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Abstract

This thesis describes a new approach for a vision-based positioning system for Un-

manned Aerial Vehicles using a recognition method based on known, robust geo-

graphic landmarks. Landmarks are used to calculate a position estimate in a global

coordinate frame without requiring external signals, such as GPS. Absolute systems

are of interest as they provide a redundant positioning system, allow UAVs to oper-

ate when GPS-denied and can enable high-precision landings for spacecraft.

The core challenge with vision-based absolute positioning is recognition of land-

marks. Most abundant landmarks, such as buildings, are visually similar and dif-

ficult to distinguish. Previous research in the area tends to focus on matching raw

aerial image data to a set of reference images. While these methods can achieve

acceptable results in specific conditions, they struggle with variations in lighting,

seasonal changes and changing environments. This thesis presents a new multi-

stage method that aims to solve this using a high-level matching framework where

landmarks identified in an aerial image are matched to a reference database.

This has led to the development of a geometric feature descriptor that encodes the

topography of landmarks. The proposed system therefore matches the arrangement

of features rather than the appearance, which lets it distinguish individual landmarks

in large sets (20,000+ features). Since the arrangement of landmarks often is semi-

structured and ambiguous, in particular when considering man-made landmarks,

a matching stage has been developed that uses a number of strategies to enable

matching of individual landmarks to a full database.

The results have been evaluated for two conceptual vehicles with acceptable results,

highlighting the strengths of the proposed system as well as areas for improve-

ment.
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Chapter 1

Introduction

The aim of this project is to investigate the current state of visual positioning

systems for unmanned aerial vehicles (UAVs) and to develop a new approach to

vision-based positioning that can provide an absolute rather than relative position

estimate. There are several advantages to such a system; in particular, it allows

the precise positioning of UAVs without a dependency on external inputs, and the

continuation of a mission if the primary positioning system fails.

As one of the primary sensory systems, vision is a logical and practical field to

search for alternative positioning methods. Vision is used by humans, and many

other creatures in the animal kingdom, to help determine their location relative to

their surroundings; furthermore it helps determine position, judge distances, and

even identify possible routing for navigation. The uses of vision scale from the

very basic, such as in-flight stabilisation of a housefly to the highly sophisticated

systems that allow humans to recognise and navigate the world. In literature, visual

positioning systems have been studied extensively for vehicles across a variety of

environments (ground, subsea & surface, and now aerial), in the promise that they

will provide significant improvements to the current state-of-the-art systems, such

as GPS and inertial navigation.

The use of vision as a positioning system provides several challenges; the core task,

and thus area of interest, is how to incorporate recognition within the system. Hu-

mans are able to recognise features and objects through sight and relate them to

memories and contextual information; a very relevant example of this is a map,

17



18 CHAPTER 1. INTRODUCTION

which is a highly reduced topological representation of the world. By interpreting

and understanding the topological representation of a city (including identifying the

symbology used within the map, such as a cross for a place of worship), humans

begin to recognize the city structure, including the layout of the roads, streets,

buildings and landmarks. This helps us to anticipate how these features connect

as we travel through the city, progressively building an internal mental map of the

area. Even though maps are highly reduced representations of the world, they still

allow humans to recognise areas from various viewpoints, whether on the ground or

in the air. This includes, for example, passengers attempting to interpret location

during a flight (particularly during take-off or landing) by searching for recognisable

landmarks and features - or even their home - on the ground below.

This thesis will seek to develop a vision-based positioning system by focusing on re-

producing the representation of topological structure. To support this development,

the thesis will study computer vision methods that are currently used to recognise

features and landmarks. These features, once identified, will be used to retrieve

additional meta-data such as global location. This meta-data provides input into

well-established algorithms for pose estimation that will enable the system to esti-

mate its position in the world, helping this project to achieve its aim: to demonstrate

a system using a map-like representation for positioning.

There are a number of technical motivations for a vision-based positioning sys-

tem. Contrary to the positioning systems used today (such as GPS and navigation

beacons), visual systems are based entirely on-board the vehicle. A visual system

therefore allows vehicles to safely operate in areas where they may be out of range

of external signals, where signals are not available, or where the signals may be

interfered with. This includes several scenarios, such as a vehicle orbiting a planet

or a Micro-UAV exploring a city.
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1.1 Objectives

The following objectives were identified at the start of the project:

• Research optical sensors and models.

• Investigate computer vision algorithms for feature extraction, motion estima-

tion and structure from motion (SFM).

• Investigate how visual data can be used to determine the true location of a

vehicle and how it can be fused with other onboard sensors.

• Develop system architecture and research hardware and software methods re-

quired to provide real-time positioning data.

1.2 Contribution to Knowledge

The project primarily focuses on demonstrating the possibility of using a novel ge-

ometric fingerprinting algorithm to uniquely describe individual landmarks in an

image by encoding geographic structure. The fingerprinting method is scale, rota-

tion and translation invariant to enable localisation at a range of conditions with

minimal additional computational overhead, a common problem with prior work in

this area. The description method is minimal and invariant to the sensor and fea-

ture type, which allows the core algorithms to be used in a variety of missions and

platforms with few modifications. The descriptor also has the advantage that it can

be used in other types of problems where geometric patterns need to be matched or

compared.

Fingerprinting methods have been used extensively in various fields such as audio

recognition and chemical analysis. However, the methods have not been applied to

geographical data due to ambiguity and comparatively low variety in geographical

structure. This thesis demonstrates that it is indeed possible to uniquely identify

individual landmarks and use them for a positioning system.

Secondly, the project also shows that, given only a number of descriptors extracted

from a sensor measurement such as an image, it is possible to match detected land-
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marks to a known region and recover the locations of the detected features in a

global coordinate frame. This is facilitated by using the new fingerprinting algorithm

combined with a hypothesis-and-test matcher that evaluates a number of potential

match candidates and selects the most suitable result. This process is dependent on

the size of the target area region but tests have shown that accurate matching of

individual features is possible with the help of contextual information.

Finally, the project is the first example of a system using Gabriel graphs for the

selection and detection of poorly conditioned features. This is usually achieved by

studying the feature vector itself but, since the fingerprints in this work are closely

tied to geographic arrangements, the Gabriel graph provides an alternative way to

carry out the process.

1.3 Publications

The following articles have been published during the course of this PhD:

• Landmark Fingerprinting and Matching for Aerial Positioning Systems[4]

Mikael Mannberg & Al Savvaris

AIAA Journal of Aerospace Information Systems, 2014

• A Visual Positioning System for UAVs Using Landmark Fingerprinting[5]

Mikael Mannberg & Al Savvaris

AIAA InfoTech@Aerospace Conference Proceedings, 2012

• Visual Odometry with Failure Detection for the Aegis UAV[1]

Jose Roger-Verdeguer, Mikael Mannberg & Al Savvaris

IEEE Imaging Systems and Techniques Conference Proceedings, 2012

• Automatic Pipeline Detection for UAVs[6]

Hani Alqaan, Mikael Mannberg & Al Savvaris

AIAA InfoTech@Aerospace Conference Proceedings, 2012

• High Precision Real-time 3D Tracking Using Cameras[7]

Mikael Mannberg, Peter Silson, Antonios Tsourdos & Al Savvaris

AIAA InfoTech Conference Proceedings, 2011
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1.4 Thesis Structure

The thesis begins with a literature review (Chapter 2) that explores and outlines

the current state-of-the-art methods used by both traditional and visual positioning

systems for unmanned aerial vehicles. It proceeds to review current positioning

methods and other sensors commonly available on unmanned vehicles. The review

then describes and discusses methods for a higher-level visual navigation system,

using feature description and matching methods based on work in other fields.

