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Abstract

The purpose of this document is to describe Multi-Objective Tabu
Search 2 (MOTS2), which is a native mutli-objective optimiser. It
has been developed to tackle a variety of real-world problems of en-
gineering interest. The design and implementation are presented, fol-
lowed by verification, validation and user instructions. At a glance,
it involves introduction to the algorithm, explains configuration set-
tings and structure, and results interpretation. Then, the optimiser
is tested against a series of mathematical test functions in order to
verify its functionality. The main goal is to demonstrate and assess
the performance and applicability of the optimiser. The next step is to
use MOTS2 on a real-world case, where the performance of optimising
a 2D airfoil is validated and illustrated.
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1 Introduction

This document serves as an accompanying resource of the new multi-objective
optimisation algorithm, called Multi-Objective Tabu Search 2 (MOTS2),
which is a multi-objective variant of the original Tabu Search [13]. It can be
considered as a combined extension of numerical analysis tools and artificial
intelligence optimisation methods and techniques|[!9]. The main purpose is
to introduce and describe MOTS2 without compromising in understanding
and technical detail. Throughout this document, the terminology from [/] is
used. Furthermore, all the files, directories and options appear in bold, a list
of which is presented in the Appendix, below. Unless it is specified explic-
itly, the order of appearence of components in the files corresponds to the
actual order of definition, within the optimiser, both for decision variables
and objective function values.

Tabu search methods belong to the class metaheuristics optimisers|19].
They perform stochastic and local search optimisers or, alternatively, intens-
ive local search. Originally, they were designed to manage heuristics of hill
climbing, but they were adopted to manage heuristics of neighbourhood ex-
ploration. In fact, they can be considered as a strategy that controls a collec-
tion of embedded heuristic techniques. The former family of optimisers first
introduced the concept of memory in metaheuristics, where the Reactive and
Parallel derivatives emerged|3, 2, 12]. This algorithm is based on the single-
objective Tabu Search (TS), introduced in [10, 5], and its multi-objective
variant, as described in [13], where a detailed explanation can be found in.
Moreover, MOTS2 includes the improvements (local search enhancements for
Diversification Move) discussed in [15] and, given any parallel framework, it
can operate in parallel mode saving elapsed time.

Additionally, integrated memories are manipulated and designed as data-
bases, which makes the implementation very flexible and sustainable. Also,
a new method called “kick” was added (see A.2.18 and A.2.19 ).

The structure of the document follows. The first part documents the de-
velopment phase of the optimiser, where its structure and important routines
are described. The third chapter explains how to perform a quick-run with
MOTS2 by using a minimal combination of settings, whereas the follow-
ing chapter explains in greater detail how to fully exploit all the features
provided. The latter chapter describes the structure of configuration set-
tings and input files, where every entry/entity is described along with a
simple example. Considering that configuration settings are appropriate, the



fifth chapter illustrates how to perform multi-objective optimisation by using
MOTS2. The next chapter informs the user how to interpret and understand
the generated output of the optimiser. The verification phase of MOTS2 is
presented in Section B.1. Two families of test functions for two and three
objectives are used, where MOTS2 delivered satisfactory results. Finally,
the effectiveness of the optimiser is demonstrated on a real-world case, where
MOTS?2 is applied on a case of airfoil shape optimisation with two objectives.

2 The implementation of MOTS2

MOTS2 was implemented in two stages; First the memories were created,
as the core data structure of the algorithm. Then the algorithmic structure
was built around them. Since the concept of memories is so important, it
is sensible to employ object oriented techniques. Because of the diversity of
cases the optimiser will be called on, the optimiser is implemented in C++
programming language, which was selected for structural, linking and inter-
facing purposes. The code is portable, cross-platform and can be delpoyed
on any computational architecture.

2.1 Describing the different types of memories

This section describes the concept of hierarchical memories. In total, there
are 5 types of memories within the optimiser, each with slightly different
purpose. These are called the Short Term Memory (STM), Medium Term
Memory (MTM), Long Term Memory (LTM), Intensification Memory (IM)
and HISTORY containers, or memory banks. All memorie share two common
features; duplicate decision variables points are not allowed, but identical
objective function values might exist, and their attributes are user-defined
variables and do not change as the optimisation progresses.

The first, STM, is the collection of Tabu points. These are black-listed
points that the optimiser is not allowed to use as long as they remain inside
the memory. The size of STM is selected before the optimisation starts and
remains fixed until the end. In principle, it implements a stack data structure
and contains information about the decision variables, only. During every
iteration, a new point is pushed into to the top of the memory and, if the
memory is full, the last point is poped. So, the newly points are located at
the top, and the elder is at the bottom.



