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Abstract

Wire+arc additive manufacturing is a technique suitable for the deposition of large
components; a variety of materials can be processed, including titanium.

For the alloy Ti–6Al–4V, an experimental model based on design of experiment
and linear regression was developed to control layer geometry during deposition.
The modelled variables were wall width and layer height; the former was dependent
on the heat input, and the latter on the heat input as well as on the wire feed
speed to travel speed ratio. Equations enabled the automatic selection of process
parameters based on geometric requirements specific to the part being built. This
could ensure minimisation of production time and material waste.

Additively manufactured parts are affected by distortion and residual stress; the
effect of high pressure rolling on these two, as well as on geometry, microstructure
and mechanical properties was studied. Due to plastic deformation, rolled linear
deposits were characterised by a larger width and smaller height. The variability of
the layer height was reduced, a beneficial effect from a production implementation
viewpoint.

Distortion was less than half in rolled components, a change associated with the
reduction in residual stress which were still tensile in the bottom of the parts and
compressive in their top; however their overall magnitude was smaller than in the
unrolled samples. The contour method showed relatively good agreement with the
neutron diffraction measurements, and although destructive it proved to be a fast
way to characterise residual stress in additively manufactured components.

Microstructurally, the columnar prior β grains configuration observed in all un-
rolled deposits, also affected by a strong texture developed in the building direction,
was changed to equiaxed grains due to the recrystallisation triggered by both the
strain introduced by rolling and the repeated thermal cycles induced by each layer
deposition. The microstructure was overall considerably finer and the texture ran-
domised. A fundamental study was performed to discern the extent of the deformed
zone from the one affected thermally. While the deformed zone could not be iden-
tified precisely, the thermally influenced zone showed a relationship between rolling
load and depth of the recrystallised volume.

Finally, testing of hardness and tensile strength showed superior properties of
rolled specimens than in the unrolled specimens. The mechanical performance of
rolled samples was fully isotropic too.

This project was entirely sponsored by Airbus Group Innovations (formerly
EADS Innovation Works).
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Chapter 1

Literature review

1.1 Introduction

In this literature review all the areas involved in the research project will be thor-

oughly analysed and the “state of the art” of each of them will be presented. A

brief historical description of titanium will introduce a presentation of the main

application of this element (and its alloys) in industry; material properties will be

given; the various microstructures, as well as the processing routes to achieve them,

will be discussed, with the mechanical properties and some of the typical issues af-

fecting Ti–6Al–4V such as oxidation and porosity. Additive manufacturing will be

reviewed in terms of available technologies, compared in general and for Ti–6Al–4V

in particular. Finally, residual stresses will be investigated with specific attention

to the additive manufacturing aspect.

1.2 Titanium and its alloys

Titanium is abundant in the Earth’s crust, representing about 0.6% of it, fourth

in abundance amongst the structural metals (Lütjering and Williams, 2007, p. 2).

Towards the end of the 18th century, an English Reverend named William Gregor

found in the area of Menakine, Cornwall, dark sands containing the FeTiO3 oxide

1
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(ilmenite) (Morri, 2008). Just few years after, Martin Heinrich Klaproth, a German

chemist, isolated and identified TiO2, and gave the newly formed element the name

titanium (Lütjering and Williams, 2007, p. 2).

Before World War II it was impossible to produce titanium that had accept-

able quality in terms of mechanical properties, mainly because of its reactivity with

oxygen and nitrogen. In 1940, Kroll managed to extract high purity titanium by

reducing TiCl4 with magnesium, producing a “sponge” that could eventually be

molten and cast into ingots (Morri, 2008). After 70 years, Kroll’s process is still the

most widely used one (Lütjering and Williams, 2007, p. 2). However, researchers

have tried to explore different processing routes to reduce the cost of titanium pro-

duction. Chen et al. (2000) attempted to reduce pure titanium from TiO2 by using

molten calcium chloride; Shin et al. (2012) used lithium chloride instead. Unfor-

tunately up until now these solutions have failed to meet expectations due to low

throughput and O2 levels above 2000 ppm.

Research into titanium alloying and manufacturing processing began in the early

1950s, leading to the development of the three classes of titanium alloys: α, β and

α + β, to which Ti–6Al–4V belongs, representing the most widely used alloy in

today’s market. In fact, Ti–6Al–4V accounts for 56% of the USA titanium market

(Figure 1.1 from Lütjering and Williams, 2007, p. 7).

Ti-6Al-4V
   (      )

Commercially pure titanium
   (  )

 alloys

+  alloys

+

Figure 1.1: USA titanium market in 1998 (Lütjering and Williams, 2007, p. 7).
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1.2.1 Applications

Titanium and its alloys are characterised by many features that make them attrac-

tive for the aerospace, biomedical, and processing industries. High strength and low

density give an excellent strength-to-weight ratio. In addition, good creep resistance

and great corrosion resistance make it a suitable material for jet engines and air-

frames. In the former, titanium is used for frames, fan disks, tail plugs, manifolds,

compressor spools, booster spools. In the latter, examples are windows frame forg-

ings, exhaust ducts, fin decks, fuselage, empennage, wings, nacelles (Boyer, 1996).

Springs are also an excellent application: titanium density and elasticity modulus

are about 60% and 50% of those of steel, respectively, allowing up to 70% weight

savings (Boyer, 1996).

Titanium is the preferred material also for landing gear support structures. Ac-

cording to Boyer (1996) Boeing 747’s and 757’s landing gear beams would have

initially been made of an aluminium alloy (e.g. 7075). However, to meet the load

requirements the component would have been too large to fit in its envelope in the

airframe, forcing the designers to adopt titanium. Moreover, due to the corrosive

environment of the wheel compartment, low alloy steel cannot be used. This com-

ponent weighs more than 800 kg and still represents one of the largest titanium

forgings (Boyer, 1996). An exceptional example of massive titanium employment is

the Lockheed SR-71 Blackbird reconnaissance airplane (Figure 1.2), in which 95%

of the structural weight is titanium (Boyer, 1996).

The growing utilisation of Carbon-Fibre Reinforced Polymers (CFRPs) within

the aerospace sector has accelerated the use of titanium, because of the corrosion

issues associated with using aluminium and CFRPs together (Boyer, 1996). Carbon

fibres are electrically conductive, and electrochemically noble. Consequently alu-

minium and carbon form a galvanic cell, which enhances the corrosion of the metal

components (Liu et al., 2014). The galvanic compatibility of titanium and carbon

is about one tenth of that of aluminium and carbon, hence titanium is gradually
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Figure 1.2: Lockheed SR-71 Blackbird (Concordebattery.com, 2014).

replacing aluminium components in newly designed aircrafts.

Unsurprisingly titanium production is highly dependent on the aerospace in-

dustry (see also p. 22); in fact, a production minimum over the last fifty years

was achieved in 1994 and corresponded to a drastic reduction in aircraft orders.

To reduce reliance of the aerospace industry and free titanium producers from the

cyclical behaviour of this industry, titanium producers have attempted to diversify

their business and enter other markets, such as the automotive sector (Lütjering

and Williams, 2007, p. 14). Other recent uses of titanium are related to consumer

goods: digital camera frames, golf clubs (Lütjering and Williams, 2007, p. 9), high

performance and luxury watches, in which titanium nitride, with its golden appear-

ance and extreme hardness, is used to coat gold parts (Skagen, 2012). Titanium

is also used in high end racing bicycles as an alternative to CFRPs (Lütjering and

Williams, 2007, p. 9; Van-Nicholas, 2012).

Although the attractiveness of titanium alloys given by the possibility of achiev-

ing large economies of scale, the shift has presented new challenges related to cost.
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When the applications are related to expensive, high performance racing cars, cost

may not be a crucial variable; but if the target market is the one of small, every-day

cars, then a drastic reduction in costs of either the raw material extraction and/or

part manufacturing is definitely necessary (Lütjering and Williams, 2007, p. 359).

In fact, titanium costs approximately ten times more than steel or aluminium to

produce, and is also extremely costly to machine (Boyer, 1996).

1.2.2 Material properties and classification

Relevant properties for Ti–6Al–4V alloy are presented in Table 1.1. Notable are the

high elastic modulus and the low density, which give the highest strength-to-weight

ratio of any metal.

Table 1.1: Ti–6Al–4V relevant properties (Lütjering and Williams, 2007, p. 15).

Melting temperature (◦C) 1670
Elastic modulus (GPa) 115
Yield Stress Level (MPa) 1000
Density (g/cm3) 4.42

Three different categories of titanium alloys exist, and are distinguished on the

basis of the phases that are observed at room temperature: α, α+ β, and β. Morri

(2008) classified titanium alloys as:

• α alloys, if the percentage of β phase is less than five;

• α + β alloys, or near α alloys, if the percentage of β phase is between 10 and

20;

• β alloys, or near β alloys, if the percentage of β phase is larger than 20.

In optical micrography images, normally the α phase appears white, surrounded by

a black matrix, the β phase. From a crystallographic point of view, each of the

two phases is characterised by a different structure: α phase has a Hexagonal Close

Packed (HCP) structure (Figure 1.3a), while the β phase has a Body Centred Cubic

(BCC) one (Figure 1.3b).
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(a) Unit cell of α phase (b) Unit cell of β phase

Figure 1.3: Crystal configurations found in titanium (Lütjering and Williams, 2007,
p.16).

For commercial pure titanium, the β-transus temperature, at which the β to α1

allotropic phase transformation is completed, is 882 ◦C. The β-transus temperature

varies with the quantity and the species of alloying and interstitial elements. If an

alloying element increases the β-transus temperature, it is defined α-stabiliser, while

if it has the opposite effect it is then considered β-stabiliser (Lütjering and Williams,

2007, pp. 34–37). As will be shown later, the ratio between the quantities of the

different phases, and the texture of the α phase, are two of the factors that influence

the mechanical properties. With regards to the elastic properties, an important

factor is the orientation of the HCP crystals of the α phase. Lütjering and Williams

(2007, pp. 16–17) showed that the elastic modulus can vary between 100 GPa to

145 GPa if the stress is perpendicular or parallel to the crystal c-axis, respectively.

Also the shear modulus varies between 34 GPa to 46 GPa for stress in the (0002) and

{1010} planes, or <1120> direction, respectively. With regards to polycrystalline

materials, these properties have a strong dependence on the type and intensity of

the texture.

1Upon cooling
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1.2.3 Ti–6Al–4V microstructure

Ti–6Al–4V is the alloy used for the present investigation, and consequently its mi-

crostructure will be presented in depth. Moreover, many authors in the literature

use different nomenclatures; therefore this review will present the one used for the

rest of the work.

Ti–6Al–4V β-transus temperature is around 1000 ◦C and varies slightly according

to the small variations in the quantities of interstitial elements. The cooling rate

from the β-transus to the room temperature greatly affects the final microstructure.

β phase can transform into α phase in two ways: by a diffusion process, consisting

of nucleation and growth of α phase nuclei in the prior β grains, or by a diffusionless

transformation (Gil et al., 2001).

In the case of Additive Manufacturing (AM) applications, it is usual to manufac-

ture components characterised by different local microstructural features (Baufeld

et al., 2011), due to the complexity and inconsistency of the heat treatments in-

duced in the part by the deposition of each layer. Consequently, the classification of

a specimen into a specific category is inconvenient in reality, for the final structure

is quite varied. Nevertheless, understanding the mechanism of microstructure for-

mation is useful to infer the thermal history of the component from the observation

of the final structure, and to predict some of the mechanical properties.

1.2.3.1 Microstructures obtained by diffusional processes

Different microstructures can be achieved, depending on the heat treatments (and

eventual mechanical processing) the alloy undergoes: fully lamellar, bi-modal and

fully equiaxed (Lütjering and Williams, 2007). However, many steps — both thermal

and mechanical — are necessary in order to get a consistent type of microstructure.

These are: homogenisation, deformation, recrystallisation, and a final annealing

step.
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Fully lamellar Homogenisation, deformation and recrystallisation steps must be

above the β-transus temperature (Figure 1.4a) to achieve a fully lamellar structure.

At cooling rates below 410◦C/s, α phase starts forming along grain boundaries (αGB)

and grows perpendicularly in the β phase matrix in the form of needles or platelets

(Figure 1.5a); it is called Widmanstätten or basketweave structure (Figure 1.5b),

and is denoted with αW (Gil et al., 2001). The cooling rate of the homogenisation

step influences the length and width of the α lamellae: the higher the rate, the

smaller the lamellae (Figure 1.4, images (b) to (d)) (Lütjering, 1998).

For very low cooling rates (less than 1 ◦C s−1) the α phase in between grain

boundaries appears smaller, and α massive (αM) (Gil et al., 2001) nucleates in the

matrix as well (Figure 1.5d). Because of the low cooling rate, the alloying elements

(a)

(b) 0.02 ◦C s−1 (c) 1.67 ◦C s−1 (d) 133 ◦C s−1

Figure 1.4: (a) Processing steps to achieve fully lamellar microstructure; and (b),
(c), (d) effect of cooling rates on lamellar microstructure of Ti–6242, (Lütjering
and Williams, 2007, pp. 204–205). Please note the circles in the deformation step
indicate hot deformation; the dashed slope means different cooling rates can be
chosen according to the desired final microstructure.
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can diffuse towards the matrix and aid the nucleation. In general, the lower the

cooling rate, the higher the αM/αW ratio; for extremely low cooling rates (0.81 ◦C s−1)

it is possible to see a great amount of αM and a reduced amount of αW (Gil et al.,

2001).

Both αM and αW are generally defined as primary α, which is distinguished from

secondary α (Figure 1.5c), that finely precipitates in the β phase matrix during

ageing (Sauer and Lütjering, 2001).

Widmanstätten (or basketweave) (Figure 1.5b) is a particular type of lamellar

structure. When cooling rate increases or when newly nucleated lamellae collide

with each other and cannot grow further, nucleation starts not only on boundaries

of β grains, but also on boundaries of already developed α colonies/lamellae. The

preferential growth direction is perpendicular to the existing α colony growth di-

rection, because it minimises the overall elastic strains (Lütjering and Williams,

2007).

(a) Micrography of αGB (Filip
et al., 2003)

(b) Widmanstätten microstruc-
ture cooled at 3.40 ◦C s−1 (Gil
et al., 2001)

(c) Secondary α (Sauer and
Lütjering, 2001)

(d) αM (Gil et al., 2001)

Figure 1.5: α phase morphologies.
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Bi-modal The necessary steps to achieve the bi-modal microstructure are: ho-

mogenisation, deformation, recrystallisation and annealing. However, unlike the

processing conditions for the fully lamellar microstructure, the only step performed

above the β-transus temperature is homogenisation (Figure 1.6a). This microstruc-

ture consists of a matrix of α+β lamellae in which there is primary α (Figure 1.6b).

(a) (b)

Figure 1.6: Bi-modal microstructure: (a) processing conditions, (Lütjering and
Williams, 2007, p. 208), and (b) micrography (Lütjering, 1998). Please note the
circles in the deformation step indicate hot deformation; the dashed slopes mean
different cooling rates can be chosen according to the desired final microstructure.

Fully equiaxed The processing conditions to achieve the fully equiaxed structure

coincide with those of the bi-modal structure, except for the cooling rates of the

homogenisation and recrystallisation steps which are lower (Figure 1.7a). This is

necessary in order to allow the growth of primary α phase grains only, rather than

the formation of a lamellar structure within the α grains themselves.

However, another way of obtaining the same structure consists in recrystallis-

ing at lower temperatures (Figure 1.7b), at which the α phase equilibrium volume

fraction is large enough to stimulate the growth of the α phase grains from the

lamellae deformed during the deformation step. This method has the advantage
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of producing finer α phase grains (about 2 µm) (Lütjering and Williams, 2007). In

this microstructure, the β phase is located at the triple points of α phase grains

(Figure 1.7c).

The fully lamellar, bimodal and fully equiaxed types of microstructures are sum-

marised in Figure 1.8.

(a) (b)

(c)

Figure 1.7: Fully equiaxed microstructure: (a) processing conditions, (b) alterna-
tive with lower recrystallisation temperature and (c) micrography (Lütjering and
Williams, 2007, pp. 212–213). Please note the circles in the deformation step indi-
cate hot deformation; the dashed slopes mean different cooling rates can be chosen
according to the desired final microstructure.

(a) Fully lamellar (b) Bi-modal (c) Fully equiaxed

Figure 1.8: Summary of typical microstructures (Ti–6242).
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1.2.3.2 Microstructures obtained by diffusionless processes

For the transformation to be completely diffusionless, cooling must happen at ex-

tremely high rates, of the order of 410 ◦C s−1 or more (Ahmed and Rack, 1998, see

Figure 1.9). At this rate, a shear type transformation occurs, the outcome being a

non-equilibrium phase with a distorted structure.

Figure 1.9: Schematic continuous cooling diagram for Ti–6A4–4V solution treated
at 1050 ◦C for 30 min (Ahmed and Rack, 1998). MS indicates the martensite start
temperature and is from Majdic and Ziegler (1973).

Martensite Martensite is a designated as α’ and it usually has the same crystal-

lographic structure as the general α phase (HCP). For this reason it is difficult to

identify its presence with X–Ray diffraction. Some authors including Ahmed and

Rack (1998), Lee (2004), Qazi et al. (2003) suggested that α’ can be differentiated

from its needle-like appearance (Figure 1.10) and its characteristic arrangement in a

grid of perpendicular, fine lamellae. Lütjering (1998) agrees and describes marten-

site as a microstructure in which “slip length and colony size are equal to the width

of individual α plates”, which is 0.2 µm on average.

However, another martensite type exists, denoted α”, characterised by an or-

thorhombic structure; it is also a non-equilibrium phase, and can be found in Ti–6Al–

4V as well as in alloys richer in tantalum, niobium or molybdenum (Filip et al., 2003).

According to Lütjering and Williams (2007, p. 30), when annealing in the α + β
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Figure 1.10: Micrography of α’ martensite (Gil et al., 2001).

field, the orthorhombic martensite seems to decompose spinodally in solute lean α”

and solute rich α”, prior to the final β phase precipitation (α”lean+α”rich → α+β).

According to Gil et al. (2001), Lütjering and Williams (2007), having martensite

even in specimens cooled at the rate of 1.6 ◦C s−1 is still possible; at this cooling rate,

the size of α colonies starts reducing significantly. For a cooling rate of 130 ◦C s−1,

the size of α colonies reduces to the size of individual plates.

1.2.4 Microstructure and mechanical properties

There is a close correlation between microstructural features and mechanical proper-

ties, and consequently between cooling rates/mechanical processing and mechanical

properties. In the present section, this relationship will be reviewed only in regards

to the fully lamellar microstructure, which exists in parts built by AM (Baufeld

et al., 2011, Martina, 2010, Wang et al., 2011).

1.2.4.1 Tensile properties

According to Lütjering (1998), in the case of a fully lamellar microstructure, me-

chanical properties depend on the the size of α colonies (Figure 1.11) and prior β

grains; the former depends especially on cooling rates during the end of the process-
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ing steps.

It is reported that the yield strength is constant for cooling rates below 1.6 ◦C s−1

(900 MPa); then it increases slowly until 15 ◦C s−1 (around 920 MPa) and reaches its

maximum just below 166 ◦C s−1 (1100 MPa). Lütjering (1998) attributes the increase

in the yield strength to the martensitic structure of the specimens cooled at high

rates.

Lütjering (1998) demonstrated that elongation increases with increasing cool-

ing rates, reaching its maximum at 8% for any cooling rate between 1.5 ◦C s−1 to

15 ◦C s−1, and then decreases dramatically for higher cooling rates. In the same

work, Lütjering (1998) explained the decrease in ductility with the change in the

fracture mode, which goes from being ductile transcrystalline to ductile intercrys-

talline. Filip et al. (2003) presented slightly different results, asserting that the

maximum elongation (9%) corresponded to 7 ◦C s−1. It must be noted that the

elongation values reported by both Filip et al. (2003), Lütjering (1998) are rela-

tively lower than those reported by Baufeld et al. (2009), Wang et al. (2013) for a

very similar microstructure.

Figure 1.11: Effect of slip length (α colony size) on Ti–6Al–4V mechanical properties
(Lütjering, 1998).



1.2. TITANIUM AND ITS ALLOYS 15

According to Gil et al. (2001), Morri (2008), if the Ultimate Tensile Strength

(UTS) of the lamellae is comparable to or smaller than that of the α phase at the

grain boundary (αGB), deformation happens in both lamellae and αGB. In the case

of very fine lamellae, such as in the martensite or in some Widmanstätten, the UTS

of the lamellae is higher than that of the αGB. Therefore, deformation happens

exclusively in the αGB leading eventually to crack nucleation and intercrystalline

fracture.

In α + β alloys, continuous α phase precipitations can be found at the prior

β grain boundaries, where the growth of the α phase starts in most cases. The

difference in strength between the α phase located at grain boundaries, and matrix

regions affects the fracture behaviour, especially in the case of large prior β grains,

due to the increased slip length (Lütjering et al., 2007, Morri, 2008, Sauer and

Lütjering, 2001).

Please note that both the dimensions of α colonies and prior β grains determine

the effective slip length. Consequently, if deformation occurs in the αGB (when the

UTS of the lamellae is higher than that of the αGB), the effective slip length depends

on the size of the prior β grains because αGB is as long as the grain boundary. If

deformation happens within the α colonies then the slip length is given by the size

of the lamellae (Morri, 2008).

According to Dehghan-Manshadi et al. (2010), αGB is also affected by cooling

rate, its thickness varying from more than 10 µm to 1 µm for cooling rates from

0.5 ◦C s−1 to 10 ◦C s−1, respectively.

1.2.4.2 Damage tolerance properties

Lütjering (1998) stated that High Cycle Fatigue (HCF) strength has similar be-

haviour to the yield strength, increasing with the cooling rate. Low Cycle Fatigue

(LCF) strength depends on both resistance to crack nucleation and propagation of

microcracks (small cracks on the surface), the latter depending also on slip length.
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In fact, microcrack propagation decreases when the cooling rate rises, since α colony

boundaries and martensitic regions act as obstacles (Lütjering, 1998). Therefore, in

terms of LCF strength, the higher the cooling rate, the better.

