD (day-1) 

 kreaerate is the rate coefficient for re-oxygenation (day-1) 

Both kBOD and kreaerate are assumed in the Streeter-Phelps model to be constant (Gray, 

2004). 

Although other processes such as oxidation of sediment deposits and sedimentation 

can also impact the oxygen concentration, deoxygenation and reoxygenation are often 

the predominant processes (Gray, 2004). Lower DO concentrations are more toxic due 

to respiratory stress (U.S.EPA, 2012). In the absence of chronic toxicity data for DO in 

the literature, acute data in the form of LC50/EC50s were obtained (see Table_A 1 in 

Appendix A.2 for toxicity data, corresponding temperatures and references).  

As the studies were conducted at different temperatures, which will have influenced 

the DO concentration, the LC50/EC50s were calculated in terms of OD from saturation 

at the reported temperature. The oxygen saturation concentration of DO at a given 

temperature, at 1 atmosphere in freshwater, was calculated from the equation used in 

the US EPA’s river and stream water quality model, QUAL2K (Chapra et al., 2008): 
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(3-23) 

where tempa is the absolute temperature (in Kelvin (K)), which is the temperature in 

degrees Celsius plus 273.15. 

The measured DO concentration was subtracted from the oxygen saturation 

concentration, giving the oxygen deficit (Gray, 1999). 

                          (3-24) 

The OD toxicity values are in Table 3-11.  
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Table 3-11 Oxygen Deficit toxicity data. 

Common name Species  DO saturation 
(mg L-1) 

OD     
(mg L-1) 

Mayfly  Ephemerella subvaria 10.75 6.85 

Stonefly Acroneuria lycorias 10.75 7.15 

Mayfly Baetisca laurentina 10.75 7.25 

Mayfly Ephemerella doddsi 12.45 7.25 

Caddisfly Hydropsyche betteri 10.76 7.86 

Mayfly Callibaetis montanus 12.45 8.05 

Stonefly Pteronarcys dorsata 10.75 8.55 

Mayfly Leptophlebia nebulosa 10.75 8.55 

Stonefly Pteronarcys californica 12.45 8.55 

Caddisfly  Neophylax sp. 12.45 8.65 

Amphipod crustacean Gammarus pseudolimnaeus 10.74 8.83 

Stonefly Diura knowltoni 12.45 8.85 

Caddisfly Hydropsyche sp. 12.45 8.85 

Stonefly Arcynopteryx aurea 12.45 9.15 

Stonefly Nemoura cinctipes 12.45 9.15 

Diptera Simulium vittatum 12.45 9.25 

Midge Chironomus tentans fabricius 10.94 9.34 

Mayfly Hexagenia limbata 10.75 9.35 

Mayfly Ephemerella grandis 12.45 9.45 

Fish Deltistes luxatusi 10.80 9.53 

Midge Chironomus dilutus larvae 10.85 9.85 

Stonefly Pteronarcella badia 12.45 10.05 

Crustacean Daphnia pulex 10.81 10.11 

Amphipod crustacean Hyallela azteca 10.81 10.51 

Crustacean Daphnia magna 11.24 10.59 

Caddisfly Drusinus sp. 12.45 10.65 

Amphipod crustacean Gammarus lacustris 11.17 10.67 

Caddisfly Neothrema alicia 12.45 10.75 

Stonefly Acroneuria pacifica 12.45 10.85 
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3.1.6 Creating the SSDs 

SSDs represent the toxicity of one stressor to many different species. The SSDs were 

compiled in Microsoft Excel. The parameters in each SSD are stressor specific. 

Table 3-12: Parameters in the SSDs. 

Parameter Parameter description 

mu (μ) Mean of log-transformed data in a  lognormal distribution 

sigma (σ) Standard deviation of log-transformed data in a  lognormal distribution 

NOEC (μg L-1) No observed effect concentration. Measure of chronic toxicity. 

Ammonia toxicity values are reported as EC20 and DO as LC50 or EC50. Generally 
in the code, these are all referred to as NOECs. 

PAF Potentially affected fraction of species  

Observed PAF PAF calculated from species data 

Model PAF PAF calculated using a lognormal distribution  

RMSE Root Mean Square Error – square root of the average of all error square values 

Briefly, NOEC (or relevant toxicity) values were sorted in ascending order and a rank 

was assigned to each value from the rank. The observed PAF was calculated from the 

rank: 

              
    

                   
 

(3-25) 

The Model PAF was obtained by fitting a lognormal distribution to the observed data.  

The error squared of the Model PAF and Observed PAF was then calculated: 

                                        (3-26) 

The RMSE was calculated by taking the square root of the average of all error square 

values. This is a measure of how similar the observed and model PAFs are.  

The Solver tool in Microsoft Excel was used to minimise the RMSE (Root Mean Square 

Error) by altering mu (subject to being ≥0) and sigma (subject to being ≥0) in a trial and 

error optimisation.  
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(3-27) 

where n is the number of species, i is the rank, Mi is the model PAF and Oi is the 

observed PAF.  

Observed and model PAFs are shown in Figures 3-4, 3-5, 3-6, 3-7 and 3-8, for ammonia, 

nitrite, TCS, LAS (note log scales) and OD respectively. Data points were labelled by 

family name to illustrate that families can appear multiple times in a dataset or across 

datasets. The datapoints were classified by organism type to enable any patterns in 

sensitivity to be more easily identified. 
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Figure 3-4 SSD for total ammoniacal nitrogen. The line shows the best fit cumulative log 

normal distribution (model PAFs). The data points (observed PAFs) are labelled by organism 

type and data labels by family.  

It is clear from the ammonia SSD that a pattern of sensitivity exists with bivalves being 

more sensitive than fish, and fish in turn more sensitive than arthropods.   

In the model, the EC20 values were converted into values for NH3 to be comparable to 

the concentrations at each step downstream. The original EC20s were represented as 

μg total ammoniacal Nitrogen L-1, therefore the contribution from the ammonium ion 

(NH4
+) or unionised ammonia (NH3) was not known. The EC20s were converted using 

equation (3-19). The results of the toxicity studies (Table 3-7) were normalised to pH7, 

and 20°C for invertebrates. 
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Figure 3-5 SSD for nitrite. The line shows the best fit cumulative log normal distribution 

(model PAFs). The data points (observed PAFs) are labelled by organism type and data labels 

by family.  

The low availability of chronic toxicity data for nitrite creates a data sparse SSD 

dominated by fish. 
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Figure 3-6 SSD for triclosan. The line shows the best fit cumulative log normal distribution 

(model PAFs). The data points (observed PAFs) are labelled by organism type and data labels 

by family.  

The toxicity of triclosan to aquatic organisms varies by about four orders of magnitude. 

Macrophytes, cyanobacteria and algae are generally most sensitive to triclosan while 

fish and invertebrates demonstrate higher tolerance. However, there is some variation 

among the sensitive groups indicating there are more specific characteristics of the 

former groups which influence sensitivity.  
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Figure 3-7 SSD for LAS. The line shows the best fit cumulative log normal distribution (model 

PAFs). The data points (observed PAFs) are labelled by organism type and data labels by 

family.  

Despite the fact that LAS does not have a specific mode of action there is still a pattern 

in terms of its toxicity to different types of organisms. Fish are generally most sensitive 

and algae are generally more tolerant.  
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Figure 3-8 SSD for oxygen deficit (OD). The line shows the best fit cumulative log normal 

distribution (model PAFs). The data points (observed PAFs) are labelled by organism type 

and data labels by family. Note that the x axis values (OD) are not logtransformed. 

The SSDs for all five stressors represented by species names, rather than family names, 

are in Appendix A.3. 

3.1.6.1 Potentially Affected Fraction (PAF) of Species  

In the model, predicted PAF for a given stressor concentration at location x is 

calculated from the following equation (Press, 2007): 

     
 

 
        

 

  
 
          

 
                (3-28) 

which can be simplified to: 
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where erfc (y) is complementary error function integral between y and infinity (∞). 

In the model y is always set as negative and Microsoft Excel 2007 cannot calculate the 

erfc of a negative number. This has been corrected in subsequent versions of Microsoft 

Excel. However, erfc(‒y) = ‒erfc(y) which can be used as a workaround. A sub routine 

to take the erfc of positive y, and then to make the result negative is written into the 

model to work around this error. 

3.1.6.2 Taxa present at time t and location x 

Model outputs at each step downstream include the distance (metres) downstream 

and corresponding flow time (hours), stressor concentration (µg L-1) and predicted 

PAF. The species present at each step downstream are also predicted from the SSD. 

Moving downstream, more species are predicted to reappear as stressor 

concentrations decrease. This is illustrated schematically in Table 3-13.  

Table 3-13 Schematic illustration of model outputs in terms of the taxa present at given 

stations in the impact zone, based on the toxicity of a single stressor.  = species present.  

Distance 
(m) 

Time 
(h) 

Stressor 
conc. 
(µg L-1) 

PAF Species 
1 

Species 
2 

Species 
3 

Species 
4 

Species 
5 

Number of 
species 
present 

200 0.02 32 0.80      1 

400 0.04 29 0.60      2 

600 0.06 25 0.40      3 

800 0.08 21 0.35      3 

1000 0.10 15 0.25      4 

1200 0.12 9 0.20      4 

1400 0.14 2 0.05      5 

 

3.1.7 Streeter-Phelps model 

DO concentrations, expressed as OD, are predicted at points downstream using the 

Streeter-Phelps model. The parameters used in the Streeter-Phelps part of the model 

are presented in Table 3-14. 
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Table 3-14 Parameters used in Streeter-Phelps model. 

Parameter 
(units) 

Parameter 
description 

Value  Details Reference 

BODeff (mg L-1) BOD concentration 
in effluent 

 

800 Untreated scenario. 190 (Metcalf 
and Eddy 2003); 200-800 (Hellawell 
1986; Gray 1999). Lowest of range 
taken. 

Hellawell (1986), Gray 
(1999) and Metcalf 
and Eddy (2003) 

20 Treated scenario. 3-50 (Hellawell 
1986; Gray 1999). Design  of STPs 
in Ireland and UK based on Royal 
Commission with standard effluent 
of 20 mg L-1 (Gray 1999). 

Hellawell (1986) and 
Gray (1999) 

BODus (mg L-1) BOD concentration 
upstream 

2 For relatively healthy streams. University of 
Wisconsin (2005) 

DOus (mg L-1) DO concentration 
upstream 

8.1 Average of 2 cleanest sites in 
Belgian rivers. Close to 7 mg L-1 
limit of EU Freshwater Fish 
Directive for salmonids (Gray 
1999). 

Comte et al. (2010)                  

DOeff (mg L-1) DO concentration 
in effluent 

1 Untreated effluent. If effluent is 
kept moving, it should maintain 
minimum of 1-2 mg L-1 DO. 

Gray (1999) 

4 Treated effluent Birge et al. (1989) 

kBOD (h-1) First order rate 
constant for BOD 
biodegradation 

0.015 Range of values over varying 
discharge and temperature: 0.0008 
- 0.015 h-1. 

Mean of 0.015 h-1 in Sacramento 
River. 

Bansal (1975) 
 

 

Padgett (1978) 

kreaerate (h
-1) Rate constant for 

reaeration 
0.03 0.03 h-1 in Sacramento River. Padgett (1978) 

BODo is the initial BOD concentration in the river after mixing. It is assumed that some 

degradable organic matter is assumed to be present in the river water upstream of the 

effluent. BODo is calculated in the model as follows:  

     
                     

        
 

(3-30) 
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kreaerate is temperature dependent in reality and could be converted but this was not 

done in the model as the kreaerate value was not known with a high degree of 

uncertainty for the scenario being considered.  

The travel time between distance steps (  ; h) is calculated in the model as:  

   
  

           
 

(3-31) 

where vel(x) is the velocity at a distance step. 

The BOD concentration at each location (BOD(x)) is calculated in the model as: 

                              (3-32) 

The OD concentration at each location (OD(x)) is calculated from: 

       
             

               
                                  

                            

(3-33) 

The model output for OD is similar to that of the other stressors, here the stressor 

concentration given is in terms of OD (Table 3-15). It is expected that the minimum 

number of species will not be at the initial distance points as for the other stressors, 

but further downstream reflecting an oxygen sag curve in the system.  

Table 3-15 Schematic illustration of model outputs in terms of species present at given 

stations in the impact zone based on exposure to OD. 