Three types of memories, MTM, IM and HISTORY, have identical im-
plementation, but they are populated differently. They all implement a dic-
tionary (hash table) data structure, which holds a number of entries. Each
entry is defined as an assembly of decision variables and their corresponding
objectives. Moreover, all the entries are listed in asending order, based on the
decision variables, only. The collection of the optimal non-dominated points,
which are usually called Pareto Front (PF) points is stored in MTM. This
memory holds the final output of the optimiser, which is a trade-off among
the selected objectives and presents their interplay. All the points for the
Intensification Move (see below) live in IM, which is used for the local-search
features. Finally, HISTORY logs all the evaluated points (both feasible and
not). This gives the big picture of the optimisation search, which is frequently
combined with data mining techniques so as to extract information that will
guide the search further. In addition HISTORY is used for post-processing
and other purposes.

The last type of memories, LTM, is used for the global-search features.
This holds the visiting frequency of various regions of the design space. Each
variable range is equally split into a number of regions, whose frequency
is monitored and is used under certain occasions (see Diversification Move
below). The number of regions is set beforehand and remains the same until
the end. This simply informs the optimiser (and the user) which areas are
the most and least frequently visited and forces the optimiser to explore the
most unknown regions.

The different types of memories and their relations, with regard to an
example 2d objective space, are depicted in Figurel. All these memories are
used to assist critical decisions during the optimisation process.

2.2 Algorithmic Structure

The optimiser depends on memories and performs a search by combining a
systematic local search along with stochastic elements so as to intelligently
search the entire design space. The flow of the aforementioned procedures
is shown in Figure 2. The search starts from Base Point (BP) and three
memory containers (STM, MTM, HISTORY). All these are used on every
iteration, whereas the other parts are called when special conditions are met.
It starts with blank memories, and as the optimisation search progress, it
gradually builds a knowledge base about the design space and the objective
space. Then, the search is guided from the performance of the decision vari-
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Figure 1: Tabu Search memories

ables point in the objective space so as to discover even better performance.
All the stages are guided by the BP. Around the BP, the adjacent candidate
design points are investigated and evaluated. Then, the corresponding ob-
jective values are sorted according to domination criteria of multi-objective
optimisation [9] and the appropriate memories for the current iteration and
the next BP is resolved. The previous BP and all the recently generated
points are inserted into the appropriate memory containers. Hence, MOTS2
progresses effectively through the objective space while not wasting precious
computational time.

In general, the design space is explored in a stochastic way, while recently
visited points (called Tabu points) are avoided so as to guarantee more ex-
ploitation of the unknown design space. More importantly, this type of op-
timisers explicitly use memory (and history to some broader extent) through-
out the optimisation search®. This can be particularly beneficial in terms of
computational budget when the number of iterations increases and/or when
direct search? is the only possible way. In fact, the local search scheme - in

linitially this seems complicated and taking advantage of it is not very straight forward
2this class of optimisers considers the evaluation of objective functions as black-box
procedure



this implementation; Hooke and Jeeves [11]|, which is particularly efficient
for continuous parameters - is combined with stochastic elements and other
enhancements.

The optimiser also keeps track of statistics during the process, which
direct the search according to the discovered landscape of the design space.
At the top level, the optimiser employs a mechanism for local and global
search. Thus, it could be considered a hybrid, since it expands the original
definition|[6]. In practice, the local search part is performed more frequently
than its global counterpart. However, the global part can be considered
as an enhancement to cover more general cases. The statistics determine
the progress of the optimiser by activating certain behaviour when special
conditions are met; they are mostly used to detect design points around
the current search point, within relatively short distance, whereas the search
mechanisms attempt to discover good design points in the entire design space.
Consequently, the functionality of MOTS2, as depicted in Figure 2, results
in better performance throughout the optimisation process.

Aggregated information will be used in future steps to guide the search,
when certain conditions are triggered. This procedure keeps repeating until
the stopping criteria are met. Depending on the nature of the application,
these are usually the elapsed time, the number of evaluations, the number of
consecutive failures to find a better point, number of iterations or a combina-
tion of them. During every iteration a fraction of the flow of the algorithm is
executed every time, and the rest runs when certain conditions are met. The
core of the optimiser is the Update Memories, Hooke and Jeeves-, Intensify-
and Reduce-Move, the remaining parts are algorithmic enhancements, which
speed-up the search.

In the simplest approach, the optimisation starts off from a datum design
point®, which is a combination of parameters of well-known performance.
Following the operation of local-search optimisers, the selection of the datum
design is the most crucial part, before actually launching the optimisation
process, as this could potentially trap the algorithm at an early stage. Then,
a couple of new points are generated and evaluated. One of them will be
the BP, throughout the current iteration loop, and the rest are accordingly
forwarded to the memories. Thereafter, the optimisation keeps iteratively
going on.

3this should be a valid point
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Figure 2: MOTS2 algorithm flow diagram




2.2.1 Frequently Performed Moves

The following parts take place on a regular basis:

Hooke and Jeeves Move is the most important part of the local search
scheme as it occurs on every iteration and requires plenty objective
function evaluations, which can be expensive. This is the most time-
consuming part of the optimisation process. Starting from the BP, a
couple of valid and non-tabu points are generated by combining the
current BP and the current Search Step (SS, see A.2.4) as illustrated
in Figure 3. In theory, up to twice the population size of the design
parameters (see nVar below) can be generated, but since some of them
could either belong to STM or be invalid, they are excluded from the
following stages of Hook and Jeeves Move. Then, a few of the recently
created points are randomly selected and evaluated in order to save
some computational budget (see n__sample below) and added into the
appropriate memory banks. These points are within the close vicinity
of the BP and this is the local search phase of the optimiser. The
n_sample can be up to 2*nVar, but since this will use considerable
computational budget, a lesser value should be selected, but not too low
because it will compromise in local exploration. Among the recently
evaluated points, one of them will be randomly selected as the BP and
the search continues.