In terms of Fatigue Crack Growth Rate (FCGR), two factors must be consid-

ered: ductility and crack front geometry. As for the latter, an increase in α colony

size causes an increase in crack front roughness, which hinders crack propagation

and increases ∆Kth. Ductility however shows an opposite response, reducing with α

colony size as shown in Figure 1.11. Depending on the gradients from Figure 1.11,

FCGR could either increase or decrease as the α colony size increases (which affects

the slip length), therefore it cannot be stated beforehand whether the combined

effect of ductility and crack front geometry will aid or hinder large crack propaga-

tion. According to Lütjering (1998), at high R ratios2 usually in α + β alloys an

increase in α colonies size corresponds to a decrease in FCGR; consequently, crack

front geometry is the predominant contribution. However, Lütjering (1998) assumes

ductility behaviour is linear, in contrast with what he stated previously about elon-

gation. In his considerations, the author is probably excluding the area in which

ductility is badly affected by cooling rates, because of the difficulty in achieving

them in practice, given their high magnitude.

Crack closure is another factor to be considered in the case of low R ratios; it fol-

lows the behaviour of crack front geometry, increasing with crack surface roughness

and shear displacement at the crack tip. Therefore, at low R ratios an increase in

α colony size has a beneficial impact on crack propagation, as shown in Figure 1.12

from Lütjering (1998). The fracture toughness of Ti–6Al–4V is similar to that of

the FCGR: the larger the size of α colonies, the better the fracture toughness, due

to the predominance of crack front geometry over ductility (Lütjering, 1998).

In conclusion, for α + β alloys, α colony size appears to be the most critical

parameter in terms of mechanical properties: smaller colonies result in an increase

2R = Min. stress/Max. stress
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in all mechanical properties, except for FCGR (for both high and low R ratios) and

fracture toughness.

Figure 1.12: Effect of cooling rate on crack propagation for fully lamellar microstruc-
ture of Ti–6242 (Lütjering, 1998).

1.2.5 Welding of Ti–6Al–4V

The most common methods for joining Ti–6Al–4V are fusion and friction stir weld-

ing (Lütjering and Williams, 2007, p. 104). In general, as the strength of the alloy

increases, it becomes more difficult to weld, due to the presence of eutectoid alloy-

ing elements (e.g. iron or chromium) which cause cracking (Lütjering and Williams,

2007, p. 104). Although the fusion and heat affected zones can be identified, they

are more difficult to distinguish than most alloys (Lütjering and Williams, 2007, p.

105). In the case of α + β alloys, due to the different temperatures and cooling

rate experienced during the welding process, it is common to see diverse microstruc-

tures which result in a local variation of the mechanical properties (Lütjering and

Williams, 2007, p. 106). However, in practice this variation is much smaller than
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most alloys.

Within the fusion welding techniques, the adopted ones are Metal Inert Gas

(MIG) (Patnaik et al., 2011), Tungsten Inert Gas (TIG) (Ellis and Gittos, 1995),

Plasma Arc Welding (PAW) (Roggensack et al., 1993), Electron Beam Welding

(EBW) (Mohandas et al., 1999) and Laser Welding (LW) (Akman et al., 2009,

Casalino et al., 2005, Roggensack et al., 1993, Zhang and Zhang, 2011). A hybridi-

sation of MIG and LW was attempted successfully (Denney et al., 2005, Li et al.,

2009) to enable welding at high processing speeds with low heat input. The most

common technique is TIG, which is extremely suitable for large components with

thin sections (Lütjering and Williams, 2007, p. 108). Given the chemical reactivity

of titanium, local shielding is necessary around the welding torch, to prevent con-

tamination with oxygen, nitrogen and hydrogen. Oxygen contamination becomes

severe for temperatures above 550 ◦C; below this temperature the diffusion rates

are low and there is not significant formation of α casing (Lütjering and Williams,

2007, p. 51). Often additional protection is provided by using a trailing shield. In

addition a backing (or underbead) shielding device is sometimes provided to protect

the rear surface of the part (Lütjering and Williams, 2007, p. 108.). Therefore, for

standard and repetitive welding it is sometime more convenient to adopt a chamber

which is filled with an inert gas (Lütjering and Williams, 2007, p. 108).

Porosity and oxidation are two defects that can occur when the components

are contaminated or shielding is not appropriate; their effect on the mechanical

properties will be discussed in the following sections.

1.2.5.1 Influence of porosity

Without any doubt, porosity affects mechanical properties, and all welding processes

are affected by this problem to some extent. Reported causes, in general, are non-

optimal gap distance (Akman et al., 2009), welding speed (Mohandas et al., 1999),

cleanliness of the joint (in terms of oxide layer and grease), black dust generated by
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laser welding, and weld width (Mueller et al., 2006)

According to Akman et al. (2009), in laser welding of Ti–6Al–4V the best result

was obtained with a gap distance of 0.1 mm, and the edges of the plates must be care-

fully milled to made them as smooth as possible. The authors suggest that porosity

is caused by the entrapment of gases during the solidification of the molten metal,

and they demonstrate how porosity increases with the average power, which results

in a reduction in UTS. A porosity ratio3 of ca. 0.75% corresponds to 500 MPa, and a

ratio of 2% to 200 MPa. Unfortunately the authors do not provide any information

on the pore size; porosity seems concentrated in the weld metal.

Cao and Jahazi (2009) studied the effect of welding speed on butt joint qual-

ity, and report that in the specimen with the lowest strength, cracks initiate at a

micropore. They conclude that the loss in elongation in their joints was caused by

micropores (and aluminium oxides).

Tsay et al. (2006) stated that porosity might not increase fatigue crack growth.

In their study, when cracks avoid porosity FCGR is comparable to that of defect

free specimens. They added that porosity actually reduces FCGR, possibly because

of the increase in the radius of the crack tip due to the penetration of crack front

into the pore which results in a blunt crack notch, and the local rupture plasticity.

Moreover, fractography showed no change in crack morphology when comparing

porous welds to defect free ones, except for a larger fracture surface around porosity.

Mohandas et al. (1999) studied the effect of welding speed in EBW, and con-

cluded that all porosity parameters (maximum pore size, total number of pores,

number of pores per unit area, average area of pores, and porosity ratio) are max-

imised at intermediate speeds (ca. 0.025 m s−1), except for the number of pores per

mm2. Gas bubbles life cycle consists of formation, growth and escape. The authors

conclude that at low welding speeds (around 0.02 m s−1) bubbles have time to form,

grow and escape, due to the high heat input which causes a long lasting molten pool.

3Area of pores divided by area examined
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At high welding speeds (from 0.03 m s−1 to 0.04 m s−1), bubbles do not have the time

to form, as the molten pool solidifies rapidly. At intermediate speeds, bubbles do

have the time to form and grow but not to escape, therefore porosity is significant.

The authors did not test any mechanical properties. Anyway, EBW is naturally

prone to porosity due elements evaporation (Huang, 2011).

1.2.5.2 Influence of oxygen

Oxygen is one of the alloying elements in Ti–6Al–4V, and it is required for strength-

ening. It acts as α phase stabiliser, and it has been demonstrated that an increase

from 0.09 wt.% to 1.0 wt.% corresponds to an increase in β-transus temperature from

965 ◦C to 1180 ◦C (Kahveci and Welsch, 1986). This dependency is characterised by

the following equation:

βtransus(
◦C) = 937 + 242.7×O(wt.%) (1.1)

Kahveci and Welsch (1986) show how, at a given temperature, higher concentrations

of oxygen resulted in an increase of α phase volume fraction. Consequently, oxygen

increases both the strength and elastic modulus. However, concentrations above 2%

lead to embrittlement and should therefore be avoided. In fact, a ductile to brittle

transition occurs for concentrations between 0.26 wt.% to 0.56 wt.% (Kahveci and

Welsch, 1991).

According to the same authors (Kahveci and Welsch, 1986), oxygen also affects

hardness. Hardness curves are characterised by a minimum value which depends on

the quench start temperature; when oxygen content increases, so does the quench

start temperature. For quenching temperature values below minimum hardness, the

hardness is always constant, because the phase change from α to β does not occur.

In both Kahveci and Welsch (1986, 1991) the authors demonstrate a parabolic

correlation between oxygen content and hardness, which does not depend upon heat
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treatments conditions. On the contrary, the relationship between hardness and

both yield strength and UTS is affected by strain hardening, which depends on heat

treatments. The relationships between hardness and oxygen content, yield strength,

and UTS are described by the following equations (Kahveci and Welsch, 1991):

Hv = H0 + b×O
1
2 (1.2a)

Hv = A× σ0.2 (1.2b)

Hv = B × UTS (1.2c)

where Hv is the Vickers Hardness; H0 is the hardness of a Ti–6Al–4V alloy without

any oxygen, b is a constant, σ0.2 is the yield strength. A and B are two constants

that vary between 3.4 to 4.07 (depending on the heat treatment) and from 3.1 to

3.2, respectively. Knowing the hardness, these equations can be used to determine

fairly accurate estimations of yield strength and UTS.

Figure 1.13 shows the effect of oxygen on elongation (Figure 1.13a, from Miura

et al., 2010), and yield strength, UTS and elongation (Figure 1.13b, from Ebel et al.,

2012). The plots suggest that above a critical oxygen content of 0.33 % in weight

there is a substantial drop in ductility. On the contrary, yield strength and UTS

increase due to a larger martensite fraction.

(a) From Miura et al. (2010) (b) From Ebel et al. (2012)

Figure 1.13: Tensile strength and elongation of as sintered titanium alloys vs. oxygen
content. Samples were manufactured by metal injection moulding.
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1.3 Additive manufacturing

As opposed to the subtractive approach, Additive Manufacturing (AM) consists of

building a component by laying firstly a layer on top of a base plate (the substrate)

and then adding subsequent layers to produce the final part (Martina, 2010). AM

is a technology which promises to reduce part cost by reducing time to market and

material wastage (Coykendall et al., 2014). One industry which is investing heavily

in AM is the aerospace sector.

The Buy To Fly (BTF) is the ratio of the mass of the initial workpiece to the one

of the finished product; the current method of manufacturing large structures such as

cruciforms, stiffened panels, wing ribs, etc., which are machined from billets or large

forgings, delivers unsustainable BTFs of 10 or even 20 (Allen, 2006). Furthemore,

AM can also enable an increase in design freedom, which potentially results in weight

saving as well as facilitating the manufacture of complex assemblies formerly made

of many subcomponents (Cotteleer and Joyce, 2014).

According to Airbus (2008), passengers miles are predicted to grow by 2.75 times

(5% per year) in the next 20 years. This equates to orders worth over £1.2 T

for freight aircrafts. At the current BTF ratios, this will require an estimated 20

million tonnes of billet stock, 80% of which will be machined away. Considering

that titanium is extremely expensive in terms of purchase cost (>£70 kg−1), energy

consumption (>500 MJ kg−1) and CO2 emissions (>40 kg kg−1), in the aerospace

industry there is a pressing need for the development of a process which could

replace the current manufacturing method.

From an analysis of the literature, three constituents are essential for AM:

• heat source;

• raw material;

• manipulator.

Different heat sources and raw material forms exist. Their combination leads to the
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creation of a wide spectrum of different AM techniques, each of them characterised

by distinctive features, with benefits and drawbacks, which make them suitable for

specific applications, as will be discussed in section 1.3.2 on page 31.

Heat sources are borrowed from the welding world; therefore, they can be either

welding torches or laser and electron beams, or even combinations of both. Raw

material is fed in various forms (currently powder or wire) into the system; heat is

necessary to raise the temperature, which is brought above the material’s melting

point. The manipulator traces the tool path defined for each layer.

1.3.1 Deposition techniques

In the following sections an overview of the current AM techniques will be presented,

based upon whether the adopted heat source is beam or arc-based.

1.3.1.1 Beam-based AM

Beam-based AM techniques are those which use laser or electron beams as the heat

source. If laser-based techniques are considered, a further differentiation is the way

in which the material is supplied.

Direct laser fabrication In Direct Laser Fabrication (DLF) (Wang et al., 2008),

direct laser deposition (Baufeld et al., 2009), lasforming (Arcella and Froes, 2002),

or laser engineering net shaping (Rangaswamy et al., 2005), the material is in the

form of powder and is blown directly into the molten pool created by the laser

beam (Figure 1.14a). Powder feed rate is controlled and the laser beam follows the

path which corresponds to the specific direction determined by the Computer-Aided

Design (CAD) file. By mixing two or more powders, the alloy composition of the

deposited component can be continuously varied. Wang et al. (2007a,b) successfully

combined wire and powder feeding to manufacture compositionally graded parts, by

feeding TiC powder and Ti–6Al–4V wire. According to Arcella and Froes (2002),
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deposition rates range from 0.9 to 4.5 kg h−1. AeroMet Inc., USA had a machine

developed for large rib-on-plate components equipped with an 18 kW CO2 laser.

Unfortunately the division was closed due to financial issues. Parts built by DLF

are shown in Figure 1.14b.

(a) (b)

Figure 1.14: Direct laser fabrication (a) setup (Wang et al., 2007b) and (b) manu-
factured parts (Arcella and Froes, 2002).

Selective Laser Melting Selective Laser Melting (SLM) (Abe et al., 2001) con-

sists of placing a powder layer with a thickness between 20 µm and 50 µm on a

substrate, which is then scanned by a laser beam (similarly to DLF) as shown in

Figure 1.15a. After the laser has finished scanning the cross sectional path, a new

powder layer is laid and next layer’s path is scanned.

A controlled atmosphere is compulsory and to avoid contamination parts bigger

than 350×300×200 mm3 cannot be built given the current technology, because of the

cost requirement of a large controlled-atmosphere chamber. (Buijs, 2011). Abe et al.

(2001), Tolochko et al. (2004) reported that balling is another limitation affecting

SLM: the laser spot only partially melts the area around its focal spot, leaving metal

balls due to surface tension in the liquid state. These solid droplets characteristically

have an oxide film, which prevents the creation of bonds between the previous and

the new layers. Moreover, as balls are contaminated with oxide, recycling them is

expensive and not worthwhile. Heat input concentration and temperature gradient
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mechanisms also generate residual stress and distortion (Zäh and Branner, 2010);

heat treatments are often necessary before parts can be used. SLM applications

include biomedical implants, moulds, aerospace and automotive parts (Figure 1.15b

from Zäh and Branner, 2010).

(a) (b)

Figure 1.15: Selective laser melting (a) setup (Abe et al., 2001) and (b) manufactured
part (CRP-Technology, 2011).

Electron beam melting In Electron Beam Melting (EBM) (Murr et al., 2009,

2010a,b) an electron beam scans a powder bed, creating layers of ca. 20 µm to 100µm

(Zäh and Lutzmann, 2010), as shown in Figure 1.16a from Murr et al. (2010a).

Zäh and Lutzmann (2010) claim EBM has high penetration depths and scanning

speed to enable higher deposition rates in EBM than SLM. Currently the process

is completely automated, and the layers are extracted from a scanned model or a

3D CAD drawing. EBM is affected by balling as well, because the wetting ability of

the previous layer is lower than the surface tension of the molten material (Zäh and

Lutzmann, 2010). Moreover delamination, the detachment or incomplete bonding

of a new layer on the previous one, occasionally leads to abortion of the build

process. Shielding is not required as the parts are built under vacuum, which is

also responsible for volatilisation of light elements. Finally, according to Arcam

AB® (2014) which currently are the only EBM machine supplier, residual stress
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and distortion are minimal due to powder bed preheating. The preferred field of

application is the manufacture of biomedical components and prototypes, mainly

using Ti–6Al–4V. A sample produced by EBM is shown in Figure 1.16b.

(a) (1) electron gun (2) lens sys-
tem (3) powder layer (4) powder
cassettes (5) rack (6) component
(7) table

(b)

Figure 1.16: Electron beam melting (a) setup (Murr et al., 2010a) and (b) manu-
factured part (CRP Technology, 2011).

Sciaky The combination of electron beam and wire feeding, under vacuum, has

been investigated in the USA by a company named Sciaky (2014a). A typical

machine is shown in Figure 1.17a; a part in as-deposited and machined conditions

is shown in Figure 1.17b and Figure 1.17c. This process aims at overcoming the low

deposition rate of EBM and is targeting the manufacture of large scale components.

However the requirement for vacuum places the cost of the equipment in the range

of $2 M to $3 M which hinders the adoption of this process, especially in the current

early stages of AM.
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(a)

(b) (c)

Figure 1.17: Sciaky (a) deposition chamber (Sciaky, 2014c), (b) as-deposited part
(Additivemanufacturing.com, 2014) and (c) finished part (3Dprint.com, 2014).
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1.3.1.2 Arc-based AM

Arc-based AM techniques are those who use arc-based welding processes to supply

heat. They have been named either Wire+Arc Additive Manufacturing (WAAM)

(Almeida and Williams, 2010) or shaped metal deposition (Acheson, 1990). When

a MIG process is not used, this approach consists of a combination of an arc weld-

ing torch and an external wire feeding unit, mounted either on a robot or a CNC

manipulator (Figure 1.18a). A honeycomb structure build by WAAM is shown in

Figure 1.18b.

(a) (b)

Figure 1.18: Wire+arc additive manufacturing (a) setup and (b) manufactured part
(from an internal report from Cranfield University).

Forward feed mode, in which the wire is fed always ahead of the arc, is necessary

to guarantee consistency of bead geometry (Martina, 2010). When depositing multi-

dimensional parts, this requires further automation in order to rotate the wire feeder

according to the direction of deposition. Furthermore, in-house research showed the

occurrence of humping at the beginning, and sloping at the end of the deposition,

which are related to heat extraction dynamics. The problem may be overcome by

alternating deposition direction, i.e. by starting a new layer where the previous

ended.

Recently investigated in the Welding Engineering and Laser Processing Centre,

Cranfield University, Plasma Wire Deposition (PWD) (Martina, 2010), based on
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PAW, is another version of WAAM: the power source and welding torch are dedicated

to the PAW process, while the rest of the setup is identical (Figure 1.19a). An

aerospace component manufactured by PWD is shown in Figure 1.19b.

(a) (b)

Figure 1.19: PWD (a) setup (Martina, 2010) and (b) manufactured parts (courtesy
Cranfield University).

Unfortunately, in terms of material characteristics the advantages of PWD have

not been proved. The Cranfield research has found that AM repeated heat treat-

ments prevent microstructure from being fine grained, and appears similar to that

with TIG. Higher power related to constricted arc might be expected to enable much

higher deposition rates; however in practice higher heat inputs create molten pool

instability and distortion. Furthermore, orifice geometry affects plasma gas flow,

and bead geometry; therefore, PWD is thought unlikely to be easily transferred

from one platform to another, and the deposit geometry may depend on the design

of the torch. Finally, the plasma flow rate could have an effect on bead geometry,

adding an undesirable element of complexity to process understanding and develop-

ment. However, PWD has elements of robustness which should make it the process

of choice, as it differs from TIG in that the electrode is not exposed, consequently

electrode contamination is not so severe; the torch-to-workpiece distance is also

much higher (8 mm for PWD, 3.5 mm for TIG4) which should make the process less

4Data from an internal report from Cranfield University
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sensitive to distance variation.

MIG, particularly in its Cold Metal Transfer (CMT) variant is gaining popu-

larity for WAAM. According to Almeida and Williams (2010) this process is based

on controlled dip transfer mode. From a practical point of view, its main advan-

tage is that the wire is the consumable electrode, therefore an external wire feeding

system is not required and the setup is generally more compact. This results in

easier programming because there is no need to rotate the torch. While traditional

MIG is affected by spatter and unstable process behaviour, CMT is characterised by

improved quality, lower heat input and negligible spatter (Almeida and Williams,

2010). Like other MIG processes, wire feeding is electronically controlled, and wire

feed speed is coupled with current, which simplifies process control. Finally, metal

deposition on the substrate/previous layer occurs by surface tension, delivering a

smooth profile and little spatter. Although CMT is one of the newest processes, as

shown in Figure 1.20 complex features such as horizontal (Figure 1.20a) and inclined

walls (Figure 1.20b) can be made. Disadvantages of the technique include arc wan-

dering (Shinn et al., 2005) which reduce the deposition efficiency. Nevertheless, for

deposition of steel and aluminium, CMT based WAAM seems the process of choice.

(a) Horizontal wall (b) Inclined wall

Figure 1.20: Example of current geometric capabilities of CMT deposition.
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1.3.2 Comparison of techniques

All metal AM processes are summarised in Figure 1.21.
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Figure 1.21: Summary of metal AM processes.

As input provided by power sources, and features of fed material limit their ca-

pabilities, each of the previously described processes is most suitable to particular

applications. As shown in Figure 1.22, arc-based techniques are the ideal comple-

ment to beam-based systems, as the former are incapable of manufacturing small size

features, a task in which on the contrary the latter perform the best. On the other

hand, it is currently impossible to build large components by SLM, as a controlled

atmosphere is required in order to prevent oxidation and powder contamination.

The present technology is capable of building parts up to 350×300×200mm3 (Buijs,

2011). By using DLF it is ideally possible to build large components; however, as

the inert atmosphere is generated into a bag or rigid chamber, in reality part size is

limited and building large parts is unpractical.

In arc-based techniques, local shielding devices can be used; consequently there

is theoretically no limitation on the size of manufactured parts, as a controlled,
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Figure 1.22: Comparison of AM techniques capabilities. Total wall widths (the
width of the as-deposited material) of selective laser melting and direct laser fabri-
cation are assumed equal to the laser spot size. Consequently, data on the effective
wall width (the width which is effectively usable) is not available for these two
processes.

sealed environment is no longer necessary. In fact, in the Welding Engineering and

Laser Processing Centre, Cranfield University, a Ti–6Al–4V metre long, 200 mm

high wall (Figure 1.23) has been built successfully (Almeida and Williams, 2010) in

open atmosphere using local shielding. A part built in an argon-filled tent is shown

in Figure 1.24 (baesystems.com, 2014).

High heat input of WAAM compared to SLM, DLF, EBM enables higher de-

position rates, up to more than 2.5 kg h−1. Table 1.2 gives a summary of reported

deposition rates for a variety of techniques. For instance, a 80×45×70 mm3 insert

requires 25 h to be manufactured by SLM5 (Buijs, 2011), while the same component,

if made by CMT, could take less than 1 h. According to Sciaky (2014b), their system

is capable of depositing up to 10 kg h−1, but a BTF ratio of more than 10 makes

their process less attractive from an economical point of view. Furthermore Sciaky

(2014b) requirement for a soft vacuum results in expensive equipment and reduces

5Plus 8 hours for finishing and polishing. Deposition time exclusively is considered in this
comparison.
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Figure 1.23: Metre long Ti–6Al–4V wall recently manufactured in Cranfield Univer-
sity (Almeida and Williams, 2010).