Distance 
(m) 

Time 
(h) 

OD   
(µg L-1) 

PAF Species 
1 

Species 
2 

Species 
3 

Species 
4 

Number of 
species 
present 

BOD  

(mg L-1) 

DO  

(mg L-1) 

200 0.02 2000 0.40     3 23 8 

400 0.04 2050 0.45     2 20 5 

600 0.06 3200 0.55     1 30 1 

800 0.08 2000 0.40     2 20 5 

1000 0.10 1400 0.20     5 12 10 
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The effect on the taxa was expressed in the output at each location downstream in 

terms of the fraction of species present (1-PAF) and species richness (number of 

species). To calculate species richness, the duplicate species were removed when they 

were present in more than one SSD and predicted to be present at that location as a 

result of the concentration of more than one stressor. In order the calculate the PAF at 

a particular location, as a result of all stressors in the model, the maximum PAF of the 

five PAFs (for each stressor) was assumed to be the overall effect on the taxa (PAFmax). 

3.2 Conceptual model results  

Along with the predicted taxa present with distance downstream, the proportional 

influence of each stressor on the species richness and the combined effect of all 

stressors were also predicted.  

Figure 3-9 shows the predicted stressor concentrations with distance downstream for 

the untreated discharge scenario.  

 

Figure 3-9 Stressor concentrations downstream of the effluent outfall in the untreated 

discharge scenario. Note secondary y axis for TCS.  
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The concentrations of stressors vary according to their initial concentrations and 

degradation rates. The impact of these stressor concentrations on taxa will depend on 

their NOECs. OD has the highest concentration, which increases further downstream 

due to the effect of the oxygen sag, before decreasing (see Figure 3-10 for more on 

oxygen concentrations). In order of concentration starting at the next highest are 

ammonia, LAS, nitrite and TCS. Of these last four stressors, the concentration of 

ammonia is higher than the others further along the impact zone also. The 

concentration of TCS falls to 0 mg L-1 at 65,000m downstream. The end of the impact 

zone is determined by the stressor concentration where no toxic effects are 

experienced by taxa.  

In Figure 3-10 are the outputs in terms of oxygen: OD, DO concentration and BOD. 

BOD declines from the effluent outfall downstream. OD on the other hand increases in 

the first few kilometres (up to 4600m) before decreasing as the reaeration rate 

exceeds the deoxygenation rate.  

 

Figure 3-10 Predicted changes in the concentrations of deficit (OD), DO concentration and 

BOD downstream from the untreated discharge scenario. 
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The predicted PAFs as a result of each stressor with distance downstream are shown in 

Figure 3-11. In this case, triclosan causes a greater affect further distance downstream 

than the other stressors, despite its concentration being lower than the other stressor 

concentrations (Figure 3-9). This is a result of both its exposure, influenced by its initial 

concentration and degradation, and its toxicity to aquatic organisms.  The exposure of 

each stressor downstream varies due to the relative rates of change as a result of their 

different half lives (degradation parameters in Table 3-5). The half-lives of NO2
-, TCS 

and LAS are relatively similar at 9, 11.3 and 12 hours respectively. The half-life of 

ammonia at 29.7 hours, is much longer, therefore it is likely to be present either at 

higher concentrations and/or further downstream than the other stressors as it 

persists for longer. 

 

Figure 3-11 Predicted PAF from each individual stressor in the untreated discharge scenario.  

Considering the overall impact on the ecology, the PAFmax is presented in Figure 3-12. 
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Figure 3-12 PAFmax (maximum PAF) as a result of all five stressors in the untreated discharge 

scenario. 

The PAFmax decreases steadily along the impact zone as stressor concentrations 

decrease, therefore the adverse effects on taxa are also reduced. Between 4,000 and 

5,000m downstream, PAFmax increases and falls again as a result of the increase in OD, 

due to the DO sag. 

Expected changes in the ecology with distance downstream can also be expressed in 

terms of fraction of speices present, which is predicted to increase with distance 

downstream reflecting an expected increase in biodiversity associated with a decrease 

in stressor concentrations away from the effluent.  The predicted fraction of species 

present as a result of each stressor is in Figure 3-13. 
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Figure 3-13 Predicted fraction of species present as a result of each stressor in the untreated 

discharge scenario. The point at which 95% of species in each dataset returns is highlighted 

(orange line and x points). The end of the impact zone is determined by TCS. 

The effect of the oxygen sag on species present is evident. Despite the concentration 

of TCS being lower than the other stressors, its impact on species presence is greatest. 

At 36,000m downstream species richness returns to 95%. 

Species present can also be expressed in terms of species richness which yields slightly 

different results (see Figure 3-14). 
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Figure 3-14 Species richness (as a percentage of the number of species) in the untreated 

discharge scenario. 

This illustrates the combined effect of the stressors on the ecological community, 

where species diversity is generally reduced (with fluctuating numbers of species) until 

3,600m downstream where the effects of the oxygen sag can be seen. After this point, 

species diversity and richness increases again. At 24,000m downstream of the effluent 

outfall, all species returned, therefore full recovery was evident here.  

3.3 Results of treated vs untreated TGD scenarios 

The impact of untreated effluent on riverine ecology in a generic TGD scenario is 

shown in section 3.2. These outputs can be compared with respective figures for 

treated effluent given in Appendix B. 

In contrast to the untreated scenario, in the treated scenario DO starts at a higher 

concentration and quickly recovers as the demand placed on the system by the organic 

matter from the effluent is lower (Figure 3-15).  
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Figure 3-15 Oxygen output in terms of deficit, concentration and BOD in the treated 

discharge scenario. 

The oxygen sag is much less pronounced, if apparent at all. The corresponding output 

for the untreated scenario was presented in Figure 3-10. 

Sewage treatment removes a large fraction of these stressors. Their concentrations in 

river water after discharge of treated effluent are therefore much lower than in the 

respective untreated scenario.  
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(a) 
 

(b) 

 (c)  (d) 

 (e) 

 

Figure 3-16 Stressor concentrations in treated vs untreated scenarios; (a) ammonia,                       

(b) nitrite, (c) TCS, (d) LAS and (e) OD. 
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The difference in the overall impact resulting from these two scenarios is shown in 

Figure 3-17 in terms of species richness. The expected impact of the untreated effluent 

is significantly greater than for the treated scenario with recovery predicted to occur 

further downstream.  

 

Figure 3-17 Predicted overall impact from all stressors in the treated and untreated 

scenarios, in terms of species richness, as a percentage of the number of species present. 

In the scenario with untreated effluent, the effect on the taxa is more pronounced in 

terms of the magnitude of the impact and the duration (distance downstream). The 

impact of the oxygen sag is significant in the untreated scenario with the number of 

species decreasing from 1,200 downstream until 3,600m downstream of the effluent 

outfall. Conversely in the treated scenario, the number of species present steadily 

increases immediately downstream of the effluent throughout the impact zone. Where 

the species richness falls to 76% at 3,600m in the untreated scenario, at this same 

location in the treated scenario 90% of the species have returned. In the treated 

scenario, all species recover at 19,400m while in the untreated scenario complete 

recovery occurs at 24,000m downstream. This demonstrates that discharge of 

untreated wastewater is likely to have a significant impact on the ecological 

composition and function of the receiving water bodies.  
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4 APPLICATION OF THE MODEL TO A CASE STUDY 

A rare example of reported data on the changes in community composition along 

stressor gradients downstream of wastewater emission points is Birge et al. (1989). 

The authors report a field biomonitoring study conducted in 1983 in the South Elkhorn 

Creek which rises near Kentucky, USA (map in Figure 4-1). The model was 

parameterised for the South Elkhorn Creek and the results were compared to benthic 

invertebrate assemblage data reported by Birge et al. (1989) in order to assess the 

validity of the predictions made.  

 

Figure 4-1 Location of Lexington in Kentucky, USA. 

4.1 Methods of applying the model to South Elkhorn Creek 

South Elkhorn Creek is one of the largest and most populated watersheds in the 

Kentucky River Basin. Land use in the catchment is 80% agricultural and 20% urban 

(Arthur, 2004). It is a warm water fourth order stream with an average gradient of 

1.1m per km (Birge et al., 1989). Town Branch Creek is a major tributary which flows 

into the South Elkhorn Creek approximately 14km downstream of the city of 

Lexington.  

4.1.1 Study area 

The study area on the South Elkhorn Creek is illustrated in Figure 4-2. 
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Figure 4-2 Schematic map of South Elkhorn basin showing the location of the biomonitoring 

stations, gauging stations and effluent.  

The only major outfall in the study system was the effluent from the Town Branch STP 

in Lexington, between biomonitoring stations TB1 and TB2 and was the main source of 

the organic enrichment in the system according to Birge et al. (1989). Some minor 

physical and ecological effects were seen beyond 54km downstream of the treatment 

plant implying other minor sources of effluent may have been present (Birge et al., 

1989). Agriculture, urban runoff, storm sewers and alterations to stream flow are 

possible additional sources of impaired water quality in Town Branch Creek, and 

ultimately also in South Elkhorn Creek (Environmental Quality Committee, Town 

Branch Trail Inc., 2001).  

The study area included biomonitoring and reference sites along with U.S. Geological 

Survey (USGS) biomonitoring stations. Upstream of biomonitoring site TB1, 

stormwater inputs to the stream were already likely to cause stress to the system 

before Town Branch STP discharged effluent. Therefore, TB1 was not a suitable 

SE3
SE2

TB3

TB4

SE4SE5SE6
USGS South Elkhorn Creek station 

near Midway

USGS Town Branch station 
at Yarnallton

USGS Elkhorn Creek station 
near Frankfort

USGS Wolf Run station
at Old Frankfort Pike

USGS South Elkhorn Creek 
station at Fort Spring Lexington

0 8 km

N

Effluent 

Reference site

Upstream site

Biomonitoring station

USGS gauging station

Effluent from sewage treatment plant
SE1

TB1

TB2



 

79 

reference site, so SE1 and SE2 on South Elkhorn Creek were used to derive reference 

conditions better. These sites are all mapped in Figure 4-2. 

Lee’s Branch joins the South Elkhorn Creek 2.8km below SE4. On Lee’s Branch 1.4km 

from the confluence with the South Elkhorn Creek was a small STP serving the town of 

Midway. Birge et al. (1989) refer to this as a “minor discharge” but there is no 

information from the time of the study in 1983 on this plant. Town Branch STP 

currently treats >100 times more wastewater than the Midway plant currently does 

(Midway Messenger, 2013; Woodford County KY, 2011; Lexington Fayette, Urban 

County Government, 2010), so it is assumed that in 1983 the effect from the Midway 

plant was two orders of magnitude lower than Town Branch.  
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Table 4-1 Biomonitoring sites on the South Elkhorn Creek (Birge et al., 1989). Discharge is 

expressed as the mean of two mean measurements taken at the beginning and end of the 34 

day study. 

Station type Biomonitoring 
station 

Distance 
from 
effluent    
(km) 

Flow time 
from 
effluent 
(h) 

Velocity      
(m s-1) 

Discharge 
(L s-1) 

Percent 
effluent 

Further information 

Upstream TB1 0.3 — — 140 0 Unsuitable as ecological 
reference site due to 
urbanization and low flow 

Effluent Effluent 0 — — 1020 100  

Downstream TB2 0.2 0.1 0.56 1160 88  

TB3 1.9 0.9 0.59 970 106  

TB4 8.5 4.1 0.58 1390 73 Close to USGS station: Town 
Branch station at Yarnallton 

SE3 14.8 7.5 0.55 1700 60 ~0.5km downstream of 
confluence of Town Branch 
and South Elkhorn 

SE4 37.5 16.9 0.62 1920 53 2.8km upstream of 
confluence of Lee's Branch 
and South Elkhorn 

SE5 54.1 24.6 0.61 — — Reproducible flow 
measurements could not be 
taken but Birge et al. (1989) 
state as consistent with USGS 
data. However, it is not close 
to USGS station 

SE6 67.6 30.6 0.61 3110 33  

Reference SE1 — — — — — Secondary reference site for 
ecology. Site used in study 
by Logan et al. (1983).  

