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Abstract

This project sought to study the heat transfer and Kapitza resistance of fluids across interfaces,

nanopores and nanochannels with varying stiffness constants, mass and energy intermolecular in-

teraction strength of wall and fluid particles. An Einstein-Maxwell molecular dynamics thermal

wall model is developed. The developed modeling approach is shown to provide dual energy and

momentum transport exchange across solid-liquid interfaces and nanofluidic channels. A compu-

tational domain is implemented, using spring potential, ranging from 100-8000εσv−2 in two parallel

walls. In the first detailed study a wall-fluid interaction molecular dynamic thermal wall model is

developed to investigate the effect of mass of the wall particles on the Kapitza resistance, temper-

ature profile and density distribution across the solid-liquid interface and nanofluidic channel. The

results revealed that for low values of surface stiffness, the thermal resistance is dictated by the

value of the mass. The results also reveal that the temperature jump at the solid interface is not

accurately described by the theoretical vibrational frequency
√
κ/mw of the walls but increases as

a fifth-order polynomial with respect to log(mwk), where the rate of increase gradually decays until

the curve reaches a plateau. The second study develops a wall-wall interaction molecular dynamics

thermal wall model. The model is implemented to investigate the effect of energy intermolecular

interaction strength of wall particles, on the Kapitza resistance at the solid-liquid interface, tem-

perature profile and density distribution across a nanofluidic channel with simple harmonics of a

lattice system. The finding aided in the understanding of heat transport and Kapitza resistance

due to the intermolecular interaction energy strength of the walls on the solid-liquid interface and

across the nanofluidic channel. The results revealed, an increase in Kapitza resistance for higher

values of wall bonding stiffness κ, and lower values for wall particle energy intermolecular inter-

action strength. The third study implements and combines the wall-wall and wall-fluid thermal

wall models that have been developed to investigate the wall size effect on the Kapitza resistance,

temperature profile, and density distribution of fluid molecules across the solid-liquid interfaces

and nanofluidic channels. The investigation reveal an increase in thermal transport and Kapitza

resistance across the nanopore as the wall size and fluid molecular layer becomes smaller due to

fewer bulk-like liquid layers formed. The MD wall models were compared with analytical models,

which include Acoustic mismatch model (AMM), Diffuse mismatch model (DMM) and Lattice

dynamic model (LDM) with good agreement obtained. This study has increased our physical

understanding regarding nano-scale phenomena of fluid flow, thermal transport and Kapitza re-

sistance across interfaces, thin films and nanofluidc channels by implementing molecular dynamic

atomistic modelling.
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Chapter 1

Introduction

The end of the 19th and 20th century saw important advances in Nanotechnology. This has offered

the improvement of performance in devices and across applications such as food, information tech-

nology, aerospace, cosmetics, medicine and entertainment. Currently, more than 32% of scientific

publications from the European Union are related to the field of Nano-technology [1]. Experimen-

tal, computational, and theoretical investigations have over the years aided in an increased and

detailed understanding of molecular scale phenomena. Experiments have been reported to predict

global properties such as the frictional force, shear response, relaxation time in ultra-thin liquid

films; however, the direct extraction of significant local variables in the nano-scale such as pressure,

temperature and density is still beyond the scope of experiments. Currently, these local variables

can only be obtained by computer simulations due to the increased speed and processing power of

modern computers. Computer simulations applied to fluids can either be achieved, using the con-

tinuum hypothesis or from first principle. The first principle approach uses Molecular Dynamics

(MD), which is the approach used in this study.

Molecular Dynamics is a method that simulates physical movements of atoms and molecules

by means of computer codes. The study of Molecular Dynamics (MD) in Meso and Nano-scale

is an expanding and interesting area in Computational Nanotechnology and interfacial studies,

which are concerned with measurements ranging between 0.1nm-100nm (1nm = 109m). Molecular

Dynamics simulate atoms and molecules as point masses whose motions are obeyed by Newton’s

equations [2].

Interfaces and thin films are prevalent in aeronautical, medical and electronic devices. Transis-

tors with Sio2 dielectric compartments can have diameters of up to 1nm, with some other types

of transistors having a gate length of 10nm. As transistors become smaller processors become

more efficient and heat removal becomes a challenge [3-4]. Thermal transport is prevalent in
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semi-conductor transistors, and is made possible by phonons and impedements that cause thermal

resistance [5-7]. Therefore, reducing the thermal resistance or Kapitza resistance in silicon inter-

faces located inside processors will aid better themal interfacial transport out of the transistors,

which enhances the reliability and performance of the system [8-10].

Detailed knowledge of the Kapitza resistance in interfaces leads to improvement of energy

conversion efficiency in thermoelectric devices and an increase in thermal conductivity enhancement

in nanofluids. Various commercially available thermoelectric materials such as Si-Ge alloys and

Bi2Te3 have a figure of merit, ZT ' 1 at maximum operating temperature [11-12]. For deep

space missions involving the stabilization of temperatures, materials with figure of merit ZT > 4

are required, to match their efficiency with traditional thermoelectric devices. Such high figures

of merit can only be achieved by increasing the Kapitza resistance of the thermoelectric material.

This phenomenon has aided the engineering and increase of ZT > 2.4 by the aid of molecular

dynamics [13-14].

To solve the challenge of thermal management and large interfacial density, engineers are re-

quired to design devices and materials with large figure of merit (ZT ). Therefore, accurate and

good physical models that describe thermal transport, and Kapitza resistance in interfaces, thin

films, superlattices and nanofluidic channels are required. The existing models are mostly based on

traditional Fourier and Snell’s law and do not accurately predict the bahavior of thermal transport

and Kapitza resistance in nanoscale interfaces. Molecular dynamics take into consideration the

molecular interaction of surface particles and describes interface distances on the same regime as

the mean free path of the energy carrier (phonons) in bulk materials. This makes it very suitable

for studying nano-scale thermal interfacial phenomena.

1.0.1 Continuum and Molecular Regime

The nanometer by definition is 1-billionth of a meter, to put this in perspective, a strand of black

hair has a diameter between 50,000-180,000 nanometers, and the diameter of a strand of blond

hair is likely to be 15,000-50,000 nanometers. Nanofluidics have recently been playing a role in the

area of microfluidics and tends to also benefit continuum scale applications. Nanofluidics provide

solutions for nano-length scales where matter behaves differently from known phenomena. Leading

to the understanding of specific and special phenomena or things that occur in the transport of

fluid when contained in channels of nano-metric scale. From the point of length scale and time

scale, the possible use of Navier-Stokes equation (NS) up to 10nm length scale and time scale of

τ0∼ 10−12 has been implemented to model fluid flow, viscosity η bulk transport coefficients and

thermal transport of water in nanometric confinement. However, below 10nm the viscosity η can

2



1. Introduction

Figure 1.1: Continuum and free molecular transition.

no longer be predicted using the Navier-Stokes Equation (NS).

The continuum approach breaks down during surface to volume interaction, where the Knudsen

number is ≥ 10 describing the free molecular range. This means that, the equations and formu-

lations used to obtain the solutions of interested quantities in the continuum regime can not be

applied at this regime. Fig. 1.1 shows the time and lenght scales with models applied from the

molecular to the continuum regime.

Most molecular scales encompass the electrostatic diffuse layer (EDL), which is a diffused layer of

ions that appear on the surface of a material on exposure to fluid. The diffuse-layer has an impor-

tant role in most known substances, e.g. milk, which exists because fat droplets are encapsulated

with a diffused layer that prevents them from been cooagulated into butter. The diffuse-layer is

also present in virtually all heterogeneous fluid systems like paint, ceramic, cement slurry, ink and

blood. The EDL is not affected by the charge on the surface of the material but is influenced by

the density or (bulk ion concentration).

The debye length that measures the charge carriers net electrostatic effect and its surrounding in

solution is imperative in the field of nanofluidics, this region characterises the fluids that are close

to the charged surfaces, where charge electroneutrality vanishes, meaning volume electric forces

becomes negligible and even non-existent, as the charge density (ρe → 0) tends to go away from

the surface. Manipulating the properties of the fluid particles in the EDL, will affect the response

of the whole system, even up to the macroscopic scale that is much bigger than the debye length.

The practical aspect of the debye length is the presence of debye layer which overlaps, and can be

attained in fabrication at the nanoscale that produces nanopores in 1-dimension at 10nm range.
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Another important parameter is the phenomenon that holds some molecules down the surface

of an object, known as the slip length (b), when compared with a pore size, can enhance fluid and

thermal transport and pressure drop, along a nanofluidic channel. For ideal gases the slip length is

approximated as β ≈ 1.15l, where l is the mean free path. The debye length can also affect and be

compared to the slip length. The relation can also be compared to the Kapitza length, which is an

allegory of slip length that characterises thermal transport boundary condition across interfaces.

The last parameter that is worth mentioning is the flow rate in nanofluidic channels.

Recently nanofluidic channels have been reported to have upper bounds that don’t impose flow

rates, with friction on the surface of the bound relatively subtle. Flow rate in nanofluidic channels

are mostly determined by end effect friction [15]. Nanochannels present in carbon-nanotube (CNT)

and aquaporins have been reported to have high flow rates when compared to micro and macro-

channels. Membranes made of carbon-nanotubes have been shown to have flow rates of 100-100,00

times higher than most conventional membranes measured [16-19].

Despite five decades of research, realistic and accurate physics and models for describing and

studying Kapitza resistance across interfaces in semi-conductors, nanopores and nanochannels are

scarce and unavailable due to uncertainty in comparing experimental measurements and theo-

retical predictions. Molecular dynamics simulation and modelling has been predicted to address

the challenge of accurately describing the physical reality at the nano-scale, thereby connecting

experimental and theoretical models [2]. The MD model developed in this research will reduce

the uncertainties associated with accurately describing the physics involved in heat transfer and

Kapitza resistance across solid-liquid interfaces and nanofluidic channels.

1.0.2 Project Motivation

The field of microelectronics demands miniscule and better energy efficient devices. These devices

with silicon have been manufactured from the process of 65nm dimension in the 2000s to 15nm in

the most recent intel processors. The trend will continue beyond the 2030’s with devices having

required dimensions of 1-2nm likely, applying materials alternative to silicon. Therefore, there is a

need to develop computational modelling paradigms to aid the implementation and interpretation

of experiments guiding the development of alternative and smaller silicon materials.

Space technology applications require manned and unmanned spacecraft thermal control devices

that uses interface materials that are fusible, a detailed knowledge of solid-liquid interface is needed

to undertake excellent thermal design of spacecraft systems. The phenomena of heat transfer,

Kapitza resistance, diffusion rate and rate of heat dissipation in spacecraft thermal control sub-

system mostly occur in the nanoscale, with lack of detailed understanding and modelling causing
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Figure 1.2: Sabatier Assembly; Co2 Removal System in the International Space Station [Node 3].
See in [213] CDRA.

component degradation and malfunction, which can leading to the loss of spacecrafts.

Frequently flying modules, and nodes on board the international space station (ISS) to meet

carbon-dioxide/oxygen eradication requirement will be too expensive, making their application

impractical. Currently, the International Space Station (ISS) have the carbon-dioxide removal

system (CDRA) using zeolite membranes, multifilters for advanced water recovery and the new

Sabatier assembly Fig.1.2. More efficient and cheaper operations can be achieved in the ISS with

reusable and optimized nanoporous membranes.

The installation of nanomembrane filters in aero-engines gasification units and the introduction

of nano-thermal barrier coatings in jet-engines can reduce fuel consumption and greenhouse gases

emited from their exhaust. These applications are beginning to generate interest, making relevant

research significant.

Applying MD studies in the understanding of heat transfer and adsorption in nanofluidic chan-

nels and across interfaces have been proposed to aid in the designing, optimization and development

of novel and more efficient commercial filters and thermal resistance barrier coatings [19].

1.0.3 Aim and Objectives and Research

The aim of this project is stated thus:

To increase the physical understanding regarding thermal transport and Kapitza resistance phe-

nomena across interfaces and nanonofluidic channels, guiding experimental interpretation and en-

hancing theoretical models, implementing molecular dynamics atomistic modelling.

To achieve this aim the objectives are as follows:

• To develop Maxwel-Einstien solid molecular dynamics thermal wall and geometrical models

using Large Atomic-Molecular Massively Parrallel Simulator (LAMMPS).
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• To investigate the effect of mass of the wall particles on the Kapitza resistance, temperature

profile and density distribution across solid-liquid interfaces and nanofluidic channels.

• To investigate the effect of energy intermolecular interaction strength of wall particles on the

Kapitza resistance, temperature profile and density distribution across solid-liquid interfaces

and nanofluidic channels.

• To investigate and compare the effect of wall size on the Kapitza resistance, temperature

profile and density distribution across solid-liquid interfaces and nanofluidic channels with

simple harmonics of a lattice system.

• To compare the molecular dynamics model with commercially used theoretical models, such

as acoustic mismatch model (AMM), diffuse mismatch model (DMM) and lattice dynamic

model (LDM).

1.0.4 Advantages of Molecular Dynamics Simulation

• Molecular dynamic simulation is used to validate, predict and compare with experiments

that are difficult to perform in the nanoscale. It is a numerical experiment and has proven

to be more reliable than other molecular-based techniques used.

• Molecular dynamic simulation is suitable for real-time visualization of atomic trajectories.

• MD is used to analyze various range of fluids and materials in the nano and micro-scale to

obtain reliable engineering parameters and constants.

1.0.5 Limitation of Molecular Dynamics Simulation

• The classical treatment of forces in molecular dynamics makes it an approximation.

• There is the problem of different length scales, where the diameter and the length of the

domain can be orders of magnitude apart.

• Molecular dynamics simulation is computationally very expensive.
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1.0.6 Contribution to Knowledge

• Determined the effects of stiffness and mass, energy intermolecular interaction strength and

channel size on the Kapitza resistance, temperature profile and density distribution across

solid-liquid interfaces and nanofluidic channels with simple harmonics of a lattice system

applying molecular dynamics atomistic modelling.

• Reduction of atomic layers from 4σ (atomic layers) that is popularly applied in MD studies,

to 2σ (atomic layers) by the use of Einstein springs and thermostats..

• Determined that the Kapitza resistance or temperature jump across a solid-liquid interface

correlated with the product of the bonding stiffness and wall mass (logmwk) rather than the

frequency of harmonic springs
√
k/m and increases as a fifth-order polynomial with respect

to (logmwk).

• Development of Einsten-Maxwell molecular dynamics thermal wall model as a fix known as

tether_wall, that can be included in LAMMPS register and command. This is written in

C++ and LAMMPS codes. LAMMPS is an open source code developed by Sindia Laboratory

in the United States.

1.0.7 Overview of Thesis

Chapter 2 introduces the literature review that includes the critical idea behind the latest knowl-

edge on atomistic modelling, the gap in knowledge, and findings of interest concerning this area of

research. Past works are best presented by mentioning works that are important and related to the

research area which includes studies in molecular dynamics and monte-carlo simulations applied

to interfaces, nanochannels, nanopores and nanomembranes. Researchers have studied extensively

the fluid transport mechanism of diffusion and adsorption in nanomembranes. There has been less

effort in understanding the phenomena of thermal transport in nanomembranes, nano-interfaces

and nanofluidic channels for engineering applications.

Chapter 3 gives details of the method, technique and implementation of molecular dynamic

simulation. The Hamiltonian and Boltzmann probability theory will be introduced in the micro-

canonical NVE ensemble. The theory behind fluctuation and time correlation function are also

explained. The pair potential for this study and other pair potential functions applied in modelling

the inter-atomic attraction and repulsion is defined. The theory behind Maxwell model, Acous-

tic mismatch model, Diffusse mismatch model, Lattice dynamic model, Einstein solid model and

Maxwell-Einstein thermal wall model that is developed in the process of this work and further
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written as a fix and script in LAMMPS will be highlighted.

Chapter 4 reports the effect of mass of the wall particles on the Kapitza resistance, temperature

profile and density distribution across solid-liquid interfaces and nanofluidic channels with various

values of stiffness constant and wall temperatures.

Chapter 5 reports the effect of energy intermolecular interaction strength of wall particles on

the Kapitza resistance, temperature profile, and density distribution across solid-liquid interfaces

and nanofluidic channels with simple harmonics of a lattice system. The molecular interaction

between the surfaces of the wall and fluid and their effects on the nanofluidic channels are also

reported.

Chapter 6 reports the effect of different wall sizes on the Kapitza resistance, density distribution

and temperature profile across solid-liquid interface and nanofluidic channels with various values

of stiffness constant.

Chapter 7 provides the conclusion of this work and recommendation for future work.

As a summary, these chapters show that the Kapitza resistance, density distribution and tem-

perature profiles across interfaces and nanofluidic channels, are influenced by a) mass of the wall

atoms, b) wall-wall and wall-fluid (wetting) intermolecular interaction energy strength and c) wall

size of the nanofluidic channels. These findings are achieved implementing molecular dynamics

atomistic modelling.

1.0.8 Publications

Journal and Conference Publications

• Kio, M.T.E., Drikakis, D., Könözsy L. (2014) “ Equilibrium Molecular Dynamics Modeling

of Diffussion and Adsorption of Fluids in Armchair Single Walled Carbon-nanotube”. Paper

presented in the International Astronautical Congress, Toronto Canada.

• Kio, M.T.E., Frank, M., Asproulis, N., Drikakis, D., Könözsy, L. (2014) “Wall mass effect

on the thermal resistance of solid-liquid interface”. International Journal of Heat and Mass

transfer . In Review.

• Kio, M., Abgoola, O. (2012). Molecular dynamic simulation of heat transfer of gases in a

spacecraft-heat pipe. Paper presented at the Proceedings of the International Astronautical

Congress, IAC, 9, pp. 6885-6889
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Poster Presentations

• Kio, M.T.E., Asproulis, N., Drikakis, D., Könözsy L. (2014) “ Equilibrium Molecular Dy-

namics Modeling of Diffussion and Adsorption of Fluids in Armchair Single Walled Carbon-

nanotube”. Poster presented at the International Astronautical Congress, Toronto Canada.

• Kio, M.T.E and Asproulis, N. “Computational Molecular Dynamics of Phonon-Heat transfer

and Adsorption of Gases in Nanochannel for Aerospace and other Applications”. Poster

conference of Aerospace and Engineering Doctoral Training Centre. Cranfield University,

United Kingdom. March 2014.

• Kio, M.T.E and Asproulis, N. “Computational Molecular Dynamics of Heat transfer in a

Nanochannel”. Poster conference of A&E Doctoral Training Centre. Cranfield University,

UK February 2013.
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Chapter 2

Literature Review

This chapter explores the direction of the research and forms the basis for the framework of this

study. Researchers have extensively studied the fluid transport mechanism of fluid-solid interface

interaction phenomena in nanochannels and nanomembranes, with less insight into the phenom-

ena of nanoscale interfacial thermal transport. This chapter will highlight previously undertaken

investigations by other researchers that is foundational to this work. The gap in knowledge will be

obtained from the review of authentic literatures, providing a pathway for further in-depth study

and understanding of nanoscale interfacial thermal transport.

2.1 Wall-Fluid Interfacial Thermal Resistance

Molecular Dynamics Simulation was implemented to obtain the thermal resistance in fluid-solid

interface [21]. Their study used regions, having fluids and a wall with saturated vapor sandwiched in

between fluid regions. The Lennard-Jones pair potential was applied with walls modelled with triple

layers of face-centered cubic FCC crystal [22]. They chose platinum (pt) as the wall mass, having

different values of spring constant. The temperature given to the solid system was maintained at

100k and 200k and was controlled by phantom molecules. Different values of energy interaction

intermolecular stregth of the fluid-solid interface were given to enable studies of surface wettability.

They reported a lower jump in temperature at the fluid-solid interface as the surface wettability

increases.

An inter-atomic transfer model developed with simulation domain removing the region of the

vapor was reported [23-24]. There results revealed that the temperature jump is influenced by the

energy exchange at the fluid-wall interface and was in opposition to the heat flux direction.

Further studies using MD simulation and experiments have been reported [25]; they stud-
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ied individual carbon-nanotubes with interfacial thermal resistance inside liquid carbon. Their

experimental report showed that with high thermal conductivity of the CNTs, the interfacial ther-

mal resistance between the CNTs and liquid increased. They further explained that due to less

vibrational modes of the CNT fluid having low frequency, attributed to the conversion from high-

frequency modes to low-frequency modes due to phonon-phonon coupling was observed in the fluid

region. Longer CNTs with thermal boundary resistance were also studied. They reported that

interfacial thermal resistance remained fixed for lengths of CNTs above 25-500
o

A. There investi-

gation also showed that the liquid matrix have more layered thermal resistance than solids, which

is due to resonant coupling of low-frequency phonon modes of CNT and matrix. These frequency

modes that are lower carry a small portion of the total energy, causing CNT heat dissipation

to decrease due to the lower intermodal energy transfer between the CNT. This observation was

later supported by using MD, they used CNTs that have shorter lengths and contact areas, their

study further reported larger interfacial resistance due to their low-frequency modes and weaker

endurance and coupling to the liquid.

Current studies by [26] reported that the Kapitza resistance can be reduced across oil and

graphene sheet interfaces by the functionalization of graphene using alkanes having vibrational

modes that couples perfectly with the oil matrix. For non-wetting and wetting of wall surfaces, [27]

reported the increase of wall-fluid interfacial Kapitza resistance where they used the Lennard-Jones

potential to model the wall-fluid interaction with no molecular interaction at the wall-wall. Their

study used mass values that are ten times bigger than the fluid-fluid interaction, with various values

of wall-fluid energy intermolecular interaction strength. For strong interaction energy strength that

translated to wetting in the interface, thermal resistance was observed to be inversely proportional

to energy interaction (ε). However, for the non-wetting case, weak interaction strength at the

interface with an exponential decrease in the thermal resistance was observed. The study further

reported that there was no influence on liquid layering by thermal transport across the interface,

while for gas wall interface they reported that gas layering increases the thermal transport [28].

The effect of the structure of the wall, on fluid-wall thermal and momentum transfer at the

interface, was studied by [29], they observed thermal transport at the interface with normal com-

ponent, this was reported to be due to the mass density of wall surface plane in interaction with

the fluid at the interface. The studies by [30] showed the possibility of reducing fluid-wall interface

thermal resistance applying the principles obtained from the acoustic mismatch model. They re-

ported that increasing the temperature in a constant volume system and facilitating the increment

of liquid layering can decrease the fluid-wall interface thermal resistance.

Fluid wall thermal transport in water-silica system was studied by [31]. They observed water
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molecules layering that is adsorbed in the wall surface and penetrates the silica membrane at a

depth of 28σ using the Lennard-Jones pair potential. They reported a significant decrease in the

liquid-wall interface thermal resistance. This adsorption/absorption of water molecules through

layering in the interface and silica cells is proposed to have enhanced phonon ballistic transport

across the fluid-wall interface. Temperature jump, due to controlling a solid temperature was also

observed. They further carried out their work by cooling and heating water molecules between

parallel silicon walls. There investigation reported that Kapitza resistance affects and hinders

fluid-wall interface thermal transport in the nanoscale. They further reported that an increase in

the temperature of the fluid brings about bigger interfacial thermal resistance.

MD simulations were carried out for fluid-wall interface thermal conductance across the self-

assembled monolayer (SAMS) and water interfaces, having various ranges of chemistries [32]. The

results reported were in agreement with experiments performed [33]. This success suggests that MD

can be applied to measure fluid-wall interface thermal transport and forecasting bonding strengths

in interfaces.

Fluid-wall interface thermal conductivity of argon-liquid, and the influence of the argon liquid

layer thickness on the conductivity, were studied [34]. They reported higher thermal conductivity

for the liquid argon for higher film thickness and larger fluid-wall interaction strength. They further

observed that with a further increase in fluid-wall interaction, the thermal conductivity of the film

is reduced, because of larger depletion in second fluid layering, with the migration frequency of

larger temperature fluid atoms affected. The bulk thermal conductivity and Kapitza resistance

of liquid argon layers adsorbed were correlated [35]. They reported a factor of 2, which is an

improvement from the bulk fluid atoms having higher density of the layered fluid close to the wall.

They further investigated the effect of thickness of the slab on the thermal conductivity of the

fluid, and they observed an increase in thermal conductivity with a reduced slab thickness. Their

study reported the reason to be due to the excellent vibrational similarity between wall atoms and

fluid atoms at the interface.

The effect and influence of functionalizing interface surfaces were studied by [36]. They reported

improvements in fluid-solid thermal conductivity while increasing the hydrophilicity with (-OH)

functionalized group. They further used nano-pillars made of silica and observed an improvement

of thermal conductance in the interface. They concluded that these improvements were due to

vibrational matching and coupling between the solid-liquid interface.
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2.1.1 Analytical and Numerical Wall models

There are several analytical wall models employed for wall-fluid interaction, the most common

being the thermal wall and reflective model proposed by Maxwell [37]. These models describe the

particles as being reflected totally when they collide with a wall, making the velocity of the particle

perpendicular to impinge on the wall and reverses, while the components that are parallel to the

wall remain unchanged. The thermal wall model predicts that a particle when in collision, is given

a new velocity by the wall temperature, causing a diffusive reflection. The new velocity attained

by the particle obeys Gaussian distribution, while Rayleigh distribution is assigned to the velocity

component that is perpendicular to the wall. Particles will lose their memory of where they started

after collision on the thermal wall.

Maxwell also formulated a linear combination of his model, taking a reflecting wall and surface

as half reflecting and half absorbing [38]. Recently there is a study that used Maxwell model

in combination with Gaussian and Rayleigh distribution having thermal wall with each particle

colliding with the wall, reflecting diffusely or specularly [39]. They reported that the particle

motion depended on the direction of perpendicular or parallel collision with the wall, when different

accommodation coefficient is applied. The model by Cercingnani and Lampis [40] and extended by a

later study, which is observed to be close to molecular dynamic simulation model was reported [41].

This study takes the velocity components independently and uses two accommodation coefficients.

Simulation models have been mostly studied by the confinement of a fluid between two par-

allel plates with periodic boundary condition at the outlet and inlet using Monte-Carlo methods

with non-equilibrium molecular dynamics technique [42]. They used wall models to describe fluid

molecules interacting freely with thermal walls that are oscillating, and observed a temperature

distribution that is parabolic and exhibits a jump. Lattice models that are fixed and interacts

with the fluid using intermolecular forces were implemented in molecular dynamics [43]. They

observed that the wall model conserves energy of the fluid in the channel, but viscous heating,

due to shearing motion was recorded, which will need to be removed by thermostats. Another

approach against fixing the molecules of the wall in lattice position was implemented by [44], they

applied heavy mass of fluid (1010) to the molecules of the wall so that the fluid will be unable to

be swept away during the simulation process.
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2.1.2 Thermal Transport in Nanofluidic Channels

Thermal characteristics of gases in parallel plates using combined MD and Monte-Carlo methods

were studied [42], they considered the hydrophilic and hydrophobic nature of the walls and its

effects on the gases, heat flux, density and temperature distribution in a nanofluidic channel.

They derived the energy accommodation coefficient (EAC) which predicted the heat flux in the

channel effectively. Their work revealed that the wall-fluid strength of interaction was more relevant

when compared to the fluid-fluid interaction strength. The effects of wettability were also studied

experimentally by [45], gaseous layers, surface roughness on interfacial slip, and they observed

partial slip and slip lengths which are bigger than most simulation studies. They also used the

wettability and roughness to determine the interface thermal boundary conditions. Engineered

fluid flow close to interfaces in several regimes, to bring down flow friction was also investigated

by [46], they also discussed current theoretical concepts of the flow of fluid on solid interfaces with

length and time scales that differ, heat transfer and the effect on slip surface interface.

The isosteric heat and adsorption energy of single-wall carbon nanotube (SWCNT) bundles

containing mixture of N2 O2, CO, CO2 H2O and HF , using kinetic Monte-Carlo methods was

studied [47]. Their study revealed that, the gases adsorbed into the interstitial channels of the

CNT bundles, where the isosteric heat is calculated, is in agreement with experimental studies.

This study proposes the need to use improved size homogeneity of the SWCNTs to account for

molecular selection at the interstitial channels, so that accurate behavior of adsorption in CNT

bundles, and results very close to experimental studies can be obtained.

Kapitza or thermal resistance is a phenomenon attributed to the different vibrational nature

between atoms of different materials (or different electrostatic properties for materials where elec-

trons, rather than phonons, are the main energy carriers). As the system size increases from

nano to micro scales, phenomena at the solid-liquid interface become increasingly important [48].

Macroscopic models fail to accurately describe such processes [49]. Molecular Dynamics (MD),

which treats systems from first principles at an atomic level, is one of the most accurate method-

ologies for obtaining a better understanding of complex systems on micro/nano-scale [50]. MD

simulations have been used extensively for micro and nano-fluidics to understand the physical pro-

cesses at liquid solid-interfaces. Many of these studies focused on the slippage of the liquid on the

channel walls [51] complementing experimental observations and providing insight into interfacial

phenomena. Another important area of applications in connection with interfacial phenomena is

the area of molecular membranes [52]. Finally, the thermodynamic behaviour of both liquids and

solids has also been studied using MD, interpreting atomic trajectories into transport properties
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such as the thermal conduction of materials [53].

Previous studies so far have revealed the sensitivity of the various channel properties, such as

the strength of interaction between the wall and liquid particles [54], as well as liquid density and

bonding stiffness [21]. The thermal interface resistance has also been linked with the vibrational

frequency of the walls [55].

2.2 Statistical Mechanics in Nanofluidic Channels

Physics and statistical mechanics connect the atomistic or microscopic regime to macroscopic

quantities. Statistical treatment of non-equilibrium systems is often difficult. There are two non-

equilibrium treatments that have been identified in the past. The first method uses correlation

functions to explain non-equilibrium systems. The second explains the probability for the occur-

rence of each microstate. Due to the very small time scale dealing with obtaining any hydrodynamic

quantity, such as pressure, density, and velocity these quantities are averaged to neutralise the fluc-

tuations in the system. These fluctuations originate, due to the thermal motion of atoms, and are

also known as thermal noise. The probability of a given microstate to evolve at time (t) is described

by phase space distribution function (PSDF) (fΓ, t)δΓ. This is expressed as

dΩ = f(Γ, t)δΓ, (2.2.1)

this is integrated over the phase space and expressed as

ˆ
f(Γ, t)dΓ = 1, (2.2.2)

where the distribution function gives the fraction of the system δΩ in a small space volume of

element δΓ at time t.

