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ABSTRACT 

The aims of this MSc research project are to investigate the application of 

aluminium for the main components of an ultra-precision spindle defined for use 

in R2R production systems and to produce a reel to reel rotary aluminium 

hydrostatic bearing system of high accuracy to meet the demand of 

manufacturing the flexible displays with an effective production capability for this 

special kind of film-based product. 

The original concept design was already finished to manufacture the bearing 

components and the objective of this project was to test the functionality of this 

new hydrostatic bearing system. Firstly, theoretical were performed to work out 

the output responses, including temperature rise, flow rate, load capacity etc., of 

the hydrostatic bearing system under different input design parameters, 

including supply pressure, fluid viscosity, the rotational speed etc. Then ANSYS 

software was used to build a FEA model to simulate the actual working 

conditions of the hydrostatic bearing system and to obtain the theoretical output 

parameters, especially the deflection conditions of the bearing shaft. Finally the 

experimental validation tests were conducted to verify the actual output 

responses to check correlation with the modelled results. 

Keywords: R2R production systems, hydrostatic bearing systems, input 

parameters, output responses, FEA modelling, deflection conditions of the 

bearing shaft. 
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1 INTRODUCTION 

1.1 BACKGROUND 

1.1.1 INTRODUCTION TO PLASTIC ELECTRONICS PRODUCTION 

SYSTEMS 

A UK company called Plastic Logic1 is developing truly flexible displays. It has 

demonstrated an array of end applications for robust, flexible displays, in 

everything from smartphone accessories to large-area digital signage. 

The manufacture of the flexible displays needs a reel to reel manufacturing 

system of high accuracy to provide an effective production capability for film-

based products and devices.2 A critical machine technology for any reel to reel 

film processing system is associated with the primary rotary motion systems. 

The traditional rolling bearing element is not able to provide the level of motion 

accuracy which enables the achievement of the functional demands specified 

for the R2R system, so high precision spindles with ultra-precision hydrostatic 

bearing systems are considered as one of the applicable solutions to the R2R 

platform. 

Typical steel-made bearing systems have a relatively wide speed range than is 

needed for the plastic film processes. In addition, they have a much higher cost, 

which means they are over-qualified for the reel to reel manufacturing purpose. 

So the aim of this research project is to perform a more economic fluid film 

bearing design and some validation testing of a newly proposed R2R spindle 

system development. 

 

                                            

1
 http://plasticlogic.com/ 

2
 EPSRC annual report 2012/2013 



 

 

1.1.2 THE CHARACTERISTICS OF THE HYDROSTATIC BEARINGS 

Recently, ultra-precision manufacturing and micro manufacturing are both 

emerging as the key enabling production technologies for next generation high-

value-added products. These manufacturing technologies enable improved 

quality and reliability for established products, and they also make possible 

entirely new products and processes (Cheng and Shore, 2010). The 

manufacturing processes of the hydrostatic bearing systems also benefit a lot 

from the ultra-precision and micro manufacturing production technologies. The 

purposes of the hydrostatic bearing systems are to provide rotor support and lift 

off capability at zero speed, and maintain separation between the rotor and 

shaft at all times when the hydrodynamic bearings were not operating (Martin, 

2004b). 

The hydrostatic bearing is defined as: 

“A bearing permitting relative sliding movement of the members and in which 

the load exerted by one member on the other is supported by fluid pressure 

between bearing pads and the opposing surface and in which the pressure of 

the fluid is maintained by means of a pump”.(Stansfield, 1970) 

The external pump system used in the hydrostatic bearing system provides a 

supply of pressurized fluid into the bearing, the advantages of the hydrostatic 

bearing system are listed in the following (Loxham and Hemp, 1964): 

1. Extremely low friction and high stiffness3; 

2. Extremely high load-carrying capacity at low speeds; 

3. High positional accuracy in high-speed, light-load applications; 

4. Excellent vibration and shock resistance for liquid bearing4; 

                                            

3
 Stiffness is defined as “the ratio of the change in the oil film thickness to the change in load” (Poli, 1975) 

4
 The vibration and shock resistance for gas bearing is relatively poorer than the liquid one. 



 

 

5. Excellent performance of low friction and wear during the working 

conditions of start-up and very low rotational speeds (De Pellegrin and 

Hargreaves, 2012). 

But there are also some disadvantages of the hydrostatic bearing system: 

1. The dynamic friction within the system generates heat, which increases 

the viscous shear and the pumping power; 

2. The lubrication support system is relatively complicated and its 

installation and maintenance cost is high; 

3. The high-precision system is intolerant of dirt and other hazardous 

environment5; 

4. High power consumption due to pumping losses. 

With the development of a coating technology, the coatings on the components 

of the hydrostatic bearing system are able to protect them against wear, 

chemical attack, and the excessive heat, which greatly increase the mechanical 

properties as well as the tribological behaviour of the hydrostatic bearings 

(Manojkumar et al., 2014). The aluminium bearing system used in this project 

also has a layer of electroless nickel-based coating, which greatly strengthens 

the mechanical properties and tribological behaviour of the bearing system. 

 

                                            

5
 The hazardous environment includes high temperature, high moisture, etc.. 



 

 

1.1.3 THE APPLICATIONS OF THE HYDROSTATIC BEARINGS 

Hydrostatic thrust bearing systems, especially multi-recess hydrostatic journal 

bearings (El-Sherbiny et al., 1984a), have been used in many industrial areas 

due to the following advantage: high load-carrying capacity, virtual 

independence of speed, almost zero friction of bearing surfaces, very low 

friction at low or zero speeds, large fluid film stiffness and damping, reduced 

vibrations and good positional accuracy. 

Typical industrial applications of hydrostatic thrust bearings are in the machining 

equipment such as high-precision milling machines, high speed machining 

centres, internal grinding machines, telescope bearings, testing equipment, 

medical equipment, movable stage areas, auxiliary manufacturing machine 

such as saw machines (Safar, 1980), aerospace equipment such as 

gyroscopes, and even advanced cryogenic turbo pump6 (Sharma et al., 2002). 

For some heavy hydrostatic bearings, their large bearing capacity, low friction 

coefficient and high working stability and reliability are all the essential qualities 

of the high precision heavy CNC equipment. The performance of the hydrostatic 

bearing systems directly influences the machining quality and the working 

efficiency (ZHANG et al., 2013). 

                                            

6
 The rotating parts of the advanced cryogenic turbo pump unit consist of an oxidizer pump, a fuel pump, 

and a driven turbine, whose shaft is supported by the non-contact hydrostatic bearings (Ha et al., 2002). 



 

 

1.2 THE PROJECT PLAN 

The project was decided as: “Advanced Bearing System for Ultra Precision 

Plastic Electronics Production Systems”. It is a development project leading to 

the creation of new rotational bearing systems. The created bearing units will 

form a cornerstone of a plastic electronics reel to reel research platform system. 

As the Figure 1 Gantt chart of the IRP plan by Gang Zhao shows, the entire 

individual research project will last about 253 workdays from October 18, 2013 

to October 07, 2014. The project is consisted of three parts: the literature review 

work, which involved the literature review work and the modelling work, from 

October 2013 to February 2014, the laboratory work from March 2014 to June 

2014 and the thesis work from June 2014 to October 2014. Two milestones, the 

initial review and the pre-submission review, are included in the plan. The viva 

examination was scheduled for September 9, 2014, followed by a thesis 

correction time of 20 workdays. The registration ends on October 7, 2014. 

 



 

 

1.3 GANTT CHART OF THE IRP PLAN 

Figure 1 Gantt chart of the IRP plan by Gang Zhao 

 





 

 

1.4 AIMS AND OBJECTIVES 

The aim of this research project is to investigate the application of aluminium as 

the structural material for the main components of an ultra-precision spindle 

defined for use in R2R production systems. This was achieved by: 

 Input parameters selection and output parameters calculation by using 

the function module of the Excel spreadsheet software. 

 Cost analysis of the two materials: steel and aluminium. 

 Finite element modelling analysis by ANSYS software. 

 The assessment of the experiment of the aluminium hydrostatic bearings 

 





 

 

2 LITERATURE REVIEW 

2.1 ASSUMPTIONS 

Calculations in this report are based on some basic parameters of the journal 

bearing and thrust bearing systems using the methodology of “fixed-constant 

method” which is introduced to analyse interrelationships within the parameters 

of the bearing system. Therefore, some assumptions shall be made as the 

limitations of using these basic equations and methodology. The hypotheses7 

are listed here: 

1. Bearings and shafts are perfectly circular in cross section and perfectly 

cylindrical as an ideal condition, because any small manufacturing errors 

will cause errors in rotational accuracy and vibration, which will finally 

influence the normal use of the hydrostatic bearing system as well as to 

the analytical predictions by all the equations quoted in this report; 

2. The viscosity is constant throughout the bearing system during the whole 

operation process, which means the viscosity of the supply fluid will not 

be changed when the temperature of the supply fluid is changing, and 

also means the viscosity in the pocket and over the land is equal. 

Because the temperature difference between the fluid in a pocket and 

the fluid over the land is not considered in this report. So it also implies 

the temperature anywhere in the whole bearing system at one time is 

always the same as an ideal condition8. In operational condition, as the 

rise of the temperature of the oil, the thermal and oxidation 

                                            

7
All the assumptions listed above are proposed or abstracted from the book (Stansfield, 1970) to meet the 

requirements of all the equations and the “fixed-constant method” in this report.  

8
 The hydraulic power systems for hydraulic transmission, hydrodynamic lubrication, hydraulic sliding and 

the hydrostatic thrust bearing, almost all take the oil as their lubricant, so, the characteristics of the working 

medium have important effects on the performance and working reliability of the hydraulic systems. The oil 

viscosity is treated as a designed constant value, the influence of the temperature rise and the pressure on 

the lubricating oil viscosity is neglected, which will definitely cause some level of errors. Especially for a 

heavy hydrostatic thrust bearing with a high linear velocity, this assumption leads to a large error as 

compared with the actual cases (SHAO et al., 2011). 



 

 

characteristics as well as the volatility of the oil will all change, which 

would cause the malfunction or even the collapse of the hydrostatic 

system (Moore, 1969); 

3. The bearing fluid is Newtonian, which means the viscosity has a constant 

rate of change of shear strain (Lebeck, 1988); 

4. The lubricating fluid is incompressible, i.e. the flow rate will not be 

influenced by the volume change of the fluid due to the temperature 

change; 

5. The density of the fluid is assumed constant, which implies the pressure 

change will not change the density of the fluid as well as the heat 

capacity of the fluid; 

6. The total flow from the bearing is equal to the sum of the flows through 

the compensator units, i.e. there is no flow loss or leakage within the 

whole hydrostatic bearing system; 

7. The pressure distribution in a pocket is uniform. Although the depth of 

the pocket is about 10 times greater than the radial clearance between 

the shaft and the bearing, all the complex fluid motions, such as the inter-

pocket circumferential flow and the turbulence within the pocket, at a 

high rotational speed are not being considered into this initial report as 

well as all the equations in this report, the presence of the pockets can 

have negative impact on performance when the system is at high oil 

viscosity and high bearing speed (De Pellegrin and Hargreaves, 2012); 

8. All the heat energy is transported within the hydraulic circuit, which 

implies the parameter of “temperature rise, ∆t” is just the difference 

between the inflow temperature and the outflow temperature and there is 

no other way of temperature lose such as the heat conduction through 

the bearing materials, the power consumption of liquid friction is 

completely converted into heat and this heat could be completely 

absorbed by the lubricating oil, according to the energy balance principle 

and the temperature rise in the lubricating oil of the hydrostatic bearing 

mainly comes from the heat produced by the oil film shear driven by 

worktable’s rotation as well as the system itself (SHAO et al., 2011). The 



 

 

heat loss in a rotating hydrostatic bearing results from two parts: one part 

is the consumption of the hydraulic power delivered by the pump in head 

loss through the restrictor and to drive the laminar Poiseuille flow in the 

bearing clearance, another is the frictional power in the Couette shear 

flow generated by the relative motion between the spindle and the 

bearing pads and spared by the spindle motor. (Chen et al., 2011). The 

heat dissipation of the bearing system usually includes two parts: one is 

the heat conduction by the bearing house and the shaft, another is the 

heat carried away by the oil (Kher and Cowley, 1970); 

9. The flow within the system is laminar, not turbulent; 

10. The direction of loading is towards the centre of the pocket, because the 

stiffness of the fluid changes with the direction of the loading and all the 

equations used for hydrostatic journal bearings in this report are based 

on the condition of the load direction towards the centre of the pockets. 

And if the direction of loading is towards the inter-pocket land, the 

stiffness would be lower. 

11. The bearing house of the hydrostatic bearing systems is absolutely rigid9. 

 

                                            

9
 The effects of the flexibility of the bearing house on the bearing characteristics are significant and must 

be considered (Sinhasan et al., 1989). 





 

 

2.2 REVIEW OF THE THEORETICAL DESIGN APPLIED TO 

ULTRA-PRECISION SPINDLE 

The equations of the initial calculation work come from the book: Hydrostatic 

bearings for machine tools and similar applications (Stansfield, 1970). The 

equations help to solve the problems of some basic hydrostatic bearing systems 

such as journal bearing systems and thrust bearing systems. 

An Excel spreadsheet was established based on the equations in the 

Stansfield’s book to get the basic. 

The equations (Stansfield, 1970, Page 123-163) used to calculate the 

parameters of the journal bearings are listed in the Table 3 Formulas for journal 

bearings calculations (Stansfield, 1970, Page 123-163) below. 

The equations (Stansfield, 1970, Page 164-191) used to calculate the 

parameters of the thrust bearings are listed in the Table 4 Formulas for thrust 

bearings calculations (Stansfield, 1970, Page 164-191) below: 

  



 

 

Table 3 Formulas for journal bearings calculations (Stansfield, 1970, Page 123-163) 

For the journal bearings10 

Bearing shape 
factor ratio 

  
  

   

 

 Equation 1 

Bearing shape 
factor Ea 
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Outflow 
resistance Rod 
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Inflow 
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Ultimate load 
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Equation 6 

Radial stiffness 
Sl 
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Equation 7 

Rate of flow Q   
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Pumping power 
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 Equation 9 

Frictional power 
Pf 

                      

 
                  

       
 
   

   
 

      
 

Equation 10 

Temperature 

rise Δt    
   

  
 

   
 

Equation 11 

  

                                            

10
 All the abbreviations have been shown in the Table 3 Formulas for journal bearings calculations 

(Stansfield, 1970, Page 123-163) 



 

 

Table 4 Formulas for thrust bearings calculations (Stansfield, 1970, Page 164-191) 

For the thrust bearings11 

Virtual area of 
the thrust pad 

   
 

 

  
    

 

    
  

  

 
 

 

  
    

 

    

  

  

 
Equation 12 

Outflow 
resistance 
Ro(net) 

 

       
 

 

 
 

 
  
     

  

  

 
 

 
 

 
  
     

  

  

 
Equation 13 

Inflow 
resistance Ri 

        Equation 14 

Ultimate thrust 
capacity T(net) 

                 
 

      
  Equation 15 

Stiffness ST 
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Equation 16 

Rate of flow Q   
  

               
 Equation 17 

Pumping power 
Pp 

   
  
 

            
 Equation 18 

Frictional power 
Pf 

              
      

    
  

  

 
      

    
  

  

 
      

    
  

  
  

Equation 19 

Temperature 

rise Δt    
   

  
 

   
 

Equation 20 

                                            

11
All the abbreviations have been shown in the Table 4 Formulas for thrust bearings calculations 

(Stansfield, 1970, Page 164-191) 



 

 

Applying these equations into the Excel spreadsheet, some important 

operational parameters of the bearing system, such as the ultimate load 

capacity, the radial stiffness, the flow, the pumping power, the frictional power 

and the temperature rise, could be calculated automatically by inputting basic 

bearing parameters, such as the number of pockets, the diameter of bearing, 

the length of bearing, the width of axial land, the width of circumferential land, 

the radial clearance, the depth of pocket, the depth of pocket, the supply 

pressure, the rotational speed, the resistance ratio, the viscosity of oil, the 

density of oil and the specific heat capacity of oil.  

The parameter input and output window of the calculation of hydrostatic journal 

bearings is shown in the Figure 2 The parameter input and output window of the 

calculations of hydrostatic journal bearings in the Excel spreadsheet below. 

The upper part is designed for parameters input and the lower part which is 

highlighted by the blue filling colour is designed for the output of some important 

operational parameters. The output data will be generated automatically after 

inputting the parameters in the upper part. 



 

 

Figure 2 The parameter input and output window of the calculations of 

hydrostatic journal bearings in the Excel spreadsheet 

 

The next step is to choose the four parameters highlighted by the yellow filling 

colour above as the four most important input parameters and to analyse the 

relationships between these four parameters of the hydrostatic bearing 

systems. 

Hydrostatic journal bearings

Number of pockets:n= 5.000000

Diameter of bearing:dB= 0.099800 m

Length of bearing:LB= 0.072000 m

Width of axial land:ca= 0.050000 m

Width of circumferential land:cc= 0.012800 m

Radial clearance:hL(av)= 0.000065 m

Depth of pocket:hp= 0.001300 m

Supply Pressure:p1= 278000.000000 Pa

Rotational speed:Nd= 500.000000 rev/min

Resistance ratio:ξ= 1.000000

Viscosity of oil:η= 0.017000 Ns/m2

Density of oil:ρ= 900.000000 kg/m3

Specific Heat capacity of oil:Cm= 2000.000000 J/(kg*K)

Constant:k= 0.800000
Bearing shape factor:Φ= 0.919036

Bearing shape factor:Ea= 0.644444

Bearing shape factor:Ec= 0.361781

Outflow resistance:Rod= 758.542444 10
8
Ns/m

5

Inflow resistance:Ri= 758.542444 10
8
Ns/m

5

Ultimate load capacity:Wu= 1048.960292 N

Radial stiffness:Sl= 0.224409 108N/m

Flow:Q= 9.139403 10-6M3/s

Pumping power:Pp= 2.540754 W

Friction power:Pf= 36.149414 W

Temperature rise:Δt≈ 2.351854 °C



 

 

The reasons why choosing these four parameters are listed in the the following 

table: 

Table 5 Reasons for choosing the four specific parameters as the input 

parameters 

Parameters Reasons 

Radial clearance One of the most important parameters of a hydrostatic 
bearing. The value of radial clearance can be regarded 
as the ease of manufacturing, i.e. the smaller the value 
of the radial clearance is, the harder the bearing is to be 
manufactured, which also means a relatively higher 
cost. And the radial clearance also affects the rotational 
accuracy of the shaft, flow rate of the bearing system as 
well as the temperature change of the fluid greatly. 

Supply pressure One of the most important input values which can be 
controlled after the bearing system is manufactured. 
Different supply pressure means different ultimate load 
capacity and different power consumption, which are 
both very important to the operational cost of the 
bearing system. 

Rotational speed Rotational speed has a great impact on the temperature 
performance of the bearing system. For any specific 
bearing system, there is a range of the rotational speed. 
If the speed exceeds the range, the system will probably 
break down. 

Viscosity of oil One of the most important input values which decides 
the performance of the bearing system. For a specific 
bearing design, the different sorts of oil will lead to 
different performances. By changing different sorts of 
supply fluid, different flow rate and temperature change 
condition can be obtained. 

The interrelationships between the input and output parameters of the Excel 

spreadsheet are shown in the Figure 3 The interrelationships between the input 

and output parameters of the Excel spreadsheet below: 

Since the viscosity of the fluid is determined by the type of the fluid, the five 

yellow boxes actually represent the four major input parameters of the 

hydrostatic bearing system. By the help of the equations (Stansfield, 1970), all 

the other output parameters are generated automatically by the Excel 



 

 

spreadsheet program. The codes of the program are shown in the appendices 

in the end of this report.  

According to the Figure 3 The interrelationships between the input and output 

parameters of the Excel spreadsheet, there are complex interrelationships 

within the parameters of the hydrostatic bearing system. A slight change of any 

one parameter leads to the change of some other parameters. These changes 

make it relatively difficult to analyse the interrelationship within these 

parameters. So the methodology of “fixed constant method” is introduced to 

solve this problem. 