(a) Top view

(b) Side view. Please note two components were built back-to-back sharing the same sacrificial
substrate

Figure 1.24: 1.2 m Ti–6Al–4V wing spar built by WAAM at Cranfield University.
The structure is not a real component however it is representative of an F35 fighter
jet wing spar. From baesystems.com (2014).
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the likelihood of effective heat management.

Table 1.2: Deposition rates of AM techniques.

Technique Deposition Rate Reference
(kg h−1)

DLF 0.9 to 4.5 Arcella and Froes (2002)
SLM 0.060 to 0.120 Zhang et al. (2003)

Sciaky 10 Sciaky (2014b)
TIG WAAM 1.5 Internal report from Cranfield University

PWD WAAM 1.8 Martina (2010)
CMT WAAM 2.6 Almeida and Williams (2010)

As the subject of the present work is the development of large scale additive

manufacturing in an economically viable way, arc-based techniques will be those

investigated in the following section.

1.3.3 Deposition of Ti–6Al–4V

Ti–6Al–4V is possibly the alloy that raises the greatest interest in the AM commu-

nity: Ti–6Al–4V is widely employed in the aerospace industry; moreover, due to the

high cost and waste related to the current manufacturing processes, it is beneficial

to develop and use techniques that enable a substantial reduction in both cost and

waste.

Ti–6Al–4V deposition with both beam and arc-based techniques has been already

investigated to different extents, and each technique has required almost a distinct

approach. For instance, in the case of SLM a geometric model, a set of equations

which predict some metrics, such as Total Wall Width (TWW)6, Effective Wall

Width (EWW)7 and Layer Height (LH)8, is not necessary. In fact, multiple passes,

one alongside the other, are sufficient to achieve a specific width, given the knowledge

of a single pass width. Layer height is determined by powder size distribution.

6The width of the as-deposited material
7The width which is effectively usable
8The height of each layer
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In the case of the techniques in which powder or wire are fed directly into the

molten pool, as the quantity of powder and/or wire can be varied quite flexibly,

knowing exactly how to set the process parameters is necessary. Hence, Almeida and

Williams (2010), Martina (2010) focused on a systematic process analysis which led

to the development of a reliable geometric model for CMT and PWD, respectively.

The main difference in their work regards the selection of the independent variables.

While Almeida and Williams (2010) selected wire diameter, Wire Feed Speed (WFS)

and WFS/Travel Speed (TS) ratio (the latter to ensure constant material deposition

per unit length), Martina (2010) chose WFS, TS and Current as in PWD these three

parameters can be set up independently. Consequently for both these processes it is

now possible to predict a series of responses, i.e. TWW, EWW, LH and Deposition

Efficiency (DE)9 from the input data.

The approach adopted by Almeida and Williams (2010), Martina (2010) is quite

different to that of Heralić et al. (2010, 2008), who developed an on-line control

system that adjusts continuously some process parameters to attain good deposition

quality. While targeting consistent and robust deposition, this flexible approach of

continuous adjustment does not consider process capabilities, i.e. minimum and

maximum values of the various geometric features were not investigated.

Most authors, except for Almeida and Williams (2010), Martina (2010), focused

on depositing in a bag filled with inert gas, such as argon, to guarantee sufficient

protection from oxidation and attain acceptable mechanical properties.

In terms of microstructure, components made by arc-based techniques are charac-

terised by a Widmanstätten structure within large, columnar prior β grains (Almeida

and Williams, 2010, Baufeld et al., 2009). The size of the α lamellae varies according

to the Z coordinate (building direction), within the same specimen. According to

these authors, it is common to find smaller lamellae in the first layers, larger ones

towards the middle and then small ones again towards the top, where martensite is

9The ratio between the cross-sectional area of the effectively usable material to the total cross-
sectional area
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present (Figure 1.25). This is likely to be due to the repeated heat treatments that

a generic point undergoes, and to the different cooling rates that exist in different

Z coordinates (Baufeld et al., 2011, 2009). In the bottom, the substrate can act

as heat sink and is responsible for cooling rates high enough to produce even some

martensite. In the middle, lamellae growth is continuously stimulated by the heat

treatment induced by the deposition of a new layer, while in the top convection

cooling produces finer lamellae, whose growth is not stimulated as no other layer is

deposited (Martina, 2010).

(a) Top layers (b) Middle layers (c) Base layers

Figure 1.25: Variation in α lamellae size across the sample from WAAM manufacture
(Martina, 2010).

Banding is a phenomenon reported by many authors (Baufeld et al., 2011, Mar-

tina, 2010, Wang et al., 2011); it consists of a series of bands parallel to the substrate

work piece (Figure 1.26). A band is predicted with each deposited layer. The first

layer to appear is well below the molten region associated with the top layer. Baufeld

et al. (2011), Martina (2010) suggest that the absence of bands in the top layers is

due to the heat treatment induced by the deposition of the subsequent layers. In

fact, it stands to reason that during the deposition of a layer a certain amount of

material is brought above the β-transus temperature. According to some authors

(Kelly and Kampe, 2004a,b, Martina, 2010), bands coincide not with the liquidus

line but with the β-transus.

Baufeld et al. (2011) compared the microstructure of specimens made by DLF

and WAAM; in both cases 1.2 mm diameter wire was fed. The authors do not



1.3. ADDITIVE MANUFACTURING 37

Figure 1.26: Banding in AM components (Martina, 2010). Z is the direction of the
deposition; the left hand side of the picture corresponds to the last layers and does
not show any banding.

provide any precise figure regarding the size of prior β grains for the two processes,

only stating that in DLF specimens they are smaller than in WAAM ones. The α

lamellae width in the middle of the deposit was smaller with DLF than WAAM. For

both processes, the authors confirmed that in the bottom area smaller α lamellae

can be found, and the presence of martensite is suggested. An average measure of

α lamellae in the top region is 0.6 µm for both processes.

1.3.3.1 Solidification and texture development in AM

During the deposition of the first layer on the starting substrate (which has an

equiaxed or bi-modal microstructure), depending upon the temperature reached the

material below the liquidus front either transforms fully to β phase, or it undergoes

coarsening of the α phase. In general, coarsening of the β grains occurs too (Wang

et al., 2013). New prior β columnar grains develops from the substrate by hetero-

geneous nucleation. The grains that grow are those with a preferential orientation,

which is the one aligned with the solidification front of the molten pool (Wang et al.,

2013). If the constitutional supercooling is insufficient, there is no nucleation of new
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β grains, and the already existing ones continue their growth following the thermal

gradient. According to Wang et al. (2013), the flat base of the molten pool results

in grains that are orientated in the <001> direction.

During deposition of new layers, the competitive growth still favours the <001>

BCC grains and a strong <001> texture develops throughout the deposited material

(Antonysamy, 2012). These grains often traverse the whole height of the component

(Wang et al., 2013).

According to Al-Bermani et al. (2010), in EBM components such texture can be

as high as 10 × random. Al-Bermani (2012) showed that also cube and 45° rotated

cube components exists, which were associated to the EBM scanning path. Similar

behaviour was also seen by Antonysamy (2012) in WAAM components, where the

prior β grains were slightly tilted towards the direction of the torch motion.

1.3.3.2 Defects and inhomogeneity

With regards to Ti–6Al–4V, WAAM’s defects include porosity, cavities, microstruc-

tural inhomogeneities, residual stress and distortion. Porosity can occur due to poor

handling of the wire; Wang et al. (2013) demonstrated that by touching the wire

with bare hands, introducing porosity deliberately was possible. Martina (2010) ob-

served cavities in PWD WAAM specimens; these were produced by lack of keyhole

closure related to wrong deposition parameters. Antonysamy (2012), Baufeld et al.

(2009), Wang et al. (2013, 2011) observed epitaxial grain growth with extremely

textured α and β phases leading to strongly anisotropic mechanical properties. Fi-

nally Almeida and Williams (2010), Ding et al. (2011) reported distortion in WAAM

components related to residual stresses, which were particularly significant in the

longitudinal direction. The use of Hot Isostatic Pressing (HIP) proved to be effective

in reducing the microstructural inhomogeneities by transforming the martensite in

Widmanstätten thus increasing ductility; furthermore HIP resulted in pores closure

and reduction of distortion, when performed on unclamped structures (Qiu et al.,

2015).
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1.4 Residual stresses

According to Withers and Bhadeshia (2001a), “residual stresses are those which

are not necessary to maintain equilibrium between the body and its environment”;

they state that often unexpected failure is caused by the joint effect of residual and

service stresses. The same authors (Withers and Bhadeshia, 2001a) explain that

residual stresses can be distinguished by what caused them, by their scale, or by

the method used to measure them. In fact, residual stresses can occur because

of misfits affecting a different location of the same part or considered system, or

due to thermal gradients such as those experienced during welding, where the ma-

terial shrinks during solidification and cooling to room temperature (Withers and

Bhadeshia, 2001a). Residual stresses are manifested in component distortion, which

might prevent industrial application (Wen et al., 2010).

Withers and Bhadeshia (2001b) stated that from a magnitude point of view,

residual stresses of a macroscopic scale are defined as type I, while those changing

over the size of a grain are type II. Finally, stresses varying over the microscopic

scale, down to the size of a single atom, are type III. In the case of polyphase

material, type I stresses can affect the whole component, while type II and III are

limited to one phase and are not continuous across them (Withers and Bhadeshia,

2001a). Type I stresses are typical in engineering components, in which the misfits

can be generated during the assembly process or because of chemical or thermal

interactions (Withers and Bhadeshia, 2001b). Riveting, in which plates are subject

to stress by the rivet, is a typical example of mechanically induced type I residual

stresses (Withers and Bhadeshia, 2001b).

Residual stresses can be induced on purpose in order to improve the performance

of the component. For example, rapid cooling of glass surface can be used to generate

a thermal misfit, which results in compressive residual stress (roughly 100 MPa) on

the external surface and tensile residual stress in the internal region (Withers and

Bhadeshia, 2001b), a configuration which results in improved strength. Similarly,
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shot peening (Černy, 2012, Dalaei et al., 2011), which consists of bombarding the

part with small particles, is used to generate compressive residual stress. According

to Dalaei et al. (2011) this technique proved to be successful in improving fatigue

properties, because the treated surface of a part is more resistant to crack initiation,

and fatigue crack growth rate is also reduced. However, the same authors noted how

a high surface roughness could be detrimental to fatigue properties. Residual stresses

can relax during the component life cycle depending upon microstructure, tensile

properties, peening state, and stress conditions (Dalaei et al., 2011). Withers and

Bhadeshia (2001b) explained how, in practice, potential failures can be minimised

by yielding the component in the same direction of the predicted load (the one the

component will experience during service), and they also explained how the greatest

benefit is achieved in low amplitude, high cycle fatigue, while the smallest benefits

are in large strain, low cycle fatigue (Withers and Bhadeshia, 2001a).

Laser Shock Peening (LSP) consists in introducing plastic deformation by a

laser induced shock wave (Cuellar et al., 2012). According to Hu and Grandhi

(2012) by using a high power density on a sacrificial coating which vaporises and

produces plasma; and a transparent dielectric overlay such as water, that confines

the vapour and plasma; a high amplitude pressure is generated which is higher than

the material’s yield strength. Consequently the material is left with compressive

residual stress, which proves to increase components fatigue life (Ganesh et al.,

2014, Zhou et al., 2014).

In order to mitigate unwanted residual stresses, various methods have been in-

vestigated. Ultrasonic Impact Treatment (UIT) is the combination of ultrasonic

waves with mechanical impact by means of an ultrasonic transducer. Gao et al.

(2014) showed that when applied to the toes of a six pass weld UIT was effective in

reducing the tensile stress, especially close to the centreline of the weld.

Thermal tensioning, according to Withers (2013), is based on temperature con-

trol, either via cooling or heating locally during or after welding; it can be transient,
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if the tool moves with the welding torch; or steady state, if the component is heated

or cooled globally. Regardless, the thermal expansion can prevent or counteract the

formation of residual stresses. This method is particularly suitable for plates.

Global Mechanical Tensioning (GMT), according to Price et al. (2007), Richards

et al. (2008) consists in tensile loading of the weld; it could be done either during

the welding process (in situ GMT) or after (post weld GMT). These techniques are

successful with linear welds or simple geometries, and the equipment is large and

heavy (Altenkirch et al., 2009). If the load is applied only to a small region around

the welding tool, mechanical tensioning is defined as local ; one of the local tensioning

techniques is rolling (Coules et al., 2012b). Rolling has the potential to overcome

some of the impracticalities of GMT (Altenkirch et al., 2009, Kurkin and Anufriev,

1984, Wen et al., 2010, 2009). Rolling of AM parts to control microstructure and

mechanical properties is potentially an exciting area and has been chosen as the

subject of the present research, thus it will be discussed thoroughly in the following

section.

1.4.1 Rolling of welds

One of the way of mitigating residual stresses is rolling, in which a load is applied

with a moving roller, as shown in Figure 1.27. If the load is sufficient to compress

plasticly the bead in the normal direction, a plastic elongation will occur then in

the rolling direction, thus decreasing the longitudinal residual stresses (Altenkirch

et al., 2009).

Kurkin and Anufriev (1984) demonstrated the feasibility of in situ rolling (Fig-

ure 1.27a), in which the roller, trailing the torch, applies the load while the material

is still hot. They assumed rolling hot material would have been more beneficial than

cold rolling, due to the high temperature which would have aided the deformation.

In fact, in the case of the investigated material (Amg6 and 1201 aluminium alloys)

they showed that not only distortion can be eliminated, but residual stresses can
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be reduced to 20 MPa. They provided some guidelines as well, such as the working

distance between the welding tool and the roller (from 30 mm to 300 mm) and the

rolling load (from 2 kN to 50 kN).

In addition to in situ rolling, alternatives exist. The load can also be applied

directly on the weld bead (Figure 1.27b), or on its sides (Figure 1.27c). Both

configurations can be used either when the material is still hot or when it has

cooled down to room temperature (Altenkirch et al., 2009). In the same research,

Altenkirch et al. (2009) experimented that modelled by Wen et al. (2010), who used

finite element analysis to investigate in situ, interpass and side rolling of friction stir

welds. Unfortunately, Altenkirch et al. (2009) failed to achieve significant reductions

in residual stress and it was suggested that this was due to the difficulties in rolling

near the friction stir welding tool.

(a) In situ rolling (b) Interpass rolling

(c) Side rolling

Figure 1.27: Different rolling setups (Wen et al., 2010). The welding process in the
figures is friction stir welding, but rolling can be applied to other welding processes
equivalently.

Interpass rolling proved to be effective in reducing both distortion and residual

stresses (Altenkirch et al., 2009). Angular and bending distortions were significantly

reduced and the tensile stresses were changed into compressive ones (Figure 1.28).
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(a) Results of side rolling of AA 2024-T3 alloy. Solid markers repre-
sents longitudinal residual stress and open markers transverse one.

(b) Interpass rolling of AA 2198-T8 alloy

Figure 1.28: Side and interpass rolling results for AA 2024-T3 and AA 2198-T8
alloys (Altenkirch et al., 2009).
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Wen et al. (2009) applied rolling to a large friction stir welded component, specif-

ically an integrally stiffened panel whose total length was 3.7 m. In their finite ele-

ment model, after the friction stir welding process, the panel was characterised by a

bowing distortion of about 10 mm; after the rolling pass (set at 1% reduction), the

panel was practically flat, the bowing distortion being less than 1 mm.

1.4.2 Rolling of additive manufacture parts

AM components, due to the multiple thermal cycles they undergo during the man-

ufacturing process, are affected by residual stress and distortion (Abe et al., 2001,

Akula and Karunakaran, 2006, Anca et al., 2010, Baufeld et al., 2011, Charles and

Järvstr̊at, 2009, Kruth et al., 2007, Levy et al., 2003, Song and Park, 2006, Yan

et al., 2009, Zäh and Branner, 2010). Colegrove et al. (2013) demonstrated the fea-

sibility of rolling of WAAM structures and investigated the effect of rolling on the

geometry (including surface waviness and deposition efficiency) and on the distor-

tion of G3Si1/ER70S-6 steel walls on S355 HSLA steel baseplates. Moreover, they

measured the changes in the microstructure. The investigated loads were 25 kN,

50 kN and 75 kN, while the deposition process was standard MIG; also, they evalu-

ated the differences between interpass rolling (every layer and every four layers) and

in situ rolling. Furthermore they tested two different roller designs, a profiled one

and one with a much deeper groove (named slotted roller).

Colegrove et al. (2013) showed an as-deposited distortion of 5 mm at the mid-

point, which increased to 6.5 mm when rolling in situ at 25 kN but decreased to

0.4 mm when using a slotted roller at 50 kN. In general, with increasing load there

is a reduction in distortion. In terms of surface waviness, once again the best result

was achieved with the slotted roller at 50 kN. Interpass rolling, when done every four

layers, did not give any particular benefit compared to the as-deposited specimen.

The deposition efficiency was maximised when using the slotted roller (97%), and

was over 20% better than the as-deposited efficiency (75%).
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As for specimens’ microstructure, there was a strong reduction in grain size,

which was as small as 4.5 µm. According to Colegrove et al. (2013) potentially the

deformation resulted in nucleation of more austenite grains which in turn produced

a finer transformed microstructure.

1.5 Summary

AM is moving quickly towards a level of maturity which should soon make it suitable

for full industrial application. Its advantages in terms of cost reduction, lead time

reduction and increased design freedom are evident. Companies are now investing

heavily into research on the process to acquire the required data that will enable

the qualification of the technique.

Amongst the range of materials that can be processed by AM, titanium is pos-

sibly the focus of research in the field, due to the extremely high costs associated

with its production and processing by conventional methods. In particular, in the

aerospace sector this alloy has been adopted for a growing number of large struc-

tural components, affected by BTF ratios and lead times. These structures have the

potential for the largest cost benefits associated with the implementation of AM.

The main challenges to process implementations are:

• control of geometry;

• microstructure;

• mechanical properties;

• shielding;

• residual stress and distortion.

1.5.1 Control of geometry and process model

The deposition processes most suited to the AM of large structures are mainly

arc-based; unfortunately there aren’t commercial systems currently available. To
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enable automation it is necessary to know how the process parameters affect the

deposit geometry. While efforts have been made to monitor the quality of the bead

during deposition to ensure the absence of defects, a systematic characterisation of

process behaviour has not been undertaken so far. In particular, to minimise the

BTF ratio parameters such as wire feed speed, arc current, travel speed, can be

varied to produce deposits with different geometrical characteristics, to match that

required in part design. This is especially meaningful with regards to the width

of the deposit: an excess of material results in undesirable waste which has to be

machined away, and therefore is to be avoided. Consequently it is of paramount

importance to study the effect of such parameters and develop a mathematical

model to predict their effect upon geometry; such a model enables the selection

of the most appropriate parameter combination on a case-by-case basis to minimise

waste, maximise productivity and enable automation. Ultimately, this set of process

equations is required for the development of Computer-Aided Manufacturing (CAM)

software.

1.5.2 Microstructure and mechanical properties of titanium

AM is essentially a micro-casting process, which results in long columnar grains that

are highly textured when applied to titanium. This results in strongly anisotropic

mechanical properties, with superior elongation in the vertical direction, and higher

strength in the horizontal one10. The repeated thermal cycles induced by the depo-

sition of each layer cause local variations of the microstructure, with inconsistent α

lamellae size. These features are undesirable from a design point of view and may

limit the implementation of AM.

High-pressure rolling, when applied to steel AM, produced a refined microstruc-

ture. Therefore, it is necessary to determine whether similar improvements can be

achieved in Ti–6Al–4V.

10If the layers are deposited horizontally
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1.5.3 Oxygen levels and shielding requirements

Another problem is related to the required O2 level within the surrounding atmo-

sphere for production of parts with the desired mechanical properties. Ti–6Al–4V

wire contains oxygen as alloying element due to its capacity to act as α phase

stabiliser, thus enhancing strength. However, too high concentrations lead to em-

brittlement, therefore the general approach is to keep the O2 levels in the deposition

atmosphere as low as possible which may not be necessary. Less stringent constraints

on O2 levels could result in cheaper equipment and faster processing times. Higher

tolerances could also facilitate the adoption of local shielding devices, as opposed

to enclosures. Therefore, it is necessary to understand how the O2 levels in the

deposition environment affect the O2 contamination of the final part.

1.5.4 Residual stress and distortion

Similar to welded components, AM parts are also affected by residual stresses and

distortion. These are possibly the two greatest causes of concern when considering

whether the process can be implemented.

A variety of methods has been investigated to mitigate residual stress and dis-

tortion. Amongst them, high-pressure rolling seems to be the one with the highest

potential, due to its ease of implementation, and limited cost. Furthermore, it has

already been tested for welding applications with success. Its feasibility on AM

structures was proved on initial steel trials; however, the technique has never been

applied to titanium deposits. Therefore its effect on residual stress, geometry, dis-

tortion and mechanical properties needs to be determined.

1.6 Research questions

The research questions can be formulated as the following:

• Is it possible to identify a relationship between part geometry and process
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parameters during TIG WAAM?

• Does rolling address the critical issue of strong anisotropic properties due to

the columnar prior β grains produced by WAAM of Ti–6Al–4V?

• Does rolling of titanium WAAM parts improve the mechanical properties?

• What is the relationship between the O2 levels present in the atmosphere

during deposition and the O2 levels in the final part?

• Does rolling reduce residual stress and distortion in Ti–6Al–4V WAAM com-

ponents?

1.7 Aim & objectives

The aim of the research project is to develop large scale Ti–6Al–4V WAAM by

producing components with acceptable structural integrity and homogeneity, from

the geometrical, microstructural, mechanical and residual stress points of view. The

research questions are related to the fundamental issues shown in Figure 1.29.

Challenges of 

Wire+Arc AM

Residual 

stress

Mechanical 

properties
MicrostructureGeometry

・ Wall width

・ Layer height

・ Columnar prior 

β grains

・ Texture

・ Strength

・ Anisotropy

・ Shielding

・ Distortion

・ Tensile stress

Figure 1.29: Project map with the areas that will be investigated in the research
work.