Having knowledge of the distribution function, the instantaneous ensemble averages property

of the system can be obtained. With the advancement of the simulation with time(t) the system

evolves in phase space, averaging regions with higher probability and spending more time over that

region, and lesser time with regions having zero or lower probability. This technique is achieved by

the probability density and is obtained by sampling points in phase space. Information is obtained

by averaging over ensembles with an ergodic system, ensemble averaging and time averaging as

applied in MD and Monte Carlo simulations are the same. If a system is termed to be ergodic,

every microstate that has non-zero probability is attained. In systems that are ergodic, every

microstate that has non zero probability is attained. For systems that are ergodic, the average
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over phase-space can be replaced by the time averaging of any phase variable (BΓ), referred to as

the ergodic hypothesis and is expressed as

ˆ t

0

B(Γ(t′)dt′ =

ˆ
f(Γ)B(Γ)dΓ, (2.2.3)

where Γ(t) = [r(t), p(t)]T
′
is a phase space point at time (t) with phase space distribution function

(fΓ) [56-57].

Computer simulations are currently applied for these multi-dimensional and multi-body systems

with phase space of 6N-dimensional. Their probability distribution can describe the properties of a

system of particles. The case where the energy E, the number of particles N and the volume V are

conserved, is known as the microcanonical ensemble. The probability distribution of microstates

is expressed as

fε(Γ) =
δ(Ho − E)´
δ(Ho − E)dΓ

, (2.2.4)

the equation
´
fε(Γ)dΓ = 1 satisfies the distribution function and Ho is known as the Hamiltonian

and is given as

Ho =

N∑
i=1

pi.pi
m

+ U(r1...........rN ), (2.2.5)

where pi the momenta, m−mass and U the potential energy.

The microscopic model for enthalpy in a microcanonical ensemble is derived by Boltzman and

is expressed as

S = kB

ˆ
fεInfεdΓ = kBInΩ(N,V.E), (2.2.6)

where Ω describes the entropy of a given state, the canonical ensemble with temperature T , number

of particles, N and volume V . These ensemble properties are conserved, close to reality and mostly

applied in MD simulations. The probability distribution of a microstate Γ of canonical ensemble

is expressed as

fε(Γ) =
e−BHO´
e−BHOdΓ

. (2.2.7)

where B = (kBT )−1, T is thetemperature and kB the Boltzmann constant.

Recent studies have investigated connections and relationships between dynamics at atomic

or microscopic levels and macroscopic properties, in essence the reason that transport occurs in

chaotic and non-chaotic systems [58-59]. Previous studies investigated dynamic properties of a

particle, located in a nanopore, which interacts with confined atomistic walls [60]. The results of

their study predict that the ergodic hypothesis is correct for particles with several ranges of energy,

and systems with different channel width.
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2.2.1 Pair Distribution Functions

The pair correlation function is expressed as g(rij ,∇u), while S(k,∇u) is the structure factor

and k is the wave vector [61- 62]. Models for pair distribution function are given as registers in

LAMMPS to be applied in equilibrium and non-equilibrium MD. This function is utilized as a fix

to obtain the density distribution in the results of this work. The simplified distribution function

is applied because distribution interactions between particles in homogeneous atomic fluid that

is in equilibrium does not have a preferred direction. This type of distribution is called radial

distribution function (RDF) and is expressed as

g(r) =
V

8πr2N2

〈 N∑
I=1

∑
J 6=1

δ(r − rij
〉
, (2.2.8)

where V is the volume of the system and N , Number of atomic particles, g(r) describes the density

of the particles, normalized by average fluid density which converges to unity in long-range limits.

Densities shows peaks at distances of r ≈ 21/6. The peak distance is due to minimum potential

energy between two Lennard-Jones atoms. An increase in density over the solid-liquid transitional

phase (0.92 ≤ ρ ≤ 0.96) forms a solid. The radial distribution function of solids shows large and

pronounced peaks with distances relating to their lattice type and spacing.

To understand the behaviour of fluids in confined systems and the reason for fluid layer forma-

tion, attention is focused on the physics of structural layering. Fluids in confined systems maximize

entropy by the formation of layers. From the principles of molecular packing spheres, the density

of the peaks becomes high when the particles are packed efficiently, and the slit width is narrowly

less than the integer multiple of sphere diameter σ. The particles frequently collide with the walls

and tend to push apart, compared with wall packing that is less efficient with lower density, which

generates oscillations [63]. Particles interact and impact the walls, thereby transferring momentum

to the walls. Contact number density at walls, nwall, have maxima and minima slit widths. The

packing density of the particles between the walls is expressed as

Γ =

ˆ b/2

−b/2
[n(z)− nbulk]dz, (2.2.9)

where b = l − σ, is the thickness of the fluid film in slit, n is the number density.

Understanding the behaviour of Γ−parking density, gives the reason for layering.
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At equilibrium conditions of chemical potential µ and for hard spheres with no external field,

µ can be expressed as

µ/kBT=log[n(R)Λ3]−logω(R), (2.2.10)

where ω(R) describes the probability of inserting a particle at location R, Λ− thermal wavelength.

The density at particular point is proportional to the probability of particle insertion.

2.2.2 Models of Kapitza resistance in interfaces

The theory of thermal phonon transport in an interface and the traditional expression for the

Kapitza resistance k is given as

k =
TW − TF

q
, (2.2.11)

where TW and TF are temperatures of the wall and fluid boundaries, and q is the heat flux of the

wall. To obtain the heat flux in the nanoscale, an expression can evaluate the properties of phonon

obtained from harmonic lattice dynamics calculated with assumption of no inelastic scattering

within the boundary of solid and fluid. This assumption also defines the Kapitza resistance as

the temperature drop across the solid-fluid interface which is the same as the boundary thermal

resistance, irrespective of change in the boundary width of solid or fluid. The solid wall emits and

absorbs phonons from the boundary. The net heat flux across the fluid-wall interface is expressed

as

q =
1

(2π)3

ˆ
L

+∑
v

~ω(k, v)vg,z(k, v)αW→F (k, v)FW (k, v)dk+

+
1

(2π)3

ˆ
R

−∑
v

~ω(k, v)vg,z(k, v)αW→F (k, v)FF (k, v)dk, (2.2.12)

where W and F is the wall and fluid, ~ is the Planck constant, ω is the phonon frequency, v is

the phonon group velocity, k is the wave number and α is the transmissivity. The summations are

over phonons moving in the z-direction. The two variables Fw and Ff represents mode-dependent

phonons and are distribution functions in the wall and fluid. These distributions are represented

as

FW (k, v) = fBE [ω(k, v), TW ] + f
′

W (k, v), (2.2.13)

and

FW (k, v) = fBE [ω(k, v), TF ] + f
′

F (k, v), (2.2.14)

where fBE is known as the equilibrium Bose-Einstein distribution function and F
′

W and F
′

F are

deviations from equilibrium distribution.

19



2. Literature Review

The Bose-Einsten distribution function is written as

fBE(ω, T ) =
[
exp
( ~ω
kBT

)
− 1
]−1

, (2.2.15)

where kB is the Boltzmann constant and T is the temperature.

The Kapitza resistance when the phonon properties are assumed to become temperature inde-

pendent from the temperature of the solid wall (Tw) and fluid (Tf ) is expressed as

k =

[
1

(2π)3

ˆ
W

∑
v

~ωvg,zαW→F
∂fBE
∂T

∂k

]−1

, (2.2.16)

where the subscripts are the phonons in the fluid-wall interface and follows the Bose-Einstein

equilibrium distribution function and ω is the frequency. Equation 2.2.16 is the most popular

expression applied for obtaining the Kapitza resistance in the nanoscale [64-68]. However, this

equation is not correct if average phonon transmission coefficient is approaching unity and also

assumes a system having perfect crystal with no interface. The inaccurate assumption of no

presence of interface and f
′

W and f
′

F being zero, makes the equation inconsistent and erroneous.

The study of the Kapitza resistance was taken further by [69], who obtained and derived the

junction Kapitza resistance for non-equilibrium phonon distribution and is expressed as

k = 1− 1

(2π)3

ˆ
W

+∑
v

BWαF→W dk −
1

(2π)3

ˆ
F

∑
v

BFαW→F dk, (2.2.17)

where BW and BF is fraction of total heat flux moved by specific phonon mode in the solid wall.

Equation 2.2.17 was further developed [70] and expressed as

k =
1

(2π)3

ˆ
W

∑
v

~ωv2
g,zτ

∂fBE
∂T

∂k, (2.2.18)

where τ is the equilibrium lifetime.

To determine the accuracy of these equations for the Kapitza resistance molecular dynamics

studies for Si/Ge interface was reported [8]. There study did not require any assumption for the

phonon scattering and obtained error bars for MD prediction, which represented a 95% confidence

interval when five simulations where implemented and compared to various models. Temperature

independence of the Kapitza resistance in low temperature was also observed indicating an elastic

phonon interface scattering in the Si-Ge interface [8].
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2.2.3 Chapter Summary

From reviewed literature, there is a need to further study and understand how nanoscale thermal

transport and Kapitza resistance in interfaces, thin films, nanofluidic channels, nanopores and

nanomembranes occur. Wall models that tend to mimic physical reality were also found from

some studies undertaken, to describe thermal transport and Kapitza resistance in interfaces and

nanofluidic channels. Analytical wall models were highlighted in the review; they include Maxwell

model, Ceignani-Lampis and Lord model, with simulation models including the fixed lattice model

and harmonic bonding thermal model. The simulation models include molecular interaction due

to Lennard-Jones pair potentials, while the analytical model is limited due to non-inclusion of the

intermolecular interaction potential term in their models. The simulation models are reported to

be superior to the analytical models due to the closeness of their values to thermo-dynamical mea-

surements and their wide application in large temperature ranges [47]. MD simulation described

the physics of solid-fluid thermal interfacial interaction in these reviews and is adopted in this

study. Most molecular studies reviewed did not include and capture the effect of mass, energy

intermolecular interaction strength and vibrational frequency of the wall atoms; thereby lacking in

addressing the critical challenges in nanoscale heat transfer and interfacial phenomena. This study

will attempt to address these issues by developing an appropriate combination of the Einstein and

Maxwell thermal wall models, by implementing molecular dynamics. The MD model of this study

is predicted to accurately mimic the properties of the wall, fluid, and interfacial particles, thereby

correctly describing the physics of the system.

This review has enabled this thesis to develop and focus on the objectives of this research, and

also highlight areas that needs improvement and further studies of nanoscale thermal interfacial

phenomena. The areas of research and interest identified, forms the basis of this research and are

as follows:

• From previous studies, it is clear that weak vibrational coupling and matching of wall-fluid

phonons are responsible for improvements in Kapitza resistance in interfaces and nanofluidic

channels. The Kapitza resistance of these studies were mostly obtained from rigorous math-

ematical manipulations (Analytical methods) with many approximations leading to inconsis-

tent and inaccurate results. In such circumstances, nanoscale thermal interfacial phenomena

applying direct molecular dynamics to determine the thermal transfer and Kapitza resis-

tance in interfaces and nanofluidic channels that are more accurate, has less extrapolation,

few approximations and mathematical manipulation, becomes very desirable and significant.

• There is also need for the development of improved thermal wall models, using molecular
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dynamics to describe the physics of thermal transfer and Kapitza resistance across solid-liquid

interfaces and nanofluidic channels.

• To study in details and understand the influence and effects of mass, vibrational frequency,

energy intermolecular interaction strength of the wall atoms and the wall size on the Kapitza

resistance, temperature profile and density distribution across interfaces and nanofluidic

channels.
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Chapter 3

Molecular Dynamic Simulation

3.1 Introduction

Molecular dynamics holds a powerful potential to study and provide solutions to phenomena and

challenges at the nanoscale. In order to properly analyze and understand the process in the

nanoscale region, computer simulations provide a good method to visualise and understand what

is going on. The increase of processing power of a computer has made molecular dynamics crucial

and relevant in these applications, especially studies involving thermal transfer, Kapitza resistance

and adsorption in the nanoscale.

Molecular Dynamic (MD) is a computer simulation method of physical movements of atoms and

molecules. It is also a classical and deterministic process of simulation that uses potential energy

functions to model the basic interaction of atoms and molecules [2]. The small time scales that

micro and nano-systems undergo makes experiments very complex and complicated in this region.

There are scenarios where experiments cannot be carried out especially in very small time and

length scales with extreme conditions making it very expensive, in such cases molecular dynamic

simulation becomes important and comes handy. MD is a numerical experimental method with

atomistic time scale of femtoseconds (10−15), this time region covers dynamics in the nano-region

and makes the time to process the dynamics in this region very short. Considering the growth of

computational resources available for modern computing, simulation time is still not sufficient to

observe the dynamics of molecules in a suitable and desired time frame. This chapter will highlight

some techniques in statistical mechanics applied to molecular dynamics simulation implementing

Large atomic-molecular massively parallel simulator (LAMMPS).

There are two types of mechanics that describes motion in the nano-scales. They are quantum

mechanics, which is based on density functional theory and gives better prediction of position
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and momenta of particles and the classical mechanics which is an approximation of quantum

mechanics. There are two methods of simulation that also uses the classical mechanics principle,

and they include Monte Carlo simulation and the Molecular dynamics simulation (MD). The

classical mechanics approximation can be related to the velocity using the Boltzmann theory which

is simulated in the microcanonical NVE ensembles [2]

Eo =
∑
i

1/2miv
2
i = 3/2NkBT, (3.1.1)

where Eo is the kinetic energy, mi the mass of particles, vi the velocity, kB the Boltzmann constant

and T the temperature.

Statistical mechanics has been able to bring to the understanding the connection between mi-

croscopic molecular motion and macroscopic dynamics. Statistical mechanics also makes it possible

to interpret micro-scales (ensembles) to macro-scales so that useful parameters and quantities can

be obtained. Ensembles are a conglomeration of points describing a particular thermodynamic

state. An atom is identified by position and momenta in 1, 2, 3 dimensions. Interacting atoms are

contained in the phase space of a maximum of 6N phase space for 3-dimensional systems. There

are different microscopic states (ensembles) which are described by thermodynamic values of en-

ergy temperature, pressure, volume, chemical potential and number of particles. The reality of a

micro-state passing through all other microstates and visiting itself, predicts the transformation of

a micro-state to macroscopic properties of the system.This process is described as egordicity where

all micro-states are attained in a system [60]. For ease of analysis and overcrowding of variables,

three thermodynamic variables are grouped to make an ensemble.

The NVE ensemble which is known as micro-canonical ensemble describes molecular dynamics

simulation process but since all the ensembles attain the same state and are identical in a system

they are worthy of note and they are expressed as

Ensembles Constraint

Micro-canonical N, E, V (Constant)

Canonical N, T, V

Grand Canonical μ, T, V

Isothermal-Isobaric N, T, P
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Modelling free phase space in a configuration of a system of N particles in 3−dimensions is

3N . If there are N−particles, positions and velocities need to be specified for the particles (6N

variables) uniquely identifying the dynamical system as

X = A ({r}{p}) , i = 1, 2, 3, 4, 5, 6N, (3.1.2)

where r is the position and p is the momenta.

Boltzmann proves that the probability when a system visits a microstate is proportional to the

energy of that microstate when you include the Boltzmann factor [2].

The probability for an absolute value is given by

P ({ri}, {pi}) =
e−BH({ri}{pi})∑
e−BH({ri}{pi})

, (3.1.3)

where the divisor in the equation is known as partition function Z and expressed as

Z(N,V, T ) =
∑

microstate

e−BH({ri}{pi}), (3.1.4)

which can also be given as

Z (N,V, T ) = Ω
(
N,V,E

)− E
KBT , (3.1.5)

where kB is known as the Boltzmann constant, N is number of particles, V the volume, E the

energy and T the temperature.

At the atomistic level, properties of a microstate in thermodynamic equilibrium is fluctuating

or changing continuously. When determining any property in the microstate, difference between

its instantaneous value and ensemble average of its trajectory are distinguished, this is what the

Boltzmann equation is describing; a macroscopic state that is related to the microstate, and that is

what is observed during experiments. The instantaneous values were correctly defined for properties

concerning energy [2], which includes kinetic and potential energy. These entities are not correctly

defined for properties such as pressure and temperature which are obtained by statistical mechanics

from ensemble averages.

In equilibrium the ensemble average (A) is defined as

< A >=
∑

microstate

AP =

∑
A ({ri}, {pi}) e−BH({ri},{pi})∑

e−BH({ri},{pi})
, (3.1.6)
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where r is the particle postion, p is the momenta and Z =
∑
microstate e

−BH({ri}{pi}) is the partition

function.

Molecular dynamic simulation does a time average and the quantity A is given as

A =
1

T

ˆ T

0

A(t)dt. (3.1.7)

At equilibrium conditions the ensemble average and time averages are equal (egordicity) and is

expressed as

< A >=

´
Aexp(−βE)drdp´
exp(−βE)drdp

, (3.1.8)

where < A > signifies that all the microstates are achieved, β is the Boltzmann factor and E is

the energy.

3.2 Hamiltonian mechanics

This mechanics state that a system that has a dynamic property can be determined by its total

energy which is a sum of the kinetic and potential energies. This is given in the form [2]

H = K + V, (3.2.1)

and is written as

H ({ri}; {pi}) = V ({ri(t)}) +

3N∑
i=1

(Pi(t))
2

2mi
, (3.2.2)

where i denotes atom and Cartesian component x, y and z. The equation of motion can be derived

from the Hamiltonian [71]

r =
∂H

∂pi
; ṗ =

∂H

∂ri
, (3.2.3)

taking the Hamiltonian with respect to time gives

∂pi
∂t

= −∂H
∂t

;
∂r

∂t
=
∂H

∂Pi
, (3.2.4)

from the following expression the time derivation of the Hamiltonian can be obtained using chain

rule
∂H

∂t
=

3N∑
i=1

(
∂H

∂r
ṙi +

∂H

∂p
ṗi

)
, (3.2.5)
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which gives by substitution

∂H

∂t
=

3N∑
i=1

(
∂H

∂ri

∂H

∂pi
+
∂H

∂pi

(
−∂H
∂ri

))
= 0, (3.2.6)

where r is the particle position and p is the momenta.

The Hamiltonian as in Equation 3.2.6 is conserved, i.e. the system having constant energy. This

describes the micro-canonical ensemble used for molecular dynamic simulation [2]. An important

approximation in the Hamiltonian is the equipartition of energy that states that any degree of

freedom that is squared inside the Hamiltonian, is approximated as 1/2kBT of energy. This

theorem leads to the relationship between the macroscopic state of absolute temperature and

microscopic state of average kinetic energy. The temperature is obtained from the kinetic energy

of a system.and is expressed as

< k >=
3N

2
kBT, (3.2.7)

the center of mass motion is mostly set to zero at t = 0, therefore the equation becomes

< k >=
3N − 3

2
kBT. (3.2.8)

The temperature is related to average kinetic energy, thereby obtaining the instantaneous temper-

ature as

k(t) =
Neff

2
kBT (t), (3.2.9)

the microscopic temperature i.e. kinetic temperature is written as

T =
1

3NkB

N∑
i=1

|ṙi|2mi, (3.2.10)

where N is the degree of freedom, mi the mass, r̄i is the velocity and kB is known as the Boltzmann

constant.

The system temperature will surely fluctuate in time. This is one of the reasons for equilibration.

For pressure the Clausuis Virial theorem is commonly used and this gives for N-system of particles

〈
N∑
i=1

ri.f
TOT
i

〉
= 1/3NkBT = −pv, (3.2.11)

where fTOTi is the total force on the ith particles. The internal viral < w > can be defined

if internal forces are considered. For NPT ensemble this needs thermostating and barostating
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inputs that controls the pressure to make it constant. The internal viral is expressed as

< w >=

N∑
i=1

ri.f
INT
i =

N∑
i=1

ri.∇ri.v(ri), (3.2.12)

this can be obtained from the trajectory and gives the relation

PV = NkBT + 〈w〉 , (3.2.13)

where P is the pressure, V the volume, kB is the Boltzmann constant, T is the temperature and

< w > the internal viral.

The instantaneous pressure of the system is obtained. Just as in the case with the temperature,

macroscopic pressure is not the same as the microscopic pressure because this pressure can still

fluctuate. However, the thermodynamic pressure (macrostate pressure) is obtained as an ensemble

average.

3.3 Potential functions

In an ideal case the potential function determines the efficiency, accuracy and simplicity of molec-

ular dynamic simulation. The potential functions are derived from the potential energy of the

system. The potential of any microstate V (r1, r2,r3. . . . . . . . . . . . .rN ) is assumed as the sum of a

pair between atoms or molecules in a system Φ(rij). This can be expressed [2] as

V =
∑
i

V1(ri) +
∑
i

∑
j>1

V2(ri, rj) +
∑
i

∑
j>i

∑
k>j>i

V3(ri, rj , rk) + .................. (3.3.1)

where V 1(ri) describes the effect of an external force impacting the system. The other terms

V2(ri, rj) and V3(ri, rj , rk) describe particle-particle interactions. The summation is limited to

interaction potentials of not more than three atoms at once.The use of more than two body

interaction is computationally expensive, making the use of pair particle interaction desirable

given as

Vi =
∑
i

∑
j>1

V (rij), (3.3.2)

and

V (rij) =

n∑
i

∑
j>1

Vij (|ri − rj |) , (3.3.3)

where V (rij) is the Potential between i and j, rij is the distance between molecules i and j in a

simple system, for complex systems there are different types of potential functions used to describe
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the system.

3.3.1 Lennard-jones potential

The Lennard-Jones potential (LJ) popularly known as (12-6) potential, is the most used potential

function in molecular dynamic simulation [2], and it is defined as

V (rij) = 4ε

[(σ
r

)12

−
(σ
r

)6
]
, (3.3.4)

where V (rij) is the Potential between i and j, ε is the Lennard- Jones energy coefficient, σ is the

Lennard- Jones distance, r is the distance between two parts.

The force obtained from the potential is given as

F = −∇rij(V ), (3.3.5)

and this becomes

F =

(
48ε

σ2

)[(
σ

rij

)14

− 1/2

(
σ

rij

)8
]
rij , (3.3.6)

for LJ potential function, the force becomes

F =

N∑
j=1

24ε

r2
ij

[
2
(σ
r

)12

−
(σ
r

)6
]
rij , (3.3.7)

where force F is obtained for all molecules with potential V . Atomic pair i, j is only evaluated

once, since rij=−rji.

It is important to choose dimensionless (MD units) for Lennard – Jones potential using mi, σ

and ε as units of mass, length and energy. Lengths are known in terms of Armstrong, the energy

units ε can be erg/ atom or converted to kcal/ mole or J/mole. The MD unit of the mass is taken

as unity and for specific atoms can be grams and the time is expressed as
√
mσ2/t or in seconds.

3.3.2 Buckingham potential

The Buckingham potential is very expensive because of the high usage of computing resources.

The potential is represented as

V (rij) = Aijexp (−Bijrij)−
cij
rbij
, (3.3.8)
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and this potential does not contain the attractive part and is very rigid, as the potential between

the atoms increases, it is expressed [72] as

Vij(r) = ε (σ/rij)
v

= 9r−vij, (3.3.9)

where v is the hardness of the sphere and ε the energy coefficient of the pair.

For a whole system or ensemble, the total potential function can be expressed as

V (r)ij = vnon−bondedτij + vbondedτij + vreserved, (3.3.10)

where vnon−bonded/vbonded means the potential function due to bonded and non-bonded interaction

[2] while vreserved connects contributions that are to the potential by other interactions.

Expressing the non–bonded potential becomes

vnon−bonded =
∑
i

∑
j>i

vcolij +
∑
i

∑
j>i

vvwdlij , (3.3.11)

where vvwdl is the vanderwaals potential (LJ) and vcol is the coulomb potential, which is given in

the form

vcolij (r) =
qiqj

4πεorij
, (3.3.12)

where εo means permittivity of the free space, rij is the distance and qiqj are partial charges.

The bonded potentials are described from the Leonard Jones potential, Soft sphere potential

and Buckingham potential we discussed earlier. The potential function for bonded interaction is

given as

vbondedij =
∑
bond

vstretchij +
∑
angles

vbondi.j.k +
∑

properdihedals

vtorsi,j,k,l +
∑

improperdihedrals

vimpdii,j,k,l , (3.3.13)

where vbonded means the potential function due to bonded interaction and other parameters de-

scribing the different dynamics of the bonds.

The reserved potentials are modelled by other special potentials primarily due to boundary

conditions. For example, spring potential can be represented as

vspringτij (r) = 1/2k(ri − rjτ )2, (3.3.14)

where ri is the atom i (current position), spring constant k and rij position obtained during atomic

vibration or bond stretching.
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3.3.3 Pair potential for water

Water is a non-linear molecule made up of three atoms, and its pair potential has been studied

extensively [73]. Forty-six various water models have been studied, focusing on their geometry, but

few will be considered, which includes the simple point charge SPC, TIP4P, TIP5P and SPC/E

(SPC extended) models. The popular usage of a potential function for different water models

which includes all states involves Lennard Jones interaction between oxygen – oxygen interaction

and electrostatic interaction between hydrogen – oxygen and is expressed [74] as

vwaterij = 4ε00

[(
σ

rij

)12

−
(
σ

rij

)6
]

+
∑
i

∑
j

qiqje
2

4πεorij
. (3.3.15)

where vwaterij is the Potential between i and j, ε is the Lennard- Jones energy coefficient, σ is the

Lennard- Jones distance, r is the distance between two parts, εo means permittivity of the free

space and qiqje are the partial charges.

3.3.4 Simple water models

Water models are applied to the simulation of liquid clusters and aqueous solutions of water.

These models are classical models because they are approximated from experiments and molecular

dynamic simulation. They are classified according to points created to describe the model. They

can be in the form of real atoms or dummy sites.

Water models are classified according to their sites, these include 2,3,4,5,6 sites with other

modified and special types [73]. Due to its relevance to wider applications, only 3,4 and 5 site

models will be mentioned.

3.3.5 3 Site-water model

The most commonly used water models are the 3-site water models that focuses on the non-bonded

interactions in the water molecule, where there are interactions due to electrostatics and vander-

waals forces. This can be described by the Lennard-Jones potential and coulombs law [74] and is

expressed as

Enon−bonded = Evwdl + Ecol, (3.3.16)

where Enon−bonded means the non-bonded energy function, Evwdl is the vanderwaals energy func-

tion and Ecol is the electrostatic energy function.

which can be written as
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V (r) =

a∑
i

b∑
j

4εij

[(
σij
rij

)12

+

(
σij
rij

)6
]

+

a∑
i

b∑
j

qiqj
4πε0rij

, (3.3.17)

where εo is the electrostatic or dielectric constant and has a value of 332
o

A.kcal/mol. qiqj are partial

charges of the atoms or molecules; σ6
ij , σ

12
ij are the attraction and repulsion coefficients of Lennard-

Jones. Water models are distinguished according to their structure; rigid, in this case the geometry

of the model is fixed. Flexible; this includes polarization effects and vibration with a degree of

freedom. The most commonly used 3-site water models include SPC (Simple point charge), SPE/E

(extended SPC), TIP3P (Transferable intermolecular potential with three interaction sites). The

charge distribution of these models include −2qe in the oxygen site and +qe in the two hydrogen

sites. The 3-site model is computationally attractive when compared to other water models [75].

The detailed form of the energy function used for a 3-site water model is expressed [76] as

Ebonded = Ebond.lenght + Ebond.angles, (3.3.18)

Ebonded means the bonded energy function, which is expressed as

V (w) =
∑

Kabond.lenght(bi − bj)2 +
∑

Kθbond.angle (θi − θj)2
, (3.3.19)

where V(w) is the potential function bonded interaction with bond angles and can be written with

energy parameters Ka, bij ,Kθ, σij , rij , qij and shift function sf(r). For SPC/E model an average

polarization is added to the energy function which is given as

V pol = 1/2
∑
i

(µ− µo)2

αi
, (3.3.20)

where µ is the dipole of polarized water molecules and the value is 2.35D, µo is the dipole moment

of isolated water molecule given as 1.85D from experiment, αi is the isotropic polarizability con-

stant that has a value of 1.608 x 10−40Fm2. The above polarization correction adds 1.25kcal/mol

(5.22kj/mol) to the overall energy; therefore, this model gives a more reliable diffusion constant

and density than the 3-site SPC model [77].

3.3.6 4 site-water model

For the TIP4P (Transferable intermolecular potential with four interaction site), the Lennard-Jones

coefficients (Cij) of the oxygen atom is not located in the same interaction site. The charge that is

negative is located 0.015nm from its previous position from the oxygen site, close to the hydrogen
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along the HOH angle axis. The negative charge is placed on a dummy site close to the bisector of H-

O-H angle, with this placement, the electrostatics in the water molecules are improved. An Earlier

model used was the Bernal-Fowler model obtained in 1933 [78]. The accepted TIP4P model was

obtained in 1983 and is widely used for bio-molecular simulations. Modifications and improvements

of the TIP4P water models, which includes TIP4P-ewald, TIP4P/ice and TIP4P/2005 are also

commonly used [76].

The potential of TIP4P water model is descibed and expressed [73] as

V =

k−1∑
i=1

k∑
j=i+1

[(
C12

rij

)12

−
(
C6

rij

)6

+

3∑
k=1

3∑
l=1

qkqle
2

rklij

]
, (3.3.21)

where q is the electronic charges and k and l represent sites of electronic charges in two molecules

i and j, respectively. C12 and C6 are potential coefficients obtained.

TIP4P water model when compared to experimental data gave close values [73]. There study

reported that the TIP4P model gave properties of water close to the experiment in % deviation

such as density (+0.2%), heat capacity (+7.3%), entalpy of vaporiztion (1.4%) and internal energy

(1.5%).

3.3.7 5-site water model

This model places negative charge on a dummy atom in lone pairs of oxygen. Their geometry is

tetrahedral in nature. The earliest model found is known as BNS model of Stillinger and Ben-Naim,

that was obtained in 1971, its predecessor the 512 model was obtained in 1974. The TIP5P model

is computationally less attractive than the current five site models which bring about improvements

in geometry (tetrahedral) and density. These models are rigid non-polarizable models. The TIP5P

model uses Lennard-Jones parameters to determine the vanderwaals interaction of oxygen-oxygen

atoms [76].

