
A Formulation of Nonlinear Model Predictive

Control Using Automatic Differentiation

Yi Cao

School of Engineering, Cranfield University, Bedford MK43 0AL, UK

Tel: (44)1234 750 111, Fax: (44)1234 750 728

Abstract

An efficient algorithm is developed to alleviate the computational burden associ-
ated with Nonlinear Model Predictive Control (NMPC). The new algorithm ex-
tends an existing algorithm for solutions of dynamic sensitivity from autonomous
to non-autonomous differential equations using the Taylor series and automatic
differentiation (AD). A formulation is then presented to recast the NMPC prob-
lem as a standard nonlinear programming problem by using the Taylor series and
AD. The efficiency of the new algorithm is compared with other approaches via an
evaporation case study. The comparison shows that the new algorithm can reduce
computational time by two orders of magnitude.

Key words: Predictive Control, Optimal Control, Dynamic Sensitivity

1 Introduction

In the last two decades, linear model predictive control has been well recog-
nized by industry due to its intuitiveness and capability to handle multivari-
able constraints. However, the extension to nonlinear model based predictive
control (NMPC) has not been so successful although a significant amount of
research effort has been put into this area. One of the main obstacles, which
blocks NMPC techniques to become widely applicable, is the computational
burden associated with the requirement to solve a set of nonlinear differential
equations and a nonlinear dynamic optimization problem in real-time.

The objective of NMPC is to determine a set of future control moves in order to
minimize a cost function based on a desired output trajectory over a prediction

Email address: y.cao@cranfield.ac.uk (Yi Cao).

Preprint submitted to Journal of Process Control 11 April 2005

li2106
Text Box
Journal of Process Control, Volume 15, Issue 8, December 2005, Pages 851-858.

horizon. The computation involved in solving the optimization problem at
every sampling time can become so intensive, particularly for high-dimensional
systems, that it could make on-line applications almost impossible [1]. There
exist a number of strategies for tracking the optimal control problem through
nonlinear programming (NLP) [2]: successive linearization, direct single and
multiple shooting methods, and others. To efficiently solve the NLP problem
derived, all these approaches require intensive computation of derivatives. In
a typical situation, calculating dynamic sensitivity could take more than 70
percent of the total computation time for NLP. Hence, dynamic sensitivity
calculation is the computational bottleneck of solving a dynamic optimization
problem. There are three ways to calculate sensitivity of a dynamic system [3]:
perturbations, sensitivity equations and adjoint equations. In a perturbation
approach finite differences are used to approximate derivatives. Hence it needs
at least applying N perturbations to the dynamic system to get the solution
of a N -parameter sensitivity problem [3]. Alternatively, sensitivity can also be
obtained by simultaneously solving the original ordinary differential equations
(ODE) together with nN sensitivity equations, where n is the number of
states [4]. Finally, sensitivity can be calculated by solving n adjoint equations
(in reverse direction). A number of efficient solvers have been developed to
tackle the dynamic sensitivity problem, for example, the CVODES package
[5]. Recently, automatic differentiation (AD) techniques have been applied to
solve dynamic optimization problems [6]. In previous work [7], a first-order
approximation is introduced to simply the dynamic sensitivity equation by
using AD so that the computation efficiency is improved. A similar approach
has been proposed in [8] without using AD. However, due to the first-order
approximation, the sensitivity obtained may not be accurate enough in some
cases, particularly for NMPC with process constraints. In most published work
using AD for dynamic optimization, AD has only been used to generate low
(first and/or second) order derivatives, therefore efficiency of these approaches
is not satisfactory.