Pattern Move: This is just an enhancement of the Hooke and Jeeves Move
where the next BP will be quickly resolved. Whenever Hooke and
Jeeves Move takes place for second time, the following BP is generated
by combining information from the last two BPs. It takes place every
other iteration (once in every two iterations). In this way, the search
may be accelerated along known downhill directions. In fact, it calcu-
lates the gradient direction between the last and penultimate BP and
applies the same change to generate a new point that will be evaluated.

Update Memories: At the end of every iteration the newly resolved BP is
inserted into the base memory bank, STM, MTM, LTM, IM and HIS-
TORY (should it fulfil their corresponding conditions). New points are
popped and pushed into STM following the principles of data stack. All
the points within IM are filtered based on Pareto dominance, whereas
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Figure 3: Hooke and Jeeves Move in the design space

HISTORY keeps track of all the records. The dominated points from
MTM are also filtered out.

During the execution of the algorithm, the memory containers are enriched
with information that will be exploited on later stages. Therefore, a zero-
knowledge search starts and as the optimiser runs, it learns about the in-
trinsic features of the design space from the containers iteration-by-iteration.
This results in a knowledge base and according to the principles of artificial
intelligence, this is the best method of a heuristic search to be performed.

2.2.2 Conditionally Performed Moves

Besides the Moves mentioned above, a number of complementary Moves is
carried out when certain conditions are met. These Moves can escape MOTS2
from local minima and perform local and global search, and step refinement,
respectively. Although the frequency is defined by the user, in order to be
consistent with the original definition of Tabu Search, their numerical value
should increase in the order of appearance.

Intensify Move: By definition, contrary to single-objective optimisation,
during multi-objective optimisation several points form the Pareto-



Front. However, during every iteration, only one of them might be the
BP. Therefore, the remaining points that dominate the current trade-
off, but have not been selected as BPs, are stored into IM. Whenever
the search cannot discover any new nor non-tabu point, another point
from that back-up container is selected randomly as the following BP.
Therefore, the search returns back to the vicinity of the most promising
points discovered so far and picks-up the search thereafter. This should
be the most frequently performed move.

Diversify Move: Instead of finding a better point, within a short range, a
new non-tabu point is randomly generated from least explored region
of the design space. Here, the information stored in LTM is utilised
in order to generate the new point. The design space is explored as
equally as possible. This is the global search phase of the optimiser
and its frequency depends on the problem.

Restart Move: Whenever the search fails to discover a new good point with
the current SS for a large number of iterations, a new BP is randomly
resolved similarly with Diversify Move. Then, the SS is refined accord-
ingly. This should be the rarest performed move because SS is only
reduced. By performing this move the optimiser is gradually narrow-
ing down the exploration range and focuses on certain regions, where
it is expected to find a better optimum.

2.3 Constraints and Objectives Handling

Throughout this document only minimisation of objectives will be considered,
due to the duality between maximisation and minimisation. So, for maxim-
isation problems, one simply needs to reformulate the original problem in a
way that the quantities to be maximised should be multiplied by (-1). Hence,
minimising the negative of any objective equals to maximising the same ob-
jective. In addition, any number of objectives (above 2) can be minimised. It
is worthy to mention that multi-objective optimisers can also perform single
objective optimisation just by using the same numerical value for all the
objectives.

Furthermore, MOT2 can deal with both soft and hard constraints. The
former have to be programmed within the source code and the optimiser
needs to be compiled again. Although the range of variability also belongs



to the soft constraints, the range of each parameter can be set individually
without the need for compiling (see A.3). Whenever there is a violation of
constraints, the optimisation automatically assigns a very large penalty value
(see A.5) to the set of variables that triggered the constraint, without run-
ning the respective variables set over the actual evaluation tool/method. The
hard constraints are related to the objective function evaluation tool/method
and are set independently of the optimiser®. Since the optimiser performs
minimisation of the objectives, it is highly advisable the evaluation tool to
assign a different penalty value at the same order of magnitude as for the soft
constraints. This will prevent any confusion to the optimiser. Hence, the op-
timiser can deal with any type of optimisation problem, both unconstrained
and constrained that involves real parameters.

3 Unique features

This version of MOTS2 has a number of features that differentiate it from
the original variation, which was presented in [13]. First, they all intend
to make the structure of the optimiser more flexible, in order to link with
external and internal tools and software. Then, they attempt to

e cnhancements

e kick

data-base representation, will facilitate the implentation of additional
modules from the field of data mining.
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A How to use MOTS2

All files are regular plain text files, where all the values are separated by
one(or more) blank space or any other non-printable character.
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A.1 Preparing MOTS2 before launching
MOTS2 has a number of user-defined and self-adjusted attributes.