The Hamiltonian model for TIP5P model is given below [79] as

V =
∑
i

Ui +
∑
i6=j

Ui,j + Upol, (3.3.22)

and further expresses as

V =
∑
bonds

Ko(r − req)2 +
∑
angle

Kθ(θ − θeq)2. (3.3.23)
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The pair potential is given as

V =
∑
ij

qiqje
2

rij
+ 4ε

[(
A12

rij

)12

−
(
C6

rij

)6
]
, (3.3.24)

where i and j represent the molecules, A12 and C6 are potential coefficients obtained.

The parameters obtained from the TIP5P model includes temperature-dependent density, en-

ergy and dielectric constant. TIP5P parameters are produced from the spherical cut-off method

from long-range electrostatic interactions and its coefficients are given [63] as

σ = (A12/4ε)
1
12 ; εo = (C6/4σ)

1
6 , (3.3.25)

where the coefficients are independent and were obtained from the model that are done at 1atm

and 298K with ewald sums. The values for A and C are 5.45 x 105
o

Akcal/mol and 590
o

Akcal/mol

[59].

Contemplating on the most accurate water models for molecular dynamic simulation, [65] came

up with the view that in future it will be realizable, however the current water models being used

is close to the real values for water. They further stated that non-polarizable water models that

are closest to the experimental values for water are SPC/E models, which gives an improvement to

many parameters. The limitations of the SPC/E model is that they obtain doubtful results when

simulating solute inside water. In conclusion, they observed that using reaction fields improved

the outcome of their simulation; potential energy and density parameters are better obtained by

TIP4P and SPC models.

3.3.8 Pair potential for carbon-nanotubes

Tersoff introduced a many-body potential function for carbon, silicon, germanium and mixtures

of these atoms. This potential function was modified by Bremer [72], which in simplified form is

popularly used to model fullerene and carbon-nanotubes.

The potential form by Tersoff and the one simplified by Brenner is expressed as

V =
∑
i

∑
j(i<j)

fc(rij){VR(rij)−B ∗ij VA(rij)}, FR(rij)

= exp(−λrij), fA(rij)−Bexp(µrij), (3.3.26)

where λ is the thermal conductivity and the term V R(rij) and V A(rij) are the attractive and
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repulsive parts of Morse potential of bond stretching, and the summation represents chemical

bond. The Morse bond stretching potential is given as

vmorseR (r) = fc(r)
De

S − 1
exp{−

√
2s(r −Re), (3.3.27)

and

vmorseA (r) = fc(r)
Des

S − 1
exp{−B∗

√
2/s(r −Re), (3.3.28)

where fc(cut of function) is a decaying function centered at r = R with D/2 width, and

fc(rij) =
{

1/2− 1/2sin
π

2

[
1
0

π

2
(r −R)/D

]}{
R <

r > R+ 0)

r < R+ D)

r > R+ D)

, (3.3.29)

where B∗ modifies the force of attraction V A(r) relying on θijkwith bond angle between, bonds

i− k and i− j [72] and expressed as

B∗ =
bij + bji

2
, bij , (3.3.30)

where

bij =

1 + an

 ∑
k(6=i,j)

fc(rik)g(θijk)

n−δ , (3.3.31)

and

g(θ) = 1 +
c2

d2
− c2

d2
− c2

d2 + (h− cosθ)2
, (3.3.32)

where g(θ) is the geoometrical model, obtaining the parameters c, d, h and θ for each term of atoms

provides unique models.

3.4 Equation of motion

Molecular dynamic simulation uses the Newton’s equation of motion to determine the position,

velocity and trajectories of atoms and molecules in an ensemble. The Newton’s second law is given

by
∂2r

∂t2
=

F

M
, (3.4.1)
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where r is the position, t is the time, M the mass of atom and F the total force acting on the

atom. This can further be expanded as

Fij = −
∑

Fij = −
∑
i 6=j

∂u(rij)∂rij
∂rij∂rij

(3.4.2)

therefore

Fij = −
∑
i 6=j

∂u(rij)
..
rij

∂rij
, (3.4.3)

where Fij the total force acting on the atom i and j.

Equation 3.4.3 determines how the microstate moves in time. For a simple system, the Newton

second equation is desirable, but for complex and large systems such as rigid molecules, the Euler

equations that are explained by Hamiltonian quaternion are required. In the case of molecules

that are flexible and subject to constraints and are internal, the use of Lagrange is adopted [20].

The Lagrange equation is given as

mq̈i = ma, (3.4.4)

where m is the mass of atom, a is the acceleration. The Euler-Lagrange equations is written in

the form as

mq̈ +∇vr = 0, (3.4.5)

where

ma = −∇vr, (3.4.6)

and when written in the potential form it becomes

−→
F = −∇vr, (3.4.7)

where −∇vr, is the negative gradient of the potential energy.

For MD method, the Newtonian equation for fluid molecules is expressed as

mi
d~r2

dt2
=

N∑
j 6=i,j=1

~Fij +

Nw∑
jw 6=i,j=1

~Fijw + ~Fsou~i, (3.4.8)

where subscript i represents particle i, and ~i is unit vector in the x-cordinate. The 1st term in

the RHS is molecular force as a course of the LJ potential , and second term is molecular force

between solid wall atom j and fluid particle i. The last term in the RHS is the external force, like
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gravity, pressure or electric force.

3.5 Integration Methods

Molecular Dynamics simulation is a time integration method where positions and momentum

(velocity) are determined with the trajectory of the molecules and atoms obtained with time.

There are different types of time integration methods used in molecular dynamics which differ

according to their different efficiency, accuracy and stability [2]. They include verlet algorithm,

Leap-frog algorithm, velocity verlet algorithm, shake algorithm, Beeman algorithm, explanation of

these algorithms will be based on the ones that are of interest.

3.5.1 The verlet algorithm

Amongst the most commonly used methods to solve and determine trajectories of atoms and

molecules is the verlet Algorithm. This is a position scheme based on determining the future

position ri(t). It is obtained from Taylors series centred difference as

ri = (t+4t) = r(t) + ṙ(t)4t+ 1/2r̈(t)4t2 + 1/6
...
r (t)4t3 + 0(4t)4, (3.5.1)

and

ri = (t−4t) = r(t)− ṙ(t)4t+ 1/2r̈(t)4t2 − 1/6
...
r (t)4t3 + 0(4t)4, (3.5.2)

summing the two equations gives

ri(t+4t) = 2r(t)− ri(r −4t) + a(t)4t2 + 0(4t4), (3.5.3)

where the current position is r(t), acceleration ai(t), past position ri(t − 4t) and ri(t + 4t)

as the future position. This scheme does not need the velocity to compute the future position.

But velocities are necessary to compute the total energy, temperature, kinetic energy; therefore

velocities can be obtained using the central difference method.

v(t) =
r(t+4t)− r(t−4t)

24t
. (3.5.4)
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3.5.2 Leap frog algorithm

This is a half-step scheme that is based on the triplet {r(t)}, current position, v(t− 1/2) half step

past velocity, {a(t)} acceleration calculated from forces

v(t+ 1/2) = v(t+ 1/2) + a(t), (3.5.5)

and

r(t+4t) = r(t) + v(t+ 1/2), (3.5.6)

gives

v(t) =
v(t+ 1/24t) + v(t− 1/24t)

2
, (3.5.7)

where {r(t)}is the current velocity and is obtained from the mid values of half of the time step.

3.5.3 Velocity verlet scheme

This is a variant of the verlet method that is based on {r(t)},{v(t)} and {a(t)} to obtain the future

position (trajectory) and velocities. It minimizes the round off error and is considered the most

suitable for molecular dynamic simulation.

v(t+ 1/24t) = v(t) + 1/2a(t)4t2, (3.5.8)

the future position is expressed as

ri(t+4t) = v(t+ 1/24t) + 1/24t[a(t) + a(t+4t)], (3.5.9)

where a(t+∆t) is the current acceleration. The kinetic energy is obtained, based on the calculation

of v(t + ∆t). The acceleration is obtained from a = f
m . A good time step chosen from Leonard

– Jones potential is about 0.005τ or 10fs time scale. This time step was chosen to cover the

frequency of atomic bond stretching vibration which is about 10fs in range.

3.6 Correlation and Time Correlation Functions

Time correlation function uses statistical mechanics to transform from one microstate to another

via a correlation coefficient that is time averaged. With A and B obtained at separate time, the
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correlation coefficient (t) is defined as

cAB =
< δAδB >

σ(A)σ(B)
, (3.6.1)

where A and B are correlated quantities, when A and B describe same terms it is called auto-

correlation function and expressed as

cAA(t) =
CAA(t)

CAA(0)
. (3.6.2)

Ensemble averages are also known as correlation function CAB(t) and is a function of separation

in time (t) of correlated quantities A and B. The correlation delay describes the dynamical

properties of a system. The phase space distribution function is used to derive the time correlation

function, expressed as

CAB =< A(t)B(0) >=

ˆ
f(Γ)B(Γ)eiLtA(Γ)dΓ, (3.6.3)

where eiLt is a propagator of observed quantity A, with the bracket <.......> describing the ensemble

average [71]. The mathematical operator eiLt which is the propagator, applies Newton’s equation

of motion to obtain phase variable evolutions from an initial value. Equation 3.6.3 has theoretical

relevance but cannot be applied in MD, as it entails a knowledge of sampling of microstate and

phase space distribution function. Correlations in non-equilibrium and equilibrium steady state

becomes invariant when the time origin is shifted. Therefore, the correlation is obtained by the

averaging of trajectories in time. For MD, the time is discretised with the correlation function

obtained from a steady state simulation

CAB(t) =
1

Nt

Ni∑
i=1

A(ti + t)B(ti); ti = 0, τ, 2τ......(Nt−1), (3.6.4)

where ti is starting time of a trajectory and τ is the time between starting points of two trajectories

to be averaged.

In the event of phase space mixing, the correlation function will decay from < A(0)B(0) > at

t = 0, to < A >< B >with limit t→∞ [80-81], satisfying the following expression

CAB(t) =< A(t)B(0) >=< A(0)B(−t) >= CAB(−t), (3.6.5)
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given the Taylor series expansion of the correlation function at t = 0 as

CAB(t) =

∞∑
n=0

t2n

(2n)!
< A(2n)(0)B(0) >, (3.6.6)

where CAB is the correlation function of quantity A and B, t is the time lag.

Correlating a quantity with itself is known as autocorrelation functions and is useful in obtaining

transport coefficient. The stress autocorrelation function (SACF) and velocity autocorrelation

function (VACF) are the most applied autocorrelation function in MD.

From the infinite time integral of correlation function the transport coefficient is expressed as

γ =

ˆ α

0

< A(t)A(0) > dt, (3.6.7)

where A is a correlated quantity at initial and current time.

Transport coefficients can also be calculated using velocity correlation e.g. the diffusion coeffi-

cient (D) and the phonon density in 3D is obtained through velocity autocorrelation and is given

by

D =
1

3

ˆ α

0

< Vi(t)Vi(0) > dt, (3.6.8)

where Vi(t), the mass centre for velocity of a single atom.

Links between correlation function and transport coefficient is made possible through linear

response theory which is described by the Einstein relation [2] as

γ =
< (A(t)−A(0))2 >

2t
. (3.6.9)

where A is an ensemble average. The position of the molecule and other heat transport coefficients

including λT (Thermal conductivity), viscosity(bulk) ηv and viscosity(shear) η, can also be obtained

from correlation function.

3.7 Periodic boundary conditions

Simple systems using Leonard-Jones potential are not very effective for complex systems but are

computationally efficient and have obtained reliable and acceptable results; therefore, it will be

adopted in this study. MD uses periodic boundary conditions which are an endless array of replaced

images in a simulation box, meaning the box of interest is seamless. To avoid confusing the potential

of a molecule and its replica, the potential is cut-off at a length shorter than half the width of

the box (cell) of interest. There are different methods proposed to reduce the computational time
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Figure 3.1: Periodic boundary condition in 2-D. Cells B-I are mirrow images of cell A. see in [2]
pp.16

during the simulation when considering the periodic boundary conditions, they include cut-off

distance and shifted potential, neighbour list method, cell subdivision method [2]. The simulation

size of a typical MD simulation is restricted to hundreds of nanometers due to computational

efficiency and time. This restriction is being overcome by the application of periodic boundary

condition.

The cell of interest is infinitely replicated to obtain a two-dimensional space without boundaries.

As atoms crosses the boundary of cell A, atoms that are the mirror image on cell H enters cell A.

The atom at the left boundary of cell H interacts with atoms in the adjacent and neighboring cell.

This process is called minimum image convention, this is shown in Fig. 3.1.

3.8 Initialization of molecular dynamic simulation

Appropriate initialization in MD simulation is very crucial, this is to avoid instabilities. One of

the ways of ensuring proper initialisation is to make sure atoms are started at equilibrium states,

where the effect of their interaction is null. The simulation will have to commence by setting certain

parameters, which means the atoms and molecules have to be generated randomly by placing them

inside a simulation box. The Lennard-Jones model is implemented and a distribution function

which in this case is the Boltzmann relation. For an MD simulation, the initial velocities of the

molecules and atoms have to be specified, this is obtained by choosing random velocities with

values corresponding to the start temperature so that there is no momentum in the system. The

positions are initialized by choosing a natural structure of any element of choice; this structure will

preferably be in a lattice form. After Initialization, simulation in the form of equilibration using a

time integration method of choice can commence, this will determine future positions (trajectory)
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and future velocities of the atoms and molecules [2]. To start any simulation, random velocities

are assigned to atoms using the Maxwell-Boltzmann distribution given by

p(vα,i) =

(
mi

2πkBT

)1/2

exp

[
−1/2miV

2
α,i

kBT

]
, (3.8.1)

where mi the mass of particles, vi the velocity, kB the Boltzmann constant, T is the temperature

and α = x, y, z.

Obtaining the forces is the most computationally demanding task which is obtained from the

negative gradient of the potential energy. For a shorter distance between two atoms as in Lennard-

Jones (LJ) potential, the forces are obtained with the inclusion of a cut-off radius rc making the

computation reduced by a factor 4/3πr3
c/V which makes rc = 2.5σ. Where σ is the Lennard

Jones length parameter. The potential becomes 1.63% of the energy well depth, thereby obtaining

computational savings.

3.9 Thermostating

Molecular dynamics simulation is done in the microcanonical ensemble (NV E) which involves a

constant number of atoms (N), the volume of the system (V ) and the total number of energy (E).

The other alternative to the microcanonical ensemble is the control of the system temperature

also known as the canonical ensemble. Temperature control can also be performed in the (NV E)

ensemble by controlling the kinetic energy of the system; this process is known as velocity rescaling.

The fluid flow in these ensembles leads to irreversible dissipation of kinetic energy to thermal

energy and can be mathematically expressed as

Ev = −
ˆ
p(r) : ∇u(r)d3r, (3.9.1)

where p is the density and u the velocity, Ev = −vp : ∇u, is applied for fluids that are homogeneous.

For homogenous fluid with periodic boundary condition temperature will be distributed evenly with

no heat sink to remove the excess heat, thereby causing an increase of temperature in the system.

To maintain the temperature at a given value, the use of a thermostat is applied [82]. A thermostat

can be used for all fluids or groups in a system.

Taken the instataneous temperature (which is contrary to the average temperature of the ensem-

ble) for system T1 and the adjusted temperature of the ensemble T 2. The ratio of the temperature
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is given as
T2

T1
=

∑N
i (χvxi)2 + (χvyi)2 + (χvzi)∑N

i v
2
xi + v2

yi + v2
zi

, (3.9.2)

where T1 is the initial temperature and T2 is the required or adjusted temperature, taking the

velocity scaling factor as χ =
√
T2/T1. This system of velocity rescaling does obtain the required

temperature of T2, it also prevents fluctuation of the system temperature.

3.9.1 Berendsen Thermostat

The thermostat by Berendsen [83] allows temperature fluctuation in the system which is the ideal

case. This thermostat is achieved by relaxing or allowing the temperature of the system towards

the set or target temperature T 2 over a time period τ. This can be expressed as

T2 = T1 + ((∂t/τ) (T0 − T1) , (3.9.3)

from eqn 3.9.2 the expression can be given as

χT2 = T1 +
∂t

τ
(T0 − T1), (3.9.4)

or

χ =

√
1 +

δt

τ

[
T0

T1
− 1

]
. (3.9.5)

where τ is a parameter that has been coupled to the heat bath and is the controlling parameter.

τ is chosen to obtain the right temperature that will not overly suppress the fluctuations. The

berendsen thermostat is mostly used for initializing the system temperature.

3.9.2 Gaussian Thermostat

A velocity rescaling technique was developed by [84] and [85] which keeps the fluctuation of the

kinetic energy constant but allows the fluctuation of the total energy. This study was further

treated by [86] and [87], where they added a term in the motion equation expressed as

Ṗi = Fi − ζPi, (3.9.6)

43



3. Molecular Dynamic Simulation

The instanteneous parameter of thermostat multiplier while the kinetic energy fluctuation is con-

stant in a system is given as

dk

dt
=

d

dt

N∑
i=1

pi.pi
2mi

=

N∑
i=1

pi − ṗi
mi

=

N∑
i=1

pi
mi

.(Fi − ζPi) = 0, (3.9.7)

thus the multiplier is expressed as

ζ =

∑N
i=1

Pi.Fi
Mi∑N

i=1
Pi.Fi
Mi

, (3.9.8)

where ζ is the thermostat multiplier which can be controlled to add or remove heat from the system

and M is the mass of particles, Pi is the momenta and Fi the force.

The Gaussian thermostat mostly applies to non-equilibrium equations of motion. This thermo-

stat fixes fluctuations of kinetic energy of the system. Sometimes single particles can have different

thermal velocities. The Gaussian thermostat in some cases also follows targeted distribution func-

tions. Generally wall particles can be coupled with groups of fluid.

3.9.3 Braga-Travis Thermostat

In cases where the driving force is big, velocity profile of the fluid is unknown, a priori; making it

hard to contrast between the streaming velocity and fluctuation velocity. The streaming velocity for

boundary driven flows are unknown, a priori, but have to be calculated, for the kinetic temperature

to be controlled. In another approach, the atomic positions can be controlled through a thermostat.

Different thermostats have been developed by [83-87]. These thermostats where modified by [86]

with better implementation, their algorithm is expressed as

ṙ =
Pi
mi
− ζ ∂u

∂ri
, (3.9.9)

with

ζ =
1

Qn

[
N∑
i=1

(
∂u

∂ri

)2

− kBT
N∑
i=1

∂

∂ri
.
∂u

∂ri

]
. (3.9.10)

The potential interaction laplacian for a lennard jones pair is expressed as

∂

∂ri
.
∂u

∂ri
=

ε

r2

[
528

(σ
r

)12

− 120
(σ
r

)6
]
, (3.9.11)

where ζ is the thermostat multiplier, P is the momenta, T is the temperature and kB is known as

the Boltzmann constant.
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3.9.4 Nose-Hoover Thermostat

The initial thermostating technique is expressed using Nose Hamiltonian

HN (r, p, s, ρs) =

N∑
i=1

Pi.Ṗ

2mis
+ U +

P 2
s

2Q
+ (Nf + 1)kBTIns, (3.9.12)

and modified to

HN (r, p/s) =
P 2
s

2Q
+ (Nf + 1)kBTIns, (3.9.13)

where s is the included degree of freedom to the system, Q is Nose mass, Nf the number of degrees

of freedom for N-body fluid, U is the potential energy, TIns the instantaneous temperature and Ps

the momentum.

Due to the challenges involved in rescaling the momenta, Nose, Hamiltonian formulation cannot

calculate the velocity autocorrelation functions. This idea was further expanded by [87], who cap-

tured the equations of motion in a convenient and easier form to obtain the velocity autocorrelation.

This now became the Nose-Hoover thermostat and is expressed as

ζ = 1/Q

[
N∑
i=1

Pi.Ṗi
M
−NfkBT

]
, (3.9.14)

where ζ is Gaussian having a zero mean and variance of (ζ2) = kBT/m. m is the mass of fluid, Nf

is the degree of freedom and M =
∑N
i=1mi. The mass must be chosen to allow critical damping

of the system.

Heat is extracted from the system if the thermostat multiplier ζ becomes positive; while the

thermostatic multiplier becomes negative, when heat is added into the system. On average, the

multiplier is zero since there is no external force acting on the system.

3.10 Fluctuation technique in Molecular Dynamics

Fluctuations are obtained from changes and distribution of possible energies and volume, temper-

ature or pressure in an ensemble, which is given [2] as

δ < δA >2=
1

τ

ˆ τ

0

[A(t)− < A >]2dt >, (3.10.1)

where τ is the time averaged.

Fluctuation can be used to obtain other thermodynamic properties like the specific heat, Cv and

Cp at constant pressure and volume, thermal expansion coefficient αp, isothermal compressibility
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Bτ , thermal pressure coefficients γv, and is expressed as

Cv =
∣∣∂E
∂T

∣∣
NV T

, (3.10.2)

Cp =
∣∣∂E
∂T

∣∣
NPT

, (3.10.3)

where E is the energy and T is the temperature Cv and Cp are specific heats at constant volume

and pressure.

The equilibrium molecular dynamic simulation method for calculating the Kapitza resistance

applying the temperature difference fluctuation was implemented by [88]. The Kapitza resistance

R between heat bath A and heat bath B, exchanging a net heat flux Q at equilibrium temperatures

T1 and T 2 is expressed by the relation

Q = R∆T, (3.10.4)

where Q is the heat flux, R is the Kapitza resistance and ∆T is the temperature difference.

The time dependent energy conservation formulation is used for obtaining and measuring the

Kapitza conductance and is expressed as

∂T1

∂t
=

1

kBN1−2
G∆T, (3.10.5)

with the equation of the temperature difference 4T expressed as

∂∆T

∂t
=

1

kB

( 1

N1
+

1

N2

)
G∆T, (3.10.6)

where N is the degree of freedom of the heat bath kinetic energy. The ∆T solution is an exponential

function that decays with relaxation time τ and gives the Kapitza resistance as

RkB = τ

(
1

N1
+

1

N2

)
, (3.10.7)

and

τ =

ˆ ∞
0

〈
∆T (0)∆T (t)

〉
/
〈

∆T 2(0)
〉
dt, (3.10.8)

where τ is the time integral of normalized temperature difference autocorrelation and is very

suitable for MD simulation that directly processes the temperature and velocities. This is the

technique that is applied in this research to obtain the temperature and Kapitza resistance across

the interfaces and nanofluidic channels.
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Equation 3.10.8 is normally used in non-equilibrium MD, where the exponential decay of tem-

perature difference on relaxing the thermal constraints is used to estimate the time τ .

When Equation 3.10.8 is corrected with langevin flux it is expressed as

d∆T

dt
= − 1

kB

(
1

N1
+

1

N2

)ˆ t

0

G(t− t′)
〈

∆T (t′)dt′ + F (t)
〉
. (3.10.9)

Focker Planck equation proposes the Langenvin term having a white noise with time evolution

and copies fluctuations that has to do with equilibrium quantities. Phase averaging and removing

the F (t) term in equation 3.10.5 and multiplying by ∆T gives the expression

d
〈

∆T (0)∆T (t)
〉

dt
= − 1

kB

(
1

N1
+

1

N2

)ˆ t

0

G(t− t′)
〈

∆T (0)∆T (t′)dt′
〉
, (3.10.10)

where N1 and N2 are the first and second degree of freedom of the heat bath kinetic energy the

brackets 〈......〉 describe the phase average or autocorrelation function (ACF), kB is the Boltzmann

constant, G is the heat flux and t is the time. This function applies to equilibrium fluctuations in

temperature difference ∆T .

3.11 Thermal Wall Model

In fluids that flow inside a nanopore or nanochannel, having a molecular fluid close to the wall

will cause a repulsive force to push away the fluid particle from the surface. In reality, due to

the Pauli exclusion principle, the fluid particles will never penetrate the wall surface. However,

in computations, it is not a guarantee that fluid particles will not penetrate the walls, due to

the impossibility of using time steps that are infinitely small. Therefore, thermal wall models are

required as a boundary condition to prevent this from occuring. The thermal wall model ensure

that the fluid particles are positioned in the parallel walls without penetrating the walls, by the

reallocation of the velocity vector of fluid particles trying to penetrate the wall. When a particle

strikes a wall with Tw, the three velocity components are reset to a biased Maxwellian or Gaussian

distribution. The three velocity component in the Cartesian cordinate system, after fluid molecules

strike wall surfaces are expressed as

vx =

√
kBTw
m

ψG, (3.11.1)

vy =

√
kBTw
m

ψ′G, (3.11.2)
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vz = ±
√
−2kBTw

m
Inψ, (3.11.3)

where vz with a positive sign, are the fluid molecules striking the lower wall surface, while the

negative sign is for the fluid molecules striking the top wall surface, ψ this is the random number

(0, 1) and ψ
′

G, ψG, represents gaussian-distributed random numbers having zero mean and unit

variance.

To avoid expensive computational time, the Maxwell thermal walls with the diffussive and spec-

ular model is widely used and desirable, the reflected molecule velocity is obtained from Gaussian

distribution and expressed as

f(V ) =

√
m

2πkBT
exp(− mv2

2kBT
), (3.11.4)

where m is the mass, v is the velocity, kB is the Boltzmann constant and T is the temperature.

The Einstein theory was also used to develop the atomic structure of a wall model [89-90],

stating that the atoms of the wall vibrates around lattice sites with fcc (face centered cubic)

having Einstein frequency. The model uses a spring stiffness with harmonic vibrations of an atom

in a solid and is expressed as

Kstiff =
mk2

BT
2
E

~
, (3.11.5)

where m mass of solid wall atoms, kB Boltzmann constant, TE is the Einstein temperature for

solid wall and ~ reduced Planck’s constant.

The model used for this study combines the Einstein solid and Maxwell thermal wall model to

obtain an appropriate wall model with spring potential. A particle that has mass is attached to a

massless spring from an equilibrium position and has a stiffness or force constant k, even with no

external force applied to it, the particle will continue to vibrate with regards to its equilibrium po-

sition. Assuming the particle vibrates only in the x-direction equipartition of energy in equilibrium

conditions will be present and is expressed as

1

2
k(∆x2) =

1

2
m(v2) =

1

2
kBT, (3.11.6)

where k is the force constant, m is the mass of spring, ∆x is the displacement of particles, kB

Boltzmann constant, T is the temperature and v is the velocity. The relation can also be expressed

as
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ks =
kBT

< 4x >
, (3.11.7)

where ∆x is the displacement of particles and the bracket < > used, describes the ensemble average.

kB is the Boltzmann constant, T is the temperature and ks is the force constant [91].

Equations 3.11.7 is applied for real crystals undergoing harmonic vibrations.

The harmonic potential have been found to work well in most MD and multiscale systems [92].

Substituting the harmonic potential of eqn (3.11.7) into the probability density distribution gives

the expression

P (x) = C.exp
(−k(ri − ro)

kBT

)
= C.exp

(1(ri − ro)
2kBT/2k

)
, (3.11.8)

Giving a Gaussian distribution mean xo with variance kB/2k. The expression can be estimated

as

ks =
kBT

2 < r − ro) >
. (3.11.9)

where ro =< r >and <..> describes averaging over available samples.

Molecular dynamics (MD) allows for the inclusion of atomic level studies and an-harmonic

effects that are not possible with experiments and analytical models. Since molecular dynamics

uses the classical assumption, its simulations are mostly performed above the Debye temperature.

In the MD method for studying interfaces and nanofluidic channels, the solid-wall modelling is very

important and still a problem because lots of computational time is needed to simulate boundary

walls [93].

3.11.1 Acoustic Mismatch Model

The acoustic mismatch model (AMM) can only determine thermal transport in very low tempera-

ture (< 1K) and fails at elevated temperatures (>10K) [94]. The AMM bases its assumption that

interfacial walls are treated in continuum. In the AMM, phonons are said to be incident in form of

plain waves undergoing transmission that are specular at the interface. The model assumes that

the interface is perfect with only elastic phonon-phonon scattering. Reflection and transmission

probabilities are obtained with phonons taken as plane waves without scattering at interface. These

assumptions holds for very low temperatures; however; for temperatures that are higher (>10K)

and interfaces that are rough, diffusive scattering is very probable. This model predicts thermal

conductance and Kapitza resistance for surfaces with small differences in densities and speeds of

sound of different media.

The thermal boundary conductance using AMM theory in the phonon density form is repre-
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sented mathematically as

hwf =
1

2

∑
j

∂

∂T

ˆ π
2

0

n(ω, T )~ωci, jxαi, j(φ, j, ω)cos(φ)sin(φ)dwdφ, (3.11.10)

where, hwf is the thermal boundary conductance (TBC) from wall to fluid, n(ω, T ) the distribution

function for occupancy, ~ Plancks constant, ω phonon frequency, ωmax maximum frequency of

phonon on the wall cij propagation velocity of phonon mode j, αij transmission coefficient incident

on wall, φ, phonon angle of incidence.

The AMM conductance model is generally expressed as

GAMM
L =

3

2
nikBci

(
c2
c1

)3 ˆ 1

0

t12(µ1)µ1dµ1, (3.11.11)

where n1 is the number density, c1 and c2 are speed of sound in the respective medium, µ1 is the

phonon incident angle and t12 is the transmission coefficient.

The phonon lifetime is generally expressed as the Collaway model [95] and expressed as

τi(ω) = Aiω
−2, (3.11.12)

where A is a constant and ω is the phonon frequency.

The transmission coefficient for AMM is expressed as

t12 =
4Z1Z2µ1µ2

(Z1µ1 + Z2µ2)2
, (3.11.13)

where µi = cosθi the cosine of incident angle and µ2 the cosine of refracted angle. Zi is expressed

as

Zi = ρici. (3.11.14)

where Zi is the acoustic impedances.