In this work, the advantages of AD techniques have been intensively utilized
to improve the efficiency of NMPC. More specifically, an existing algorithm
to solve ODE and sensitivity using high-order Taylor series and AD for au-
tonomous systems is extended to non-autonomous systems. An approach to
estimate and control the error due to truncation of the Taylor series is also
provided. Then, based on this algorithm, the NMPC problem has been re-
formulated as a NLP problem so that it can be efficiently solved by any mod-
ern NLP solvers. The paper is organized as follows. After a brief overview
of AD, its principles to solve autonomous ODE’s and to calculate dynamic
sensitivity are explained in section 2. Section 3 extends the techniques to non-
autonomous systems. Then, a formulation of NMPC using AD is proposed in
section 4, where the issues of error analysis and control are also addressed. A
case study is presented in section 5 to show the usage and efficiency of the
new algorithm. Finally, the paper is concluded in section 6.

2

2 Automatic Differentiation

AD is a class of computational techniques for evaluating derivatives of func-
tions defined in computer programs [9]. It is superior to other two approaches:
symbolic differentiation and finite difference approximation. To compute deriva-
tives symbolically using computer algebra software such as Mathematica or
Maple, an enormous expression growth normally occurs due to a repeated eval-
uation of common sub-expressions. On the other hand, with finite difference
approximation, accuracy of derivatives is restricted because of cancellation
and truncation errors, particularly, for high order derivatives. Automatic dif-
ferentiation techniques overcome these drawbacks by systematically applying
the chain rule to functions defined by arbitrary computer programs. A com-
puter program is equivalent to a computational graph consisting of a sequence
of elementary operations whose derivatives are well known. Hence, by numer-
ically applying the chain rule to these arithmetic sequences, not only can AD
deliver truncation-error free derivatives but it also avoids code growth.

2.1 Taylor Series by AD

Consider a d-time continuously differentiable function, f : Rn → Rm. Let
x(t) ∈ Rn be given by the truncated Taylor series: x(t) = x[0]+x[1]t+· · ·+x[d]t

d,
with coefficients x[i] = (i!)−1(∂ix(t)/∂ti)|t=0 ∈ Rn. Then, z(t) = f(x(t)) ∈ Rm

can be expressed by a Taylor expansion: z(t) = z[0]+z[1]t+· · ·+z[d]t
d+O(td+1)

where z[j] = (j!)−1(∂jz(t)/∂tj)|t=0 ∈ Rm. From the chain rule, z[j] is uniquely
determined by the coefficient vectors, x[i] with i ≤ j, i.e.

z[j] ≡ z[j](x[0],x[1], . . . ,x[j]) (1)

Nevertheless, inherently, functions z[j] are also d-time continuously differen-
tiable and their derivatives satisfy the identity [10]:

∂z[j]

∂x[i]

=
∂z[j−i]

∂x[0]

:= A[j−i] ≡ A[j−i](x[0],x[1], . . . ,x[j−i]) (2)

where, A[j] ∈ Rn×n, j = 0, . . . , d are also the Taylor coefficients of the Jacobian
path, i.e. f ′(x(t)) = A0 + A1t+ · · ·+ Adt

d +O(td+1).

AD techniques provide an efficient way to calculate these coefficient vectors,
z[j] and matrices, A[i] [11]. For example, with the software package, ADOL-
C [12], by using the forward mode of AD, all Taylor coefficient vectors for
a given degree, d can be calculated simultaneously, whilst the matrices, A[i]

can be obtained by using the reverse mode of AD. The run time and memory
requirement associated with these calculations grow only in a order of d2.

3

2.2 Autonomous Differential Equation

When the above approach is applied to an autonomous differential equation,
i.e. ẋ = f(x(t)), since x[k+1] = z[k]/(k + 1), all Taylor coefficients of x(t) up
to any order can be iteratively obtained from x[0] = x(0) by using (1) [13].
Moreover, the sensitivity of Taylor coefficients against the initial value x[0] can
also be efficiently obtained by matrix accumulation from (2):

B[k] :=
dx[k]

dx[0]

=
1

k

dz[k−1]

dx[0]

=
1

k

k−1∑
j=0

∂z[k−1]

∂x[j]

dx[j]

dx[0]

=
1

k

k−1∑
j=0

A[k−j−1]B[j] (3)

where B[k] ∈ Rn×n, k = 0, . . . , d are the Taylor coefficients of the solution to

the sensitivity equations, Ḃ = f ′(x)B, B[0] = B(0) = I.