Figure 3 The interrelationships between the input and output parameters of the 

Excel spreadsheet 

 

For example, the radial clearance is fixed at 30µm; the viscosity of the fluid is 

fixed at 0.017 Ns/m2, the rotational speed is fixed at 1000 rev/min, and then the 

relationships between the supply pressure and the ultimate load 

capacity/temperature change/radial stiffness/flow are shown in Table 6 The 

relationship between the supply pressure and some output parameters: 



 

 

Table 6 The relationship between the supply pressure and some output 

parameters 

h=30µm η=0.017Ns/m2 n=1000rev/min 

P1(106Pa) L(N) Δt(°C) S(108N/m) Q(10-6m3/s) Q(L/min) 

1.000000  3773.238462  54.405359  1.748988  3.232189  0.193931  

2.000000  7546.476924  28.036013  3.497977  6.464378  0.387863  

3.000000  11319.715386  19.616601  5.246965  9.696566  0.581794  

4.000000  15092.953849  15.684673  6.995954  12.928755  0.775725  

5.000000  18866.192311  13.547739  8.744942  16.160944  0.969657  

6.000000  22639.430773  12.308301  10.493931  19.393133  1.163588  

According to the table above, the diagrams of the relationships between the 

supply pressure and the temperature change/flow are plotted in the Figure 4 

The relationship between the supply pressure and the temperature change for a 

specific kind of hydrostatic bearing and the Figure 5 The relationship between 

the supply pressure and the flow for a specific kind of hydrostatic bearing below: 

Figure 4 The relationship between the supply pressure and the temperature 

change for a specific kind of hydrostatic bearing 

 



 

 

Figure 5 The relationship between the supply pressure and the flow for a specific 

kind of hydrostatic bearing 

 

By using the same “fixed-constant method”, changing the parameters of the 

radial clearance, the viscosity of the fluid, and the rotational speed respectively, 

the other three tables and six figures are listed below: 

Table 7 The relationship between the radial clearance and some output 

parameters 

P1=20bar η=0.017Ns/m2 n=1000rev/min 

h(10-6m) L(N) Δt(°C) S(108N/m) Q(10-6m3/s) Q(L/min) 

20.000000  7546.476924  134.672504  5.246965  1.915371  0.114922  

30.000000  7546.476924  27.614143  3.497977  6.464378  0.387863  

40.000000  7546.476924  9.534974  2.623483  15.322969  0.919378  

50.000000  7546.476924  4.577147  2.098786  29.927674  1.795660  

60.000000  7546.476924  2.790151  1.748988  51.715021  3.102901  

70.000000  7546.476924  2.021481  1.499133  82.121538  4.927292  



 

 

Figure 6 The relationship between the radial clearance and the temperature 

change for a specific kind of hydrostatic bearing 

 

 

Figure 7 The relationship between the radial clearance and the radial stiffness for 

a specific kind of hydrostatic bearing 

 



 

 

Figure 8 The relationship between the radial clearance and the flow for a specific 

kind of hydrostatic bearing 

 

Table 8 The relationship between the viscosity of the fluid and some output 

parameters 

P1=20bar h=30µm n=1000rev/min 

η(Pa*s) L(N) Δt(°C) S(108N/m) Q(10-6m3/s) Q(L/min) 

0.005000  7546.476924  3.440255  3.497977  21.978884  1.318733  

0.010000  7546.476924  10.427686  3.497977  10.989442  0.659367  

0.020000  7546.476924  38.377411  3.497977  5.494721  0.329683  

0.040000  7546.476924  150.176312  3.497977  2.747360  0.164842  

0.090000  7546.476924  755.753692  3.497977  1.221049  0.073263  

0.250000  7546.476924  5823.970532  3.497977  0.439578  0.026375  



 

 

Figure 9 The relationship between the viscosity of the fluid and the temperature 

change for a specific kind of hydrostatic bearing 

 

Due to the large oil flow rate, the oil carries away approximately half of the total 

heat in the actual operational condition dissipated by the bearing housing and 

the oil together. Since the temperature rise is higher under higher rotational 

speed condition, the larger reduction in oil viscosity due to the temperature rise 

causes even greater oil flow rate, which on the other side helps to keep the ratio 

of the heat dissipation by the two elements the same for various spindle speeds 

(Kher and Cowley, 1970). So the 1000°C in the figure above is just the 

unrealistic result by the program calculation under the assumption 212. 

                                            

12
 Assumption 2: The viscosity is constant throughout the bearing system during the whole operation 

process, which means the viscosity of the supply fluid will not be changed when the temperature of the 

supply fluid is changing, and also means the viscosity in the pocket and over the land is equal. Because 

the temperature difference between the fluid in a pocket and the fluid over the land is not considered in this 

report. So it also implies the temperature anywhere in the whole bearing system at one time is always the 

same as an ideal condition
12

. In operational condition, as the rise of the temperature of the oil, the thermal 

and oxidation characteristics as well as the volatility of the oil will all change, which would cause the 

malfunction or even the collapse of the hydrostatic system (Moore, 1969) 



 

 

Figure 10 The relationship between the viscosity of the fluid and the flow for a 

specific kind of hydrostatic bearing 

 

Table 9 The relationship between the rotational speed and some output 

parameters 

P1=20bar h=0.00003m η=0.017Ns/m2 

N(rev/min) L(N) Δt(°C) S(108N/m) Q(10-6m3/s) Q(L/min) 

200.000000  7546.476924  2.188107  3.497977  6.464378  0.387863  

400.000000  7546.476924  5.419095  3.497977  6.464378  0.387863  

600.000000  7546.476924  10.804076  3.497977  6.464378  0.387863  

800.000000  7546.476924  18.343048  3.497977  6.464378  0.387863  

1000.000000  7546.476924  28.036013  3.497977  6.464378  0.387863  

1200.000000  7546.476924  39.882970  3.497977  6.464378  0.387863  

1400.000000  7546.476924  53.883919  3.497977  6.464378  0.387863  

1600.000000  7546.476924  70.038860  3.497977  6.464378  0.387863  

1800.000000  7546.476924  88.347793  3.497977  6.464378  0.387863  

2000.000000  7546.476924  108.810719  3.497977  6.464378  0.387863  



 

 

Figure 11 The relationship between the rotational speed and the temperature 

change for a specific kind of hydrostatic bearing 

 

From all the figures above, the initial conclusion of the relationships within these 

parameters can be illustrated in the following equations: 

Table 10 The relationship within the parameters of the hydrostatic bearings 

Q ∝ C1×P1 Equation 21 

Q ∝ C1×hL(av)
3 Equation 22 

Q ∝ C1/η Equation 23 

S ∝ C1/hL(av) Equation 24 

∆t ∝ C1×P1+C2/P1 Equation 25 

∆t ∝ C1+C2/hL(av)
3 Equation 26 

∆t ∝ C1+C2×η
2 Equation 27 

∆t ∝ C1+C2×Nd2 Equation 28 



 

 

Since the flow rate is closely related to the energy consumption of the system, 

i.e. the more flow rate the system has, the more external pumping power the 

system needs. And for the definite working condition, the smaller the flow rate is, 

the better the energy saving goal will be achieved. 

According to the Equation 21, Equation 22, and Equation 23, the flow rate is 

proportional to the cube of the radial clearance hL(av) and inversely proportional 

to the viscosity of the fluid. So if a smaller flow rate is needed, the radial 

clearance shall be smaller and the viscosity of the fluid shall be larger. 

And for Equation 24, the stiffness of the fluid is inversely proportional to the 

value of the radial clearance hL(av). High stiffness leads to high load capacity of 

the bearing system. So the smaller radial clearance is needed to achieve a 

higher load capacity. 

From Equation 25, Equation 26, Equation 27, and Equation 28, it is initially 

concluded that the temperature is proportional to the square of the viscosity, the 

square of the rotational speed, inversely proportional to the cube of the radial 

clearance hL(av) and has a complex relationship with the supply pressure which 

is proportional to the sum of both the supply pressure and the reciprocal of the 

supply pressure. 

Since the temperature rise will not only increase the energy consumption of the 

whole bearing system, but also influence the normal operational behaviour of 

the bearing system, such as the accuracy of the bearing system, the vibration of 

the shaft as well as the features of the fluid, the lowest temperature rise is 

required to protect the optimal or normal operation of the hydrostatic bearing 

system. 

To minimise the temperature rise, the best way is to reduce the friction, 

because the friction is not just a source of mechanical inefficiency but also a 

source of heat that, if dissipated ineffectively, has the potential to degrade both 

the lubricating oil and the bearing surfaces (De Pellegrin and Hargreaves, 

2012). 



 

 

Then the dilemma comes out that the purpose of having lower flow rate requires 

the smaller radial clearance and larger viscosity of the fluid, and at the same 

time, the purpose of having lower temperature rise requires the larger radial 

clearance and the smaller viscosity of the fluid. Both the flow rate and the 

temperature rise are very important operational parameters of the hydrostatic 

bearing systems, so some optimization works must be done to achieve the 

optimal balance between these two parameters to solve the dilemma. 

To obtain a larger stiffness, which means greater load capacity, the smaller 

radial clearance is recommended, but the smaller radial clearance also leads to 

the higher manufacturing cost. 

As a result, carefully choosing the suitable value of the radial clearance as well 

as the appropriate type of the fluid is partly the solution to improve the 

performance of the bearing system and the essence of the optimization work of 

designing a hydrostatic bearing system of some specific manufacturing 

objectives. And the optimization work shall e proved to be pragmatic by the 

experimental works. 



 

 

3 DESIGN OF SPINDLE SYSTEM 

3.1 THE INITIAL DESIGN OF THE SYSTEM 

The design of a hydrostatic bearing system is usually the strategy of the 

selections of the bearing type and configuration, the fluid feeding device and the 

bearing material (Cheng and Rowe, 1995). 

For most of the design work, three most influential factors of hydrostatic bearing 

design are cost, packaging, and manufacturing constraints (Martin, 2004a), 

which will be taken into consideration in the improvement process. The optimum 

design includes maximizing load carrying capacity, minimum temperature rise 

and maximum stiffness (El-Sherbiny et al., 1984a). 

The bearings with large clearances and a pressure ratio13 of about 0.5 under 

high supply pressure are optimal for getting high load capacity (El-Sherbiny et 

al., 1984a). And for minimum power losses for the hydrostatic bearing system 

design, the clearance should be economically small, the high supply pressure 

should be avoided, the pressure ratio is near 0.5, the area ratio14 is 0.5, and the 

oils with lower viscosity are recommend15 (El-Sherbiny et al., 1984b). But for 

some particular usage, the favourable design might be using the minimum cost 

to finish the objective in every specification. 

For the hydrostatic bearing used in a machine tool, it is generally considered 

that the spindle system is one of the most important parts since the properties 

of the spindle system are closely related to the machining precision. The 

dimensions, the location, and the stiffness of the bearings as well as the 

working load, all of which cause the deformation of the spindle, which also 

cause the change of the pressure and thickness of the lubrication film affecting 

the bearing stiffness (Chen et al., 2012). The thermal error is also one of the 

                                            

13
 Pressure ratio=Recess Pressure/Supply Pressure 

14
 Area ratio=Total recess area/Total bearing area 

15
 Viscous oils can be tolerated only for larger bearing clearances (El-Sherbiny et al., 1984b). 



 

 

most influential error sources in high precision structures (Chen et al., 2011). 

The minimum power loss, minimum size (or maximum load-carrying capacity) 

and maximum moment stiffness, as well as maximum stiffness, are adopted as 

the optimum conditions for the improvement of the design of the hydrostatic 

bearings (Kazama and Yamaguchi, 1993). 

The maximum stiffness is needed in some cases because the main purpose of 

the hydrostatic bearings is to support the sliding or rotating parts with a high 

stiffness and the minimum power loss is required for avoiding the excessive 

flow rate as well as the temperature rise to achieve less energy consumption, 

which finally saves the cost of both manufacturing and operation processes 

(Rowe and Stout, 1972). The production requires the hydrostatic bearing 

systems with high dimensional and geometrical accuracy, which is especially 

important for standardized mass production (Dumbrava, 1985). 

For high speed bearing systems, the frictional power is the dominant factor 

which causes the temperature rise of the oil. And for a traditional journal bearing 

at low speed, three most important parameters are flow rate, stiffness and the 

safe maximum load (Anonymous1969). 

The hydrostatic bearing system specially designed for the plastic electronics 

reel to reel production system has two opposite thrust bearings and one journal 

bearing. The hydrostatic oil is pressurized to the bearing with a hydraulic pump, 

and a thin film is formed between the spindle shaft and the bearing. 

The traditional hydrostatic thrust pad bearing systems for the plastic electronics 

reel to reel production system are mostly made of the material of steel, which 

means a high Young modulus property and high manufacturing cost. Generally, 

hydrostatic thrust pad bearing systems are designed to operate with parallel 

surfaces. For hydrostatic thrust pad bearings operating under load, the elastic 

deformation of the bearing pad alters the fluid film profile and hence the 

performance characteristics. The Young modulus of the material of the bearing 

pad affects the performance characteristics (Sharma et al., 2002). 



 

 

The force exerted on the thrust bearings of the hydrostatic bearing systems is 

made up of two parts: the force formed by the internal fluid and the external 

work load of the production system. Since the force causes the deformation of 

the thrust plate of the bearing system, and the non-parallelism of the bearing 

and the runner surfaces causes a reduction in the load, stiffness and damping, 

and an increase in the lubricant flow rate (Osman et al., 1991), the substitution 

of the material of steel should have at least the equivalent property of the Young 

modulus compared with the steel bearing system to guarantee the normal 

operation of the whole production system. 

In this project, the material of aluminium alloy is considered to be the 

substitution of the steel. Whether it is a qualified material will be analysed and 

proved by the following analysis and experimental works. 

 



 

 

3.2 THE COMPARISON ANALYSIS BETWEEN THE MATERIALS 

OF STEEL AND ALUMINIUM 

Steel is generally used as the material of bearing shafts for the following 

advantages16: 

 Resistance to corrosion in moisture and other corrosive environments; 

 Highly versatile, sealed versions available with different grease fillings; 

 High pressure and working load tolerated (high hardness and Young’s 

Modulus); 

 High temperature tolerated (up to 300°C dependent on lubricant). 

The aim of this individual research project is to investigate the application of 

aluminium for the main components of an ultra-precision spindle defined for the 

use in R2R production systems. The primary target is reducing the total cost of 

the hydrostatic bearing systems. Aluminium alloy, as the substitution, has the 

following advantages: 

 Relatively inexpensive material cost (Cheng et al., 2013); 

 Excellent workability (HINO et al., 2009); 

 Good electric and thermal conductivity (Rudnik and Jucha, 2013); 

 High specific strength and stiffness at low density (Saxena et al., 2006); 

There are some diamond-turning machines in the Cranfield Ultra-precision 

Manufacturing Centre. If the bearing manufacturing process can be finished by 

the means of diamond turning, the cost of manufacturing the bearing system 

would be greatly reduced. 

Normally, the steel, as a typical ferrous material, is not readily machinable by 

diamond tools due to the reason that the carbon element within the diamond 

tools will chemically react with the substrate which generates excessive wear 

causing the tool damage and dulling after short cut lengths (Moriwaki and 

Shamoto, 1991). The temperature in ultra-precision diamond cutting of copper 

                                            

16
 Sources: http://www.acorn-ind.co.uk/product/special-bearings/stainless-steel-bearings 



 

 

can reach up to 150°C (Moriwaki et al., 1990). So if the material is stainless 

steel, which has higher values of hardness and Young’s modulus than the 

copper, the temperature rise will be even larger, influencing the machining 

accuracy of the ultra-precision manufacturing process. 

 



 

 

3.2.1 THE MATERIAL PROPERTIES COMPARISON 

The material property analysis is listed in the Table 11 The material property 

analysis of steel and aluminium: 

Table 11 The material property analysis of steel and aluminium 

 Stainless Steel Aluminium alloy 

Density (kg/m3) 7750 2770 

CTE17 (1/°C) 1.7*10-5 2.3*10-5 

Young’s Modulus18 (Pa) 1.93*1011 7.1*1010 

Hardness19 (HV) 22320 10721 

Poisson’s Ratio22 0.31 0.33 

Specific heat capacity23 
(J/(kg-°C)) 

480 875 

Thermal Conductivity24 
(W/m-K) 

16 167 

The ultra-precision machining community has generally accepted the premise 

that only some certain materials are “diamond turnable”25 (Evans and Bryan, 

                                            

17
 CTE stands for Coefficient of Thermal Expansion 

18
 Young's modulus is the ratio of stress (which has units of pressure) to strain (which is dimensionless), 

and so Young's modulus has units of pressure. 

19
 Vickers Pyramid Number is then determined by the ratio F/A, where F is the force applied to the 

diamond in kilograms-force and A is the surface area of the resulting indentation in square millimetres. 

20
 The hardness value for 347L stainless steel, Data from: 

http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MQ347AQ 

21
 The hardness value for Aluminium 6061-T6, Data from: 

http://asm.matweb.com/search/SpecificMaterial.asp?bassnum=MA6061t6. 

22
 Poisson's ratio, named after Siméon Poisson, is the negative ratio of transverse to axial strain. 

23
 Specific Heat Capacity is the measurable physical quantity of heat energy required to change the 

temperature of an object per unit mass of a material. 

24
 In physics, thermal conductivity (often denoted k, λ, or κ) is the property of a material to conduct heat. 



 

 

1991). The generally accepted diamond turnable and unturnable materials are 

listed in the Appendices Table B-1 The materials readily machinable by 

diamond turning (Gerchman, 1986) and Table B-2 The materials not readily 

machinable by diamond turning (Gerchman, 1986). It is well known that ferrous 

metals are not readily “diamond turnable” for the reason that carbon in the 

diamond tool chemically reacts with the substrate, leading to tool damage and 

dulling after short cut lengths. 

Since the hardness of the stainless steel is much higher than that of the 

aluminium alloy, the temperature rise of the diamond tools when turning the 

steel components is relatively higher than those of the aluminium ones, which 

increases the machining error due to the thermal expansion on the condition 

that the difference of CTE values of both materials is not vary large. 

The thermal conductivity of aluminium alloy is much higher than that of the 

stainless steel, which means it has better heat dissipation performance during 

the turning process. The wear of the diamond tools as well as the machining 

error due to the thermal expansion is greatly reduced when the aluminium alloy 

is being machined. Although the coolant, such as mineral oils and synthetic 

coolants26, can be used to reduce the temperature rise, the basic properties, 

such as hardness and thermal conductivity, of two different materials still have 

the dominant effects on the thermal performance during the manufacturing 

process. 

However, aluminium alloy has some poor apparent properties such as low 

hardness, low wear resistance and low corrosion resistance (Gu et al., 2011). 

So the protective layers, i.e. coatings, are used to enhance the limiting 

properties of the aluminium alloys. Nickel composites coatings are used in this 

project for the reason that aluminium can easily be coated with electroless 

                                                                                                                                

25
 Diamond turnable materials are those where the tool wear rate is low enough that reasonable areas of 

specular surface can economically be produced (Evans and Bryan, 1991). 

26
 Source: http://en.wikipedia.org/wiki/Cutting_fluid#Types 



 

 

nickel and, at elevated temperatures, aluminium is prone to diffuse and create a 

more integral bond (Forman et al., 2000). Electroless nickel coating is one of 

the most widely accepted coatings in engineering application due to its unique 

characteristics, including excellent corrosion, wear and abrasion resistance, 

ductility, lubrication, soldering, and electrical properties. These coatings are 

more uniform in thickness than electroplated nickel coatings (Sudagar et al., 

2013). 

 



 

 

3.2.2 THE COST ANALYSIS 

A manufacturing cost analysis of the two materials is listed in the Table 12 The 

cost analysis of materials of steel and aluminium: 

Table 12 The cost analysis of materials of steel and aluminium 

 Stainless Steel Aluminium alloy 

Material price (£/tonne) 140027 111928 

Each shaft material cost 
(£/10kg) 

14.00 11.19 

Manufacturing cost (£) 600 200 

Coating cost (£)   30029 

Total cost (£) 614.00 511.19 

From the table above, it is obviously concluded that the material price difference 

is not very noticeable due to the fact that the shaft of a hydrostatic system is not 

a heavy component. The average weight of the bearing shaft is about 5-10 

kilograms, which means the material weight cost is just a small part of the whole 

manufacturing cost. 