The AMM model cannot appropriately predict the interfacial conductance in the simulation

if the acoustic impedance ratio Z1

Z2
→ 1, which makes the conductance diverge [96]. Though the

AMM gives an appropriate conductance prediction within a large range of acoustic impedance, if

the acoustic impedance is far less than 1. The AMM does not account for out-of-equilibrium distri-

bution of phonons across the interfaces in a smaller ratio of acoustic impedance, hence, predicting

the conductance to be finite for materials that are identical. If the acoustic ratio is approximately

0.7 the AMM model will be wrong with a factor greater than three [97], for an acoustic ratio '0.8
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the model under-predicts the conductance with a factor of 5-9 [98].

3.11.2 Diffuse Mismatch Model

The diffuse mismatch model was proposed by [99]. The model infers that incident phonons undergo

diffuse scattering that is elastic at the interface and is emitted at both sides of the media. It also

states that the probability of scattering at both sides of the media is proportional to the phonon

density of state (PDOS) of the media. The memory of the incident wave is assumed to be lost after

transmission from one side to the other, and the transmissivity from side 1 to 2 is independent of

the incident angle, phonon mode and wave vector. As the memory of the phonons are lost, the

transmissivity from one side is assumed to be equal to the reflectivity of the other. With incident

angle θ the phonon transmissivity from medium 1 to 2 is expressed as

Γ1→2 =

ˆ ω

0

α1→2(θ, p).cos(θ).sin(θ)dω, (3.11.15)

where p is the phonon mode, θ is the incident angle. When the debye approximation and different

transverse and longitudinal phonon velocities is included, the diffuse phonon transmissivity is

expressed as

Γ1→2 =
1

2

∑
p(υ2→1,p)

−2∑
p(υ1→2,p)−2 +

∑
p(υ2→1,p)−2

, (3.11.16)

where Γ1→2 is the phonon transmissivity, υ are the phonon velocities and p is the density.

Though this assumption is untrue because elastic scattering does not allow the frequency of

the phonon to change, or mode to mode conversion of phonon. For example if two media 1 and 2

possess a big mismatch in their frequency or phonon dispersion relation, phonons having specific

range of frequency or dispersion relation will not be able to transmit across the interface, due to

the possiblity of no mode to mode conversion of some phonons. Therefore, for transmission to

occur across the interface inelastic scattering has to take place to modify the phonon frequency or

instigate mode to mode conversion. Therefore, to obtain accurate results and description of the

physics in these media, MD is inevitable for studies involving solid-liquid interfaces that have a

big mismatch [100].

3.11.3 Lattice Dynamic Model

The lattice dynamic model (LDM) is suitable in predicting the thermal boundary resistance (TBR)

at very high temperatures and frequency (> 100GHZ) and is predicted on pure specular phonon

scattering.
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The expression obtained for thermal boundary conductance for LDM is given [101] as

GLDML =
∂qA→B
∂T

=
1

V

ˆ ∞
0

∂n(ω, T )

∂T
~ω
∑
k,p

vz(k, p)t(k, p)δ(ω − ω(k, p)), (3.11.17)

where, ω(k, p) is the phonon frequency having wave vector k with polarization p.
∑

is the sum of

all incident phonons on the surface from atom lattice A. vz(k, p) is the normal group velocity for

incident phonons on the interface, t(k, p) is transmission coefficient showing probability of phonon

transfer in the interface and the kronecker delta function is given as δ(ω−ω(k, p)).qA→B is the heat

flux of interface/unit area and V is the volume. The transmitted phonon for LDM is expressed as

t(k, p) = M2

6∑
q=4

vqzA
2
q/M1vozA

2
0, (3.11.18)

where M is the mass of particles, vqz with q = 4, 5, 6 is the normal group velocity of phonons that

are transmitted, voz normal group velocity for phonons that are incident. The interface boundary

conditions are used to solve the equation and are expressed as

6∑
q=1

Mp′qAq = Mp′0A0, (3.11.19)

where A is amplitude of incident phonon, 3 reflected, 3 transmitted in both media, Mp′q is the

mass of media 1 and Mp′0 is the mass of media 2.

For MD simulations, phonon scattering is not diffuse but specular in the interface due to trans-

mission of incidence phonons [102-103] with larger wavelengths compared to interfacial roughness.

3.12 LAMMPS

The open source codes used for this work is the Large Atomic-Molecular Massively Parallel Sim-

ulator (LAMMPS) developed by Sandia National Laboratory in the United States. The docu-

mentation, source codes and examples can be obtained as a GNU license [104]. LAMMPS uses

different algorithms to integrate the atomic trajectories in time, and for this work the velocity

verlet algorithm is applied, the reasons having been explained in earlier chapters. It uses opti-

misation techniques for computing the different segments of its implementations and includes the

computation of pair potentials, interatomic interactions, cell linked list algorithm, neighbour list

and cut-off distance. Simulations are implemented with the aid of script files, containing necessary

LAMMPS commands and fixes. The LAMMPS source code is written in c++ class with object-

oriented structure. This feature allows modifications, creations, plug-ins, subroutines and code
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extensions into existing LAMMPS codes.

Several extensions and modules have been developed and included into LAMMPS source codes

to implement the MD models and simulations vital for this study. Though LAMMPS is widely

used in the research community, the version used for this work is validated and verified for different

test cases. For the verification, a 3-D atomic model with LJ potential is used, having time step of

δt = 0.005 and cut-off distance rc = 2.2 in real units.
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Chapter 4

Effect of Wall Mass on the Kapitza resistance

4.1 Introduction

This chapter investigates the effects of wall mass and stiffness on the Kapitza resistance at the

solid-liquid interface in nanofluidic channels. The study aims to shed light on the heat transition

between two states of matter in the nanoscale. The vibrational motion and surface stiffness of

the walls are simulated using spring potentials. The results show that for low values of surface

stiffness, the thermal or Kapitza resistance is dictated by the value of the mass of wall particles

(mw). The results also reveal that the temperature jump at the solid interface is not accurately

described by the theoretical vibrational frequency
√
κ/mw of the walls [55], but increases as a

fifth-order polynomial with respect to log(mwk), where the rate of increase gradually decays until

the curve reaches a plateau.

The increasing heat generated by modern electronics, results in temperature jumps that can

cause devices to fail. The use of micro and nanochannel heat sinks as cooling devices [105], have

motivated research into optimizing the heat transfer capacity by adjusting the nanochannel’s ge-

ometry, increasing the surface to volume ratio, and/or by using fluids with higher thermal conduc-

tivities. Although significant improvements have been made through the use of highly conductive

liquids, such as nanofluids [106], the thermal resistance at the solid-liquid interface will always

pose a bottleneck, restricting heat from entering the stream and being disposed via convection.

The present study investigates the importance of wall stiffness and atomic mass of wall particles to

the temperature jump and indicates that it is, in fact, the synergy between the mass and bonding

stiffness that governs thermal or Kapitza resistance in interfaces. This finding can potentially guide

the optimization of materials for achieving better thermal properties at the solid-liquid interface

of nanofluidic channels.
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The objectives of this chapter are to Develop 3D molecular dynamic algorithm and codes of

the simulation domain and thermal wall model with wall-fluid intermolecular interaction energy

strength (εwf ). Also to investigate the effect of wall mass and stiffness constant ranging from

κ = 100εσ−2−1600εσ−2 on the Kapitza resistance, temperature and density distribution across the

solid-liquid interfaces and nanofluidic channels. To study the effect of various ranges of temperature

difference of the walls on the Kapitza resistance, temperature and density distribution across the

solid-liquid interface and nanofluidic channels. To develop a master curve and model describing

the actual relationship between the temperature jump, the bonding stiffness and wall mass.

4.1.1 Simulation Method and Justification

There have been several wall models developed to describe the heat transfer between solid and liquid

interfaces [107-111]. To date, there is no single wall model that is accepted. From these studies, it

can be deduced that constant temperature at the walls should be attained to depict experimental

scenarios, and there should be thermal equilibrium between the liquid and solid interface layers.

Wall models using fixed and frozen wall atoms were validated with liquid argon between parallel

platinum walls, fixed at different temperatures [93]. The steady state properties obtained in their

study is in agreement with experimental thermodynamic tables of argon. The structure of the wall

model of this study adopts a combination of wall atoms that are connected by springs and velocity

rescaling of the walls [107-108], which are similar to most solid-liquid heat transfer wall models.

This study also took into account and included observations made by a previous study [111]. Their

study reported that thermal wall model using vibrating walls, gives temperature control similar to

an actual experiment and is better than freezing and fixed wall atoms [108]. The wall model of

this study simulates the heat transfer and thermal energy interaction through the Lennard Jones

potential and harmonic springs. There is a tendency for the wall temperature to vary due to the

energy exchange with the liquid particles, as 99% of the heat flux is because of the energy transfer

between neighboring liquid and solid layers.The solid-liquid thermal energy exchange takes place

with walls thermostated to obtain a specified constant temperature of the solid walls in this study

[108].

Most MD studies implement more than 2-wall layers in studying fluid and thermal transport

phenomena in interfaces and nanofluidic channels [107-108]. Two layered wall models are developed

in this study to obtain reduction in thickness of the walls, lesser computational time and expenses.

The 2-wall model of this study clearly shows the density distribution in the wall lattices and how

they are affected by varying the mass and bonding stiffness of the wall. The wall model also shows

inelastic thermal and density oscillations at the walls. Simulation for 2 and 7 thermostated wall
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Figure 4.1: Equilibration of 2 and 7 wall layers

No of walls 2walls with rc 2walls without rc 7walls with rc 2walls without rc
κ = 100 0.01299 0.01299 0.00573 0.00573
κ = 1600 0.02729 0.02729 0.01247 0.01247

Table 4.1.1: Kapitza Resistance Values of Temperature Jump for Lower wall

layers were undertaken and compared, to ascertain the effects of increased thermostated wall layers

on the properties of the system. There is no significant change in temperature jump and other

properties when the 2-wall layer model is compared to the 7-wall layer model. Fig. 4.1, shows the

reduction and equilibration behaviour of 2 and 7 wall models. The simulation study also observed

that the absence and presence of cut-off (rc) within the 2 and 7 thermostated wall layers makes

no difference on the temperature jump. The 2-wall and 7-wall layers with the same cut-off where

compared. There is also no significant change to their temperature jumps for the same input

parameters. Hence the justification for the use of 2-atomic layers, saving computational time and

resources, the comparison are shown in tables 4.1.1-4.1.3.

Since this study is not interested in studying one particular system, the parameters applied in

the model are expressed in dimensionless units, this is for numerical stability and error estimation,

which can be converted to SI or other units of interest. The computational model consists of

liquid argon particles, confined by two parallel solid walls. The walls of the channel are fixed

perpendicularly to the y-direction (parallel to the xz plane) with the dimensions in the x and z

directions being Lx = 16.8σ and Lz = 17.0σ, respectively, where σ denotes the molecular length

scale [51]. Ly is the distance separating the walls (in the y direction) and is set to Ly = 20.5σ.

No of walls 2walls with rc 2walls without rc 7walls with rc 2walls without rc
κ = 100 0.06316 0.06316 0.01972 0.01972
κ = 1600 0.02522 0.02522 0.03825 0.03825

Table 4.1.2: Kapitza Resistance Values of Temperature Jump for Upper wall
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κ = 100 LOWER WALL 0.7%
κ = 1600 LOWER WALL 1.4%
κ = 100 UPPER WALL 4.3%
κ = 1600 UPPER WALL 1.7%

Table 4.1.3: % Difference of temperature jump between 2walls and 7walls.

Periodic boundary conditions are employed along the x and z directions, emulating the perpetual

continuation of the channel. In the y direction, each of the two walls consists of two [111]− oriented

perfect Face-Center Cubic (fcc) lattice planes, with density ρ∗wall = 4mσ−3, which describes the

density of the solid walls.

The interatomic interactions between the argon atoms are modelled through a Lennard-Jones

(LJ) potential

νLJij (rij) = 4ε[(σ/rij)
12 − (σ/rij)

6], (4.1.1)

where i, j are the indices for two arbitrary particles in the system; rij is their interatomic distance,

σ is the lennards jones lenght and ε is the characteristic energy level. For computational efficiency,

interatomic interactions beyond a cut-off distance rc = 2.2σ are disregarded. The LJ parameters

for the potential between argon particles are εll = 1.0ε and σll = 1.0σ, while for the wall-liquid

interactions the values εwf = 0.2ε and σwf = 1.0σ are used. The liquid density is set to ρ∗l =

0.84mσ−3. The liquid mass is set to ml = 1m while the mass of the wall atoms range between

mw = 1m to mw = 10m. Given the system potential, the equations of motion for the particle i

are given by

mr̈i = −
∑
i 6=j

∇Vij , (4.1.2)

where m is the mass, r̈i is the acceleration of the particles and −∇Vij , is the negative gradient of

the potential energy.

The wall particles are fixed onto their initial lattice sites by spring potentials, urging them to

return to their equilibrium positions r0 via a restoring force given by

F = −κ(ri − ro), (4.1.3)

where κ is the wall stiffness, a parameter vital to the realistic representation of the wall, ri − ro is

the particle displacement. Its value determines the strength of the bonds between the wall particles

as well as their motion, which in turn will influence the rest of the system. For the current study,

the values for κ range from κ = 100εσ−2 to κ = 6400εσ−2 [51].

In order to control the temperature of the system, each fcc plane of the walls is set to a specific
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κ(εσ2) εwf 4T Mass(m) Time step (τ) Simulation run time
Case 1 100-6400 0.2 0.1 mw = m1 −m10 0.001 4× 107

Case 2 100-6400 0.2 0.2 mw = m1 −m10 0.001 4× 107

Case 3 100-6400 0.2 0.3 mw = m1 −m10 0.001 4× 107

Case 4 100-6400 0.2 0.4 mw = m1 −m10 0.001 4× 107

Table 4.1.4: Simulation Matrix for wall mass effect on Kapitza resistance with 5 High Powered
Computing Nodes used and 765 simulation runs

temperature [112]. The regulation of the temperature is achieved by explicitly rescaling the per-

atom velocities, averaging them up to the desired temperature. The lower wall is constantly set to

T ∗ = 1.2εk−1
B , while the temperature of the top wall ranges from T ∗ = 1.3εk−1

B to T ∗ = 1.6εk−1
B .

The simulation step employed in this study is δt = 0.001τ . An initial equilibration phase

of 4 × 107 time-steps takes place to allow the temperature and energy of the system to settle.

The simulations are then performed for a further 4 × 107 time-steps through the micro-canonical

ensemble (NVE). Codes (LAMMPS and C++) were developed and implemented in Cranfields’

University high- performance computer known as ASTRAL XC3000 supercomputer with multiple

core processor system having 32TB storage capacity. The simulation matrix is shown in Table

4.1.4

4.1.2 Results and Discussion

Trends of increasing temperature with decreasing Kapitza resistance have been given by molecular

dynamics [113-114] and experiments [115] which is due to inelastic phonon interface scattering.

The Kapitza resistance of wall-fluid interphase as a function of vibrating frequency of the wall

atoms with various dimensionless mass is shown in Fig.4.2(a) lower wall and Fig.4.2(b) upper wall

- Fig. 4.5(a) lower wall and Fig. 4.5(b) upper wall with ∆T = 0.1εκ−1
B − 0.4εκ−1

B . These Figures

shows the temperature jumps as a function of
√
κ/mw for different values of wall mass (mw).

The curves show that for lower values of the bonding stiffness, the temperature jump significantly

increases with increasing the wall mass (mw) at the lower wall. As κ increases, the significance of

the mass, which has so far been the dominant factor in affecting the temperature jumps, decreases.

Consequently, with increasing mw the rate of increase is reduced. Higher temperature jump is seen

in the upper wall. Fig. 4.2(b)-4.5(b) shows that for lower and higher values of bonding stiffness,

the temperature jump increases further with increasing mass.

Fig. 4.6(a and b) to Fig. 4.11(a and b) sheds light on how the atomic mass of the wall

influences the propagation of heat across the solid-liquid interface. For comparison purposes,

with Fig.4.2(a and b) - Fig. 4.5(a and b) which shows the temperature jump across the wall

of mass mw = 1m − 10m against κ for different temperature gradients ∆T . The nature of the
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a) Lower wall b)Upper wall

Figure 4.2: Kapitza resistance for mw = 1m − 10m for a) lower wall and b) upper wall with
εw−f = 1.0 and ∆t = 0.1 for values of frequency

a) Lower wall b)Upper wall

Figure 4.3: Kapitza resistance for mass mw = 1m − 10m for a) lower and b) upper wall with
εw−f = 1.0 and ∆t = 0.2 for values of phonon frequency
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a) Lower wall b)Upper wall

Figure 4.4: Kapitza resistance for mass mw = 1m − 10m for a) lower and b) upper wall with
εw−f = 1.0 and ∆t = 0.3 for values of phonon frequency

a) Lower wall b)Upper wall

Figure 4.5: Kapitza resistance for mass mw = 1m − 10m for a) lower and b) upper wall with
εw−f = 1.0 and ∆t = 0.4 for values of phonon frequency
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a) Lower wall b)Upper wall

Figure 4.6: Kapitza resistance for mw = 1mf for a) lower and b) upper wall with εw−f = 1.0 and
∆t = 0.1− 0.4 for various values of stiffness constant

a) Lower wall b)Upper wall

Figure 4.7: Kapitza resistance for mw = 2mf for a) lower and b) upper wall with εw−f = 1.0 and
∆t = 0.1− 0.4 for various values of stiffness constant
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a) Lower wall b)Upper wall

Figure 4.8: Kapitza resistance for mw = 4mf for a) lower and b) upper wall with εw−f = 1.0 and
∆t = 0.1− 0.4 for various values of stiffness constan

a) Lower wall b)Upper wall

Figure 4.9: Kapitza resistance for mw = 6mf for a) lower and b) upper wall with εw−f = 1.0 and
∆t = 0.1− 0.4 for various values of stiffness constan
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a) Lower wall b)Upper wall

Figure 4.10: Kapitza resistance for mw = 8mf for a) lower and b) upper wall with εw−f = 1.0 and
∆t = 0.1− 0.4 for various values of stiffness constant

a) Lower wall b)Upper wall

Figure 4.11: Kapitza resistance for mw = 10mf for a) lower and b) upper wall with εw−f = 1.0
and ∆t = 0.1− 0.4 for various values of stiffness constant.
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Figure 4.12: Master curve describing the temperature jump as a function of the product of the
bonding stiffness and wall mass.

curves are identical, with the temperature jump increasing with the bonding stiffness [21], a result

attributed to the smaller amplitude of oscillation for larger values of κ. The rate of increase is more

exaggerated for lower values of the bonding stiffness and decreases with increasing κ, gradually

reaching a plateau. Although higher values of ∆T add an offset to the curves, the correlation

between the temperature jump and κ is not affected.

The aforementioned behaviour is attributed to a change in the vibrational motion of the wall

particles. As Fig. 4.5(a and b) suggests, different values of mw, leave the amplitude of oscillation

unaffected for low values of the bonding stiffness. Since the average kinetic energy of the wall

particles is bounded by the fixed temperature of the walls, the increasing mass inevitably reduces

the frequency of oscillation resulting in fewer collisions between the wall and liquid particles and,

in turn, a less efficient transfer of energy across the interface.

Fig. 4.12 shows that the temperature jumps across a solid-liquid interface is not a function of

the harmonic frequency
√
κ/mw but instead changes as the fifth-order polynomial function.

(Tjump/4T )

(Tjump/4T )MAX

= −0.1054 [log(mwk)]
5

+ 0.9304 [log(mwk]
4

−5.1428 [log(mwk]
2 − 3.6668log(mwk) + 1.0266, (4.1.4)

where Tjump is the temperature jump of the solid-liquid interface,∆T is the temperature difference

65



4. Effect of Wall Mass on the Kapitza resistance

Figure 4.13: Schematics of 1st-4th Neigbouring bins. See in [116] p 57.

between the upper and lower walls, mw is the mass of wall and k is the stiffness constant.

The curve shows a sudden increase at the lower values, whose rate decreases gradually reaching

an asymptote. The “master” curve can potentially be extended to include the effects of the wetting

of the solid surface and liquid density, providing a collective description of the thermal resistance

across solid-liquid interfaces.

4.1.2.1 Density Distribution of Wall Particles and Fluid in Interface and Nanopore

The theoretical method that is used to calculate the phonon density of state (PDOS(ρω)) is by

lattice dynamics which quantify the thickness of the vibrational state. The PDOS in thin films is

expressed as;

ρ(ω′) =
1

(2π)2

ˆ ∑
v

∑
j

∑
β

δ[ω(k, v)− ω′
∣∣∣∣ej,β(k, v)2

∣∣∣∣dk], (4.1.5)

where j-summation is over thin film atoms in the primitive cell, β−summation is over 3 Cartesian

cordinates, ej,β(k, v) and j is the β−component of phonon polarization vector for mode (k, v). The

molecular dynamics simulation of the effect of mass and stiffness constant of
(
κ = 6400εσ−2 − 100εσ−2

)
on the density distribution is given in Fig. 4.14-4.20.

Fig. 4.13 shows a diagramatic representation of the density profile of fluid across a solid-liquid

interface and nanochannel [116]. The 1st bin is partly occupied by wall and fluid molecules making

the bins not appropriate to know the boundary or interface. However, if the 1st bin is made

10times smaller in comparison to the molecular diameter, then the 1st-4th bin have to be made

finer and occupied by wall molecules, leaving some empty fine bins which are occupied by the liquid

molecules, that is ∼ 60% of the 1st bin of the wall. There is a limit to this correction, because

at the interface, a motionless fluid that is attached to a solid wall is formed, which causes a film

known as Nernst film discovered by Nernst in 1904; this film thickness is caused by molecular

adhesion between the solid and the fluid.
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a) Lower wall b)Upper wall

Figure 4.14: Density profiles for fluid with mass mw = 2m, pore size = 20.5σ and temperature of
a) lower wall T = 1.2 and b) Upper wall T = 1.3) for fluid at various values of spring stiffness

Figure 4.15: Density profiles of fluid for mass mw = 4m, pore size = 20.5σ and temperature of a)
lower wall T = 1.2 and b) Upper wall T = 1.3) for fluid at various values of spring stiffness
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Figure 4.16: Density profiles of fluid for mass mw = 8m, pore size = 20.5σ for fluid at higher
values of spring stiffness

a) Lower wall b)Upper wall

Figure 4.17: Density profiles for mass mw = 1m and temperature of (lower wall T = 1.2 and Upper
wall T = 1.3) for solid wall at various values of wall mass frequency

This makes the density profile of the fluid start from the 5th bin and making the 1st-4th bin

look empty, as these bins are occupied by motionless fluid and wall particles, Hence, space is always

present in the interface between the wall and the fluid in molecular dynamics simulation of density

profile in a solid-fluid interface.

The results presented in Fig. 4.14-Fig. 4.20 show the effect of wall mass on the fluid and wall

density distribution in the interface and across the nanochannel. Various mass of the wall ranging

from mw = 1m − 10m with fluid mass constant at mw = 1m are considered for the upper and

lower wall. The plots show that the density of the molecules increases at the walls and oscillates
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a) Lower wall b)Upper wall

Figure 4.18: Density profiles for mass mw = 4m and temperature of (lower wall T = 1.2 and Upper
wall T = 1.3) for solid wall at various values of wall mass frequency

a) Lower wall b)Upper wall

Figure 4.19: Density profiles for mass mw = 6m and temperature of (lower wall T = 1.2 and Upper
wall T = 1.3) for solid wall at various values of wall mass frequency

69



4. Effect of Wall Mass on the Kapitza resistance

Figure 4.20: Density profiles near the lower wall for mw = 1m and mw = 6m for low and high
values of the wall bonding stiffness

Figure 4.21: Temperature distribution for mw = 2m, εw−f = 0.4 and ∆t = 0.1 for various values
of stiffness constant
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Figure 4.22: Temperature distribution for mw = 2m, εw−f = 0.6 and ∆t = 0.1 for various values
of stiffness constant

Figure 4.23: Temperature distribution for mw = 2m, εw−f = 0.8 and ∆t = 0.1 for various values
of stiffness constant
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into the free stream. Large density oscillations near the wall was observed straightening out at

distances from 5σ − 7σ away from the wall and towards the channel centre. The density profile

pattern, is unchanged with variation of stiffness constant. Values of surface stiffness constant have

shown particles in the fluid will oscillate with greater amplitudes going further into the free stream

and withstanding fluid molecules from getting close to the wall. Increasing the surface stiffness

constant from k = 100εσ−2−6400εσ−2 leads to non-linear and slight increment of the density peak

of the first layer of fluid towards an asymptotic value, which is in agreement with other studies

[112]. The results also describe density profile for higher wall mass and shows that the asymptotic

density is obtained for small values of surface stiffness constant. As the frequency scales with 1/
√
mw

the frequency spectrum becomes narrower for larger values of wall mass, making the density of

the first layer of fluid approach an asymptotic value quicker. Several values of mass were applied

with the density peaks remaining in the same location for mass value, with peak increasing for

heavier mass of wall. The varying mass have an impact on the oscillating frequency of the wall

particles with less effect on the amplitudes that are mostly controlled by the stiffness constant and

the temperature of the wall. An increase of the mass of the wall leads to an increase in vibrating

periods of the wall, thereby causing the molecules of the liquid to develop a stronger contact layer

in the interface.

Fig. 4.14(a and b)-4.16(a and b) shows the fluid density profile of a nanochannel with pore size

pore size = 20.5σ, lower wall temperature Tw = 1.2 and upper wall Tw = 1.3. These parameters

were implemented with stiffness constant
(
κ = 6400εσ−2 − 100εσ−2

)
. Higher mass was observed

to increase the liquid density slightly with oscillations going towards the centre of the channel. The

curves ascertain that the fluid molecules are distributed in an orderly manner close to the walls,

showing the presence of wall-fluid interaction. These peaks of fluid formed in the wall oscillate to

the centre of the pore as reported in a recent study [51]. Higher values of bonding stiffness are also

seen to increase the density of the lower and upper wall, with both walls having constant number

density due to the dominant influence of the wall mass. The fluid layering was observed to have

the first peak reaching its maximum and approaching asymptotic values faster, with subsequent

density peaks oscillating and penetrating into the in-plane fluid layers.

Fig. 4.17(a and b)-Fig.4.19(a and b) shows the Lower and Upper wall density profiles of wall

particles for various values of the bonding stiffness. The atomic mass of the wall particles is

mw = 1m and the temperature difference between the upper and lower walls is ∆T = 0.1εk−1
B .

The fluid layering was observed to have the first peak reaching its maximum and approaching

asymptotic values faster with subsequent density peaks getting lower and penetrating into the

in-plane fluid layers. The two density layers represent the two fcc lattice planes that make the
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wall; the right profile corresponds to the wall particles adjacent to the liquid. As the stiffness of

the wall increases, so do the restoring forces. Restrictions of the amplitude of oscillation of the

wall particles are seen to stay closer to their initial lattice sites. Hence, an increasing value of

κ narrows the density profiles and increases their maximum value. Although both lattice planes

exhibit the same behaviour, it is more profound on the adjacent layer due to its strong interaction

with the liquid particles. Fig. 4.19 shows the same case for mw = 6m. The salient observation is

the significant effect of the mass on the profile, corresponding to the lower plane, whose maximum

value increases much faster with increasing κ formw = 6m in comparison to the equivalent systems

for mw = 1m. In contrast, the plane adjacent to the liquid is almost unaffected.

To further understand the effect of mass on the oscillatory nature of the wall planes, a direct

comparison between the density profiles of the lower wall, for mw = 1m and mw = 6m for bonding

stifnesses κ = 100εσ−2- κ = 1600εσ−2, is made in Fig. 4.17 - Fig. 4.19. For lower spring potentials,

the density profiles experience marginal changes for different wall masses. The amplitude of the

oscillation is also seen to be unaffected by a change in mass. For the higher values of κ, the increase

in mw causes the density profile in direct contact to the liquid to shift slightly to the right, with

a small decrease in its maximum value. The oscillation of the lower plane, which is harmonic, due

to the lack of direct collisions with the liquid particles, decreases in amplitude and increases in

frequency for higher values of the atomic mass. The contrast between the profiles of the two lattice

planes indicates an an-harmonicity of the wall particles directly interacting with the liquid, and

also confirms that the theoretical (and harmonic) spring frequency
√
κ/mw might not be sufficient

to describe the thermal or Kapitza resistance.

Fig.4.20 shows the difference between the two wall lattice density profiles for the highest and

lowest bonding stiffness and energy intermolecular interaction strength. Lower values of bonding

stiffness κ reveals almost constant density peaks with a slight shift in position. Changes in the

wall intermolecular interaction strength (eww and ewwf ) does not affect the density profile and

maximum peak at lower κ. The density peaks for both lattices increases with higher values of

stiffness and eww. The maximum density value of the right lattice is seen to be greater than the

left for higher values of eww with the right lattice density profile shifting away from the liquid and

the left lattice density profile shifting towards the liquid, relative to the higher stiffness, showing

an-harmonicity in the lattice site and temperature jump in the interface.

4.1.2.2 Temperature Distribution of Fluid in Nanopore

The temperature distribution in a nanofluidic channel with the presence of wall-fluid interaction

energy strength (εwf ) was studied [116]. Their result is similar to this study. They also reported
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a Fourier like behaviour of the temperature profile in the nanochannel. They further observed a

temperature jump at the fluid-wall interface which they reported was due to molecules of the fluid

close to the wall boundary having different thermal velocity from the wall. The local temperature

is mostly defined by the thermal velocities of particles that also cause momentum transfer between

the fluid and the wall. If the wall-fluid interaction is weak the momentum transfer will be small,

However, if the fluid-fluid interaction is stronger and dominantly affects closer molecules, more

thermal motion is produced, hence an increase in temperature. The situation of these scenario

brings about quick changes in the distribution of local kinetic energy, which is responsible for the

jump in temperature at the interface. This jump is also due to the scattering of phonons due to

different phonon frequencies of the two media. Fig.4.21-4.23 shows a linear temperature jump at

the walls of the nanofluidic channel, which is similar to previous study [116]. The temperature

jump increases with an increase in stiffness in the lower wall and decreases with an increase in

stiffness at the upper wall. The temperature profiles cross each other almost at the same point,

due to the difference in lower and upper wall temperature.

4.1.3 Chapter Summary

An investigation into the effect of the atomic mass on the Kapitza resistance has been carried out.