The objectives are the following:

• to identify the relationships between process parameters and Ti–6Al–4V de-

posits geometry (chapter 2);

• to study the effect of high-pressure rolling on the microstructure of Ti–6Al–4V

WAAM components (chapter 3);
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• to assess the effect of high-pressure rolling on the mechanical properties of

Ti–6Al–4V WAAM components, also with regards to the relationship between

the observed microstructure and the mechanical properties (chapter 4);

• to investigate the effect of O2 in the deposition atmosphere on mechanical

properties (chapter 4);

• to evaluate changes in the deposits geometry, distortion and residual stress

produced by high-pressure rolling (chapter 5).
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Chapter 2

Empirical modelling of TIG-based

WAAM

This Chapter contains material from the following articles:

Martina, F., Menhen, J., Williams, S.W., Colegrove, P.A., Wang, F. 2012. Investi-
gation of the benefits of plasma deposition for the additive layer manufacture of
Ti–6Al–4V. Journal of Materials Processing Tech. 212, 1377–1386.

Martina, F., Williams, S., Colegrove, P.A., 2013. Design of an empirical process
model and algorithm for the tungsten inert gas wire+arc additive manufacture of
Ti–6Al–4V components, in: 24th International Solid Freeform Fabrication Sym-
posium, Austin, Texas, USA. pp. 697–707.

2.1 Context

Controlling Wire+Arc Additive Manufacturing (WAAM) geometry in an automatic

fashion is not possible yet. Differently from beam-based processes, whose transition

from computer drawing to machine code can be considered automatic, WAAM still

requires a labour-intensive process of parameters investigation and selection. These

depend on the different geometrical features present in the parts. Through numerous

iterations, parameter combinations which provide the requested deposit width can

be found. A flexible way of controlling the geometry is desirable to automate the

51
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process and to minimise material waste, and it is the objective of this chapter.

Challenges of 

Wire+Arc AM

Residual 

stress

Mechanical 

properties
MicrostructureGeometry

・ Wall width

・ Layer height

・ Columnar prior 

β grains

・ Texture

・ Strength

・ Anisotropy

・ Shielding

・ Distortion

・ Tensile stress

Figure 2.1: Project map. In bold the work package object of the present chapter.

2.2 Introduction

Some problems are preventing Additive Manufacturing (AM) from being imple-

mented in a real industrial environment; the inability to relate process parameters

to part geometry being one of them. Martina (2010) developed some empirical

relationships between process parameters and walls geometry for Plasma Wire De-

position (PWD) WAAM by adopting a Design Of Experiment (DOE) approach,

similarly to that carried out by Almeida and Williams (2010) for Cold Metal Trans-

fer (CMT) WAAM.

For Tungsten Inert Gas (TIG) WAAM, so far it has been impossible to select

parameter values on the basis of, for example, the desired part thickness, or layer

height. Actually, without great knowledge and expertise, one would not know how

thick the layers extracted from the Computer-Aided Design (CAD) drawing should

be. Moreover, without prior knowledge of the process, unfeasible parameter combi-

nations could be selected.

This chapter addresses the feasibility issues for TIG WAAM by determining a

working envelope for the process. In the preliminary experiments, by considering

upper and lower limits for each of the process parameters, as well as testing all their

possible combinations, a set of constraints was developed. The constraints separate
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the feasible and stable region of parameters combinations which delivers a part of

acceptable quality, from the region which does not.

In order to evaluate the geometric characteristics of the parts built by WAAM, a

series of metrics was defined, the aim being to compare different parameter combi-

nations in a systematic and analytical way, enabling the possibility of ranking them

objectively. The metrics studied are Wall Widths (WWs) and Layer Heights (LHs).

The defined metrics are considered as responses in a DOE, which produced a set

of equations that relate the process parameters to geometrical features. Ultimately,

the equations should give the capability of predicting characteristics such as LH

or WW, for a given set of process parameters, and vice versa, while ensuring an

acceptable quality of the deposition.

Finally, a case study that shows how the equations might be used to manufacture

a component is provided.

2.3 Experimental procedures

The equipment used for the preliminary and process model experiments were dif-

ferent and are presented in sections 2.3.1 and 2.3.2, respectively. Regardless of the

experiments, the TIG torch was mounted on an ABB 6-axis robot. A 100 mm long

trailing shield was used to minimise oxidation. Argon gas was used for both the pro-

cess and the trailing shielding gases. The wire was fed from the front of the welding

pool and its chemical composition is shown in Table 2.1. A schematic diagram of

the setup is shown in Figure 2.2.

Table 2.1: Chemical composition of Ti–6Al–4V wire used in the experiments.

Ti Al V Fe O C N H TOE Y Others
89.397 6.14 3.96 0.18 0.14 0.02 0.011 0.001 <0.1 <0.001 <0.05

To reduce the number of independent variables investigated, and therefore the

complexity of the experiment, some factors were kept at the same level throughout
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Substrate
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Figure 2.2: Schematic of experimental setup.

the research. These were:

• Electrode-to-workpiece distance = 3.5 mm;

• Tungsten electrode tip angle = 30°;

• Wire diameter = 1.2 mm;

• Gas flows (Table 2.2);

• Pulsed DC current parameters:

– Ip/Ib = 1.5

– Pulses duration = 0.05 s

– Frequency = 10 Hz

where in the pulsed waveform Ip is the peak current and Ib is the base current.

Table 2.2: Deposition stages: gas flow rate, and durations.

Pre Slope Deposition Slope Post
purge up down purge

Process gas flow rate (l min−1) 9 9 9 9 9
Trailing shield gas flow rate
(l min−1)

20 20 20 20 20

Duration (s) 10 0.1 42 to 125 a 0.1 20
aDuration depended on TS

The Ip/Ib ratio of 1.5 was chosen after some preliminary experiments. On the one
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hand, they showed that for low ratios the benefits of pulsing was minimal. On the

other hand, for high ratios (>1.8) the background current was low, which resulted

in a lower maximum Wire Feed Speed (WFS) given the low heat input during the

background heating period (see Table 2.3).

Table 2.3: An example of the effect of the Ip/Ib ratio on the maximum achievable
WFS.

Travel Average Ip Ib Ip/Ib Max. wire
speed current ratio feed speed

(mm s−1) (A) (A) (A) (m min−1)

3 90 70 110 1.57 1.8
3 90 60 120 2.00 1.6

2.3.1 Preliminary experiments for determining process win-

dow

The power source used for this experiment was a Migatronic TIG Commander 320A

AC–DC and wire feeder was a Migatronic KT-4. A set of 70 preliminary single layer

(bead on plate) experiments provided the necessary information for understanding

the general behaviour of the process and determining the limitations of the process

parameters. In TIG deposition the investigated parameters could be set indepen-

dently from each other, leading to combinations which are unfeasible due to either

physical limits or impractical parameter combinations. While two parameters were

kept constant, the other was varied in fixed steps till an unfeasible combination was

found on the basis of visual assessment of the deposited layer. This procedure was

repeated until all three main parameters were varied separately.

Once the preliminary experiments were performed, each point was plotted on two

separate cartesian planes (WFS vs. Current, and WFS vs. TS). Points were marked

differently according to their feasibility and separated by lines whose equations were

then described. These lines were additional to those representing the minimum and

maximum value for each factor.
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2.3.2 Experiments for developing a statistical empirical model

For this part an EWM Plasma/Tig power source, and an EWM TIG torch were

used. Walls were made of 15 layers and were 250 mm long. Layer deposition always

started from the same end. Before starting each wall, the plates were ground to

eliminate impurities and improve the surface finish, and degreased with acetone. Six

straight walls were built on Ti–6Al–4V plates measuring 330×210×12 mm3. The

part was allowed to cool down to 50 ◦C before depositing a new layer for consistent

part geometry. It was not necessary to wait for the part to cool down to room

temperature, as preliminary experiments showed the geometry of a new bead did

not change if the temperature of the already deposited part was below 70 ◦C (please

see appendix A on page 165).

After establishing the process constraints, a D-Optimal design method (Mont-

gomery, 2006) was chosen for the experiment. Optimal designs are computer-

generated and are particularly suitable when the experimental region is irregular, the

model is nonstandard (i.e. the experimenter knows beforehand some interactions will

not be significant), and/or there are requirements on the maximum sample size (i.e.

a reduced number of runs must be done). A design is D-Optimal if it “minimises

the volume of the joint confidence region on the vector of regression coefficients”

(Montgomery, 2006). In practice, the experimenter inputs the constraint equations

and specifies any conditions related to unnecessary model terms and sample size.

The software then runs an algorithm and returns the set of experiments that have

the highest D-Optimal efficiency.

After the preliminary experiment and factors reduction, Wire Feed Speed (WFS)

[X1], Travel Speed (TS) [X2] and Current [X3] were selected as the factors in the

model.

As for the responses, quadratic behaviour was anticipated on the basis of the work
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of Martina (2010), so three-factor second-order polynomial functions were fitted:

Y = β0 +
3∑
i=1

βixi +
3∑
i<j

βijxixj +
3∑
i=1

βiix
2
i (2.1)

where Y is the predicted response, β0 is the constant process effect, βi is the linear

effect of Xi, βij are the interactions of first order and βii are the quadratic effects of

Xi.

Stat-Ease Design-Expert 7.1® (2008) is a statistical software that creates and

evaluates general factorial designs, fractional factorial designs, response surfaces,

optimal designs, and it was used in the present research. The software indicated

that 21 experiments were necessary to calculate the regression coefficients for the

full model.

2.3.3 Measurements

During the build process, the deposited Layer Height (LH) from the baseplate was

measured with a digital vernier at at 50 mm, 100 mm and 150 mm; the three points

were labelled M1, M2 and M3 (lhi,M1 , lhi,M2 and lhi,M3 . The height of each layer

(LHi) was calculated as:

LHi = xi − xi−1 =

(
1

3

3∑
j=1

lhi,Mj

)
−

(
1

3

3∑
j=1

lhi−1,Mj

)
(2.2)

This value was used to determine the height increment for deposition of the following

layer. For the statistical analysis, given the thermal effect of the base plate, the

first four layers were analysed one by one (LH1, LH2, LH3, and LH4 as shown in

Figure 2.3) and for the remaining layers, i.e. from the 5th to the 15th, their overall

average was considered:

LH = µ =
1

11

15∑
i=4

LHi (2.3)
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The three transverse sections which were taken corresponded to the measurement

points; they were placed into resin, ground, polished and etched with hydrofluoric

acid in order to take optical microscopy images. The deposited walls have an irreg-

ular surface finish which makes a machining operation necessary to achieve plane

side surfaces. However, in the present case the difference between the width before

machining and the width which is the effectively usable one was minimal and not

measurable.

Also the WWs, were considered separately, according to their dependance on

the LH. To do this, a series of parallel lines was laid, orientated in the Y direction

parallel to the baseplate, on the optical microscope images, each line corresponding

to a specific layer height. This was possible because each cross section corresponded

LH
1

LH
4

LH
3

LH
2

WW
2

WW
4

WW
3

WW
1

WW

Y

Z

SUBSTRATE

Figure 2.3: Schematic representation of a generic part cross-section. The wall width
takes into account the width of the specimen, at its minimum point. The first four
layers were considered separately to the upper part of the wall. The layer height
corresponds to the increase in specimen’s height after the deposition of a new layer
and the first four layers were considered separately.
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to the previously described measurement points, hence the height of each layer was

known and was identifiable on the optical microscope images. Extracting the cross

sections in correspondence of the measurement points was necessary, as any other

cross section could have been slightly different in height/width due to normal noise

occurring in the process.

The wall widths of the first four layers (WW1 to WW4) were taken only on the

midpoint transverse section. When there was uncertainty in the values, conservative

estimates were always taken.

2.4 Experimental results and discussion

2.4.1 Working envelope

The preliminary investigation on Ti–6Al–4V deposition showed that the constraints

on the parameters that separate the feasible from the unfeasible combinations could

be represented by the following equations:

1.2 ≤ WFS(m min−1) ≤ 4 (2.4a)

2 ≤ TS(mm s−1) ≤ 6 (2.4b)

120 ≤ Current (A) ≤ 220 (2.4c)

−184 ≤ 60×WFS − 1.6× Current (2.4d)

0 ≤ −80×WFS + 1.6× Current (2.4e)

−3 ≤ −3×WFS + 1.8× TS (2.4f)

These are represented graphically by the solid lines in Figure 2.4. To provide ad-

ditional confidence in the process reliability and feasibility, the size of the region

represented by constraints b, e, d, f was reduced by 10%. Their equations became
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the following:

1.2 ≤ WFS(m min−1) ≤ 4 (2.5a)

2 ≤ TS(mm s−1) ≤ 5.4 (2.5b)

120 ≤ Current(A) ≤ 220 (2.5c)

−206.16 ≤ 68.64×WFS − 1.91× Current (2.5d)

22.08 ≤ −92×WFS + 1.84× Current (2.5e)

−2.69 ≤ −3.4×WFS + 2.02× TS (2.5f)

These are represented graphically by the dashed lines in Figure 2.4. The low

WFS and TS limits are due to the need for high deposition rates and therefore

lower values were not considered. The WFS upper limit was due to the hardware

limitation of the Migatronic KT-4 wire feeder. The current upper limit is related

to WFS and TS upper limits, as 220 A is the current necessary to melt the amount

of the WFS upper limit (4 m min−1) when the torch moves at the maximum speed

(6 mm min−1).

Please note the current considered in the DOE is the average one, given by the

average of Ip and Ib described in section 2.3 on page 53.

2.4.2 Process capability

The ranges of measured responses are shown in Figure 2.5a, and a comparison

against competing processes is shown in Figure 2.5b. The comparison data, for the

CMT and PWD processes considers only out-of-chamber manufacturing methods,

and is taken from the work of Almeida and Williams (2010), Eze (2009), Martina

(2010), Milewski et al. (1999), Tolochko et al. (2004). It was assumed that the WW

equalled the spot size for laser-based processes. Figure 2.5a shows how the range of

both WWs and LHs is quite consistent and does not vary depending on the layer

number. In Figure 2.5b, TIG deposition performs similarly to PWD, in terms of
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both WW and LH, although both are slightly smaller with TIG. The capability

of TIG deposition is complementary to CMT, with the latter producing thinner

walls with a much greater layer height. This suggests the possibility of combining

the two processes to increase the overall capability of a manufacturing cell. The

main advantage of the powder-bed laser deposition process is the small feature size

capability, however they are characterised by a much lower deposition rate, which

ranges from 100 g h−1 to 200 g h−1.

Figure 2.5c shows the ranges of wall widths that are achievable for each layer

height. The minimum WW that can be obtained irrespective of the LH is around

5 mm. While the low WW value stays constant, the high value increases steadily

and reaches its maximum at around 14 mm for a LH of 1.5 mm. For LH>1.5 mm

the WW range reduces progressively, and eventually for a LH of 1.9 mm the WW

ranges from 8 mm to 9 mm only. The process flexibility enables the layer height

to be fixed for the whole part and the wall width may be varied according to the

specific feature that needs to be built. What Figure 2.5c suggests is that beads with

extreme aspect ratios (WW/LH) are not always achievable. A plot of the minimum

and maximum aspect ratio for each layer height is shown in Figure 2.5d. The highest

aspect ratios are produced for a very low LH; this means that for the lowest LH,

only relatively high WWs are produced. As the LH increases, the minimum aspect

ratio decreases linearly; this means the molten pool has the same minimum width

up to a LH of 1.2 mm (see also constant minimum WW in Figure 2.5c). Above this

value, the molten pool must increase in width in order to enable the deposition of

thicker layers, and the minimum aspect ratio plateaus. As for the maximum aspect

ratio, its trend is always negative; this means that as the LH increases, the process

becomes less capable of adjusting the WW accordingly. This becomes more evident

for LH above 1.6 mm, when the maximum aspect ratio reduces dramatically and in

fact only a limited range of WWs can be produced. In conclusion, when thick layers

are deposited the largest portion of the energy is used for melting the wire at the
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expense of the underlying material.

The maximum deposition rate achieved using TIG deposition was 1.2 kg h−1;

however it was constrained by the 4 m min−1 limit of the wire feeder used when doing

the preliminary experiments (see section 2.3.1 on page 55). The process showed the

potential for further increasing the deposition rate, provided both the heat input

and the WFS could be increased. The time to deposit the 15 layers, considering

deposition time only, ranged from 10 min 30 s to 31 min 15 s, and depended on travel

speed.

Figure 2.6 shows a plot of the layer heights and wall widths, which considers the

first four layers and the average values for the remaining layers for two specimens.

The LH and WW are characterised by an opposite trend, the former decreasing,

and the latter increasing, as the layer count increases. This justifies modelling the

responses for the first four layers separately as described in section 2.3.3 on page 57.

Furthermore, the trend lines confirm how the layer height becomes regular after the

fourth layer.

2.4.3 Statistical analysis and process equations calculation

To determine the relationship between the measured response and the statistically

significant variables, ANalysis Of VAriance (ANOVA) was performed. The coeffi-

cients from the response models are shown in Table 2.4.

2.4.3.1 Statistical tests

Table 2.5 presents the coefficients of determination (R2) and Adjusted−R2 for the

models. The R2 coefficients, which according to Montgomery (2006) measure the

proportion of the variability in the data that can be explained by the model, indicate

that over 90% of the variability can be explained by the models. In six cases it is

over 95% and in five over 97%. In practice this should translate to good agreement

with the actual dimensions.
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Montgomery (2006) explains that the p − value helps the decision maker to

determine the significance of the data, and its threshold is usually 0.05; and Lack

of Fit is the sum of squares of dropped factors. Provided that all and only the

insignificant terms were excluded from the model, one can assume that the significant

Lack of Fit (indicated in bold in Table 2.5) is given by random errors in the data.

Pred− R2 values, which predict the variability explained by the model for new

data, are in reasonable agreement with the Adjusted − R2 values and in all three

cases the Adeq. Precision tests, which measure the signal-to-noise ratio, are greater

than 4, which is the minimum value typically accepted for this term.
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2.4.3.2 Analysis of plots

3D surfaces and contour plots were generated to represent graphically the regression

equations. The WW (Figure 2.7 to Figure 2.9) does not seem to depend on the

WFS, and it is mostly affected by the current and the TS. In fact, the surface

plot in Fig 2.7a appears flat on the WFS axis and is then characterised by a linear

increase as the Current increases. In Fig 2.7b, while the surface is still insensitive

to any variation in WFS, it decreases as the TS increases. The lack of dependence

on the WFS is shown also by its p− value, which is 0.3870. In fact, WFS p− value

is just about significant only in the case of the WW3 model, in which it is 0.0401.

In all other cases, it is always over 0.3 and even above 0.7 (WW4). This would have

normally resulted in this term being excluded from all process equations; however,

due to its physical significance, it was kept.

The insensitivity to WFS in terms of WW is the main difference with PWD.

In fact, Martina (2010) showed how in PWD an in increase in WFS results in an

increase in WWs. This is possibly due to the effect of the plasma gas which applies

an additional force on the molten pool, effectively spreading the molten pool over a

larger surface, if the fed material increases.

On the contrary, the effect of TS and Current is in agreement with what was

seen previously in PWD (Martina et al., 2012). The maximum WW is 13.87 mm

and is achieved by using the lowest TS and Current close to the upper limit. The

minimum WW is 5.21 mm and can be obtained by using the highest TS and the

lowest Current. In other words, high heat input results in wider walls; and vice

versa.

Contour plots in Figure 2.8 show the effect of the interaction of WFS and Cur-

rent, for three different level of TS (2 mm s−1, 4 mm s−1 and 6 mm s−1). Note the

colourmap range is the same for the three figures. The contours are only shown

for the region covered by the constraints described in section 2.4.1 on page 59. As

seen previously, the behaviour of the WW is influenced marginally by the WFS and
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substantially by the Current, especially at low TS (Figure 2.8a). At this TS, for a

given WFS changing the current from 120 A to 200 A could lead to an increase in

WW of 4 mm. The process is less sensitive to Current at medium TS (Figure 2.8b),

while at high TS the impact of Current is minimal (Figure 2.8c).

Contour plots in Figure 2.9 show the effect of the interaction of WFS and TS,

for three different levels of Current (120 A, 170 A and 220 A). Also in this case the

colouring suggests very little effect of WFS, and the predominance of TS. Thinner

walls can be achieved with a high TS, low WFS and low Current (120 A, Figure 2.9a).

For medium levels of Current (170 A), a range of WWs spanning 9 mm can be

obtained, and WW decreases with increasing TS (Figure 2.9b). For high levels

of Current (220 A), the WW range spans only 6 mm, as the number of feasible

parameter combinations is small, due to the constraints (Figure 2.9c).

The LH results are plotted in Figure 2.10 to Figure 2.12. Opposite to the WW,

in this case the WFS does affect the response, as can be seen in Figure 2.10a in

which the surface increases with the WFS. In the plot of the interaction of the WFS

with the TS (Fig 2.10b), the surface shows a more quadratic behaviour given by the

effect of the TS. The maximum LH is 1.91 mm and can be obtained by using a TS

value close to its lower limit, and the lowest Current. The minimum LH is 0.53 mm

and can be achieved with at least 44 different parameters combinations, one of them

being with the lowest WFS, and a TS close to its upper limit. In other words, given

that for continuity:

LH×WW∝WFS

and the WW is independent of WFS. It follows that LH∝WFS. In fact, the maximum

LH is achieved with the highest WFS compatibly with the constraints shown in

Figure 2.4. Furthermore, given that minimum Current minimises the WW (see

Figure 2.8), for the conservation of volume this must result in maximisation of LH.

The difference with PWD (Martina, 2010) is once again related to the WFS. In

TIG deposition, due to the lack of constraint in the vertical direction the effect of
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WFS is more prominent. Hence, an increase in WFS will result in a higher deposit,

rather than a wider one.

The responses modelled for the first four layers (WW1, WW2, WW3, WW4, LH1,

LH2, LH3, LH4) behave similarly to WW and LH, and therefore their specific plots

will not be included.