Traditionally, the machining of steel components has been the domain of 

grinding operation (Benga and Abrao, 2003). However precision hard turning 

has emerged as a viable alternative to grinding for finish machining of hardened 

steels (Sood et al., 2000). Since the early 1980s, hard turning has been applied 

in many cases in making bearings, gears, cams, shafts, axels, and other 

mechanical components. Compared with grinding technology, the greatest 

                                            

27
 The price is the world hot rolled coil stainless steel price in Nov. 2013, Data from: 

http://www.meps.co.uk/Stainless%20Prices.htm 

28
 The price is the LME official price in Dec. 2013, Data from: http://www.lme.com/en-gb/metals/non-

ferrous/aluminium/ 

29
 The rough cost estimation of electroless nickel composite coating on a single aluminium alloy bearing 

shaft and a thrust plate (Anonymous1997). Electroless nickel is not pure metal but includes other 

element(s) also derived from the reducing agent, such as phosphorus or boron, or elements such as 

thallium, lead or cadmium derived from other bath additives (Sudagar et al., 2013). 



 

 

difference between grinding and hard turning is that hard turning may induce a 

relatively deep surface compressive residual stress while achieving an 

equivalent or better surface finish, form, and size accuracy (Guo and Yen, 

2004). Polycrystalline cubic boron nitride (PCBN) cutting tools30 as well as some 

new ceramic tools supported by cutting fluid are now the most influential ways 

of machining a hard steel component. And even today, the processes of 

finishing the surfaces of the steel components are still a high-energy and cost-

intensive grinding or turning one (König et al., 1993). 

As mentioned before, there are some diamond turning machines in the 

laboratory of Cranfield University making ultra-precision machining operations 

feasible and at low cost. So Cranfield University is also researching coating 

techniques to apply to aluminium bearing components. 

Since steel has a good performance in hardness and anti-corrosion properties, 

the shaft made of steel does not need to have a coating. Only the aluminium 

alloy bearing needs the electroless nickel composite coating. The estimation of 

the cost of the nickel-based coating is about £300 for each aluminium bearing 

shaft. The estimation is based on a relative project of coating on a 3m 

aluminium reel conducted by another PhD researcher, Mr P. Xia, in Cranfield 

University. In his project, the market price of coating a 25cm diameter by 300cm  

long aluminium reel is about £3000. The bearing spindle shaft and the thrust 

plate in the hydrostatic bearing systems of the R2R production system is about 

the same diameter and one tenth of the length as the aluminium reel in the Xia’s 

project. The coating cost on the market mostly depends on the size of the 

components being coated. So the cost of the electroless nickel composite 

coating on a single aluminium alloy bearing shaft and a thrust plate is about 

£300. 

                                            

30
 PCBN cutting tools provide longer tool life than ceramics, when turning 100Cr6 bearing steel, for a 

cutting speed range between 100 and 180 m/min and a feed rate range between 0.06 and 0.22 mm/rev 

(Benga and Abrao, 2003). 



 

 

After the cost analysis of two materials, an initial conclusion has been made that 

the aluminium alloy has some advantages in production properties to reduce 

the manufacturing cost, but whether it can be used as a substitute of the steel 

shaft depends on the mechanical properties and the operational parameters 

during the actual working process of the hydrostatic bearing systems. The finite 

element modelling analysis and the experimental works in the next stage would 

show the feasibility of substituting the shaft material on the condition that no 

compromise of reducing the normal working specifications is allowed. 

 





 

 

4 THEORETICAL CALCULATION OF HYDROSTATIC 

BEARINGS 

4.1 CALCULATION FOR THE JOURNAL BEARING 

Based on the equations listed in the chapter of REVIEW OF THE 

THEORETICAL DESIGN APPLIED TO ULTRA-PRECISION SPINDLE, the 

basic operational parameters of the bearing system were worked using the tools 

of the MS Excel spreadsheet software package. 

For the journal bearing, its required radial working load is 1500N. Assuming the 

radial clearance is 20µm, the viscosity of the oil is 0.009Ns/m2(10.00cSt)31, to 

find the proper supply pressure (guarantee the value of the “Ultimate load 

capacity” being greater than 1500N), the supply pressure is at least 0.5MPa. 

For the safety consideration, the minimum supply pressure should be multiplied 

by a factor of safety of 3, so the supply pressure is 1.5MPa. The calculation 

process is illustrated in the following table: 

Table 13 The initial theoretical calculation of the journal bearing of the R2R 

hydrostatic bearing system (hL(av)=20μm, p=1.5MPa, N=0rpm, h=10.00cSt) 

Number of pockets: n= 5  

Diameter of bearing: dB= 0.099800 m 

Length of bearing: LB= 0.059000 m 

Width of axial land: ca= 0.065000 m 

Width of circumferential land: cc= 0.013000 m 

Radial clearance: hL(av)= 0.000020 m 

Depth of pocket: hp= 0.000200 m 

Supply Pressure: p1= 1500000 Pa 

Rotational speed: Nd= 0 rev/min 

Resistance ratio: ξ= 1  
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Viscosity of oil: η= 0.009 Ns/m2 

Density of oil: ρ= 900 kg/m3 

Specific Heat capacity of oil: Cm= 2000 J/(kg*K) 

Constant: k= 0.6  

Bearing shape factor: Φ= 0.753099  

Bearing shape factor: Ea= 0.559322  

Bearing shape factor: Ec= 0.170315  

Outflow resistance: Rod= 14000.931800 108Ns/m5 

Inflow resistance: Ri= 14000.931800 108Ns/m5 

Ultimate load capacity: Wu= 4544.042007 N 

Radial stiffness: Sl= 3.156621 108N/m 

Flow: Q= 2.671697 10-6M3/s 

Pumping power: Pp= 4.007546 W 

Frictional power: Pf= 0.00 W 

Temperature rise: Δt≈ 0.833 °C 

The working range of the rotational speed of the R2R hydrostatic bearing 

system is 0~300 rpm. By the Excel spreadsheet, the relationship between the 

rotational speed and the temperature rise for the journal bearing is showed in 

the follow table: 

Table 14 The theoretical relationship between the rotational speed and the 

temperature rise for the journal bearing of the R2R hydrostatic bearing system 

(hL(av)=20μm, p=1.5MPa, h=10.00cSt) 

The rotational speed (rpm) Temperature rise (°C) 

0 0.833 

50 0.953 

100 1.313 

150 1.911 

200 2.750 

250 3.828 

300 5.146 



 

 

Under the upper limit of the rotational speed, 300rpm, the temperature rise of 

the oil within the journal bearing will be 5.146°C. From the Table 11 The 

material property analysis of steel and aluminium, since the coefficient of 

thermal expansion of aluminium alloy is 2.3*10-5/°C, the thermal expansion can 

be calculated in Equation 29: 

Thermal expansion               Equation 29 

Where 

 L=Linear Expansion 

 L1=Initial Length 

 α=Coefficient of Linear expansion of the Material 

 T1=Initial Temperature 

 T2=Final Temperature 

For T2-T1=5.146°C and the initial length is 0.0499m, the linear expansion of the 

aluminium alloy is 5.906µm, which is about 30% of the radial clearance. 

However, the thermal expansion happens not only in the bearing shaft 

components, but also in the bearing house. Both of the rotor and housing 

expand as the temperature rises. 

As illustrated in the Table 10 The relationship within the parameters of the 

hydrostatic bearings, the temperature rise is determined by the Equation 25, 

Equation 26, Equation 27, Equation 28. To lower the temperature rise, the ways 

of increasing the supply pressure, increasing the radial clearance, decreasing 

the viscosity of the oil are all the appropriate choice. 

The following table shows several appropriate combinations of the parameters 

at the rotational speed of 300rev/min and the temperature rise being less than 

3ºC. 



 

 

Table 15 The appropriate combinations of the parameters to meet the demand of 

the journal bearing system (hL(av)=20μm, N=300rpm, temperature rise<3°C) 

hL(av)=20μm, N=300rpm Set 1 Set 2 Set 3 Set 4 Set 5 

Supply pressure (MPa) 0.4 0.5 1 1.5 3 

Viscosity of oil (Ns/m2) 0.0037 0.0041 0.0055 0.0063 0.0070 

Viscosity of oil (cSt) 4.11 4.56 6.11 7.00 7.78 

Temperature rise (°C) 2.955 2.963 2.971 2.946 2.971 

Ultimate load capacity (N) 1211.7 1514.7 3029.4 4544.0 9088.1 

The relationship between the temperature rise and the rotational speed under 

the 30µm clearance is showed in the following table: 

Table 16 The theoretical relationship between the rotational speed and the 

temperature rise for the journal bearing of the R2R hydrostatic bearing system  

(hL(av)=30μm, p=1.5MPa, h=10.00cSt) 

The rotational speed (rpm) Temperature rise (°C) 

0 0.833 

50 0.857 

100 0.928 

150 1.045 

200 1.210 

250 1.422 

300 1.682 

Obviously, when the shaft reaches 300rpm, the temperature rise is 1.682ºC, 

which is almost half of the limit temperature rise. So, the combination of the 

viscosity of 10.00cSt and the supply pressure of 1.5MPa meets the demand 

quite well. The following table shows several appropriate combinations of the 

parameters of the supply pressure and the viscosity at 300rev/min and the 

temperature rise being less than 3ºC. 

Table 17 The appropriate combinations of the parameters to meet the demand of 

the journal bearing system (hL(av)=30μm, N=300rpm, temperature rise<3°C) 

hL(av)=30μm, N=300rpm Set 1 Set 2 Set 3 Set 4 Set 5 



 

 

Supply pressure (MPa) 0.4 0.5 1 1.5 3 

Viscosity of oil (Ns/m2) 0.0084 0.0093 0.0124 0.0143 0.0159 

Viscosity of oil (cSt) 9.33 10.33 13.78 15.89 17.67 

Temperature rise (°C) 2.994 2.995 2.971 2.975 2.991 

Ultimate load capacity (N) 1211.7 1514.7 3029.4 4544.0 9088.1 

To have the theoretically minimum energy consumption, the ultimate load 

capacity shall be greater than 1500N, so the most energy-saving and efficient 

combination is “Set 2” for both hL(av)=20μm and hL(av)=30μm on the condition 

that the viscosity of oil is 4.56cSt and 10.33cSt respectively and the supply 

pressure is 0.5MPa. 

But in real operational condition, the supply pressure shall be set much higher 

due to the safety consideration. Timing a factor of safety of 3 to guarantee that 

there is no extra contact or friction under any extreme condition is a good way 

to protect the system. 1.5MPa has already been proved feasible in the Table 16 

The theoretical relationship between the rotational speed and the temperature 

rise for the journal bearing of the R2R hydrostatic bearing system  

(hL(av)=30μm, p=1.5MPa, h=10.00cSt). 

 



 

 

4.2 CALCULATION FOR THE THRUST BEARING 

For the thrust bearing, its required axial working load is 500N. Assuming the 

clearance at the lands of each thrust pad at no load is 20µm, the viscosity of the 

oil is 0.009Ns/m2 (10.00cSt), the rotational speed is 0 for the initial condition, the 

proper supply pressure (guarantee the value of the “Ultimate load capacity” 

being greater than 500N) shall be at least 0.3MPa, taking the factor of safety 3 

into consideration. The calculation is showed in the following table: 

Table 18 The initial theoretical calculation of the thrust bearings of the R2R 

hydrostatic bearing system (hL(av)=20μm, p=0.3MPa, N=0rpm, h=10.00cSt) 

Outer diameter of thrust pad: DB= 0.163725  m 

Outer diameter of annular pocket: DP= 0.145000  m 

Inner diameter of annular pocket: dP= 0.135000  m 

Inner diameter of thrust pad: dB= 0.120000  m 

Clearance at the lands of each thrust pad at no 
load: hd= 

0.000020  m 

Clearance at the pocket: hP= 0.000200  m 

Supply pressure: p1= 100000 Pa 

Speed of rotation: n= 0 rev/min 

Resistance ratio: ξ= 1  

Viscosity of the fluid: η= 0.009  Ns/m2 

Density of oil: ρ= 900 kg/m3 

Specific Heat capacity of oil: Cm= 2000 J/(kg*K) 

Ratio ξ2/ξ1 for a pair of opposed plane pads or 
rotary thrust bearings: Ξ= 

1  

Ratio Av2/Av1 for a pair of opposed plane pads 
or rotary thrust bearings: Τ= 

1  

Virtual area of the thrust pad: Av2=Av1= 0.005935  M2 

Ro(1)= 26.108838  1010Ns/m5 

Ro(2)= 25.319602  1010Ns/m5 

Outflow resistance: Ro(net)= 12.854082  1010Ns/m5 

Inflow resistance: Ri= 12.854082  1010Ns/m5 

Ultimate thrust capacity: T(net)= 1582.780055  N 



 

 

Stiffness: ST= when h(1)=hd 1.335471  108N/m 

Flow: Q= 1.166944  10-6M3/s 

Total Pumping power: Pp= 0.700167  W 

Total Frictional power: Pf= 0.000000  W 

Temperature rise: Δt≈ 0.167 K 

The working range of the rotational speed of the R2R hydrostatic bearing 

system is 0~300 rpm. The relationship between the rotational speed and 

temperature rise for the thrust bearing is shown in the following table: 

Table 19 The theoretical relationship between the rotational speed and the 

temperature rise for the thrust bearings of the R2R hydrostatic bearing system 

(hd=20µm, p=0.3MPa, h=10.00cSt) 

The rotational speed (rpm) Temperature rise (°C) 

0 0.167 

50 0.643 

100 2.071 

150 4.451 

200 7.784 

250 12.069 

300 17.305 

The temperature rise of the oil within the thrust bearing at 300rpm is 17.305°C. 

From the Table 11 The material property analysis of steel and aluminium, the 

coefficient of thermal expansion of aluminium alloy is 2.3*10-5/°C, the thermal 

expansion can be calculated by Equation 29. 

At T2-T1=17.305°C and the initial length of 0.0537m, the linear expansion of the 

aluminium alloy is 21.37µm, which is larger than the radial clearance. So this 

temperature rise is not allowed for it will cause the collapse of the hydrostatic 

bearing system at 300rpm. As a result, this specific combination of the 

parameters for the journal bearing is not recommended. 

As explained in the previous texts, increasing the supply pressure, increasing 

the radial clearance, or decreasing the viscosity of the oil are the ways to 

improve the hydrostatic bearing system’s heat condition. The maximum 



 

 

temperature rise should be controlled at 3ºC. The following table shows several 

appropriate combinations of the parameters of the supply pressure and the 

viscosity at 300rev/min, 20µm and the temperature rise being less than 3ºC. 

Table 20 The appropriate combinations of the parameters to meet the demand of 

the thrust bearing system (hd=20μm, N=300rpm, temperature rise<3ºC) 

hd=20μm, N=300rpm Set 1 Set 2 Set 3 Set 4 Set 5 

Supply pressure (MPa) 0.1 0.2 0.5 1 2 

Viscosity of oil (Ns/m2) 0.0021 0.0030 0.0046 0.0062 0.0077 

Viscosity of oil (cSt) 2.33 3.33 5.11 6.89 8.56 

Temperature rise (°C) 2.855 2.968 2.964 2.996 2.993 

Ultimate thrust capacity (N) 527.6 1055.2 2638.0 5275.9 10551.9 

If the initial clearance is 30μm, the relationship between the temperature rise 

and the rotational speed is showed in the following table: 

Table 21 The theoretical relationship between the rotational speed and the 

temperature rise for the thrust bearings of the R2R hydrostatic bearing system 

(hd=30µm, p=0.3MPa, h=10.00cSt) 

The rotational speed (rpm) Temperature rise (°C) 

0 0.167 

50 0.262 

100 0.548 

150 1.024 

200 1.691 

250 2.549 

300 3.597 

The temperature rise slightly exceeds 3ºC. Whether this combination of supply 

pressure (0.3MPa) and viscosity (10.00cSt) is suitable or not should be 

analysed by further experimental works.  

The following table shows several appropriate combinations of the parameters 

of the supply pressure and the viscosity at 300rev/min, and the temperature rise 

being less than 3ºC. 



 

 

Table 22 The appropriate combinations of the parameters to meet the demand of 

the thrust bearing system (hd=30μm, N=300rpm, temperature rise<3ºC) 

hd=30μm, N=300rpm Set 1 Set 2 Set 3 Set 4 Set 5 

Supply pressure (MPa) 0.1 0.2 0.5 1 2 

Viscosity of oil (Ns/m2) 0.0048 0.0067 0.0103 0.0138 0.0172 

Viscosity of oil (cSt) 5.33 7.44 11.44 15.33 19.11 

Temperature rise (°C) 2.983 2.963 2.974 2.975 2.991 

Ultimate thrust capacity (N) 527.6 1055.2 2638.0 5275.9 10551.9 

To meet the load capacity demand, the ultimate thrust capacity should be 

greater than 500N. Theoretically, most energy-saving and efficient combination 

is Set 1 for both hd=20μm and hd=30μm at 2.33cSt, 5.33cSt respectively and 

0.1MPa. 

But in real operational condition, the supply pressure needs to be set much 

larger, setting a factor of safety of 3, to guarantee not any extra contact or 

friction under some extreme condition. However, the 0.3MPa is still considered 

to be low for the normal supply pressure of the hydrostatic bearing system, 

which is about 1~3MPa and it is not suitable in the condition of 20µm~30µm 

and 10cSt. So the feasibility of larger supply pressure of the thrust bearings as 

well as the viscosity, such as 15cSt, needs to be analysed by further 

experimental works. 

 



 

 

5 FEA OF BEARING COMPONENTS 

FEA (finite element analysis) is a traditional analysis method to analyse the 

dynamic behaviour of the fluid within the hydrostatic thrust bearing about three 

decades ago (Prabhu and Ganesan, 1984). Finite Element Modelling and 

Analysis is considered as a good tool for predicting the system’s behaviour 

related to the required performance in the high-precision field (Mekid, 2000). It 

has a good approximation to the real experimental results to predict the real 

condition of the forced components (Silva Mamede et al., 2013). 

Finite element analysis is helpful to better understand and predict various 

variables in the hydrostatic bearing systems (Kagnaya et al., 2014). For 

example, static deformation has been achieved by FEA method to determine 

the deformation of the mechanical parts. 

FEA software available on the market includes Abaqus32, ANSYS33, LUSAS34, 

Nastran 35  et al. The reason why this individual research project chooses 

ANSYS as the analysis software is because it is easier to use for the beginner 

and it doesn’t require users to have high-level understanding of either 

mechanics or finite elements necessarily. 

For a level of application engineering analysis, the ANSYS provides complete 

material data information, does well with minimal user input, easily handles the 

complex geometries and creates very little mesh generation hassles, etc. 

Solutions can be done in short orders and the parameters of the mesh quality 

can be adjusted simply. So the ANSYS is the very suitable software to solve 

this closely industrial-related research project of simulating the deformation 

condition of the hydrostatic bearing systems. 

                                            

32
 Abaqus is an advanced Franco-USA software from SIMULIA, owned by Dassault Systemes. 

33
 ANSYS is a USA software. 

34
 LUSAS is a UK software. 

35
 Nastran is a USA software, from MSC Software. 



 

 

5.1 MODELLING OF THE BEARING SHAFT AND THRUST 

PLATES 

The following two pictures are the ANSYS FEA modelling of the shaft and the 

thrust plate of the hydrostatic bearing system for the plastic electronics reel to 

reel production system. All the dimensions come from the original drafts of the 

bearing system36 designed by Cranfield University. 

Figure 12 The initial design of the shaft of the hydrostatic bearing system for the 

ultra-precision plastic electronics production systems (Separated) 

 

The two parts are bolted together to be a hydrostatic bearing with a journal 

bearing in the middle and two identical thrust bearings opposite to each other, 

which was showed in the Figure 13 The initial design of the shaft of the 

                                            

36
 The copyright of the drafts belongs to the Precision Engineering Institute of Cranfield University. 



 

 

hydrostatic bearing system for the ultra-precision plastic electronics production 

systems (Bolted together). 

Figure 13 The initial design of the shaft of the hydrostatic bearing system for the 

ultra-precision plastic electronics production systems (Bolted together) 

 

For the meshing part, the different element-size meshing conditions are showed 

in the following figures. 



 

 

Figure 14 0.001m element size meshing 

 

For this very small element size, the solution process of the ANSYS software 

will take quite a long time. And sometimes there is some error with the final 

calculation results. So this mesh element size is not recommended. 