The temperature jump have indicated that for higher values of the atomic mass, the frequency of

oscillation must decrease in order to satisfy constant average kinetic energy constraints dictated

by the fixed temperature of the wall. The lower frequency translated into a smaller number of

collisions between the wall and liquid particles, which inevitably led to a less efficient transfer of

energy and temperature jump at the solid-liquid interface. As a result, for low values of κ, the

Kapitza resistance was dominated by the mass of the wall particles, while as κ increases, the mass

effect faded and the bonding stiffness dictated the temperature jump. The density profiles of the

walls have indicated that for lower values of the wall bonding stiffness, the amplitude of oscillation

of its atoms is unaffected by a change in mass. Finally, the temperature jump correlated with the

product of the bonding stiffness and wall mass log(mwk), rather than the frequency of harmonic

springs
√
κ/mw [55].
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Chapter 5

Effect of Wall Interaction on the Kapitza resistance

5.1 Introduction

Previous MD studies focused on the energy interaction strength of fluid-solid interaction in in-

terfaces and fluid confined in nanochannels or nanopore [107-116], with none of these studies

investigating how the vibrating wall interaction intermolecular energy strength affects the Kapitza

resistance, temperature and density distribution across interfaces and nanofluidic channels. Studies

of the effect of the energy interaction strength between particles in the solid wall, on the Kapitza

resistance at the solid-liquid interfaces, and nanofluidic channels are very scarce if not non-existent.

Therefore, the purpose of this chapter is to implement MD wall-wall thermal model in investigating

the effect of the energy interaction strength (εww) of a vibrating solid wall on the Kapitza resistance,

temperature and density distribution across solid-liquid interfaces and nanofluidic channels.

The objectives of this chapter are to develop a 3D molecular dynamics algorithms and codes

of the simulation domain and thermal wall model with wall-wall intermolecular interaction energy

(εww). To determine the frequency of the vibrating wall atoms using molecular dynamics sim-

ulation. To investigate the effect of wall-wall lattice intermolecular interaction energy strength

(εww) for pore size of 20.5σ at various vibrating frequencies and stiffness constant, ranging from

κ = 100εσ−2 − 1600εσ−2 on the Kapitza resistance, temperature profiles and density distribution

across solid-liquid interfaces and nanofluidic channels. Finally, to compare the effect of the high-

est and lowest εww on the Kapitza resistance, temperature, and density distribution across the

interfaces and nanofluidic channels.

The investigation shows the effect of the presence of wall particle energy intermolecular in-

teraction strength (εww) on the temperature jump, Kapitza resistance, temperature profiles and

density distribution across solid-liquid interfaces and nanopore. A wall model that mimics real
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κ(εσ2) εww εwf 4T Mass(m) Time step (τ) Simulation run time
Case 1 100-1600 0.2 0.4 0.1 mw = 2mf 0.001 4 × 107

Case 2 100-1600 0.2 0.6 0.1 mw = 2mf 0.001 4 × 107

Case 3 100-1600 0.2 0.8 0.1 mw = 2mf 0.001 4 × 107

Case 4 100-1600 0.4 0.4 0.1 mw = 2mf 0.001 4 × 107

Case 5 100-1600 0.4 0.6 0.1 mw = 2mf 0.001 4 × 107

Case 6 100-1600 0.4 0.8 0.1 mw = 2mf 0.001 4 × 107

Case 7 100-1600 0.6 0.4 0.1 mw = 2mf 0.001 4 × 107

Case 8 100-1600 0.6 0.6 0.1 mw = 2mf 0.001 4 × 107

Case 9 100-1600 0.6 0.8 0.1 mw = 2mf 0.001 4 × 107

Table 5.1.1: Simulation Matrix for Wall-Wall intermolecular interaction energy strength effect on
Kapitza resistance with 10 High Powered Computing Nodes used and 2800 simulation runs.

wall in the nanoscale was implemented using simple harmonic formulations. The mass of the wall

is mw = 2mf with different values of eww and ewf and bonding stiffness κ. The results show

different density profiles in two lattice sites in the solid, and density profiles in the liquid near the

wall. Higher values of spring constant κ, and wall-wall with wall-fluid intermolecular interaction

energy strength ( eww and ewf ) gave maximum density peaks in the solid and fluid, developing a

temperature jump at the solid-liquid interface. Lower values of eww produce a higher temperature

jump and Kapitza resistance. This study provides an insight into the relationship between the

temperature jump, mass ratio of the solid and liquid, the bonding stiffness κ, the wall-wall and

wall-fluid intermolecular interaction energy strengths eww and ewf at the solid-liquid interface of

nanofluidic channels.

5.1.1 Simulation Method

To study thermal transport in interfaces and nanofluidic channels, structures are set up like the

molecular dynamics experiment in [51]. The simulation domain is modelled to investigate the ef-

fect of the combination of wall-wall interaction and various values of mean vibrating frequency of

the solid media, on the Kapitza resistance, density and temperature distribution across interfaces,

and nanofluidic channels. Lennard-Jones pair potential describes the wall-fluid and wall-wall in-

teractions. The fluid dimensionless parameters used are εw−f = 0.8, εw−w, = 0.2, 0.4, 0.6, and

spring constant 100εσ−2 − 1600εσ−2. The stiffness constant influences the thermal oscillations of

the molecular particles and determines the amount of energy and momentum transferred across

the interface. The stiffness also correlates the phonon frequency of the lattice in the solid and

influences the thermal vibration.

The particles of the walls are fixed to the equilibrium lattice location ro with the earlier values

of spring constants obeying the Liderman criterion of melting, which do not allow the particles to

melt and also do not allow the wall particles to oscillate outside the value that is not allowable
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Figure 5.1: Simulation system configuration of nanofluidic channel with harmonic springs.

in time steps of molecular simulations [117-118]. Lennard Jones cut-off distance rc = 2.2 was

applied to reduce the computational cost. The simulation system consists of 10,000 atoms with

solid or wall atoms of 2,500 divided into four regions, with two regions at the top and two regions

below, with atoms connected with a simple harmonic spring having a fixed dimensionless mass at

mw = 2mf , and temperature of T = 1.3εk−1
B at the top wall and T = 1.2εk−1

B at the bottom wall,

harmonically thermostated with the temperature rescaling method. The fluid atom consists of

7,500 atoms with dimensionless mass of mf = 1m placed in two parallel walls with height, H along

the y − axis. The simulation configuration is made up of a periodic boundary condition at the z

and x direction with a shrink wrap at the y-direction. The height of the nanochannel is Ly = 20.5σ

with width Lz = 17.0σ and length Lx = 16.0σ. The geometrical configuration is shown in Fig.5.1.

The walls are positioned as fcc lattice with orientation x( 0 -1 1); y(1 1 1); z(-2 1 1). Different

mean vibrating frequencies of the wall particles were obtained by running an MD simulation of the

wall layers with the stiffness constant used earlier. The equations of motion are integrated using

the verlet algorithm [2], with a time step τ = 0.001 and thermo-style of 50,000. The system is

performed with micro-canonical ensemble with simulation run time of 40,000,000 and equilibration

run of 40,000,000. Simulations were set-up and implemented using Large-scale Atomic/Molecular

Massively Parallel Simulator LAMMPS [176]. The simulation matrix is summarized in Table 5.1.1.

The MD simulation was performed to obtain the vibrational mean frequency at each stiffness

value with a simulation run of 4 × 105 time steps. Fig.5.2 shows the results of the mean frequency

dispersion and vibration of the walls, evolving with time for stiffness constants k = (100−1600εσ−2)

across the simulation domain. The intermolecular response of a monoatomic crystal structure is

simplified by a one degree of freedom (DOF) spring-mass system. The lattice crystal oscillates

to generate the mean vibrating frequencies fr = 1.5, 2.0, 2.7, 3.2, 3.6, 3.9, 4.5, 5.0 at stiffnesses k =

(100− 1600εσ−2) of the wall particles.
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Figure 5.2: Solid wall mean vibrational frequency dispersion for stiffness constant 100εσ−2 −
1600εσ−2.

5.1.2 Results and Discussion

The understanding of thermal transport at nanoscale is still at its infancy [2], but it is accepted that

large phonon scattering in the surfaces of an interface is the reason for high Kapitza resistance and

low thermal conductivity [119-120]. The Kapitza resistance of this work is obtained by determining

the temperature jump of the fluid-wall interface and the heat flux of the wall region by Non-

equilibrium molecular dynamics simulation. The temperature across the pore is determined by the

thermal motion of the fluid, which is achieved by dividing the simulation domain into 40bins.The

temperature of each bin is obtained from the kinetic energy of the particles in the fluid bins, based

on the streaming velocity of particles in the bin and is obtained by the expression

T =

Ni∑
j=1

m(vf − vi)2/(3Ns − δf )kB (5.1.1)

where m is the mass of particles, vf , vi are the current and mean velocities in the bin, Ns is the

bin size, δ is the bin degree of freedom and kB the Boltzmann constant. The velocity rescaling

method was used to thermostat the wall atoms, rescaling the velocities of the vibrating walls in

4bins at each time step, maintains the temperature of the walls, at the set temperature ranging
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a) Lower wall b)Upper wall

Figure 5.3: Density Profiles of fluid for mw = 2m, pore size = 20.5σ, eww = 0.2, ewf = 0.4 for
various values of stiffness constant κ.

from Tw = 1.2εk−1
B for the lower wall and Tw = 1.3εk−1

B for the upper wall. This technique

obtains the desired wall temperature (Tw) of the bin by the difference between the total kinetic

energy E of the wall and the energy obtained in the process of rescaling the velocity in each bin,

∆E = ET − 3NkTw/2. The heat flux (q) across the wall is obtained by calculating the average

of the difference in energy, q =< ∆E > /(∆t.A), as the change of energy with time is constant

because of the thermostat over the wall surface, then q = Tw. The Kapitza resistance is obtained

by Kw = ∆T/Tw. 4T is the difference in temperature between adjacent bins at the interface given

as 4T = Tfluid − Twall.

5.1.3 Density Distribution across Interface and Nanopore

Fig. 5.3 (a and b) - Fig. 5.10(a and b). shows the effect of energy interaction strength of the wall

and fluid (eww,ewf ) and bonding stiffness κ on the density distribution across the interface and

nanopore. The figure ascertains that the fluid molecules are distributed in an orderly way close to

the walls, showing the presence of wall-fluid interaction. These peaks of fluid formed in the wall

oscillates to the centre of the pore as reported in most studies [114]. The wall with temperature

difference 4T = 0.1εk−1
B , was simulated with wall bonding stiffness 100εσ−2 − 1600εσ−2 and

eww = 0.2 ; ewf = 0.4 for the lower and upper walls respectively. Higher values of bonding stiffness

increase the density of the lower and upper wall, with the lower wall having smaller temperature

values, showing higher density than the upper wall. The fluid layering was observed to have the

first peak reaching its maximum and approaching asymptotic values faster, with subsequent density

peaks oscillating and getting lower and penetrating into the in-plane fluid layers [121].
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a) Lower wall b)Upper wall

Figure 5.4: Density Profiles of fluid for mw = 2m, pore size = 20.5σ, eww = 0.2, ewf = 0.6 for
various values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 5.5: Density Profiles of fluid for 2m, pore size = 20.5σ, eww = 0.2, ewf = 0.8 for various
values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 5.6: Density Profiles of fluid for mw = 2m, pore size = 20.5σ, eww = 0.4, ewf = 0.4 for
various values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 5.7: Density Profiles of fluid for mw = 2m, pore size = 20.5σ, eww = 0.4, ewf = 0.6, for
various values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 5.8: Density Profiles of fluid for mw = 2m, pore size = 20.5σ, eww = 0.4, ewf = 0.8 for
various values of stiffness constant κ.

Fig. 5.11 and Fig. 5.12 show the influence of wall particle energy intermolecular interaction

strength on the density profile of the lower wall for different bonding stiffness. The two density

layers of the lower wall describes two fcc lattice planes that are positioned in the wall. The mass

of the wall is mw = 2mf with eww = 0.2 ; ewf = 0.4 − 6 and wall temperature difference of

4T = 0.1εk−1
B . The amplitude of oscillation of the lattice density profiles of the wall is restricted

and stay close to their original site as the values of the stiffness κ of the wall particles increases,

making an increasing value of the bonding stiffness cause the density profile to narrow, with

maximum peak corresponding to the highest value of κ. Though the density of the two lattice

planes undergoes similar behaviour, its effect is more pronounced at the lattice adjacent to the

liquid, and this phenomenon is due to the strong intermolecular interaction between the right wall

lattice and the liquid. Fig.5.13-Fig.5.17 shows a much higher density as the energy interaction

strength of the fluid is increased from ewf =0.4, to ewf = 0.8. The oscillating particles gradually

attains a constant value of number density 0.86 which corresponds to the density of argon. Fig.5.18

shows a higher wall density profile with higher energy intermolecular interaction strength in the

wall particles with eww = 0.6 ; ewf = 0.4. Fig.5.19-Fig.5.20 shows similar patterns with Fig.5.14

but with higher density at ewf =0.8.

Futher explanations are given for the density pattern in Fig.5.11-Fig.5.20, the plots shows the

wall density profiles of wall particles for various values of the bonding stiffness. The two density

layers as earlier observed represent the two fcc lattice planes that make the wall; the right profile

corresponds to the wall particles adjacent to the liquid. As the stiffness of the wall increases,

so do the restoring forces. The density profiles of the two lattices in the solid is seen to have
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a) Lower wall b)Upper wall

Figure 5.9: Density Profiles of fluid for m = 2m, pore size = 20.5σ, eww = 0.6, ewf = 0.4 for
various values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 5.10: Density Profiles of fluid for m = 2m, pore size = 20.5σ, eww = 0.6, ewf = 0.6 for
various values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 5.11: Density Profiles of fluid for mw = 2m, pore size = 20.5σ, eww = 0.6, ewf = 0.8 for
various values of stiffness constant κ.

maximum peaks at the highest bonding stiffness. The density layers of the left lattice plane also

increases remarkably for higher values of eww and increasing stiffness constant κ. Restrictions of

the amplitude of oscillation of the wall particles are seen to stay closer to their initial lattice sites.

Hence, an increasing value of κ narrows the density profiles and increases their maximum value.

Although both lattice planes exhibit the same behaviour, it is more profound on the adjacent layer,

due its strong interaction with the liquid particles. As eww increases, the density peaks of both

lattices increases and subsequently increases the density peak in the interface. Hence showing that

eww influences the density of both lattices and the solid-liquid interface. The reason for this is

because of the position of the two lattices in relation to the liquid, making the farther left lattice

having smaller collision with the liquid molecules and the right lattice having larger collision, due

to its proximity to the interface. Theoretically, this means there is a relationship between the

temperature jump, the bonding stiffness κ the energy intermolecular interaction strength of the

wall-wall and wall-fluid interface.

Fig.5.21-5.26 shows the effect of wall particle energy interaction strength of eww = 0.2−0.6 and

wall-fluid energy interaction strength of ewf =0.4−0.8 with various wall vibrational frequencies, on

the temperature distribution across the nanopore. Fluid thermal transport in nanopore, generated

by temperature gradient is investigated. Heat is seen to be transported from the high to low-

temperature wall causing a temperature gradient with a linear profile. The temperature profile

is obtained by averaging the kinetic energy in each bin with bin thickness δo = 0.025. For all

frequency of vibration, there is a difference in temperature between the wall and the fluid, and a

temperature jump is observed at the interface of the fluid and wall. For higher frequency of wall
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Figure 5.12: Density Distribution in Solid Wall for mw = 2m, eww = 0.2, ewf = 0.4 for various
values of stiffness constant κ.

Figure 5.13: Density Distribution in Solid Wall for mw = 2m, eww = 0.2, ewf = 0.6 for various
values of stiffness constant κ.
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Figure 5.14: Density Distribution in Solid Wall for mw = 2m, eww = 0.2, ewf = 0.8 for various
values of stiffness constant κ.

Figure 5.15: Density Distribution in Solid Wall for mw = 2m, eww = 0.4, ewf = 0.4 for various
values of stiffness constant κ.
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Figure 5.16: Density Distribution in Solid Wall for mw = 2m, eww = 0.4, ewf = 0.6 for various
values of stiffness constant κ.

Figure 5.17: Density Distribution in Solid Wall for mw = 2m, eww = 0.4, ewf = 0.8 for various
values of stiffness constant κ.
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Figure 5.18: Density Distribution in Solid Wall for mw = 2m, eww = 0.6, ewf = 0.4 for various
values of stiffness constant κ.

Figure 5.19: Density Distribution in Solid Wall for mw = 2m, eww = 0.6, ewf = 0.6 for various
values of stiffness constant κ.
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Figure 5.20: Density Distribution in Solid Wall for mw = 2m, eww = 0.6, ewf = 0.8 for various
values of stiffness constant κ.

vibration the temperature profile and the temperature jump is seen to increase at the lower wall

and decrease at the upper wall.

The temperature of the fluid and the temperature jump decreases as the wall particle energy

interaction strength increases causing a decrease in the Kapitza resistance. The frequency of

vibration of the wall further influences the friction in the fluid-wall interface and plays a prominent

role in the temperature distribution and heat transfer in the nanopore. A straight forward way

of explaining the linear increase and relationship between the temperature and Kapitza resistance

across the interface indicates the presence of thermal transport is not in doubt. The plots also

show that as the temperature increases across the nanopore, there is better matching of the phonon

density of state at lower frequency and temperature. Hence the higher heat transfer and increase

in temperature across the nanopore.

5.1.4 Temperature Distribution of Fluid in Nanopore

Thermal interactions in nanoscale fluid flow, with regards to the effect of wall-wall interaction

energy strength on the heat transport across interfaces and nano-pore is scarce and unavailable.

The MD interactive wall-wall model of this study has made it possible to study nano-scale inter-

facial thermal interaction with energy and momentum exchange between wall and fluid. Making

it possible for excess heat in the fluid to be transferred to the wall, with thermostated wall dissi-

pating the heat. For weaker wall-fluid interactions, a momentum deficit is developed which causes

modifications in the distribution of the kinetic energy and obtaining a temperature jump.
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Figure 5.21: Temperature Profiles across Nanopore for mw = 2m, eww = 0.2, ewf = 0.8 for various
values of stiffness constant κ.

Figure 5.22: Temperature Profiles across Nanopore for mw = 2m, eww = 0.4, ewf = 0.4 for various
values of stiffness constant κ.
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Figure 5.23: Temperature Profiles across Nanopore for mw = 2m, eww = 0.4, ewf = 0.6 for various
values of stiffness constant κ.

Figure 5.24: Temperature Profiles across Nanopore for mw = 2m,eww = 0.4, ewf = 0.8 for various
values of stiffness constant κ.

91



5. Effect of Wall Interaction on the Kapitza resistance

Figure 5.25: Temperature Profiles across Nanopore for mw = 2m, eww = 0.6, ewf = 0.4 for various
values of stiffness constant κ.

Figure 5.26: Temperature Profiles across Nanopore for mw = 2m, eww = 0.6, ewf = 0.8 for various
values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 5.27: Kapitza Resistance for a) lower and b) upper wall of mw = 2mf , eww = 0.2, ewf =
0.4− 0.8 as a function of wall frequency.

a) Lower wall b)Upper wall

Figure 5.28: Kapitza Resistance for a) lower and b) upper wall of mw = 2mf , eww = 0.4, ewf =
0.4− 0.8 as a function of wall frequency.

a) Lower wall b)Upper wall

Figure 5.29: Kapitza Resistance for a) lower and b) upper wall of mw = 2mf , eww = 0.6, ewf =
0.4− 0.8 as a function of wall frequency.
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Figure 5.30: Kapitza Resistance of mw = 2mf , for all eww and ewf as a function of wall frequency.

5.1.5 Kapitza Resistance of Interface and Fluid in Nanopore

The effect of wall particle interaction strength eww, and stiffness constant on the Kapitza resistance

at the solid-liquid interfaces and nanopore is shown in Fig. 5.27(a and b)-Fig. 5.29(a and b). The

plot shows the effect of eww and ewf on the heat and energy transfer across the solid-liquid interface

with wall massmw = 2mf . The energy intermolecular interaction strength of the wall particle is set

at eww = 0.2− 0.6 while keeping the fluid-wall energy interaction strength at ewf = 0.4− 0.8. The

Kapitza resistance was seen to increase with higher wall vibrational frequency. The temperature

jump increases with the wall vibrational frequency and decreases as eww and ewf increases. Fig.

5.30 shows the temperature jump or Kapitza resistance as a function of the frequency, (k/m)
0.5

for all values of eww and ewf with mass of wall mw = 2mf for different values of wall vibrating

frequency. The temperature jump and kapitza resistance increases with decreasing values of eww.

The Kapitza resistance is seen to increase as the wall vibrating frequency increases.The combined

effect of lower values of eww and ewf causes the temperature jump and Kapitza resistance to

increase further.

5.1.6 Chapter Summary

A wall-wall Molecular dynamics thermal model have been applied to study the effect of wall particle

energy intermolecular interaction strength (eww) with various values of wall vibrational frequencies

on the Kapitza resistance, density distribution and temperature across interfaces and nanofluidic

channels, with mass kept constant at mw = 2mf . The result shows that the Kapitza resistance

increases with wall particle vibrational frequency and decreases in the presence of wall particle

energy intermolecular interaction strength (eww). The Kapitza resistance and temperature jump
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is observed to be highest with higher wall particle vibrational frequency, and lowest wall particle

energy intermolecular interaction strength (eww = 0.2). The wall particle energy intermolecular

interaction strength (eww) and wall vibrational frequency is also seen to influence the density

peaks of the wall and fluid interfacial particles, as higher vibrational frequency and increasing

wall energy intermolecular interaction strength (eww) obtains higher density peaks at the wall and

fluid interface. There is a correlation between the maximum density peak of the wall and the

temperature jump across the interface of the nanofluidic channel. An increase in (eww) increases

the density peaks of the wall and interfacial fluid in the nanofluidic channel. A temperature

gradient with a linear profile was observed across the nanofluidc channel. The thermal transport

at the solid-liquid interface and across the nanofluidic channel reduced from the bottom wall to the

top wall, as wall frequency vibration increases, though with the temperature remaining constant

in the middle of the channel.
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Chapter 6

Effect of Wall Size on the Kapitza resistance

6.1 Introduction

Materials having high nano-porosity with large surface area are beginning to find applications in

gas adsorption, gasification, filtration, sequestration and desalination. To obtain good knowledge

of these applications, an appropriate study of the structural configurations, surface area, pore

connectivity and pore size have to be undertaken.

The objectives of this chapter are as follows; Develop 3D molecular dynamic algorithm and

codes for the thermal wall-fluid and wall-wall model for a nanopore. Investigate the combined

effects of lattice interaction intermolecular energy strength and smaller wall or pore size of 5σ, with

stiffness constant, ranging from κ = 100εσ−2 − 1600εσ−2 on the Kapitza resistance, temperature

and density distribution across interfaces and nanopores. Compare the effects of wall size of 20.5σ,

10σ and 5σ on the Kapitza resistance, temperature and density distribution across the nanopores.

Develop Lammps fix for wall model (theter_wall). Compare the molecular dynamic wall model

with theoretical models such as; AMM, DMM and LDM.

The earlier chapters explained the methods and theoretical foundations of this project, with

Chapters 4 and 5 dealing with developing molecular dynamics models applied in the investigation

of the effects of wall mass and wall-wall intermolecular interaction energy strength on the Kapitza

resistance, density and temperature distribution accross interfaces and nanofluidic channels. This

chapter implements and develops a combination of wall-fluid and wall-wall molecular dynamic

thermal model to investigate the effect of wall size (pore diameter) on the Kapitza resistance,

density and temperature distribution across solid-liquid interfaces and nanofluidic channels..

The investigation reveal an increase in thermal transport and Kapitza resistance across the

nanopore as the wall size and fluid molecular layer becomes smaller due to fewer bulk-like liquid
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Figure 6.1: Various heights of nanopore

Sizes 1st Channel 2nd Channel 3rd Channel Boundary Condition
Lx 16.8σ 16.8σ 16.8σ Periodic
Lz 17.0σ 17.0σ 17.0σ Periodic
Ly 20.5σ 10σ 5σ Periodic

Table 6.1.1: Simulation Domain for 3 channel nanopore sizes

layers formed. The density peaks are seen to increase with the increase in the channel pore size.

Linear temperature profiles were observed in the simulation results. Temperature gap and Kapitza

resistance is reported to increase as the channel pore size increases. The MD model was compared

with analytical models which include, Acoustic mismatch model (AMM), Diffuse mismatch model

(DMM) and Lattice dynamic model (LDM) with good agreement obtained.

6.1.1 Simulation Method for Nanopore

The simulation domain is modelled to investigate the effect of wall size on the Kapitza resistance,

temperature profile and density distribution across interfaces and nanofluidic channels. The sim-

ulation domains consist of various sizes of three nanopores as shown in Fig. 6.1, with simulation

matrix summarized in Table 6.1.1.

The simulation domain is modelled to investigate the effect of different sizes of wall channels on

the Kapitza resistance, temperature and density distribution across interfaces and nanopores. The

computational domain consists of liquid particles given the parameters of argon situated between

two parallel solid walls. The channel walls are fixed perpendicularly to the y-direction with z and

x directions being Lz = 17.0σ and Lx = 16.8σ respectively and Ly1 = 20.5σ for the first channel,

Ly2 = 10σ for the second channel and Ly3 = 5σ for the third channel as described by Table 6.1.1.

Ly denotes the distance separating the walls in the y-direction and σ the molecular length scale.

The walls are positioned as fcc lattice with orientation x( 0 -1 1); y(1 1 1); z(-2 1 1).
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κ(εσ2) εww εwf Size of Channel 4T Mass(m) Time step (τ)

Channel 1 100-1600 0.2-0.6 0.4-0.8 20.5σ 0.1 mw = 2mf 0.001
Channel 2 100-1600 0.2-0.6 0.4-0.8 10σ 0.1 mw = 2mf 0.001
Channel 3 100-1600 0.2-0.6 0.4-0.8 5σ 0.1 mw = 2mf 0.001

Table 6.1.2: Simulation Matrix for pore size effect on Kapitza resistance with 10 High Powered
Computing Nodes used and 7500 simulation runs

Lennard Jones pair potential describe the wall-fluid and solid-wall particle interactions. The

fluid dimensionless parameters used are εf−f = 1.0, which is kept constant throughout the simu-

lation εw−f = 0.4− 0.8, εw−w, = 0.2− 0.6, and spring constant 100εσ−2− 1600εσ−2 with constant

mass ratio mw = 2m. The wall atoms are thermostated with the lower wall Tw = 1.2εk−1
B and the

upper wall Tw = 1.3εk−1
B . The stiffness constant influences the thermal oscillations of the molec-

ular particles and determines the amount of energy and momentum transfer across the interface

[116]. The system is performed with micro-canonical ensemble with simulation run time of 4 ×

107 and equilibration run time of 4 × 107.

The simulation matrix is summarised in Table 6.1.2.

6.1.2 Results & Discussion

There are pertinent questions that are currently asked, such as; can the pore size affect the Kapitza

or thermal resistance of a nanofluidic channel? What will be the best pore size that will restrict

or enhance thermal transport in nanofluidic channels? This section attempts to answer these

questions, thereby giving fundamental understanding involving heat transfer and Kapitza resistance

in the nanoscale. By varying the height of the channel and implementing MD thermal wall models,

this section investigates the effect of pore size on the Kapitza resistance, density distribution and

temperature profile in the nanopores.

6.1.3 Density Distribution of Fluid in Nanopore

Molecular dynamics simulation results, for density distribution of fluid in nanopores are presented.

Fig. 6.2(a)-Fig. 6.2(b) shows density profiles and layering pattern for liquid atoms along the

y-cordinate of the upper and lower walls with eww = 0.2, ewf = 0.4. The channel width is in

the z-direction with the flow along the x-direction. The flow is developed fully with no external

force applied to the system. The effect of wall size Ly3 = 5σ, various bonding stiffness κ and

combinations of wall-wall with wall-fluid interaction strength of εww = 0.2 − 0.6, εwf = 0.4 − 0.8

on the number density distribution of liquid molecules in each slab of bins are also discussed.

Maximum peak close to the wall with oscillations fading into the centre and approaching bulk
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value is observed. The oscillations have a local average maximum equilibrium position of 0.075.

This pattern of layering has been reported in almost all molecular dynamics studies concerning

density distribution in a nanochannel and nanopore. The layering has been reported by [44] as

the repulsion of the liquid and wall atoms to maintain their equilibrium position. The layering

pattern has been found to differ slightly while using different force field or potential interaction

functions. The liquid molecules have a less closely packed structure near the valley of the profile

compared to the bulk, making the energy require more liquid atom to be inserted in the valley,

compared to inserting liquid atoms in the bulk. From this observation, it can be inferred that

atomic interaction between solid-liquid and liquid-liquid layers are responsible for the fluctuation,

which fades as the effect of these interaction decays. This liquid density in surface normal direction

has an oscillatory density profile, which looks narrow and stretched because of the stiffness. The

maximum peak of the first layer is observed to have a number density of 1.35 with the second layer

having a slit roughly 1/8th of the liquid molecular size. The increased or constant spacing of the

layers at large distances away from the wall surface shows the additional structuring with more

overlaps and less packing. Two fluid layers with two maxima are also seen to be present having

density starting from zero with peaks reaching maximum values, with oscillations fading to the

centre, confirming repulsion at the wall-liquid interface and clearly showing the overriding influence

of the wall structure [122]. The density is also seen to oscillate with a wavelength of a molecular

order. The fluctuation of density (ρbin − ρaverage) gives the layering of liquid molecules. Again

higher values of bonding stiffness increase the density of the lower and upper wall, with the lower

wall having smaller temperature values, showing higher density than the upper wall. The fluid

layering was observed to have the first peak reaching its maximum and approaching asymptotic

values faster, with subsequent density peaks oscillating and getting lower and penetrating into the

in-plane fluid layers. The presence of increasing density near the wall is because of more wetting of

the wall surface. The profiles of the liquid structure oscillates near the wall and becomes bulk like

near the centre. The liquid structure becomes uniform, describing the density of the bulk liquid.

The number of liquid layers vary with changes in pore size or radii, due to the free energy which is

influenced by the size of the pore and a factor of the separation distance or slit of the layers [123].