An attempt to optimise the process could present the typical problems of multi-

objective optimisation, which according to Trautmann and Mehnen (2009) aims at

optimising concurrent objectives which are contradictory but depend on the same

set of variables. Therefore, as reported by Ehrgott (2005), there is no unique opti-

mal solution, but often a set of different solutions calculated by using desirability

functions (see section 2.4.3.4 on page 77).
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(a) WW as a function of WFS and Current (TS = 4 mm s−1)

(b) WW as a function of WFS and TS (Current = 170 A)

Figure 2.7: Wall width 3D surfaces.
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(c) TS = 6 mm s−1

Figure 2.8: Wall width contour plots on the WFS – Current plane. Note colormap
range is the same for the three figures.
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Figure 2.9: Wall width contour plots on the WFS – TS plane. Note colormap range
is the same for the three figures.
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(a) LH as a function of WFS and Current (TS speed = 4 mm s−1)

(b) LH as a function of WFS and TS (Current = 170 A)

Figure 2.10: Layer height 3D surfaces.
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Figure 2.11: Layer height contour plots on the WFS – Current plane. Note colormap
range is the same for the three figures
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(c) Current = 220 A

Figure 2.12: Layer height contour plots on the WFS – TS plane. Note colormap
range is the same for the three figures.
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2.4.3.3 Model validation

Two additional walls were built to validate the models:

1. Validation 1 : the parameters were selected randomly within the working en-

velope, with:

(a) WFS = 2.5 m min−1

(b) TS = 4 mm s−1

(c) Current = 150 A.

2. Validation 2 : the parameters were chosen so that a WW of 12 mm could be

obtained, with:

(a) WFS = 2.4 m min−1

(b) TS = 2.6 mm s−1

(c) Current = 190 A.

The measured values were compared with those predicted by Stat-Ease Design-

Expert 7.1® (2008), as shown in Figure 2.13. All values fell within the calculated

95% confidence intervals, except for the LH2 of the first specimen (underestimated),

and WW2–WW3 of the second (overestimated). It must be said the most impor-

tant parameter to have confidence in is the WW, for which the model proved to

be reliable. In fact, should the WW be underestimated by a large amount, the

manufactured part would be scrapped. On the contrary, solutions such arc voltage

control proved to be capable of overcoming the inaccuracy that might occur in the

LH prediction, as its closed loop feedback instantaneously adjusts the electrode-to-

workpiece distance. Consequently, errors in LH prediction are not crucial for the

successful deposition of the part.
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Figure 2.13: Comparison of experimental vs. predicted results for two specimens
built in order to validate the calculated models. (a) evaluation of layer height models;
(b) evaluation of wall width models. Error bars represent 95% confidence intervals.

2.4.3.4 Case study

Let us analyse a practical example. A manufacturer is asked for a straight wall

for mechanical properties testing. The design specification reports a part length of

250 mm, a height of 150 mm and a width of 10 mm. The width already includes

a safety machining margin to achieve an effective width of 9 mm. The manufac-

turer wants to deliver the part as early as possible so he identifies two requirements:

maximisation of the WFS, which accounts for the deposition rate, as well as maximi-

sation of LH, to reduce the number of layers and therefore start/stops. In practice,

he sets a target for the WW, while attempting the maximisation of both WFS

and LH. The optimisation procedure is based around the simultaneous optimisation

technique described in Derringer and Suich (1980) and Montgomery (2006, p. 451).

The optimisation algorithm ran by Stat-Ease Design-Expert 7.1® (2008) returns

a set of solutions with Desirability index equal to 0.752 (this index is equal to 1

when all constraints and targets are met). The first proposed solution would give

a WW of 10 mm and a LH of 1.5 mm, with WFS = 3.2 m min−1, TS = 3.7 mm s−1

and I = 195 A. The manufacturer then knows that 100 layers would be necessary to
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build the part. Each layer would take 68 s for the actual deposition, plus 10 s for the

pre purge and 20 s for the post purge, giving a time for each layer of 98 s. Without

including the start/stops, the total building time is 2 h 40 min.

2.4.4 Model limitations

One of the downsides of ANOVA and DOE in general is the lack of physical under-

standing as a consequence of the regression analysis. The whole process is treated as

a black box into which inputs are fed and output measured (Montgomery, 2006). The

resulting process equations are convenient from a practical point of view, because

they enable process optimisation in both the numerical1 and the point prediction2

forms. To a certain extent, the calculation of the regression coefficients for each of

the terms enables a minimum understanding of their weigth, i.e. the magnitude of

their effect on the measured responses; however this is still far from clarifying what

the constitutive relationships are.

Another of the limitations of this work is only straight wall, vertical structures

have been investigated. At the moment, it is unknown if the model would work also

when producing curved or non-vertical structures. Moreover, multi-pass walls (i.e.

walls of greater thickness, generated by the deposition of side-by-side beads at the

same Z coordinate) have not been attempted.

Finally, the model was not tested on different equipment (torches, power sources,

etc.), so it is unclear whether these results are transferrable. The same applies for

different materials. Martina (2010) found an identical behaviour between stainless

steel and Ti–6Al–4V in terms of process working envelope; however the empirical

process equations are unlikely to be transferrable.

1The calculation of what the process parameters should be, given the desired response
2The calculation of a response for a given set of inputs
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2.4.5 A physics-oriented approach

To overcome some of the limitations described in the previous section, the experi-

mental data was reanalysed with a physics-oriented approach. Instead of looking at

the process as a black box, the input data available for the steady-state deposition

was reorganised in a physically meaningful way. Two equations were developed:

WW = 3.70 + 8.48 HI (2.6)

LH = 0.59− 1.08 HI + 0.12 WFS/TS (2.7)

HI is the heat input, calculated as

HI =
V Current

TS
(2.8)

where V is the arc voltage. The statistical tests performed on these equations

are shown in Table 2.6; R2, Adjusted − R2 and Pred − R2 are worse than the

respective models output of the DOE, however the alternative models show better

Adeq. Precision which means they have a better signal-to-noise ratio.

Table 2.6: Statistical tests performed on the alternative models.

Adeq. Lack of Fit
R2 Adjusted−R2 Pred.−R2 Precision p-values P-values

WW 0.9192 0.9147 0.9060 39.193 0.2279 <0.0001
LH 0.8325 0.8128 0.7202 20.090 0.0011 <0.0001

In the case of the WW, the heat input alone can explain most of the variation

around the mean seen in the experimental data, regardless of the WFS and in turns

regardless of the quantity of added material. This confirms the lack of statistical

significance of the WFS model term captured also in the initial analysis (see page

67).

As for the LH, the heat input has a negative coefficient: the molten pool dimen-

sion increases with the heat input producing wider walls, and lower layer heights.
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The addition of the WFS/TS term accounts for the added material per unit length.

If the TS is fixed, so is the heat input (see equation 2.8); if the WFS is increased

then the WW does not vary, and in turns the LH must increase accordingly.

2.5 Summary and conclusions

In this Chapter the feasibility of TIG deposition for AM purposes has been demon-

strated:

• A working envelope in which the process behaves steadily and delivers accept-

able parts has been defined;

• The process has been modelled empirically, through a systematic approach i.e.

DOE, and specifically D-Optimal design;

• Modelled responses include: LH, WW for the first four layers, and the average

for the remaining ones;

• The model has been validated successfully.

In terms of process capability:

• LH ranged from 0.6 mm to 2.12 mm;

• WW ranged from 4.9 mm to 13.9 mm;

• Maximum deposition rate was 1.2 kg h−1 (limited by wire feeder).

From a statistical point of view:

• WW is highly dependant on the current;

• LH is dependant on wire feed speed.

The DOE findings were confirmed by a subsequent analysis which related the

WW to process heat input, and the LH to both heat input and WFS/TS ratio.

Recommendations include:
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• Alternate the deposition direction to avoid build up at the beginning of the

wall, and sloping at the end;

• select parameter combinations which are not on the edge of the working enve-

lope;

• in case of more than one suitable combination, consider productivity factors

such as maximising WFS and LH;

• study of alternative methods of shielding;

• study of alternative methods of wire feeding;

• maximise substrate utilisation by cutting as little substrate as possible to

accommodate the actual part and the clamps;

• maximise productivity by depositing more than one part in the same cell.
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Chapter 3

Effect of rolling on microstructure

of WAAM parts

This chapter contains material from the following articles:

Martina, F., Williams, S., Colegrove, P.A., 2013. Improved microstructure and in-
creased mechanical properties of additive manufacture produced Ti–6Al–4V by
interpass cold rolling, in: 24th International Solid Freeform Fabrication Sympo-
sium, Austin, Texas, USA. pp. 490–496.

Colegrove, P.A., Coules, H.E., Fairman, J., Martina, F., Kashoob, T., Mamash, H.,
Cozzolino, L.D., 2013. Microstructure and residual stress improvement in wire
and arc additively manufactured parts through high-pressure rolling. Journal of
Materials Processing Tech. 213, 1782–1791.

Martina, F., Colegrove, P.A., Williams, S.W., Meyer, J., 2014a. Microstructure
of interpass rolled Wire + Arc Additive Manufacturing Ti–6Al–4V components.
Journal of Materials Processing Tech. (submitted).

3.1 Context

Titanium Wire+Arc Additive Manufacturing (WAAM) deposits are characterised by

long prior β columnar grains. This microstructure is undesirable from a mechanical

point of view. In the present chapter, rolling is used as a means to eliminate the

columnar grains and produce a refined, equiaxed, texture-free microstructure.

83
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Figure 3.1: Project map. In bold the work package object of the present chapter.

3.2 Introduction

In Ti–6Al–4V Additive Manufacturing (AM) components, prior β grains are equiaxed

within the substrate, however due to epitaxial grain growth large columnar grains

are observed in the bulk of the deposited components; these traverse the deposited

layers and can be as long as the whole height of the component. Wang et al. (2013)

show how the prior β grains grow perpendicular to the thermal gradient and are

highly textured, leading to anisotropic mechanical properties.

Ding et al. (2011) explained that other issues affecting AM components are

residual stress and distortion. A variety of methods may be used to reduce these;

one of the most effective is inter-pass rolling. Originally developed for welding by

Kurkin and Anufriev (1984), inter-pass rolling has been investigated recently by

Coules et al. (2012b). As stated in Altenkirch et al. (2009) the method consists in

introducing plastic deformation: the material is compressed normal to the surface

and consequently it is strained plastically parallel to the surface. This longitudinal

deformation counteracts the mismatch strain caused by welding. In turns, residual

stresses are significantly reduced. Rolling methods can be applied either in situ or

post weld, however Coules (2013) demonstrated that the latter is more effective than

the former.

Inter-pass rolling was applied recently to linear steel WAAM deposits by Cole-

grove et al. (2013). Particularly at the interface with the substrate, there was
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a residual stress reduction, however rolling was less effective than when applied to

welded joints, due to the strain that occurs in the transverse direction during rolling.

To overcome this shortcoming, a roller that restrained the material in the transverse

direction was developed; this roller proved to be more effective in reducing both

residual stress and distortion. The most significant finding from this work’s point

of view was the reduction in grain size due to the enhanced recrystallisation that

occurred with the deposition of the subsequent layer on the plastically deformed

component.

Therefore this chapter investigates whether similar reductions in grain size are

achievable when rolling Ti–6Al–4V WAAM components.

3.3 Experimental procedure

The experiments were performed on a custom-made rolling rig, equipped with a

Lincoln Electric Invertec V310–T AC/DC Tungsten Inert Gas (TIG) power supply.

A schematic view of the setup is shown in Figure 3.2a (the X, Y and Z directions

are defined in this figure). The electrode-to-workpiece distance was 3.5 mm. The

parameters for the pulsed TIG process are presented in Table 3.1 which produced

a Wall Width (WW) of 6 mm. The composition of the Ti–6Al–4V wire is shown in

Table 3.2.

Table 3.1: Deposition parameters.

Wire feed speed 1.6 m min−1

Travel speed 4.5 mm s−1

Peak current 150 A
Background current 70 A
Average current 110 A
Pulse duration 0.5 s
Frequency 10 Hz
Gas flow rate 10 l min−1

Trailing shield gas flow rate 20 l min−1

Torch stand-off 3.5 mm
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Table 3.2: Chemical composition of Ti–6Al–4V wire used in the experiments.

Ti Al V Fe O C N H TOE Y Others
Bal. 6.08 4 0.18 0.16 0.035 0.011 0.0017 <0.2 <0.001 <0.05

3.3.1 Evaluation of microstructure

These experiments were used to characterise the microstructure in WAAM samples

that were rolled between depositing layers. Baseplates were 405 mm long, 60 mm

wide and 6 mm thick, and were clamped by screws along each side of the plate.

(Figure 3.2b). Six walls were built: a “control” left in the as-deposited condition;

three samples that used a “profiled” roller with loads of 50 kN, 75 kN and 100 kN,

and two that used a roller with a flat profile and loads of 50 kN and 75 kN. The

specimen rolled at 100 kN fractured during rolling of the seventh layer and was

excluded from any analysis.

The “profiled” roller’s shape approximately conformed to the profile of the de-

posit as shown in Figure 3.2c. Both rollers were made of case-hardened H13 tool

steel and a rolling speed of 8 mm s−1 was used. Layer deposition and rolling ap-

plication were alternated and the part was allowed to cool to room temperature,

before rolling was applied. Deposition started 20 mm from the end of the baseplate

and stopped 15 mm from the other end (Figure 3.2b), giving a total wall length of

370 mm. Rolling began and ended 35 mm from the ends of the deposit.

Three sections were taken at the same points M1, M2 and M3 (Figure 3.2b);

mounted into resin, ground, polished and etched with a solution of hydrofluoric

acid for optical microscopy imaging. The images were used for prior β grain size

measurement, which was done with the the linear intercept method described in

ASTM E112 – 96 (2004). For each image, five measurements were taken for three

directions (0◦, 45◦, 90◦) giving a total of 15 measurements per sample.

The thickness of α lamellae in the samples produced with the profiled roller

was measured using five Scanning Electron Microscope (SEM) images. Each image
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Figure 3.2: Experimental setup for rolling investigation.

corresponded to a specific location within a generic band, as described in Martina

et al. (2012). Prior to the SEM investigation, the samples were re-polished for eight

minutes at 100 kg/m2 and 80 rpm. SEM images were taken using a backscatter

detector, a voltage of 20 keV and a spot size of four. The images were processed

with Adobe Photoshop CS4® (2008). For each image, five measurements were taken

for the four directions (0◦, 45◦, 90◦, 135◦ orientations) giving 20 measurements per

location, in accordance with ASTM E1382 – 1997 (1997), to take into account the

strong anisotropy of the microstructure. The number of intercepts across each line

was determined using ImageJ (2012) software and its plugin Measure Roi PA (2012).

Finally the α lamellae thickness was determined as 1/1.5(1/λ)mean where λmean is the

mean intercept length (Tiley et al., 2004).

Electron Backscatter Diffraction (EBSD) scans were performed with a voltage
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of 20 keV and a step size of 3 µm. The reconstruction of the β phase from the

EBSD scans was performed at the University of Manchester by Jack Donoghue and

Alphons Antonysamy using the software developed in Davies (2009), Davies et al.

(2011), based on the method presented in Humbert et al. (1994).

3.3.2 Fundamental study

The fundamental study was used to understand the microstructural changes that

occur as a result of rolling and deposition. Baseplates were 250 mm long, 60 mm wide

and 6 mm thick, and were clamped by screws along each side of the plate. In this

study four linear walls of 20 layers each were deposited without any inter-pass rolling.

Subsequently the following treatments were applied: for two walls only the last

layer was rolled with loads of 50 kN and 75 kN respectively; for the other two, only

the last layer was rolled at 50 kN and 75 kN respectively after which an additional

layer was deposited. Only the profiled roller was used for this investigation. These

four walls were sectioned, and critical points in terms of microstructural changes

were identified. The sample rolled at 75 kN with a subsequent layer deposited was

repeated: before depositing the 21st layer two R-type thermocouples1 were spot

welded into the bottom of φ 3.2 × 3 mm deep holes, drilled perpendicular to the

side of the deposit, 4.5 mm and 4.9 mm below the top. These holes corresponded to

5.6 mm and 6 mm below the expected top of the 21st layer. With regards to the point

6 mm below the surface, the experiment was repeated a further two more times to

validate the temperature measurements. In the first repetition the temperature was

measured in four points with R-type thermocouples. In the second, it was measured

in four more points with K-type thermocouples2.

1Rated for temperatures up to 1600 ◦C
2Rated for temperatures up to 1350 ◦C
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3.4 Experimental results

The microstructures from the five samples are shown in Figure 3.3. All the samples

were slightly narrower near the baseplate due to the different heat flow in this region

which has been previously reported in Martina (2010).

The control sample demonstrated large, columnar prior β grains, which grew

epitaxially from the baseplate toward the top of the sample (Figure 3.3a). In the

rolled samples there was a significant reduction in the prior β grain size which

decreased with increasing rolling load (Table 3.3). Note that it was not possible

to provide a grain size measurement for the control sample because the columnar

grains violated the equiaxed grain structure required by ASTM E112 – 96 (2004).

Table 3.3: Prior β grain sizes.

Profiled roller Flat roller
50 kN 125 µm 139 µm
75 kN 89 µm 56 µm

The grain refinement is even more evident in the EBSD images provided in Fig-

ure 3.4. These images are maps of the reconstructed β phase. The control specimen,

showed in Figure 3.4a was characterised by highly textured prior β grains, as in-

dicated by the uniform red colouring of the epitaxial grains. Differently from the

other images in the same figure, Figure 3.4a was obtained from an EBSD scan which

included part of the baseplate. Please note how the baseplate showed a microstruc-

ture which was much finer, as well as less textured. The transition between the

baseplate and the anisotropic portion was also more evident thanks to the colour-

ing. Figure 3.4b to Figure 3.4e show EBSD images obtained from scans performed

in the centre of the walls, rolled with both the profiled and the flat roller. The

randomisation of the texture was significant, as well as the isotropic configuration

of the prior β grains. Higher rolling loads correspond to finer grains, in agreement

with what was measured and shown in Table 3.3.

The main difference between the microstructures produced by the flat and pro-
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(a) Control (b) Profiled roller
at 50 kN

(c) Profiled roller
at 75 kN

(d) Flat roller at
50 kN

(e) Flat roller at
75 kN

Figure 3.3: Optical microscopy images of control and rolled samples.

(a) Control (from
the bottom part of
the wall)

(b) Profiled roller
at 50 kN

(c) Profiled roller
at 75 kN

(d) Flat roller at
50 kN

(e) Flat roller at
75 kN

Figure 3.4: EBSD images of reconstructed prior β grains of control and rolled sam-
ples ((a), (b) and (c) edited from Antonysamy, 2012). Please note the difference in
scale.
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filed rollers is the size of the prior β grains along the sides of the samples. While

the grain size was fairly uniform across the sample with the profiled roller (Fig-

ure 3.3b and 3.3c), the sample produced with the flat roller had grains that were

approximately five to ten times larger along the surface of the walls (Figure 3.3d

and 3.3e).

Horizontal bands were observed in the macrostructures of all the samples, one

being produced with each deposited layer (Figure 3.3 and Figure 3.5a). In addition,

columnar prior β grains were observed in the top ca. 2 mm of all samples. Within

the top region of all samples, martensite was found, which is evidenced by the

characteristic needle-like microstructure (Lütjering and Williams, 2007, p. 30) and

is shown in Figure 3.5b for the sample rolled at 75 kN with the profiled roller.

The rest of the sample had a Widmanstätten microstructure (Figure 3.5c).

Within each band, the thickness of the α lamellae varied, being larger near the

top and smaller near the base, and is plotted in Figure 3.5d. While this repeti-

tive pattern was observed in all the samples, the overall thickness of the α lamellae

decreased as the rolling load increased.

The change in texture, for both the α and β phases respectively, is shown in

Figures 3.6 and 3.7. The change in α phase texture when rolling was substantial

and evident when comparing Figure 3.6a to Figure 3.6b and Figure 3.6c. The control

specimen showed an α texture pole intensities peaking at six × random, while in

the rolled sample maximum intensities are below two × random.

As for the β phase, the control sample, shown in Figure 3.7a, was characterised

by an established <001>β fibre texture peaking at 22 × random. As the rolling

load increased (Figure 3.7b and Figure 3.7c), the texture observed in the control

specimen gradually transformed into a rolling one. According to Antonysamy (2012),

in the rolled specimens the texture seemed to rotate away from the Z direction and

strangely had a symmetry rotated by 90◦ with regards to what is seen in rolled

sheets.
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served in the top of the sample rolled at 75 kN,
indicated by 1) in Figure 3.5a
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Figure 3.5: Microstructure analysis of top of WAAM wall.
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(a) Control

(b) Profiled roller at 50 kN

(c) Profiled roller at 75 kN

Figure 3.6: α texture for control and rolled samples (Antonysamy, 2012).
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(a) Control

(b) Profiled roller at 50 kN

(c) Profiled roller at 75 kN

Figure 3.7: Reconstructed prior β grains texture for control and rolled samples
(Antonysamy, 2012).
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3.4.1 Fundamental study

The microstructures of the samples from the fundamental study are shown in Fig-

ure 3.8, images (a) to (g). (b) and (d) show the samples whose last layer was rolled

only; due to process noise it is impossible to determine exactly the extent of the

lateral plastic deformation induced by the rolling step (Figure 3.9). However, it is

possible to identify the shift in the Z coordinates of the top band (highlighted by

the red line), as well as a modest reduction in height. Apart from the deformation

induced by the roller, the microstructure of these samples was relatively unchanged.

The samples that had a subsequent layer deposited (Figures 3.8a,e) had a signifi-

cantly different microstructure. There were three different regions which are labelled

with 1, 2 and 3 in Figures 3.8(f,g): the first, closer to the top of the deposit (1),

exhibited columnar prior β grains aligned with the Z axis. These grains grew from

the ones within the region below (2), which was characterised by a refined equiaxed

microstructure. The third region had long columnar prior β grains that were identi-

cal to those observed in the control. The microstructure of the α phase within these

regions was also significantly different. Within regions (1) and (2) the microstruc-

ture was predominantly martensitic, while in region (3) the microstructure was the

Widmanstätten microstructure that is observed in the bulk material.

The location of the points 5.6 mm and 6 mm from the top surface of the sample

rolled at 75 kN with a subsequent deposited layer are shown in Figure 3.8f: the

first point corresponds to the boundary between region 2 and 3, while the second

corresponds to the first horizontal band in the deposited microstructure. The peak

temperature of these points is shown in Figure 3.8h: the first had a peak temperature

of 780 ◦C and a cooling rate from 700 ◦C to 400 ◦C of 8.4 ◦C s−1; the second, after

removing the three outliers3 at 589 ◦C, 990 ◦C and 1068 ◦C had an average peak

3An outlier is an observation which is clearly deviating from the rest of the data set. Grubbs
(1969) concluded it is acceptable to reject measurements on physical grounds. In such cases the
median can be a better estimator
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temperature of 740 ◦C4 with a standard deviation of 26 ◦C, and a similar cooling

rate from 700 ◦C to 400 ◦C of 7.4 ◦C s−1. In Figure 3.8h the temperature distribution

of the first band was based on six-point averages calculated every five seconds. Error

bars were calculated in the same way. Please note that without removing the outliers

the average peak temperature would have been 788 ◦C5 with a standard deviation

of 148 ◦C.