A.2 configuration.txt (this file is mandatory)

The most important text file to prepare before running the algorithm is the
configuration.txt. Its structure and the values on each line orchestrate the
functionality the optimiser and define required files. Obviously, more control
is provided if more files are used, as explained below, at the expense of
additional user effort.

This is the only file that contains exactly 19 lines of arithmetic and
non-arithmetic values. Each value should be in one line ONLY followed by
new line (Enter key). This file contains the optimisation settings as follows:
(herein the words exist for ease of understanding and should not be present
in the actual file)

13



1 diversify 15
2 intensify )

3 reduce 20
4 SS 0.1
) SSRF 0.5
6 save _step 15
7 n_sample 6

8 nVar 10
9 nObj 2
10 n_of loops 0
11 n_of evaluations 60000
12 | n_of consecutive improvements 0
13 assessment HV
14 nRegions 4
15 STM _size )
16 LogType full
17 Starting point 1
18 maximum __improvements 1300
19 maximum _duplicates 1000

(a) explaining configuration.txt file, columns correspond to

line number, description and value, respectively

15
5!
50
0.1
0.5
15
6
10
2
0
60000
0
HV
4
5
full
1
1360
1000

(b) example configuration.txt (just the rightmost

column)

Figure 4: configuration file




A.2.1 diversify

(positive integer number) defines the number of consecutive objective func-
tion evaluations (or simply evaluations) upon which no optimal point was
found. When this limit is reached the code quasi-randomly generates a new
point and assigns that as the new BP. This is related to the Diversify Move
in 2.2.2.

A.2.2 intensify

(positive integer number) defines the number of consecutive evaluations upon
which no optimal point was found. Whenever this limit is reached the code
picks up randomly a point from IM as the following BP. This is related to
the Intensify Move in 2.2.2.

A.2.3 reduce

(positive integer number) defines the number of consecutive evaluations upon
which no optimal point was found. Whenever this limit is reached the code
quasi-randomly generates a new point and assigns that as the new BP and
reduces the step for each variable by SSRF (see below). This is related to
the Reduce Move in 2.2.2.

A.2.4 SS

(two options [0 or any real number between 0 and 1.0]) represents the Search
Step value for each variable as a percentage of the range between upper and
lower bound for the respetive variable. If set to 0, then the user should
provide the start step.txt file, where individual step values for each vari-
able should be contained. If the user specifies a fraction, then the same step
refinement as a percentage of the range of each variable will be applied on
each variable! for instance, if the range for design variable V is between 2 and
4, SS=0.1 means that the SS for the specific variable will be (4-2)*0.1=0.2.

A.2.5 SSRF

(real number between 0 and 1.0) represents the SS Retain Factor (SSRF),
which is the percentage change of the initial SS value for each variable. Fol-

15



lowing the example above, SSRF=0.5 means that the SS will be 0.2*%0.5=0.1.
If 3 consecutive reductions occur this equals 0.2 * ( 0.5 * 0.5 * 0.5 ).

A.2.6 save step

(positive integer number) defines the frequency the memory files will be up-
dated during the search. Inside the memories directory all the files described
in Subsection A.9.1 will be created (read for more details). The larger this
value is, the quicker the execution. Usually, updating all the files takes a
couple of seconds. So, if the turnaround time of the objective function eval-
uation is significantly larger, this value will not make any difference in terms
of turn around time. All the files are stored under the memories directory.
The values of nVar and nObj (see below) directly affect the functionality
of the optimiser to store information about its progress. The larger they are
set, the more time is required to save all the memories. This can delay the
termination of the optimisation in cases of low complexity as the objective
functions’ evaluation time is shorter than the saving time (e.g. when the ob-
jective function evaluation takes a couple of milliseconds, such as benchmark
functions). Hence, setting save step to a large value is advisable when the
evaluation time is quick.

A.2.7 n_ sample

(positive integer number) During Hook and Jeeves Move (see 2.2.1), up to
2*nVar (see below) new points are generated. In order to save computa-
tional time, this population is split in smaller sets and they are evaluated (in
batches) one by one until certain criteria are met. So, this value represents
in how many design points will be contained in each batch. If the division
is not complete, the last batch will contain the modulo part of the 2 * nVar
/ n_sample. Obviously, n _sample should be larger than 1 and less than
2*nVar (which means that every member of the population will be sampled
from the first round) In practice, n_sample=2 * nVar should be used only
in very complicated cases.

A.2.8 nVar

(positive integer number) number of elements that define the design vector.
Currently, it is assumed that all the variables are real numbers. Properly
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setting the SS and SSRF values (see above) could turn the problem into
mixed integer form, but this is not advisable.

A.2.9 nObj

(positive integer number) number of elements that define the objective vector

A.2.10 n_ of loops

(positive integer number) the search stops after the respective number of
iterations. If set 0, the limit is considered infinite.