Previous theoretical models and molecular simulations have also described this pattern [124]. The

closest peak to the wall is the highest, due to the strongest interaction between the walls and

liquid causing an orderly or bulk like packing of the liquid particles. The second biggest peak

is also influenced by the wall and the first peak, causing a few overlaps of atoms, with a lesser

probability of atoms located in their required spot. Fig. 6.2(a) shows the liquid density profile

of the lower wall with Tw = 1.2εk−1
B , there is also a typical layering pattern with two density
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oscillations with maximum peak centre at 0.07 and a small shift in density maxima and minima

for different stiffness. As the spring stiffness increases, the density is seen to increase with a small

density fluctuation in the second layer and no further layer develops, this is due to the narrowness

of the pore. The amplitude of the second layer is observed to be constant with its maximum

peak located at equilibrium distance of 0.012. The density oscillations terminate at 0.15, achieving

its bulk value as the oscillations propagates to the centre. Fig. 6.2(b) shows the liquid density

profile for the upper wall with Tw = 1.3εk−1
B . The same layering pattern was observed with almost

the same maxima and minima shifts and positions as the channel is symmetrical. From past

simulations of this project, the larger sizes or radii have been seen to have more solid-like fluid

density oscillations than the smaller radii, due to the free energy that is influenced by the size of

the pore and a factor of the separation distance or slit of the layers.

Fig. 6.3(a) and 6.3(b) show that for higher wall-fluid energy intermolecular interaction strength

of eww = 0.2, ewf = 0.6 the liquid density increases in the lower and upper wall but with more

increase in the lower wall. A third density oscillation is beginning to form at a maximum position of

0.17. Higher density fluctuations are also observed with increasing stiffness. Hence as k increases,

liquid particle oscillation frequencies converge faster to maximum, making the highest packing,

with subsequent particles move to the next layer. The second and third layer has density peaks

that are in the same position as observed earlier. Figs. 6.4(a) and 6.4(b) show the fluid density

profile for eww = 0.2, ewf = 0.8. The density profile shows a first maximum peak number density

value that is undoubtedly a solid. The second density peak value is also within the solid range with

a slit span over 0.4. The liquid density profile oscillates towards the centre, showing the presence

of Boltzmann distribution. The oscillation has a local maximum position of about 0.5. The liquid

atoms have less overlap and properly packed structure near the wall as compared to the bulk.

The energy required for more liquid atom to be inserted in the less overlapped structure is lower,

compared to the bulk with more overlap and disorderly packed structure.

Fig. 6.5(a) and Fig.6.5(b) shows an increase in wall-wall interaction strength of eww = 0.4,

ewf = 0.4 for various values of stiffness constant k. The liquid density in surface normal direction

also has an oscillatory density profile, which looks narrow and stretched because of the spring

constant. The maximum peak fluid density with κ = 1600εσ−2 has its equilibrium position at 0.06

and the minimum density peak with κ = 100εσ−2 at 0.08 making an amplitude shift of 0.02. The

third layer is seen to form its equilibrium position at 0.16 with oscillation amplitude spacing, and

peak reduced. The increased spacing of the layers at large distances away from the wall surface,

shows the additional structuring with more overlaps and less packing. The fluid density peaks have

also been seen to increase with higher eww.
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Fig. 6.6(a) and Fig. 6.6(b) show the lower and upper wall fluid density for eww = 0.4, ewf = 0.6.

Two maxima peaks are also observed with a gradual formation of a third maxima peak. The density

profile rises from zero nearest the wall at 0.6, to a maximum peak with oscillation fading to the

centre of the pore as in previous cases. The fluid density is seen to oscillate with a wavelength of

molecular order, with a wall structure having large influence on the fluid-structure.

Fig. 6.7(a) and Fig. 6.7(b) shows upper and lower fluid density distribution for eww = 0.4,ewf =

0.8. The density peak is seen to have increased further with maximum peak position at 0.075. There

are only two peaks formed in this case, with the highest stiffness obtaining the maximum peak.

The amplitude shift for this case is different as the peaks produced by κ = 400εσ−2 − 1600εσ−2

seem to be in constant position with, a shift of peaks produced by κ = 100εσ−2 − 200εσ−2 having

the same position. It is also seen that higher eww have higher peaks or number density in the

second layer. The equilibrium position of the maxima of the second layer is 0.11.

Fig. 6.8(a) and Fig. 6.8(b) show the local liquid density profile (ρz) for eww = 0.6, ewf = 0.4.

The maximum fluid density profile is seen to reduce but with a minimum density profile increasing.

The second density peak is higher for the lower wall and reduced for the upper wall, this is due to

the high eww and low ewf . Farther away from the wall, the profile of the liquid structure becomes

constant and bulk-like with no fluctuations. The lower wall is seen to have a higher density number

than the upper wall. The density peak shifts, are seen to be pronounced with oscillations fading

to the centre.

Fig 6.9(a) and Fig. 6.9(b) show the liquid density profile for eww = 0.6, ewf = 0.6 for stiff-

ness values ranging from κ = 100εσ−2 − 1600εσ−2. The density peaks are seen to increase when

compared to earlier simulation, due to an increase of ewf . The maximum peak is the first layer

oscillating and fading to the centre. The second layer is seen to have a weaker amplitude in the

lower wall and higher amplitude in the upper wall. The density peaks of the first layer is seen to

be close in number density to the second layer, with slight amplitude shift.

Fig 6.10(a) and Fig. 6.10(b) show the local fluid liquid density for eww = 0.6, eww = 0.8.

Further and bigger increases in number density and peaks at the lower and upper wall are seen.

The first layer has its maximum peak at the interface of the fluid and wall. Shifts in liquid density

amplitude of the first layer close to the wall is seen with the highest stiffness, producing the

maximum peak. Lesser values of stiffness show that solid-like particles formed as layers oscillating

to a constant in the centre of the pore, due to increasing ewf . From previous simulations and

comparisons, higher eww is seen to increase the fluid density profile, but with greater influence by

the ewf .

The Figures for the second wall size Ly2 = 10σ are shown in appendix B.3 and Fig.7.0-Fig.7.23,
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a) Lower wall b)Upper wall

Figure 6.2: Density Profiles of fluid for pore size = 5σ, mw = 2m, eww = 0.2,eww = 0.4 for various
values of stiffness constant κ.

having almost the same density profile and pattern with earlier shown Figures of the 1st channel

Ly1 = 20.5σ.

6.1.4 Density Distribution in Solid wall

Fig.6.11(a) lower wall and Fig.6.11(b) upper wall shows the solid-wall density for eww = 0.2,

eww = 0.4 for various bonding stiffness k. The wall mass is mw = 2mf with lower wall temperature

Tw = 1.2εκ−1
B and upper wall temperature Tw = 1.3εκ−1

B . The two density peaks represent two

fcc lattice planes that constitute the wall. The number density is seen to be very characteristic

of real solid with profiles narrow and stretched due to the stiffness constant. The amplitudes

are seen to be wider in the lower stiffness and narrower in larger stiffness, confirming the effect

of the stiffness. The maximum density peaks close to the wall-fluid interface, with the left-hand

side lattice layer, also pronounced and smaller. Amplitude shifts are seen in the left and right

density layer, with different maxima location of their peaks. The peaks of the two lattices with

κ = 100εσ−2 − 1300εσ−2 appear to have the same number density, with the maximum peak of

κ = 1600εσ−2 highest. The lowest peaks of both lattices having κ = 100εσ−2 do not get to zero,

this show high attraction and a wetting behaviour [122]. The minimum position of the trough is

located at 0.025.

Fig. 6.12(a) and Fig. 6.12(b) show the two lattice density profiles for the lower and upper wall,

with a temperature difference of ∆T = 0.1εκ−1
B , mass of mw = 2mf with εww = 0.2 and εwf = 0.6.

The number density of the two lattices is increasing due to higher εwf . At lower stiffness of κ =

100εσ−2, attraction of the molecules is seen to occur. The other stiffness of κ = 200εσ−2−1600εσ−2
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a) Lower wall b)Upper wall

Figure 6.3: Density Profiles of fluid for pore size = 5σ, mw = 2m, eww = 0.2,eww = 0.6 for various
values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 6.4: Density Profiles of fluid for pore size = 5σ, mw = 2m, eww = 0.2,eww = 0.8 for various
values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 6.5: Density Profiles of fluid for pore size = 5σ, mw = 2m, eww = 0.4,eww = 0.4 for various
values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 6.6: Density Profiles of fluid for pore size = 5σ, mw = 2m, eww = 0.4,eww = 0.6 for various
values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 6.7: Density Profiles of fluid for pore size = 5σ, mw = 2m, eww = 0.4,eww = 0.8 for various
values of stiffness constant κ.

a) Lower wall b)Upper
wall

Figure 6.8: Density Profiles of fluid for pore size = 5σ, mw = 2m, eww = 0.6,eww = 0.4 for various
values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 6.9: Density Profiles of fluid for pore size = 5σ, mw = 2m, eww = 0.6,eww = 0.6 for various
values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 6.10: Density Profiles of fluid for pore size = 5σ, mw = 2m, eww = 0.6,eww = 0.8 for various
values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 6.11: Density Distribution in Solid Wall for mw = 2m, eww = 0.2,eww = 0.4 for various
values of stiffness constant κ.

exhibits repulsive behaviour. The amplitudes and peaks of all the lattice layers are constant with

pronounced shifts. The trough and the minima position of the two lattice peaks of κ = 100εσ−2

and κ = 200εσ−2 is located at 0.026 and 0.022 with κ = 400εσ−2− 1600εσ−2at 0.02. Fig. 7.13 (a)

and Fig. 7.13(b) shows the wall density profile as a function of the wall thickness with εww = 0.2

and εwf = 0.8. The maximum peak number density with κ = 1600εσ−2 of the right lattice is seen

to be higher than the left lattice and peaks increasing with stiffness. Particle attraction was also

noticed in the lowest peaks of the two lattices, with minima shifting to 0.027 in the lower wall and

0.0973 in the upper wall.

Fig 6.14(a) and Fig. 6.14(b) show the solid density profile for εww = 0.4 and εwf = 0.4.

The density strength increases as the stiffness increases. The maximum density strength of the

two lattices is also seen to increase with a slight shift in amplitude for the higher stiffness and a

pronounced shift in amplitude for the lower stiffness. The two lowest peaks in the lattices have a

minima position at 0.0265 at the lower wall and 0.0976 at the upper wall and are seen to exhibit

attraction between their particles. Fig. 7.15(a) and Fig. 7.15(b) show the solid density profile

for εww = 0.4 and εwf = 0.6. The wall density strength shows slight increase in the two lattices.

The streching of the lattice layers by the spring constant is also evident. The maximum peaks and

other density peaks remain the same in both lattices. A slight shift in amplitude of higher stiffness

is also seen with bigger amplitude shift in the smaller layers. The lowest peak with κ = 100εσ−2

still showed an attractive behavior with the minima position at 0.026 for the lower wall and 0.094

for the upper wall. There is a noticeable shift in minima position of κ = 200εσ−2 at 0.978 in

the upper wall, with other higher stiffness and repelling particles still maintaining same minima
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a) Lower wall b)Upper wall

Figure 6.12: Density Distribution in Solid Wall for mw = 2m, eww = 0.2,eww = 0.6 for various
values of stiffness constant κ.

position.

Fig. 6.16(a) and Fig. 6.16(b) show the upper and lower wall density profile for εww = 0.4

and εwf = 0.8. The two lattices are still noticed with density strength slightly decreasing. The

right lattice layer has a slightly higher density peak than the left lattice layer. The density peaks

of the other two lattice layers, are seen to be constant, with peaks increasing with an increase

in stiffness constant. One unique phenomenon observed is that the oscillation shifts to the right,

when compared with other figs, that shifts to the left. The minima position is located at 0.0278

for the lower wall and 0.0972 for the upper wall.

Fig. 6.17(a) and Fig. 6.17(b) show the upper and lower wall density profile for εww = 0.6 and

εwf = 0.4 for various stiffness constant k. The density peaks and strengths for both lattices are

constant for κ = 100εσ−2 − 1300εσ−2, However, with a slight increase in number density in the

maximum peak with κ = 1600εσ−2 of the right lattice compared to the left. Attractive behaviour

of the two lowest peaks κ = 100εσ−2 − 200εσ−2 and lattices are observed, while repulsive lattice

behavior is observed for all other stiffness. The minima position for the lowest peaks of the two

lattices is in 0.0273 for the lower wall and 0.973 for the upper wall.

Fig 6.18(a) and Fig. 6.18(b) shows the density distribution for lower and upper solid wall

having εww = 0.6 and εwf = 0.6 with ∆T = 0.1εκ−1
B . The density strength of both lattices is seen

to be overwhelmingly increased when compared to earlier figures. The number density of the right

lattice is higher than the number density of the left lattice. Shifts in amplitude are also recorded

for all peaks in the two lattices but this time the lowest peaks of both lattices having the same

minima got to zero, showing a repulsive behaviour in these lattices. The minima position of the
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a) Lower wall b)Upper wall

Figure 6.13: Density Distribution in Solid Wall for mw = 2m, eww = 0.2,eww = 0.8 for various
values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 6.14: Density Distribution in Solid Wall for mw = 2m, eww = 0.4,eww = 0.4 for various
values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 6.15: Density Distribution in Solid Wall for mw = 2m, eww = 0.4,eww = 0.6 for various
values of stiffness constant κ.

lowest two lattices is 0.028 for the lower wall and 0.972 for the upper wall.

Fig. 6.19(a) and Fig. 6.19(b) show the two lattice density profiles for the lower and upper wall

with temperature difference of ∆T = 0.1εκ−1
B , mass of allmw = 2mf with εww = 0.6 and εwf = 0.8.

The density strength and number density of both lattices is the highest so far, compared to all other

results. The density layers are seen to be narrow for the lower stiffness κ = 100εσ−2 − 200εσ−2.

The peaks of both lattices are constant in density numbers, but with only a slight increase in the

right lattice. The trough of the two lowest lattice peaks κ = 100εσ−2 are also seen to reach zero

at both walls, showing a repulsion behavior. The position of the minima of the lowest peaks is at

0.0282 for the lower wall and 0.973 for the upper wall.

6.1.5 Temperature Distribution of Fluid in Nanopore

The temperature across the pore is determined by the thermal motion of the fluid and is achieved

by dividing the simulation domain into 40bins with size 0.025 for the temperature profile.The bin

temperature is computed from the expression

T (zi) =
1

3kB(JM − JN + 1)
∑N
i=1Hn(zi,j)×

∑JM
j=JN

∑N
i=1Hn(zi,j)mi

[
vαi,j − uα(zi)

]2 . (6.1.1)

The function Hn(zi,j) is defined such that Hn(zi,j) = 1 if (n − 1)4z < zi < n4z, otherwise

Hn(zi,j) = 0. Subscript j represents the j time steps with JN and JM time steps. α denotes x, y

or z, mi is the mass of fluid vijand uij are the mean and average velocities respectively. In steady

state uz(zi) and uy(zi) have zero value for all bins.
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a) Lower wall b)Upper wall

Figure 6.16: Density Distribution in Solid Wall for mw = 2m, eww = 0.4,eww = 0.8 for various
values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 6.17: Density Distribution in Solid Wall for mw = 2m, eww = 0.6,eww = 0.4 for various
values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 6.18: Density Distribution in Solid Wall for mw = 2m, eww = 0.6,eww = 0.6 for various
values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 6.19: Density Distribution in Solid Wall for mw = 2m, eww = 0.6,eww = 0.8 for various
values of stiffness constant κ.
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Fluid thermal transport in a nanopore due to temperature gradient is investigated. Thermal

oscillation frequency is approximated and expressed as ω =
√

κ
m . Various values of κ = 100εσ−2−

1600εσ−2 represents the stiffness constant.

Fig. 6.20 shows the temperature profiles across the nanopore for a temperature difference

of ∆T = 0.1εκ−1
B , mass mw = 2mf with εww = 0.2 and εwf = 0.4 (wall surface wettability)

and stiffness constant ranging from κ = 100εσ−2 − 1600εσ−2. For high attractive walls, MD

investigations have reported large layering phenomena of liquid particles close to the surface, with

this effect modifying the thermal conductance in the interface. Temperature jump is observed in

the lower and the upper wall, due to the effect of temperature, εww and εwf , resulting to different

Kapitza resistance in the lower and upper walls. The temperature jump arises, due to different

thermal velocity of particles near the wall interface causing momentum transfer. High wettability

have been widely reported to reduce the temperature jumps at the interface. Different temperature

gradient corresponding to different stiffness values are seen.

For higher stiffness, the temperature profile and jump is seen to increase with increasing stiff-

ness, but at the upper wall the temperature jump is seen to decrease with increasing stiffness,

showing the effect of temperature on the thermal transport and temperature jump. The equilib-

rium point as observed in larger channel is seen to be established. For the smaller wall, the position

is observed to diminish. This equilibrium position in the nanopore has been affected and seen to

be weakly developed, due to the reduction of the size of the channel to 5σ. The temperature

gradient is seen to increase with reducing stiffness, which depicts that the temperature effect of

the upper wall dominates the thermal transport, compared to the effect of the stiffness, εww , εwf

and channel size.

Fig. 6.21 shows the temperature profile for εww = 0.2 and εwf = 0.6. The difference between

the temperature jumps is seen to be smaller in the lower wall, with an increase in temperature

jump. However, in the upper wall the temperature jump is seen to increase clearly with decreasing

stiffness. The equilibrium position is seen to be diminished, due to the size of the channel. The

temperature gradient is seen to have increased with increase in heat transfer. The effect of the

upper local temperature is beginning to reduce making the temperature gradient parallel to each

other. The total height of the temperature jumps for all stiffness in the lower wall is seen to be

smaller than the upper wall making the diminishing of the equilibrium position sustained. It is

observed that at low fluid densities with large stiffness the momentum transfer is less effective

between the liquid and the wall molecules and gives higher Kapitza resistance. However, at the

higher wall the temperature increases and momentum transfer increases, giving a lower Kapitza

resistance with higher stiffness constant.
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Fig. 6.22 shows the temperature profile across the nanopore for εww = 0.2 and εwf = 0.8.

The temperature gradient is seen to be bigger; hence higher heat transport. The formation of the

equilibrium position is seen to further diminish. The height of the temperature jump has become

smaller in both the upper and lower wall, with reduced difference between the temperature jump

of the highest and lowest stiffness causing heat transfer to probably increase. The temperature

gradients of all the stiffness are beginning to converge. Fig. 6.23 show the temperature profiles for

εww = 0.4 and εwf = 0.4 for various stiffness constant k. The temperature jump is seen to increase

with stiffness at the lower wall and decrease with stiffness at the upper wall. The equilibrium

position is also seen to be diminished. The temperature jump for both the lower and upper wall

is reduced with an increase in εww, this shows higher heat transport.

Fig. 6.24 shows the temperature profile across the nanopore of 5σ for εww = 0.4 and εwf = 0.6

with various stiffness constant. Further reduction of the temperature jump at the lower wall is

observed. The equilibrium position is totally distorted. The temperature jump at the upper

wall is also seen to reduce as the stiffness increases. The increase in εwf is causing a reduction

in temperature jump and an increase of heat transfer and linear temperature variation as the

stiffness increases across the nanopore. Fig. 6.25 shows the temperature profile for εww = 0.4 and

εwf = 0.8. Further reduction of the total temperature jump in the lower and upper walls, with

the increase of εww is seen, showing an increase of heat transport across the pore. However, the

influence of εwf on the temperature jump and heat transfer across the nanopore is dominant. The

equilibrium position is further diminished with the temperature gradient not crossing each other

and obtaining a constant temperature point.

Fig. 6.26 shows the temperature profiles across nanopore of ∆T = 0.1εκ−1
B , mass of wall

mw = 2mf , εww = 0.6 and εwf = 0.4 for various stiffness constant. The equilibrium position is

seen to be almost removed, showing the effect of pore radii and size. The total temperature jump

in the lower wall for all stiffness is seen to be very small, compared to the upper wall with large

ranges of temperature jump with increasing stiffness. The temperature jump in the upper wall is

seen to reduce with increasing stiffness. The large temperature jump in the upper wall affects the

overall temperature gradient, thereby reducing the heat transfer across the nanopore.

Fig. 6.27 show the temperature profile across the nanopore with εww = 0.6 and εwf = 0.6.

The equilibrium position is also diminished with a smaller total temperature jump in the lower

wall and a larger temperature jump in the upper wall. The increase of εwf compensates for the

high-temperature jump causing the heat transfer across the nanopore to increase. Fig. 6.28 shows

the temperature profile across the nanopore for εww = 0.6 and εwf = 0.8. Increasing εwf has

shown to reduce the total temperature jump in the lower and upper wall, thereby increasing the
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6. Effect of Wall Size on the Kapitza resistance

Figure 6.20: Temperature Profiles across nanopore of 5σ, for mw = 2m, eww = 0.2, ewf = 0.4 for
various values of stiffness constant κ.

heat transfer across the nanopore. The temperature jump is seen to reduce with increasing stiffness

at the upper wall, though single values of stiffness with the temperature jump is seen to increase.

The heat transfer across a nanopore of radii and size 5σ has been revealed to increase with an

increase in εww and εwf . The effect of εwf in thermal transfer is seen to be dominant across the

nanopore. The temperature jump increases with higher stiffness in the lower wall and decreases

with higher stiffness in the upper wall. The equilibrium position is seen to diminish as the nanopore

reduces, reducing the Kapitza resistance and increasing the heat transfer across the nanopore.

From these findings smaller nanopores will be suitable for applications in desalination, filtration

and gasification.
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Figure 6.21: Temperature Profiles across nanopore of 5σ, for mw = 2m, eww = 0.2, ewf = 0.6 for
various values of stiffness constant κ

Figure 6.22: Temperature Profiles across nanopore of 5σ, for mw = 2m, eww = 0.2, ewf = 0.8 for
various values of stiffness constant κ
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Figure 6.23: Temperature Profiles across nanopore of 5σ, for mw = 2m, eww = 0.4, ewf = 0.4 for
various values of stiffness constant κ

Figure 6.24: Temperature Profiles across nanopore of 5σ, for mw = 2m, eww = 0.4, ewf = 0.8 for
various values of stiffness constant κ
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Figure 6.25: Temperature Profiles across nanopore of 5σ, for mw = 2m, eww = 0.4, ewf = 0.8 for
various values of stiffness constant κ

Figure 6.26: Temperature Profiles across nanopore of 5σ, for mw = 2m, eww = 0.6, ewf = 0.4 for
various values of stiffness constant κ
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Figure 6.27: Temperature Profiles across nanopore of 5σ, for mw = 2m, eww = 0.6, ewf = 0.6 for
various values of stiffness constant κ

Figure 6.28: Temperature Profiles across nanopore of 5σ, for mw = 2m, eww = 0.6, ewf = 0.8 for
various values of stiffness constant κ.
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Figure 6.29: Kapitza Resistance of 5σ nanopore with mw = 2mf , eww = 0.2 ewf = 0.4− 0.8 as a
function of wall frequency.

Figure 6.30: Kapitza Resistance of 5σ nanopore with mw = 2mf , eww = 0.4 ewf = 0.4− 0.8 as a
function of wall frequency.
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Figure 6.31: Kapitza Resistance of 5σ nanopore with mw = 2mf , eww = 0.6 ewf = 0.4− 0.8 as a
function of wall frequency.

a) Lower wall b)Upper wall

Figure 6.32: Kapitza Resistance of 10σ nanopore with mw = 2mf , eww = 0.2−0.6, ewf = 0.4−0.8
as a function of wall frequency.
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Figure 6.33: Density Profiles of Fluid for mw = 2mf , lowest εww = 0.2, highest εww = 0.6 for
various nanopore sizes.

Figure 6.34: Temperature Profiles of Fluid for mw = 2mf , lowest εww = 0.2, highest εww = 0.6
for various nanopore sizes.
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Figure 6.35: Kapitza Resistance of Fluid for mw = 2mf , lowest εww = 0.2, highest εww = 0.6 for
various nanopore sizes.

Figure 6.36: The Kapitza resistance calculated with AMM, DMM, LDM and MD Simulation with
mw = 2mf , lowest εww = 0.2, highest εww = 0.6 for nano-pore size of 10σ.
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6.1.6 Kapitza Resistance of Fluid in the Nanopore

Fig. 6.29 shows the Kapitza resistance across the nanopore of 5σ for ∆T = 0.1εκ−1
B , mass of

wall mw = 2mf with εww = 0.2 and εwf = 0.4 − 0.8 as a function of the harmonic frequency

of the wall particles. The plot shows that the Kapitza resistance reduces as the wettability εwf

increases. As the wettability increases the thermal motion of the particles reduces, this inhibits

the flow of heat and momentum transfer between the fluid and the wall. At a lower frequency,

the Kapitza resistance reduced slightly as the wettability increased, with a dramatic reduction of

Kapitza resistance as εwf reduces at higher frequency. Showing the importance of inelastic phonon

transfer in influencing the Kapitza resistance.

Fig. 6.31 shows the Kapitza resistance of εww = 0.6 and εwf = 0.4 − 0.8 as a function of

frequency. The Kapitza resistance is seen to reduce with a higher combination of εww and εwf in

lower frequency. The Kapitza resistance in lower frequency also reduces with decreasing εwf .

Fig. 6.32 shows the Kapitza resistance across the nanopore of 10σ for ∆T = 0.1εκ−1
B , mass of

wall mw = 2mf with εww = 0.2− 0.6 and εwf = 0.4− 0.8 as a function of the harmonic frequency

of the wall particles. The Kapitza resistance is seen to increase with increasing frequency across

the nanopore for all combinations of εww and εwf .

The Kapitza resistance at a higher frequency is seen to reduce dramatically as εwf increases.

The effect of εww and εwf on the Kapitza resistance across the 10σ nanopore also show that the

Kapitza resistance increases with an increase in wall vibrational frequency. The Kapitza resistance

at low and high frequency is seen to reduce with increasing wettability εwf though with more

reduction at higher frequency. The Kapitza resistance reduces with high εww at low frequency,

showing that the influence of εwf on the Kapitza resistance across the nanopore is dominant

but nevertheless the presence of εww has shown to have a remarkable influence on the Kapitza

resistance. The Kapitza resistance is seen to be the highest at high frequency, low εww and high

εwf .

Fig. 6.33 shows the density distribution or profile in a 5σ, 10σ and 20.5σ nanopore size with

the highest and lowest wall-wall intermolecular interaction energy strength (εww) for all sizes

considered. The density profile is seen to be highest in the biggest pore/radii (20.5σ) having

εww = 0.6, showing that a combination of large pore size and εww forms the highest solid like

interface in the nanopore. The pore size with the highest εww are seen to have higher peaks

compared to the same size with lower εww. The εww is the dominant factor responsible for higher

density in the interface. More layers with higher peaks are seen to be formed by higher pore sizes

and higher εww. The 20.5σ with the highest and lowest εww is seen to have four layers, though with
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20.5σ and highest εww = 0.6 having more maximum peaks. The density peaks reduce as the pore

sizes gets smaller and as εww goes from highest to lowest. This study is directly relevant to thermal

conductivity enhancement in nanoparticles, which is mainly due to the bulk like formation of base

fluid layers instigated by the nanoparticles [125-126]. This result clearly shows that nanoparticles

and nanofluid solutions can be engineered for thermal enhancement and storage by reducing and

increasing εww and the size/radii of pore channels.

Fig. 6.34 shows the temperature profile across nanopore of size /radii 5σ, 10σ and 20.5σ at their

respective highest and lowest εww. It is clearly seen that heat and mass transfer is highest with the

5σ having the lowest εww = 0.2, due to its least resistance and bulk like molecular impediments in

allowing fluid and heat to flow through its pores quickly because of the formation of fewer layers

and small peaks. Their applications will be very relevant in filters for gasification and desalination

[16-19].

Fig.6.35 shows the Kapitza resistance across the nanopore of size 5σ, 10σ and 20.5σ as a

function of the frequency of vibration of the wall molecules. The smallest size/radii having 5σ

with the highest εww = 0.6 is seen to have the lowest Kapitza resistance at low and high frequency.

The Kapitza resistance is also seen to increase with frequency for all values of pore size and εww.

The highest pore size 20.5σ and highest εww = 0.6 is seen to have the highest Kapitza resistance at

higher frequency. For high Kapitza resistance as a result of its bulk like layering, inelastic phonon

heat transfer will be prevalent, propagating in the fluid to form networks with other bulk like

layering.

In summary this section has attempted to answer the two important questions asked at the

beggining of the discussion. From the analysis and results it is evident that the pore size affects

the thermal or Kapitza resistance across interfaces and nanofluidic channels. The results have

also shown that for the best and highest Kapitza resistance to be obtained, a combination of high

eww depicting specifically engineered material interface properties and channel thickness should be

achieved. This will bring a step closer, an end to the era of trial and error in choosing the best

material properties and configuration for novel engineering applications.

6.1.7 Comparison of Molecular Dynamics with Theoretical Models

Molecular Dynamic Simulation plays a role in the interpretation of theoretical and experimental

data. It must be noted that all measured quantities in molecular dynamics are averaged. Due

to this reason, comparison of theoretical and MD simulations can be over-interpreted or under-

interpreted. Comparing simulation data with a theoretical model, one must put in mind the

assumptions made by the theoretical model and the ensemble considered by the molecular model.
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There is also a reason to be careful so that data compared with the theoretical model relates to

the same assumptions and thermodynamic condition, describing the same physical scenario.

To compare with the MD model, the widely acceptable models for the calculation of the Kapitza

resistance, such as the acoustic mismatch models AMM, diffuse mismatch models (DMM) and

lattice dynamics models (LDM) are used. These are models that are currently used to determine

the Kapitza resistance between two dissimilar media. The AMM and DMM consider only bulk

properties of dissimilar materials while calculating the Kapitza resistance, with no account of the

material properties near the interface, but the LDM includes the material properties. The acoustic

mismatch model (AMM) bases its assumption on specular phonon transmission and reflection,

which means interfacial walls are treated in continuum. The transmissivity and Kapitza resistance

of the simulation interface is obtained using the AMM method [127]. The diffuse mismatch model

[DMM] was proposed to be better than the AMM [128]. The model postulates that incident

phonons undergo diffuse scattering that is elastic at the interface at both sides of the media. The

DMM method was used to obtain the Kapitza resistance of the simulation domain parameters.