The literature review has two aims: the first is to demonstrate that the current work

in the field of visual positioning is focused on approaches distinct from the method

proposed by this thesis. The second aim is to demonstrate that the algorithms

surrounding the feature descriptor and matcher, such as landmark extraction and

pose estimation, are well studied and that the data required, such as geographical

reference databases and efficient retrieval methods, are available and accessible. This

thus allows the thesis to concentrate on the core task: the recognition problem.

Next, the System Overview chapter (Chapter 3) outlines the theory of operation

and architecture of the proposed system. This includes a discussion of how the

system operates and where it would fit among other systems onboard an autonomous

vehicle. It also explains the proposed system architecture, including reasons behind

the need for modularity and the various sub-systems that are required.

The following two chapters (Chapters 4 and 5) focus on the core recognition prob-

lem, starting with Feature Description then continuing on to Feature Matching. In

Chapter 4 a new type of feature descriptor for geographical features is developed

that is scale, rotation and translation invariant. Following this, Chapter 5 discusses

various approaches to match the descriptor to ensure high quality results.

Chapter 6 studies the performance of two hypothetical configurations of the pro-

posed system. One configuration is designed for a small and low-power fixed wing

unmanned aerial vehicle that needs positioning updates at a high rate. The second

configuration is a satellite in orbit which only requires occasional updates.

The thesis then concludes with Chapter 7, which reviews the work that has been

conducted and provides a final discussion of the results. The chapter also discusses
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various areas where future work can be carried out. This includes both improve-

ments to the positioning system as well as alternative uses of the new fingerprinting

algorithms.



Chapter 2

Literature Review

2.1 Introduction

”For the subject of vision, there is no single equation or view that ex-

plains everything. Each problem has to be addressed from several points

of view - as a problem in representing information, as a computation

capable of driving that representation, and as a problem in the archi-

tecture of a computer capable of carrying out both things quickly and

reliably.” - David Marr, 1982 [8]

David Marr’s book ”Vision” was published posthumously over 30 years ago, yet it is

still considered one of the foundations for computer vision today. Marr’s academic

career began with an attempt to create a framework for how the human neural

system can be simulated computationally but he soon realised that one of the most

interesting challenges was to emulate the visual cortex, the part of the brain that

understands sight. His main conclusion? The approach taken by earlier researchers

had been wrong.

Computer vision research began as an extension of early artificial intelligence work,

since the potential for computers that could understand imagery, concepts and make

autonomous decisions was quite clear. At the time researchers assumed that intel-

ligence and understanding could be modelled using simple algorithms and all that

was needed to implement an artificial intelligence was to invent the correct algo-

23
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rithm. This belief, that intelligence was ultimately a simple problem that had a

straightforward logical solution, was so strong that the Chilean government once

attempted to develop a cybernetic system called CYBERSYN that would automate

many of the country’s governmental affairs[9].

This thinking led to the development and application of many fundamental com-

puter vision methods algorithms in the 1960’s and 1970’s that are still frequently

used today, such as Fourier transforms, the Harris corner detector [10] and histogram

analysis. However, it soon became clear that these methods worked for very basic

problems in strictly controlled conditions but they were unable to deliver the intel-

ligence and autonomy that was imagined in the 1950’s. While researchers began to

realise that the problem was more complex than initially perceived, it was not until

David Marr outlined his computational framework that it was clear that computer

vision research needed a different approach.

Marr presented three main problems, all of which need to be solved to fully interpret

a visual input:

1. Representation

The most complex challenge deals with knowledge representation and the issue

of retrieving timely and contextually relevant information for the task at hand.

For example, given a task to locate a vehicle, humans understand not only the

abstract concept of a vehicle (it is a method for transportation) but also where

vehicles appear (roads, car parks), what components they consist of (wheels,

doors, windows) and how they behave.

Representing and retrieving all of this information is a challenging task as each

concept has its own properties and relies on lower level concepts (for example,

a wheel is round, has a tire and is usually in contact with the road). The result

of this is that the brain can retrieve a vast amount of contextually relevant

information before it even attempts to interpret a scene.

”Thus, there is a trade-off; any particular representation makes cer-

tain information explicit at the expense of information that is pushed

into the background.” - David Marr, 1982

If one were to attempt an implementation of a robust computer vision system
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there would need to be a similar procedure in place that replicates the process

of knowledge representation. This was a completely new field in Marr’s time

and progress has only been made recently, with much of the work being done

by Google[11] who are developing what they refer to as a knowledge graph.

The knowledge graph is used to assist their users to find information online

by connecting simple search queries with larger concepts such as people and

places. This has proven to be a very successful approach for Google and is one

of the reasons it is currently the leading search engine.

However, the use of knowledge representation in computer vision is virtually

nonexistant today since it is closely tied to the second problem Marr identified:

image analysis.

2. Analysis

When the relevant knowledge about the scene has been selected and distilled

into its most useful state the next problem is to use this to extract information

from the data captured by the imaging device.

This area is where the bulk of the progress has been made in computer vision,

which has led to the development of high-level classifiers, machine learning

algorithms and more that helps locate and identify specific objects in an image.

The goal is to use the information from the scene representation to select a

suitable algorithm that can process the image and produce actionable outputs,

such as the location of a vehicle in the scene.

However, since today’s systems lack contextual understanding of the scene,

there is no feedback to an algorithm as to whether it is suitable for the task

at hand. As a result, the algorithm will attempt to process the image and

likely fail unless the very specific conditions it has been designed for are met.

There is very rarely any feedback within the system to adapt or retry with a

different object detection algorithm.

This is one of the main limitations for computer vision today, in particular for

unmanned aerial vehicles, as most systems continually experience variations in

operating conditions (such as altitude, time of day, weather) and target scenes

(urban, rural, desert, sea etc). Thus, most real-world use of computer vision
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methods are in strictly controlled environments (such as vehicle number plate

recognition or facial scanners for border control[12]).

Computer vision has also seen extensive use in Visual Simultaneous Location

And Mapping (Visual-SLAM or VSLAM) systems which can be utilised in a

wider variety of environments. This flexibility is an advantage that is gained by

using very basic image analysis methods and giving up any attempt to visually

interpret the scene. Visual-SLAM systems often only track basic corner and

edge fetures in an image, the algorithms rely on advanced sensor models and

complex statistical filters to do its work.

3. System Implementation

The last challenge that needs to be considered is the implementation of the

computer vision system itself, in the context of the task at hand. This pri-

marily deals with the hardware and software implementation of the methods

and is highly dependent on the overall task and mission.

This means that one has to consider the efficiency of the implementation, the

time-sensitivity of the task, the available computational power and, particu-

larly in the case of unmanned aerial vehicles, the electrical power available

for the sensor system. In addition, computer vision systems used to be de-

signed in isolation but are now often closely integrated with other sensors and

sub-systems on a platform. Hence there is an additional need to consider the

complete system as well as the interaction with other sub-systems.