A.2.11 n_of evaluations

(positive integer number) the search stops after the respective number of
objective function evaluations. If set 0, the limit is considered infinite.

A.2.12 n_ of consecutive improvements

(positive integer number) the search stops after the respective consecut-
ive number of failed improvements of the PF. If set 0, the limit is con-
sidered infinite. Obviously, if all values (n_of loops, n_of evaluations,
n_of consecutive improvements) are set 0, the search performs an endless
loop and turns out to be a heuristic procedure.

A.2.13 assessment

(only HV) The quality of the discovered trade-off is assessed with a method
that is based on HyperVolume indicator (HV)[!l]. Currently there are no
other methods implemented. So, leave this value unaltered.

A.2.14 nRegions

(positive integer number) represents the number of clusters the search domain
will be divided into for EACH variable. The larger the value the more coarse
the new point generation will be. For instance, if value V1 ranges between
2 and 3, nRegion=4 will produce clusters [2.0, 2.25| [2.25, 2.5] [2.5, 2.75]
[2.75, 3]. Currently, the same number of nRegions is applied on each variable
range.
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A.2.15 STM size

(positive integer number) defines how many points will be considered Tabu
for every point generation. The larger the value the more aggressive the
search will be.

A.2.16 LogType

(only full) it exports a number of files in monitor data directory related
to the search progress. Currently, there are no other options implemented.

A.2.17 starting point

(two options - binary number [0,1]) if starting point is set to 0 the optimiser

will automatically generate a random starting point (within the permitted
bounds for each variable separately). If the value is set to 1, then the optim-

iser will read from a datum starting point from the file datum design vector.txt
which should reside in the root directory.

A.2.18 maximum improvements

(positive integer number) matches with the option below

A.2.19 maximum duplicates

(positive integer number) The two values above are particularly useful for
cases which are dominated by multi-modality. Maximum improvements
indicate the amount of consecutive non-improvements of the discovered PF.
Once this value is met, the optimiser refines SS. Maximum duplicates
represents the amount of permitted duplicates per objective value and is used
similarly. These two features are used together in order to avoid situations
when the search is trapped. The step refinement occurs either when the com-
bination of { maximum duplicates and 10% of maximum improvements
} OR { maximum improvements } conditional statements are met, whichever
comes first. Setting these two values very high will virtually "deactivate"
their effect.
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A.3 design vector ranges.txt (this file is mandatory)

specifies the minimum and the maximum allowed values for each variable,
which is part of the design vector. The permitted range for each decision
variable can vary. It should contain exactly 2*nVar values in a fashion that
the fist couple values correspond to the lower and upper bound of the first
variable. For instance, the 3rd and 4th values define the range of the 2nd
variable and so on.

A.4 reference point.txt (this file is mandatory)

This file is related to the quality assessment of the optimisation process,
which is a user-defined assessment method/quality indicator. In contrast
to the other files, this one contains only objective function values of some
arbitrary reference. It is combined with the PF points in order to consider
improvements during the search. It should contain exactly nObj values. The
first value corresponds to the first objective and so on.

A.5 failed objective vector.txt (this file is mandatory)

This file contains the penalty values which will be assigned to the invalid
decision variables point by the optimiser when the designs are either invalid
or violate problem’s constraints. Typically, for a minimisation problem, the
values are set to a relatively large number for each component. It is crucial
to mention that the models (which are actually the objective function eval-
uation) should also provide a setting for penalty values (of the same order
of magnitude) when the execution of the model is not successful. These two
penalty settings, frequently called soft and hard penalty) should be different
for ease of interpreting the results. It should contain exactly nObj values.

A.6 start step.txt (whenever SS=0)

This file contains exactly nVar values. As expected, the i-th value corres-
ponds to the i-th variable, respectively. In addition, this file is related with
the value of the SS setting in the configuration.txt. Here, the user spe-
cifies explicitly the SS for each variable separately as a percentage of the
range of each variable. It is worthy to note that the user is responsible for
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the consistency of the input values. It is good practice to perform sensitivity
analysis before setting individual weights.

A.7 datum design vector.txt (whenever starting point=1)

This file is the most important for the optimisation process because of the
inherent operation of local search optimisers. Whenever the starting point
value of the configuration file equals 1, then the optimiser will read the
datum _design vector.txt file and will assign the initial point for the
search. It should contain exactly nVar values.

A.8 Running MOTS2

Here, the difference between a framework and stand-alone application is ar-
bitrary and there are many grey zones. In the simplest approach the frame-
work defines the concept, whereas the application defines the fundamental
functionality that end-users are concerned about. Contrary, an application
performs specific, well-defined instructions. Since the framework optimises a
case, in order to avoid confusion, MOTS2 will be considered as a framework
throughout this document.

Although, by implementation, MOTS2 was developed as an optimiser (a
single application), it’s structure resembles a framework. However, it can be
seen as a framework by itself, or it can be linked with other frameworks, too.
Arguably, it started as an application but after a number of enhancements,
where each one could be an application by itself, it seems to be more as a
framework. In fact, since MOTS2 can serve as a skeleton for more complic-
ated problems, the term framework is more appropriate.