Figure 3.10 shows higher magnification EBSD images, focused on the areas

marked with (2) and (3) in Figures 3.8(f,g). The EBSD scans were done on the

same samples used for the optical micrography images and it was possible to iden-

tify the same grain boundaries. This figure is helpful in highlighting the transition

from the columnar, highly textured area constituting the bulk of the deposit to a

moderately less textured one, which still showed some columnar grains (although

with a lower aspect ratio). Further above, the texture was completely randomised

and the microstructure fully equiaxed, as evidenced by the colouring scheme. Fi-

nally, there was another columnar region at the top of the deposit.

4Median equal to 738 ◦C
5In this case the median was 739 ◦C which is much closer to the average temperature without

outliers
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Figure 3.8: Optical micrography images from the fundamental study samples rolled
with loads of (a) 75 kN, (b) 75 kN with subsequent deposited layer, (c) control, (d)
50 kN and (e) 50 kN with a subsequent deposited layer. (f) and (g) higher magni-
fication of recrystallised areas for samples rolled at 75 kN and 50 kN, respectively,
with subsequent deposited layers; (h) thermal history at 5.6 mm and 6.0 mm below
the top of the sample rolled with 75 kN with a subsequent deposited layer.
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Control
50 kN
75 kN

Figure 3.9: Overlap of contours of control, 50 kN and 75 kN specimens (only last
layer rolled).

(a) 20th layer
rolled at 50 kN
after depositing the
21 layer

(b) 20th layer
rolled at 75 kN
after depositing the
21 layer

Figure 3.10: EBSD images of top of fundamental study specimens.
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3.5 Discussion

3.5.1 Recrystallisation of prior β grains

The remarkable grain refinement observed in the rolled specimens, which is propor-

tional to the applied load, is probably one of the main achievements of the present

research. In fact, epitaxial grain growth, which results in large columnar grains in

the direction of the heat flow, i.e. in the positive Z direction, is still one of the

major drawbacks of AM technology when applied to titanium alloys.

The prior β grain refinement is due to recrystallisation. Given that recrystallisa-

tion is activated thermally and driven by stored energy (Humphreys and Hatherly,

2004, p. 1), the reduction in grain size can be explained by:

1. Plastic deformation of metals, such as rolling, introduces stacking faults, points

defects, dislocations and twins, which represent the fraction of the mechanical

energy that is retained (Cotterill and Mould, 1976, p. 15). However, approxi-

mately 99% of the mechanical energy is released in the form of heat during de-

formation (Humphreys and Hatherly, 2004, p. 12). A minimum strain of 1 % to

3 % is required for recrystallisation to happen (Humphreys and Hatherly, 2004,

p. 222), a condition satisfied in the present case (see Table 5.1 on page 131).

2. While rolling induced the accumulation of stored energy, the deposition of

a new layer provided the heat necessary to trigger recrystallisation. The

minimum stored energy and temperature required for recrystallisation are

material-dependant quantities. In situations in which different annealing tem-

perature can be chosen, the recrystallisation temperature is the one at which

the material is 50% recrystallised in 1 hour (Humphreys and Hatherly, 2004,

p. 218). The recrystallisation temperature in commercially pure titanium is

646◦C to 669◦C, well below its β-transus temperature of 882◦C (Contieri et al.,

2010). In terms of heat treatment, for commercially pure titanium in the ASM
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Handbook: Heat Treating (1991, p. 2051) an annealing temperature of 705 ◦C

to 790 ◦C and time of 1 h to 4 h are recommended. In the specific case of

the Ti–6Al–4V alloy, the recrystallisation temperature ranges from 535 ◦C to

830 ◦C, and is approximately one third to one half of the melting temperature

(Humphreys and Hatherly, 2004, p. 4). This temperature, which is also depen-

dant on the strain, decreases as the strain increases (Humphreys and Hatherly,

2004, p. 221). The peak temperature, particularly near the deposition torch,

greatly exceeds that required for recrystallisation. In fact, temperatures up

to 1000 ◦C are achieved even millimetres away from the melt pool, where the

temperature is above the melting point.

3. The temperature greatly affects the rate of recrystallisation (Humphreys and

Hatherly, 2004, p. 229), and it is actually more significant than time. In

fact, an increase of only 10 ◦C will produce the same results as doubling the

annealing time (Dieter Jr., 1961, p. 155). Therefore, in spite of the very

short duration of the thermal cycle during WAAM, it is possible to achieve a

fully recrystallised structure due to the high temperature experienced during

processing.

In the present case, the dominant cause of the reduction in prior β grain size is the

rolling load, and not the thermal profile. A higher strain results in a larger amount

of stored energy and ultimately in a larger amount of effective nuclei (Humphreys

and Hatherly, 2004, p. 221). The thermal profile will remain similar for the three

samples due to identical deposition parameters being used. There will be a minor

effect from the wider deposit which will cause a slight increase in cooling rate,

however this is unlikely to significantly affect the microstructure.

Please note that investigations of static recrystallisation on titanium are limited

to commercially pure titanium, a much simpler phenomenon due to the absence of

a second phase. In the literature, it seems that only Xue et al. (2012) studied static

recrystallisation of Ti–6Al–4V up to temperatures of 880 ◦C. More research has
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been performed on dynamic recrystallisation (happening during hot deformation);

however this is not relevant to the present case, in which the part was allowed to

cool to room temperature before performing the rolling pass.

At the top of the deposit there was a region with columnar prior β grains which

extended approximately 2 mm (see optical microscopy images in Figure 3.3 and Fig-

ure 3.8). Even though this layer was rolled, it was not followed by another deposition

step, so recrystallisation couldn’t be triggered. Although not measured, the bound-

ary with the equiaxed material underneath may have corresponded closely to the

region that was molten during the deposition of the last layer; the solidifying grains

grew epitaxially from the material underneath, which was largely recrystallised.

Finally the results with the flat roller demonstrated a non-uniform refinement

of the prior β grain size which was less refined toward the side walls. As seen in

Figure 3.3d and Figure 3.3e, the flat roller caused a significant amount of flattening of

the deposited material. Consequently the strain induced in the material was likely

to be concentrated around the centre of the deposit. Because of the relationship

between strain in the material and prior β grain size (please see Table 3.3), the

concentration of the strain in the centre of the deposit resulted in greater prior β

grain refinement in this region. The effectiveness of the flat roller is particularly

beneficial, as the flat roller is characterised by practical advantages such as:

• the independence of the roller width from the wall width, which means one

roller could be used for a variety of WWs;

• the capacity of rolling intersections and corners, features commonly present in

WAAM parts;

• improved top surface profile for subsequent deposition;

• potential use of in-process inspection, which thus far requires flat surfaces.

The demonstrated relationship between rolling and prior β grain refinement could

be investigated further, and used to tailor or predict the prior β grain size as a

function of the rolling load.
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3.5.2 Fundamental study

In the fundamental study, the temperature at the recrystallisation boundary (5.6 mm

from the top, see Figure 3.8h) was 780 ◦C, well below the β-transus temperature and

the β phase recrystallisation temperature mentioned in Seshacharyulu et al. (2000).

There are errors in this measurement due to precise placement of the thermocouple

and the contact resistance between the thermocouple and the material, however this

should have been taken into account because the temperature measurements were

repeated three times. The temperature at which recrystallisation happens is thought

to depend on the amount of strain present in the part (as described in section 3.5.1

on page 99), therefore the temperature measured at the recrystallisation boundary

makes sense only if related to the rolling load and to the width of the part. A different

width, or a different rolling load, would have resulted in a different strain, hence the

temperature required for recrystallisation would have been different. In fact, the

change in the position of the boundary when rolling at 75 kN instead of 50 kN (see

Figure 3.8f vs. Figure 3.8g), suggests that the temperature for recrystallisation is

dependent on the amount of strain rather than the thermal profile, which was the

same for the two samples, regardless of the rolling load.

3.5.3 α phase

3.5.3.1 Origin of visible “bands” in microstructure

Bands can be identified in all deposits; these features were generated by an α phase

of different thickness, resulting from the repeated heat cycles associated with the

deposition of each layer. Kelly and Kampe (2004b) discussed the possibility of a

chemical effect given by the segregation of aluminium and vanadium during the

phase transformation, referred to as transverse solute banding, however the present

analysis will focus on the thermal aspect. As shown in Figure 3.5e, a typical thermal

cycle can may be simplified into three main sections: heating (stage 1), a period tP
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when the material is around the peak temperature TP (stage 2), and cooling (stage

3). It appears that there is little difference in cooling rate in the top 4 mm to 6 mm

of the deposited structure, i.e. irrespective of the peak temperature and distance

from the heat source the average cooling rate on the tail (stage 3) is similar. This

is confirmed by the experimental measurements shown in Figure 3.8h. Indeed the

cooling rate measured at the two locations (7.4 ◦C s−1 to 8.4 ◦C s−1) is sufficient to

produce at least a partially martensitic microstructure (Gil et al., 2001). Looking

at the area between the top of the deposit, and the band i which appears during the

deposition of layer i (Figure 3.5a), nearer to the deposition heat source both tP and

TP are such that martensite can be produced (Figure 3.5e), and martensite is found

in the top of all deposits (Figure 3.5b). Further from the deposition heat source,

thermal conditions are such that very fine Widmanstätten is generated. Upon depo-

sition of a new layer i+ 1 which creates the band i+ 1, martensite will be produced

in the newly deposited material and immediately below. Closer to, but above the

band i+ 1 there is sufficient temperature and time during stage 2 to transform the

martensitic α into very fine Widmanstätten. In fact, during annealing according

to Lütjering and Williams (2007, p. 29) martensite decomposes to α + β either by

β particles at dislocations, or β layers between α boundaries. In the area between

the bands i and i+ 1, coarsening of the previously very fine Widmanstätten occurs,

and the pattern shown in Figure 3.5d is generated. Below band i no significant mi-

crostructural changes occurs, apart from a possible coarsening of α lamellae which

retain the repetitive pattern anyway.

The temperature of the point that is associated with the top band in the mi-

crostructure (6 mm below the top of the wall) was 740 ◦C. This point appears to be

related to the α dissolution temperature of 748 ◦C (Kelly and Kampe, 2004a from

Katzarov et al., 2002). However such an agreement between the measured and the

α dissolution temperatures might have been just coincidental. Elmer et al. (2004)

demonstrated that critical temperatures such as β-transus vary according to heating
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rates, which are responsible for the kinetics of the α → β → α/α′ transformation.

Heating rates are not shown in Figure 3.8h as, firstly, they would have been the

same for all the curves, the points being at the same location; and, secondly, they

would have not provided any valuable information given that heating rates in other

points of the deposited structures were not measured, and no comparison could

have been made. Elmer et al. (2004) showed that for high heating rates (like the

ones experienced in welding and AM), significant superheating (up to 300 ◦C) might

be necessary to observe certain transformations. In other words, different welding

parameters (which would have given different heat inputs, similarly to what was

discussed in Elmer et al., 2003), and consequently also different walls geometries,

would have led to different heating rates and ultimately in changes in the tem-

perature responsible for the observed combination of very fine Widmanstätten and

martensite. In conclusion, what really matters is that the measured temperature was

high enough to transform at least some β to α, and the cooling rate was high enough

to subsequently generate very fine Widmanstätten and martensite upon cooling.

3.5.3.2 Reduction of α phase thickness

The addition of deformation introduced a small but measurable reduction in the

overall average size of the α lamellae (Figure 3.5d). There are three possible reasons

for this observation. Firstly it could be a consequence of the larger number of

grain boundaries. According to Lütjering and Williams (2007, pp. 32–33), in the

case of basketweave or Widmanstätten microstructures, α colonies nucleate at the

grain boundaries and grow perpendicular to them. When α colonies collide with

each other, and therefore cannot grow further, additional colonies start nucleating

perpendicular to the side of those which have already developed. In the case of the

rolled samples, there were more α phase nucleation sites due to the larger number

of prior β grains. Therefore lamellae growth is hindered by their own competition,

hence the overall size of the lamellae decreases with the increasing rolling load.
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However there is a large difference in the scale of the prior β vs. the α lamellae

thickness (100µm vs. < 1µm) so the influence of this may be limited.

An alternative explanation is that deformation influences the transformation of

martensitic α to Widmanstätten providing more nucleation sites for the transfor-

mation which leads to a finer microstructure.

Finally, recrystallisation occurs at temperatures comparable to those used to

achieve a fully equiaxed microstructure, in which case Lütjering (1998) explained

that the α phase equilibrium volume fraction is large enough to stimulate the growth

of the α phase from the deformed lamellae.

3.6 Summary

In this chapter it has been demonstrated that:

• Due to the recrystallisation that occurred when the previously deformed layer

heated during the deposition of a new layer, high-pressure rolling induced:

– significant prior β grain refinement,

– a modification of the prior β grain structure from strongly columnar to

equiaxed,

– a reduction in the overall thickness of α phase lamellae,

– a randomisation of the α phase texture;

• The flat roller, which has significant practical advantages, provided similar

reductions in distortion and prior β grain size, and may be the preferred choice

for commercial exploitation of the process.

A fundamental study was performed to understand the microstructural changes

that occurred during the process. The last layer of an unrolled control sample was

rolled after which a new layer was deposited. The size of the recrystallized region

was influenced by the load and hence the extent of deformation in the material. In
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addition the temperature of the recrystallised region boundary and first microstruc-

tural band were 780 ◦C and 740 ◦C respectively, well below the β-transus and very

close to the α dissolution temperature of 748 ◦C.

In conclusion, rolling is beneficial from a microstructural point of view as it proves

to be a simple but effective way to eliminate columnar prior β grains and produce

a uniform equiaxed microstructure in titanium AM structures. This might have

significant implications in terms of mechanical properties, which will be investigated

in the following chapter.
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Chapter 4

Effect of rolling on mechanical

properties of WAAM parts

This chapter contains material from the following articles:

Martina, F., Williams, S., Colegrove, P.A., 2013. Improved microstructure and in-
creased mechanical properties of additive manufacture produced Ti–6Al–4V by
interpass cold rolling, in: 24th International Solid Freeform Fabrication Sympo-
sium, Austin, Texas, USA. pp. 490–496.

Martina, F., Colegrove, P.A., Williams, S.W., Meyer, J., 2014b. Tensile strength,
elongation and microhardness of as-deposited and interpass rolled Wire + Arc
Additive Manufacturing Ti–6Al–4V components. Journal of Materials Processing
Tech. (submitted).

Ding, J., Colegrove, P.A., Martina, F., Williams, S.W., Wiktorowicz, R., Palt, M.,
2014. Development of a laminar flow local shielding device for Wire + Arc Addi-
tive Manufacture. Journal of Materials Processing Tech. (submitted).

4.1 Context

Titanium Wire+Arc Additive Manufacturing (WAAM) deposits are characterised

by anisotropic mechanical properties, which are also lower than the wrought al-

loy. Following observations of the microstructural changes introduced by rolling,

discussed in the previous chapter, this chapter evaluates the effect of the refined

107
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microstructure on mechanical properties.
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Figure 4.1: Project map. In bold the work package object of the present chapter.

4.2 Introduction

Many authors, including Baufeld et al. (2009), Wang et al. (2013) showed that in

Ti–6Al–4V Additive Manufacturing (AM) components prior β grains grow parallel

to the thermal gradient and are highly textured, leading to anisotropic mechanical

properties. Strength is higher in the horizontal (X) direction, while elongation is

better vertically (Y ).

In chapter 3, high-pressure interpass rolling was used to produce a much finer,

texture-free microstructure. In this chapter, the effect of high-pressure rolling on

mechanical properties is assessed, to establish whether rolling produces isotropic

and/or improved mechanical properties.

As discussed extensively in chapter 1, section 1.2.5.2 on page 20, preventing

oxidation of AM deposits, particularly titanium oxide, is of fundamental importance.

While oxygen is used as an alloying element to increase strength and elastic

modulus, too high a concentration can lead to embrittlement. Consequently, most

high temperature processing is carried out within a shielded environment, which is

achieved either by filling a chamber with argon, or by using a vacuum (which is

necessary for Electron Beam Melting (EBM)).
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One of the targets for WAAM is to deliver high quality components deposited

using local shielding devices only. It is therefore paramount to understand exactly

the dynamics of oxygen pickup, by comparing the quantity of oxygen present in

a controlled atmosphere during deposition, to that measured in the part once the

building process is finished.

Traditionally, colour inspection tools are used to assess the oxidation extent.

Talkington et al. (2000) developed a methodology to relate colour to oxygen content

as a quality control tool, glossy silver being the best and white or brushed the worse.

Li et al. (2005) argued the lack of reliability of the inspection tool, because the colour

sequence repeats itself as oxygen content and TiO2 layer thickness increase. They

suggested hardness was a much better proxy; hence this will be used to evaluate

whether a correlation between oxygen content in the part, oxygen in the atmosphere,

and microstructural changes exists.

4.3 Experimental procedures

4.3.1 Mechanical properties

Parts were built using the equipment and process parameters described in section 3.3

on page 85. A control specimen, unrolled, was built alongside two more parts

produced with the profiled roller (Figure 3.2c on page 87) at 50 kN and 75 kN. Test

coupons were extracted randomly both horizontally (X direction) and vertically (Z

direction) (see Table 4.1). Tensile coupons were coated with graphite spray paint;

within their total parallel length of 27 mm, a gauge length of 24 mm was marked with

two pieces of reflective tape. The extension of the gauge length was monitored by a

laser extensometer; the change in length was used for the calculation of elongation.

The cross section of the gauge was 6 mm by 4 mm. Testing was carried out in

accordance with BS EN 2002–1:2005 (2005); the speed of the test was 0.1 mm min−1;

full details regarding specimen location within the wall, as well as coupon dimensions
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are provided in appendix B.

Table 4.1: Number of tensile test specimens extracted.

Control 50 kN 75 kN
Horizontal 5 3 2

Vertical 4 3 3

Three smaller walls were build for microhardness evaluation (control, rolled at

50 kN, rolled at 50 kN), made of 20 layers each, with a total length of 370 mm and a

rolled length of 300 mm. Microhardness was measured for all the samples, along the

wall centreline in the Z direction. The measurements started 2.5 mm into the base

plate to assess the hardness of the base and heat affected zone and were continued

to the top of the wall. The spacing between measurements was 0.5 mm; the load

was 500 g and the indentation time was 15 s. It was not possible to execute the same

number of indentations for all the samples, due to the difference in the wall height.

4.3.2 Oxygen pickup

Four linear structures were deposited onto a 300×150×7 mm3 Ti–6Al–4V substrate

in a rigid, sealed chamber. Unlike the previous work, Plasma Arc Welding (PAW)

WAAM was used; process parameters are shown in Table 4.2.

Table 4.2: Deposition parameters.

Wire feed speed 2.4 m min−1

Travel speed 4.5 mm s−1

Current 160 A
Plasma flow rate 1 l min−1

Gas flow rate 10 l min−1

Torch stand-off 8 mm

Each structure was 250 mm long and made of 20 layers. Argon and oxygen

bottles were both connected to a gas mixer, which supplied a constant gas flow to

the chamber. The ratio between the gases was changed so as to have different, but

consistent, levels of oxygen when manufacturing each wall. These levels were ca.
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30 ppm, 1000 ppm, 2000 ppm and 4000 ppm. No trailing shield was used, hence

the newly deposited material was exposed to the oxygen contained in the controlled

atmosphere as the torch had passed. The wire chemical composition can be found

in Table 4.3. Oxygen levels were measured according to ASTM E1409 - 13 (2013).

Table 4.3: Chemical composition of Ti–6Al–4V wire used in the experiments.

Ti Al V Fe O C N H TOE Y Others
Bal. 6.08 4 0.18 0.16 0.035 0.011 0.0017 <0.2 <0.001 <0.05

Cross sections were extracted from each wall and microhardness was measured

along the centreline of the components, starting 2.5 mm from the bottom of the base

plate to assess the hardness of the base plate and of the interface between wall and

base plate. Measurements were continued to the top of the wall, for a total of 19

points. The spacing between measurements was 1 mm; the load was 500 g and the

indentation time was 15 s.

4.4 Experimental results

4.4.1 Tensile properties

Average tensile test results are shown in Figure 4.2. A full set of strain-stress curves

is given in appendix B on page 175. In Figure 4.2, the control specimens (zero load)

show scattered behaviour in the horizontal direction, especially with regards to the

elongation, which ranged from 11% to 18%. The vertical direction was characterised

by lower standard deviation and more consistency in both strength and elongation.

For the rolled specimens the increase in proof strength and ultimate tensile

strength was demonstrated. The mechanical performance of the rolled specimens

was always higher than the unrolled ones, in both horizontal (X) and vertical (Z) di-

rections, except for the elongation which is maximum in the unrolled, vertical case.

This agrees with that already observed by Wang et al. (2013). In the specimens
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Figure 4.2: Tensile test results for control and rolled specimens (error bars indicate
standard deviation).



4.4. EXPERIMENTAL RESULTS 113

rolled at 75 kN all properties exceeded the wrought Ti–6Al–4V (as tested by Wang

et al., 2013), although the latter was characterised by a bi-modal microstructure.

In the case of the unrolled specimen (control) a large difference existed between

the two directions, especially with regard to the elongation. The difference in the

properties between the two directions was reduced for the specimens rolled at 50 kN,

and minimum for the 75 kN one (Figure 4.2b). Hence the sample rolled at 75 kN

load can be considered as isotropic. Furthermore, in the unrolled sample the proof

strength in the vertical direction was below the minimum specification (ASTM B265

– 09a, 2009). Rolling enabled the component strength to be above that required by

the standard, without compromising the elongation.

4.4.2 Hardness

The hardness values are plotted in Figure 4.3. The average hardness values of the

specimens rolled at 50 kN and 75 kN were greater than the control specimen and

reflect the improvements observed in the tensile properties. The new values fell

outside the 95% confidence interval calculated around the average hardness of the

control specimen, consequently the differences are significant and are unlikely to

be due to statistical variation. The difference between the hardness of the samples

rolled with the profiled and flat rollers is not statistically significant.