3 Non-autonomous Systems

Although the above algorithm is very efficient, to make it applicable for
NMPC, the algorithm has to be extended to solving dynamic sensitivity of
non-autonomous state space systems:

ẋ(t) = f(x(t),u(t)), x(0) = x[0] (4)

y(t) = g(x(t),u(t)), 0 ≤ t ≤ h

where, u(t) ∈ Rm is the control input and y(t) ∈ Rp the output. It is a normal
practice, for example in [14], to convert the system (4) to autonomous by
augmenting it with u̇ = 0 so that the results described in the previous section
can be directly used. However, the augmented system has m extra differential
equations, hence the algorithm is not efficient particularly when m is large. In
this work, an efficient approach is to be described as follows.

Using normalized time, τ = t/h, the right-hand-side of the state equation
becomes z(x(τ),u(τ)) := hf(x(τ),u(τ)) and the solution interval is 0 ≤ τ ≤
1. Assume u(τ) = u[0] + u[1]τ + · · · + u[r]τ

r, r ≤ d and all its coefficients,

u[k], k = 1, . . . , r are known. Let v =
[
uT

[0] · · · uT
[r]

]T

. Using AD, the Taylor

coefficients of x(τ) and y(τ) can be iteratively determined from x[0] and v.

x[k+1] =
1

k + 1
z[k](x[0], . . . ,x[k],v), k = 0, . . . , d− 1 (5)

y[k] = y[k](x[0], . . . ,x[k],v), k = 0, . . . , d (6)

Then, by applying AD to (5) and (6), the partial derivatives are obtained and

4

partitioned as follows:

A[k] =
[
A[k]

∣∣∣ A[k]v

]
:=

[
∂z[k]

∂x[0]

∣∣∣∣∣ ∂z[k]

∂v

]
, k = 0, . . . , d− 1 (7)

C[k] =
[
C[k]x

∣∣∣ C[k]v

]
:=

[
∂y[k]

∂x[0]

∣∣∣∣∣ ∂y[k]

∂v

]
, k = 0, . . . , d (8)

The total derivatives are accumulated from these partial derivatives as follows:

B[k] =
[
B[k]x | B[k]v

]
:=

[
dx[k]

dx[0]

∣∣∣∣∣ dx[k]

dv

]

=
1

k

A[k−1] +
k−1∑
j=1

A[k−j−1]xB[j]

 , k = 1, . . . , d (9)

D[k] =
[
D[k]x | D[k]v

]
:=

[
dy[k]

dx[0]

∣∣∣∣∣ dy[k]

dv

]

= C[k] +
k∑

j=1

C[k−j]xB[j], k = 0, . . . , d (10)

Note, B[0] =
[
I | 0

]
. In summary, the solutions of system (4) at t = h are

x(h) =
d∑

i=0

x[i], y(h) =
d∑

i=0

y[i] (11)

whilst their sensitivities to initial value, x[0] and input coefficients, v are

Bx(h) :=
dx(h)

dx[0]

=
d∑

i=0

B[i]x = I +
d∑

i=1

B[i]x (12)

Bv(h) :=
dx(h)

dv
=

d∑
i=0

B[i]v =
d∑

i=1

B[i]v (13)

Dx(h) :=
dy(h)

dx[0]

=
d∑

i=0

D[i]x (14)

Dv(h) :=
dy(h)

dv
=

d∑
i=0

D[i]v (15)

5

4 Nonlinear Model Predictive Control

4.1 Formulation

For nonlinear system (4), at current sampling time, t = t0, consider the general
optimal control problem:

min
u

J = ψ(x(tP),u(tP)) +
∫ tP

t0
ϕ(x(t),u(t))dt

s.t. ẋ = f(x(t),u(t)), x(t0) = x[0] (16)

ξ(x(t),u(t)) ≤ 0

ζ(x(tP),u(tP)) ≤ 0

where ξ ∈ Rq and ζ ∈ Rs are trajectory and terminal constraints, respec-
tively. The prediction horizon [t0, tP] is divided into P intervals, t0, t1, . . . , tP
with ti+1 = ti + hi and

∑P−1
i=0 hi = tP − t0. Assume the optimal solution to

(16) is u(t) =
∑r

i=0 u[i](tk)(t − tk)
i for tk ≤ t ≤ tk+1, k = 0, . . . , P − 1.