For simplicity, the user can edit all the configuration files and just ex-
ecute MOTS2. This is done by running mots2.exe from the console. All
the internal applications/modules are activated /deactivated according to the
aforementioned files. Immediately after the launch, all the configuration and
input settings are displayed (mainly for revision/cross-check purposes) and
the optimisation steps are performed. The end-user can interrupt the whole
process at anytime just by terminating mots2.exe either from the terminal
or the task manager. Following the save step user’s setting (see A.2.6),
which can affect the turnaround time, the output data can be collected any-
time. It is a good practice to save all the configuration, input and output
files, before attempting to run another case.

20



MOTS2 can run in two modes:

Regular On the command line just typing mots2.exe will perform optim-
isation from scratch.

Resume On the command line, typing mots2.exe -r will resume optimisa-
tion from a certain stage, under the condition that the folder memories
and the respective files exist.

Regarding restart, it is important to mention that the case setup, for in-
stance number of objectives and variables, STM size,... etc should not be
altered. In order to restart the optimisation the memories folder should be
present within the current directory, the files STM.txt, MTM.txt, HIS-
TORY .txt, LTM.txt and IM.txt should be within memories folder and
the file checkpoint.out should exist within the monitor data folder (see
A.9.2). The first time MOTS2 runs, the restart file is created automatically
under the monitor data folder. Then, the optimiser will read through all
the files, load them into the respective memories and will randomly choose
one point from MTM.txt as the initial point.

The final trade-off file is TS.txt and will be generated/updated auto-
matically throughout the process and will remain in the root folder when the
optimisation finishes.

A.9 Interpreting the output

After running the optimisation, a number of files will be created under the
memories and monitor data directory. All data from STM, MTM, LTM,
IM, HISTORY and some complementary data are stored within memories,
whereas monitor data are used to monitor the progress of the optimisation
and keep track of statistics. Automatically generated files, ending in *.plt
extension, for plotting purposes reside in each directory. All these files can
be used both for live monitoring of the optimisation search and for post-
processing the results.

A.9.1 Memories directory

All the files are related to the optimisation process. Each document is a
regular ASCII file and it should be read row-by-row. There are two famil-
ies of files; the regular and the numbered ones with the prefix “snap”. The
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former correspond to the current (most recently updated) versions of the
memories. The latter are instances of an earlier stage of the optimisa-
tion progress and the number corresponds to the respective state®, when the
snapshot was taken. In other words, its a snapshot of #evaluations (e.g.
HISTORY snap20041.txt). Under this directory, the following 7 types
of files will be created:

BASE.txt contains the BP for every iteration. The entries are listed in a
reversed order, so that the most recent BP is at the top of the document.
This document is comprised of the following columns :

1 integer for the iteration counter

nVar elements for the variables

nObj elements for the corresponding objectives

1 string that indicates in which region the BP belongs to (currently
deactivated)

e 1 string that describes how the BP was assigned

STM.txt contains all the designs that are considered tabu (already visited
and they cannot be selected as a BP for the current iteration)

e nVar elements for the variables
IM.txt contains all the designs that reside into the Intensification Memory

e nVar elements for the variables

e nObj elements for the corresponding objectives

MTM.txt contains all the pairs of decision variables and objective function
values that belong to the PF discovered so far

e nVar elements for the variables

5The total number of objective function evaluations performed so far. Without loss
of generality, it represents the computational budget invested and is an indication of the
overall progress of the optimisation search.
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e nODbj elements for the corresponding objectives

MTMfrequencies.txt contains the multiplicity of the objectives of the PF.
This file should be advised for cases with multi-modal objectives (there
are many combinations of the design vectors that deliver exactly the
same fitness and might trap the optimiser - such as ZDT4). In order to
face multi-modality, properly setting the maximum improvements
and maximum duplicates ( see A.2.18 and A.2.19) will mitigate
this problem.

e nODbj elements for the corresponding objectives

e corresponding frequency

LTM.txt contains all the decision variables that reside into the Long Term
Memory

e nVar elements for the variables

HISTORY .txt contains all the pairs of decision variables and objective
function values so far (both feasible and infeasible) and their corres-
ponding objectives.

e nVar elements for the variables

e nODbj elements for the corresponding objectives

A.9.2 Monitor data directory

All the files are related to the status of the optimiser, are created automat-
ically and are regular ASCII files. These are mainly statistics which explain
how the optimisation progresses. It is good practice to advise (and plot)
these files for understanding the meaning of the configuration parameters
and how these can affect the success of the optimisation process.