The lattice dynamics model (LDM) was applied to obtain the Kapitza resistance between fcc

lattices with better results obtained [124]. The LDM calculates transmissivity by the ratio of the

transferred incident energy flux of both media. The LDM interface normally applies to models

consisting of fcc lattices A and B, the right side B is represented by the wall crystal with a harmonic

approximation, and the left side A, is a solid argon crystal [124]. The level of the dissimilarities

of the interface is ascertained by setting the intermolecular interaction energy strength of the

wall particles in LDM that gives the material properties of the wall to the model. The methods

described are used to obtain the AMM, DMM and LDM with the parameters of the simulation

system. The lattices used in the model are monoatomic fcc lattice.

Fig. 6.36 shows a comparison between the MD model, AMM, DMM and LDM of nanopore size

of 10σ and lowest εww = 0.2 with highest εww = 0.6. The MD model with εww = 0.2 is in close

agreement with the AMM, DMM, and LDM. The walls with very high εww, deviates largely from

the rest. This is due to the high wall particle interaction which is absent in the other models. The

LDM predicts the largest Kapitza resistance which is in agreement with a previous study [124].

MD obtained Kapitza resistance, is due to its ability to show and obtain interface inelastic phonon

scattering with increasing an-harmonicity of particle interaction [129]. A detailed reason, why the

increase in inelastic phonon scattering at the interface, is reported in previous studies [99]. They

reported that increase in inelastic phonon scattering at the interface increases phonon transmission

coefficients and reduces the Kapitza resistance. Their study was adapted for Si/Ge interface akin

to the wall-fluid interface. They explained that incident phonons from the Si-wall have frequency
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higher than the maximum frequency of Ge atoms due to the boundary condition imposed on the

Si-wall. They predicted that energy can be transmitted if there is inelastic scattering of phonons

into two phonons having lower frequency, thereby increasing the thermal conductance and reducing

the Kapitza resistance across the interface. The MD model of this work shows inelastic scattering

and an-harmonicity as observed in the different amplitudes shifts obtained in the wall. This study

shows that the calculated Kapitza resistance for LDM is 9% higher than DMM and DMM is 6%

larger than MD with MD, 4% higher than AMM, which is in agreement with previous studies [87,

126, 98, 109]. They also reported that the Kapitza resistance increases with the phonon density

of state, which is directly related to the frequency. These predictions have been confirmed by this

MD study.
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Chapter 7

Conclusion and Future Work

7.1 Conclusions

A Maxwel-Einstien solid molecular dynamics thermal wall model that allows dual energy and

momentum transport exchange across solid-liquid interfaces and nanofluidic channels have been

developed. The developed modeling approach imposes isothermal boundary conditions on the walls

by the application of a themostat on the atomic wall layers. The thermal wall model was applied

to study the thermal transport and Kapitza resistance across interfaces and nanofluidic channels.

The current study uses liquid argon at constant density, consisting of two [111]− oriented

perfect Face-Centre Cubic (fcc) lattice planes. The results for the Kapitza resistance obtained in

this study were similar to predictions of AMM, DMM and LDM analytical models. Previous MD

studies have mostly investigated steady planar flows for simple atomic fluids at single state point

in a nanochannel, with less studies, on nanoscale interfacial thermal transport. This study has

provided a better understanding of nanoscale interfacial thermal transport.

The investigation considers the effects of the mass, wall intermolecular interaction energy

strength and channel pore size on the Kapitza resistance and thermal transport across inter-

faces and nanofluidic channels. Studying these effects are not possible with continuum hypothesis

such as lattice Boltzmann models, due to the fact that the lattices of their atoms and molecular

interaction are not taken into account in these models.

The first detailed study determined the effect of mass and stiffness of the wall particles on

the Kapitza resistance, temperature profile and density distribution across solid-liquid interfaces

and nanofluidic channels implementing a wall-fluid molecular dynamics thermal wall model. The

density profiles of the walls indicated that, for lower values of the wall bonding stiffness, the

amplitude of oscillation of its atoms is unaffected by a change in mass. Hence, for higher values of
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the wall mass, the frequency of oscillation must decrease, in order to satisfy constant average kinetic

energy constraints, dictated by the fixed temperature of the wall. The lower frequency translated

into a smaller number of collisions between the wall and liquid particles, which inevitably led to a

less efficient transfer of energy and temperature jump at the solid-liquid interface. As a result, for

low values of κ, the Kapitza or thermal resistance was dominated by the mass of the wall particles,

while as κ increased, the mass effect faded and the bonding stiffness dictated the temperature

jump. Finally, the temperature jump correlated with the product of the bonding stiffness and wall

mass rather than the frequency of harmonic springs
√
κ/mw [55].

The second study determined the effect of the presence of wall particle energy intermolecular

interaction strength on the Kapitza resistance, temperature profile and density distribution across

solid-liquid interfaces and nanofluidic channels applying wall-wall molecular dynamics thermal wall

model. The results revealed different density profiles in 2 lattice sites in the solid, and density pro-

files in the liquid near the walls. Higher values of spring constant κ and intermolecular interaction

energy strengths (eww; ewf ) produced maximum density peaks in the solid and fluid, developing

temperature jump at the solid-liquid interface. Lower values of eww produced higher tempera-

ture jump and Kapitza resistance. The presence of intermolecular interaction energy strength of

the wall (eww) is reported to influence the formation of higher density peaks in the solid-liquid

interface, this finding is novel.

The third and final study determined the effect of wall size or pore diameter on the Kapitza

resistance, temperature profile and density distribution across solid-liquid interfaces and nanoflu-

idic channels applying a combination of wall-wall and wall-fluid molecular dynamics thermal wall

model. Investigations included three pore sizes of 5σ, 10σ and 20.5σ at their respective highest

and lowest εww. The results reveal that the mass and heat transfer is highest in the 5σ, pore,

having the lowest εww, due to its least resistance in allowing fluid to flow through its pores quickly

without bulk-like fluid impediments. The Kapitza resistance is also reported to increase with wall

particle vibrational frequency for all values of pore size and εww. The highest pore size and wall

intermolecular interaction energy strength of 20.5σ and εww = 0.6 respectively is seen to have the

highest Kapitza resistance at higher wall vibrational frequency. Due to its high Kapitza resistance

as a result of its bulk-like layering, inelastic phonon heat transfer is prevalent, propagating in the

fluid to form networks with other bulk like layering. The application of this phenomena can lead to

the tuning of the Kapitza resistance from imposed properties of a nanomaterial which can increase

the figure of merit in space engineering applications, enhancement of computer processors, ther-

mal enhancement in nanofluids, optimization of thermal barrier coatings used in the combustion

chamber of propulsion systems, and development of nanofilters for sequestration and desalination.
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7.2 Future work

Molecular dynamic simulation gives an insight into the structural properties of fluids that are yet

to be attained by experimental studies. MD also gives flexibility, compared to experiments that are

found to be very expensive at the nanoscale. As computing power increases, MD will become an

important method in the investigation of bulk fluids, and may likely be as popular as the continuum

formulation. MD studies in future will involve the detailed and bulk investigation of ionic liquids,

pharmaceuticals, bio-materials, dense polymer and composite structures. This will be driven by

the need for fundamental understanding of nanoscale phenomena and profits from companies as a

result of its successful applications.

For fluids confined in a nanochannel, a bright future is envisaged. As computing power and

efficiency increases nanofluidic applications will grow rapidly. Currently commercially applicable

molecular dynamic studies have been focused on polymeric-composite-fluids interface and flow of

fluid around carbon nanotubes and graphene.

Thermal transport at nanoscale interfaces and nanochannels have also been reported to be

relevant to obtain better performance in many Engineering Systems and this is another growing

area of research. This is the area of research that is focused on, and investigated in this work. From

the literatures reviewed and the research undertaken, the following future work is recommended.

• Applying morse and tersoff pair potentials to study thermal transport and Kapitza resistance

across interfaces and nanofluidic channels.

• Developing a meta model that allows for molecular and continuum transition.

• Investigation of phonon propagation and dispersion using particle wave molecular dynamics

in understanding thermal transport and Kapitza resistance across interfaces, supperlatices

and nanochannels.

• Developing kernels to predict the non-local stress for confined fluids in a nanofluidic channel.

• Determining the shear rate, kinematic viscosity and density variations in nanochannels to

aid in better understanding of coupling between energy and momentum transport.

131



7. Conclusion and Future Work

1

1This page is intentionally left blank

132



Bibliography

[1] Dosch, H. and Van de Voorde, M. (2009), "Gennesys", White Paper, A New European

Partnership between Nanomaterials Science & Nanotechnology and Synchrotron Radiation and

Neuron Facilities, Max-Planck-Insititut für Metalforschung, Stuttgart.

[2] Rapaport, D. C. (2004), “The art of molecular dynamic simulation”. (2nd ed), Cambridge

University press, United Kingdom.

[3] Dismukes, J., Ekstrom, L., Steigmeier, E., Kudman, I. and Beers, D. (1964), "Thermal and

Electrical Properties of Heavily Doped Ge-Si Alloys up to 1300° K", Journal of Applied Physics,

vol. 35, no. 10, pp. 2899-2907.

[4] Chen, G., Dresselhaus, M., Dresselhaus, G., Fleurial, J. and Caillat, T. (2003), "Recent

developments in thermoelectric materials", International Materials Reviews, vol. 48, no. 1, pp.

45-66.

[5] Ju, Y. and Goodson, K. (1999), "Phonon scattering in silicon films with thickness of order 100

nm", Applied Physics Letters, vol. 74, no. 20, pp. 3005-3007.

[6] Love, M. S., & Anderson, A. C. (1990), “Estimate of phonon thermal transport in amorphous

materials above 50 K”. Physical review. B, Condensed matter, vol. 42, no.3, pp. 1845-1847.

[7] Escobar, R. A. and Amon, C. H. (2007), "Influence of phonon dispersion on transient thermal

response of silicon-on-insulator transistors under self-heating conditions", Journal of heat

transfer, vol. 129, no. 7, pp. 790-797.

[8] Landry E., S. (2009), “Thermal Transport by Phonons Across Semiconductor Interfaces, Thin

Films, and Superlattices”. ( Ph.D. thesis). Department of Mechanical Engineering, Carnegie

Mellon University.

133



[9] Duda, John C., Pamela M. Norris, and Patrick E. Hopkins. (2011), "On the Linear

Temperature Dependence of Phonon Thermal Boundary Conductance in the Classical Limit."

Journal of Heat Transfer, vol.133, no. 7, pp. 074501.

[10] Tully, J. C. (1980), “Dynamics of gas–surface interactions: 3D generalized Langevin model

applied to fcc and bcc surfaces”. The Journal of Chemical Physics, vol 73, pp. 1975.

[11] Suzuki, T. O., D (2000), "Intermolecular energy transfer at a solid-liquid interface",

Microscale Thermophysical Engineering, vol. 4, no. 3, pp. 189-196.

[12] Huxtable, S. T., Cahill, D. G., Shenogin, S., Xue, L., Ozisik, R., Barone, P., Usrey, M.,

Strano, M. S., Siddons, G. and Shim, M. (2003), "Interfacial heat flow in carbon nanotube

suspensions", Nature materials, vol. 2, no. 11, pp. 731-734.

[13] Xue, L., Keblinski, P., Phillpot, S., Choi, S. and Eastman, J. (2003), "Two regimes of

thermal resistance at a liquid–solid interface", The Journal of chemical physics, vol. 118, pp. 337.

[14] Venkatasubramanian, R., Siivola, E., Colpitts, T. and O’quinn, B. (2001), "Thin-film

thermoelectric devices with high room-temperature figures of merit", Nature, vol. 413, no. 6856,

pp. 597-602.

[15] Sisan, T. B., & Lichter, S. (2011). The end of nanochannels. Microfluidics and nanofluidics,

11(6), 787-791.

[16] Preston, G. M., Carroll, T. P., Guggino, W. B., & Agre, P. (1992), “Appearance of water

channels in Xenopus oocytes expressing red cell CHIP28 protein”. Science, vol. 256, no.5055, pp.

385-387.

[17] Hummer, G., Rasaiah, J. C., & Noworyta, J. P. (2001), “Water conduction through the

hydrophobic channel of a carbon nanotube”. Nature, vol.414, no.6860, pp.188-190.

[18] Thomas, J. A., & McGaughey, A. J. (2008), “Reassessing fast water transport through

carbon nanotubes”. Nano letters, vol.8, no.9, pp.2788-2793.

[19] Holt, J. K., Park, H. G., Wang, Y., Stadermann, M., Artyukhin, A. B., Grigoropoulos, C. P.,

... & Bakajin, O. (2006), “Fast mass transport through sub-2-nanometer carbon nanotubes”.

Science, vol.312, no.5776, pp.1034-1037.

134



[20] Kalweit, M. (2008), “Molecular Modelling of meso and Nanoscale Dynamics”.(Phd Aerospace

Sciences thesis), School of Engineering, Cranfield.

[21] Kim, B. H., Beskok, A. and Cagin, T. (2008), "Thermal interactions in nanoscale fluid flow:

molecular dynamics simulations with solid–liquid interfaces", Microfluidics and Nanofluidics, vol.

5, no. 4, pp. 551-559.

[22] Murad, S. and Puri, I. K. (2008), "Thermal transport across nanoscale solid-fluid interfaces",

Applied Physics Letters, vol. 92, no. 13, pp. 133105-133105-3.

[23] Murad, S. and Puri, I. K. (2008), "Molecular simulation of thermal transport across

hydrophilic interfaces", Chemical Physics Letters, vol. 467, no. 1, pp. 110-113.

[24] Murad, S. and Puri, I. K. (2009), "Thermal transport through a fluid–solid interface",

Chemical Physics Letters, vol. 476, no. 4, pp. 267-270

[25] Carlborg, C. F., Shiomi, J. and Maruyama, S. (2008), "Thermal boundary resistance

between single-walled carbon nanotubes and surrounding matrices", Physical review B, vol. 78,

no. 20, pp. 205406.

[26] Konatham, D. and Striolo, A. (2009), "Thermal boundary resistance at the graphene-oil

interface", Applied Physics Letters, vol. 95, no. 16, pp. 163105-163105-3.

[27] Shenogina, N., Godawat, R., Keblinski, P. and Garde, S. (2009), "How wetting and adhesion

affect thermal conductance of a range of hydrophobic to hydrophilic aqueous interfaces", Physical

Review Letters, vol. 102, no. 15, pp. 156101.

[28] Ge, Z., Cahill, D. G. and Braun, P. V. (2006), "Thermal conductance of hydrophilic and

hydrophobic interfaces", Physical Review Letters, vol. 96, no. 18, pp. 186101.

[29] Liu, Q., Jiang, P. and Xiang, H. (2010), "Molecular dynamics simulation of thermal

conductivity of an argon liquid layer confined in nanospace", Molecular Simulation, vol. 36, no.

13, pp. 1080-1085.

[30] Xue, L., Keblinski, P., Phillpot, S., Choi, S. and Eastman, J. (2004), "Effect of liquid

layering at the liquid–solid interface on thermal transport", International Journal of Heat and

Mass Transfer, vol. 47, no. 19, pp. 4277-4284.

135



[31] Liang, Z. and Tsai, H. (2011), "Thermal conductivity of interfacial layers in nanofluids",

Physical Review E, vol. 83, no. 4, pp. 041602.

[32] Klein, M. L., & Shinoda, W. (2008). “Large-scale molecular dynamics simulations of self-

assembling systems”. Science, vol. 321, no. 5890, pp. 798-800.

[33] Peter, Brian J., Helen M. Kent, Ian G. Mills, Yvonne Vallis, P. Jonathan G. Butler, Philip R.

Evans, and Harvey T. McMahon. (2004) "BAR domains as sensors of membrane curvature: the

amphiphysin BAR structure." Science vol. 303, no. 5657, PP. 495-499.

[34] Markvoort, A., Hilbers, P. and Nedea, S. (2005), "Molecular dynamics study of the influence of

wall-gas interactions on heat flow in nanochannels", Physical review E, vol. 71, no. 6, pp. 066702.

[35] Ohara, T. and Torii, D. (2005), "Molecular dynamics study of thermal phenomena in an

ultrathin liquid film sheared between solid surfaces: The influence of the crystal plane on energy

and momentum transfer at solid-liquid interfaces", Journal of Chemical Physics, vol. 122, no. 21,

pp. 214717-214717.

[36] Hu, M., Michel, B. and Poulikakos, D. (2011), "Surface functionalization mechanisms of en-

hancing heat transfer at solid-liquid interfaces", Journal of Heat Transfer, vol. 133, pp. 082401-

082401

[37] Yamamoto, K., Takeuchi, H. and Hyakutake, T. (2006), "Characteristics of reflected gas

molecules at a solid surface", Physics of Fluids, vol. 18, pp. 046103.

[38] Cieplak, M., Koplik, J. and Banavar, J. R. (2001), "Boundary conditions at a fluid-solid

interface", Physical Review Letters, vol. 86, no. 5, pp. 803-806.

[39] Dadzie, S. K. and Méolans, J. G. (2004), "Anisotropic scattering kernel: generalized and

modified Maxwell boundary conditions", Journal of Mathematical Physics, vol. 45, pp. 1804.

[40] Cercignani, C. and Lampis, M. (1971), "Kinetic models for gas-surface interactions", Transport

Theory and Statistical Physics, vol. 1, no. 2, pp. 101-114.

[41] Lord, R. (1991), "Some extensions to the Cercignani–Lampis gas–surface scattering kernel",

Physics of Fluids A: Fluid Dynamics, vol. 3, pp. 706.

[42] Nguyen, T. X., Cohaut, N., Bae, J. and Bhatia, S. K. (2008), "New method for atomistic

modeling of the microstructure of activated carbons using hybrid reverse Monte Carlo simulation",

Langmuir, vol. 24, no. 15, pp. 7912-7922.

[43] Thompson, P. A. and Robbins, M. O. (1990), "Shear flow near solids: Epitaxial order and flow

boundary conditions", Physical Review A, vol. 41, no. 12, pp. 6830.

[44] Koplik, J., Banavar, J. R. and Willemsen, J. F. (1989), "Molecular dynamics of fluid flow at

solid surfaces", Physics of Fluids A: Fluid Dynamics, vol. 1, pp. 781.

136



[45] Neto, C., Evans, D. R., Bonaccurso, E., Butt, H. and Craig, V. S. (2005), "Boundary slip in

Newtonian liquids: a review of experimental studies", Reports on Progress in Physics, vol. 68, no.

12, pp. 2859.

[46] Bocquet, L. and Barrat, J. (2007), "Flow boundary conditions from nano-to micro-scales",

Soft Matter, vol. 3, no. 6, pp. 685-693.

[47] Arab, M., F. Picaud, M. Devel, C. Ramseyer, and C. Girardet. (2004), "Molecular selectivity

due to adsorption properties in nanotubes." Physical Review B, vol. 69, no. 16, pp. 165401.

[48] Drikakis, D., & Asproulis, N. (2010), “Multi-scale computational modelling of flow and heat

transfer. International Journal of Numerical Methods for Heat & Fluid Flow”, vol. 20, no.5, pp.

517-528.

[49] Asproulis, N., & Drikakis, D. (2013), “An artificial neural network-based multiscale method

for hybrid atomistic-continuum simulations”. Microfluidics and nanofluidics, vol.15, no. 4, pp.

559-574.

[50] Yang, W., Wei, D., Jin, X., & Liao, Q. (2007), “Molecular dynamics simulation of the formation

of polymer networks. Macromolecular theory and simulations”, vol.16, no.5, pp. 548-556.

[51] Asproulis, N., & Drikakis, D. (2011), “Wall-mass effects on hydrodynamic boundary slip”.

Physical Review E, vol.84, no.3, pp. 031504.

[52] Espinosa, S., Asproulis, N., & Drikakis, D. (2014), “Chemotherapy efficiency increase via

shock wave interaction with biological membranes: a molecular dynamics study”. Microfluidics

and Nanofluidics, vol.16, no. 4, pp. 613-622.

[53] McGaughey, A. J., & Kaviany, M. (2004), “Quantitative validation of the Boltzmann transport

equation phonon thermal conductivity model under the single-mode relaxation time approxima-

tion”. Physical Review B, vol.69, no.9, pp. 094303.

[54] Barrat, J. L., & Chiaruttini, F. (2003), “Kapitza resistance at the liquid—solid interface”.

Molecular Physics, vol.101, no.11, pp. 1605-1610.

[55] Kim, B. (2012), “Thermal resistance at a liquid–solid interface dependent on the ratio of

thermal oscillation frequencies”. Chemical Physics Letters, vol.554, pp. 77-81.

[56] Katok, A., & Hasselblatt, B. (1995), “Introduction to the modern theory of dynamical systems”.

Cambridge, Cambridge.

[57] Khinchin, A. I. (1949), “Mathematical foundations of statistical mechanics”. Courier Dover

Publications.

[58] Dettmann, C. P., & Cohen, E. G. D. (2000), “Microscopic chaos and diffusion. Journal of

Statistical Physics”, vol.101, no.3-4, pp.775-817.

137



[59] Cecconi, F., Cencini, M., & Vulpiani, A. (2007), “Transport properties of chaotic and non-

chaotic many particle systems. Journal of Statistical Mechanics: Theory and Experiment”, vol.2007,

no.12, P12001.

[60] Bernardi, Stefano, et al. (2012), "Ergodicity of a single particle confined in a nanopore."

Journal of Statistical Physics, vol.148, no.6, pp. 1156-1169.

[61] Donev, Aleksandar, Salvatore Torquato, and Frank H. Stillinger. (2005), "Pair correlation

function characteristics of nearly jammed disordered and ordered hard-sphere packings." Physical

Review E, vol. 71, no. 1, pp. 011105.

[62] Kalyuzhnyi, Yu V., S. T. Cui, P. T. Cummings, and H. D. Cochran. (1999), "Distribution

functions of a simple fluid under shear: Low shear rates." Physical Review E, vol. 60, no. 2, pp.

1716.

[63] Evans, D. J., & Morriss, G. P. (2007), “Statistical mechanics of nonequilibrium liquids”. Anu

E Press.

[64] Zhao, H. and Freund, J. (2004), "Lattice-dynamical calculation of phonon scattering at ideal

Si–Ge interfaces", Journal of Applied Physics, vol. 97, no. 2, pp. 024903.

[65] Wang, J. and Wang, J. (2007), "Characteristics of phonon transmission across epitaxial in-

terfaces: a lattice dynamic study", Journal of Physics: Condensed Matter, vol. 19, no. 23, pp.

236211.

[66] Pettersson, S. and Mahan, G. (1990), "Theory of the thermal boundary resistance between

dissimilar lattices", Physical Review B, vol. 42, no. 12, pp. 7386.

[67] Kimmer, C., Aubry, S., Skye, A. and Schelling, P. K. (2007), "Scattering of phonons from a

high-energy grain boundary in silicon: Dependence on angle of incidence", Physical Review B, vol.

75, no. 14, pp. 144105.

[68] Nan, Ce-Wen, and R. Birringer. (1998), "Determining the Kapitza resistance and the thermal

conductivity of polycrystals: A simple model." Physical Review B, vol. 57, no.14, pp. 8264.

[69] Simons, S. (1974), "On the thermal contact resistance between insulators", Journal of Physics

C: Solid State Physics, vol. 7, no. 22, pp. 4048.

[70] Chen, G. (2003), "Diffusion–transmission interface condition for electron and phonon trans-

port", Applied Physics Letters, vol. 82, no. 6, pp. 991-993.

[71] Hamilton, J. D. (1994). “Time series analysis”, (Vol. 2). Princeton: Princeton university press.

[72] Wang, J. (2010), “Key issues of classical molecular dynamics simulation”. Lambert Academic

Publishing, Berlin.

[73] Glattli, A; Daura,X; VanGunstrene, F.W.(2002), “Derivation of an improved simple charge

model for liquid water: SPC/A &SPC/L”. Journal of chemical Physics. Vol. 116. No.22. pp.9812-

138



9827.

[74] Walser, R., Mark, E and van Gunsteren, W.F. (2000), “Comparison of different schemes to

treat long-range electrostatic interactions in molecular dynamics simulations of a protein crystal”.

J.med.chem., Vol.44, pp.1530-1539.

[75] Levitt,M; Hirshberg,M; Sharon,R; Laidig, K.W; Dagget, V. (1997), “Calibration and Testing of

a water model for simulation of the molecular dynamics of protiens and nucleic acids in solution”.

Journal of Phys.Chem B, Vol. 101, No.25.

[76] Mark, P and Nilsson, L. (2001), “Structure and dynamics of the TIP3P,SPC and SPC/E water

models at 298K. J.Phys.Chem.A, Vol.105, No.43, pp.9954-9959.

[77] Mahoney, W. M and Jorgensen, L.M. (2001), “Quantum, intramolecular flexibility, and po-

larizability effects on the reproduction of the density anomaly of liquid water by simple potential

functions ”. J.Chem.Phys., Vol.115, No.23, pp.10758-10768.

[78] Takeuchi, H. (2008), “Development of an efficient geometry optimization method for water

clusters”. J.Chem.Inf.model. Vol.48, No. 11, pp.2226-2233.

[79] Van der Spoel,D., Van Maaren, P.J and Berendsen, J.C. (1998), “A systematic study of water

models for molecular simulation: Derivation of water models optimized for use with a reaction

field”. Journal of chemical physics Vol.108. No. 24. pp.10220-10230.

[80] Falcioni, M., Isola, S., & Vulpiani, A. (1990), “Correlation functions and relaxation properties

in chaotic dynamics and statistical mechanics” . Physics Letters A, vol.144, no.6, pp. 341-346.

[81] Gan, H. H., & Eu, B. C. (1992), “Theory of the nonequilibrium structure of dense simple fluids:

Effects of shearing”. Physical Review A, vol.45, no.6, pp. 3670.

[82] Lue, L. and Evans, D. J. (2000), "Configurational temperature for systems with constraints",

Physical Review E, vol. 62, no. 4, pp. 4764.

[83] Delhommelle, J. and Evans, D. J. (2001), "Configurational temperature thermostat for fluids

undergoing shear flow: application to liquid chlorine", Molecular Physics, vol. 99, no. 21, pp.

1825-1829.Delhommelle, J., [84] Petravic, J. and Evans, D. J. (2003), "Reexamination of string

phase and shear thickening in simple fluids", Physical Review E, vol. 68, no. 3, pp. 031201.

[85] Braga, C. and Travis, K. P. (2006), "Configurational constant pressure molecular dynamics",

The Journal of chemical physics, vol. 124, pp. 104102.

[86] Nosé, S. (1984), "A molecular dynamics method for simulations in the canonical ensemble",

Molecular Physics, vol. 52, no. 2, pp. 255-268.

[87] Hoover, W. G. (1985), "Canonical dynamics: Equilibrium phase-space distributions", Physical

Review A, vol. 31, no. 3, pp. 1695.

139



[88] Stoner, R., Maris, H., Anthony, T. and Banholzer, W. (1992), "Measurements of the Kapitza

conductance between diamond and several metals", Physical Review Letters, vol. 68, no. 10, pp.

1563.

[89] Brooks Iii, C. L., and Martin Karplus. (1983), "Deformable stochastic boundaries in molecular

dynamics." The Journal of chemical physics, vol. 79, no. 12, pp. 6312-6325.

[90] Barisik, M. and Beskok, A. (2012), "Boundary treatment effects on molecular dynamics sim-

ulations of interface thermal resistance", Journal of Computational Physics, vol. 231, no. 23, pp.

7881-7892.

[91] Shi, Z., Barisik, M. and Beskok, A. (2012), "Molecular dynamics modeling of thermal resistance

at argon-graphite and argon-silver interfaces", International Journal of Thermal Sciences, vol. 59,

pp. 29-37.

[92] Noid, W. G., Liu, P., Wang, Y., Chu, J. W., Ayton, G. S., Izvekov, S., ... & Voth, G. A.

(2008), “The multiscale coarse-graining method. II. Numerical implementation for coarse-grained

molecular models”. The Journal of chemical physics, vol.128, no.24, pp. 244115.

[93] Maroo, S. C. and Chung, J. (2010), "A novel fluid–wall heat transfer model for molecular

dynamics simulations", Journal of Nanoparticle Research, vol. 12, no. 5, pp. 1913-1924.

[94] Pollack, Gerald L. (1969), "Kapitza resistance", Reviews of Modern Physics, vol. 41, no. 1,

pp. 48.

[95] Callaway, J. (1959), "Model for lattice thermal conductivity at low temperatures", Physical

Review, vol. 113, no. 4, pp. 1046.

[96] Merabia, S. and Termentzidis, K. (2012), "Kapitza thermal conductance at the interface

between Lennard-Jones crystals using non-equilibrium molecular dynamics simulations", Journal

of Physics: Conference Series, Vol. 395, IOP Publishing, pp. 012115.

[97] Devpura, Patrick E. Phelan, Ravi S. Prasher, Amit. (2001), "Size effects on the thermal

conductivity of polymers laden with highly conductive filler particles." Microscale Thermophysical

Engineering, vol. 5, no. 3, pp. 177-189.

[98] Ruijie, Z., Yunfei, C. and Meihui, L. (2009), "A Modified Thermal Boundary Resistance Model

for FCC Structures".

[99] Swartz, E. T. and Pohl, R. O. (1989), "Thermal boundary resistance", Reviews of Modern

Physics, vol. 61, no. 3, pp. 605.

[100] Chalopin, Y. and Volz, S. (2013), "A microscopic formulation of the phonon transmission at

the nanoscale", Applied Physics Letters, vol. 103, no. 5, pp. 051602.

[101] Young, D. and Maris, H. (1989), "Lattice-dynamical calculation of the Kapitza resistance

between fcc lattices", Physical review B, vol. 40, no. 6, pp. 3685.

140



[102] Hopkins, P. E., Norris, P. M. and Duda, J. C. (2011), "Anharmonic phonon interactions

at interfaces and contributions to thermal boundary conductance", Journal of Heat Transfer, vol.

133, no. 6, pp. 062401.

[103] Li, B., Lan, J. and Wang, L. (2005), "Interface thermal resistance between dissimilar anhar-

monic lattices", Physical Review Letters, vol. 95, no. 10, pp. 104302.