Then, only the solution in the first interval is to be implemented and whole
procedure will be repeated at next sampling instance. Note, combination of
the terminal performance index ψ and the terminal constraints ζ is imposed
so that the minimized performance index in the receding sequence decreases
monotonously. Hence, closed-loop stability under such moving horizon control
is ensured [15].

It is well-known that the above Bolza form can be converted into the Mayer
form [16]. For problem (16), augment system (4) by defining

˙̄x(t) = ϕ(x(t),u(t)), x̄(t0) = 0

y1(t) = ξ(x(t),u(t))

y2(t) = ζ(x(t),u(t))

ȳ(t) = ψ(x(t),u(t)) + x̄(t)

x̃(t) =

x

x̄

 , f̃ =

f

ϕ

 , x̃[0] =

x[0]

0

y =

y1

y2

ȳ

 , g =

ξ

ζ

ψ + x̄

6

Then, the optimal control problem can be recast as

min
u(t)

J = ȳ(tP) (17)

s.t. ˙̃x(t) = f̃(x̃(t),u(t)), x̃(t0) = x̃[0]

y(t) = g(x̃(t),u(t))

y1(t) ≤ 0 y2(tP) ≤ 0

Let u[0](k), . . . ,u[r](k) be input coefficients at t = tk and v ∈ Rm×(r+1)×P be
defined as:

v :=
[
vT

0 · · · vT
P−1

]T

(18)

where vk :=
[
uT

[0](k) · · · uT
[r](k)

]T

. For given vk, x̃(k + 1) := x̃(tk+1) and

y(k) := y(tk) are iteratively determined from x̃(k) using (11). Hence, (17) can
be represented in discrete form

min
v

J = ȳ(P) (19)

s.t. x̃(k + 1) = fk(x̃(k),vk), x̃(0) = x̃[0]

y(k) = gk(x̃(k),vk) 0 ≤ k ≤ P − 1

y1(k) ≤ 0, y2(P) ≤ 0

Problem (19) is a standard NLP problem with P × m × (r + 1) degrees of
freedom. The first order derivatives of J and constraints can be easily ob-
tained by using (14) and (15) repeatedly. More specifically, define dy(k)

dv
=[

dy(k)
dv0

· · · dy(k)
dvP−1

]
Then,

dy(k)

dvj

=

0 k ≤ j

Dv(j + 1) k = j + 1

Dx̃(k)Bx̃(k − 1) · · ·Bx̃(j + 2)Bv(j + 1) k > j + 1

Hence, derivatives of J and constraints are obtained as

dJ

dv
=

[
dy(P)

dv

]
q+s+1

,
dy2(P)

dv
=

[
dy(P)

dv

]
q+1:q+s

,
dy1(k)

dvj

=

[
dy(k)

dv

]
1:q+1

where [·]k stands for the k-th row of a matrix, and [·]a:b stands for rows of a
matrix from a-th to b-th.

For MPC with moving horizon, M < P , i.e. uk = uM−1, k = M, . . . , P − 1,
the derivative against vM−1 is a summation of derivatives against vk, k =
M − 1, . . . , P − 1, i.e. d/dvM−1 =

∑P−1
k=M−1 d/dvk.

With more advanced AD programming, the second order derivatives are also

7

readily to be obtained [17]. Hence, using AD, the nonlinear model predictive
control problem can be efficiently solved by any modern NLP software.