evals.out evaluations file
e Iteration counter

e total number of designs evaluated (the infeasible designs are not con-

sidered)
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e number of design violations (whenever it appears)
hypervolume.out (currently deactivated)
i_local.out local counter file

e iteration counter

e local counter value

im_size.out contains the total number of points into the Intensification
Memory

e iteration counter
e [M size
intensify.out counts how many times the Intensification Move was used
e iteration counter
e number of the performed Intensification Moves

memory status.txt checks the state of memories (this is the only file that
is not read line-by-line) and it is used for debugging MOTS2

reduce.out counts how many times the Reduction Move was used
e iteration counter
e number of the performed Reduction Moves

step size.out logs the current SS
e iteration counter

e nVar elements, each element corresponds to the current SS for the
specific variable

update memories.out (currently deactivated)

basePoint.out similar to BASE.txt but in proper order with fewer inform-
ation(used for debugging)
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1teration counter

nVar elements for the variables

checkpoint.out this file is used when MOTS2 is resumed and contains se-

quentially the following items:

iteration counter

nVar elements for the decision variables
diversification counter

intensification counter

reduction counter

i_local counter

nVar elements for the SS for each variable

diversify.out counts how many times the Diversification Move was used

iteration counter

number of the performed Diversification Moves

quick.out contains an aggregated view of all the aforementioned informa-

tion. This is particularly useful in Unix environment to monitor the
progress live in a single terminal. Columns correspond to:

iteration counter

number of evaluations
number of violations
evaluations to iterations ratio
MTM size

i_local counter
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IM size
diversification counter
intensification counter

reduction counter
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B Verification and Validation of MOTS2

B.1 Verifying MOTS2

By implementation, MOTS2 belongs to the category of stochastic local search
algorithms. Hence, it is not possible to predict the search path, since this is
expected to be random and different every time one performs the optimisa-
tion. The optimiser makes decisions based on the information contained into
the memories and from statistics it gathers. Therefore, the performance of
the optimiser will be assessed by carrying out statistical analysis|[l&]. This
is a standard and consistent way that can compare any optimiser under a
common basis. The turnaround times are not considered as performance
metric.

B.1.1 Benchmarking the family of ZDT functions for 2-objectives
optimisation

More specifically, the methodology described in [16] was followed. Also, as
suggested in [22], each optimisation scenario with test functions was executed
50 times. The combinations of configuration settings used for the verification
phase are the same used in [13]. Although these are neither unique, nor op-
timal, they can satisfactorily achieve the target goals of delivering the target
trade-off. It is common practice to test the family of ZDT[22] benchmark
functions. Among them, ZDT4 test function is the most difficult to resolve
for extremely multi-dimensional landscapes, as stated in [22]. First the col-
lection of PFs for each case was used to produce the Empirical Attainment
Function (EAF), applied on the data. The attainment surfaces are depicted
in Figures 5 to 9, followed by the HV boxplots. The respective figures were
generated by using the external plotting tool described in [17].
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B.2 Validating MOTS2

The test functions used in the previous chapter can be used for verifying the
functionality of the optimiser but they do not reflect the needs of real-world
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applications. The former are simple and computationally cheap to evaluate,
whereas the latter can be of arbitrary complexity and extremely costly to use.
In addition, this high abstraction level can lead to severe loss of information
about the nature of the original problem. So, it seems interesting to use
MOTS2 on a real case and observe its behaviour and results.

This chapter presents the effectiveness of the optimiser when used on
real-world applications. Currently, only one validation case is presented. As
more cases emerge, these will be inserted in this Section.

B.2.1 Airfoil Shape Optimisation

A relatively simple scenario that proves the effectives of the optimiser in
real-world application is the shape/profile optimisation of an airfoil. This
is an aerodynamic applications that measures the performance of an airfoil
by changing its shape (a combination of upper and lower surface). More
specifically, the focus is on the maximisation of lift and minimisation of drag
of a 2D airfoil, which are conflicting in nature. In open literature there are
several techniques which can derive these two quantities, but the choice of
the best/most appropriate one, in terms of accuracy, is out of scope. Herein,
the goal is to validate MOTS2 and demonstrate its linking with external
software.

A brief description of the tools used follows. The two objectives are
derived by using a software called XFOIL [7, &]. It belongs to the category
of panel methods for low-speed inviscid flow, where the body is discretised in
terms of singularity distribution on the surface. Compared to conventional
Computational Fluid Dynamics (CFD) methods, where the flow is calculated
around the test object over a large surrounding field, panel computations
around the surface are only required. This method has certain advantages
for specific cases. The only prerequisite is to discretise the surface, while the
computational cost is relatively low. The downside is that only subsonic flows
of low Mach number can be studied. Consequently, inaccurate skin friction
estimations, wave drag predictions, lift coefficient estimation will eventually
lead to poor results in the optimisation process.

The physical representation of the airfoil surfaces is a very challenging
task. The points should be distributed mostly in leading and trailing edge
because the velocity changes rapidly in these regions. Imposing additional
constraints could help, without mitigating completely the generation of irreg-
ular shapes. For instance, cusp-like configurations that will alleviate drag due
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to Mach waves formation cannot be proposed by the optimisation process.
By using exact coordinates of the upper and lower airfoil surface velocity dis-
tribution is calculated. However, this will be investigated in future. In order
to minimise the complexity, the Free Form Deformation (FFD)[20] geomet-
rical representation technique is used to parameterise the different geomet-
rical airfoil profiles. Nevertheless, this application can deliver good results
for low velocity cases, and demonstrate the applicability of the optimiser in
real-world applications.