Figure 15 0.01m element size meshing 

 

From the figure above, the meshing element size is relatively coarse. The FEA 

modelling results based on this element size are showed in the following figure. 



 

 

Figure 16 The FEA results with element size of 0.01m 

 

The following figure shows the meshing condition of element size of 0.005m, 

which is the mid value of 0.01m and 0.001m. 

Figure 17 0.005m element size meshing 

 

The FEA modelling results under the same pressure condition of the previous 

simulation are showed in the following figure. 



 

 

Figure 18 The FEA results with element size of 0.005m 

 

From the figures above, the simulated deformation conditions of both the 

0.005m element size and 0.001m element are almost the same and the 0.005m 

element size simulation costs less time and less computer work. So the 

meshing size of 0.005m is chosen as the final simulation value. 

The fixed (constrained) surface is chosen as the blue highlighted surface of the 

bearing spindle in Figure 19 The fixed support face of the bearing spindle. Onto 

the spindle is bolted a motor at the opposite side to the indicated blue shaft 

surface. The blue surface is the mounting surface and it is considered as a non-

deformation surface. For this reason, this surface is chosen as the fixed 

(constrained) surface. The fixed support surface is the boundary condition of the 

FEA modelling and will make the simulation results convergent values. 



 

 

Figure 19 The fixed support face of the bearing spindle 

 

 



 

 

5.2 THE FEA DEFORMATION ANALYSIS FOR THE 

HYDROSTATIC BEARING SYSTEM 

The Static Structural module is used in this FEA process. Although the pocket 

pressure will change in working condition, the maximum supply pressure is 

used to analyse the maximum deformation of the components. Under max-

pressure condition, the Static Structural module of ANSYS software is the most 

suitable module for solving the problem. Because it not only reflects the max-

pressure condition, but also greatly reduces the calculation time of solution 

process.



 

 

5.2.1.1 THE FEA DEFORMATION ANALYSIS FOR THE JOURNAL BEARING 

The red area in Figure 20 The journal bearing area is the journal bearing area to 

be analysed. 

Figure 20 The journal bearing area under the pressure of 3MPa 

 

As shown in Table 15 The appropriate combinations of the parameters to meet 

the demand of the journal bearing system (hL(av)=20μm, N=300rpm, 

temperature rise<3°C), the supply pressure is chosen as the largest one, 3MPa, 

and the material of the bearing is selected as aluminium alloy, the total 

deformation of the component is showed in the Figure 21 The total deformation 

of the journal bearing under the pressure of 3MPa below. 



 

 

Figure 21 The total deformation of the journal bearing under the pressure of 

3MPa 

 

From the figure above, the maximum deformation, i.e. the red part, happens in 

the middle of the bearing thrust plate, whose value is about 2.973μm. Since it is 

an inward deformation, it will not cause extra wear or friction to the inner surface 

of the pocket house. In the area of green or yellow colour, the deformation is 

even smaller, about 2μm and also inward direction. 

So from the FEA modelling analysis, the aluminium bearing shaft is capable of 

the supply pressure of 3MPa and its deformation will not influence the normal 

working of the hydrostatic bearing system. But the deformation will slightly 

increase the flow rate at some level due to the small increase of the radial 

clearance. 

 



 

 

5.2.1.2 THE FEA DEFORMATION ANALYSIS FOR THE THRUST BEARING 

The middle circular ring of the red area in the following figure is the thrust 

bearing pocket area, and the inner and outer rings of the red area is the land 

area of the thrust bearing plate. The pocket area and the land area will be 

applied different pressure to analyse the deformation condition due to the 

decrease of the pocket pressure. 

Figure 22 The thrust bearing area under the pocket area pressure of 2MPa and 

the average land area pressure of 1MPa 

 

As recommended in the Table 20 The appropriate combinations of the 

parameters to meet the demand of the thrust bearing system (hd=20μm, 

N=300rpm, temperature rise<3ºC), the supply pressure in the pocket area is 

2MPa, the average pressure in the land area is 1MPa, and the material of the 

bearing is selected as aluminium alloy, the total deformation of the component 

is shown in the Figure 23 The total deformation of the thrust bearing under the 

pocket area pressure of 2MPa and the average land area pressure of 1MPa 

below. 



 

 

Figure 23 The total deformation of the thrust bearing under the pocket area 

pressure of 2MPa and the average land area pressure of 1MPa 

 

From the figure above, the maximum deformation, i.e. the red part, happens in 

the edge of the thrust plate, 5.833μm, which is about one-fourth of the 

clearance of 20μm. According to the FEA modelling analysis, the aluminium 

bearing thrust plate is capable of the pocket area pressure of 2MPa and the 

land area pressure of 1MPa. Its total deformation will not influence the normal 

working of the hydrostatic bearing system, but will increase the flow rate at 

some level due to the increase of the clearance between the land area and the 

inner surface of the bearing house. 

 



 

 

5.2.1.3 THE FEA DEFORMATION ANALYSIS FOR BOTH THE THRUST 

BEARINGS AND THE JOURNAL BEARING 

Combining two pressure conditions together, 3MPa on the journal bearing area, 

2MPa on the thrust plate pocket area, and 1MPa on the thrust plate land area, 

the pressure condition is shown in Figure 24 The overall pressure condition for 

the combination of journal bearing pressure 3MPa, thrust plate pocket area 

pressure 2MPa, and the thrust plate land area pressure 1MPa. 

Figure 24 The overall pressure condition for the combination of journal bearing 

pressure 3MPa, thrust plate pocket area pressure 2MPa, and the thrust plate land 

area pressure 1MPa 

 

The total deformation analysis solution of the bearing system is showed in the 

following figure. 



 

 

Figure 25 The total deformation for the combination of journal bearing pressure 

3MPa, thrust plate pocket area pressure 2MPa, and the thrust plate land area 

pressure 1MPa 

 

The maximum deformation happens in the edge of the thrust plate, which is 

about 6.853µm. 

Under 20µm and less than 3ºC, the 6.853µm is about 34.3% of the clearance. 

As a result, whether the pressure and the oil viscosity are appropriate or not 

needs to be analysed in further experimental works. 

For the clearance of 30µm and the temperature rise smaller than 3ºC, the 

6.853µm is about 22.8% of the clearance. Similarly, whether the combination is 

feasible or not needs to be analysed in further experimental works. 

Considering the 3 times factor of safety, the pressure on the journal area is 

1.5MPa, the pressure on the thrust pocket area is 0.3MPa and the pressure on 

the thrust land area is 0.15MPa, the overall pressure condition is shown in 

Figure 26 The overall pressure condition for the combination of journal bearing 

pressure 1.5MPa, thrust plate pocket area pressure 0.3MPa, and the thrust 

plate land area pressure 0.15MPa. 



 

 

Figure 26 The overall pressure condition for the combination of journal bearing 

pressure 1.5MPa, thrust plate pocket area pressure 0.3MPa, and the thrust plate 

land area pressure 0.15MPa 

 

The total deformation analysis solution of the bearing system is shown in Figure 

27 The total deformation for the combination of journal bearing pressure 

1.5MPa, thrust plate pocket area pressure 0.3MPa, and the thrust plate land 

area pressure 0.15MPa. Due to the neutralization of the displacement 

generated separately by the pressure on journal bearing and the thrust bearing, 

the maximum deformation, about 1.829µm, does not happen on the edge of the 

thrust plate but in the middle of it, which will cause less effect on the normal 

working process and will probably not cause the extra friction or contact inside 

the bearing house. So, the combination of relatively larger journal bearing 

pressure and smaller thrust bearing pressure will tend to neutralize the 

deformation conditions and partly strengthen the performance of the hydrostatic 

bearing system. 

  



 

 

Figure 27 The total deformation for the combination of journal bearing pressure 

1.5MPa, thrust plate pocket area pressure 0.3MPa, and the thrust plate land area 

pressure 0.15MPa 

 



 

 

5.2.1.4 THE FEA ANALYSIS RESULTS OF THE TABLES OF SOME SETS 

OF THE COMBINATIONS OF SUPPLY PRESSURE AND OIL 

VISCOSITY 

After the optimization works done in the previous sections, the viscosity of oil is 

selected as two values, 5cSt and 10cSt. For each of these two viscosities, set 

the journal supply pressure as 1.5MPa, 3MPa and 5MPa, the thrust bearing 

pocket pressure as 0.3MPa, 0.5MPa and 1MPa. 

Set da, db, and dc as three observation points to analyse the deformation 

condition of the hydrostatic bearing, which is showed in the following figure. da 

is the radial clearance of the journal bearing, db is the minimum deformation 

place of the thrust plate and dc is the maximum deformation place of the thrust 

plate. 

Figure 28 Three deformation analysis points 

 



 

 

According to Equation 8 and Equation 17, the value of the flow rate is 

proportional to the cube of the bearing clearance. So after the deformation, the 

actual clearances both in journal bearing and thrust bearing will be larger than 

the nominal clearance, which means the actual flow rate will be larger than the 

nominal flow rate as well as the temperature rise is smaller than the nominal 

value. So the values of the nominal clearance, actual clearance, nominal flow 

rate, actual flow rate, nominal temperature rise, and actual temperature rise for 

both journal bearing and thrust bearing are also showed in the FEA results 

tables. 

For the Set 1 analysis (hc=20µm, η=5cSt Pjournal=1.5MPa, Pthrust pocket=0.3MPa, 

Pthrust land=0.15MPa, N=300rpm), as showed in the follow figures, the 

deformation of da=1.307µm, db=1.437µm, and dc=1.307µm. 

Figure 29 The pressure condition for Set 1 analysis 

 

The flow rate is show in the following table. 

Table 23 The FEA results table for set 1 analysis 

η=5cSt,N=300rpm 

Pjournal=1.5MPa,Pthrust=0.3MPa 

Clearance 
(µm) 

Flow rate 
(L/min) 

Temperature 
rise (ºC) 



 

 

Journal 
bearing 

Nominal value 20 0.321 1.911 

Actual value 21.30737 0.388 1.670 

Thrust 
bearing 

Nominal value 20 0.140 4.451 

Actual value 21.37238 0.171 3.459 

Figure 30 The deformation solution for Set 1 analysis 

 

From the Table 23 The FEA results table for set 1 analysis, it is concluded that 

the actual flow rate is larger and the actual temperature rise is smaller than the 

nominal ones due to the deformation of the bearing component. So at this level, 

the appropriate deformation is somehow beneficial to the hydrostatic bearing 

systems. 

The following table shows all sets of the FEA analysis results. The clearances 

are 20µm and 30µm, the viscosities are 5cSt and 10cSt, the rotational speed is 

300rpm, and the supply pressure combinations are Pjournal=1.5MPa & Pthrust 

pocket=0.3MPa, Pjournal=3MPa & Pthrust pocket=1MPa, and Pjournal=5MPa & Pthrust 

pocket=2MPa. 

                                            

37
 Actual journal bearing clearance=nominal journal bearing clearance + da 

38
 Actual thrust bearing clearance=nominal thrust bearing clearance + 0.5*(db + dc) 



 

 

Table 24 The FEA analysis results 

Rotational speed 
N=300rpm 

Bearing 
clearance (µm) 

 20  30  

Viscosity (cSt)  5  10  5  10  

Journal 
bearing 

Nominal 
value 

Pressure (MPa) 1.5 3 5 1.5 3 5 1.5 3 5 1.5 3 5 

Clearance (µm) 20 20 20 20 20 20 30 30 30 30 30 30 

Flow rate (L/min) 0.321 0.641 1.069 0.160 0.321 0.534 1.082 2.164 3.607 0.541 1.082 1.803 

Temperature rise 
(ºC) 

1.911 2.206 3.101 5.146 3.823 4.072 1.045 1.773 2.841 1.682 2.091 3.032 

Actual 
value 

da (µm) 1.307 2.952 5.958 1.307 2.952 5.958 1.307 2.952 5.958 1.307 2.952 5.958 

Clearance (µm) 21.307 22.952 25.958 21.307 22.952 25.958 31.307 32.952 35.958 31.307 32.952 35.958 

Flow rate (L/min) 0.388 0.969 2.337 0.194 0.485 1.168 1.230 2.868 6.211 0.615 1.434 3.105 

Temperature rise 
(ºC) 

1.670 1.977 2.891 4.179 2.908 3.233 1.012 1.739 2.809 1.548 1.958 2.901 

Thrust 
bearing 

Nominal 
value 

Pressure (MPa) 0.3 1 2 0.3 1 2 0.3 1 2 0.3 1 2 

Clearance (µm) 20 20 20 20 20 20 30 30 30 30 30 30 

Flow rate (L/min) 0.140 0.467 0.934 0.070 0.233 0.467 0.473 1.575 3.151 0.236 0.788 1.575 

Temperature rise 
(ºC) 

4.451 1.841 1.754 17.305 5.697 3.682 1.024 0.813 1.240 3.597 1.585 1.626 

Actual 
value 

db (µm) 1.437 3.543 6.499 1.437 3.543 6.499 1.437 3.543 6.499 1.437 3.543 6.499 

dc (µm) 1.307 3.838 7.041 1.307 3.838 7.041 1.307 3.838 7.041 1.307 3.838 7.041 

Clearance (µm) 21.372 23.691 26.770 21.372 23.691 26.770 31.372 33.691 36.770 31.372 33.691 36.770 

Flow rate (L/min) 0.171 0.776 2.239 0.085 0.388 1.119 0.540 2.231 5.801 0.270 1.116 2.901 

Temperature rise 
(ºC) 

3.459 1.212 1.313 13.334 3.180 1.919 0.885 0.718 1.169 3.041 1.206 1.341 



 

 

From the table above, the deformation of the bearing components due to the 

large pressure exerted on their surfaces will affect the actual performance of the 

hydrostatic bearing systems. The actual flow rate is larger than the nominal flow 

rate and the actual temperature rise is smaller than the nominal one due to the 

increasing flow rate of the oil. 

However the increasing bearing clearance has a limited influence on the 

temperature rise of the bearing systems. When the original bearing clearance is 

large, the influence on the temperature rise by increasing the bearing clearance 

is relatively small compared with the situation that the original bearing clearance 

is relatively small as illustrated in the following table: 

Table 25 The comparison between the influences on the temperature rise by 

increasing bearing clearance at different initial bearing clearance 

Journal 
bearing 

Viscosity (cSt) 10 10 

Bearing pressure (MPa) 5 5 

Nominal bearing clearance (µm) 20 30 

Actual bearing clearance (µm) 25.958 35.958 

Nominal flow rate (L/min) 0.534 1.803 

Actual flow rate (L/min) 1.168 3.105 

Nominal temperature rise (ºC) 4.072 3.032 

Actual temperature rise (ºC) 3.233 2.901 

Thrust 
bearing 

Viscosity (cSt) 10 10 

Bearing pressure (MPa) 2 2 

Nominal bearing clearance (µm) 20 30 

Actual bearing clearance (µm) 26.770 36.770 

Nominal flow rate (L/min) 0.467 1.575 

Actual flow rate (L/min) 1.119 2.901 

Nominal temperature rise (ºC) 3.682 1.626 

Actual temperature rise (ºC) 1.919 1.341 

From the table above, the actual temperature rise drops more at the initial 

bearing clearance of 20µm than that of 30 µm. 



 

 

For the journal bearing, the actual temperature rise drops about 20.6% at the 

initial clearance of 20µm and only 4.3% at the initial clearance of 30µm. 

For the thrust bearing, the actual temperature rise drops about 47.9% at the 

initial clearance of 20µm and only 17.5% at the initial clearance of 30µm. 

By the definition of the equation of the temperature rise, Equation 11 and 

Equation 20, the two main source of the temperature rise is pumping power and 

the frictional power. 

Under the larger initial clearance condition, the larger initial flow rate due to the 

larger initial bearing clearance almost brings all the frictional power generated 

by the frictional force due to the friction between the bearing surfaces and the 

oil even before the deformation happens, so the main energy source of the 

temperature rise is just the pumping power. The larger the pumping power is, 

the higher the supply pressure will be, and the higher the temperature rise will 

be regardless of the subsequent increasing bearing clearance due to the 

deformation of the bearing components. 

For the smaller initial clearance cases, the frictional power is partially carried 

away by the relatively small flow rate, so the rest of the frictional power as well 

as the pumping power are both the main sources of the temperature rise. When 

the bearing clearance increases, the flow rate also increases and then carries 

away more frictional power. So in this condition, the deformation of the bearing 

part is beneficial to lower the temperature rise without at the cost of losing the 

accuracy by increasing the initial bearing clearance. 

As a conclusion, the influence to reduce the temperature rise by increasing the 

bearing clearance is limited. Within a specific range of initial bearing clearance, 

the deformation of the bearing part at the supply pressure has a relatively large 

influence on reducing the temperature rise of the bearing system. But when the 

initial bearing clearance exceeds a specific value, which is about 30µm in this 

case, the influence on reducing the temperature rise under the deformation 

condition is greatly diminished for there is no more extra frictional power to be 

carried away at an unchanged rotational speed. 



 

 

For the following table, when the initial clearance is 20 µm, the viscosity of oil is 

10cSt, the journal supply pressure is 1.5MPa, and the thrust bearing supply 

pressure is 0.3MPa, the temperature rise performance is not very satisfied, 

being 4.179ºC and 13.334ºC respectively, which does not meet the requirement 

of the temperature rise being less than 3 ºC. So in a real experimental, this 

combination of the input parameters shall be avoided. 

Table 26 The flow rate and temperature rise conditions at low supply pressure 

and high oil viscosity 

Journal 
bearing 

Viscosity (cSt) 10 

Bearing pressure (MPa) 1.5 

Nominal bearing clearance (µm) 20 

Actual bearing clearance (µm) 21.307 

Nominal flow rate (L/min) 0.160 

Actual flow rate (L/min) 0.194 

Nominal temperature rise (ºC) 5.146 

Actual temperature rise (ºC) 4.179 

Thrust 
bearing 

Viscosity (cSt) 10 

Bearing pressure (MPa) 0.3 

Nominal bearing clearance (µm) 20 

Actual bearing clearance (µm) 21.372 

Nominal flow rate (L/min) 0.070 

Actual flow rate (L/min) 0.085 

Nominal temperature rise (ºC) 17.305 

Actual temperature rise (ºC) 13.334 

From the Table 24 The FEA analysis results, most of the actual temperature 

rise is less than 3ºC. The experimental input parameters can be chosen not 

only according to the ANSYS analysis results but also to the availability of the 

actual experimental equipment of different parameters, because for most of the 

combinations in the result analysis, the temperature rise lies within the 

requirement range less than 3ºC. 

 



 

 

6 EXPERIMENTAL PROCEDURES 

6.1 THE EXPERIMENTAL INPUT PARAMETERS SELECTIONS 

BASED ON THE THEORETICAL CALCULATIONS AND 

FINITE ELEMENT ANALYSIS 

After the theoretical calculations and FEA work, the experimental input 

parameters could be decided preliminarily. 

6.1.1 THE OIL TYPE 

From the Table 24 The FEA analysis results, except the extreme condition 

illustrated in the Table 26 The flow rate and temperature rise conditions at low 

supply pressure and high oil viscosity, whose temperature rise greatly exceeds 

3ºC, most of the results are suitable for the normal operational conditions of the 

system. 

The lower viscosity is recommended to be used in the hydrostatic bearing 

system such as 10cSt or 15cSt. 

6.1.2 THE SUPPLY PRESSURE 

For the lower pressure supply, journal bearing pressure 3MPa and thrust 

bearing pressure 1.5MPa, the temperature rise is always larger than 3ºC, so 

this combination can be removed. 

For the journal bearing pressure 2MPa and thrust bearing pressure 1MPa or the 

journal bearing pressure 5MPa and thrust bearing pressure 2MPa, the 

temperature rise is appropriate. The higher supply pressure means the higher 

energy consumption and pumping power generation. And the temperature rise 

of higher supply pressure is higher than that of lower supply pressure under 

some conditions. So the 5MPa and 2MPa combination can also be ignored. 

As a result, the combination of journal bearing pocket pressure 3MPa and thrust 

bearing pocket pressure 1MPa is chosen as the experimental supply pressure. 

Considering the resistance ratio of journal resistor is 1 and thrust resistor is 5, 

the supply can be set at about 6MPa (60Bar) to get the pocket pressure of 

3MPa and 1MPa respectively. 