4.2 Error analysis and control

By using AD, the Taylor coefficients, x[i] and B[i] obtained using the above
method are exact [11]. However, the ODE solution and sensitivity obtained at
t = h are only approximations due to truncation of the Taylor series. Assume
x(h) =

∑d
k=0 x[k]h

k + ε(h, d) and the radius of convergence is r. Then,

ε(h, d) ≈ C(h/r)d+1 (20)

where C is constant. For a sufficiently large d,

r ≈ rd :=
‖x[d−1]‖∞
‖x[d]‖∞

(21)

Since ε(h, d− 1) ≈ ε(h, d)(rd/h) ≈ ε(h, d) + ‖x[d]‖∞, it leads to an estimation
of the truncation error:

ε(h, d) =
h‖x[d]‖2

∞
‖x[d−1]‖∞ − h‖x[d]‖∞

(22)

For a given error tolerance, δ, if δ ≤ ε(h, d+1), either reducing h or increase d
can control the error to the required level. Using (22), the required adjustment
in step (h1 = h/c, c > 1) or in order (d1 = d + p, p > 0) to satisfy the error
level can be derived:

c =
h‖x[d]‖∞(‖x[d]‖∞ + δ)

‖x[d−1]‖∞
(23)

p =
ln(δ/ε(h, d))

ln(h‖x[d]‖∞/‖x[d−1]‖∞)
(24)

The judgement of which to be adjusted is based on the comparison of the
number of operations to be increased. When reducing h by a factor of c, to
reach the original step, h, the computation will increase of c times. On the
other hand, if increasing d to d + p, computation will increase a factor of
(1 + p/d)2. Hence, after rounding to their nearest upper integers, if c >=
(1 + p/d)2, order will be increased by p. Otherwise, the step will be decreased
by a factor of c.

The above error is the local error at each step. These errors will be propagated
into the final cost function. The propagation can be estimated by using the

8

sensitivity matrix, Bx(k) at each step, i.e. the global error at step k, εg(k) is

εg(k) = ε(hk, dk) + ‖Bx(k)‖i∞εg(k − 1) (25)

where ‖ · ‖i∞ is the induced infinity norm of a matrix. For a given process,
assume β ≥ ‖Bx(k)‖i∞, k = 1, . . . , P . Then, at the end of prediction horizon,
the global error is estimated as

εg(P) ≤ ε(hP , dP) + βε(hP−1, dP−1) + · · ·+ βP−1ε(h1, d1)

Assume all local errors are controlled at the same level, δ and the desired
global error level is δg. Then, the local error should be controlled at level

δ =
δg(β − 1)

βP − 1
(26)

5 Case Study

5.1 Evaporator

The NMPC formulation described so far is applied to the evaporation process
of Newell and Lee [18], shown in Figure 1. The process variables are listed in
Table 1 and model equations are given in Appendix.

5.2 Nonlinear model predictive control

The control objective of the case study is to track setpoint changes of X2 from
25% to 15% and P2 from 50.5 kPa to 70 kPa when disturbances, F1, X1, T1

and T200 are varying within ±20% of their nominal values. The control system
is configured with three manipulated variables, F2, P100 and F200 and three
measurements, L2, X2 and P2. All manipulated variables are subject to a first-
order lag with a time constant equal to 0.5 min and saturation constraints,
0 ≤ F2 ≤ 4, 0 ≤ P100 ≤ 400 and 0 ≤ F200 ≤ 400. All disturbances are
unmeasured and simulated as random signals changing every 5 minutes and
passing through a 0.2-min first-order lag.

The NMPC is designed with cost function: J =
∫ P
0 (y − r)TW (y − r)dt,

where y =
[
L2 X2 P2

]T

and r =
[
1 15 70

]T

. Design parameters are: sam-

pling period, h = 1 min, P = 10 min, input horizon M = 5 min and
W = diag[100, 1, 1]. By using piecewise constant input, the result NLP prob-
lem has 3×M = 15 degrees of freedom.