Marr argues that to develop a successful computer vision system these three aspects

need to be considered during the development, and not until all of the challenges

are solved will we have a truly robust computer vision system.

Unfortunately, his vision was ahead of its time and even today computer vision is far

from being able to solve these issues. Encouragingly, the research into these fields has

been advancing in recent years, driven by the increase in computational power and

renewed interest. Until these challenges have been solved we are limited to systems

that will only operate in very specific scenarios and under certain conditions that

need to be clearly defined before beginning the mission.

Taking a step back from Marr’s ambitious vision, much progress has still been made
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in the computer vision field and the methods that are available today can deliver

impressive results.

The aim of this thesis is to investigate computer vision from a positioning and nav-

igation perspective for unmanned aircraft. The first part of this literature review

will review some of the techniques used to determine the position of an aerial ve-

hicle and discuss some current methods using visual techniques. The review then

continues on to explore methods for a higher level visual navigation system using

feature description and matching methods based on work in other fields.



28 CHAPTER 2. LITERATURE REVIEW

2.2 Current Positioning Systems

Before reviewing visual methods it is useful to discuss the current state of positioning

systems for unmanned aircraft. While they share many sensors with manned air-

craft, such as airspeed, altimeters, angle of attack sensors and more, they also rely

on additional positioning systems to ensure that they can operate autonomously.

These systems can be divided into two types: relative and absolute. Relative sys-

tems provides an estimate of how the vehicle has moved relative to a starting point

in a local coordinate system. Absolute systems will give a position estimate within

a global reference frame.

2.2.1 Inertial Measurement Units (IMU)

Most UAVs are equipped with high performance inertial measurement units con-

taining sensors such as accelerometers, gyros and magnetometers that are used to

determine the relative position of the vehicle. Each sensor measures the change in

acceleration or rotational rates in one axis and feeds it back to a system that inte-

grates the measurements with respect to time, giving the vehicle’s state estimate:

position, velocity and orientation.

The technology used in these sensors, known as Micro Electro-Mechanical Sensors

(MEMS), has recently advanced rapidly thanks to the inclusion of such sensors in

personal electronics (such as smartphones and tablets). Since the mobile device

industry has very specific requirements for low cost, small physical footprint and

high quality data this has led to both a miniaturisation of the sensors and significant

improvements in the data quality and rates. As a result of this, it is now possible for

hobbyists and small UAV manufacturers to build a low cost IMU that rivals highly

advanced commercial devices.

However, MEMS sensors have a few problems. For example, they are discrete, they

are not measured continuously but rather queried at specific intervals. This leads

to integration errors that gradually build up over time and causes what is known as

drift on the sensor as the position and orientation errors increase. A way to overcome

this is by polling the sensor at very high rates, usually hundreds or thousands of
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times per second, however this is not a long term solution as it will only delay the

problem due to accumulation of errors.

In addition, the individual sensors themselves are not perfect as there are measure-

ment errors, noise, bias and electrical interference that will give incorrect readings

and directly offset the vehicle’s reported position. For this reason much of the work

on IMUs today is focused on the software side where sensor models and filters (most

commonly Kalman filters[13]) are used to model these inaccuracies and improve

the IMU’s state estimate. These filters obtain estimates for the sensor errors and

attempt to use statistical methods to correct the state estimate. However, even

high precision IMUs with high quality sensors and well designed filters can build up

enough drift error to be unusuable within a few minutes.

A final issue with relative sensors such as IMUs is that they are measuring move-

ment in a local coordinate frame that is not aligned with the global frame that the

vehicle is operating in. As such the vehicle must either operate in a body coordinate

system, which is impractical for the user, or aligned with a global coordinate system

somehow.

2.2.2 The Global Positioning System (GPS), Galileo and

GLONASS

The Global Positioning System (GPS) is, as the name implies, a global positioning

system that allows users to locate themselves accurately almost anywhere in the

world.

GPS uses timing signals relayed from up to 24 satellites in orbit around the earth.

Each satellite is equipped with an atomic clock which, when a receiver is synchro-

nised to the signal, can be used to determine the time it takes for the signal to

reach the receiver. When the receiver has obtained an accurate time measurement

it can determine each satellite’s position, and then its own position by triangulating

the signals sent from the satellites. By using at least four satellites, it is possible to

triangulate the location of the vehicle and obtain a 3D (latitude, longitude, altitude)

solution with high accuracy. Usually the positional error is around five to ten meters

for civilian use. The level of positioning accuracy is partially due to atmospheric
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effects and measurement errors, however the primary limitation is purely artificial.

GPS was developed by the US Airforce and was primarily intended to give their

vehicles a system that enables high precision positioning. Thus, there are two GPS

bands, a military band with classified performance and a civilian band with slightly

reduced accuracy.

After the GPS system was made available for civilian use, secondary systems have

been developed to improve the accuracy. An example is differential GPS (DGPS)

where the DGPS receiver obtains additional corrections sent from a ground station.

This gives DGPS an accuracy of less than 20 cm[14] - as long as the user is within

range of the ground station.

GPS is in many ways an excellent solution to the positioning problem and with a

significant growth of GPS enabled products in the past decade, it has turned into

a utility used in a vast number of systems. It also has further use as a highly

accurate reference clock since each satellite carries an atomic clock that receivers

can use to synchronise their internal clocks. This means GPS also has uses in fields

such as finance, where it helps synchronise high speed transactions, and power grid

management, where high accuracy clocks are used to phase-match power stations

with the grid.

However GPS has a significant drawback, in particular from the point of view of an

unmanned aircraft. GPS signals are emitted with comparatively low power trans-

mitters, which means that it is easy to jam or otherwise interfere with the timing

signals from the satellites. Since GPS is the only widely available absolute po-

sitioning system at the moment it is critical that it never fails, but it is easy to

purchase a cheap GPS jammer that can disable receivers within a radius of several

kilometers.

In addition, several nations claim to have developed more sophisticated jamming

where the signals are not simply interrupted but rather modified, allowing them to

gradually change the position data obtained by the receiver. For example, the US

lost a classified unmanned aerial vehicle in Iran in 2011. Iran claims to have taken

control of the vehicle by intercepting and modifying the GPS signals, tricking the

UAV into crashing in the north of Iran. Similarly, a demonstration in 2012 showed

an attacker gradually modifying GPS signals received by a ship. This allowed the
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attackers to effectively control the vessel by making it leave its intended route and

navigate to the attacker’s target instead.[15]

There are several alternatives to GPS either in development or in use, for example

the Russian GLONASS system that is currently being upgraded and the European

Galileo system. The Galileo project is significantly delayed but will provide similar

or better performance than GPS and provide an alternative in case the US decides

to close down the civilian channel. Since GPS, GLONASS and Galileo operate on

very similar frequencies and protocols, it is possible to develop receivers that can use

the three systems simultaneously for improved positioning accuracy and robustness.

The drawback is that jammers can easily be extended to disable all the positioning

systems at once.