 

 

6.1.3 THE BEARING CLEARANCE 

The bearing clearance is closely related to the radial stiffness and the 

manufacturing cost. The larger the bearing clearance is, the lower the radial 

stiffness and the manufacturing cost will be. Apparently, the lower cost is good 

for the project, but the low stiffness is not beneficial to the system. 

For the journal bearing, the relationship within radial clearance, radial stiffness 

and temperature rise is showed in the following table. 

Table 27 The relationship between the radial clearance, radial stiffness and 

temperature rise of the journal bearing (p=3MPa, ŋ=10.00cSt, N=300rpm) 

Radial clearance(µm) Radial stiffness (108N/m) Temperature rise (°C) 

10 12.626 36.308 

20 6.313 3.823 

25 5.051 2.548 

30 4.209 2.091 

40 3.157 1.800 

50 2.525 1.721 

60 2.104 1.693 

For the journal loading condition of 1500N, the displacement of the bearing 

shaft under the radial stiffness of 4.209*108N/m is 3.563µm, which is an 

acceptable value compared with original radial clearance of 30µm. And the 

temperature rise for 30µm clearance is 2.091ºC, which is also an acceptable 

value. The suitable radial clearance for journal bearing is 30µm. 

For the thrust bearing, the relationship within radial clearance, radial stiffness 

and temperature rise is showed in the following table. 

Table 28 The relationship between the thrust bearing clearance, stiffness and 

temperature rise of the thrust bearing (p=1MPa, ŋ=10.00cSt, N=300rpm) 

Clearance (µm) Stiffness (108N/m) Temperature rise (°C) 

10 8.903 87.725 

20 4.452 5.697 



 

 

25 3.561 2.676 

30 2.968 1.585 

40 2.226 0.885 

50 1.781 0.692 

60 1.484 0.622 

For the thrust loading condition of 500N, the displacement of the thrust plate 

under the stiffness of 2.968*108N/m is 1.685µm, which is an acceptable value 

compared with the original clearance of 30µm. And the temperature rise for 

30µm is 1.585ºC, which is also an acceptable value. The suitable clearance for 

thrust bearing is also 30µm. 

There is still another choice that the bearing clearance could be chosen as the 

mid value of 20µm and 30µm, which is 25µm. The theoretical calculation table 

is showed in the following table. 

Table 29 The theoretical calculation table when the clearance is 25µm 

Rotational 
speed 

N=300rpm 

Bearing clearance 
(µm) 

 25  

Viscosity (cSt)  5  10  

Jour
nal 

bear
ing 

Nominal 
value 

Pressure (MPa) 1.5 3 5 1.5 3 5 

Clearance (µm) 25 25 25 25 25 25 

Flow rate (L/min) 0.626 1.252 2.087 0.313 0.730 1.044 

Temperature rise (ºC) 1.274 1.887 2.910 2.596 2.385 3.307 

Actual 
value 

da (µm) 1.307 2.952 5.958 1.307 2.952 5.958 

Clearance (µm) 26.307 27.952 30.958 26.307 27.952 30.958 

Flow rate (L/min) 0.730 1.750 3.963 0.365 0.875 1.982 

Temperature rise (ºC) 1.193 1.807 2.834 2.270 2.230 3.002 

Thr
ust 

bear
ing 

Nominal 
value 

Pressure (MPa) 0.3 1 2 0.3 1 2 

Clearance (µm) 25 25 25 25 25 25 

Flow rate (L/min) 0.274 0.912 1.823 0.137 0.456 0.912 

Temperature rise (ºC) 1.933 1.086 1.376 7.233 2.676 2.171 

Actual 
value 

db (µm) 1.437 3.543 6.499 1.437 3.543 6.499 

dc (µm) 1.307 3.838 7.041 1.307 3.838 7.041 



 

 

Clearance (µm) 26.372 28.691 31.770 26.372 28.691 31.770 

Flow rate (L/min) 0.321 1.378 3.742 0.161 0.689 1.871 

Temperature rise (ºC) 1.596 0.863 1.214 5.884 1.784 1.521 

From the data above, although the clearance is selected as the mid value of 

20µm and 30µm, the most suitable combination is still 10cSt, journal bearing 

pressure 3MPa and thrust bearing pressure 1MPa. And according to the Table 

27 The relationship between the radial clearance, radial stiffness and 

temperature rise of the journal bearing (p=3MPa, ŋ=10.00cSt, N=300rpm) and 

Table 28 The relationship between the thrust bearing clearance, stiffness and 

temperature rise of the thrust bearing (p=1MPa, ŋ=10.00cSt, N=300rpm), the 

clearance of 25µm can always meet all the requirement of journal radial 

stiffness, thrust axial stiffness and the temperature rise. So if the experimental 

budget is sufficient, the hydrostatic bearing systems of the bearing clearance of 

25µm are also strongly recommended to be manufactured to analyse and test 

the systems in the further experimental works. 

6.1.4 THE EXPERIMENTAL INPUT PARAMETERS COMBINATION 

As a general conclusion based on the initial calculation, ANSYS modelling 

simulation and the initial data analysis, one of the theoretically suitable input 

parameters is listed in the following table: 

Table 30 One of the suitable experimental input parameters combinations 

Experimental input parameters selections  

Oil viscosity 10 cSt 

Journal bearing supply pressure 3 MPa 

Thrust bearing supply pressure 1 MPa 

Bearing clearance 25 or 30 µm 

Rotational speed 300 rpm 

If the budget is sufficient, the hydrostatic bearing systems of both 25µm 

clearance and 30µm clearance or the oil viscosity of both 10cSt and 15cSt shall 

be tested to prove their working performance. 



 

 

6.1.5 THE POWER CONSUMPTION CONDITION UNDER THE 

RECOMMENDED COMBINATION 

Under 25µm, 300rpm, 10cSt, journal bearing pressure 3MPa and thrust bearing 

pressure 1MPa, the power consumption condition is showed in the following 

table. 

Table 31 The power consumption condition under the recommended 

combination (h=25µm, N=300rpm, ŋ=10cSt, Pjournal=3MPa, Pthrust=1MPa) 

 Pumping power Frictional power Total power 

Journal bearing 31.31W 16.56W 47.87W 

Thrust bearing 15.19W 28.99W 44.18W 

Under 30µm, 300rpm, 10cSt, journal bearing pressure 3MPa and thrust bearing 

pressure 1MPa, the power consumption condition is showed in the following 

table. 

Table 32 The power consumption condition under the recommended 

combination (h=30µm, N=300rpm, ŋ=10cSt, Pjournal=3MPa, Pthrust=1MPa) 

 Pumping power Frictional power Total power 

Journal bearing 54.10W 13.77W 67.87W 

Thrust bearing 26.26W 24.32W 50.58W 

If the deformation is taken into consideration, after the ANSYS modelling, the 

new tables are showed below. 

Table 33 The power consumption condition under the recommended 

combination after ANSYS modelling (h=25µm, h’journal=27.952µm, 

h’thrust=28.691µm, N=300rpm, ŋ=10cSt, Pjournal=3MPa, Pthrust=1MPa) 

 Pumping power Frictional power Total power 

Journal bearing 43.76W 14.79W 58.55W 

Thrust bearing 22.97W 25.39W 48.36W 



 

 

Table 34 The power consumption condition under the recommended 

combination after ANSYS modelling (h=30µm, h’journal=32.952µm, 

h’thrust=33.691µm, N=300rpm, ŋ=10cSt, Pjournal=3MPa, Pthrust=1MPa) 

 Pumping power Frictional power Total power 

Journal bearing 71.70W 12.52W 84.22W 

Thrust bearing 37.19W 21.76W 58.95W 

From the tables above, the results can be listed as the following points: 

 The total power consumption of journal bearing is larger than that of the 

thrust bearing; 

 The pumping power increases after the deformation due to the extra 

energy to maintain the same supply pressure as well as the extra flow 

rate; 

 The frictional power decreases after the deformation due to the 

increased clearance; 

 The total power consumption of both initial clearance and both bearing 

types increases after the deformation. 

6.1.6 THE REYNOLDS NUMBER CONDITION UNDER THE 

RECOMMENDED INPUT COMBINATION 

The equations for frictional power, Equation 9, Equation 10, Equation 18 and 

Equation 19, are all based on the assumption that the fluid flow in the pocket is 

laminar flow39 . However, the flow will become turbulent above a particular 

speed of the journal or the thrust bearings. The turbulence in the pocket will 

cause the “fluid friction” over the area of the pocket rise more rapidly with speed 

(Stansfield, 1970). 

The value of Reynolds Number (Re) indicates whether the turbulence is likely to 

occur. The equation for Re is listed below: 

                                            

39
 Laminar flow (or streamline flow) occurs when a fluid flows in parallel layers, with no disruption between 

the layers. 



 

 

Reynolds Number    
     

 
 Equation 30 

Under 25µm, 300rpm, 10cSt, journal bearing pressure 3MPa and thrust bearing 

pressure 1MPa, the Reynolds numbers are listed below: 

Table 35 The Reynolds number condition under the recommended combination 

before and after ANSYS modelling (h=25µm, h’journal=27.952µm, h’thrust=28.691µm, 

N=300rpm, ŋ=10cSt, Pjournal=3MPa, Pthrust=1MPa) 

 Journal bearing Thrust bearing 

Re (before deformation) 7.83 11.38 

Re (after deformation) 8.76 13.06 

Under 30µm, 300rpm, 10cSt, journal bearing pressure 3MPa and thrust bearing 

pressure 1MPa, the Reynolds numbers are listed below: 

Table 36 The Reynolds numbers under the recommended combination before 

and after ANSYS modelling (h=30µm, h’journal=32.952µm, h’thrust=33.691µm, 

N=300rpm, ŋ=10cSt, Pjournal=3MPa, Pthrust=1MPa) 

 Journal bearing Thrust bearing 

Re (before deformation) 9.40 13.66 

Re (after deformation) 10.33 15.34 

The Reynolds numbers under all the conditions are less than 2000, which is the 

critical point between laminar flow and turbulence, so the fluid within the 

hydrostatic bearings is always regarded as the laminar, just verifying the 

assumptions before. 

Another conclusion is that the Reynolds numbers are slightly larger after the 

deformation. At lower rotational speed, the clearance change is not obvious 

enough to affect the Reynolds number. But at high rotational speed and low 

viscosity, the deformation is likely to increase the Reynolds number a lot and 

will influence the normal performance of the hydrostatic bearing systems. 



 

 

6.2 THE MEASUREMENT AND MACHINING PROCESS OF THE 

HYDROSTATIC BEARINGS 

6.2.1 THE MEASUREMENT OF THE BEARING CONPONENTS 

To achieve the ideal bearing gap of about 25-30µm, some ultra-precision 

measurement equipment is necessary to define the dimensions of the bearing 

parts.  

Each component, including bearing shafts, thrust plates and bearing housing, 

shall be measured at least three times: 

The 1st time: after the aluminium parts being machined by the diamond turning 

and before the parts being coated, to get the original dimension of the 

hydrostatic bearing system; 

The 2nd time: after the bearing parts being coated and before the second 

diamond turning process, probably the most important measurement process 

not only to know the thickness of the coating and but also to decide the amount 

of the coating to be removed to achieve the target bearing clearance; 

The 3rd time: after the second diamond turning, to check the final dimension of 

the bearing system to see whether it meets the design requirement. 

The figures below are the components after being coated and before the 

second diamond turning process: 



 

 

Figure 31 The bearing shaft after being coated and before the second diamond 

turning process 

 

Figure 32 The thrust plate after being coated and before the second diamond 

turning process 

 



 

 

Figure 33 The bearing house after being coated and before the second diamond 

turning process 

 

The following tools are some hand measuring tools in the laboratory: 

The TESA IMICRO with analogue indication 90-10040 is used to measure the 

inner diameter of the bearing house. Its measuring span is 90-100mm, its scale 

interval is 0.002mm and its maximum permissible error is 0.005µm. 

Figure 34 TESA IMICRO with analogue indication 90-100 

 

The Moore & Wright traditional depth gauge micrometer41 is used to measure 

the length of the journal and the depth of the bearing house. Its measuring span 

                                            

40
 Data from: http://www.tesagroup.co.uk/en-us/products/tesa-imicro-with-analogue-indication-metric-

p152.htm?redirect=1&c=gb#.U3d6YqNwbcs 



 

 

is 0-75mm, its scale interval is 0.01mm and its maximum permissible error is 

0.01mm. 

Figure 35 The Moore & Wright depth gauge micrometer 

 

The Moore & Wright outside micrometer42 is used to measure the thickness of 

the thrust bearing. Its measuring span is 50-75mm, its scale interval is 0.002mm 

and its maximum permissible error is 0.01mm. 

Figure 36 The Moore & Wright outside micrometer 

 

The Mitutoyo caliper digital absolute IP6743 is used to measure both the inside 

and outside distances between two parallel surfaces. Its measuring span is 0-

150mm, its scale interval is 0.01mm and its maximum permissible error is 

0.01mm. 

                                                                                                                                

41
 Data from: http://www.moore-and-wright.com/products/show/13904?lang=English 

42
 Data from: http://www.moore-and-wright.com/products/show/4682?lang=English 

43
 Data from: http://uk.farnell.com/mitutoyo/500-706-11/caliper-digital-absolute-ip67-150mm/dp/1698141 



 

 

Figure 37 The Mitutoyo caliper digital absolute IP67 

 

The minimum error of all these hand measuring tools is 5µm, which is relatively 

a large number compared with the target clearance of 25-30µm. So the 

machining process based on these hand measuring tools is not reliable and will 

not actually reflect the results from the previous theoretical. 

So the ultra-precision coordinate measuring machine, Leitz PMM-F 100044, is 

introduced to measure the dimension of the bearing house and shaft. 

Figure 38 Leitz PMM-F 1000 CMM 

 

                                            

44
 Data from: 

http://www.hexagonmetrology.com.cn/uploadfiles/File/%E6%A0%B7%E6%9C%AC/Product_Overview_Err

orCharts.pdf 



 

 

Its measuring span is 3000*2000*1000mm, its volumetric length measuring 

error E is defined in the following equation: 

Volumetric length measuring error E45             Equation 31 

For the bearing components less than 300mm, the error of the CMM machine 

on this specific component is less than 2.45µm, which is smaller than the value 

of about 10% of the target clearance. 

So the dimensions measured by the PMM-F 1000 can be used to machine the 

bearing components to get the required bearing clearance. The measuring 

process is showed in the following figure: 

Figure 39 The bearing house is being measured by the Leitz CMM 

 

                                            

45
 Data from: 

http://www.hexagonmetrology.com.cn/uploadfiles/File/%E6%A0%B7%E6%9C%AC/Product_Overview_Err

orCharts.pdf 



 

 

6.2.2 THE DIMENSIONS OF THE EXPERIMENTAL COMPONENTS 

After the measurement by CMM, the dimensions of the components are listed 

below: 

Table 37 The dimensions of the experimental components 

Bearing housing 

Small inside diameter 99.805 Mm 

Large inside diameter 163.765 Mm 

Working thickness over lands 71.995 Mm 

   

Spindle bearing 

Small diameter 99.748 Mm 

Large diameter 163.718 Mm 

Working thickness over lands 72.053 Mm 

   

Thrust bearing 

Outside diameter 163.775 Mm 

Thickness 53.700 Mm 

   

Rear housing 

Large diameter 164.035 Mm 

From the table above, the crucial dimensions showed in the following figure can 

be calculated. 



 

 

Figure 40 The important dimensions of the experimental components 

 

The spindle journal bearing radial clearance: 

  
             

 
        

The spindle bearing and thrust bearing gap: 

  
             

 
      

The spindle bearing radial clearance: 

  
               

 
        

The thrust bearing radial clearance: 



 

 

  
               

 
       

The spindle journal bearing radial clearance and the spindle bearing gap are the 

hydrostatic bearing parameters, which are both very important to the 

experiment. And their values are machined at about 30µm. 

The spindle bearing radial clearance is 23.5µm, which is relatively small 

compared with the bearing clearance of about 30µm. However, it still conforms 

to the blueprint drawings. The other thrust bearing radial clearance, whose 

value is 130µm, is large enough to lay in the safety areas to prevent any extra 

wear circumstances. 

6.2.3 THE MACHINING PROCESS OF THE BEARING COMPONENTS 

The EPSRC Centre for innovative manufacturing in ultra-precision at Cranfield 

University uses the CUPE Nanocentre to machine the hydrostatic bearing 

components. It uses diamond tool to machine the aluminium alloy materials. 

And its error is about 100nm, which greatly meets the demand of the design of 

the hydrostatic bearing system of 25-30µm. 



 

 

Figure 41 The CUPE nanocentre in the EPSRC Centre at Cranfield University 

 

The following picture is the baring house which is machined after the coating 

process. 

Figure 42 The re-machined bearing house after the coating process 

 



 

 

6.3 THE PARAMETERS MEASUREMENT AND THE TEST 

EQUIPMENT 

The aim of the experimental works is to measure some important parameters of 

the system to find out whether the new aluminium hydrostatic bearing systems 

can be qualified and economical substitutions to the expensive steel ones. 

6.3.1 THE INPUT PARAMETERS AND THE EQUIPMENT 

6.3.1.1 THE SUPPLY PRESSURE 

The supply pressure, one of the most important input parameters, could be set 

by the hydraulic supply system by adjusting the rotational speed of the pump 

motor. The higher the speed is, the higher the supply pressure will be. For any 

group of experiment result, the supply pressure is always one of the most 

fundamental precondition parameters. The supply pressure is relevant to most 

of the parameters of the hydrostatic bearing system, such as the ultimate load 

capacity, the flow rate, the power consumption, the bearing deformation (the x 

displacement), the stiffness, and even the temperature rise. 

Figure 43 The experimental inverter 

 



 

 

The inverter46 is HITACHI SJ100 Series Inverter47, which is showed in the figure 

above. Its main features are listed below and its specifications are showed in 

the 8Appendix C THE SPECIFICATIONS FOR SJ100 INVERTER. 

Figure 44 HITACHI SJ100 Series Inverter 

 

Figure 45 The ABB M2AA 090 L-4 motor 

 

                                            

46
 The term inverter and variable-frequency drive are related and somewhat interchangeable. An electronic 

motor drive for an AC motor can control the motor’s speed by varying the frequency of the power sent to 

the motor. An inverter, in general, is a device that converts DC power to AC power. The drive first converts 

incoming AC power to DC through a rectifier bridge, creating an internal DC bus voltage. Then the inverter 

circuit converts the DC back to AC again to power the motor. The special inverter can vary its output 

Frequency and voltage according to the desired motor speed. 

47
 Data from: https://www.automationdirect.com/static/manuals/sj100/sj100.pdf 



 

 

The motor is ABB M2AA 090 L-448 series motor, which is showed in the Figure 

45 The ABB M2AA 090 L-4 motor above. It is a general-purpose aluminium 

motor. The three phase motors are ideal for a wide variety of applications 

including pumps, fans and process machinery drives. Motors in frame sizes 63-

100 may be connected in either STAR (Y) for supply voltages of 380-420//440-

480V 50/60Hz or DELTA for 220-240//250-280 50/60Hz. Motors in frame sizes 

112-132 are suitable DELTA connected 380-420//440-480V 50/60Hz and are 

also suitable for STAR/DELTA starting. Its specifications are showed in 

8Appendix D THE SPECIFICATIONS FOR ABB M2AA 090 L-4 MOTOR and 

the following are its main characteristics: 

 Top mounted terminal box with metric/Pg type knockouts; 

 Energy efficient low noise design; 

 Corrosion resistant, low copper aluminium alloy; 

 Suitable for DOL starting or inverter drive use. 

The supply pressure could be measured by 63mm pressure gauges49, which is 

illustrated in the following picture. 

Figure 46 The pressure gauge for pressure from 10MPa to 69MPa 

 

                                            

48
 Data from: http://il.rsdelivers.com/product/abb/m2aa-90l/3phase-2p-flange-induction-motor-

22kw/3290874.aspx 

49
 Data from: http://www.hydrotechnik.co.uk/catalog/measurement-equipment-sensors/gauges-switches-

displays/analogue-pressure-gauges/63mm-bottom- 



 

 

6.3.1.2 THE POCKET PRESSURE 

The pocket pressure of each bearing pocket can be measured by the pressure 

gauges as the figure below. There are seven pockets on the bearing system: 

five journal bearing pockets and two thrust baring pockets. Each of these 

pockets has a hole to the surface of the bearing housing. These holes can be 

inserted a pressure gauge to monitor the pocket pressure. 