9

To fully use the advantage of the above sensitivity algorithm, the NLP problem
is solved as a nonlinear least square problem [7] using the solver lsqnonlin in
MATLAB Optimization Toolbox. To solve the problem, total 30 × 15 = 450
sensitivity variables have to calculated in addition to original 3 states. The
sensitivity algorithm is implemented in C using ADOL-C and interfaced to
MATLAB via a mex wrap. Simulation results with the above configuration are
shown in Figure 2. It can be seen from Figure 2 that measured outputs follow
the setpoints quite well (a)–(c) in spite of the existence of severe unmeasured
disturbances (g)–(j). This is achieved without violating the input constraints
(d)–(f).

5.3 Sensitivity algorithm comparison

To demonstrate the efficiency of the new algorithm to calculate sensitivity,
the algorithm is implemented in two AD approaches: operation overloading
by using ADOL-C, and source transformation, by using a preliminary AD
program (STTAD) developed by the author, both in C. These two programs,
both implemented with error control described in section 4.2, are compared
with one of the most advanced dynamic sensitivity solvers, CVODES [5]. The
comparison is based on the forward mode of CVODES, which simultaneously
solves the dynamic sensitivity with the original ODE. At each step, 3 states
and 18 sensitivity variables (3 states against 3 initial values and 3 input values)
are integrated, and then the sensitivity of the whole prediction horizon are
obtained by accumulating these stepwise sensitivity variables. All tests are
done in a Windows XP PC with an Intel Pentium-4 processor running at 2.5
GHz.

Firstly, the computing times of these programs used in the above NMPC
simulation are compared and shown in the first part of Table 2. It is shown
that using the AD algorithm, the computation time is reduced by two orders of
magnitude (from 7.08 to 0.08), whilst the ratio of the sensitivity computation
time over total optimization time is reduced from over 40% to less than a
percent. Hence, the original computation bottleneck does not exist when using
the algorithm proposed in the work. ADOL-C is a program for general AD
computation. For a specific problem, operation overloading can introduce a
significant amount of computation overheads, hence reducing the efficiency.
The comparison shows that for online application, source transformation is
more attractive than operation overloading.

To compare computation time associated with accuracy, a reference solution
is produced by using CVODES program and setting the error tolerance to
the spacing of floating point number of double precision, i.e. δ = 2−52 =
2.2204×10−16. Then, with three tolerance settings, (1e-6, 1e-8 and 1e-11), com-

10

putation time and accuracy of three programs are compared in the second part
of Table 2. The table shows that AD programs perform better than CVODES
in both efficiency and accuracy. Particularly, STTAD consistently reduces
computing time about two orders of magnitude comparing with CVODES.
It can be seen that the order of Taylor series plays an important role in er-
ror control. Increase the order by a few number, the error would be reduced
by a number of orders of magnitude without increasing too much computa-
tion time. However, using traditional approaches, like CVODES, significant
computation time may have to be traded off for a reduction in computation
error.

6 Conclusion

A new algorithm to calculate non-autonomous dynamic sensitivity using AD
based Taylor coefficients has been proposed. Based on the new algorithm, a
NMPC formulation has been presented. Approaches for computational error
analysis and control are also discussed. Due to the high-order Taylor series
used, the new approach is very efficient and accurate. The feasibility of the
new algorithm is demonstrated via an evaporator case study, whilst its ef-
ficiency and accuracy are verified through the comparison with CVODES, a
state-of-the-art software package for solving dynamic sensitivity problems. The
case study shows that the typical computation bottleneck in solving dynamic
optimization problems could be removed by using the proposed dynamic sen-
sitivity algorithm. Hence, the approach described in this work is much suitable
for online application such as NMPC.

References

[1] P. B. Sistu, R. S. Gopinath, B. W. Bequette, Computational issues in nonlinear
predictive control, Comput. Chem. Eng. 17 (1993) 361–367.