4.4.3 Oxygen pickup

Please note that, differently from the previous section, whose samples were produced

by Tungsten Inert Gas (TIG) WAAM and rolled, the hardness values presented in

this section are related to deposits produced with plasma WAAM; therefore a direct

comparison cannot be made. The oxygen and hardness for different contamination

levels in the enclosure are shown in Figure 4.4. For the hardness measurements the

error bars indicate the 95% confidence intervals. There was no statistically signif-

icant difference in the hardness for the different contamination levels even though
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Figure 4.3: Hardness of Ti–6Al–4V produced with TIG WAAM vs. rolling load
(error bars indicate 95% confidence interval of the mean).
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Figure 4.4: Hardness and oxygen content of specimens built in different atmospheric
conditions with PAW WAAM.

there was an increased amount of oxygen in the deposit. The average hardness

measured on this set of samples was 347 HV, a lower value than the one reported

in Martina (2010) for PAW WAAM of 387 HV.

The amount of oxygen detected in each sample ranged from 1622 ppm to 1825

ppm and was marginally affected by the quantity of O2 present in the atmosphere
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during deposition: when building with 4000 ppm in the atmosphere, the increase

in part’s oxygen was only 200 ppm, compared to when there was negligible O2

conditions in the surrounding atmosphere. Please note for the O2 measurements the

error bars indicate ±60 ppm.

4.5 Discussion

4.5.1 Hardness and strength

The increase in microhardness and strength due to rolling may be attributed to two

causes. The first is the refinement of α lamellae: a reduction in α lamellae size

corresponds to an increase in most of the mechanical properties, including hard-

ness (Lütjering, 1998). The second is the work hardening induced by the interpass

rolling steps, which introduce a large amount of dislocations in the part. One could

argue that the subsequent heat treatment brought by the deposition of a new layer

could anneal the hardened material. However, there is a competition between strain

introduced by each rolling step, and annealing performed by each layer deposition.

Imagine rolling the top of a wall, and then depositing a new layer: rolling introduces

strain up to a certain depth, and the deposition of a new layer anneals the material

up to a certain depth. This depth will be dependent upon both the rolling load and

the temperature distribution in space and time, as shown in the fundamental study

(please see p. 95). The peak temperatures are progressively lower for points further

from the top of the wall, due to the increased distance from the heat source. If the

depth of the strain was larger than the depth of the annealing treatment, it might

be that a number of dislocations and other crystallographic defects were left in the

material, and accumulated. When attempting a 100 kN rolling load the specimen

ruptured after seven layers; this might suggest that in this case the annealing process

did not occur fully.
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4.5.2 Elongation

With respect to the control sample, one could argue the gauge size was too small to

include a sensible number of prior β grains, or, even worse, the gauge was smaller

than a prior β grain; without grain boundaries acting as potential sources of failures,

the elongation would be artificially large. This is definitely not the case, for the gauge

is large enough to include enough prior β grains (see section 4.3). For instance, the

gauge cross-section adopted for this research was four times larger than the one

reported in Baufeld et al. (2009).

With regards to the scatter seen in the horizontal direction, it could be consid-

ered consistent with that already presented in Wang et al. (2013), who suggested

that stress perpendicular to the prior β grain boundaries could result in shear and

premature failure along the αGB. Furthermore, defects and inhomogeneities could

explain why in Wang et al. (2013) a specimen had a very early failure at 3% elonga-

tion. However, in the present research no early failure was seen and the presence of

defects is excluded. Rather the large scatter is due to the very late failure of CHT5

specimen which broke at 18% elongation (see page 178). If this specimen was not

included in the calculations, the standard deviation would be as low as 1.5.

As for the increase in elongation observed in some rolled specimens, three dif-

ferent factors must be considered: the amount of cold work, the reduction in prior

β grain size, and the reduction in α colony size. The first two are known to have a

detrimental effect on elongation, because of the increase in dislocation density and

grain boundaries (that can act as source of failure); on the contrary according to

Lütjering (1998) the third, i.e. the reduction in colony size, has a beneficial effect

due to the reduction in slip length. In the following paragraphs, the effect and

relative magnitude of each of these three factors will be discussed.

Extensive α colonies were not observed in this work, as the microstructure was

mostly basket-weave. In this case, the slip length may correlate to the α lamellae

thickness, rather than to the size of the α colonies, as each colony is made of very
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few or even a single lamella (Figure 3.5c on page 92). In turn, the reduction in

α lamellae thickness will produce the same effect as the reduction in α colony size,

increasing the ductility according to the principles described in the work of Lütjering

(1998). Indeed, the author stated that in fully lamellar microstructures, Ultimate

Tensile Strength (UTS) is maximised in the presence of martensite, in which the slip

length and the colony size coincide with the width of the single lamella. In his work,

ductility showed a similar trend, i.e. it increased with a reduction in slip length,

although it dropped dramatically for extremely high cooling rates (when martensite

is produced).

In the horizontal direction, elongation decreased when rolling at 50 kN but then

increased with a 75 kN load. This suggests that at 50 kN the negative contributions

of cold work and the reduction in the prior β grain size were the dominant factors.

However, when rolling at 75 kN the improvement in the elongation (compared to the

control results) was probably associated with the reduction in the average α lamellae

thickness, this being the dominant factor. In fact, α lamellae width is minimised for

this load.

In the vertical direction, elongation always decreased with the load. This must

be associated with the much greater reduction in prior β grain size observed along

this direction. In fact, while the horizontal direction prior β grain size was reduced

by one order of magnitude (from ca. 1 mm to ca. 100 µm), in the vertical direction

the reduction is by two, some times three orders of magnitude (from ca. 100 mm

to ca. 100 µm). Therefore, the contribution of this factor appears to be larger than

either cold work or reduction in α thickness, thus leading to the observed decrease

in elongation.

Furthermore, it is worth noticing that cold work normally results in an increase in

strength at the expense of elongation (Dieter Jr., 1961, p. 148). If there was any cold

work left in the system, surely it would be larger in the 75 kN specimen, given the

higher strain. The fact that for this load the elongation increases in the horizontal
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direction and decreases only marginally in the vertical direction, when compared

to the 50 kN specimen, indicates that the cold work was the least important of

the three factors, and mechanical properties are mainly driven by microstructural

changes (reduction in both prior β grain size and α lamellae thickness).

Finally, it must be noted that while the strength of the control specimen in the

present research is very close to that reported by Wang et al. (2013), the elongation

they reported was approximately 14% in the vertical and 8% in the horizontal direc-

tions, much lower than 20% and 12% respectively, measured in the present research.

This might be due to different deposition parameters which could result in slightly

different final microstructures.

4.5.3 Oxygen pickup

The value provided by Martina (2010) was the average of four different specimens,

which were also produced with different process parameters, and some difference

between the two experiments was to be expected. A direct comparison in terms

of heat inputs cannot be made. However, a deviation of 40 HV is significant and

possibly related to the difference in cooling rates experienced when depositing inside

an inert environment. Lower cooling rates result in a much coarser α lamellae

structure, and ultimately in lower strength.

The insensitivity to atmospheric oxygen content suggests that the shielding pro-

vided by the torch was sufficient to protect the molten pool as well as the newly

solidified hot material. Given a shroud diameter of 17 mm, and a travel speed of

4.5 mm, a point was shielded for roughly 4 s, in which 630 ml of argon were blown.

Oxygen contamination becomes severe for temperatures above 550 ◦C; below this

temperature the diffusion rates are low (Lütjering and Williams, 2007, p. 51). With-

out experimental values for the temperature at the surface of the part, it is difficult

to infer the diffusivity rates. However, considering the high cooling rates experienced

in WAAM; the exponential decrease of oxygen diffusivity with decreasing tempera-
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ture (Lütjering and Williams, 2007, p. 46); and that the concentration of O2 during

deposition is much lower than the one in natural atmosphere, it is reasoned that the

diffusivity rates were not sufficient to enable a significant O2 pickup.

One could argue that the measurements were relative to the bulk of the material

and ignored the surface of the sample. Provided that each layer was identical to the

previous one (in terms of temperature, cooling rates, and consequently O2 pickup

behaviour) it should be considered that every time a layer was deposited the possibly

oxidised surface of the previous layer became part of the bulk of the material, and

was therefore included in the measurements, which were effectively average ones.

Please note that O2 was present in the wire as an alloying element (the O2

content of the wire is 1400 ppm, see Table 4.3) and therefore most of the O2 in the

final part comes from this source.

This finding may result in less stringent constraints on O2 content inside cham-

bers or tents, when building large parts. In such large volumes, reducing the O2

content from 4000 ppm to near zero can be extremely time consuming, and these

results indicate there are no clear benefits. Given that the requirements in the

aerospace sector are very conservative, knowing that deposition may be carried out

safely up to 4000 ppm of O2 a limit of 2000 ppm could be imposed; this would give a

safety margin of 100%. There would be repercussions also on local shielding devices,

which could be designed with lower constraints in terms of size, flow efficiency, and

depth of action.

4.6 Summary

In this chapter it has been demonstrated that high-pressure rolling:

• improves the mechanical properties, in terms of hardness, yield strength, ulti-

mate tensile strength and elongation, due to the fine prior β grains structure,

and reduced α phase thickness;
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• has a limited work hardening effect, as the elongation decreases marginally;

• produces isotropic mechanical properties, which will facilitate design of WAAM

parts;

• results in mechanical properties that are better than the wrought alloy.

Furthermore,

• WAAM of Ti–6Al–4V was insensitive to atmospheric concentrations of O2 up

until 4000 ppm and no significant pickup existed;

• hardness was not affected by the atmospheric concentrations of O2 up to 4000

ppm.

Hence a limit of 2000 ppm would permit a safety margin of 100% and would be

a suitable level for control of the process.
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Effect of rolling on residual stress

of WAAM parts
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5.1 Context

Residual stresses, which are manifested in component distortion, are a major draw-

back of Wire+Arc Additive Manufacturing (WAAM). High pressure rolling is inves-

tigated as a method to eradicate them. Because of the related plastic deformation,

rolling changes the geometry of the deposit. These effects are captured in this

chapter.
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Figure 5.1: Project map. In bold the work package object of the present chapter.

5.2 Introduction

Ding et al. (2011) showed how WAAM components are affected by residual stress

and distortion. These two issues are undermining the adoption of Additive Manu-

facturing (AM) in industry, and a range of research projects are underway targeting

their mitigation. In welding, some of the investigated techniques include peening

and rolling. According to Withers (2007) the former introduces a small plastic de-

formation which relieves tensile residual stresses, and forms compressive ones by a

positive deformation in the in-plane directions. However, peening is characterised by

a limited depth of influence, which is around 1 mm to 2 mm for carbon steels (Cheng

et al., 2003). High-pressure rolling proved to have a much larger depth of action,

and was successfully tried on steel WAAM structures by Colegrove et al. (2013). In

this chapter, its effects on titanium WAAM deposits are evaluated; measurement
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techniques include Neutron Diffraction (ND) and the Contour Method (CM) (Prime,

2001).

5.3 Experimental procedures

The experimental apparatus was as used for the investigations described in chapter

3 and chapter 4.

5.3.1 Evaluation of geometry and distortion

Baseplates were 405 mm long, 60 mm wide and 6 mm thick, and were clamped by

countersunk bolts along each side of the plate. Six 20-layers walls were built: a

“control” left in the as-deposited condition; three samples that used the profiled

roller with loads of 50 kN, 75 kN, and 100 kN; and two that used the flat roller and

loads of 50 kN and 75 kN.

Deposition started 20 mm from the end of the baseplate and stopped 15 mm from

the other end giving a total wall length of 370 mm. The direction of deposition was

always the same. Rolling began and ended 35 mm from the ends of the deposit.

During manufacture, the Layer Height (LH) from the baseplate was measured

with a digital vernier at three points labelled M1, M2 and M3 (lhi,M1 , lhi,M2 and

lhi,M3 , respectively) which are indicated in Figure 3.2b on page 87, before and after

rolling. The height of each layer (LHi), overall Layer Height (LH) and standard

deviation (σ) were calculated from:

LHi = xi − xi−1 =

(
1

3

3∑
j=1

lhi,Mj

)
−

(
1

3

3∑
j=1

lhi−1,Mj

)
(5.1a)

LH = µ =
1

16

20∑
i=4

LHi (5.1b)

σ =

√√√√ 1

16

20∑
i=4

(LHi − LH)2 (5.1c)
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The first four layers were excluded from the calculation of LH and σ because of

the thermal effect of the baseplate which reduced the deposit Wall Width (WW)

and increased the LH (Martina, 2010).

Average engineering strains were calculated from ε = (Lf−L0)/L0, where L0 is the

initial length and Lf the final one. For the transverse (Y ) direction, average WWs

were used; for the normal (Z) direction, average LHs.

Strains on a layer-by-layer basis were calculated only for the LH (normal di-

rection) by comparing the LHi of the rolled specimens with the LHi of the control

one.

After completing each sample, maximum out-of-plane distortion was assessed by

resting the parts on a flat surface, and measuring the distance between the bottom

of the baseplate (at its short edge) and the flat surface.

Three sections were taken at the same points M1, M2 and M3 (Figure 3.2b);

mounted into resin, ground, polished and etched with a solution of hydrofluoric

acid for optical microscopy imaging. Adobe Photoshop CS4® (2008) was used to

measure the WWs from these images.

5.3.2 Characterisation of residual stress

Titanium deposits were manufactured onto 250×60×6 mm3 Ti–6Al–4V substrates.

Each linear deposit began and ended right on the edges of the substrate, and was

made of 40 layers. Direction of deposition was alternated, i.e. a subsequent layer

began where the previous one had finished. To avoid rotation of the torch, the wire

was fed 90◦ to the direction of the travel, from the same side. The roller was profiled

(Figure 3.2c), and three samples were built: unrolled, rolled at 50 kN and rolled at

75 kN.
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5.3.2.1 Contour method

Residual stresses were measured with the CM at the University of Manchester.

The specimen was cut via Electrical Discharge Machining (EDM), starting from

the top of the deposit and moving towards the baseplate parallel to part’s Y axis

(Figure 5.2b).

(a) EDM machine (b) Clamping setup

Figure 5.2: Electrical discharge machining (EDM) setup at The University of Manch-
ester.

The two separate resulting cut faces were measured using a µScan nanofocus laser

profilometer with a resolution of 30µm by 30 µm. Two unregistered point clouds

were generated. These two point clouds were aligned and averaged, to produce

a single profile consisting of a series of fitted splines which could be interpolated.

Fitting error average was 15.58 µm with a standard deviation of 1.23 µm, which is

within the error of the laser profilometer. A two-dimensional quadrilateral mesh

(with 83000 nodes and 19000, 20-node, reduced integration quadrilateral elements)

was then fitted. The mesh had the following boundary conditions:

• all movement in the 2nd degree of freedom for the Z direction were restricted

on one corner of the baseplate (Figure 5.4a);

• all movement in 1st and 2nd degree of freedom for the Y and Z directions were

restricted (Figure 5.4b);
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• displacement boundary conditions were also applied on surface nodes matching

the previously fitted surface.

The two-dimensional mesh was extended to a depth of 110 mm in the X direction;

this matched the length of the shortest cut piece; 20 nodes (one every 0.75 mm) were

distributed along this length. Elastic properties for Ti–6Al–4V were assigned to the

material. Finally an implicit Finite Element Analysis (FEA) via Abaqus Standard®

(2014) solved the stress state.

The analysis procedure can produce FEA data interpolated to the spline-based

surface shown in Figure 5.5a, or to provide FEA results directly as shown in Fig-

ure 5.5b and Figure 5.5c.

5.3.2.2 Neutron diffraction method

An additional measurement of the residual stress in the control sample was per-

formed by Neutron Diffraction (ND) at the Heinz Maier-Leibnitz Zentrum in Mu-

nich, Germany, using a wavelength of λ = 1.83�A and a detector angle of sin (2θ) =

85.25° to identify the α–Ti(103) reflection. The scans were done on half the original

specimen length of 250 mm. Scans started 2 mm into the baseplate, from its bottom,

and finished at the top of the wall, with a spacing of 2 mm between each point, along

the centreline of the wall. Diffraction peak positions in the transverse and normal

directions were observed within the same setup (Fig 5.6a and Fig 5.6b), while two

setups were used for the longitudinal values: diffraction peak positions of the points

within the wall were measured with the part placed horizontally (Fig 5.6c), while

for the interface wall-baseplate, and for the baseplate itself, a 45° rotation of the

part around its X axis was necessary (Fig 5.6d). This positioning avoided the beam

passing through the whole width of the baseplate.

For transverse and normal directions, a gauge volume of 2×20×2 mm3 was used;

for the longitudinal direction it was 3×3×2 mm3. For each point, the scan time was

at least 15 min. Direction specific lattice spacings (di) were calculated using Bragg’s
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(a) Unregistered profile data collected by the µScan profilometer

(b) Averaged surface (c) Result of spline fitting

Figure 5.3: Contour raw data processing.

(a) Boundary conditions on the 2nd de-
gree of freedom on one corner of the
baseplate

(b) Boundary conditions on the 1nd and
2nd degrees of freedom on all move-
ments

Figure 5.4: Boundary conditions.
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(a) Stress at integration points
closest to the splined surface

(b) Average stress over each el-
ement

(c) Average integration point
value at surface nodes

Figure 5.5: Finite element analysis results.
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Figure 5.6: Setups for neutron diffraction measurements.
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law:

di =
λ

2 sin θi
(5.2)

Given that the thickness of the deposit was approximately 6 mm, plane stress in the

XZ plane was imposed; the validity of this assumption will be discussed in section

5.4.3. Under the σyy = 0 condition, the triaxial formula becomes (Albertini et al.,

1997):

σyy,i =
(1− ν)E

(1 + ν) (1− 2ν)
εyy,i +

νE

(1 + ν) (1− 2ν)
(εxx,i + εzz,i) (5.3)

where ν = 0.342 is Poisson’s ratio of Ti–6Al–4V and E=105.5 GPa is the elasticity

modulus for the α–Ti(103) plane. This condition enables the calculation of the

stress-free lattice spacings (d0,i) parameters:

d0,i =
1− ν
1 + ν

dyi +
ν

1 + ν
(dxi + dzi ) (5.4)

Principal strains (ε) were calculated as:

εxx,i =
dxi − d0,i

d0,i

(5.5)

and finally principal stresses (σ) were calculated using the triaxial form of Hooke’s

Law:

σxx,i =
E

(1 + ν) (1− 2ν)
[(1− ν) εxx,i + ν (εyy,i + εzz,i)] (5.6)
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5.4 Results and discussion

5.4.1 Distortion and geometry

The distortion results are shown in Figure 5.7a and demonstrate that distortion

reduced with increased rolling load.

Rolling significantly affected the WW and LH, as shown in Figure 5.7b. As the

rolling load increased, there was a substantial increase in WW, which was accom-

panied by a reduction in the LH. The standard deviation of WW and LH reduced

after rolling, from 0.18 to 0.14 and from 0.19 to 0.09 respectively for the profiled

roller, and was as low as 0.03 for the flat roller, as shown by the error bars in this

figure.

(a) Distortion
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Figure 5.7: (a) distortion, and (b) average WW and LH vs. rolling load. Note the
error bars in (b) represent the standard deviation of the three measurements.
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The reduction in the standard deviation following rolling for both WW and

LH values shown in Figure 5.7b, particularly the reduction in variation of the wall

height, will simplify the automation of the deposition process. Variation in the

LH, unless compensated by the control system, results in differences in the torch

stand-off, which leads to a change in the heat input and ultimately to the geometric

characteristics of the deposit. Operating the equipment with position rather than

load control could possibly eliminate or significantly reduce height variation between

passes even further.

Average engineering strains are shown in Table 5.1. The strains for the two

directions were very similar for the samples rolled with the profiled roller, however

the strain was greater in the transverse (Y ) direction for the sample rolled with the

flat roller. As discussed in chapter 3, the flat roller modified the shape of the deposit

which is the reason for the large discrepancy in the strains.

Table 5.1: Average engineering strains (%).

Profiled roller Flat roller
Z direction Y direction Z direction Y direction

50 kN 7.9 −8.1 4.4 −6.8
75 kN 18.2 −17.5 15.0 −20.3

Figure 5.8 shows a plot of the strain measured after rolling each layer. Please

note this strain is only related to the measurements taken in the Z direction. Two

main differences can be seen: the first one is related to the magnitude of the strain

induced by the two rolling loads which was significantly greater with the greater

load. The second is the much larger strain produced with the flat roller for a load

of 75 kN during the deposition of the first few layers. However after the fifth layer,

the strain induced by the profiled roller was slightly higher than the flat roller one.

For a rolling load of 50 kN, the difference is minimal.

The difference in strain for the first few layers when rolling at 75 kN (Figure 5.8)

can be attributed to the lack of lateral restraint of the flat roller. In the first few
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Figure 5.8: Plot of layer height (Z direction) strain vs layer number.

layer, the profiled roller was in contact with the baseplate too, because the depth

of the machined groove was larger than the height which was being rolled. The flat

roller was not constrained by the baseplate which resulted in higher strain. Further

from the baseplate, the flat roller resulted in a lower strain.

The reduction in distortion as a consequence of rolling is likely to be linked to

the modification in residual stress, discussed in the following section.

5.4.2 Residual stress

Figure 5.9 shows a comparison of the residual stress in the longitudinal (X) di-

rection measured along the centreline of control and rolled specimens. Figure 5.10

shows a maps of the stresses for the same direction, in which the residual stress

is the largest. The control specimen showed a substantial amount of tensile stress

(500 MPa) concentrated just above the interface between the part and the base-

plate. The magnitude of the stress steadily decreased towards the top of the wall,

where it became compressive, peaking at around 250 MPa. These measurements

are consistent with that reported previously in the work of Colegrove et al. (2013)

and Ding et al. (2011) on steel WAAM structures, and of Hoye et al. (2014) on Ti–
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Figure 5.9: Longitudinal residual stress measured along the centreline by contour
method.
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Figure 5.10: Contour maps of residual stress.