Figure 47 Pressure gauge to measure the pocket pressure 

 

Figure 48 Hole on the bearing housing to insert the pressure gauge 

 

 



 

 

6.3.1.3 THE FLUID VISCOSITY 

For any oil lubrication system, oil viscosity50 is always considered as one of the 

most important parameters. The fluid viscosity, also one of the most important 

input parameters relevant to the flow rate and the temperature change during 

the operational process, could be decided by the pre-selection of the oil type. 

However the viscosity of the oil is not constant, it will decrease as the 

temperature increases. So in this report, a basic assumption is made, as 

showed in the Assumption 2 that the viscosity change due to the temperature 

change during the operational process of the hydrostatic bearing system is 

ignored. The only value considered is the viscosity of oils of the various types. 

The viscosity can usually be measured by means of the viscosity comparator 

a.k.a. viscostick, the viscotube, or the viscometer51. The dial reading viscometer 

is showed in the following figure. 

Figure 49 Dial Reading Viscometer 

 

                                            

50
 Viscosity can be defined as measurement of fluid internal resistance to flow at a specified temperature. 

There are two ways to measure a fluid’s viscosity, namely Dynamic (Absolute) Viscosity and Kinematic 

Viscosity. Both dynamic and kinematic viscosity are interchangeable by using the formula below: 

Dynamic Viscosity (cP) = Kinematic Viscosity (cSt) x Fluid Density (g/cm
3
) 

51
 Data from: http://www.kittiwake.com/sites/default/files/2%20-%20Viscosity%20Dec12_0.pdf 



 

 

For the ultra-precision hydrostatic bearing system, whose components surfaces 

are separated by an oil film of about 20 microns or less and the supply pressure 

is relatively high, the viscosity monitoring is very important to maintain the 

viscosity of the oil staying within the suitable range of the correct oil viscosity 

values. Any sudden significant change of the oil viscosity, either reduction or 

increment, may affect the stability and the effectiveness of the lubrication film, 

which is showed in the following table: 

Table 38 Effect of the change of the viscosity of the oil52 

Reduction in Viscosity Increase in Viscosity 

 Loss of oil film resulting in 
excessive wear 

 Increased mechanical friction 
causing excessive energy 
consumption and heat 
generation 

 Increased sensitivity to particle 
contamination due to reduced 
oil film thickness 

 Oil film failure at high 
temperatures, high loads during 
start-ups or coast-downs 

 Excessive heat generation 
resulting in oil oxidation, sludge 
and varnish build-up 

 Gaseous cavitation due to 
inadequate oil flow to pumps 
and bearings 

 Lubrication starvation due to 
inadequate oil flow 

 Oil whip in journal bearings 

 Excess energy consumption to 
overcome fluid friction 

 Poor air detrainment or 
demulsibility 

 Poor cold start pumpability. 

The effects above will finally result in the shorter oil lifespan, shorter 

components lifecycle, increased oil consumption, high power consumption and 

reduced machine reliability. So it is very important to choose a suitable type of 

lubricant oil to optimize the performance of the hydrostatic bearing system. 

The following table shows different oil products of the company of Millers Oils 

Ltd53 with different viscosity. 

                                            

52
 Data from: http://www.kittiwake.com/sites/default/files/2%20-%20Viscosity%20Dec12_0.pdf 

53
 Millers Oils Ltd, Brighouse, West Yorkshire HD6 3DP England, Company No. 00137671, England 



 

 

Table 39 The products table of different mineral oil products from Millers Oils 

Ltd.54 

Mineral oil 
product 
type 

SG55 (at 
15ºC) 

Kinematic 
Viscosity (at 
100ºC, cSt) 

Kinematic 
Viscosity (at 
40ºC, cSt) 

Pour 
Point (ºC) 

Flash 
Point (ºC) 

Millube 5 0.821 1.46 4.5 -25 130 

Millube 22 0.862 3.9 19.8 -20 200 

Millube 32 0.873 5.2 30 -15 200 

Millube 46 0.893 6.7 44.2 -15 200 

Millube 68 0.881 8.9 68 -15 200 

Millube 100 0.885 11.5 102 -15 200 

Millube 155 0.887 14.1 141.2 -15 200 

The lubricant oil some of the hydrostatic bearing systems use in the laboratory 

is Kristol M1056. Its physical and chemical properties are listed in the following 

table. 

Figure 50 The physical and chemical properties of Kristol M10 

Oil name Kristol M10 

Appearance Liquid 

Colour Colourless 

Odour No characteristics odour 

Solubility Insoluble in water 

Initial boiling point and boiling range 270-430 under 760 mm Hg 

Melting point <-21ºC 

Specific Gravity 0.83-0.86515 

                                            

54
 Website: http://www.millersoils.co.uk/industrial/tds-

industrial.asp?prodsegmentID=554&sector=Machine%20Oil%20&%20Lubricants 

55
 Specific gravity is the ratio of the density of a substance to the density (mass of the same unit volume) of 

a reference substance. Apparent specific gravity is the ratio of the weight of a volume of the substance to 

the weight of an equal volume of the reference substance. The reference substance is nearly always water 

for liquids or air for gases. 

56
 The oil data is obtained from the data files in the laboratory. 



 

 

Viscosity 10 cSt at 40ºC 

Flash point 150 ºC 

6.3.1.4 THE ROTATIONAL SPEED 

The rotational speed is the one of the most critical specifications of any 

hydrostatic bearing system. It must be guaranteed that the upper limit of the 

normal rotational speed is within the speed range of the bearing system itself. 

And the rotational speed is the main reason to cause the temperature rise 

during normal working processes. 

The rotational speed, the supply pressure and the viscosity of the oil are the 

three fundamental preconditions. The value of the rotational speed of the 

bearing shaft is the value of the rotational speed of the motor, and can be got by 

the settings of the control system. 

6.3.2 THE OUTPUT RESPONSES 

6.3.2.1 THE TEMPERATURE RISE 

Measuring the temperature of the oil is helpful to monitor the viscosity of the oil 

as well as the hydrostatic bearing system during the working period. The 

exponential mode of the relationship between viscosity and temperature is 

showed in Equation 32: 

Shear viscosity57      
    Equation 32 

T is the temperature of the fluid, μ0 and b are coefficients. 

From this empirical model, the higher the temperature is, the lower the viscosity 

will be, which, on the contrary, will help to lower the temperature of the oil 

inversely58. 

                                            

57
 An exponential model for the temperature-dependence of shear viscosity (μ) was first proposed by 

Reynolds in 1886. This is an empirical model that usually works for a limited range of temperatures. 

58
 The viscosity of a lubricant will decrease as the temperature increases. 



 

 

The coefficient of the thermal expansion, i.e. CTE 59 , of the aluminium is 

relatively not small, which means a high temperature rise will cause the 

expansion of the aluminium, causing some extra wear. 

Measuring the temperature rise of the oil is also a convenient way to roughly 

estimate the total power consumption of the hydrostatic bearing system. The 

energy causing the temperature rise comes from both the pumping power by 

the supply pump and the shear frictional power driven by the shaft motor. The 

temperature rise is just an indicator of the efficiency of the total bearing system 

to judge whether the system is energy-saving or not. 

To measure the temperature rise, the temperature needs to be measured 

initially before the rotational work and be measured after 60 minutes’ normal 

work. And the temperature can also be real-timely monitored to make sure the 

hydrostatic bearing system is always under normal working conditions. 

The temperature rise is measured by the NI 9217 RTD Analog input C Series 

module and LEMO FGG.00 temperature measuring connector and sensor. 

Equipment is showed in the following figures and their specifications are listed 

in the appendix. 

Figure 51 NI 9217 RTD Analog input C Series module 

 

                                            

59
 CTE is calculated by the Equation 29. 



 

 

Figure 52 LEMO FGG.00 temperature measuring connector and sensor 

 

To measure the inlet and outlet temperatures, two sensors were put on the inlet 

pipes and two sensors were put on the outlet pipes: 

Figure 53 The positions of the four temperature sensors 

 



 

 

Figure 54 Temperature sensor Tai0 to measure one oil outflow pipe 

 

Figure 55 Temperature sensor Tai1 and Tai2 to measure the oil flowing out from 

the pump 

 

Figure 56 Temperature Tai3 to measure one oil outflow pipe 

 



 

 

According to the results of the temperature rise tests in later chapter, the chilling 

system is needed to cool down the hydraulic system. HAAKE Phoenix II 

systems 60  are chosen as the external temperature control system for this 

hydrostatic bearing system. And its specifications are showed in the appendices. 

Figure 57 HAAKE Phoenix II systems 

 

Figure 58 The connection of the HAAKE Phoenix II systems 

 

 

                                            

60 HAAKE Phoenix II systems for external temperature control are manufactured 

for applications that direct product contact is not allowed. Used in combination 

with a Pt sensor, HAAKE Phoenix II circulators ensure high temperature 

accuracy of 0.01 degree C for external applications within a temperature range 

of -90 to +280 degrees C. 



 

 

6.3.2.2 THE FLOW RATE 

As discussed in the chapter of REVIEW OF THE THEORETICAL DESIGN 

APPLIED TO ULTRA-PRECISION SPINDLE, the flow rate of the oil is 

determined by the supply pressure, the restrictors, the clearance and the 

viscosity of the oil. Since the supply pressure and the viscosity of the oil are 

already determined before the experiment, the real-time measurement of the 

flow rate is a good indicator of the deformation of the surface of the bearing 

shaft and the thrust plates. 

The hydrostatic bearing is placed on a workbench showed in the Figure 59 The 

workbench for the R2R hydrostatic bearing system. There is an oil sink under 

the workbench, collecting all the oil outflowed from the system and sending it 

back to the hydraulic tank. The flow rate can be measured by the volume of all 

the oil collected within one minute (L/min). 

Figure 59 The workbench for the R2R hydrostatic bearing system 

 

6.3.2.3 THE BEARING STIFFNESS 

The bearing stiffness is the rate of change of T with respect to h: It is not 

constant but may be regarded as constant for practical purposes as the ratio of 

the change ∆T to the corresponding very small change ∆h (Stansfield, 1970). 



 

 

The ∆T can be simply obtained by adding known loads on the shaft, e.g. by 

applying known loads to the rotor by standard weights or non-contacting 

electromagnets (Martin, 2004b) as a more complex and alternative method. ∆h 

can be measured by adding the displacement transducers to measure the y-

axis displacement. Then the bearing stiffness can be calculated by the ratio of 

dT/dh. 

6.3.2.4 THE INITIAL X DISPLACEMENT 

The x displacement of the edge of the thrust plate, showed in the Figure 60 The 

edge of measuring the x displacement, is the deformation value in the x-axis 

direction of the thrust plate. The initial x displacement records the initial 

deformation of the thrust plate in the x-axis direction just at the supply pressure 

with slightly temperature rise compared with the 30-minute x displacement 

measurement. It should be recorded initially before the working process of the 

hydrostatic bearing system. 



 

 

Figure 60 The edge of measuring the x displacement 

 

The x displacement is measured by Millimar 1200 IC compact amplifier, which 

is showed in the following figures: 

Figure 61 Mahr Millimar 1200 IC Compact Amplifier 

 



 

 

Figure 62 The probe of the Millimar 1200 IC Amplifier 

 

Its specifications are showed in the 8Appendix E THE SPECIFICATIONS FOR 

MILLIMAR 1200 IC COMPACT AMPLIFIER and its characteristics are listed 

below: 

 Compact housing; 

 Battery powered for portable usage in the workshop; 

 Large analog display with 2 tolerance markers; 

 Quick and reliable display of the measured value; 

 Switchable measuring direction; 

 One inductive probe can be connected; 

 Fine adjustment due to the large range zero setter; 

 Battery operation with the commercial available round R14 batteries; 

 Testing button for batteries; 

 Mains adapter included. 

The measuring range is listed below: 

 ± 3 μm / 0.1 μm 

 ± 10 μm / 0.2 μm 

 ± 30 μm / 1 μm 

 ± 100 μm / 2 μm 

 ± 300 μm / 10 μm 



 

 

The x displacement can be measured effectively under the smaller range, such 

as ± 3 μm and ± 10 μm. 

6.3.2.5 THE 30-MINUTE X DISPLACEMENT 

After the hydrostatic bearing system has been working for 30 minutes, the 

temperature of the bearing system will stay on a constant level due to the 

thermal equilibrium between the bearing system temperature and the ambient 

temperature. And due to the constant supply pressure on the plate of the thrust 

bearing, the thrust plate also achieved equilibrium between the internal stress 

and the external pressure, which results in a deformation of the whole plate. 

The maximum deformation happens in the edge of the plate as showed in the 

Figure 60 The edge of measuring the x displacement, so measuring the x 

displacement of the edge in the x-axis direction shall indicate the actual 

deformation condition during the working process of the hydrostatic bearing 

system. 

  



 

 

6.4 ALUMINIUM HYDROSTATIC BEARING PERFORMANCE 

6.4.1 THE ASSEMBLING AND DISASSEMBLING PROCESS 

Due to the very small bearing clearance, the assembling process demands a 

high level of carefulness to the technicians. Before assembling the bearing shaft, 

the oil system was tested after the restrictors being put on. The holes of the 

restrictors should all been inspected by microscope. The figures below show the 

clean restrictors and the restrictors with some burs on the top of its tube. The 

third one was needed to be cleaned by wires or grinding machine. 

Figure 63 The clean view of the journal bearing restrictor 

 

Figure 64 The clean view of the thrust bearing restrictor 

 



 

 

Figure 65 The burs on the top of an unclean thrust bearing restrictor tube 

 

The pre-testing process is showed in Figure 66 Testing before the bearing shaft 

being put on. Make sure that there is some oil flow shooting out from every 

inflow holes through the restrictors in the bearing pockets. After one-hour 

operation, the system was considered to be self-flushed. 

Figure 66 Testing before the bearing shaft being put on 

 

After the pre-testing process, the bearing shaft was put into the bearing housing. 

The bearing spindle shall be put into the housing firstly. 



 

 

Figure 67 The bearing spindle being put into the housing 

 

And then the thrust plate was bolted on the bearing spindle. 

Figure 68 The bearing thrust plate being bolted on the bearing spindle 

 

After the bearing shaft being put on the housing, the assembling process was 

finished. Then the pocket pressure was measured to check whether the 

restrictors worked well. According to the original design, the resistance ratio of 



 

 

the journal bearings is 1 and the resistance ratio of the thrust bearings is 3. The 

pocket pressure can be calculated by the following equation: 

The pocket pressure         
       

   
 Equation 33 

Then the pocket pressure of the journal bearing shall be 0.5 supply pressure 

and the pocket pressure of the thrust bearing shall be 0.25 supply pressure. 

If the pocket pressure is not high enough, the dimensions of the orifice 

restrictors could be adjusted slightly to reduce the resistance ratio. The ways to 

reduce the resistance are either shortening the length of the needle or enlarging 

the diameter of the needle by designing new restrictors. 

After finished the testing experiments, the hydrostatic system was disassembled 

to check the inside burs and attrition condition. The following two pictures are 

the debris remained in the system after being disassembled and the microscope 

image of the debris. 

Figure 69 The debris inside the bearing housing 

 



 

 

Figure 70 The microscope image of the coating debris inside the bearing 

housing 

 

The debris above was about 1.2mm*0.9mm big. From its texture, it probably 

came from the coating inside the bearing housing. Since the design bearing gap 

was just about 30µm, such a large fragment would definitely cause extra 

attrition to the system. Its source might be the screw thread remaining of the 

coating or from the delamination of the nickel coating just as the following figure 

shows. 



 

 

Figure 71 The delamination and scratches condition on the surface of the thrust 

plate 

 

The depth of the scratches was measured by Taylor-Hobson Form Talysurf-

120L and specifications were listed in the appendix. 



 

 

Figure 72 Taylor-Hobson Form Talysurf-120L 

 

The measuring results are showed in the following figures. The first figure 

indicates the surface roughness of it and the second figure shows the depths of 

the scratches. 

Figure 73 The surface roughness of the surface of the thrust bearing pad 

 



 

 

Figure 74 The depth of the scratches on the thrust bearing pad 

 

From the above figure, the surface roughness was about 0.7µm, and the depth 

of the scratches was about 0.1µm. The scratches were not very serious 

compared with the bearing gap of about 30µm and the depth of the nickel 

coating of about 50µm. But it would accelerate the degradation of the bearing 

surface and affect the bearing performance in a long term. 

6.4.2 THE EXPERIMENT PROCESS 

Under the testing process, the viscosity was 15cSt (0.0135Ns/m2), the journal 

supply pressure was 60bar, the thrust supply pressure was 40bar, and the 

rotational speed was 0rpm. As mentioned in 6.2.2 THE DIMENSIONS OF THE 

EXPERIMENTAL COMPONENTS, the journal bearing clearance was 28.5µm, 

the thrust bearing clearance was 29µm. The bearing parameters calculations 

are listed in the following tables. 

Table 40 The journal bearing parameters under the testing conditions 

Number of pockets: n= 5   

Diameter of bearing: dB= 0.099800  m 

Length of bearing: LB= 0.059000  m 

Width of axial land: ca= 0.065000  m 

Width of circumferential land: cc= 0.013000  m 

Radial clearance: hL(av)= 0.00002850 m 



 

 

Depth of pocket: hp= 0.002000  m 

Supply Pressure: p1= 6000000 Pa 

Rotational speed: Nd= 0 rev/min 

Resistance ratio: ξ= 1   

Viscosity of oil: η= 15 cSt 

Density of oil: ρ= 900 kg/m3 

Specific Heat capacity of oil: Cm= 2000 J/(kg*K) 

Constant: k= 0.943000    

Bearing shape factor: Φ= 0.753099    

Bearing shape factor: Ea= 0.559322    

Bearing shape factor: Ec= 0.170315    

Outflow resistance: Rod= 7257.776767  108Ns/m5 

Inflow resistance: Ri= 7257.776767  108Ns/m5 

Ultimate load capacity: Wu= 18176.168029  N 

Radial stiffness: Sl= 8.860691  108N/m 

Flow rate: Q= 1.216  L/min 

Pumping power: Pp= 123.694904  W 

Friction power: Pf= 0.000000  W 

Temperature rise: Δt≈ 3.333 °C 

Table 41 The thrust bearing parameters under the testing conditions 

Outer diameter of thrust pad: DB= 0.176000  m 

Outer diameter of annular pocket: DP= 0.163000  m 

Inner diameter of annular pocket: dP= 0.133000  m 

Inner diameter of thrust pad: dB= 0.120000  m 

Clearance at the lands of each thrust pad at no 
load: hd= 

0.00002900 m 

Clearance at the pocket: hP= 0.002000  m 

Supply pressure: p1= 4000000 Pa 

Speed of rotation: n= 0 rev/min 

Resistance ratio: ξ= 3   

Viscosity of the fluid: η= 15 cSt 

Density of oil: ρ= 900 kg/m3 



 

 

Specific Heat capacity of oil: Cm= 2000 J/(kg*K) 

Ratio ξ2/ξ1 for a pair of opposed plane pads or 

rotary thrust bearings: Ξ= 

1  

Ratio Av2/Av1 for a pair of opposed plane pads or 

rotary thrust bearings: Τ= 

1  

Virtual area of the thrust pad: Av2=Av1= 0.009991  M2 

Ro(1)= 8.116112  1010Ns/m5 

Ro(2)= 10.879197  1010Ns/m5 

Outflow resistance: Ro(net)= 4.648347  1010Ns/m5 

Inflow resistance: Ri= 13.945041  1010Ns/m5 

Ultimate thrust capacity: T(net)= 38367.29647 N 

Stiffness: ST= when h(1)=hd 15.504026  108N/m 

Flow rate: Q= 1.291 L/min 

Total Pumping power: Pp= 172.104196  W 

Total Friction power: Pf= 0.000000  W 

Temperature rise: Δt≈ 2.222222 K 

The total flow rate of two bearing system was 2.507L/min, the temperature rise 

was 2.78 C, the total pumping power was 295.79W. 