2.2.3 GPS & IMU Data Fusion

The GPS and IMUs are complimentary sensors and are often combined to create a

GPS-assisted IMU. This sensor kit uses relative inertial sensors as the primary data

source to obtain the position and orientation of the vehicle and filters errors such as

drift using absolute data obtained from the GPS. The GPS is also used to align the

the coordinate systems and provide consistent positioning data.

This is normally carried out using a Kalman filter, which have been extensively

proven to improve the accuracy of noisy measurements and be the optimal solution

in certain situations. Kalman filters are predictive filters that estimate what the

next measurement will be based on a process model, and then correct itself and

the measurement depending on how well the model matched the result. In addition

to the updated position estimate, the Kalman filter will also give a measure of the

confidence in the estimate through the covariance matrix. This can be used to not

only improve the accuracy of the direct measurements, it can also be used to correct

for biases and other parameters in the system. A well designed Kalman filter gives

very good results, but it can be difficult to model the process noise and they become

complex for non-linear processes.

The issue with this system is that it suffers from the same vulnerabilities as GPS. If

the GPS signal is lost for any reason then the positioning system falls back on to the
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IMU and the position accuracy begins to deteroriate. This is one of the reasons for

this PhD, to investigate alternative methods of providing GPS quality positioning

as an alternative to GPS when it becomes unavailable.
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2.3 External Sensors

The positioning sensor packages discussed in the previous section are a standard

feature for unmanned vehicles today. However, UAVs are fundamentally a remote

sensing platform and therefore they also carry many different types of external

mission specific sensors to capture information about the operating region. External

sensors range from electro-optical to radiation sensors, radars, air quality sensors and

much more, and each vehicle is usually designed to accommodate multiple sensors.

The sensor packages are also usually modular, allowing the ground crew to adapt

the UAV for its next mission. These sensors are normally not used for positioning

and navigation but in many cases they provide data that is invaluable for these

tasks. Thus one of the objectives for this project is to explore ways to exploit the

data captured by these sensors and apply it for the positioning task.

This section will discuss the most common types of sensors that are of interest for the

visual navigation problem, describe how they operate and their benefits or trade-offs

for our operating case.

2.3.1 Electro-Optical Sensors

Electro-optical sensors, widely known as cameras, use optics to project incoming

light onto a light-sensitive device. This device, usually a charge-coupled device

(CCD) for high quality image acquisition applications, converts the projected image

into a digital readout that can be analysed by a computer. Specifically, the sensor

contains a large number of light sensitive pixels that produce a voltage potential

depending on the projected light intensity (more directly, it measures the number

of photons converted into electrons and provides a voltage output). The CCD mea-

sures this voltage potential for each pixel and relays the digital measurements to

a computer, which converts it into an array of intensities that can be analysed or

displayed to the user. Cameras are by far the most popular sensor due to the wide

variety in quality, performance and size, making it very easy to find commercial

off-the-shelf (COTS) components that suit every type of vehicle.

Electro-optical sensors are normally divided into four types: ultraviolet, visual, near
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Table 2.1: Electro-Optics Overview and Examples

Class Wave-length range (nm) Example usage

Ultra-Violet 30 - 400 Chemical composition analysis

Visible Light 400-700 Object detection, navigation

Short-wave Infrared 700-1200 Low-light imaging

Long-wave Infrared 1200-2000 Thermal imaging

or short-wave infrared and long-wave infrared (thermal imaging), but there are many

other types.

By far the most commonly used sensor is the visual sensor and it is the primary

focus for this project. Visual sensors capture light with wave lengths in the 400-700

nm range. This the same spectral range that the human eye is sensitive to, visual

sensors are therefore carefully designed to provide the same spectral response as a

human eye to ensure a natural and realistic colour representation.

The sensor tends to consist of three types of colour sensitive pixels: red, green

and blue (creating an RGB image), that can be mixed together to represent all the

colours within this colour space. The difficulty is when modelling the green response

as humans are significantly more sensitive to light in the green range (around 525

nm). A CCD sensor’s spectral response is different from the human eye (Figure 2.1),

meaning that the green sensitivity needs to be increased.

Figure 2.1: Spectral Sensitivity Comparison

While there are simple solutions to this problem, for example by adding a greater

than one gain to the green pixels, or conversely applying a less than one gain to
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red and blue, most of these have a negative impact by increasing noise in the image

or forcing increased exposure times (an increase in exposure time means that more

light is captured but can cause blurring if the scene is not static). Therefore, most

colour sensors today use a pixel layout known as the Bayer-pattern, which increases

the sensitivity to green light by adding more green pixels. Instead of having an equal

distribution of pixels (1/3 red, 1/3 green and 1/3 blue) the Bayer pattern weights

the green to give 1/2 green, and 1/4 each for red and blue (Figure 2.2).[16]

Figure 2.2: Bayer Pattern

Visual sensors come in a wide variety of physical sizes, which depend on the device

they are designed for and the required performance. A general rule of thumb is

that the larger the physical size of the sensor (and most importantly, the size of the

pixels) the better the image quality as more light hits the sensor during exposure.

Smaller sensors, such as those used in mobile phones (5.4 x 3.4 mm), are exposed

to less light than a full frame professional sensor (51 x 39 mm), which has a number

of effects on the image quality. During captures in bright scenes, such as outdoor

scenes captured in daylight, the smaller sensors need a good de-noise algorithm to

reduce the effects of noise and interference created by electronics surrounding the

sensor. In darker scenes the image quality drops significantly as there is less light

available, leading to a significant loss of information and a marked increase in noise

due to the high digital gains used to squeeze every bit of light sensitivity out of

the sensor. Meanwhile, larger sensors provide much cleaner images and are able to
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capture useful data in darker scenes.

The trade-off is that larger sensors will need optics with a longer focal length (and

thus larger physical size) in order to be able to project and focus an image on to the

sensor. This is particularly important when using tele-lenses that lets the operator

zoom in on specific features at a long distance, where a high zoom factor can result

in significantly heavier sensor payloads.

In addition to the sensor size, there are a large number of other factors that affect

the resulting image quality of a camera system. These include exposure time, sen-

sitivity, post-processing algorithms and the quality of the optical system. The lens

can cause various forms of distortion in an image, most common are barrel distor-

tion (where a wide angle image appears to be bulging), tangential distortion (where

the sensor plane is at an angle to the projected image) and also various forms of

chromatic aberrations. Chromatic aberration occur when light with varying wave-

lengths refract and separate, similar to the effect of a prism. This leads to blurring

and distortion at the edges of an image and further degrades the image quality.

Finally, for long-range imaging applications such as UAVs and remote sensing, there

are also external effects from the atmosphere that affect the image quality. The most

obvious is weather, where clouds, rain and snow can significantly change the appear-

ance of objects by changing the perceived colour through shading or by changing

the reflective properties of materials.

Due to the large number of the factors that affect the image quality of an electro-

optic sensor, it is clear that selecting the appropriate hardware for a mission is not a

simple task. Optimally, one needs to know the exact expected operating conditions

of the vehicle, the weather conditions and the mission parameters.