[104] Plimpton, S. (1995), "Fast parallel algorithms for short-range molecular dynamics", Journal

of Computational Physics, vol. 117, no. 1, pp. 1-19.

[105] Tuckerman, D. B., & Pease, R. F. W. (1981), “High-performance heat sinking for VLSI”.

Electron Device Letters, IEEE, vol.2, no.5, pp. 126-129.

[106] Eastman, J. A., Choi, S. U. S., Li, S., Yu, W., & Thompson, L. J. (2001), “Anomalously

increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper

nanoparticles”. Applied Physics Letters, vol. 78, no.6, pp. 718-720.

[107] Maruyama, Shigeo, and Tatsuto Kimura. (1999), "A study on thermal resistance over a

solid-liquid interface by the molecular dynamics method." Therm. Sci. Eng, vol.7. no.1, pp.

63-68.

[108] Maroo, Shalabh C., and J. N. Chung. (2008), "Molecular dynamic simulation of platinum

heater and associated nano-scale liquid argon film evaporation and colloidal adsorption character-

istics." Journal of colloid and interface science, vol. 328, no.1, pp. 134-146.

[109] Nedea, S. V., et al. (2009), "Heat transfer predictions for micro-/nanochannels at the atom-

istic level using combined molecular dynamics and Monte Carlo techniques." Journal of Heat

Transfer, vol. 131, no.3, pp. 033104.

[110] Pham, An Truong, Murat Barisik, and Bohung Kim. (2014), "Molecular dynamics simulations

of Kapitza length for argon-silicon and water-silicon interfaces." International journal of precision

engineering and manufacturing, vol.15, no.2, pp. 323-329.

[111] Bernardi, S., Todd, B. and Searles, D. J. (2010), "Thermostating highly confined fluids", The

Journal of chemical physics, vol. 132, no. 24, pp. 244706.

[112] Asproulis, Nikolaos, and Dimitris Drikakis, (2010) "Boundary slip dependency on surface

stiffness." Physical Review E, vol 81, no. 6, pp. 061503.

[113] Chen, Y., Li, D., Yang, J., Wu, Y., Lukes, J. R. and Majumdar, A. (2004), "Molecular

dynamics study of the lattice thermal conductivity of Kr/Ar superlattice nanowires", Physica B:

Condensed Matter, vol. 349, no. 1, pp. 270-280.

[114] Stevens, R. J., Zhigilei, L. V. and Norris, P. M. (2007), "Effects of temperature and disorder

on thermal boundary conductance at solid–solid interfaces: Nonequilibrium molecular dynamics

simulations", International Journal of Heat and Mass Transfer, vol. 50, no. 19, pp. 3977-3989.

141



[115] Lyeo, H. and Cahill, D. G. (2006), "Thermal conductance of interfaces between highly dis-

similar materials", Physical Review B, vol. 73, no. 14, pp. 144301.

[116] Kim, Bo Hung. (2009), "Molecular dynamics simulations of heat transfer in nanoscale liquid

films." PhD diss., Texas A&M University.

[117] Priezjev, N. V. (2007), "Effect of surface roughness on rate-dependent slip in simple fluids",

The Journal of chemical physics, vol. 127, no. 14, pp. 144708.

[118] Barrat, J. and Hansen, J. (2003), “Basic concepts for simple and complex liquids”, Cambridge

University Press.

[119] Maiti, A., Mahan, G. and Pantelides, S. (1997), "Dynamical simulations of nonequilibrium

processes—heat flow and the kapitza resistance across grain boundaries", Solid State Communica-

tions, vol. 102, no. 7, pp. 517-521.

[120] Dames, C. and Chen, G. (2003), "Theoretical phonon thermal conductivity of Si/Ge super-

lattice nanowires", Journal of Applied Physics, vol. 95, no. 2, pp. 682-693.

[121] Sofos, F. D., Karakasidis, T. E. and Liakopoulos, A. (2009), "Effects of wall roughness on

flow in nanochannels", Physical Review E, vol. 79, no. 2, pp. 026305.

[122] Travis, K. P., & Gubbins, K. E. (2000), “Poiseuille flow of Lennard-Jones fluids in narrow slit

pores”. The Journal of Chemical Physics, vol.112, no.4, pp. 1984-1994.

[123] Kalyuzhnyi, Yu V., S. T. Cui, and H. D. Cochran. (2000), "Distribution functions of a simple

fluid under shear. II. High shear rates." Physical Review E, vol. 63, no. 1, pp. 011209.

[124] Cui, S. T., Cummings, P. T., & Cochran, H. D. (2001), “Molecular simulation of the transition

from liquidlike to solidlike behavior in complex fluids confined to nanoscale gaps”. The Journal of

Chemical Physics, vol.114, no.16, pp. 7189-7195.

[125] Li, Jie, and Clement Kleinstreuer. (2008), "Thermal performance of nanofluid flow in mi-

crochannels." International Journal of Heat and Fluid Flow, vol.29, no. 4, pp. 1221-1232.

[126] Le, Y., Chen, J. and Wang, W. (2004), "Study on the silica hollow spheres by experiment

and molecular simulation", Applied Surface Science, vol. 230, no. 1, pp. 319-326.

[127] Snyder, N. (1970), "Heat transport through helium II: Kapitza conductance", Cryogenics,

vol. 10, no. 2, pp. 89-95.

[128] Schelling, P. K., Phillpot, S. R. and Keblinski, P. (2002), "Comparison of atomic-level sim-

ulation methods for computing thermal conductivity", Physical Review B, vol. 65, no. 14, pp.

144306.

[129] He, Yuping, and Giulia Galli. (2012), "Microscopic origin of the reduced thermal conductivity

of silicon nanowires." Physical review letters, vol.108, no. 21, pp. 215901.

142



[130] Van den Akker, E. A. T., A. J. H. Frijns, A. A. van Steenhoven, and P. Hilbers. (2008),

"Heat transfer between walls and fluids: MD simulations with vibrating walls." In Proceedings of

the 1st European Conference on Microfluidics (MicroFlu’08).

143



2

2This page is intentionally left blank

144



Appendix A

A.1 Derivation of Equations For particle and Wall Motion.

The potential energy describes the interaction between two atoms or molecules in molecular dy-

namics and the potential energy that has a negative gradient which gives the force and is expressed

[130] as

F =
∂v

∂r
= −∇r(V ). (7.2.1)

The differential equation of particle position is expressed as

∂2x

∂t2
=
−v(x− y)

m
, (7.2.2)

where m is the mass particle mass, v the potential energy. The wall motion is obtained by the

force between the particle and wall including the spring. With spring constant kw, the differential

equation describing the wall position is given as

∂2y

∂t2
=
v

′
(x− y)− kwy

M
, (7.2.3)

where m - the mass of wall part exposed to interaction. The second term on the right describes

the spring-wall interaction. Initial conditions are expressed as

x[0]x0, x
′[0] = v,

kw
2
y[0]2 +

M

2
y′[0] = Ewy[0]

√
2Ew
kw

cos(φ), (7.2.4)

where φ describes the initial phase of wall 0≤ φ < 2π. This equation solves numerically in 1-D.

MD gives the solution for the position, energy and velocity of the solid and particles interacting.

If a particle contacts with a non vibrating wall, energy is not exchanged, the outgoing velocities

will be equal to the incoming velocity. A situation where particles hit a wall that is vibrating, the

outgoing velocity becomes smaller, showing an exchange of energy from the particle wall.
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A.2 Exchange of Energy

Three dimensionless parameters can be derived from dimensional analysis

δ =

√
2Ew
kwσ2

, (7.2.5)

and,

λ =
1
2mv

2
0 + v(x0)

kBTw
, (7.2.6)

also,

µ =
M

m
, (7.2.7)

where δ - dimensionless wall amplitude directly relates to temperature. λ the ratio of energy of

wall and particles; µ is mass ratio of particles and wall part involved in interaction. The total

energy of particles both potential and kinetic relates to the three dimensionless parameters and is

expressed [130] as

ET = ET (t, δ, λ, µ, φ), (7.2.8)

where δ, λ, and µ, are three dimensionless parameters,φ is the initial phase of wall and t is the

time.

Friction at the wall-fluid interface is a very common phenomenon in contact surfaces and the

acoustic impedance is sensitive to friction at the surface of the wall. Contacting and interfacial

friction gives a resonant shift of frequency f0 and damping rate shift D. D and f0 are expressed as

f0 =
1

2d

√
c

ρ
; f0 =

1

2π

√
k

m
, (7.2.9)

D = −∆E

2Ex
, (7.2.10)

where ρ, c, and d are density, stiffness and thickness, E is mechanical energy during x-vibration

cycle. The friction force for the wall-fluid interface is given as

σxz = −η̄(v0 − u0), (7.2.11)

where η̄- frictional coefficient, v0 and u0 - shear velocities of fluid and wall at interface, the term
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∂vs
∂z (v0 − u0) is the velocity slip. For big friction coefficient, the slip velocity is negligible, which is

the same as no-slip condition. The frequency shift and the mass of particles are related with the

assumption that the mass is infinitely stiff and can be expressed as

∆f =
−2f0√
cρ

∆m, (7.2.12)

where ∆f is the frequency shift, ∆m is the change in mass and f0 the resonant frequency of system

that is not loaded. When there is a fluid-wall interface the energy of vibration is damped into the

fluid from the wall, the damping is due to the transmission of phonons across the wall-fuid interface.

For continuum system the wave propagation can be solved by determining (∆D) damping factor

change and (∆f) shift of natural frequency of the wall affecting the fluid. The expression is given

as

∆f = −f
3
2

0

√
ρfη

πρwcw
, (7.2.13)

and

∆D = −2π
∆f

f0
. (7.2.14)

The equation for the solid oscillating wall in the y-direction is expressed as

Mω2 = Mω2
0y + Ft, (7.2.15)

where Ft the frictional force, y the wall displacement and M the mass, of wall. ω0 the resonance

frequency at rest, ω the current frequency the equation becomes

∆ωf = ω − ω0 =
Ft

2Mω0y
. (7.2.16)

The shift of frequency 4f with rate of damping shift ∆D is split into the real and imaginary parts

and is expressed as

4f =
Im(∆ω)

2π
, (7.2.17)

and

∆D =
Re(∆ω)

f0
. (7.2.18)

Boundary conditions that can consider inertia of density distribution in the 1st layer of fluid and
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Kapitza length models can be integrated into the equations which are expressed as

∆f

f0
= − 1

2z

√
ρfηdω

2
, (7.2.19)

and

∆D

2π
=

1

2z

√
ρfηdω

2
, (7.2.20)

with the ratio of frequency shift ∆f
f0

with daamping shift ∆D
2π expressed as

∆D

2π
−
∣∣∣∣∆ff0

∣∣∣∣ =
1

πz

√
ρfηdω

2
. (7.2.21)

These resonators can be divided into the spring model and shear wave model.

The spring mode is expressed as

z =
√
km, (7.2.22)

and

f0 =
1

2π

√
k

m
, (7.2.23)

and

∆f

f0
=
−1

2z

√
ρfηfω

2
, (7.2.24)

gives

∆D = −2π
∆f

f0
, (7.2.25)

the shear-wave model is expressed as

z =
√
cρ, (7.2.26)

and

f0 =
1

2d

√
c

ρ
, (7.2.27)

and

∆f

f0
=

1

πz

√
ρfηfω

2
, (7.2.28)
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gives

∆D = −2π
∆f

f0
, (7.2.29)

where Z - the impedance, f0 the resonant frequency, ∆f the frequency shift, ∆D the rate of

damping, c the modulus(shear), ρ density, ηf viscosity of fluid, k the spring constant, m the mass

of solid and ω the angular frequency.
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Appendix B

B.1 LAMMPS CODE FOR NANOCHANNEL

dimension 3

boundary p s p

atom_style atomic neighbor 0.3 bin neigh_modify delay 5

# create geometry

#lattice fcc 4.0 orient x 0 -1 1 orient y 1 1 1 orient z -2 1 1 #region box block 0 12.0 0 20.0 0

4.0 #units box

lattice fcc 4.0 region box block 0 16.83 0 23.5 0 17.007 #units box

create_box 2 box

#regions

region 1 block INF INF 0.0 1.0 INF INF #units box

region 2 block 0.2 16.5 1.5 22.0 0.2 17.0 #units box

region 3 block INF INF 22.5 23.5 INF INF #units box

region 1a block INF INF 0.0 0.5 INF INF #units box

region 1b block INF INF 0.5 1.0 INF INF #units box

region 1c block INF INF 0.5 1.0 INF INF #units box

3c block INF INF 23.0 23.5 INF INF #units box

#create_atoms

#lattice fcc 4.0 orient x 0 -1 1 orient y 1 1 1 orient z -2 1 1

lattice custom 4.0 a1 0.707106 0 0 a2 0.353553 0.577305 0.61237343 a3 0.353553 0 0.61237343

basis 0 0 0 # sosto

create_atoms 1 region 1

create_atoms 1 region 3

lattice fcc 0.81 create_atoms 2 region 2

mass 1 1.0
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mass 2 1.0

group lower region 1

group upper region 3

group lower1 region 1a

group upper3 region 3c

# LJ potentials

pair_style hybrid lj/cut 2.2

pair_coeff 1 1 none # wall-wall

pair_coeff 2 2 lj/cut 1.0 1.0 2.2 # fluid-fluid

pair_coeff 1 2 lj/cut 0.2 1.0 2.2 # wall-fluid

compute mobile all temp velocity all create 1.0 482748 temp mobile

compute newtemp flow temp/partial 0 0 1

fix 1 all nve

fix templwal11 lower1 temp/rescale 10 1.2 1.2 0.02 1.0 fix templwal12 lower2 temp/rescale 10

1.2 1.2 0.02 1.0

fix templwal2b2 upper2 temp/rescale 10 1.3 1.3 0.02 1.0 fix templwal3b2 upper3 temp/rescale

10 1.3 1.3 0.02 1.0

compute ke flow ke/atom

variable temp atom c_ke/1.5

compute 3d flow temp

thermo 50000

#Run

timestep 0.001

thermo 500000

run 40000000

fix c1an flow ave/spatial 1 40000000 40000000 y lower 0.025 density/number vy v_temp units

reduced file dens.profile run 40000000
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B.2 C++ CODES FOR THERMAL WALL MODEL

#include "stdlib.h"

#include "string.h"

#include "fix_disp_wall.h"

#include "atom.h"

#include "domain.h"

#include "comm.h"

#include "error.h"

#include "math.h"

#include "update.h"

#include "math.h"

#include "region.h"

#include "force.h"

using namespace LAMMPS_NS;

/* ———————————————————————- */

FixDispWall::FixDispWall(LAMMPS *lmp, int narg, char **arg) : Fix(lmp, narg, arg) {

//if (narg < 3) error->all("Illegal fix freq/wall command");

int *type = atom->type; double *mass = atom->mass; double **v = atom->v; double **x =

atom->x; int *mask = atom->mask; int nlocal = atom->nlocal;

// MPI_Status status; // MPI_Request request; MPI_Comm_rank(world,&me);

nevery =atoi(arg[3]); nprint =atoi(arg[4]); iregion = domain->find_region(arg[5]);

Region *region = domain->regions[iregion];

sizeWall=0; for (int i = 0; i < nlocal; i++) { if(mask[i] & groupbit) { if(region->match(x[i][0],x[i][1],x[i][2]))

{ sizeWall++; } } } velWall= (double *) malloc(nlocal*sizeof(double)); velWall_prev= (dou-

ble *) malloc(nlocal*sizeof(double)); yinit=(double *) malloc(nlocal*sizeof(double)); /* if (size-

Wall!=0) { velWall= (double *) malloc(sizeWall*sizeof(double)); velWall_prev= (double *) mal-

loc(sizeWall*sizeof(double)); //num_freq=(double *) malloc(sizeWall*sizeof(double)); printf("brika

poia exoun proc=%d\n",comm->me); } else //there is a possibility that some proc don’t have

wall particles { velWall= (double *) malloc(2*sizeof(double)); velWall_prev= (double *) mal-

loc(2*sizeof(double)); //num_freq=(double *) malloc(2*sizeof(double)); printf("brika poia den

exoun proc=%d\n",comm->me); } */ for (int i = 0; i < nlocal; i++) // if(mask[i] & groupbit) {

velWall[i]=v[i][1]; velWall_prev[i]=v[i][1]; yinit[i]=x[i][1]; }

if (me==0) pFile = fopen("frequency.txt", "a+"); freqTot=0; dispTot=0;
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MPI_Barrier (world); // printf("bgeno apo constructor\n"); // MPI_Barrier (world);

}

FixDispWall::~FixDispWall() { // printf("Eimai se destructor\n"); if (me == 0) fclose(pFile);

} /* ———————————————————————- */

int FixDispWall::setmask() {

// printf("eimai se set of mask\n"); int mask = 0; mask |= FixConst::END_OF_STEP; //

printf("bgeno apo set of mask\n");

return mask; }

/* void FixFreqWall::setup(int vflag) { printf("eimai se set up\n"); end_of_step(); } */

/* ———————————————————————- */ void FixDispWall::end_of_step()

{

//if(update->ntimestep % nevery != 0) return;

double **x = atom->x; double **v = atom->v; int *mask = atom->mask; int nlocal = atom-

>nlocal; double dtv=update->dt; //double freqTot; int freqTotSum; int sizeWallSum; double

meanfreq; double dispTotSum; double meandisp; double t_collision, lam,t_collision1,cm; int j;

Region *region = domain->regions[iregion];

// printf("exo mpei se end of step proc=%d\n",comm->me); //MPI_Barrier (world);

j=0; //Add the number of sign changes in the y component of the velocity

for (int i = 0; i < nlocal; i++) { if(mask[i] & groupbit) { if(region->match(x[i][0],x[i][1],x[i][2]))

{

//velWall[i]=v[i][1]; if (v[i][1]*velWall_prev[i] < 0) { //num_freq[i]++; freqTot++; dispTot+=fabs(yinit[i]-

x[i][1]); //printf("Coordinates: %f, %f, %f \n", x[i][0], x[i][1], x[i][2]); //printf("Brika kati\n");

//prepei na metrisoume poses fores prostithetai gia na to diairesoume meta ! }

velWall_prev[i]=v[i][1]; } } }

//Write every 10.000 time-steps the averadge number (per atom) of epanalipseon

freqTotSum=0; sizeWallSum=0; MPI_Allreduce(&freqTot,&freqTotSum,1,MPI_INT,MPI_SUM,world);

MPI_Allreduce(&sizeWall,&sizeWallSum,1,MPI_INT,MPI_SUM,world); MPI_Allreduce(&dispTot,&dispTotSum,1,MPI_DOUBLE,MPI_SUM,world);

if (me==0) { meanfreq=freqTotSum / (2*sizeWallSum*nprint*update->dt); meandisp=dispTotSum/(freqTotSum*sizeWallSum);

lam=1/(sqrt(2)*0.81*3.14); cm=sqrt((2.0*force->boltz*1.1)/atom->mass[2]); t_collision=0.5*lam*sqrt(atom-

>mass[2]/(force->boltz*1.1)); t_collision1=(sqrt(3.14)*lam)/(2*cm); fprintf(pFile,"%10d %10d

%5g %5e %10d %5g %5g %5g\n",update->ntimestep, freqTotSum, meanfreq, meandisp, sizeWall-

Sum,t_collision,t_collision1,1/meanfreq); fflush(pFile); } freqTot=0; dispTot=0; }

//MPI_Barrier (world); // printf("Teleiosa apo end of step proc=%d\n",me);

}*/
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B.3 GRAPHS OF VARIOUS EWW AND EWF FOR 10σ

CHANNEL SIZE

ifdef FIX_CLASS

FixStyle(gridanalysis, FixGridAnalysis)

#else

#ifndef LMP_FIX_GRID_ANALYSIS_B_H#define LMP_FIX_GRID_ANALYSIS_B_H

#include "fix.h"

namespace LAMMPS_NS { ///////////////////////////////////////////////////////////////////////////////

// definitions ///////////////////////////////////////////////////////////////////////////////

#define GRIDANALYSIS_MAX_STRING_LEN 128 #define GRIDANALYSIS_NUM_MQS 17

// number of macroscopic quantities #define GRIDANALYSIS_MEM_RESERVE 1000 // mem-

ory reserve for local arrays #define GRIDANALYSIS_MAX_CELL.

/////////////////////////////////////////////////////////////////////////////// // class

FixGridAnalysis ///////////////////////////////////////////////////////////////////////////////

class FixGridAnalysis : public Fix { private: // local types struct TTensor { Memory* memory;

// pointer for memory class int m_size; //total size = res[0]*res[1]*res[2] double* xx, * xy, * xz;

double* yx, * yy, * yz; double* zx, * zy, * zz;

TTensor(Memory* cmemory); ~TTensor(); void AllocMemory(int nsize, char* szField); void

FreeMemory(); void SetZero(); void AddTensor(TTensor& t2); void MulScalar(double f); };

struct TData { Memory* memory; // pointer for memory class

// 3D arrays for the cell values double* num; // number of atoms double* mass; // cell

mass double* numdens; // number density double* dens; // density double* px, * py, * pz; //

translational momentum double* vx, * vy, * vz; // translationel velocity double* lx, * ly, * lz; //

angular momentum double* wx, * wy, * wz; // angular velocity double* ekin_tot; // total kinetic

energy double* ekin_trans; // translational kinetic energy double* ekin_rot; // rotational kinetic

energy double* ekin_int; // internal kinetic energy double* epot; // potential energy double* etot;

// potential energy double* T; // temperature double* P; // pressure TTensor PT; // pressure

tensor

//auxiliary variables TTensor it;// inertia tensor //functions TData(Memory* cmemory); ~TData();

void AllocMemory(int nsize, int* aiMQs); void FreeMemory(); void SetZero(int nsize); //sets ev-

erything to zero }; struct TIndex{int x,y,z;}; struct TIndexCW // index for cell weighting { int

nC; //cell index int nMirror; // bit coding for mirror x:0, y:1, z:2 double f; };

public: // public functions FixGridAnalysis(class LAMMPS *, int, char **); ~FixGridAnaly-
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a) Lower wall b)Upper wall

Figure 7.1: Density Profiles of fluid for pore size = 10σ, mw = 2m, eww = 0.2,eww = 0.4 for various
values of stiffness constant κ.

sis(); int modify_param(int, char **); int setmask(); //void init(); void end_of_step();

private: // private functions void FillAtomCellArray(); void FillAtomCellArray_NGP(); void

FillAtomCellArray_CIC(); inline int GetCellIndex(int I, int J, int K); inline void GetCellIndex-

Inv(int nC, int& I, int& J, int& K); inline void Apply_pbc(double* x_in, double* x_out); void

GetDomainInfo(); inline void GetMirroredPosition(double* xo, double* xm); inline double GetMir-

roredX(double xo); inline double GetMirroredY(double yo); inline double GetMirroredZ(double

zo); void CalcInstantData(); void SumUpAverageData(); void AverageData(); void PrintFile-

Header(); // print grid file header void PrintFileZone(); // print grid file zone void PrintCell-

ValueFileHeader(int nCV); //print cell value file header void PrintCellValues(); // print cell value

file values void PrintMQofCell(TData& data, FILE* pFile, int nI, int nJ, int nK, int nColWidth);

// print the MQs of cell nI, nJ, nK

156



a) Lower wall b)Upper wall

Figure 7.2: Density Profiles of fluid for pore size = 10σ, mw = 2m, eww = 0.2,eww = 0.8 for various
values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 7.3: Density Profiles of fluid for pore size = 10σ, mw = 2m, eww = 0.4,eww = 0.4 for various
values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 7.4: Density Profiles of fluid for pore size = 10σ, mw = 2m, eww = 0.4,eww = 0.6 for various
values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 7.5: Density Profiles of fluid for pore size = 10σ, mw = 2m, eww = 0.6,eww = 0.8 for various
values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 7.6: Density Distribution in Solid Wall for mw = 2m, eww = 0.2,eww = 0.4 for various
values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 7.7: Density Distribution in Solid Wall for mw = 2m, eww = 0.2,eww = 0.6 for various
values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 7.8: Density Distribution in Solid Wall for mw = 2m, eww = 0.2,eww = 0.8 for various
values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 7.9: Density Distribution in Solid Wall for mw = 2m, eww = 0.4,eww = 0.4 for various
values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 7.10: Density Distribution in Solid Wall for mw = 2m, eww = 0.4,eww = 0.6 for various
values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 7.11: Density Distribution in Solid Wall for mw = 2m, eww = 0.4,eww = 0.8 for various
values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 7.12: Density Distribution in Solid Wall for mw = 2m, eww = 0.6,eww = 0.4 for various
values of stiffness constant κ.

a) Lower wall b)Upper wall

Figure 7.13: Density Distribution in Solid Wall for mw = 2m, eww = 0.6,eww = 0.6 for various
values of stiffness constant κ.
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a) Lower wall b)Upper wall

Figure 7.14: Density Distribution in Solid Wall for mw = 2m, eww = 0.6,eww = 0.8 for various
values of stiffness constant κ.

void CalcNum(); void CalcMass(); void CalcNumDens(); void CalcDens(); void CalcTrans-

Mom(); void CalcAngMom(); void CalcTransVel(); void CalcAngVel(); void CalcEkinTot(); void

CalcEkinTrans(); void CalcEkinRot(); void CalcEkinInt(); void CalcEpot(); void CalcEtot(); void

CalcTemp(); void CalcPressureTensor(); void CalcPressure(); void SetVelocity(); void SetTemper-

ature();

private: // private attributes char m_szFileName[GRIDANALYSIS_MAX_STRING_LEN];

// name of the output file char m_szName[GRIDANALYSIS_MAX_STRING_LEN]; // name

of the analysis double m_lo[3]; // lower corner of the grid double m_hi[3]; // upper corner of

the grid int m_res[3]; // resolution of the grid (number of cells in each dimension) int m_nCells;

// total number of cells: m_res[0]*m_res[1]*m_res[2] int m_nType; // which atom type to che

//int m_nEvery; // perform calculation every m_iEvery timestep int m_nAve; // average results

over m_iEvery calculations int m_nPrintGrid; //Flag to switch printing the grid on/off (0->off,

otherwise->on) int m_anMQOut[GRIDANALYSIS_NUM_MQS]; // macroscopic quantities to

put out int m_anMQCalc[GRIDANALYSIS_NUM_MQS]; // macroscopic quantities to calculate

enum TCW {CW_NGP, CW_CIC} m_cw; // atom to grid node weighting scheme

int m_anSizeIndex; // size of the m_aIndex array int m_anSizeIndexStart; // size of the

m_aIndexS array TIndexCW*m_aIndex; // cell index and weighting for each atoms int* m_anIndexStart;

// array with the pointer for each atom to m_aIndex.
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Figure 7.15: Temperature Profiles across nanopore of 10σ, for mw = 2m, eww = 0.2, ewf = 0.4 for
various values of stiffness constant κ.

TData m_IData; // instantaneous data TData m_SData; // summed up data TData m_AData;

// average data

int me,nprocs; // rank of the proces FILE* m_pFile; // pointer to the output file double

m_dCell[3]; // cell size in each dimension struct { double* x; double* y; double* z; }m_CellCentre;

// arrays with positions of the cell centre int m_nNumSum; // over how many times was already

summed up

int m_nNumCellValues; // number of cell value outputs char m_aszCVFileName[GRIDANALYSIS_MAX_CELLVALUES][GRIDANALYSIS_MAX_STRING_LEN];

// names of the cell values files FILE* m_apCVFile[GRIDANALYSIS_MAX_STRING_LEN]; //

file pointer for the files of the cell values TIndex m_aCVIndex[GRIDANALYSIS_MAX_STRING_LEN];

// index of the cell values enum TCVTYPE {CVMEASURE, CVAVERAGE} m_nCVType; //

print cell values based on measurments or averages //domain stuff struct{ double half[3]; // half

position of the simulation box double prd[3]; // length simulation box }m_domain;

struct TVelocity { int nOn; // flag whether to set the velocity double SetVel[3]; // velocity to

be set at every measurement double* dvx, * dvy, * dvz; // translationel velocity } m_Velocity;

struct TTemperature { int nOn; // flag whether to set the temperature correction on double

SetTemp; // temperature to be set at every measurement double* f; // multiplication factor
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Figure 7.16: Temperature Profiles across nanopore of 10σ, for mw = 2m, eww = 0.2, ewf = 0.6 for
various values of stiffness constant κ.
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Figure 7.17: Temperature Profiles across nanopore of 10σ, for mw = 2m, eww = 0.2, ewf = 0.8 for
various values of stiffness constant κ.
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Figure 7.18: Temperature Profiles across nanopore of 10σ, for mw = 2m, eww = 0.4, ewf = 0.4 for
various values of stiffness constant κ.
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Figure 7.19: Temperature Profiles across nanopore of 10σ, for mw = 2m, eww = 0.4, ewf = 0.6 for
various values of stiffness constant κ.

double* cax; // correction sum double* cay; // correction sum double* caz; // correction sum }

m_Temperature;

int m_IgnoreVelocitiy[3]; // flags for each dimension whether to consider the velocity 0.0 in

this direction

};

inline int FixGridAnalysis::GetCellIndex(int I, int J, int K) { return I*m_res[1]*m_res[2] +

J*m_res[2] + K; }

inline void FixGridAnalysis::GetCellIndexInv(int C, int& I, int& J, int& K) { I = C/(m_res[1]*m_res[2]);

int CR = C - I*m_res[1]*m_res[2]; J = CR/m_res[2]; K = CR - J*m_res[2]; };

}//end namespace #endif #endif
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Figure 7.20: Temperature Profiles across nanopore of 10σ, for mw = 2m, eww = 0.4 ewf = 0.8 for
various values of stiffness constant κ.
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Figure 7.21: Temperature Profiles across nanopore of 10σ, for mw = 2m, eww = 0.6, ewf = 0.4 for
various values of stiffness constant κ.
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Figure 7.22: Temperature Profiles across nanopore of 10σ, for mw = 2m, eww = 0.6, ewf = 0.6 for
various values of stiffness constant κ.
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Figure 7.23: Temperature Profiles across nanopore of 10σ, for mw = 2m, eww = 0.6, ewf = 0.8 for
various values of stiffness constant κ.
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