[2] T. Binder, L. Blank, H. Bock, R. Bulirsch, W. Dahmen, M. Diehl, T. Kronseder,
W. Marquardt, J. Schloder, O. Stryk, Introduction to model based optimization
of chemical processes on moving horizons, in: M. Grötschel, S. Krumke,
J. Rambau (Eds.), Online Optimization of Large Scale Systems: State of Art,
Springer, 2001, pp. 295–340.

[3] S.Storen, T.Hertzberg, Obtaining sensitivity information in dynamic
optimization problems solved by the sequential approach, Computers and
Chemical Engineering 23 (1999) 807–819.

[4] M. Schlegel, W. Marquardt, R. Ehrig, U. Nowak, Sensitivity analysis of linearly-
implicit differential-algebraic systems by one-step extrapolation, Applied

11

Numerical Mathematics 48 (2004) 83–102.

[5] R. Serban, A. C. Hindmarch, CVODES: An ODE solver with sensitivity analysis
capabilities, Tech. Rep. UCRL-JP-200039, Lawrence Livermore National
Laboratory, U.S. Department of Energy (2003).

[6] R. Griesse, A. Walther, Evaluating gradients in optimal control: Continuous
adjoint versus automatic differentiation, Journal of Optimization Theory and
Applications 122 (1) (2004) 63–86.

[7] Y. Cao, R. Al-Seyab, Nonlinear model predictive control using automatic
differentiation, in: European Control Conference (ECC 2003), Cambridge, UK,
2003, p. in CDROM.

[8] A.M.Morshedi, H.Y.Lin, R.H.Luecke, Rapid computation of the jacobian matrix
for optimization of nonlinear dynamic processes, Computers and Chemical
Engineering 10 (4) (1986) 367–376.

[9] L. Rall, Automatic Differentiation: Techniques and Applications, Lecture Notes
in Computer Science, Vol. 120, Springer Verlag, Berlin, 1981.

[10] B. Christianson, Reverse accumulation and accurate rounding error estimates
for taylor series., Optimization Methods and Software 1 (1992) 81–94.

[11] A. Griewank, Evaluating Derivatives, SIAM, Philadelphia, PA, 2000.

[12] A. Griewank, D. Juedes, J. Utke, ADOL-C: A package for the automatic
differentiation of algorithms written in C/C++, ACM Transactions on
Mathematical Software 22 (1996) 131–167.

[13] A. Griewank, ODE solving via automatic differentiation and rational prediction,
in: D. Griffiths, G. Watson (Eds.), Numerical Analysis 1995, Vol. 344 of Pitman
Research Notes in Mathematics Series, Addison-Wesley., Reading, MA, 1995.

[14] K. Röbenack, O. Vogel, Computation of state and input trajectories for flat
systems using automatic differentiation, Automatica 40 (2004) 459–464.

[15] H. Chen, F. Allgöwer, A computationally attractive nonlinear predictive control
scheme with guaranteed stability for stable systems, Journal of Process Control
8 (5–6) (1998) 475–485.

[16] M. Athans, P. L. Falb, Optimal Control: An Introduction to the Theory and
Its Applications, McGraw-Hill, New York, 1966.

[17] B. Christianson, Cheap newton steps for optimal control problems: automatic
differentiation and Pantoja’s algorithm, Optimization Methods and Software
10 (5) (1999) 729–743.

[18] R. Newell, P. Lee, Applied Process Control – A Case Study, Prentice Hall,
Englewood Cliffs, NJ, 1989.