This has lead to several advancements in electro-optical hardware. One of the most

interesting platforms is called the Argus-IS, a 1.8 gigapixel video system devel-

oped by the Defence Advanced Research Projects Agency (DARPA) in the United

States. The Argus-IS creates a large, high pixel density sensor by combining 368

five megapixel mobile phone imaging sensors. Four custom-made lenses project an

image of the ground onto the sensor plane, which is then stitched together from

each individual sensor to create a 1.8 gigapixel mosaic. This enables the system
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to observe a much greater area at higher resolution than a normal electro-optical

system would be capable of. In addition, the Argus-IS can also provide live high

resolution video from up to 60 areas within the image simultaneously. This a very

useful aspect of the system as it allows multiple operators and potentially multiple

missions to use the same sensor data.

The Argus-IS system was first flown by BAE Systems in 2009, which successfully

demonstrated the capabilities of the new platform (Figure 2.3. However, the system

is still limited due to the vast amount of data that is being captured. To construct

a full 1.8 gigapixel mosaic all 368 images must be captured, processed to correct for

each sensor’s individual colour and distortion characteristics, stitched and finally

corrected for the individual distortions of the four lenses. The process requires very

significant computational hardware to carry out within a useful time frame, which

puts a large electric power demand on the UAV.

Figure 2.3: Argus-IS Sample



38 CHAPTER 2. LITERATURE REVIEW

Camera Calibration

While cameras provide large amounts of data and are an invaluable source of infor-

mation, the raw data is of no use for positioning and navigation purposes due to the

various distortion factors inherent in the camera system. Since the distortion factors

can significantly change where features appear in the image, one has to accurately

model and detemine these parameters prior to capturing data with a camera. A lot

of work has been carried out in the area of camera calibration since errors in the

calibration model directly impact the subsequent computer vision algorithms.

The calibration problem is generally divided into two issues: intrinsic and extrinsic

calibration. Intrinsic calibration models the internal behaviour of the sensor and

optics whilst the extrinsic calibration model obtains the camera’s position and ori-

entation in an external reference frame. While the extrinsic parameters are useful in

certain scenarios (such as in motion capture systems[7] and stereo imaging systems),

the intrinsic has an impact on virtually all computer vision problems and is critically

important for detection and analysis accuracy.

Intrinsic calibration models the optical parameters of the camera and lens system.

In general a pinhole camera model is used where the camera is seen as not having a

lens and only a very small aperture. This simplifies the problem significantly and is a

close approximation to most common lensed system (the biggest exceptions are fish-

eye lenses and aspherical lenses). There are four main parameters to consider:

1. Optical axis centre (cx and cy): this parameter defines where the optical centre

intersects with the image plane. Theoretically this should occur at the centre

of the image in a perfect system (cx = width/2 and cy = height/2), however

due to manufacturing inaccuracies it is often offset.

2. Focal length (fx and fy): the focal length is the distance from the focal point

of the lens to the imaging plane. It is directly related to the field of view

and is used to project image coordinates into space. Since most calibration

methods do not consider the physical size of the sensor it is not possible to

determine the true focal length (commonly measured in mm), thus the focal

length is often reported as a relative measure of mm/pixel[17]. In most cases

lenses are symmetrical, meaning that the focal length is similar in both the x
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and y-direction, but cheap and poorly made lenses or very specific high field

of view lenses can be asymmetrical.

3. Radial distortion coefficients (k): Virtually all lenses produce a barrel distor-

tion to some degree. Barrel distortion causes an image to appear to be bulging

out (or in certain cases pinched) in the centre and straight lines become curved

due to the distortion. This effect is more visible in high field of view lenses

and can be described as power function using three parameters, k1, k2 and k3.

Figure 2.4: Effects of Barrel Distorion

4. Tangential Distortion (p): The final calibration parameter is used to correct

for tangential distortion. Tangential distortion appears as a slight perspective

transformation to the image and is caused by the sensor plane not begin par-

allel to the image plane projected by the lens. This is primarily caused by

manufacturing defects where either the sensor is not mounted perfectly flat on

the processing board or the optical mount is slightly angled relative to the sen-

sor. The effects of a tangential distortion are normally not visible in an image,

however it has a noticeable effect when the image is used for geo-referencing,

3D reconstruction and other high precision algorithms.

These parameters are usually determined by solving an optimisation problem in

which an object is captured and a comparison is made between the true and predicted

positions of certain features in the image. By minimising for the error the system

retrieves the optimal parameters to model the lens. Since the calibration process

needs a large number of features that cover as much of the field of view as possible it is

common to use a chessboard pattern where each corner is a feature. Chessboards are

used due to the ease of modelling, detection and association of points on them with

sub-pixel accuracy[17], allowing more accurate calibration. This corner detection

stage produces around 100 features spread through the image that can be analysed
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using a number of algorithms, such as Tsai, Zhang and Brown[18]. However, many

other patterns and systems have been developed such as bundle adjustment based

methods[19][20] that have the potential to obtain more accurate results, in particular

when calibrating optics with very wide fields of view.

The resulting parameters are collected in the intrinsic calibration matrix M and are

used extensively in other algorithms:

M =

∣∣∣∣∣∣∣∣
fx 0 cx

−0 fy cy

0 0 1

∣∣∣∣∣∣∣∣ (2.1)

These parameters are required in order to model the optical system and need to be

determined with high accuracy if the camera is going to be used for positioning pur-

poses. Most pose estimation methods, such as homography decomposition, require

an undistorted image, otherwise the solution becomes poorly conditioned.

In addition, there are two other matrices that are often used in computer vision, the

fundamental and essential matrices. These two matrices consider the projections

of points in space onto the sensor plane in multiple view problems such as stereo

imaging or monocular 3D reconstruction and rely on extrinsic information about

the imaging system. They are not relevant for the work in this thesis, primarily

due to the assumption that extrinsic data (position and orientation of the vehicle)

is either unavailable or approximately estimated. Despite this, there are multiple

view methods that can be used for navigation purposes, which will be discussed in

Section 2.4.

2.3.2 SAR & LIDAR

Synthetic Aperture Radar (SAR) and Light Detection And Ranging (LIDAR) are

two methods that, while technically different, provide similar results. SAR uses

microwave radar and the movement of the imaging platform (such as a UAV) to

compute a high resolution 3D map of the terrain (these models are widely used in

remote sensing applications). LIDAR, on the other hand, uses lasers to measure the

distance to objects, which can be combined to construct a dense 3D map similar
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to SAR. LIDAR systems are generally smaller and consume less power than SAR

systems but have limited range due to light interference from the Sun.

Both of these systems are of interest since they are designed to be operated on

airborne platforms and also deliver data that can be used for landmark navigation

while carrying out other tasks simultaneously. Several methods have been proposed

that detect buildings and roads with high accuracy[3].

2.3.3 The Data Problem

An important problem for most Unmanned Aerial Systems (UAS) today is dealing

with the vast amount of data generated by the onboard sensors. A camera capturing

high resolution video can generate hundreds of megabytes1 of raw, uncompressed

data every second. Currently, the data is compressed and relayed down to a human

operator who reviews the data feed in real-time. This results in a costly and error-

prone situation due to operator mistakes (caused by human errors) and results in

the data having a significantly shorter useful life-span, as retrieval and correlation

of past data is difficult.

This has resulted in two main developments that leads to higher levels of autonomy

of the vehicle, more efficient data usage and, most importantly for the proposed

visual navigation system, faster analysis of the data.