Under 60bar supply pressure, the journal resistance ratio 1 and the thrust 

resistance ratio 3, the bearing clearances at 30bar journal pocket pressure and 

10 bar thrust pocket pressure were 31.45µm and 32.69µm respectively, the 

theoretical calculations considering the deflections of the journal bearings are 

listed in the following tables. 

Table 42 The journal bearing parameters under the specified testing conditions 

Number of pockets: n= 5   

Diameter of bearing: dB= 0.099800  m 

Length of bearing: LB= 0.059000  m 

Width of axial land: ca= 0.065000  m 

Width of circumferential land: cc= 0.013000  m 

Radial clearance: hL(av)= 0.00003145 m 

Depth of pocket: hp= 0.002000  m 



 

 

Supply Pressure: p1= 6000000 Pa 

Rotational speed: Nd= 0 rev/min 

Resistance ratio: ξ= 1   

Viscosity of oil: η= 15 cSt 

Density of oil: ρ= 900 kg/m3 

Specific Heat capacity of oil: Cm= 2000 J/(kg*K) 

Constant: k= 0.937096    

Bearing shape factor: Φ= 0.753099    

Bearing shape factor: Ea= 0.559322    

Bearing shape factor: Ec= 0.170315    

Outflow resistance: Rod= 5399.995342  108Ns/m5 

Inflow resistance: Ri= 5399.995342  108Ns/m5 

Ultimate load capacity: Wu= 18176.168029  N 

Radial stiffness: Sl= 8.029051  108N/m 

Flow rate: Q= 1.663 L/min 

Pumping power: Pp= 166.250143  W 

Friction power: Pf= 0.000000  W 

Temperature rise: Δt≈ 3.333 °C 

Table 43 The thrust bearing parameters under the specified testing conditions 

Outer diameter of thrust pad: DB= 0.176000  m 

Outer diameter of annular pocket: DP= 0.163000  m 

Inner diameter of annular pocket: dP= 0.133000  m 

Inner diameter of thrust pad: dB= 0.120000  m 

Clearance at the lands of each thrust pad at no 
load: hd= 

0.00003269 m 

Clearance at the pocket: hP= 0.002000  m 

Supply pressure: p1= 4000000 Pa 

Speed of rotation: n= 0 rev/min 

Resistance ratio: ξ= 3   

Viscosity of the fluid: η= 0.0135 Ns/m2 

Density of oil: ρ= 900 kg/m3 

Specific Heat capacity of oil: Cm= 2000 J/(kg*K) 



 

 

Ratio ξ2/ξ1 for a pair of opposed plane pads 

or rotary thrust bearings: Ξ= 

1   

Ratio Av2/Av1 for a pair of opposed plane pads 

or rotary thrust bearings: Τ= 

1   

Virtual area of the thrust pad: Av2=Av1= 0.009991  M2 

Ro(1)= 5.665750  1010Ns/m5 

Ro(2)= 7.594623  1010Ns/m5 

Outflow resistance: Ro(net)= 3.244949  1010Ns/m5 

Inflow resistance: Ri= 9.734848  1010Ns/m5 

Ultimate thrust capacity: T(net)= 38367.296470  N 

Stiffness: ST= when h(1)=hd 13.753533  108N/m 

Flow rate: Q= 1.849 L/min 

Total Pumping power: Pp= 246.536986  W 

Total Friction power: Pf= 0.000000  W 

Temperature rise: Δt≈ 2.222222  K 

From the tables above, the stiffness for journal bearing was 802.9N/µm, so the 

Dh under 3000N maximum load was 3.736µm. The stiffness for thrust bearing 

was 1375.4N/µm, so the Dh under 500N maximum load was 0.364µm. 

6.4.3 THE EXPERIMENT RESULTS 

6.4.3.1 THE POCKET PRESSURE 

There are 7 pockets within the bearing housing. As shown in the following figure, 

the seven pocket pressure measuring screws were on the top and two sides of 

the bearing housing: 2 for thrust pockets and 5 for journal pockets. 



 

 

Figure 75 Seven pocket pressure measuring screws 

 

The required journal pocket pressure is 30bar and the resistance ratio for the 

journal resistors is 1, so the supply pressure shall be adjusted as 60bar. 

The required thrust pocket pressure is 10bar and the resistance ratio for the 

thrust resistors is 3, so the supply pressure shall be 40bar. 

But there was only one pump to supply both the journal bearings and the thrust 

bearings. The supply pressure was 60bar. So a pressure regulating valve as 

well as a pressure gauge was put before the thrust bearing inlet pipe. The 

following two figures show the pipe connections and the schematic diagram of 

the oil supply system. 



 

 

Figure 76 The pipes and connections for the hydraulic system 

 

Figure 77 The schematic diagram of the oil supply system 
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By using a thrust bearing regulating valve, the thrust bearing supply pressure 

could be adjusted to 40bar. Under the new supply pressure combination of 

journal bearing supply pressure of 60bar and thrust bearing supply pressure of 

40bar, new pocket pressures without any loading conditions are listed below: 

Pthrust1=6bar  Pthrust2=7bar 



 

 

Pjournal1=10bar 

Pjournal2=17.5bar Pjournal4=16bar 

Pjournal3=11bar Pjournal5=13bar 

The starting force to rotate the bearing spindle under this uneven journal pocket 

pressures was 0.1N as showed in the following figure. 

Figure 78 The start rotating force of the bearing spindle under uneven journal 

bearing pocket pressures 

 

According to the supply pressure and the resistance ratio, the pocket pressure 

shall be 10bar in thrust and 30bar in journal respectively. The actual pressures 

were all lower than the target pressures. 

Although the bearing restrictors were nominally same as one specified type, the 

actual manufacturing process seemed not that ideal. Since the inner diameter of 

the tube was very small, about 0.3mm, and the inner diameter was strongly 

relevant to the resistance of the hydrostatic bearing restrictors. Any slight 

reduce or increase of the inner diameter could cause different resistance value. 

The inner diameter of the restrictor tube might vary slightly, which would finally 

lead to different resistance ratio of the journal bearing. 

Another reason was that there was only one journal bearing inlet pipe and this 

pipe supplied all the five journal bearings. Five different journal restrictors had 

different distance to the supply point and the paths conducting the oil flow within 



 

 

the housing were different from each other. The pressure drop in pipes was 

mainly caused by: 

 Friction; 

 Elevation difference; 

 Changes of kinetic energy due to the shape of the paths; 

The pressure drop in circular pipes could be calculated by the equation below: 

Pressure drop equation      
 

 
 

 

 
   Equation 34 

Where l is pipe friction coefficient, v is flow velocity. 

Also according to Bernoulli’s Equation below: 

Bernoulli’s Equation   
 

 
                 Equation 35 

When the elevation h keeps constant, the higher the flow rate is, the lower the 

pressure will be. Ideally, each journal pocket has the same pocket pressure. But 

the actual condition was that the flow rate of each pocket was different due to 

different bearing gaps. The different outflow resistance of each journal pocket 

led to different pocket pressure. 

In this case, the frictional force within the flow paths was the main source of the 

pressure drop. The paths’ difference would lead to different actual supply 

pressure for each restrictor on the inlet side. 

So swapping the nearer restrictor with a larger resistance restrictor and the 

farther restrictor with a smaller resistance restrictor might be a simple solution. 

The method was to keep swapping the restrictors of the highest pocket 

pressure and the lowest pocket pressure to adjust the five bearing pocket 

pressures until reaching an even condition. 

After swapping the highest pressure journal restrictor and the lowest pressure 

journal restrictor, the pocket pressures changed to the data below: 

Pthrust1=7bar  Pthrust2=7bar 

Pjournal1=15bar 



 

 

Pjournal2=17bar Pjournal4=17bar 

Pjournal3=16bar Pjournal5=15bar 

The starting force to rotate the bearing spindle under this uneven journal pocket 

pressures was 0.05N as showed in the following g figure. 

Figure 79 The start rotating force of the bearing spindle under even journal 

bearing pocket pressures 

 

It was initially concluded that the even journal pocket pressure could lead to 

less internal frictional force to make the system more efficient. 

The target pocket pressure is 30bar for journal bearings and 10bar for thrust 

bearings, the solution to attain higher pocket pressure was to either increase 

the motor power or change the shape of the restrictors to get the ideal 

resistance ratio. 

Another solution was to supply each pocket separately with an independent 

close-loop-control pressure regulating valve to keep the pocket pressure on the 

target value. As a result, its cost would be much higher than the original design. 

The journal bearing pocket pressure increased a lot after changing the journal 

restrictors to lower resistance, and by increasing thrust supplying pressure, the 

thrust bearing pocket pressure also increased. The improved value is showed in 

the following: 



 

 

Pthrust1=8bar  Pthrust2=8bar 

Pjournal1=27bar 

Pjournal2=25bar Pjournal4=25bar 

Pjournal3=27bar Pjournal5=25bar 

This pocket pressure distribution was almost close to the target pressure 

combination: Pjournal=30bar and Pthrust=10bar. Since the fuse in the plug of the 

inverter was 3A, when the working frequency of the plug reached 50Hz, the 

fuse blew and the system broke down. So the target supply pressure could not 

be realized by this set of inverter and motor. 

6.4.3.2 THE FLOW RATE 

There were two oil inlet pipes connected to the housing of the bearing system. 

Since these two pipes were high pressure pipes, the flow rate was not safe by 

being measured through high pressure pipes. 

 

There were also two outlet pipes of the bearing system. Most of the oil from the 

bearing pockets flowed through these two pipes into the oil tank. However there 

was still some oil flowing through the bearing gap and drops to the workbench 



 

 

surface, being collected by the sink under the workbench. The method to 

measure the total outflow was using a liquid container to collect the all three 

strands of the oil for 1 minute to see the volume (L/min). 

Figure 80 The container used to measure the flow rate 

 

The flow rate experiment at: 

Pthrust1=6bar  Pthrust2=6bar 

Pjournal1=11.5bar 

Pjournal2=19bar Pjournal4=19bar 

Pjournal3=14.5bar Pjournal5=14.5bar 

Q=1.6L/min 

Changed the journal restrictors, the flow at: 

Pthrust1=8bar  Pthrust2=8bar 

Pjournal1=27bar 

Pjournal2=25bar Pjournal4=25bar 

Pjournal3=27bar Pjournal5=25bar 

Q=2.8L/min 



 

 

The flow rate increased quite a lot due to the increased supply pressure. 

According to the theoretical calculation at Pthrust=10bar and Pjournal=30bar: 

Journal clearance was 28.5µm, the deflection at 30bar was 2.952µm, the 

h’=31.452µm, the total theoretical flow rate (30bar, 15cSt, 5 journal pockets) 

was 1.216L/min. 

Thrust clearance was 29.0µm, the deflection at 10bar was 3.691µm, the 

h’=32.691µm, the total theoretical flow rate (10bar, 15cSt, 2 thrust pockets) was 

1.849L/min. 

The total flow rate of the system was 3.065L/min, which was quite near the 

second experimental data, 2.8L/min. If the pocket pressure could reach 30bar 

and 10bar ideally, the actual flow rate would probably be around 3L/min. 

The increased flow rate at the same supply pressure also led to the higher 

pumping power of the motor. The temperature rise tests of the system would be 

illustrated in the following section. 

6.4.3.3 THE AXIAL STIFFNESS 

The axial stiffness could be measured when the bearing was lying on the 

workbench. The working load of the thrust bearing was 50KG. So 500N weights 

were used to do the tests. 

Figure 81 Lying down the bearing housing to measure the axial stiffness 

 



 

 

Figure 82 The sensor of the clock fixed on the top face of the bearing housing 

 

Figure 83 The schematic diagram of the axial stiffness testing system 
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The following tables and figures were the two sets of data of the experiments to 

measure the axial stiffness of the hydrostatic bearing system: 

Table 44 The table of axial stiffness test 1 of the bearing system (Pjournal1=9bar, 

Pjournal2=17bar, Pjournal3=13bar, Pjournal4=18bar, Pjournal5=12bar, Pthrustfront=5bar, 

Pthrustrear=5bar) 

Weight (KG) Displacement (µm) Stiffness (N/µm) 

10.6 0.5 21.2 

20.6 5 41.2 

25.6 8 32 

30.6 10 30.6 

25.6 10 25.6 

20.6 8 25.8 

10.6 3 35.3 

0 1  

Figure 84 The figure of axial stiffness test 1 of the bearing system (Pjournal1=9bar, 

Pjournal2=17bar, Pjournal3=13bar, Pjournal4=18bar, Pjournal5=12bar, Pthrustfront=5bar, 

Pthrustrear=5bar) 

 



 

 

Table 45 The table of axial stiffness test 2 of the bearing system (Pjournal1=9bar, 

Pjournal2=17bar, Pjournal3=13bar, Pjournal4=18bar, Pjournal5=12bar, Pthrustfront=5bar, 

Pthrustrear=5bar) 

Weights (KG) Displacement (µm) Stiffness (N/µm) 

10.6 1.6 66.3 

21.1 3.0 70.3 

35.6 5.0 71.2 

40.6 8.0 50.8 

50.6 11.0 46.0 

40.6 9.7 41.9 

35.6 4.2 84.8 

21.1 4.5 46.9 

10.6 1.5 70.7 

Table 46 The figure of axial stiffness test 2 of the bearing system (Pjournal1=9bar, 

Pjournal2=17bar, Pjournal3=13bar, Pjournal4=18bar, Pjournal5=12bar, Pthrustfront=5bar, 

Pthrustrear=5bar) 

 

During the loading and unloading process of the axial stiffness tests, the 

displacement data showed some consistency with the weights change. But the 



 

 

axial stiffness displayed an irregular variation, which seemed to be irrelevant to 

the change of the weights. 

The axial stiffness of the thrust bearings was about 30-60N/µm. 

According to the theoretical calculations, as Pthrust pocket=5bar, the axial stiffness 

was 187N/µm, the testing result was about one-fourth of the theoretical result, 

which means the axial stiffness performance of the bearing was not very well 

according to the ideal design. 

6.4.3.4 THE RADIAL STIFFNESS 

To measure the radial stiffness of the hydrostatic bearing, some extra 

experimental tools shall be made. For example, the rod through the bearing 

spindle and symmetrical weights put on both sides of the rod shall all be 

prepared to do the tests. 

Two screws were bolted on each side of the rod just as the following figure 

shows. Two aluminium plates were fixed on the bottom of the screws to put the 

weights on. The experiment configurations and schematic diagram are shown in 

the following figures. 

Figure 85 The experimental tools used to measure the radial stiffness 

 



 

 

Figure 86 The schematic diagram of the radial stiffness testing system 
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Figure 87 The weights used to load the system 

 



 

 

Figure 88 Stack same weights on both sides of the rod at the same time 

 

Table 47 Front thrust plate displacement measurement 

 



 

 

Table 48 Rear thrust plate displacement measurement 

 

Table 49 Radial stiffness test 1 

Weights 
(KG) 

Front thrust plate 
displacement (µm) 

Front stiffness 
(N/µm) 

Rear thrust plate 
displacement (µm) 

Rear stiffness 
(N/µm) 

4.5 2.0 45.4 -1.0 -90.8 

9.0 -0.5 -360.0 -0.5 -360.0 

13.5 1.0 270.0 -3.0 -90.0 

18.5 1.0 370.0 -3.0 -123.3 

23.5 -3.0 -156.7 -4.0 -117.5 

18.5 -3.0 -123.3 -3.0 -123.3 

13.5 1.0 270.0 -4.0 -67.5 

9.0 -4.0 -45.0 -4.0 -45.0 

4.5 -3.0 -30.0 -4.0 -22.5 

0.0 -2.0 0.0 -2.0 0.0 



 

 

Figure 89 The figure of radial stiffness test 1 

 

Table 50 Radial stiffness test 2 

Weights 
(KG) 

Front thrust plate 
displacement (µm) 

Front stiffness 
(N/µm) 

Rear thrust plate 
displacement (µm) 

Rear stiffness 
(N/µm) 

4.5 3.0 30.3 -1.0 -90.8 

9.0 -2.5 -72.0 0.0  

13.5 3.0 90.0 -1.0 -270.0 

18.5 -3.0 -123.3 -1.0 -370.0 

23.5 -3.0 -156.7 -2.8 -167.9 

18.5 -1.5 -246.7 -3.0 -123.3 

13.5 2.0 135.0 -2.0 -135.0 

9.0 -1.0 -180.0 -3.0 -60.0 

4.5 1.5 60.0 -2.8 -32.1 

0.0 1.8 0.0 1.0 0.0 



 

 

Table 51 The figure of radial stiffness test 2 

 

Table 52 Radial stiffness test 3 

Weights 
(KG) 

Front thrust plate 
displacement (µm) 

Front stiffness 
(N/µm) 

Rear thrust plate 
displacement (µm) 

Rear stiffness 
(N/µm) 

4.5 0.0  -1.8 -50.4 

9.0 3.0 60.0 -3.5 -51.4 

13.5 2.5 108.0 -4.2 -64.3 

18.5 1.5 246.7 -2.8 -132.1 

23.5 -1.2 -391.7 -4.0 -117.5 

18.5 2.5 148.0 -5.0 -74.0 

13.5 1.5 180.0 -5.0 -54.0 

9.0 -1.0 -180.0 -5.0 -36.0 

4.5 1.5 60.0 -5.0 -18.0 

0.0 -3.0 0.0 -1.0 0.0 



 

 

Table 53 The figure of radial stiffness test 3 

 

The positive value of the displacement meant an upward movement of the edge 

of the thrust pad, which was an abnormal phenomenon. The normal result 

should be all negative values to indicate the downward movements of both 

edges of the opposite thrust pads. 

From the data, the rear stiffness was always negative, which meant the 

displacement of the rear thrust plate was always downwards. But the movement 

of the front thrust plate was quite irregular. Its direction fluctuated with different 

weights. The poor tilting performance of the hydrostatic bearing system was 

probably the reason of it. 

From all the data above, the average radial stiffness of the hydrostatic bearing 

system was about 100N/µm. 

According to the theoretical calculations, as Pjournal pocket=27bar, the axial 

stiffness was 361N/µm, the testing result was about one-third of the theoretical 

result, which meant the radial stiffness performance of the bearing was not very 

well according to the ideal design. 



 

 

6.4.3.5 THE TEMPERATURE RISE 

The energy used to increase the temperature mainly came from two sources: 

pumping power and frictional power. The over temperature rise would cause the 

malfunction of the bearing system. 

To test the relationship between the pumping power and the temperature rise, 

the bearing spindle was set as a stationary status, i.e. N=0rpm. If only the 

pumping power was high enough to raise the oil temperature, then the cooling 

system was necessary before doing the rotational tests. 

The following table was used to show the temperature rise due to the pumping 

power only within 60 minutes. 

Pjournal supply=60bar   Pthrust supply=40bar 

ŋ=15cSt  N=0rpm Troom=22.8°C 

Pthrust front=7bar   Pthrust rear=7bar 

Pjournal1=17bar 

Pjournal2=20bar   Pjournal4=17bar 

Pjournal3=15bar   Pjournal5=20bar 

Table 54 The temperature rise condition under stationary pumping condition and 

lower pocket pressure 

T(min) Tai0(°C) Tai1(°C) Tai2(°C) Tai3(°C) 

0 23.9 22.3 22.3 23.9 

10 24.6 23.9 23.9 24.6 

15 25.5 25.0 25.5 25.2 

20 25.9 25.8 25.8 25.9 

25 26.5 26.5 26.5 26.4 

30 27.0 27.0 27.1 26.9 

35 27.6 27.7 27.8 27.5 

40 28.1 28.2 28.1 27.9 

45 28.6 28.8 28.9 28.5 



 

 

50 29.1 29.4 29.4 29.0 

55 29.4 29.7 29.8 29.2 

60 29.8 30.1 30.2 29.6 

Figure 90 The temperature rise condition under stationary pumping condition 

and lower pocket pressure 

 

The theoretical temperature rises considering the deflection of the bearing 

surface at Pjournal pocket=18bar and Pthrust pocket=7bar were: 

ΔTthrust=1.6ºC 

ΔTjournal=2.0ºC 

From the testing data, the temperature keeps rising. The temperature rise was 

below 3ºC during the first 30 minutes. After the pump’s continuous work, the 

temperature continuously rose and reached about 30ºC in 60 minutes. 