61.5km downstream of river 
source.  7.0km downstream 
of USGS gauging station at 
Fort Spring 

SE2 — — — 410 0 Primary reference site for 
ecology, hydrology and 
chemistry 

4.1.2 Discharge data 

Birge et al. (1989) measured discharge at each biomonitoring station at the beginning 

and end of the study at different locations. During each of these monitoring periods, 
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measurements were taken in triplicate from which mean values were calculated. One 

value was reported for each biomonitoring station, as the mean of these two 

measurements (Figure 4-3). No further details on exactly when the measurements 

were taken or the method used were reported by Birge et al. (1989). The raw data 

were not presented either. Discharge increased downstream after the effluent entered 

Town Branch Creek. However, it decreased at TB3 to 970 L s-1 (see Figure 4-2). This was 

not expected as this was downstream of the confluence with Wolf Run. The historical 

average discharge of Wolf Run is 509 L s-1 (U.S. Geological Survey, 2014). The discharge 

at TB3 may appear to decrease for a number of possible reasons, which are most likely 

to be: 

i. Measurement errors:  velocity and cross-sectional area measurements are 

subject to errors which combined can result in typical errors in discharge of 

approximately 20%, or more, depending on the irregularly of the cross section. 

ii. Temporal differences in measurement at TB2, TB3 and in the effluent. Sewage 

discharge has a well known and regular temporal variability relating to the 

diurnal pattern of human activity in the sewershed. If discharge was measured 

at TB3 at a time corresponding to low discharge in the effluent, lagged by the 

travel time in the river, it could have resulted in an apparent decrease in flow. 

Similar phenomena were reported by Whelan et al. (1999) for the River 

Lambro. 

Downstream of TB3, discharge progressively increases.  
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Figure 4-3 Discharge measured by Birge et al. (1989) from 0.3km upstream to 60km 

downstream of Town Branch STP.  

The discharge data reported by Birge et al. (1989) were compared with USGS discharge 

data for the same system (Figure 4-3) to investigate the reliability of the data reported 

by Birge et al. (1989). In the study is there was also a reference to USGS data 

calculated by an alternative method, as the average daily flow for 31 days during the 

study period. The study period was 34 days. Calculating discharge using these two 

methods yielded different results however (Table 4-2). Two discharge datasets were 

incorporated into the model to determine the impact of organic effluent in the South 

Elkhorn Creek. They were: 

i. historical long term averages obtained from the USGS were used to model long 

term effects of exposure to chemical stressors; 

ii. measurements taken by Birge et al. (1989) during the study to validate the 

model’s prediction of the impact on ecology compared to the measured impact 

in terms of species present. During the study, which took place in August and 

September, the flows were considered to be relatively low (U.S. Geological 

Survey, 2009), so the impact of these low flow conditions can be assessed.  
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Table 4-2 USGS monitoring data in South Elkhorn system. 

Site Stream  Location  Discharge 
(L s-1) 

Reference Details  

Fort Spring South 
Elkhorn 

7km upstream of 
SE1 

290 Birge et al. 
(1989) 

Average daily flow for 31 days during 
study period 

225 USGS Water 
Data (2014) 

 

Average of two mean measurements 
taken at beginning and end of study 
period  

423 Average of average daily flows for the 
34 day study period (14.93 ft

3
 s

-1
) 

1002 Average for 1951-2013 (35.38 ft
3
 s

-1
) 

Near 
Midway 

South 
Elkhorn 

7.5km 
downstream of 
SE3; 15km 
upstream of SE4 

1730 Birge et al. 
(1989) 

Average daily flow for 31 days during 
study period (1.73 m

3
 s

-1
) 

1741 USGS Water 
Data (2014) 

 

Average of two mean measurements 
taken at beginning and end of study 
period  

2639 Average of daily flows for the 34 day 
study period (93.18 ft

3
 s

-1
) 

5017 Average for 1983-2012 (177.19 ft
3
 s

-1
) 

Old 
Frankfort 
Pike

#
  

Wolf Run Approx. 1km 
upstream of 
confluence with 
South Elkhorn, 
between TB2 and 
TB3 

509 USGS Water 
Data (2014) 

 

Average for 1998-2013 (17.96 ft
3
 s

-1
) 

Yarnallton
#
 Town 

Branch 
Close to TB4. 
Approx. 9.5km 
downstream of 
Town Branch STP 

2579 USGS Water 
Data (2014) 

 

Average for 1998-2013 (91.08 ft
3
 s

-1
) 

#
USGS discharge data not available for the study period as the gauges did not exist then 

Fort Spring 

At Fort Spring, USGS discharge quoted by Birge et al. (1989) (290 L s-1) was lower than 

the historical long term USGS average (1002 L s-1). However, for the study period, there 

is a discrepancy in the USGS data. The calculated average daily discharge for 34 days is 

423 L s-1
, however Birge et al. (1989) quote this value for 31 days as 290 L s-1. Fort 

Spring is upstream of SE1, for which Birge et al. (1989) do not measure discharge data. 

The discharge reported at SE2 was 410 L s-1 which is expected to be higher than at Fort 
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Spring as there are a number of tributaries to the South Elkhorn downstream of Fort 

Spring.  

Near Midway 

Like Fort Spring, discharge was lower during the study than the historical long term 

average. Again, the USGS value quoted by Birge et al. (1989) (1730 L s-1) was lower 

than that calculated from daily average flows for the 34 days (2639 L s-1), from USGS 

Water Data (2014). However, the values in Birge et al. (1989) do correlate better with 

their measurements at the nearby sites SE3 (1700 L s-1) and SE4 (1920 L s-1). When 

calculating an average from the USGS data using discharge data from the first and last 

day (1741 L s-1), agreement with Birge et al. (1989) is better. 

In order to model the ecological effects of Town Branch STP, discharge data was 

normalised using long term historical data from the USGS biomonitoring site at 

Yarnallton, which is 1km from TB4 (National Renewable Energy Laboratory, 2014). A 

more detailed map is given in Appendix C.1 and details of the calculations are given in 

section 4.1.3.1.  

Many chemical analyses were not reported by Birge et al. (1989), for example polar 

organics were not separated. Stressors such as ammonia and nitrite and other 

chemicals were not monitored. However, prior to the study, Logan et al. (1983) 

performed comprehensive analyses and an ecological survey on the same system in 

the same year. Unfortunately, this report is not available.  

4.1.3 Model parameterization for the South Elkhorn Creek 

The model described in Chapter 3 was altered to reflect the scenario in the South 

Elkhorn Creek and these aspects are presented. Parameters not described are 

unchanged from the original model.  

4.1.3.1 Discharge 

Firstly, the discharge data measured by Birge et al. (1989) was taken. Discharge at TB3 

was lower than at TB2 which was unexpected, as discharge usually increases 
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downstream (Chapter 3) and it was not measured at SE5 in the study. To correct and 

fill these gaps, discharge values for these two sites were extrapolated from previous 

upstream sites i.e. for TB3 from TB2, and for SE5 from SE4.  

Next, discharge at all stations was normalised to mean flow using long-term USGS 

data. USGS discharge data was not available for Yarnallton for the study period as the 

gauge was installed in 1998. The long term average of daily flows for 1998-2013 was 

used to normalise the data in Table 4-1. To calculate the normalised discharge at each 

site, the fraction of the discharge relative to the USGS discharge near TB4 was 

calculated, which was 1.86. 

 

Figure 4-4 Discharge data: (i) reported by Birge et al. (1989), (ii) reported by Birge et al. 

(1989) with missing and unexpected values extrapolated and, (iii) calculated by normalising 

the data from Birge et al. (1989) using USGS data.  
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Table 4-3 Parameters associated with discharge used in the model from Birge et al. (1989). 

Downstream values (Q(x)) from Figure 4-4 are also used in the model. 

Parameter (units) Parameter description Value  

Qeff (L s-1) Discharge from STP  1020 

Qds (L s-1) Discharge downstream of effluent input. 
Equation (3-1) 

1160 

Qus (L s-1) Discharge upstream of effluent input 140 

4.1.3.2 Initial concentration of stressors in the receiving water body (C0) 

The starting concentrations were calculated by the same method as in the generic 

model for ammonia, nitrite, triclosan and LAS. The actual concentrations differ in the 

South Elkhorn Creek scenario as consumer usage figures for triclosan and LAS, and 

water usage per person, in the USA were used to represent the South Elkhorn Creek 

scenario. The water usage value for the USA was available from the USGS Water 

Census conducted in 2005 (American Water Works Association, 2014). DO 

concentrations at reference sites reported in Birge et al. (1989) were used to calculate 

the concentration after mixing. More details on DO in the model are in section 4.1.3.4.  

Table 4-4 Parameters used to calculate initial stressor concentrations (C0). 

Parameter 
(units) 

Parameter 
description 

Stressor Value Reference  

Craw (μg L-1) Chemical concentration 
in raw sewage 

TCS 16.71 Calculated  by equation (3-8) 

LAS 9596 Calculated  by equation (3-8) 

Chemu           

(μg cap-1 d-1) 
Chemical usage per 
capita per day 

TCS 6200 De Zwart (2006) 

LAS 3,560,000 OECD SIDS (2005a) 

Wu                
(L cap-1 day-1) 

Water use per capita 
per day in the USA 

— 371 American Water Works 
Association (2014)  

r Removal fraction in 
wastewater treatment 

TCS 0.9                                 Capdevielle et al. (2008)  

LAS 0.95 HERA (2009) 

Ceff (μg L-1) Chemical concentration 
in sewage effluent 

 

Ammonia (total) 4400 Treated value (Gray, 2004) 

Nitrite 800 Treated value (Gray, 2004) 

TCS 1.67 Calculated  by equation (3-9) 

LAS 480 Calculated  by equation (3-9) 
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The higher and therefore more conservative of the available US figures for TCS usage 

was taken. Craw, Ceff and C0 were calculated using equations 3-8, 3-9 and 3-10.  

     
    

   
    16.71 μg L-1 

                               1.67 μg L-1 

The highest of available usage values for LAS usage in the USA was used as a 

conservative estimate.  

     
       

   
    9596 μg L-1 

                               μg L-1 

Table 4-5 Assumed stressor starting concentrations downstream of the Town Branch STP.  

Parameter 
(units) 

Parameter description Stressor Value  

C0 (μg L-1) Starting concentration of stressor after 
mixing 

Ammonia (total) 3879 

Nitrite 714 

Triclosan 12 

LAS 432 

4.1.3.3 Concentration of stressor at time t and location x 

The only deviation from the original model in calculating downstream stressor 

concentrations, related to the concentration of NH3 which was calculated by the same 

method, but the average temperature and pH (and therefore pKa) from the 

downstream biomonitoring sites in the study were used. When the proportion of NH3 

present was calculated, the temperature and pH of the system were 16.2°C and 7.3 

respectively. 

4.1.3.4 Dissolved oxygen model 

BOD data are required by the Streeter-Phelps model but were not reported in Birge et 

al. (1989). Total organic carbon (TOC) values are presented however, and in the 
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literature their relationships with BOD have been presented (e.g. Dubber and Gray, 

2010; Constable and McBean, 1979; Rene and Saidutta, 2008). BOD and TOC are both 

measures of the organic matter present in the system. TOC is a measure of the total 

organic matter while BOD is the portion of this which degrades and hence has a 

demand for oxygen.  

In the South Elkhorn Creek, TOC concentrations decreased downstream as the organic 

matter was degraded (plotted in Figure 4-5). However, a slight increase was seen at 

SE5. This may be due to run-off from agricultural land and the input from Lee’s Branch.  

 

Figure 4-5 TOC (mg L-1) measured by Birge et al. (1989). 

There are few relationships between BOD and TOC published in the literature (Rene 

and Saidutta, 2008). BOD:TOC ratio varies depending on the quality of wastewater and 

the quality of treatment so it varies from system to system (Aziz and Tebbutt, 1980). 

Those available are given in Table 4-6. 
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Table 4-6 BOD-TOC relationships in wastewater available in the literature 

BOD- TOC Relationship  Details  Reference  

                   Influent to STP, no correlation in 
treated effluent. P<0.001 highly 
significant linear relationship  

Dubber and Gray (2010) 

                    Domestic wastewater Schaffer  et al. (1965) in 
Constable and McBean 
(1979)  

                    

 

Domestic wastewater Chandler et al. (1976) in 
Constable and McBean 
(1979) 

                       As a result of regression analysis Rene and Saidutta (2008) 

The BOD values required to input into the model are BOD in the effluent (BODeff) and 

BOD upstream (BODus). All of the estimated values based on TOC-BOD relationships 

were used in the model in turn, to optimise the pair of values which reflected the 

scenario best. These were the values from Chandler et al. (1976) (see Table 4-7).  

Table 4-7 Predicted BODeff and BODus values in the South Elkhorn Creek based on 

relationships published in the literature. 