The first development, primarily driven by practical and economical reasons, is to

automate the sensor analysis. Significant work is being carried out in areas such

as image classification, detecting vehicles, locating survivors in natural disasters,

identifying oil spills and precision farming. Furter work is also being done on in-

corporating additional meta-data to the sensor data such as when and where it was

captured, what is in the data and more to enable faster recovery and more advanced

correlation of past data. When the contents of the data is known, higher level anal-

ysis can be carried out such as threat detection, behavioural monitoring and process

optimisation. This increases the autonomy of the system, reduces the operator work-

load, improves the efficiency of the system and produces valuable information for

11920 * 1080 pixels * 3 channels * 30 frames per second * 1 byte per pixel and channel = 186

MB/s
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the operators of the vehicle.

The second aspect is more technical in nature and focuses on gradually moving

sensor data processing from the ground control station and onto the vehicle. This

has two effects; firstly by distributing the processing one can reduce the amount

of data that needs to be relayed to the ground, reducing the load and dependency

on communication links. Secondly, it increases the autonomy of the vehicle by

providing faster and more up to date information to the flight management system.

This enables the onboard systems to autonomously plan and make adjustments to

the mission at hand and capture data that is of most use to the operators.

These two technical developments have been a fundamental requirement for a realis-

tic visual positioning system. UAVs have generally been simple remotely controlled

vehicles that relay a video feed to the ground, they have not been equipped with

any additional hardware to enable onboard processing. Further, the hardware and

software systems required for a visual positioning system have not been available but

are progressively become better understood. The autonomy required for this type

of positioning system is still a a number of years away[21] but UAV developments

are steadily moving towards this goal.



2.4. VISUAL POSITIONING SYSTEMS 43

2.4 Visual Positioning Systems

As with the other positioning systems (such as IMUs and GPS), computer vision

positioning systems can be divided into two types: relative and absolute positioning

methods. Relative methods determine the movement of the camera relative to its

starting point while absolute methods obtain their position in a global reference

frame.

Most of the research in the field has focused on relative positioning as most computer

vision methods are currently better suited to this type of analysis. Relative methods

generally require a simpler, lower level analysis of the imagery captured by the

camera, and rely on significant simplifications (such as flat-earth). They also require

an understanding of the camera and optics geometry to estimate the motion of the

vehicle. Meanwhile absolute methods require a more complete vision system, as

per Marr’s definition, where there is a need for a higher level understanding of the

information available in the image and some form of visual memory.

This leads to a difficulty in deciding which approach is more suitable. Absolute

methods provide distinct advantages since they allow a vehicle to carry out longer

missions in a greater variety of scenarios but the trade-off is an increase in complex-

ity, as well as energy and computational requirements. Meanwhile, relative systems

can be combined with other systems and act as a temporary failover in case a pri-

mary system encounters a problem. However, they generally do not perform well

enough to be a primary positioning system for an entire mission.

2.4.1 Visual Odometry

Visual odometry is a comparatively old method that uses a technique known as

optical flow to estimate the relative movement of the camera. Optical flow analyses

the movement of various features and objects in an image from one frame to the next.

By computing this movement vector for a large number of features it is possible to

obtain a vector field that describes the overall movement of the features relative to

the camera.

This presents a challenge when using optical flow, as the vector field contains move-
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Figure 2.5: Homography-based Visual Odometry from an Aircraft[1]

ment that is caused by the camera displacement, as well as objects moving from one

frame to the next. To overcome this optical flow systems are generally very targeted

to specific missions and only applied in controlled conditions. For example, optical

flow can easily be used to detect a vehicle moving through a road intersection using

a stationary camera as the only movement vectors in the image will correspond to

vehicles and pedestrians. However, if the camera is mounted on a moving platform,

the flow field will include both the movement of the platform as well as the targets

and make the detection more complex.

In the case of visual odometry the approach is the opposite; it is assumed that the

camera is used to observe the ground and is the only object in the frame that moves

significantly. There may be other objects in the frame that are moving but due to

perspective and scale they only have a minimal influence on the overall flow field.

In addition, these features can be rejected using an outlier elimination method such

as RANSAC[22], which is discussed in Section 2.4.1.

Optical flow methods can be divided into two groups: dense and sparse methods. In

a dense flow method, such as the popular method developed by Gunnar Farnebck[23],

every single pixel is matched across to the next frame and the flow is usually pre-

sented as two new single channel images, one for each movement direction. The

intensity of each pixel in the new movement images indicate how far the feature has

moved in each axis.

Meanwhile, sparse methods detect a smaller number of features in each frame and
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attempt to match them to the next. This is very commonly done using a corner

detector such as Harris[10] or Shi-Tomasi[24] and the Lucas-Kanade optical flow

algorithm[25].

Which type of method is more suitable will depend on the task at hand. Dense

methods provide more data (for a 640 by 480 pixel image it results in over 300,000

points) while sparse methods only produce small number of feature correspondences.

This has a significant influence on the subsequent processing and for this reason

time-critical applications such as visual odometry tend to rely on sparse methods.

Dense methods are more commonly used to detect movement in a stationary image

(such as a car driving through a red-light camera), while sparse methods are used

to determine movement of the camera.

In addition, visual odometry for aerial vehicles usually relies on the flat earth as-

sumption where the ground can be represented as a flat plane. This makes the

process of estimating the movement much simpler, in particular in scenarios where

the camera is mounted on a platform operating at high altitudes since the relative

distance to the ground causes hills and other terrain features to appear flat.

By using this simplification it is possible to estimate a direct mapping for the points

in the plane identified in the first frame to the plane found in the next frame

where:

P2 = HP1 (2.2)

H is known as the homography matrix, a 3 by 3 matrix that carries out the trans-

lation and rotation transformation from one plane to the next. It can be estimated

by setting up a linear equation system that can be solved using a least squares

method. This requires four known point correspondences that are coplanar (but not

collinear), however optical flow will usually generate several hundred. For this reason

it is very common to combine the homography estimation method with RANSAC

(Section 2.4.1) to eliminate outliers and determine the best supported homography

matrix.

Following estimation, the homography matrix can be decomposed into its rotational

component, the directional cosine matrix R, and a translation vector T[26]:
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H = R + T ∗NT ∗ d−1 (2.3)

In addition, NT is the normal vector of the plane being observed and is used to

determine the correct translation since the decomposition yields multiple possible

solutions. This is done by ensuring that the solution that produces a normal vector

closest to [0, 0, 1]T is chosen, in the cases where the camera is assumed to be normal

or close to normal to the plane. In non-nadir operating conditions the predicted

normal vector for the estimated ground plane is used instead.

There is however a second problem. Decomposing the homography matrix yields

a translation vector that needs to be multiplied by an unknown scale factor to

determine the true translation in a global coordinate frame. This comes down to a

problem known as the universal scale ambiguity. In a visual odometry system this

can be visualised as the unknown distance to the object the camera is observing,

which has a direct impact on the ground distance that is covered from one frame to

the next. This is not only a problem in visual odometry (for example it occurs in

monocular Structure From Motion (SFM) and Visual SLAM problems) and there

are several ways to determine the scale factor[27][28]. Most methods revolve around

a startup stage where the platform is moved a known, pre-determined distance, after

which the scale factor is calcualted as the ratio between the true distance and the

estimated value. This method is sensitive to variations in the course while moving

and would ideally require either a very stable camera trajectory during calibration

or a sensor system that can accurately measure where each frame is captured. This

is a very effective solution for a UAV if the GPS and IMU is available, and highly

accurate since it can be used to calibrate and correct the visual odometry system

during the flight.