12

Appendix. Model equations

dL2

dt
=
F1 − F4 − F2

20
(27)

dX2

dt
=
F1X1 − F2X2

20
(28)

dP2

dt
=
F4 − F5

4
(29)

T2 = 0.5616P2 + 0.3126X2 + 48.43 (30)

T3 = 0.507P2 + 55.0 (31)

F4 =
Q100 − 0.07F1(T2 − T1)

38.5
(32)

T100 = 0.1538P100 + 90.0 (33)

Q100 = 0.16(F1 + F3)(T100 − T2) (34)

F100 =Q100/36.6 (35)

Q200 =
0.9576F200(T3 − T200)

0.14F200 + 6.84
(36)

T201 =T200 +
13.68(T3 − T200)

0.14F200 + 6.84
(37)

F5 =
Q200

38.5
(38)

13

steam
F100

P100
T100

separator
P2, L2

product
F2, X2, T2

feed
F1, X1, T1

condensate
F5

cooling
water

F200, T200

evaporator

condensate

T201

condenser
F4, T3

F3

Fig. 1. Evaporator System

14

0.5

1

1.5
L2

, m

(a)

10

20

30

X
2,

 %

(b)

40

60

80

P
2,

 k
P

a

(c)

0

2

4

F
2,

 k
g/

m
in

(d)

0

200

400

P
10

0,
 k

P
a

(e)

0

100

200

F
20

0,
 k

g/
m

in

(f)

−2

0

2

F
1,

 k
g/

m
in

(g)

−1

0

1

X
1,

 %

(h)

0 20 40 60 80 100
−10

0

10

time, min

T
1,

 o C

(i)

0 20 40 60 80 100
−5

0

5

time, min

T
20

0,
 o C

(j)

Fig. 2. Simulation result. (a)–(c) Measured outputs with setpoints. (d)–(f) Manip-
ulated variables. (g)–(j) Disturbances.

15

Table 1
Variables and Optimal Values

Var. Description Value Units

F1 Feed flowrate 10 kg/mim

F2 Product flowrate 2 kg/mim

F3 Circulating flowrate 50 kg/mim

F4 Vapor flowrate 8 kg/mim

F5 Condensate flowrate 8 kg/mim

X1 Feed composition 5 %

X2 Product composition 25 %

T1 Feed temperature 40 oC

T2 Product temperature 84.6 oC

T3 Vapor temperature 80.6 oC

L2 Separator level 1 meter

P2 Operating pressure 50.5 kPa

F100 Steam flowrate 9.3 kg/mim

T100 Steam temperature 119.9 oC

P100 Steam pressure 194.7 kPa

Q100 Heat duty 339 kW

F200 Cooling water flowrate 208 kg/mim

T200 Inlet C.W. temperature 25 oC

T201 Outlet C.W. temperature 46.1 oC

Q200 Condenser duty 307.9 kW

16

Table 2
Computational Time and Accuracy Comparison

NMPC

STTAD ADOL-C CVODES

Tolerance Time, s T/Total, % Time, s T/Total, % Time, s T/Total, %

1e-6 0.08 0.83 2.062 17.36 7.079 42.35

Simulation, P = 100 and M = 1

actual STTAD ADOL-C CVODES

Tolerance order Time, ms Error Time, ms Error Time, ms Error

1e-6 6 0.359 1.25e-7 7.344 1.25e-7 35.94 4.09e-5

1e-8 7 0.391 3.57e-9 8.437 3.57e-9 51.65 7.65e-7

1e-11 9 0.531 1.92e-12 11.72 1.92e-12 95.31 4.53e-9

Simulation, P = 100 and M = 10

actual STTAD ADOL-C CVODES

Tolerance order Time, ms Error Time, ms Error Time, ms Error

1e-6 6 0.453 6.96e-8 8.125 6.96e-8 34.37 4.57e-5

1e-8 8 0.531 1.74e-9 8.750 1.74e-9 53.12 9.09e-7

1e-11 10 0.641 2.13e-13 11.72 2.13e-13 98.44 4.5326e-9

Simulation, P = 100 and M = 100

actual STTAD ADOL-C CVODES

Tolerance order Time, ms Error Time, ms Error Time, ms Error

1e-6 6 3.281 6.96e-8 12.50 6.96e-8 42.19 4.09e-5

1e-8 8 3.281 1.74e-9 12.50 1.74e-9 59.37 7.56e-7

1e-11 10 3.437 1.85e-13 14.063 1.85e-13 107.8 4.53e-9

17