 TOC (mg L-1) BOD (mg L-1) 

 Observed 
values in Birge 
et al. (1989) 

Dubber and 
Gray (2010) 

Schaffer et al. 
(1965) 

Chandler et al. 
(1976) 

Rene and 
Saidutta (2008) 

Effluent 
(TOC/BODeff) 

11.6 43.2 33.4 95.9 18.4 

Reference sites 
(TOC/BODus) 

1.8 26.7 15.0 87.7 4.5 

The remaining parameters used in the Streeter-Phelps model are given in Table 4-8.  
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Table 4-8 Parameters used in Streeter-Phelps model applied to the South Elkhorn Creek 

reported by Birge et al. (1989). 

Parameter 
(units) 

Parameter description Value Details 

DOus (mg L-1) DO concentration upstream 9.4 Average of 2 reference sites. 
DO concentration of upstream 
site not presented. 

DOeff (mg L-1) DO concentration in effluent 4  

DOsat (mg L-1) Saturation oxygen concentration 
at given temperature 

Equation (3-23) 

Calculated in 
model  

Calculated for average 
temperature of the 
downstream sites (16.2°C). 

The rate constants for BOD biodegradation (kBOD) and reaeration (kreaerate) values were 

available in the literature. However, many factors such as the temperature, nature of 

the effluent and velocity of the river affect these rates (Negulescu, 1985; Gray, 2004), 

so they are just an estimate for the rates in the South Elkhorn Creek. Therefore the 

model was run with these values and was then optimised to reflect the situation in the 

South Elkhorn Creek more accurately. The reason for optimising these values was that 

the parameters should simulate the situation in Birge et al. (1989).  

4.2 Results of applying the model to scenario in Birge et al. (1989) 

4.2.1 Predicted results of the model 

The model was applied to the South Elkhorn Creek scenario reported by Birge et al. 

(1989) with the scenario based on long term mean discharge rates, unless specified 

otherwise.  
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Figure 4-6 Stressor concentrations downstream using long-term mean discharge. Note 

second y-axis for LAS, TCS and nitrite.  

The predicted concentrations of the different stressors in the South Elkhorn Creek vary 

both in terms of their initial concentrations and downstream concentrations as a result 

of different degradation rates. Their predicted effect on the species in the system is 

obviously linked to their toxicity thresholds (NOECs) for example triclosan has an 

impact despite its concentration being significantly lower than the other stressors 

(Figure 4-7).  
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Figure 4-7 PAFs resulting from each stressor's concentrations in the system under long-term 

mean discharge conditions. Note TCS is on the secondary y-axis. 

TCS was predicted to affect nearly half of the species in its SSD dataset (PAF of 0.44). 

The PAFs resulting from the remaining stressors were relatively low, around 0.05 and 

under. In this case, TCS determines the species richness downstream of the effluent 

outfall. 

The predicted species richness as a result of all five stressors throughout the system is 

in Figure 4-8. 
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Figure 4-8 Predicted species richness (percentage of the number of species) present along 

the system using long-term mean discharge data.  

As the stressor concentrations decrease downstream, the number of species present 

increases until all of the species in the SSD datasets are unaffected by the stressor 

concentrations. This occurred at 57.2 km downstream of the effluent discharge in the 

model.  

The results presented were based on the long term normalised discharge rates which 

affects the ecological composition over time rather than from short term exposure or 

low flow conditions.  

4.2.2 Results of normalised vs measured discharge conditions 

The long-term mean discharge data normalised by USGS data, were higher than 

discharge measured during the study which experienced low flows. The effect of the 

discharge can be seen in Figure 4-9. 
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(a) 

 
(b) 

 
(c) 

 
(d) 

 
(e) 

 

Figure 4-9 Stressor concentrations in long-term mean normalised discharge (Q) and 

measured discharge conditions; (a) ammonia, (b) nitrite, (c) TCS, (d) LAS and (e) OD. 
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As discharge was lower in the measured scenario, the stressor concentrations were 

higher as dilution was lower than in the normalised scenario. However, more species 

were present in the early part of the impact zone in the long-term mean discharge 

scenario than during the low flow conditions during the study itself. However, 

complete recovery i.e. the re-appearance of all species occurred in both scenarios at 

12,800m downstream of the effluent outfall as seen in Figure 4-10.  

 

Figure 4-10 Species richness (percentage of the number of species present) in the measured 

discharge conditions of the study and in the long-term normalised mean discharge scenario. 

Duplicate species from SSD datasets were removed. 

4.2.3 Modelled vs measured outputs 

In order to determine the utility of the predicted results, those based on discharge 

measured during the study by Birge et al. (1989) were compared to the biomonitoring 
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4.2.3.1 Dissolved oxygen  

The stressor (OD), DO and BOD concentrations according to the Streeter-Phelps part of 

the model is presented in Figure 4-11, with the measured DO concentrations from 

Birge et al. (1989) also plotted.  

 

Figure 4-11 Predicted and measured dissolved oxygen concentrations under measured 

discharge conditions, along with modelled BOD and OD concentrations. 

An oxygen sag is not evident in the modelled results. In the measured results, there is a 

subtle sag at 8,500m downstream (TB4). A possible reason the modelled results did 

not reflect this may be with the lack of data for some parameters in the Streeter-

Phelps model e.g. deoxygenation and reaeration rates. However, in Figure 4-12 the DO 

concentrations are examined more closely.  
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Figure 4-12 Measured vs modelled DO concentrations. r2 = 0.85. 

The curve for the modelled DO concentrations is smoother. It does not peak and then 

decline at the first two biomonitoring sites and increases at a lower rate from 50,000m 

downstream. The correlation between the two sets of data in Figure 4-12 does yield a 

(Pearson product-moment) correlation coefficient of 0.85 indicating a significant 

relationship.  

4.2.3.2 Overall effect on ecology 

The overall predicted impact of all five stressors on the ecology is shown in Figure 4-13 

and 4-14, together with measured data on macroinvertebrate assemblage composition 

from Birge et al. (1989). The measured fraction of taxa affected at each biomonitoring 

site was calculated from the number of species present at each site downstream 

divideded by the total number of species found at the final biomonitoring site reported 

by Birge et al. (1989). The modelled fraction of species present at each site was 

calculated by taking the maximum PAF of all five stressors at each site (Figure 4-14). 
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Figure 4-13 Measured PAF (calculated from number of species) vs modelled PAFmax 

downstream. 

 

Figure 4-14 Alternative representation of measured PAF (calculated from number of species) 

vs modelled PAF (PAFmax) downstream.  
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The ecology at each biomonitoring site was also expressed in terms of species richness 

Figure 4-15. The measured number of species present represents the species richness 

directly. Modelled species richness was calculated by adding together all of the species 

presented as a result of all five stressors and removing the duplicates i.e. species which 

were present in more than one SSD dataset. 

 

Figure 4-15 Predicted species richness (number of species present) vs measured species 

richness from Birge et al. (1989). Modelled values are plotted on the secondary y-axis. 

Species duplicates have been removed from the modelled dataset. 

The predicted species richness does not reflect the adverse effects closely in the first 

15km of the impact zone, but it does reflect the overall recovery in species richness. 

This may reflect the difference in species composition in the South Elkhorn Creek and 

in the SSD datasets.   
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5 DISCUSSION 

5.1 The conceptual model 

The aim of the project was to develop a conceptual model to predict ecological 

changes in rivers downstream of a point source discharge of untreated wastewater. 

The project originated from a need to assess ecological impacts in rivers where sewage 

treatment is lacking e.g. in developing regions. Reviewing the literature indicated that 

combining SSDs with water quality to model the taxa present along impact zone 

stressor gradients had not previously been reported.  

Ecological data available in the literature (e.g. Birge et al., 1989; Hynes, 1960; Avery, 

1970) were reviewed in order to support the conceptual basis for developing the 

model. Sanitary determinands and synthetic organic chemicals of interest were 

included in the model to assess their relative and combined effects on ecological 

communities. Stressor concentrations were predicted for different in-stream locations 

for a given river stage (flow condition) and these concentrations were compared with 

SSDs to determine presence or absence of particular taxa. The model was then applied 

to a field-based scenario with reported community composition data (Birge et al., 

1989) to validate the model outputs. 

A further novel aspect of this project was to create an SSD for DO. This had been 

attempted to an extent previously by Elshout et al. (2013), but was based on acute 

toxicity data for fish only. Based on literature derived values for the lowest observed 

effect concentrations (LOEC) and lethal concentrations for 100% of the population 

(LC100), Elshout et al. (2013) found that fish eggs and embryos were most sensitive to 

low DO concentrations.  

5.2 European generic TGD scenario 

The model was developed initially for a hypothetical generic scenario (Chapter 3) 

based on the TGD for Environmental Risk Assessment in Europe. The predictions of 

ecological effects cannot be validated. Parameters for this scenario were taken from 
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different laboratory simulation and monitoring studies (e.g. stressor degradation rate 

constants).  

Two different variations of this scenario were examined; one with sewage treatment 

and the other assuming no treatment. Comparison of the output from these variations 

demonstrates the benefit of sewage treatment in terms of predicted ecological 

composition. Indicators of ecological quality, such as species richness were much 

higher in the treated scenario than they were in the untreated scenario.  

In the treated scenario, impacts on taxa in the respective SSDs were predicted for 

nitrite and triclosan only for 24km and 19km downstream respectively of the effluent. 

Ammonia, LAS and OD had no effect on the taxa present. In contrast in the untreated 

scenario, all stressors were predicted to affect the ecosystem for several kilometres 

downstream of the effluent. The most severe effects were predicted for nitrite which 

affected taxa until 42km downstream. An adverse effect as a result of the other 

stressors was predicted by ammonia until 800m downstream, triclosan until 24km, LAS 

until 14km and OD until 12.4km downstream of the effluent outfall. Treating the 

effluent eliminated any adverse effects on species richness by LAS, ammonia and OD.  

5.3 South Elkhorn Creek scenario 

Application of the model to a real scenario in the field was a challenge due to the lack 

of data in the literature. Of the biomonitoring studies available, that of Birge et al. 

(1989) was most appropriate as macroinvertebrate data and some water quality data 

were reported. There was still some uncertainty around particular parameters, e.g. 

discharge, BOD and the likely stressor concentrations in the system at the time of the 

study.  

To assess the long-term ecological effects in the South Elkhorn Creek, the long-term 

mean discharge conditions normalised to USGS data were incorporated into the 

model. This indicates the ecological composition usually present assuming these 

discharge conditions remain relatively constant over time. The ecological effects 

predicted (i.e. PAF) using the long-term mean discharge were lower than measured 



 

103 

discharge data reported in Birge et al. (1989). The correlation between the measured 

and modelled PAFs was weak (r = 0.38) when the modelled PAFs were a result of long-

term mean discharge conditions.  

Under low flow conditions reported by Birge et al. (1989) during the course of the 

study, stressor concentrations were predicted to be higher and had effects for a 

greater distance downstream compared with using long term mean discharge. For 

example, the PAF of ammonia at 200m downstream was 0.05 in the long-term 

discharge scenario while it was 0.14 under low flow conditions. Further downstream, 

differences in PAFs became less notable.  Recovery, in terms of the re-appearance of 

all species was predicted at 66.2km downstream under the low flow conditions and 

57.2km for mean flow. The stressor which affected the community composition for the 

largest fraction of the impact zone was nitrite (all species returned at 66km), followed 

by triclosan (all species returned at 59km), ammonia (all species returned at 40km) and 

LAS (all species returned at 7km). The correlation between the measured and 

modelled PAFs in this discharge scenario were stronger (r = 0.79). In both discharge 

scenarios for the South Elkhorn Creek, OD had no adverse effect on species richness.  

5.4 Stressor effects 

The Streeter-Phelps equation was a useful addition to the conceptual model although 

its predictions could not be validated for the TGD scenario. Predicted DO curves were 

compared with measured concentrations reported by Birge et al. (1989) suggesting 

that the rate constants for reaeration and BOD degradation which were assumed were 

reasonable. A higher degree of certainty around deoxygenation and reaeration rates 

for the system could be derived from optimisation of parameters to datasets from this 

river under different flow conditions. However, such data were unavailable at the time 

of writing. 

The magnitude, duration and frequency of toxic events are important in terms of their 

resulting ecological impacts (Barnthouse, 2004; Naddy and Klaine, 2001; Diamond et 

al., 2006). The magnitude determines the stressor concentrations. When the 

concentrations are higher, a greater number of species are adversely affected. The 
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duration of the exposure to stressors will also affect the outcome. If the duration is 

short, chronic effects may not occur and some organisms may be able to recover 

especially if sensitive life stages are not exposed. The longer the exposure to a stressor 

lasts, the greater the number of generations of a species likely to be affected. Recovery 

can occur if stressor concentrations are reduced within a reasonable timeframe, when 

short-term effects may only occur (Focks et al., 2014). If several generations have been 

affected, then population recovery once stressor concentrations fall, may take 

significantly longer.  