A brief description of the assembly of aforementioned software follows.
The shape of the airfoil is obtained by using the FFD method. A new
geometrical arrangement is generated by adjusting the control points that
manipulate the whole surface. Then, a series of exact 2D coordinates are
generated for the upper and lower surface of the airfoil. Then, these are used
as input on XFOIL, where the given airfoil is combined with multiple angles
of attack, and the average lift and drag coefficients are obtained. Regarding
the optimisation search, this is considered as a single objective functions’
evaluation of a design point and, thus, will be repeated many times. This
is the most computationally intensive part of the whole optimisation search
and can be considered as a modular black box.

As usually in the optimisation search, the optimiser will strategically
propose various combinations of inputs, FFD control points here, which will
be mapped internally with the respective objectives by using the assembly
described above. Inside the optimiser’s body the fitness, airfoil performance
metrics here, received are normalised over the metrics of the airfoil profile
of NACA 0012, which is the datum design point. Hence, the results of
the optimiser are expressed in terms of relative improvement. This will be
repeated until the end of the computational budget, which is a fixed number
of objective function evaluations. For minimisation purposes, the lower the
objective value below 1.0, the better the design is from the initial performance

A brief description of the assembled framework will be described. The
shape of the airfoil is obtained by using the FFD parameterisation method.
A new geometrical profile is generated by adjusting 8 control points that
manipulate the whole surface. Then, a series of coordinates are generated,
which will be used to calculate the pressure distribution of the pressure over
the airfoil surfaces and will deliver the respective lift and drag for the tar-
get configuration. Simply, the optimiser will propose various combinations
of control points and will request the respective fitness, as described above.
This will continue until stopping criteria are met. Using less accurate but
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faster methods (such as XFOIL) in the early stages of the design process
is preferred. Thereafter, more accurate simulation models should be con-
sidered and, ultimately, the computationally expensive CFD tools could be
employed. Clearly, optimising the behaviour of aerodynamic problems via a
high fidelity CFD tool is of paramount importance in the whole engineering
design process, as described in[14, 21].

In summary, 8 decision variables uniquely characterise the profile of a
2D airfoil, which represents an individual geometrical shape of an airfoil.
Essentially, the geometrical arrangement is represented via FFD, which is a
technique that manipulates any shape in a free-form manner [20], and the
variables are the control points. The objectives are to maximise lift coefficient
(cL) and minimise drag coefficient (cD) coefficient. In the Figures below the
cLL maximisation is equal to minimisation of the negative cL. The search
starts from a datum point (a well known geometry) of the airfoil NACA
0012 and the optimisation is expressed in terms of relative improvement; any
newly generated geometry is compared against the datum design and the
ratio of new coefficients over the datum ones is considered as objective.

Regarding the constraints, only hard constraints and range of variability
were applied here. More specifically, two thickness limits of the airfoil are
specified at 25% and 50% of its length. These are hard-integrated into the
objective function evaluation model (XFOIL). Besides that, the range of each
parameter is between -0.4 and 0.3.

The configuration parameters of the optimiser are listed in Table 1 and
follow the same logic as described in [13]. The first three values are related to
the search strategy. The lesser the number, the more frequently the respective
move will be performed. The case ran for about 3000 objective function
evaluations and the obtained PFs are depicted below. The initial step was
resolved by previous studies, which carried out sensitivity analysis on XFOIL.
The retained factor and random sampling were set arbitrarily. According to
developer’s experience, halving the SS and acquiring about as many samples
as the number of variables turns out to be a decent choice. In this specific
case, the turnaround time of one objective function evaluation can take up
to 1 minute. This number is not very long, but in more complex problems it
could be of the order of magnitude of hours or days. So, a relatively low upper
limit of evaluations was used. The ability of the optimiser to reveal a PF as
close to the (unknown) true PF is the most important aspect for efficient and
reliable multi-objective optimisation. Whenever the true PF is not known,
delivering an approximation set as close to the corner of interest (bottom
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Table 1: Configuration settings for airfoil optimisation

description MOTS2 setting
performing diversification move after # iterations 25
performing intensification move after # iterations 15
performing reduction move after # iterations 45
initial search step 0.07
search step retain factor 0.5
# of random samples 6
# of variables 8
# of objectives 2
max objective function evaluations 3000
# of regions in Long Term Memory 4
Short Term Memory size 15

left in the trade-off Figures) is satisfactory. Again, the number of individual
regions and and STM size were chosen based on previous experience and
following previous studies. Herein, the LTM regions are split based on the
range of the first variable. Although this strategy seems to be good here,
this is not always the case. In fact, deeper sensitivity analysis should be
performed in order to resolve the most important variables or combination
of variables and divide the search space according to that.

The same statistical tesgin was applied again. The EAF plots were pro-
duced by using the tool described in [17] and along with the HV boxplots
are depicted in Fig. 1. From the shape of the PF, MOTS2 presents a robust
behaviour and seems to be appropriate for this type of engineering problems.
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