RANSAC

Since the overall flow likely contains incorrect movement vectors and other moving

objects it is common to implement some form of outlier elimination method. The

most common and robust method is known as RANSAC (RANdom Sample And

Consensus), which is commonly used when an excess of data is available that needs
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to be reduced to the points that best fit a given model. For example, it is commonly

used to estimate the homography matrix H, since several hundred point correspon-

dences are available (some of which are outliers) but only a small number are needed

to determine the matrix. However, the challenge is to select the right points so that

the resulting matrix is supported by the majority of the dataset.

RANSAC attempts to estimate the parameters for a given model by generating a

number of random hypotheses and verifying whether the candidate model is sup-

ported by a random subset of the dataset. This is an iterative process that continues

until an appropriate model has been found, and since RANSAC generally is designed

to aim for majority support for the model, it robustly handles even large numbers

of outliers.

Two components are needed to construct a RANSAC algorithm; a process model

that the data should match and a scoring function to evaluate the fit. Since the

remainder of the algorithm depends heavily on the data type, model and scoring

method it is difficult to create a general implementation of RANSAC (although

the algorithm has been described in detail[29]). Below is a brief outline of the

algorithm in a simple scenario where a straight line y=kx+m is fitted to a set of 2D

points:

1. Select a random sample from the data set.

2. Calculate the parameters (k and m) for the model by calculating the best fit

line through the random set.

3. Select a random validation set and validate whether the proposed model is

supported. This can be done by calculating the least squares distance from

each point to the line determined in step 2.

4. If the parameters are good enough then save them and the related results.

5. Repeat steps 1-4 until a termination condition is encountered. A common

termination condition is that a very large number (e.g. 90%) of the validation

set confirms the model or that the number of iterations allowed has been

exceeded. In case of a forced termination (as in the case of an exceeded

iteration counter) the best parameters so far are returned.
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2.4.2 Simultaneous-Location And Mapping (SLAM)

SLAM is a relative positioning method that is designed to be used in completely

unknown environments. It is in many ways considered the holy grail of robotic posi-

tioning and navigation due to its ability to accurately determine a full, relative state

estimate for the vehicle with minimal drift[30]. Further, it can be implemented on

a wide range of sensors, from basic ultra-sonic range finders[31] to cameras (known

as Visual SLAM)[32] and LIDAR[33]. Finally, the approach provides not only posi-

tioning data but also a map of the environment that can be used for path planning,

obstacle avoidance and other mission tasks.

The SLAM process has been discussed since the 1986, with Smith and Cheeseman’s

paper[34] that developed a method for representing spatial uncertainty. SLAM

has since been thoroughly reviewed and will thus only be discussed briefly in the

literature review. Fundamentally, SLAM relies on the use of landmarks, specific

features that can be detected in the scene and subsequently found and associated

in later updates.

The first step of SLAM, location, uses these features to determine the vehicle pose

in relation to the landmarks. If one momentarily, and naively, assumes that the

landmark detection sensor is perfect then the relative movement of the features

from one frame to the next is the inverse of the vehicle’s movement. Therefore, it

is clear that one can use the movement of landmarks to determine the pose of the

vehicle independently of the vehicle’s own sensors and therefore correct the internal

navigation system.

The second step of SLAM, mapping, takes the opposite approach where the move-

ment of the vehicle is assumed to be known with perfect certainty but the world is

unknown. A mapping update is carried out by requesting a measurement from the

landmark sensor. The vehicle then moves a known distance and attempts to detect

the same landmarks. Due to uncertainties in the sensing process the detected land-

marks will not appear in the same position but data association and fusion processes

can be used to refine the location of features and gradually expand the map with

new features.

While each step provides valuable data it is clear that neither process can realistically
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be carried out independently due to the assumptions made in each one. In fact, the

two processes are co-dependent; the output from one process feeds directly into

the other and can potentially be used to iteratively refine the results of the other.

However, SLAM goes one step further by carrying out the two steps simultaneously

using a Kalman filter. This allows the designer of a SLAM system to model the

vehicle, sensors and other uncertainties and have the Kalman filter[35] gradually

refine its estimates of the feature locations as well as the vehicle’s states[36].

The Kalman filter provides an excellent solution to the SLAM problem but it also

suffers from significant performance problems since each known feature in the world

must be observed as a state in the filter. Thus, as more of the world is explored, the

number of states increases and the number of calculation required for each update

increases as a cubic function of landmarks. Since the Kalman filter relies on the

inversion of a square matrix that consists of each feature the number of calculations

increase non-linearly with feature count, causing the filter to rapidly increase in time

to update.

There are various techniques to avoid this computational load. For example, the

system might represent a history of states rather than explicit landmarks (known

as delayed state SLAM [37]). This has the benefit that earlier frames can be per-

manently commited and marginalised out of the filter. This manages the size of the

filter but causes drift in the long term. Another alternative is to use an information

filter information filters are mathematically identical to Kalman filters but use a

canonical form to represent the state and covariances instead of the moment form

used in the Kalman filter. This gives an information matrix, which is the inverse

of the covariance matrix, and an information vector, information matrix multiplied

by the state vector) and simplified maths. However, one of the primary computa-

tional benefits of the information filter is that the information matrix only needs to

be inverted once for each update (during the prediction step), while Kalman filters

require an inversion for each landmark that has been observed by the sensor during

the correction step.

Finally, SLAM often uses bundle adjustment methods to carry out loop closures[20],

allowing the system to correct itself. Bundle adjustments are data association meth-

ods that are carried out when the system revisits an area which has previously been
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visited. Re-visiting an area allows the SLAM system to correct itself for drift by

effectively recognizing well known features and improving the estimated states of

system. While bundle adjustment is very useful to improve accuracy for systems

that often traverse similar regions, such as a vehicle driving around a city[38], it is

a very expensive data association method. A bundle adjustment is carried out by

aligning the most recently observed features with all (or a subset of) the previous

observation and finding the pose where the error between the two is minimised. This

is a very computationally expensive methods, and it requires the SLAM system to

maintain the landmark coordinates and covariances for the entire map.

For this reason bundle adjustments are often avoided. In a practical sense, a UAV

flying a sortie is unlikely to pass over the same regions very often, which can lead

to a very high computational overhead as bundle adjustments need to be attempted

over a larger history of observed landmarks.

2.4.3 Visual SLAM

The previous discussion of SLAM have assumed that the algorithm is capable of

determining a 3D position estimate of each feature in a single update. While this

applies to scenarios where a vehicle is equipped with some form of ranging sensor

such as an ultrasonic sonar, a radar or a stereo imager, it does not apply to cases

where the vehicle is only equipped with a single electro-optic sensor. A monocular

electro-optical system can only deliver the bearing and azimuth of a feature relative

to the camera in a single update. Despite this, cameras would be very useful for

SLAM since they provide a wealth of data about the world that can be utilised for

navigation.