The frequency of toxic events also impacts the degree of the effect. When events 

occur more regularly, an already impacted population may be more sensitive to stress 

which may also increase the time taken by the population to recover once 

concentrations fall to levels which are not harmful. This was reported by Forbes and 

Cold (2005) in their study on the toxicity of the insecticide esfenvalerate to the non-

biting midge Chironomus riparius. Individuals existing in stressed conditions, due to the 

absence of sediment, were more sensitive to esfenvalerate than those which were 

previously in favourable conditions. In the case of down-the-drain chemicals, emission 

in wastewater is approximately constant (although there will be diurnal variations in 

loads correlated with domestic rhythms of the contributing population). The resulting 

exposure will therefore, vary principally with dilution.  

Variations in discharge may have effects on the impact and recovery of the 

communities living in the receiving water body, depending on the timing of the flow 

regime. Naddy and Klaine (2001) found that Daphnia magna recovered from 6 hours of 

exposure to the insecticide chlorpyrifos when there were intervals of 96 hours  

between pulsed exposures of 1 µg L-1, rather than continuous exposure, suggesting 

that for this particular chemical, continuous exposure has a greater effect. 

5.4.1 Tropical scenarios  

Oxygen deficits may be more pronounced in tropical regions where direct discharge of 

untreated effluent is more commonplace. High rates of BOD degradation at higher 

temperatures will tend to reduce DO concentrations (increase OD), given the same 
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rate of reaeration. Low DO concentrations result in the BOD concentrations remaining 

high. The Streeter-Phelps model assumes that BOD degradation is independent of the 

OD. It is possible that at very low DO concentrations (e.g. at night when photosynthetic 

oxygenation does not contribute to oxygen to the water column), the micro-organisms 

which mediate BOD degradation will become oxygen-limited. However, there is 

currently no evidence of this phenomenon occurring in the literature.  

In these regions, river ecology may also be severely impaired by high levels of 

suspended solids and unionised ammonia. In an example in India, an assessment of 

sewage impacts was conducted by Vijay et al. (2010) in a marine environment. Despite 

the effluents being partially treated, at three of the five monitoring sites, DO was         

0 mg L-1. At the remaining sites it ranged from 0 to 2.4 mg L-1.  

The naturally occurring diurnal pattern of DO concentrations due to photosynthesis 

and respiration by plants and algae was not included in the model but could influence 

the impact of low on DO stream ecology. In Vientiane, Laos, a strong diurnal DO 

pattern was observed by Whelan et al. (2007) as a result of these processes. Day-time 

concentrations were typically around 3 mg L-1 (~50% saturation) and night-time 

concentrations were 0.5 mg L-1 (~5% saturation) when photosynthesis ceased. 

In the tropics and subtropics, discharge can also vary more extremely than in 

temperate regions (Thorne and Williams, 1997). Furthermore, recovery (self-

purification) is less well understood for tropical regions than for temperate regions 

(Dyer et al., 2003). The literature describing ecological effects in the impact zone are 

mostly based in temperate regions (e.g. Hynes 1960, Avery 1970) with Dyer et al. 

(2003) being the exception. 

5.5 Reviewing the assumptions in the model 

A number of assumptions were made when the model was developed (see section 

3.1.2) which could be altered if the model is developed further.  
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5.5.1 There is only one point source input of effluent in the system  

However, in most river systems including the example of the South Elkhorn Creek, 

there are several emission points. Incorporating the second smaller STP on the 

tributary Lee’s Branch would have increased the level of environmental realism. This 

means that stressor concentrations are rarely zero and ecological effects will vary in a 

more complex spatial pattern than the simple depression and recovery model 

considered here. Nevertheless, provided the mass balance of each stressor is known 

(i.e. known loads at each emission point) concentrations can be predicted and taxa 

affected can be estimated using the model developed here. Loads from this second 

STP were unknown.  

5.5.2 The effluent mixes instantaneously 

It was assumed that effluent mixed instantaneously with the receiving water so there 

was no mixing zone. However, in rivers, effluent plumes from point sources can remain 

distinct from the waters in the receiving system for a considerable distance 

downstream. Mixing will depend on a number of factors including the hydraulic 

geometry of the system, flow rate, velocity and density differences between effluent 

and river water. Incorporating an explicit mixing zone would be more realistic and may 

pick up spatially variable (cross channel) effects. 

5.5.3 Stressor removal is by degradation and dilution only  

The model assumes that for most stressors, concentrations are initially high and 

decrease by degradation and dilution downstream. It does not account for the 

formation of NO2
- and NH3 via nitrification of NH4

+ and ammonification of organic 

nitrogen, respectively. In the model, NO2
- concentration simply decreases along the 

impact zone. In reality, it will probably increase for a time and peak further 

downstream before decreasing due to formation (NH4
+ to NO2

-) and subsequent loss 

(NO2
- to NO3

-) in nitrification (Welch, 1992). NH3 and NO3
- may also be added to the 

system as a result of agricultural run-off, excretion by organisms (e.g. fish and ducks) in 

the system, and mineralisation following nitrogen fixation and be removed from the 

system by processes such as uptake by plants (Jensen, 2003; Broderius et al., 1985; 
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U.S.EPA, 2013). These processes could, in principle, be included in the model, although 

they would be difficult to parameterise. In any case, as long as the predicted exposure 

pattern matches expectations (based on observations) the inclusion of additional 

processes will not have a major effect on the predicted ecological outcomes.  

5.5.4 Ecosystem composition can be represented by the taxa in SSDs 

There are limitations with the toxicity data used in the model. Firstly, the species 

present in each SSD vary and there is only a small amount of overlap of species 

between stressor datasets. Generally, the types of organisms known to be sensitive to 

a stressor have ecotoxicity studies conducted on them. In contrast, studies may be less 

likely to be performed using species which are tolerant of that stressor, so the results 

could be biased towards sensitive species. For example, algae and micro-organisms are 

sensitive to triclosan which targets the fatty acid synthesis enzyme system which they 

possess, so many species of these types of organisms are included in the dataset. 

However, a smaller number of invertebrates and fish (which are less sensitive to 

triclosan) have been tested. Similarly, the nitrite dataset consists almost entirely of fish 

(six of the seven species) and bivalves are solely present in the ammonia dataset (no 

algae are present in the ammonia dataset). 

Since they are compiled from laboratory tests on individual species, the taxa present in 

these datasets, either for individual stressors, or collectively in all SSDs are unlikely to 

accurately represent real ecological communities. Although this is one of the 

assumptions of SSDs (see section 1.2.4) when employed in risk assessment and 

establishing EQCs, it may not be the case for the application considered here. The 

species in the datasets are from different geographical regions which may not exist 

alongside each other in the environment in reality. Furthermore, the SSDs are also 

limited in terms of data availability (e.g. only seven species were available for the SSD 

for nitrite).  

As the toxicity data used to construct the SSDs were generated in laboratory studies 

conducted under standard conditions on single species (Laskowski et al., 2010) (e.g. 

pH, temperature, light, DO concentration), the validity of extrapolating any observed 
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effects to the field is highly uncertain. Only physiological sensitivity, based on 

susceptibility of the organism itself, of lab generated data is considered, and not 

ecological sensitivity (based on populations) (Kefford et al., 2012). 

Despite the organisms in the SSD datasets of the model not existing together in an 

ecosystem in reality, it may be acceptable for the purposes of the model if the 

different taxa represent a range of organisms representative of a community which is 

able to deliver certain functions. This is partly due to the fact that niche redundancy 

exists in many ecosystems, where there may be species missing from an ecosystem but 

in functional terms the ecosystem has not been compromised. 

5.5.4.1 Traits  

The use of traits-based approaches have been suggested by others to be more 

appropriate than taxonomy based approaches to describe ecological functions and the 

ecological effects of stressors (Baird and Van den Brink, 2007; Rubach et al., 2010). 

Traits are defined as the physiological, morphological and ecological attributes of 

organisms or species, which describe their physical characteristics, ecological niche and 

functional role within an ecosystem (Baird et al., 2008; Pomati and Nizzetto, 2013). 

Traits can be categorised into three main types (Bis and Usseglio-Polatera, 2004; van 

den Brink et al., 2013): 

a. Biological: 

i. Physiological e.g. Feeding mode, food and resistance forms. 

ii. Morphological e.g. body size, surface area, degree of sclerification and 

respiration mode. 

b. Ecological e.g. habitat, voltinism (number of life-cycles per year), life span, time 

until reproduction and dispersal ability. 

Traits could, in principle, provide a method of making comparisons between seemingly 

diverse species. For example, bivalves were the most sensitive organisms to ammonia 

but they were not present in the other stressor datasets, so their sensitivity to other 

stressors is uncertain. Traits could be used to identify organisms with a similar 

physiology which may make them similarly sensitive to exposure of a toxicant e.g. 



 

109 

ammonia. Traits could also help identify ecological characteristics caused by toxic 

pressure (e.g. predator populations affected by the disappearance of prey) or 

morphological characteristics (e.g. ability to swim) which might make it possible for an 

organism to escape from a short term or transient exposure to a toxicant. Thus, 

organisms with a given set of trait combinations may be similarly susceptible to a set of 

stressors. In future work, it may be possible to predict an overall picture of trait 

presence or absence throughout the impact zone.  

The advantages of using traits are as follows: 

i. In different regions across the world, there may be different species present 

providing a similar function in the ecosystem.  Traits are comparable in 

communities in different ecoregions which have different taxonomic 

compositions as the variability of traits across temporal and spatial scales is 

thought to be low (Statzner et al., 2004; Statzner et al., 2001); 

ii. Traits provide a degree of information on the mechanistic linkages between 

stressors and biological responses (van den Brink et al., 2011); 

iii. Traits provide more seasonal stability as opposed to taxonomic measures 

(Larsen and Ormerod, 2010; Culp et al., 2011); 

iv. Traits can account for life stages which may differ significantly in terms of life-

history (Feio and Dolédec, 2012); 

v. Traits can be used to an extent to disentangle the effects of multiple stressors 

e.g. in SPEAR. However, this is challenging and the identification of individual 

stressors must be identified first (Schafer et al., 2011).  

Traits-based approaches have proven to be effective when assessing the sensitivity of 

macroinvertebrates to compounds without a specific toxic mode of action (e.g. general 

narcotics) (Ippolito et al., 2012) as well as those with specific modes of action (Rubach 

et al., 2012). Toxicity in standard laboratory tests (and used in SSDs) may be described 

mainly by physiological and morphological traits. Ecological traits are not addressed in 

laboratory tests.  
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5.5.4.2 Traits and the stressor organic contamination 

There are just a few examples in the literature where traits are used to describe the 

effects of organic contamination on organisms. In the EU STAR (Standardisation of 

River Classifications) project, traits were assigned to the species assemblages at 

reference sites and at sites impacted by organic contamination (Bis and Usseglio-

Polatera, 2004). The most indicative traits for describing differences between 

reference and impacted sites were:  

1. Body size – the frequency of smaller organisms (body size <1cm) was 

significantly lower (p<0.00001) than larger organisms (>4cm) at impacted sites. 

2. Reproduction type – there was a significantly higher frequency of organisms 

with the reproduction strategies ovoviviparity and asexual reproduction (and 

free clutches) at impacted sites, while organisms with cemented or fixed 

clutches were significantly lower. 

3. Respiration type – numbers of organisms with gills and plastrons were 

significantly lower at impacted sites and there was a higher number of 

organisms with teguments. This is in agreement with Monaghan and Soares 

(2012) who considered gills and teguments to be sensitive and plastrons to be 

considered tolerant of organic pollution. 

4. Feeding habits – there was a significantly higher use of absorber and deposit 

feeding, and significantly lower use of shredding and scraping at impacted sites. 

This is in agreement with Archaimbault et al. (2010) who confirmed that a 

number of studies have found filter-feeders, scrapers, shredders and predators 

to be adversely affected by organic contamination.  

5. Resistance form – there were fewer organisms with no resistant form and eggs, 

and more with cocoons at impacted sites.  

6. Life cycle duration – organisms with a life cycle ≤1 year were significantly higher 

in number at impacted sites. 