6Al–4V. Tensile stress were generated throughout the deposition due to shrinkage of

the material solidifying behind the molten pool; this has been discussed thoroughly

in Coules et al. (2012a). During deposition, the clamps applied a bending moment

which kept the baseplate flat; the baseplate also contained the balancing compressive

stress. Despite the differences in geometry in WAAM specimens, the mechanisms

were the same. Upon releasing from the clamps, the baseplate bent upwards turning

the tensile stress at the top of the wall into compressive ones, which resulted in the

tensile peak observed at the baseplate-part interface.

The 75 kN specimen showed lower stress. In particular, at the interface between
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the part and the baseplate the reduction compared to the control specimen was

evident: the 75 kN specimen showed a tensile stress of 200 MPa, roughly 300 MPa

less than the control specimen. In addition, the rolled specimen exhibited a much

flatter tensile status (oscillating between 100 MPa and 200 MPa) and then a sudden

change to highly compressive stress in the last few layers. These compressive stresses

are 150 MPa to 250 MPa larger than in the control specimens; they were possibly

produced by the last rolling step, which was not followed by any deposition.

During part building there was a competition between the production of residual

stress by each layer deposition (welding stress), and the compressive ones introduced

by each subsequent rolling pass. This was also evident in the work of Coules (2012)

and Cozzolino (2013), who also showed the welding stress is normally higher than

the one induced by rolling, suggesting the plastic zone associated with welding is

generally greater than the one related to rolling.

Differently to that seen in the work of Coules et al. (2012b), rolling did not

change the tensile stress into compressive ones fully. This would have been par-

ticularly desirable for both elimination of distortion, and better damage tolerance

properties. The reason is that in welding during rolling the baseplate acts as main

constraint in the transverse (Y ) direction, and most of the deformation happens

in the longitudinal one (X). In AM structures, in which case rolling is performed

much further from the substrate, there is not any constraint in the transverse (Y )

direction which with the normal (Z) one accommodates most of the plastic defor-

mation. Please note in these two directions the stress is relatively low compared to

the longitudinal (X) direction, as seen in Colegrove et al. (2013) and Hoye et al.

(2014). Without meaningful strain in the longitudinal (X) direction, the tensile

stress cannot be eliminated.

The CM enabled the measurement of stress much closer to the surface than

diffraction methods. Consequently it was possible to identify and measure the tensile

stress at the top of the wall, which follows the sudden compressive drop (Figure
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5.10). This tensile stress was due to the friction existing between the roller and the

material which produces more deformation under the surface than at the surface

(Bijak-Zochowski and Marek, 1997). The tensile residual stress at the very top is

not desirable from a mechanical property viewpoint, however this is not an issue as

in real components the top of the deposit will be machined off.

5.4.3 Neutron diffraction vs. contour methods

There are differences between the results obtained with the contour method and

those produced by neutron diffraction (Figure 5.11). Within the baseplate, the con-

tour method showed low tensile stress, while the one measured by neutron diffraction

was considerably high (250 MPa to 350 MPa). From the interface up to a wall height

of 20 mm, the initial offset of roughly 150 MPa becomes progressively smaller; from

an height of 20 mm to the top of the wall, the two curves are in good agreement.

Three reasons could be identified for the observed differences. Firstly, if the

contour cut is performed with wrong parameters plasticity can happen ahead of the

EDM wire. Secondly, the assumption of plane stress is valid when the hydrostatic

stress is negligible, i.e. not close to the substrate. This could explain the lack of

agreement in the baseplate between ND and CM results. Thirdly, the determination

of the strain in ND measurements relies on the fit of a gaussian distribution, whose

error decreases as the number of sampled grains increases (Wimpory et al., 2010).

Hence having a large enough number of grains included in the gauge volume is fun-

damental; unfortunately, due to size of specimens and prior β grains, poor sampling

statistics affected the present measurements.

5.5 Conclusions

High-pressure interpass rolling was attempted to eliminate distortion and residual

stress in WAAM Ti–6Al–4V components. It was found that:
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Figure 5.11: Comparison of residual stress in the longitudinal direction, measured
by neutron diffraction and contour methods for the control specimen.

• unrolled specimens were characterised by a strong tensile residual stress peak

at the interface between the substrate and the linear deposit, which turns into

a compressive stress in the top of the wall;

• interpass rolling was successful in reducing the longitudinal residual stress,

particularly at the aforementioned interface;

• rolling resulted in higher compressive stresses near the top of the wall.

Furthermore, rolling resulted in a modification of the part geometry, specifically

in an increase in the wall widths and reduction in layer heights, due to plastic de-

formation. The standard deviation of layer height was substantially reduced, which

could result in easier automation of the WAAM process and increased confidence in

terms of its repeatability. This result is particularly significant from an industrial

point of view.

Unfortunately, rolling did not eliminate distortion; in fact, even after rolling

parts retained tensile residual stress. In conclusion, high-pressure interpass rolling

is an excellent way to produce a refined equiaxed microstructure and isotropic me-
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chanical properties in Ti–6Al–4V deposits, but other solutions must be investigated

for distortion control.

Further work is required in order to understand:

• how residual stress affects the performance of WAAM parts, particularly fa-

tigue;

• the reasons for the discrepancy between the contour and neutron diffraction

measurements;

• how the plastic zone created by the deposition process (producing tensile

stress) compares with that generated by rolling (producing compressive stress).
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Chapter 6

Summary and conclusions

Within the broad aim of addressing WAAM current challenges towards control of

geometry, microstructure, mechanical properties and residual stress, the objectives

of the present research work cover the development of an experimental process model

for the deposition of titanium by Tungsten Inert Gas (TIG) WAAM; the study of the

effect of high pressure rolling on the same titanium deposits; and the investigation

of the relationship between O2 contamination in the part and O2 atmospheric levels

during deposition. The key findings of the research work are summarised below.

6.1 Results summary

6.1.1 Process model of titanium TIG WAAM

In chapter 2 the feasibility of TIG deposition for AM purposes was demonstrated.

A working envelope which ensures process feasibility was developed; its capability

was analysed and compared with those of competing or complementary processes;

and the behaviour was modelled empirically by a systematic adoption of Design

Of Experiment (DOE), and validated. The DOE findings were confirmed by a

subsequent analysis which established a relationship between WW and process heat

input; and between LH and both heat input and WFS/TS ratio.

139
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TIG WAAM was capable of producing walls ranging from 5 mm to 14 mm (mostly

dependent on the current), with layer thicknes between 0.6 mm to 2.1 mm (depen-

dent on wire feed speed), reliably and automatically. The maximum deposition rate

achieved was 1.2 kg h−1, however this was limited by wire feeder capability. Most

likely much higher deposition rates can be achieved, however this would introduce

other problems such as heat management and even worse distortion, as well as pro-

cess instabilities related to molten pool dynamics.

6.1.2 High pressure rolling of titanium additively manufac-

tured components

High pressure rolling was successful in improving the quality of test specimens from

mechanical property anisotropy, residual stress and distortion points of view, which

are of great concerns with regards to the additive manufacturing of titanium.

Microstructure In chapter 3 the beneficial effect of high-pressure rolling in terms

of microstructural refinement was demonstrated. As-deposited specimens are char-

acterised by an extremely textured microstructure, with the α phase strongly orien-

tated towards the build direction (Z), and columnar prior β grains growing epitax-

ially from the bottom of the structure and often traversing its whole height. This

has significant implications from a mechanical point of view. The strain introduced

by each rolling pass, coupled with the heat provided when depositing a new layer,

resulted in recrystallisation and ultimately in the production of equiaxed and ran-

domly orientated prior β grains. Also the α phase observed in the rolled specimens

was characterised by a smaller thickness compared to the unrolled ones.

Both the profiled and the flat roller resulted in a refined, texture-free microstruc-

ture; however due to the lack of side restraint, the flat rolled produced slightly bigger

prior β grains closer to the side surfaces of the linear deposits, which could be re-

moved by a subsequent machining operation.
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Mechanical properties In chapter 4, the beneficial effects of high pressure rolling

on microstructure were related to changes in mechanical properties. Unfortunately,

as-deposited Ti–6Al–4V components are characterised by a degree of anisotropy

which, although modest, is still undesirable. The strength is higher in the horizon-

tal direction, while the elongation is much better in the vertical one. However, the

microstructural changes induced by rolling resulted in superior and isotropic me-

chanical properties: for a 50 kN rolling load, the mechanical performance in the two

directions are already very similar; for a load of 75 kN the properties are effectively

isotropic, with elongation equal to 13%, yield strength to 1000 MPa, and ultimate

tensile strength just shy of 1100 MPa. Please note these values are much better than

the wrought material and much higher than the specification minima prescribed by

ASTM B265 – 09a (2009).

Furthermore, the process proved to be relatively insensitive to the oxygen con-

tent in the atmosphere during deposition, at least for concentration values up to

4000 ppm. In fact, regardless of the oxygen concentration in the atmosphere, that

measured in the final components was between 200 ppm and 400 ppm higher than

the alloying quantity already present in the wire (1400 ppm). Consequently the

hardness measured in all samples was the same.

Distortion In chapter 5 the beneficial effect of high-pressure rolling in terms of dis-

tortion reduction was demonstrated. As-deposited WAAM components are always

characterised by distortion, unless more complex deposition strategies are taken into

account. Both a profiled and a flat roller enabled a substantial reduction of the dis-

tortion: an approximately 50% reduction was achieved when comparing specimens

rolled at 75 kN to as-deposited ones.

Residual stress In chapter 5, the relationship between rolling and residual stress

was studied. While rolling reduced residual stress, it was not successful in reverting

the status from tensile to fully compressive, a much more desirable condition from
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a mechanical point of view. Consequently, high pressure rolling is possibly an excel-

lent way to introduce a substantial refinement in the prior β grains structure and

improve the mechanical properties; however, in terms of residual stress, other routes

should be investigated, including different clamping methods, Global Mechanical

Tensioning (GMT) and stress-relieving heat treatments. Therefore the rolling load

should be selected based on the requirements for microstructural refinement rather

than residual stress reduction.

6.2 Conclusions

The research questions identified at the start of the present research work have been

addressed successfully. In particular the research objectives have been achieved:

• process modelling of titanium deposition is suitable for controlling the geome-

try of the layers. The empirical process equations may be used for automation

of TIG WAAM;

• rolling in combination with the subsequent heat from deposition resulted in

recrystallisation of the prior β grains and refined the microstructure, therefore;

• rolling improved the tested mechanical properties, which were isotropic; their

variability was also reduced;

• rolling reduced dimensional variability of the layer height; this in turns in-

creased the reliability of the process and will facilitate its automation;

• rolling reduced residual stress and part distortion, because of the plastic defor-

mation it introduced; however distortion was not completely eliminated which

requires the investigation of alternative approaches to address this issue.

• the shielding provided by the torch during deposition was sufficient to prevent

O2 contamination in the part up to O2 atmospheric levels of 4000 ppm.
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6.3 Future work

Future work could include:

• implementation of process algorithms in Computer aided manufacturing soft-

ware;

• extend process algorithms to other deposition conditions:

– oscillated and parallel walls;

– out of position deposition;

• reliability and equipment sensitivity for the process algorithms;

• further investigation and optimisation of rolling:

– study of relationship between rolling load, width and recrystallisation;

– extension to 2.5-dimension rolling using e.g. a pinch roller;

– adaptive rolling, e.g. changing load with layer number;

– study of risk of buckling due to rolling, for tall structures;

– development of rolling strategies for enclosed structures;

– rolling efficiency optimisation:

∗ range of wall widths;

∗ equipment size;

∗ how often to roll;

– fatigue and damage tolerance study of rolled components;

– investigation of the benefits of inter pass rolling for other materials, e.g.

aluminium;

• investigation of alternative means on introducing interpass cold work, e.g.:

– laser shock peening;

– ultrasonic peening;

– pneumatic hammering;

• development of WAAM-specific local shielding devices.
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6.4 Final remarks

AM has still a long way to go before it sees full implementation in real-world in-

dustries. Issues such as residual stress and distortion are still of great concern for

companies, and so are problems related to structural integrity such as ensuring me-

chanical property consistency, lack of defects, and repeatability.

With regards to WAAM, despite the results provided in the first part of the

present research work, the lack of full automation such as that seen in beam-based

processes needs to be addressed, before the process is commercialised.

However, the engagement of both industry and research institutions is evident,

and fully justified! The advantages of this technology are proven and extremely

valuable. The media are increasingly covering and discussing AM related facts and

findings, but they often forget where the real benefits are. Looking just at metal

AM:

• The freedom of designs achievable with beam-based processes is tickling the

fancy of all the designers around the world. More and more complicated

topological optimisation algorithms are generating wacky shapes which we

would have never even imagined before, that promise the maximisation of

certain mechanical properties while minimising the weight;

• The reduction in lead time enabled by WAAM has made building components

that would have taken six months possible in just one day;

• The cost associated with the WAAM of large aerospace components is a min-

imal fraction of that currently incurred by companies when building the same

parts traditionally.

These key features make AM a sustainable process family, as it reduces firstly

the impact of manufacturing (less raw material, less energy needed), and secondly

the carbon emissions components are responsible for during their life cycle, due to
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their reduced weight1 resulting in better fuel economy. AM is already responsible for

a revolution in the manufacturing sector as we know it today, with greatly reduced

time-to-market, increased customisation possibilities and faster implementation of

design improvements.

While at the moment most of the industries involved belong to the aerospace and

defence sectors, the hope is that developments will be accessible by a much larger

group of users, and that this manufacturing revolution will have an impact on the

daily life of everyone. Perhaps, media should stop talking about (or cover a bit less)

3D printed guns and highlight where the real benefits are. All technologies can be

used for less noble purposes but this should not mean their development should be

obstructed. If anything, we are in a time in which we still have the chance to educate

people and explain how (and for what) to make the most out of this technology.

1In particular for topologically optimised components
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Appendix A

Effects of shielding conditions and

temperature upon geometry and

microstructure

A.1 Introduction

Developing a geometric, empirical model for some AM metric is a time-consuming

task, in which the largest proportion of the time is consumed in taking measurements

and letting the part cool down to room temperature. It was however interesting to

assess the effect of temperature on bead geometry. In fact, if temperature had no

effect, it would be possible to carry out the experiments without worrying about

waiting between the deposition of two layers, thus ultimately reducing the total

time for task completion.

Moreover, as discussed previously, oxidation represents a major issue. It is known

that oxygen affects surface tension, and consequently bead geometry. An assessment

of shielding conditions (and ultimately of oxygen content) effect upon geometry, par-

ticularly if no effect was observed, could ease the geometrical modelling, as this task

could be completed without worrying about achieving optimal shielding conditions.
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A.2 Methodology

WAAM deposition setup consisted of a TIG torch, a 100 mm long trailing shield,

and a Migatronic power source. The torch was mounted on a 6-axes Fanuc Robot.

Pureshield Argon Gas was used for shielding as well as for the torch. Torch standoff

was 3.5 mm. Wire was always forward-fed. For a schematic representation of the

setup please refer to Figure 2.2 on page 54.

Four specimens were built. Wire Feed Speed (WFS), Travel Speed (TS) and

Current were all kept constant at 1 m min−1, 3 mm s−1 and 130 A, respectively. The

effect of shielding conditions was assessed by changing the trailing shield gas flow rate

from 20 l min−1 to 10 l min−1 and 0 l min−1 (Table A.1). In this way, the formation

of a thin oxide layer was induced, and this layer was eventually included in the

specimen while depositing a new layer. The effect of temperature was evaluated by

waiting until the part cooled down to room temperature, or by depositing another

layer immediately after the necessary measurements were taken.

Table A.1: Experimental design for assessment of shielding conditions and temper-
ature effects upon bead geometry.

Specimen Trailing shield gas flow rate Temperature
(l min−1) (◦C)

a 10 Room
b 0 Room
c 20 74
d 20 Room

Selected metrics for the comparison were LH and WW. The first was measured

every layer at three different points, while the latter was measured by using Adobe

Photoshop CS4® (2008) with optical micrography image of ground, polished and

etched cross-sections (one section per sample was analysed). The first four lay-

ers were excluded from the comparison, and the layer height average values were

considered.

From a microstructrural point of view, heat affected zone, base, middle and top
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layers were analysed. In particular, microstructure morphology, as well as α phase

precipitation size and characteristics were assessed qualitatively.

A.3 Results

A.3.1 Geometry

Confidence intervals on the difference in the mean (with unknown but assumed

equal variances) were calculated to determine whether the temperature and shielding

conditions led to a change in the process or not, under the reasonable assumption

that data were normally distributed. Student’s t distribution was used. Mean

and standard deviation values were calculated considering the 16 layers of each

sample, i.e. considering the measures of layer heights from the 4th to the 20th

layer. For the LH, as can be seen from the error bars of Figure A.1, at this level

of confidence it cannot be stated that a difference in the means exists. Therefore,

neither shielding condition nor part temperature had an effect on LH. Because only

one cross-section was taken from each specimen, an appropriate statistical analysis

cannot be performed on WW. However, considered the small variability observed,

and that for the conservation of volume if the LH does not change so should do

the WW, it can be concluded that WW is not affected by shielding conditions and

temperature.

A.3.2 Microstructure

Little differences were observed in the microstructure of the different specimens. The

heat affected zone was characterised by the same features, i.e. a mixed structure of

α colonies and Widmanstätten (Figure A.2, images (a) to (d)). In the base layers

Widmanstätten prevailed and a visual comparison of lamellae size did not show any

significative difference (Figure A.3, images (a) to (d)), except for the specimen c

(the one in which layers were deposited when the part was still hot) where some
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Figure A.1: Comparison of specimens wall widths and layer heights under different
experimental conditions. Please note error bars are 95% confidence intervals.

large α precipitations (αM) can be identified (Figure A.3c). Also in the middle layers

microstructure are comparable, and characterised mostly by Widmanstätten (Figure

A.4). In the top layers there is a strong increase in the quantity of αM at expenses of

the Widmanstätten (Figure A.5). Lamellae appear long and needle-like, an evidence

of martensite presence. At the grain boundaries, in all cases α precipitations were

observed.

A.4 Discussion

A.4.1 Geometry

From the results it is clear that shielding conditions and part temperature (at least

below 74 ◦C) do not affect the bead geometry. Oxygen levels, even when the part

was covered with a dull layer of oxide, do not reduce the droplet surface tension ap-

preciably. The same applies for the temperature. A relationship between substrate

temperature and geometrical features exists; indeed, it was shown in previous re-

searches (Martina, 2010) that the first four to five layers are narrower than the rest,

due to the efficient heat extraction given by the baseplate. When moving further
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(a) Specimen a (b) Specimen b

(c) Specimen c (d) Specimen d

Figure A.2: Comparison of microstructure, heat affected zone.
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(a) Specimen a (b) Specimen b

(c) Specimen c (d) Specimen d

Figure A.3: Comparison of microstructure, base layers.
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(a) Specimen a (b) Specimen b

(c) Specimen c (d) Specimen d

Figure A.4: Comparison of microstructure, middle layers.
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(a) Specimen a (b) Specimen b

(c) Specimen c (d) Specimen d

Figure A.5: Comparison of microstructure, top layers.
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from the baseplate, the process enters a steady state which was not disturbed by

the increase in part temperature. It stands to reason that higher cooling rates are

achieved close to the baseplate, which acts as a heat sink, while further from it, due

to the change in the medium the heat flows through (from a flat, wide baseplate to

a narrow, tall wall) lower cooling rates existed. Even more importantly, when the

process is steady, they do not change depending on the layer, giving a consistent

bead geometry. The difference between room temperature and 74 ◦C is not large

enough to induce changes in the cooling rate, and bead geometry is not altered.

A.4.2 Microstructure

Micrographs are in agreement with what is already available in the literature, and no

differences were seen between the control case and the specimens produced under

different experimental circumstances. Therefore neither shielding conditions nor

temperature affected specimen microstructure within these boundary conditions,

apart from some large αM in the base layers of specimen c (Figure A.3c). The

microstructure being related to both oxygen content and cooling rate, and specimen

c being optimally shielded, it is reasoned that the observed αM is due to the difference

in cooling rate experienced because of the higher part temperature. This deviation

was not large enough to induce changes in the geometry, but clearly sufficient to

trigger the formation of αM . The similarity of the microstructure between the base

case and oxidised sample suggests that:

• oxidation levels are not high enough to stabilise α and increase the formation

of larger α colonies or lamellae; or

• the oxide was expelled due to its lower weight when the layer was molten

during the deposition of a new layer.
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A.5 Summary

In this appendix the effect of shielding conditions and part temperature on part

geometry and microstructure was investigated. It can be concluded that they had no

effect on bead geometry, and a very marginal one on the microstructure. Therefore,

the empirical modelling work could be carried out without excessive attention to

shielding conditions and, more importantly, saving time by not waiting until the

part cooled down to room temperature.



Appendix B

Mechanical testing

In this appendix further information with regards to the mechanical testing pre-

sented in chapter 4 on page 107 is provided.

Figure B.1 shows the dimensions of the tensile test coupons extracted from the

linear deposits. Figure B.2 shows the location of the tensile test coupons extracted

from the control (unrolled) deposit. Figure B.3 shows the location of the tensile test

coupons extracted from the deposit rolled at 50 kN. Figure B.4 shows the location

of the tensile test coupons extracted from the deposit rolled at 75 kN. Figure B.5

shows the strain–stress curves for all tensile tests performed in-house at Cranfield

University. Please note the tensile strength in the horizontal orientation for the

deposit rolled at 50 kN was tested in an external laboratory and the related strain–

stress curves are not available.

The coding was the following:

• rolling load:

– “C” for control (unrolled)

– “50” for 50 kN

– “75” for 75 kN

• specimen orientation:

– “V” for vertical
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– “H” for horizontal

• type of test:

– “T” for tensile test

– “F” for fatigue test (eventually not performed)

• specimen counter within the same subset of coupons

Example: C V T 2 identifies the second specimen for tensile testing, extracted

from the unrolled deposit in the vertical direction. Please note that although

coupons for fatigue testing were produced, for reasons beyond the author’s con-

trol the test could not be carried out.

Figure B.1: Tensile test coupons (all values in mm).
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Figure B.2: Coupon locations for tensile testing of control specimen (all values in
mm).
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Figure B.3: Coupon locations for tensile testing of specimen rolled at 50 kN (all
values in mm).
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Figure B.4: Coupon locations for tensile testing of specimen rolled at 75 kN (all
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Figure B.5: Strain-stress curves from tensile tests of (a) control specimen in the
horizontal direction, (b) control specimen in the vertical direction, (c) specimen
rolled at 50 kN and (d) specimen rolled at 75 kN.
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