After changing five journal restrictors from high resistance to low resistance, the 

pocket pressure increased. The condition was listed below: 

Pjournal supply=60bar   Pthrust supply=40bar 

ŋ=15cSt  N=0rpm Troom=22.8°C 
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Pthrust front=8bar   Pthrust rear=8bar 

Pjournal1=27bar 

Pjournal2=25bar   Pjournal4=25bar 

Pjournal3=27bar   Pjournal5=25bar 

Table 55 The temperature rise condition under stationary pumping condition and 

higher pocket pressure 

T(min) Tai0(°C) Tai1(°C) Tai2(°C) Tai3(°C) 

0 24.3 23.5 23.5 24.3 

5 25.9 26.0 26.1 26.0 

10 27.6 27.3 27.5 27.6 

15 28.4 28.5 28.5 28.4 

20 29.2 29.1 29.3 29.2 

25 29.5 29.6 29.7 29.5 

30 29.9 29.8 30.0 29.9 

35 30.4 30.3 30.5 30.4 

40 30.8 30.8 31.0 30.9 

45 31.4 31.7 31.7 31.5 

50 32.0 32.0 32.3 32.2 

55 32.6 32.5 32.8 32.9 



 

 

Figure 91 The temperature rise condition under stationary pumping condition 

and higher pocket pressure 

 

The theoretical temperature rose considering the deflection of the bearing 

surface at Pjournal pocket=26bar and Pthrust pocket=8bar were: 

ΔTthrust=1.8ºC 

ΔTjournal=2.9ºC 

From the testing data, the temperature kept rising. The temperature rise was 

below 3ºC during the first 30 minutes. After the pump’s continuous work, the 

temperature continuously rose and reached about 33ºC in 60 minutes. 

Also from the data, the temperature rise at higher pocket pressure was larger 

than the temperature rise at lower pocket pressure. In a lower resistance 

hydrostatic bearing system, to maintain the same supply pressure meant the 

increase of the supply power because the flow rate increased a lot. Since it was 

a stationary system, all the energy raising the temperature came from the 

pumping power. 

So, if the pumping power increases, the temperature rise will also increase. The 

highest temperature rise was about 10°C, which greatly beyond the required 
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temperature rise. So a chilling system was definitely needed to cool down the oil 

as well as a large oil tank was needed to maintain the oil at a lower 

temperature. 

 





 

 

7 RESULTS AND DISCUSSION 

According to experiment design, the target supply pressures were Pthrust=10bar 

and Pjournal=30bar. Adjusted the size of the restrictors, the optimum supply 

pressures were obtained as: 

Pthrust1=8bar  Pthrust2=8bar 

Pjournal1=27bar 

Pjournal2=25bar Pjournal4=25bar 

Pjournal3=27bar Pjournal5=25bar 

The fuse in the plug blew when the frequency of the invertor exceeded 50Hz, so 

the highest safe supply pressures under this condition were 60bar for the 

journal bearings and 40bar for the thrust bearings. The test results based on 

this combination of pocket pressures could be used to analyse the comparison 

between the theoretical calculations and actual experimental results. 

The reasons of uneven journal bearing pocket pressures at the same supply 

pressure were probably the following two points: 

1. The slight manufacturing difference, including the burs remained within 

the tube or the different straightness of the hypodermic needles from 

different bearing restrictors, led to the different resistance ratio of the 

bearing restrictors; 

2. Different oil conducting paths of each bearing pocket led to different 

pressure drop through different paths. Because of the manufacturing 

technique of drilling the holes inside the bearing housing to make the oil 

paths, the angles of two straight drills would cause the oil flow lose its 

kinetic energy when flowing through the angle and will lead to the extra 

pressure drop through the oil path. Different shapes of the oil paths 

would have different influences on the pressure drop of each journal 

bearing pockets. 



 

 

According to the reasons listed above, the simply solution was to swapping the 

restrictors of the highest pocket pressure and the lowest pocket pressure and 

repeat this procedure until all the journal pocket pressures equal to each other. 

And another advanced solution might be using the 3D-printing technology to 

manufacture the oil path inside the bearing housing more smooth, which means 

not any sharp drill angles on the oil paths. By using the 3D-printing technology, 

each oil path of the five journal bearing pockets will have the same and 

minimum pressure drop condition by designing each path smoothly and 

separately. 

The flow rate at higher pocket pressures was 2.8L/min, and the theoretical flow 

rate was 3.1L/min. So the experimental results were quite accord with the 

theoretical results. The close values probably meant the actual bearing gap was 

quite close to the design bearing gap. From the last measurement by the CMM 

machine, the final bearing gap was 24.955µm, which quite accorded with the 

target bearing gap of about 25µm. So the diamond turning process complied 

quite well with the design requirement.  

The experimental axial stiffness, 30-60N/µm, was about one-fourth of the 

theoretical value, 187N/µm, and the radial stiffness, 80-100N/µm, was about 

one-third of the theoretical value, 361N/µm. The error between the theoretical 

values and actual values were quite large mainly due to the poor tilting 

performance of the bearing system. The single pocket thrust plate was easy for 

manufacturing which also meant lower cost, but it had relatively lower tilting 

stiffness compared with the multi-pockets design. If a high tilting stiffness was 

needed, the hydrostatic bearing system should be designed to meet the specific 

demand. In this R2R manufacturing system, since a couple of symmetrical 

hydrostatic bearings are used to put the 300KG drum roll on, most of the load 

comes from the gravity of the drum with its direction towards the ground, there 

is almost no tilting force or torque on the hydrostatic bearing shaft. And the total 

gravity force is distributed evenly on the two bearing spindles without too much 

irregular motions. So in this research project, the tilting stiffness is not regarded 

as the important working parameter for the bearing system. On the other side, 



 

 

the radial stiffness to balance the gravitational force on the spindle is one of the 

crucial properties of the hydrostatic bearing system. 

The experimental temperature rise just under the static condition, i.e. no 

rotational speed, continued to rise before turning off the pump. After one hour 

operation time, the oil temperature rise within the system was about 10ºC. 

According to the analysis before, the temperature rise over 3ºC was not well 

recommended, so a cooling system was definitely required to lower the 

temperature of the hydrostatic bearing system. The temperature control was 

beneficial not only to the accuracy of the bearing spindle, but also to the life 

cycle of the hydrostatic bearing system in a long term as well. 

According to Figure 71 The delamination and scratches condition on the surface 

of the thrust plate, after short operational tests, the scratches on the surface 

were just about 0.1µm, and it probably came from the friction between the 

remained burs and the bearing surfaces. The delamination conditions showed 

in the figure were quite obvious that the burs drop easily at high rotational 

speed and cause the extra attrition between the surfaces of the hydrostatic 

bearings. The depth of the scratches was quite small that it could almost be 

considered as no extra attrition during the normal operational process. But the 

quality of the nickel-based electroless coating was definitely needed to be 

improved to eliminate the delamination degradation phenomenon and 

strengthen the surface mechanical properties such as hardness. If the coating is 

cheap and perfect, the new R2R hydrostatic bearing system might be 

economically successful and will definitely have a broad application. 

 





 

 

8 CONCLUSIONS AND FURTHER WORKS 

Measured performance in terms of lubricant temperature rise, flow rate was in 

close agreement with the predictions from the theoretical calculations. 

Axial stiffness and radial stiffness were measured by amplifiers by adding 

symmetrical weights on both sides of the system. Since the fluctuation of the 

values of both axial stiffness and radial stiffness were quite large, the reasons of 

the deviation of the stiffness were needed to be further analysed by both 

theoretical analysis and experimental testing works. The reasons might be due 

to the design features as well as the manufacturing accuracy. 

The tilt stiffness of the bearing system was not satisfied, so the rotational tests 

were not recommended to proceed due to the irregular rotational movement will 

cause some extra attrition to the surface of the bearing spindle. The low tilt 

stiffness could not prevent the contact of the surfaces by the force of the 

irregular rotational torque. So the 300rpm test shall be performed when the tilt 

stiffness is improved in the future. And a cooling system is needed to protect the 

system from the overheat condition. 

The equations in the book (Stansfield, 1970, Hydrostatic bearings for machine 

tools and similar applications) only use some basic parameters of the 

hydrostatic bearing systems, such as the radial clearance, the dimensions of 

the shaft and the pocket, the viscosity of the lubricant, the rotational speed, the 

supply pressure, the density of the oil, the specific heat capacity of the oil, etc., 

and some advanced parameters were not included into the calculation process, 

such as centripetal acceleration when one bearing surface is rotated in a very 

high speed for an externally pressurized thrust bearing (Srinivasan, 2013a). 

All the equations were based on the assumption that all the flow within the 

hydrostatic bearing systems is laminar, so some complex static and dynamic 

conditions inside the bearing systems during the operational process were not 

been analysed in the initial review report. All the typical parameters of the 

hydrostatic system, such as outflow resistance, inflow resistance, ultimate load 

capacity, radial stiffness, flow, pumping power, frictional power, and 



 

 

temperature rise, were calculated without a velocity dependency. The geometry 

of the hydrostatic bearing pockets and their restrictors were optimized by using 

the time continuous pressure distribution at the bearing pocket, the laminar flow 

behaviour and the constant velocity of the bearing (Srinivasan, 2013a). The 

dynamic effects of the flow at high velocities within the pockets and the space 

between the shaft and the bearing were not considered. 

The best hydrostatic bearing design has higher load capacity, higher stiffness, 

lower flow rate, lower energy consumption, and lower manufacturing cost. In the 

next step, hydrostatic bearings experiments will probably be designed to real-

timely monitor the pocket pressure, flow rate, temperature change of the system. 

The environmental conditions, such as temperature of the environment, dust 

and dirt in the surrounding air, moisture and corrosive conditions, can also 

affect a bearing’s performance adversely. Both mechanical and environmental 

factors may affect the choice of a bearing and its performance. The more 

complex the system is, the more important it is to consider all of its real 

operational conditions, and then select the most suitable bearing type and its 

features as well the proper lubricant type (Srinivasan, 2013b). 

 



 

 

APPENDICES 

Appendix A THE CODES FOR AUTOMATIC 

CALCULATION EXCEL SPREADSHEET 

A.1 CODES FOR HYDROSTATIC JOURNAL BEARINGS 

Table A-1 Codes for hydrostatic journal bearings 

Parameters Codes to calculate the parameters 

Number of pockets: n= =B3 

Diameter of bearing: dB= =B4 

Length of bearing: LB= =B5 

Width of axial land: ca= =B6 

Width of circumferential land: cc= =B7 

Radial clearance: hL(av)= =B8 

Depth of pocket: hp= =B9 

Supply Pressure: p1= =B10 

Rotational speed: Nd= =B11 

Resistance ratio: ξ= =B12 

Viscosity of oil: η= =B13 

Density of oil: ρ= =B14 

Specific Heat capacity of oil: Cm= =B15 

Constant: k= =1-4*B8/B9 

Bearing shape factor: Φ= =B5/(3.14*B4/4) 

Bearing shape factor: Ea= =(B5-2*B7)/B5 

Bearing shape factor: Ec= =1-B6/(3.14*B4/4) 

Outflow resistance: Rod= 
=0.75*B3*B13*B17*(1-
B18)/B8/B8/B8/POWER(10,8) 

Inflow resistance: Ri= =B20*B12 

Ultimate load capacity: Wu= 

=1.47*B12*B17*(1-
B19)*(1+B18)*B10*B4*B4/(B12*(B12+0.4)*
B17*B17*B18*(1-
B18)+0.642*(B12+0.207)*(B12+6.02)*(1-
B19)) 

Radial stiffness: Sl= =1.5*B12*B17*(1+B18)*B10*B4*B4/(B8*(1+
B12)*(1+B12)*(1+(0.5*B12*B17*B17*B18*(1



 

 

-B18))/((1+B12)*(1-B19))))/POWER(10,8) 

Flow: Q= 
=1.33*B10*B8*B8*B8/(B13*B17*(1+B12)*(1
-B18))*POWER(10,6) 

Pumping power: Pp= 
=1.33*B10*B10*B8*B8*B8/(B17*B13*(1+B1
2)*(1-B18)) 

Frictional power: Pf= 

=0.00677*B17*B13*POWER(B4,4)*POWER
(B11,2)*(1-
B16*B18*B19)*(1+0.25*B16*B18*(1-
B19)*(B3-4)/(1-B16*B18*B19))/B8 

Temperature rise: Δt≈ 
=(B10+B26/(B24*POWER(10,-
6)))/(B14*B15) 

  



 

 

A.2 CODES FOR HYDROSTATIC THRUST BEARINGS 

Table A-2 Codes for hydrostatic thrust bearings 

Parameters Codes to calculate the parameters 

Outer diameter of thrust pad: DB= =B3 

Outer diameter of annular pocket: 
DP= 

=B4 

Inner diameter of annular pocket: 
dP= 

=B5 

Inner diameter of thrust pad: dB= =B6 

Clearance at the lands of each 
thrust pad at no load: hd= 

=B7 

Clearance at the pocket: hP= =B8 

Supply pressure: p1= =B9 

Speed of rotation: n= =B10 

Resistance ratio: ξ= =B11 

Viscosity of the fluid: η= =B12 

Density of oil: ρ= =B13 

Specific Heat capacity of oil: Cm= =B14 

Ratio ξ2/ξ1 for a pair of 

opposed plane pads or rotary 

thrust bearings: Ξ= 

=B16 

Ratio Av2/Av1 for a pair of 
opposed plane pads or rotary 

thrust bearings: Τ= 

=B17 

Virtual area of the thrust pad: 
Av2=Av1= 

=3.14*(B3*B3-B4*B4)/LN(B3/B4)/8-
3.14*(B5*B5-B6*B6)/LN(B5/B6)/8 

Ro(1)= 
=6*B12*LN(B3/B4)/3.14/B7/B7/B7*POWER(
10,-10) 

Ro(2)= 
=6*B12*LN(B5/B6)/3.14/B7/B7/B7*POWER(
10,-10) 

Outflow resistance: Ro(net)= =B20*B21/(B20+B21) 

Inflow resistance: Ri= =B11*B22 

Ultimate thrust capacity: T(net)= 
=B9*POWER(10,6)*B19*(1-
B17/(1+8*B16*B11)) 

Stiffness: ST= (when h(1)=hd) 
=B9*POWER(10,6)*B19/B7*(3*B11/((1+B11
)*(1+B11))+3*B16*B17*B11/((1+B16*B11)*(



 

 

1+B16*B11)))*POWER(10,-8) 

Flow: Q= 
=B9*POWER(10,6)/(B22*POWER(10,10)*(1
+B11))*POWER(10,6) 

Total Pumping power: Pp= =B9*POWER(10,6)*B26*POWER(10,-6)*2 

Total Frictional power: Pf= 

=2*(1.078*POWER(10,-
3)*B12*B10*B10*(POWER(B3,4)-
POWER(B4,4))/B7+1.078*POWER(10,-
3)*B12*B10*B10*(POWER(B4,4)-
POWER(B5,4))/B8+1.078*POWER(10,-
3)*B12*B10*B10*(POWER(B5,4)-
POWER(B6,4))/B7) 

Temperature rise: Δt≈ 
=(B9*POWER(10,6)+B28/(B26*POWER(10,
-6)))/(B13*B14) 



 

 

Appendix B THE TABLES OF MATERIALS TO BE 

TURNED BY DIAMOND 

B.1 THE MATERIALS READILY MACHINABLE BY DIAMOND 

TURNING 

Table B-1 The materials readily machinable by diamond turning (Gerchman, 1986) 

Plastics  

 Acetal  Polypropylene 

 Acrylic  Polystyrene 

 Nylon  Zeonex 

 Polycarbonate  

  

Metals  

 Aluminum and aluminium alloys  Electroless nickel plating on 
other materials 

 Brass  Silver 

 Copper  Tin 

 Gold  Zinc 

  

Infrared crystals  

 Cadmium sulfide  Potassium bromide 

 Cadmium telluride  Potassium dihydrogen 
phosphate (KDP) 

 Calcium fluoride  Silicon 

 Cesium iodide  Sodium chloride 

 Gallium arsenide  Tellurium dioxide 

 Germanium  Zinc selenide 

 Lithium niobate  Zinc sulfide 



 

 

B.2 THE MATERIALS NOT READILY MACHINABLE BY 

DIAMOND TURNING 

Table B-2 The materials not readily machinable by diamond turning (Gerchman, 

1986) 

 Silicon-based glasses and ceramics 

 Ferrous materials (steel, iron) 

 Beryllium 

 Titanium 

 Molybdenum 

 Nickel (except for electroless nickel plating) 



 

 

Appendix C THE SPECIFICATIONS FOR SJ100 

INVERTER 

Figure C-1 The specifications for HITACHI SJ100 inverter 

 





 

 

Appendix D THE SPECIFICATIONS FOR ABB M2AA 090 

L-4 MOTOR 

Figure D-1 The specifications for the ABB M2AA 090 L-4 motor 

 



 

 

Appendix E THE SPECIFICATIONS FOR MILLIMAR 1200 

IC COMPACT AMPLIFIER 

Figure E-1 The specifications for Millimar 1200 IC compact amplifier 



 

 

Appendix F THE SPECIFICATIONS FOR NI 9217 RTD 

ANALOG INPUT C SERIES MODULE 

The following specifications are typical for the range –40°C to 70°C unless 

otherwise noted. All voltages are relative to COM unless otherwise noted. 

All specifications given in °C are specific to 100Ωplatinum RTDs. 

Input Characteristics 

Table F-1 The specifications for NI 9217 RTD Analog input C series module 

Number of channels 4 Analog input channels 

ADC resolution 24 bits 

Type of ADC Delta-sigma 

Sampling mode Scanned 

Measurement range  

Temperature -200 to 850°C 

Resistance 0 to 400Ω 

Common-mode range  

COM-to-earth ground ±250 Vrms 

Channel-to-COM 50 mV 

Conversion time  

High-resolution mode 200 ms per channel 

 800 ms total for all channels 

High-speed mode 2.5 ms per channel 

 10 ms total for all channels 

Noise  

High-resolution mode 0.003 °C 

High-speed mode 0.02 °C 

Excitation current 1 mA per channel 

Noise rejection  

Normal mode (50/60 Hz)  

High-resolution mode 85 dB min 

High-speed mode None 



 

 

Temperature accuracy (including noise), 4-wire mode 

Measured Value  Typical (25 °C) Maximum (–40 to 70 °C) 

-200 to 150 °C 0.15 °C 0.35 °C 

150 to 850 °C 0.20 °C 1.0 °C 

Temperature accuracy (including noise), 3-wire mode 

Measured Value  Typical (25 °C) Maximum (–40 to 70 °C) 

-200 to 150 °C 0.20 °C 0.50 °C 

150 to 850 °C 0.30 °C 1.0 °C 



 

 

Appendix G THE SPECIFICTIONS FOR HAAKE 

PHOENIX II SYSTEMS 

Figure G-1 Specifications for HAAKE Phoenix II systems 

 



 

 

Appendix H THE SPECIFICATIONS FOR LEMO FGG.00 

TEMPERATURE MEASURING CONNECTOR 

Table H-1 The specifications for LEMO FGG.00 temperature measuring connector 

Manufacturer LEMO 

Product Category B-Series Plugs and Receptacles 

Product Type Connectors 

Series 00 

Shell Style Plug 

Number of Contacts 4 

Mounting Style Cable 

Termination Style Solder 

Current Rating 2 A 

Brand LEMO 

Contact Plating Copper, Nickel, Gold 

Shell Plating Chrome 

Factory Pack Quantity 150 

Voltage Rating 700 



 

 

Appendix I THE SPECIFICATIONS FOR TAYLOR-

HOBSON FORM TALYSURF-120L 

Table I-1 The specifications for Taylor-Hobson form Talysurf-120L 

Traverse Length 120mm 

Traverse Speed 10mm/sec maximum 

Measuring Speeds 1mm and 0.5mm/sec ±5% 

Return Speed up to 5mm/sec 

Gauge Type 
Phase Grating Interferometer, 1mN 
force nominal 

Measuring Range 10mm 

Resolution 12.8nm @ 10mm range 

Range to Resolution Ratio 780,000:1 

Straightness Accuracy 
0.5µm over 120mm traverse 

0.2µm over any 20mm traverse 

Data Resolution 0.25µm 

Dimensions (LxDxH) 396 x 127 x 195mm 

Weight 11.5kg 
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