7. Aquatic stages – there were fewer eggs and larvae present at impacted sites. 

Mondy and Usseglio-Polatera (2014) determined that traits which exhibited increasing 

specialisation with increasing organic contamination were dispersal, respiration and 
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feeding habits. In a review by Statzner and Beche (2010), domestic wastewater caused 

a significant decrease in shredders whilst undefined “toxicants” often cause a 

significant reduction in shredders, piercers and predators. 

Van den Brink et al. (2013) present a framework for the use of traits to advance 

ecological risk but do not cover sanitary determinands or organic down-the-drain 

chemicals in this framework.  

5.5.4.3 Limitations of traits-based methods 

There are a number of limitations associated with traits-based approaches. These are 

predominantly connected with the quality and quantity of available data for the 

precise characterisation of suitable traits relating to sensitivity and recovery (Van den 

Brink et al., 2011). Unfortunately, detailed mechanistic explanations linking sensitivity 

to physiological and metabolic traits are currently lacking (Ippolito et al., 2012). Traits 

databases are available but have only been used to explore mechanistic links between 

taxon occurrence and community level trait patterns for specific scenarios (van den 

Brink et al., 2013). Another limitation with current trait databases is the inconsistency 

in trait definitions and data assigned to them for species or families (Ippolito et al., 

2012). External work to try and link trait sensitivity to stressors is currently being 

investigated. This is likely to be very data hungry, but potentially extremely useful (Van 

den Brink et al., 2011). Ideally a comprehensive database incorporating current trait 

databases and additional mechanistic detail is required.   

Traits-based approaches were considered in this project to describe the sensitivity of 

individual stressors in order to characterise the ecology of the impact zone in terms of 

traits, rather than species. However, the amount of information and the level of detail 

required to account for the toxicity of a particular stressor to the species in the SSD 

datasets was often not available in the trait databases. Compiling all of this 

information manually was beyond the scope of this project.  
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5.5.4.4 Combining traits and SSDs 

In order to make the model more applicable to regions and scenarios globally, the taxa 

considered in the model could be re-classified in terms of sensitive traits. This would 

include re-constructing SSDs using traits which could be characterised as trait 

sensitivity distributions (TSDs) based on one or many trait combinations.  Ippolito et al. 

(2012) also suggest developing a trait-based SSD but so far have yet to publish details.   

5.5.5 Indirect ecological effects 

The explicit inclusion of ecological interactions in the model was considered to be 

beyond the scope of this project. The nature of such interactions are manifold but 

include food web interactions (e.g. herbivory and predation) and relationships 

between organism and their habitat (e.g. cover provided by sediment) (Giller and 

Malmqvist, 1998). Together with the composition of the ecological community 

(diversity and abundance of organisms), these interactions may define many of the 

functions which the ecosystem performs. The consequences of a lost species on 

ecological function are dependent on its niche and the length of time it is missing for 

(Kefford et al., 2012). In the environment when particular organisms are exposed to 

stressors, they may seek refuge or find other ways of dealing with or avoiding 

exposure (e.g. respiring via atmospheric oxygen rather than DO) and hence avoid some 

of the deleterious effects. This is not accounted for in ecotoxicological models of 

ecosystems (Versteeg et al., 1999). 

Ecological interactions play a pivotal role in controlling the composition of ecosystems 

and may be responsible for indirect effects of toxicity. Van den Brink et al. (2000) 

studied the effects of the fungicide carbendazim which caused direct toxic effects to 

microcrustacean grazers. The reduced grazing pressures lead to an increase in 

phytoplankton species and consequently chlorophyll-a levels. However, only one taxon 

of plankton increased in abundance due to the greater availability of food. Despite 

there being a reduced grazing pressure from micro-crustaceans, this was probably 

compensated by the increased abundance of some snail species (Lymnaea stagnalis 

and Physella acuta). 
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5.5.5.1 Multiple stressors 

Multiple stressors have many and varying effects on organisms (Leuven and 

Poudevigne, 2002). Interactions between chemical stressors can be additive, 

antagonistic (less than additive effects) or synergistic (Mason, 2002). The 

concentration of DO can potentially influence the exposure and thus the effect of 

other stressors by affecting their degradation rates. For instance LAS is not 

anaerobically degradable which suggests that it may not break down if DO 

concentrations are very low (Whelan et al., 2007). However, the extent to which this is 

actually manifested in the field is currently unreported, except in anaerobic sediments 

where LAS can reside undegraded for long periods of time (OECD SIDS, 2005a). 

Similarly, nitrification also requires oxygen and hence may be limited if DO 

concentrations are low (Welch, 1992). The combination of exposure to reduced DO 

concentrations and higher NH3 concentrations can adversely affect fish. DO and NH3 

can affect the concentration of one another; DO is consumed in nitrification and a low 

DO concentration can increase the concentration of NH3 by inhibiting nitrification 

(U.S.EPA, 2012).   

5.6 Expressing ecological effects 

Species abundance is not included in the model. The adverse effects of an individual 

stressor on a particular species are simply reflected in terms of presence or absence. In 

reality, the sensitivity of individuals of the same species to a particular toxicant will 

vary, particularly in terms of certain life stages which might be more vulnerable 

(Rubach et al., 2012). This will affect the abundance of individuals at a particular 

location in the system of interest. Abundance could potentially be incorporated into 

the model by building in a distribution at each location downstream, of the probability 

of that species being present as a result of stressor concentrations. If species 

abundance were incorporated into the model, there would be additional scope to 

validate the model with more field data which is available and which often report 

taxonomic abundances. This might enable the model to reflect ecological changes 

more realistically.  
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In fact, species richness and abundance are probably related to ecosystem function 

(Clements and Rohr, 2009), so as the number of species is reduced or the number of 

individuals is reduced, ecosystem function is eventually also reduced (e.g. 

(Archaimbault et al., 2010). Thus, communities with lower diversity as a result of toxic 

pressure often have impaired ecological function. Toxic effects on organisms may not 

always be in the form of a lethal response. Other responses include the ability of an 

organism to adapt in response to changes in their environment (called trait plasticity), 

for example, they can change their food or habitat preferences (Colas et al., 2014). 

Wylie (1951) reported that as a result of shading, leaf thickness of woody angiosperms 

decreased by an average of 50%. It should be noted that the effects of organic effluent 

emissions are not always negative, although this depends on the load. The organic 

effluent can enhance nutrient levels energy resources and stimulate productivity. 

However, in the untreated discharge scenario, the negative effects due to toxicity are 

expected to outweigh any benefits. 

There are examples in the literature (e.g. msPAF and SPEAR) where ecology and 

ecotoxicology have been linked but these have mainly been considered the responses 

of “pulse” exposure (only at particular times of the year) to pesticides. Ecotoxicology 

tests the effects of specific chemical stressors on standard laboratory species while 

populations, communities and ecosystems are of interest in ecology (Calow, 1996). 

SPEARorganic does not help identify the causes and mechanisms of sensitivity, but simply 

uses “sensitivity” as a trait. An assessment of the use of ecology in ecotoxicology was 

conducted by Relyea and Hoverman (2006) for pesticides. However, pesticides differ 

from many down-the-drain chemicals in that they usually have a specific mode of 

action and exposure is often as a pulse rather than being continuous. There is still a 

gap in the literature on the ecological and ecotoxicological interactions which occur in 

scenarios subjected to continuous exposure of down-the-drain chemicals.  

5.7 Potential enhancements to the model 

There is potential to develop the model further and build in more environmental 

realism. This could include:  
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a. Building in a distribution to predict the probability of a species to be present at 

each location downstream, rather than simply describing a species in terms of 

presence or absence. This could also enable a prediction of the abundance of 

each species that will be present, to be made. 

b. Adding more stressors to the model. 

Additional stressors may help to validate the model. However, this will be 

limited to stressors which have sufficient toxicity data available. For organo-

phosphorus pesticides which have a specific mode of action, a methodology 

has been proposed to predict SSDs for chemicals with an insufficient amount of 

data available (Sala et al., 2012). The US EPA’s ICE (Interspecies Correlation 

Estimation) program could also be used to predict toxicity data for more 

species from surrogate species (Qi et al., 2011) for a particular stressor and 

then generates an SSD based on these data. This is however, only based on 

acute toxicity data (Länge et al., 1998), but guidance is available on 

extrapolating acute to chronic data.  This may enable stressors with few toxicity 

data to be incorporated into the model.  

c. Building in the effects of mixtures. This could potentially extend the impact 

zone further downstream. The use of msPAF could be incorporated using 

concentration addition and response addition methods of combining the 

effects of mixtures. It is acknowledged that assessing the effects of mixtures of 

stressors is complex and challenging, and no one ideal method is proposed. The 

two recommendations made by ECETOC (2011) in their guidance document to 

assess the effects of mixtures in the aquatic environment, is to improve the 

information available on biological traits in reference sites and to improve the 

diagnostics that distinguish between the effects of chemical and physical 

stressors.  

d. In the model applied to the South Elkhorn Creek, the STP at Midway on the 

tributary Lee’s Branch could be incorporated to predict any ecological effects 

arising from it. The TOC concentration did increase, showing there was an 
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increase in organic matter, after the confluence so ecological effects may be 

seen.  

e. Performing a sensitivity analysis. This could include running the model over a 

distribution of flows. For example, the discharge could be increased or 

decreased by increments and the effects on predicted ecological composition 

noted.  

f. Conducting a field study to 

 generate all of the relevant water quality data needed to parameterise 

the model with higher certainty for a specific scenario, and 

 generate better biomonitoring data to validate the model with. 

There is currently very little data on ecological changes down stressor gradients 

in aquatic systems receiving wastewater in the tropics. Additional field studies 

should therefore focus on tropical ecosystems such as those reported by 

Whelan et al. (2007). 

g. Building in a diurnal cycle of DO concentrations into the model and exploring 

any potential effects on the aquatic nitrogen cycle.   

h. Despite the effluent emission being “continuous”, incorporating into the model 

the temporal variability of this type of emission by building in a diurnal cycle in 

wastewater loading. Domestic wastewater volumes are well known to vary 

over the course of the day and night with the diurnal rhythms of the population 

generating wastewater (see for example, Whelan et al. (2007)). 

i. Incorporating temperatures to a greater extent so that, for example, stressor 

degradation rates are related to the temperature of the system.  

5.8 Conclusion  

Data from field-based studies in the literature indicate that downstream of sewage 

effluent discharge into a river, the many toxic stressors present can exert an effect on 

the taxa present in the impact zone. The effects are expected to change as stressor 

concentrations change, generating a gradient down which ecological quality should 

improve. However, data are conspicuously lacking on detailed changes to community 
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composition outside of a few key field studies. A conceptual modelling approach to 

predict the ecological impact was developed in this thesis. The model was applied to a 

case study of an effluent dominated river in the USA, although it was not directly 

possible to evaluate the fidelity of its predictions to actual changes in ecosystem 

composition (largely owing to differences in the taxa observed in the field and those 

considered in the model). Relative changes in observed ecological indices such as 

species richness were well correlated to predicted potentially affected fraction and 

predicted fraction of all taxa present. The model represents a basic framework which 

should be developed to consider explicitly ecological interactions and mixture toxicity 

which could be improved by integrating exposure for individual locations over the 

whole frequency distribution of flow conditions. The model should be further tested 

against field data from a direct discharge scenario, ideally in the tropics.  
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APPENDICES 

Appendix A Data used in the conceptual model  

A.1 Discharge: distance along Great Ouse  

The distance along the River Great Ouse from Newport Pagnell to Bedford was measured 

using Google Maps’ distance measurement tool (Google Maps, 2014). 

 

Figure_A 1 Estimating the distance in km between Newport Pagnell and Bedford (Google Maps, 

2014) 
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A.2 DO toxicity data 

Table_A 1 DO toxicity data 

Common 
name 

Species Value 
(μg L-1) 

Endpoint Reference Temp. 
(°C) 

Duration 

Mayfly  Ephemerella subvaria 3900 LC50 U.S. EPA (1986) 18.5 96 hr 

Stonefly Acroneuria lycorias 3600 LC50 U.S. EPA (1986) 18.5 96 hr 

Mayfly Baetisca laurentina 3500 LC50 U.S. EPA (1986) 18.5 96 hr 

Caddisfly Hydropsyche betteri 2900 LC50 Nebeker 1972 21 96 hr 

Midge Chironomus tentans 
Fabricius 

1600 EC50 Irving et al. (2004) 24 96 hr 

Mayfly Ephemerella doddsi 5200 LC50 U.S. EPA (1986) 6.4 96 hr 

Stonefly Pteronarcys dorsata 2200 LC50 U.S. EPA (1986) 18.5 96 hr 

Mayfly Leptophlebia nebulosa 2200 LC50 U.S. EPA (1986) 18.5 96 hr 

Amphipod 
crustacean 

Gammarus 
pseudolimnaeus 

1910 LC50 Hoback and Barnhart 
(1996) 

20 72 hr  

Midge Chironomus dilutus 
larvae 

1000 EC50 Mattson et al. (2008) 22.9 10 d 

Mayfly Callibaetis montanus 4400 LC50 U.S. EPA (1986) 6.4 96 hr 

Mayfly Hexagenia limbata 1400 LC50 U.S. EPA (1986) 18.5 96 hr 

Stonefly Pteronarcys 
californica 

3900 LC50 U.S. EPA (1986) 6.4 96 hr 

Caddisfly  Neophylax sp. 3800 LC50 U.S. EPA (1986) 6.4 96 hr 

Stonefly Diura knowltoni 3600 LC50 U.S. EPA (1986) 6.4 96 hr 

Caddisfly Hydropsyche sp. 3600 LC50 U.S. EPA (1986) 6.4 96 hr 

Crustacean Daphnia pulex 700 LC50 Nebeker et al.  (1992) 16.9 96 h 

Stonefly Arcynopteryx aurea 3300 LC50 U.S. EPA (1986) 6.4 96 hr 

Stonefly Nemoura cinctipes 3300 LC50 U.S. EPA (1986) 6.4 96 hr 

Diptera Simulium vittatum 3200 LC50 U.S. EPA (1986) 6.4 96 hr 

Mayfly Ephemerella grandis 3000 LC50 U.S. EPA (1986) 6.4 96 hr 

Amphipod 
crustacean 

Hyallela azteca 300 LC50 Nebeker et al. (1992) 16.8 30 d 

Stonefly Pteronarcella badia 2400 LC50 U.S. EPA (1986) 6.4 96 hr 
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Common 
name 

Species Value 
(μg L-1) 

Endpoint Reference Temp. 
(°C) 

Duration 

Crustacean Daphnia magna 650 LC50 Nebeker et al. (1992) 12.4 48 h 

Amphipod 
crustacean 

Gammarus lacustris 500 LC50 Nebeker et al. (1992) 12.9 7 d 

Fish Deltistes luxatus 1270 LC50 Meyer and Hansen  
(2002) 

22 96hr 

Caddisfly Drusinus sp. 1800 LC50 U.S. EPA(1986) 6.4 96 hr 

Caddisfly Neothremma alicia 1700 LC50 U.S. EPA(1986) 6.4 96 hr 

Stonefly Acroneuria pacifica 1600 LC50 U.S. EPA(1986) 6.4 96 hr 
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Table_A 2 Data calculated to create an SSD. This is an example showing data for Triclosan. 

Species NOEC 
(μg L-1) 

Rank Fraction 
Affected (%) 

Observed 
PAF 

Model 
PAF 

Error 
squared 

  

Pseudokirchneriella 
subcapitata 

0.2 1 3.45 0.03 0.10 0.00 mu 2.28 

Rotifer sp. 0.5 2 6.90 0.07 0.17 0.01 sigma 3.07 

Bidens frondosa 0.6 3 10.34 0.10 0.18 0.01 Number 
of 
species 

29 

Sesbania herbacea 0.6 4 13.79 0.13 0.18 0.00 

Anabaena flos-aquae 0.67 5 17.24 0.17 0.19 0.00 

Scenedesmus subspicatus 0.69 6 20.69 0.20 0.19 0.00 

Lyngbya sp. 1 7 24.14 0.23 0.23 0.00 

Microcystis aeruginosa 1 8 27.59 0.27 0.23 0.00 

Oscillatoria tenius 1 9 31.03 0.30 0.23 0.01 

Scenedesmus quadricauda 1 10 34.48 0.33 0.23 0.01 

Dunaliella tertiolecta 1.6 11 37.93 0.37 0.28 0.01 

Eclipta prostrata 2.2 12 41.38 0.40 0.31 0.01 

Hyalella azteca 5 13 44.83 0.43 0.41 0.00 

Algal & bacterial 
community 

10 14 48.28 0.47 0.50 0.00 

Ulothrix sp. 10 15 51.72 0.50 0.50 0.00 

Navicula pelliculosa 10.7 16 55.17 0.53 0.51 0.00 

Oncorhynchus mykiss 34.1 17 58.62 0.57 0.66 0.01 

Daphnia magna 40 18 62.07 0.60 0.68 0.01 

Brachionus calyciflorus 50 19 65.52 0.63 0.70 0.00 

Mosquitofish 76.6 20 68.97 0.67 0.75 0.01 

Chironomus tentans 80 21 72.41 0.70 0.75 0.00 

Ankistrodesmus falcatus 100 22 75.86 0.73 0.78 0.00 

Glaucocystis nostochinea 100 23 79.31 0.77 0.78 0.00 

Nostoc sp. 100 24 82.76 0.80 0.78 0.00 

Synedra sp. 100 25 86.21 0.83 0.78 0.00 

Oryzias latipes 156 26 89.66 0.87 0.82 0.00 

Danio rerio 160 27 93.10 0.90 0.82 0.01 

Closterium ehrenbergii 250 28 96.55 0.93 0.85 0.01 

Chironomus riparius 440 29 100.00 0.97 0.89 0.01 

 RMSE 0.06 



 

139 

A.3 SSDs for all stressors represented by species 

 

Figure_A 2 SSD for total ammoniacal nitrogen 

 

Figure_A 3 SSD for nitrite 
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Figure_A 4 SSD for triclosan 

 

Figure_A 5 SSD for LAS 
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Figure_A 6 SSD for OD 
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A.4 Code in the model 

The model was coded in Microsoft Visual Basic for Applications 6.5 using data in Microsoft 

Excel 2007. The same code was applied to the generic TGD and South Elkhorn Creek 

scenarios and is presented below.  

 

'program to predict changes in concentration downstream of a point source 

'read in SSD data and predict presence or absence of different taxa 

 

Const nx = 350 

'15/08/2014 Nicola Roche and Mick Whelan, Cranfield / Leicester University 

Dim dist, vel(), vel0, Q(), dx, t, Co(), scen As Integer, k(), nstressors As 

Integer 

'Camm is the conc of Total ammoniacal N (NH4 + NH3) 

Dim Qus, Qeff, Qtot, mu(), sigma(), y, paf(), noec(), spp$(), species As 

Integer, nspecies() As Integer 

Dim stressor, C(), C_free(), pH, pHtest, pKatest, pKa, ktrace, Cotrace, 

Ctrace(), noec_free() 

Dim Q0, Q1, Q2, Q3, Q4, Q5, Q6, Q7 

Dim d0, d1, d2, d3, d4, d5, d6, d7 

Dim ln_c_stressor 

Dim zzz, ln_zzz, y_zzz, paf_zzz 

Dim BODeff, BODus, DOeff, BODo, kBOD, kreaerate, DOsat, tempA, DOo, ODo, 

DOconc(), BOD(), deltau, x 

Dim Qds, Qmean_river(), low_flows, flow_fraction, Ceff() 

 

Dim allSpeciesPresent As Collection 

 

' Stressors constants to aid readability 

Const Ammonia = 1 

Const Oxygen = 5 

 

' Control model type 

Const Birge = 1 

Const Conceptual = 2 

Const ModelType = Conceptual ' change this value to alter the model 

 

Sub Main() 

    Application.ScreenUpdating = False 

 

 

    'Set constant value 

    nstressors = 5 

    'check for temp dependence 

    pKatest = 9.4 

    'pHtest is pH of test system 

    pHtest = 7 

 

    ReDim mu(nstressors), sigma(nstressors), paf(nstressors, nx), 

k(nstressors) 

    ReDim C(nstressors, nx, 5), Q(nx), Co(nstressors), nspecies(nstressors), 

C_free(nstressors, nx, 5) 

    ReDim noec(50, nstressors), spp$(50, nstressors), Ctrace(nx, 5), 

noec_free(50, nstressors) 

    ReDim DOconc(nx), BOD(nx), vel(nx), Qmean_river(nx), Ceff(nstressors) 
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    Set allSpeciesPresent = New Collection 

 

    Call read_ssd() 

 

    Call fate() 

 

    End 

 

End Sub 

 

Sub read_ssd() 

 

    For stressor = 1 To nstressors 

 

        If stressor = 1 Then Worksheets("Ammonia data").Activate 

        If stressor = 2 Then Worksheets("Nitrite data").Activate 

        If stressor = 3 Then Worksheets("TCS data").Activate 

        If stressor = 4 Then Worksheets("LAS data").Activate 

        If stressor = 5 Then Worksheets("DO data").Activate 

 

        'nspecies is no of species read from sheet 

        nspecies(stressor) = Cells(1, 2) 

 

        For species = 1 To nspecies(stressor) 

            spp$(species, stressor) = Cells(2 + species, 3) 

            noec(species, stressor) = Cells(2 + species, 4) 

            'note that NOEC for DO is actually OD in ug/L - convert model 

outputs for unit consistency later 

 

            If stressor = Ammonia Then 

                'convert noec/EC20 to noec/EC20 for free (unionised) ammonia 

                noec_free(species, stressor) = (noec(species, stressor) / 

0.78) * (1 / (1 + 10 ^ (pKatest - pHtest))) 

            End If 

        Next species 

 

    Next stressor 

 

End Sub 

 

Sub fate() 

 

    Worksheets("species all").Activate 

    Range("A1:EQ4000").Select 

    Selection.ClearContents 

 

    Worksheets("stressors").Activate 

 

    scen = 1 

 

     

    dx = Cells(9, 2) 

    Qeff = Cells(12, 2) 

 

    If ModelType = Birge Then 

 

        Qds = Cells(8, 2) 
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        If low_flows = 1 Then 

            Qds = Qds * flow_fraction 

        End If 

 

        Qus = Cells(14, 2) 

 

        If low_flows = 1 Then 

            Qus = Qus * flow_fraction 

        End If 

 

    ElseIf ModelType = Conceptual Then 

 

        Qus = Cells(14, 2) 

 

        If low_flows = 1 Then 

            Qus = Qus * flow_fraction 

        End If 

 

        Qds = Qus + Qeff 

 

    End If 

 

    temperature = Cells(15, 2) 

    pH = Cells(16, 2) 

    pKa = Cells(17, 2) 

 

     

    For stressor = 1 To nstressors 

 

        Worksheets("stressors").Activate 

 

        BODus = Cells(19, 2) 

 

        If stressor <> Oxygen Then 

          k(stressor) = Cells(3, 1 + stressor) 

          Ceff(stressor) = Cells(4, 1 + stressor) 

          Co(stressor) = (Qus * BODus + Qeff * Ceff(stressor))/(Qus + Qeff) 

        End If 

 

        'note that for DO Co is the DO before mixing 

        If stressor = Oxygen Then 

          'BOD is calculated from the mixing equation using the BOD in the 

effluent (BODeff) and upstream (BODus) all mg/L 

          BODeff = Cells(18, 2) 

          BODus = Cells(19, 2) 

          DOus = Cells(20, 2) 

          'DOeff is the dissolved oxygen concentration in the effluent 

stream (mg/L) 

          DOeff = Cells(21, 2) 

          'kBOD is the first order rate constant for BOD degradation (h-1) 

          kBOD = Cells(22, 2) 

          'kreaerate is the rate constant for reaeration (h-1) 

          kreaerate = Cells(23, 2) 

 

          BODo = (Qus * BODus + Qeff * BODeff) / (Qus + Qeff) 

          BOD(0) = BODo 

          tempA = Cells(24, 2) 

 



 

145 

          'DOsat is the saturation oxygen concentration at system 

temperature 

          DOsat = Exp(-139.3441 + (157570.1 / tempA) - (66423080 / tempA ^ 

2) + (12438000000.0# / tempA ^ 3) - (862194900000.0# / tempA ^ 4)) 

 

          'DOo is the initital oxygen concentration in the river water after 

mixing 

          DOo = (DOus * Qus + DOeff * Qeff) / (Qus + Qeff) 

          'ODo is initial oxygen deficit after mixing 

          ODo = DOsat - DOo 

          C(stressor, 0, scen) = ODo * 1000 

          'to convert mg to ug to be consistent with the other stressors 

          'NOTE:  The stressor in this case is the oxygen deficit 

        End If 

 

        'mu and sigma are parameters of the distribution 

 

        mu(stressor) = Cells(5, 1 + stressor) 

        sigma(stressor) = Cells(6, 1 + stressor) 

 

        If stressor = 1 Then Worksheets("Ammonia model out").Activate 

        If stressor = 2 Then Worksheets("Nitrite model out").Activate 

        If stressor = 3 Then Worksheets("TCS model out").Activate 

        If stressor = 4 Then Worksheets("LAS model out").Activate 

        If stressor = 5 Then Worksheets("DO model out").Activate 

 

        'first clear out old data 

        Range("A1:AQ4000").Select 

        Selection.ClearContents 

 

        Cells(5, 1) = "x" 

        Cells(5, 2) = "dist m" 

 

    Next stressor 

 

    'x is the distance step 

    For x = 1 To nx 

 

        ' Record the species present at this distance 

        Dim speciesPresentAtX As Collection 

        speciesPresentAtX = New Collection 

        Set allSpeciesPresent.Add speciesPresentAtX 

 

        dist = x * dx 

 

        If ModelType = Birge Then 

 

            Worksheets("stressors").Activate 

 

            Q0 = Cells(26, 2) 

            Q1 = Cells(27, 2) 

            Q2 = Cells(28, 2) 

            Q3 = Cells(29, 2) 

            Q4 = Cells(30, 2) 

            Q5 = Cells(31, 2) 

            Q6 = Cells(32, 2) 

            Q7 = Cells(33, 2) 

            d0 = Cells(26, 1) 

            d1 = Cells(27, 1) 
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            d2 = Cells(28, 1) 

            d3 = Cells(29, 1) 

            d4 = Cells(30, 1) 

            d5 = Cells(31, 1) 

            d6 = Cells(32, 1) 

            d7 = Cells(33, 1) 

 

            If dist <= d1 Then 

                m = (Q1 - Q0) / d1 

                Q(x) = (m * dist) + Q0 

            End If 

 

            If dist > d1 And dist <= d2 Then 

                m = (Q2 - Q1) / (d2 - d1) 

                Q(x) = (m * (dist - d1)) + Q1 

            End If 

 

            If dist > d2 And dist <= d3 Then 

                m = (Q3 - Q2) / (d3 - d2) 

                Q(x) = (m * (dist - d2)) + Q2 

            End If 

 

            If dist > d3 And dist <= d4 Then 

                m = (Q4 - Q3) / (d4 - d3) 

                Q(x) = (m * (dist - d3)) + Q3 

            End If 

 

            If dist > d4 And dist <= d5 Then 

                m = (Q5 - Q4) / (d5 - d4) 

                Q(x) = (m * (dist - d4)) + Q4 

            End If 

 

            If dist > d5 And dist <= d6 Then 

                m = (Q6 - Q5) / (d6 - d5) 

                Q(x) = (m * (dist - d5)) + Q5 

            End If 

 

            If dist > d6 And dist <= d7 Then 

                m = (Q7 - Q6) / (d7 - d6) 

                Q(x) = (m * (dist - d6)) + Q6 

            End If 

 

            If dist > d7 Then 

                Q(x) = Q7 

            End If 

 

        ElseIf ModelType = Conceptual Then 

 

            f = 0.000035 

            Q(x) = Qds + (Qds * f * dist) 

 

        End If 

 

        Qmean_river(x) = Q(x) 

 

        If low_flows = 1 Then 

            Q(x) = flow_fraction * Qmean_river(x) 

        End If 
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        vel(x) = (10 ^ -0.583) * ((Q(x) / 1000) ^ 0.283) * (Qmean_river(x) / 

Q(x)) ^ 0.495 

 

        For scen = 1 To 1 

 

            't is time in hours 

            t = t + (dx / (vel(x) * 3600)) 

 

          For stressor = 1 To nstressors 

 

           If stressor <> Oxygen Then 

             C(stressor, x, scen) = (Qds / Q(x)) * Co(stressor) * Exp(-

k(stressor) * t) 

            End If 

 

            If stressor = Ammonia Then 

            'convert this concentration into a free conc 

             C_free(stressor, x, scen) = (C(stressor, x, scen) / 0.78) * (1 

/ (1 + 10 ^ (pKa - pH))) 

                End If 

 

             If stressor = Oxygen Then 

                 Call streeter_phelps() 

             End If 

 

             If C(stressor, x, scen) = 0 Then 

                 'can't have zero conc. 

                 Stop 

             End If 

 

             ln_c_stressor = Log(C(stressor, x, scen)) 

 

             'given this stressor conc, what is the paf? 

             y = -(1 / Sqr(2)) * ((ln_c_stressor - mu(stressor)) / 

(sigma(stressor))) 

                 

             paf(stressor, x) = 0.5 * my_erfc(y) 

 

                 

             If stressor = 1 Then Worksheets("Ammonia model out").Activate 

             If stressor = 2 Then Worksheets("Nitrite model out").Activate 

             If stressor = 3 Then Worksheets("TCS model out").Activate 

             If stressor = 4 Then Worksheets("LAS model out").Activate 

             If stressor = 5 Then Worksheets("DO model out").Activate 

 

               Cells(x + 5, 1) = x 

               Cells(x + 5, 2) = dist 

 

             If x = 1 Then 

               Cells(5, 3 + 2 * (scen - 1)) = "time (h)" + Str$(scen) 

               Cells(5, 4 + 2 * (scen - 1)) = "Conc (ug/L)" + Str$(scen) 

               Cells(5, 5) = "PAF" 

               Cells(5, 5 + nspecies(stressor) + 1) = "Number species 

present" 

                 Cells(5, 5 + nspecies(stressor) + 2) = "Number species 

affected" 

 

                    For species = 1 To nspecies(stressor) 
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                     Cells(5, 5 + species) = "taxon" + Str$(species) 

                    Next species 

 

                    If stressor = Oxygen Then 

                      Cells(5, 40) = "BOD (mg/L)" 

                      Cells(5, 41) = "DO conc (mg/L)" 

                    End If 

                End If 

 

                Cells(x + 5, 3 + 2 * (scen - 1)) = t 

                Cells(x + 5, 4 + 2 * (scen - 1)) = C(stressor, x, scen) 

                Cells(x + 5, 5) = paf(stressor, x) 

 

                 

                'what species are unaffected. i.e. what do we expect to 

find? 

                Dim nAffectedSpecies, bISNotAffected 

                nAffectedSpecies = 0 

 

                For species = 1 To nspecies(stressor) 

 

                    If stressor = Ammonia Then 

                        bISNotAffected = C_free(stressor, x, scen) < 

noec_free(species, stressor) 

                    Else 

                        bISNotAffected = C(stressor, x, scen) < 

noec(species, stressor) 

                    End If 

 

                    If bISNotAffected Then 

                      Cells(5 + x, 5 + species) = spp$(species, stressor) 

 

                      ' Don't add duplicate species to speciesPresentAtX 

                      Dim i, found 

                      found = False 

                      For i = 1 To speciesPresentAtX.Count 

               If speciesPresentAtX.Item(i) = spp$(species, stressor) 

Then 

                                found = True 

                                Exit For 

                            End If 

                      Next i 

 

                      If (Not found) Then 

                            speciesPresentAtX.Add spp$(species, stressor) 

                      End If 

 

                    Else 

                        nAffectedSpecies = nAffectedSpecies + 1 

                    End If 

 

                     

                Next species 

 

                Cells(5 + x, 5 + nspecies(stressor) + 2) = nAffectedSpecies 

                Cells(5 + x, 5 + nspecies(stressor) + 1) = 

nspecies(stressor) - nAffectedSpecies 

 

            Next stressor 
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        Next scen 

    Next x 

 

    Worksheets("species all").Activate 

 

    Cells(1, 1) = "Distance (m)" 

    Cells(1, 2) = "Species richness" 

 

    For x = 1 To allSpeciesPresent.Count 

 

        Cells(x + 1, 1) = x * dx 

        Cells(x + 1, 2) = allSpeciesPresent.Item(x).Count 

        For species = 1 To allSpeciesPresent.Item(x).Count 

 

            Cells(x + 1, species + 2) = 

allSpeciesPresent.Item(x).Item(species) 

 

        Next species 

 

    Next x 

 

End Sub 

 

Function my_erfc(y) 

    If y < 0 Then 

        ' Excel 2007 can't work out erfc when y is negative 

        ' Use erf(-z) = -erf(z) and erfc(z) = 1 + erf(z) as a workaround 

        my_erfc = 1 + Application.WorksheetFunction.Erf(y * -1) 

    Else 

        ' Excel can calculate erfc for non-negative fine, no workaround 

needed 

        my_erfc = Application.WorksheetFunction.ErfC(y) 

    End If 

End Function 

 

Sub streeter_phelps() 

    'predicts DO concs 

    'deltau is the travel time between distance steps in hours 

    deltau = (dx / (vel(x) * 3600)) 

 

    If ModelType = Conceptual Then 

        BOD(x) = (Qds / Q(x)) * BOD(x - 1) * Exp(-kBOD * deltau) 

    Else 

        BOD(x) = BOD(x - 1) * Exp(-kBOD * deltau) 

    End If 

 

    'OD is oxygen deficit - note conversion from previous ug value to mg 

    C(stressor, x, scen) = (kBOD * BOD(x - 1)) / (kreaerate - kBOD) * (Exp(-   

kBOD * deltau) - Exp(-kreaerate * deltau)) + (C(stressor, x - 1, scen) / 

1000) * Exp(-kreaerate * deltau) 

 

    If C(stressor, x, scen) > DOsat Then 

        C(stressor, x, scen) = DOsat 

    End If 

 

    DOconc(x) = DOsat - C(stressor, x, scen) 

 

    C(stressor, x, scen) = C(stressor, x, scen) * 1000 

    'convert mg to ug to be consistent with other stressors 
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    Worksheets("DO model out").Activate 

    Cells(5 + x, 40) = BOD(x) 

    Cells(5 + x, 41) = DOconc(x) 

 

End Sub 
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Appendix B Results of conceptual model based on treated TGD 

scenario 

 

Figure_A 7 Stressor concentrations downstream of the effluent outfall in the treated discharge 

scenario. Note secondary y axis for TCS. 
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Figure_A 8 PAFs downstream as a result of each stressor in the treated scenario. Note 

secondary y axis for TCS. 

 

Figure_A 9 PAFmax (maximum PAF of all five stressors) downstream the treated scenario.  
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Figure_A 10 Fraction of species present as a result of each stressor. The only stressor which has an 

affect i.e. affects 95% of species is TCS. 
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Appendix C Model applied to the South Elkhorn Creek 

C.1 South Elkhorn basin 

 

 

USGS Elkhorn Creek 
station near Frankfort

SE6

SE5

SE3

SE4

USGS South Elkhorn Creek 
station near Midway

SE5

Effluent from Midway 
Wastewater Treatment Plant 
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Figure_A 11 Detailed map of South Elkhorn study area 

Table_A 3 Discharge normalised to USGS data near Town Branch station at Yarnallton. y1= 

measured discharge at previous site; y2 = measured discharge at present site; x1 = distance from 

effluent at previous site; x2 = distance from effluent at present site.   

Station Discharge 
– Birge et 
al. (1989)        
(L s-1) 

y1 y2 x1 x2 Discharge 
(L s-1) 

USGS 
discharge 
(L s-1) 

Fraction 
of 
discharge 
relative 
to TB4  

Normalised 
flow volume 
against TB4: 
Q(x)  

(L s-1) 

TB1 140     140 – 0.05 260 

Effluent 1020     1020 – 0.40 1893 

TB2 1160 1020 1160 0 200 1160 – 0.45 2152 

TB3 970 1160 1390 200 8500 1207 – 0.47 2240 

TB4 1390 1160 1390 200 8500 1390 2579 0.54 2579 

SE3 1700 1390 1700 8500 14800 1700 – 0.66 3154 

SE4 1920 1700 1920 14800 37500 1920 – 0.74 3562 

SE5 – 1920 3110 37500 67600 2576 – 1.00 4780 

SE6 3110 1920 3110 37500 67600 3110 – 1.21 5770 

 

TB1

TB2

TB3

TB4

SE3

Effluent from Town 
Branch Wastewater 

Treatment Plant 

USGS Town Branch station 
at Yarnallton

USGS Wolf Run station at 
Old Frankfort Pike, Lexington

USGS South Elkhorn Creek 
station at Fort Spring

SE1

SE2