There are two approaches to Visual SLAM, monocular and stereo. Monocular SLAM

uses a single camera and triangulates features over consecutive frames[39][26]. Stereo

uses two synchronised cameras that triangulate features immediately[40]. Stereo

systems are generally easier to work with and can be precalibrated to determine the

baseline, distance and orientation between the cameras, and which lets the system

determine the exact distance to features and avoids scale problems. However, stereo

systems are not viable on a flying platform due to the distances involved, it is
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generally not feasible to construct a stereo imaging system on a UAV due to size

and geometry restrictions.

Meanwhile, monocular systems obtain their baseline by using movement, similar to

SAR. The difficulty is determining when a frame should be captured to carry out

the triangulation. One consideration is the distance the aircraft needs to move to

obtain a sufficient baseline, which is proportional to the flying altitude. Another

issue is how the baseline is calculated, it is usually obtained using an IMU but at

high altitudes it is likely that the aircraft will have to fly for long periods to obtain

a sufficient baseline to accurately triangulate features on the ground. The question

is whether the IMU is accurate enough to maintain a good track throughout the

capture without relying on GPS, which often is not the case.

The motion can also be determined purely visually using egomotion estimation algo-

rithms, which is commonly used in ground-based SLAM systems[17]. This approach

works well in cluttered environments but degenerates when the tracked feature points

are coplanar, an issue that occurs frequently in aerial imagery where all features are

located on flat terrain.

Because of these reasons Visual SLAM has not been widely developed for aerial

systems and is not yet considered a viable visual positioning approach.

2.4.4 Absolute Positioning Systems

The majority of work to date on visual navigation has been in the area of relative

systems. While absolute systems would be more useful and suitable for most vehi-

cles, they are also more complex to develop as they require a greater understanding

of the information in an image and what the world looks like.

The motivation for an absolute system comes from observing how people use maps.

Maps are visual representations of the world that describes how various features in

the area are geographically related (the topology). Maps are generally very sparse

and only contain the most critical features needed to obtain an accurate under-

standing of the topology of the region while still providing enough information to

complete the task at hand (such as finding a museum in a new city).
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A fascinating feature of maps is how sparse they can be and still provide relevant

information to a user. For example a Londoner will be able to look at a minimal

map without street names or labels of one of the world’s largest cities and still be

able to identify the exact street where they live. This indicates that maps are a

very efficient method for representing topology and, more importantly, that there

is some uniqueness in the structure that maps represent. In addition to this, it is

possible for a person to not only look at a map of an area and instantly recognise

where it is, but they can also determine the orientation of the map as well as get a

sense of the scale of the map.

This suggests that there is some structure and uniqueness to man-made features in

the world that can be exploited to determine location information. However, if you

place a person in a completely unknown area of the world it will take them some

time to determine where they are, indicating that there is also a familiarity aspect

to the problem.

It is possible to fit this problem into Marr’s computer vision model and outline a

few initial points for an absolute visual positioning system:

1. The system will need some form of representation of the world that has been

reduced to an efficient and suitable format. In addition, since the world is not

static, it must be possible to update this representation (although this does

not necessarily need to happen in real time).

2. The vehicle needs some form of analysis and recognition system. These sys-

tems need to be able to find certain features that are available in the world

representation and recognise, or match, these features to the map given a

current operational context.

3. The system must also be able to carry out an ego-state estimation after the

region has been recognised. Maps are extremely useful tools as they ultimately

let the user very accurately determine their own position within the map. The

same applies to airborne vehicles which need to determine their position as

well as orientation in the world.
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Current State

One of the first attempts to demonstrate a visual positioning system with these

capabilities comes from Conte[2]. Conte designed, implemented and tested a system

onboard a remote controlled helicopter that captures an aerial view of the ground

and matches it to a reference satellite image of the same area.

During the development of this system Conte encountered a number of issues, of

which the most important challenge was to match the aerial image to the satellite

image. His solution was to use a 2D cross-correlation (2DCC) based image matcher.

A 2DCC matcher attempts to align a small query image within a larger target image

by creating a correlation matrix. The correlation matrix itself is calculated by sliding

the query image along the reference image and computing a per pixel score of the

similarity. This score is calculated simply by selecting a slice from the reference

image with the same dimensions as the query image and then summarising the total

scores:

S =
∑

Itarget[x : x+ wquery, y : y + hquery]− Iquery (2.4)

Figure 2.6: 2D Cross Correlation Search (query image overlaid on map)[2]

The query image is positioned at every single pixel coordinate within the target

image, giving a two dimensional matrix that holds the score for every possible x

and y position in the reference image. Peaks in the correlation matrix indicate a
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correlation between the query and target image. Thus, theoretically, the row and

column with the highest correlation score indicates the most likely position of the

query image. Assuming the target image was correctly geo-referenced, it is then

possible to determine which region is observed and by extension the location of the

vehicle when it was captured.

Figure 2.7: Sampel 2D Cross Correlation Matrix (peaks indicate high correlation)

One of the benefits of a 2DCC method is that it can be dramatically sped up by

carrying out the correlation computation using Fast Fourier Transforms (FFT)[41],

which theoretically allows it to match several hundred queries every second. This

provides a very fast and simple matching process but it turns out that this approach

is not as robust as it might seem.

Since the 2DCC method is pixel-based and uses the intensity values of the image

it can easily get confused by changes in the scene. For example, Figure 2.8 shows

what happens when a query image is rotated slightly relative to the reference image.

The resulting correlation matrix is completely different, the scores are significantly

lower and there is no clear peak indicating the correct alignment. To overcome this,

the positioning problem needs to be redefined as an iterative optimisation problem

where the query image is gradually rotated until the maximal correlation score is

found. Since even a 1-2 ◦ rotation can cause the 2DCC to fail, this has to be done

at very small steps, meaning that it takes several hundred correlation calculations

to correctly handle rotation.

While the process is slow, it has the benefit of providing the system with more data

since the orientation is now known. The bigger concern is for aerial vehicles which
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Figure 2.8: 2D Cross Correlation Matrix Affected by Rotation

operate in three dimensions, since two further transformations will be applied to the

query image: scale and perspective. Again, if resolved, each of these transformations

will provide additional data to the system and will allow it to determine its position

in the full six states. Each transformation must be estimated and none of them are

independent of the other.

This leads to an iterative process where for each rotation one has to evaluate each

perspective transformation and scale combination. There are a total of six indepen-

dent variables that have to be determined, which leads to a very slow multi-variable

optimisation problem. Conte overcame this by obtaining initial position and orien-

tation estimates from the IMU onboard the vehicle, which reduced the total number

of matches to less than a thousand. In addition, he further sped up the system by

using image pyramids (Figure 2.9) so that the first queries were carried out on lower

resolution imagery that was gradually increased in quality as more accurate position

estimates became available.

The trade-off for this approach is that the system is incapable of recovering from a

lost position or incorrect position estimate due to the time it will take to complete

a full query. Furthermore, the time sensitive nature of positioning systems mean

that the data would have already expired, even if it was recovered. As a result the

system must run continuously since even a small amount of drift or error, especially

on the orientation sensors, will require a full match to recover.

Conte did however deal with these problems and successfully tested his method with

acceptable results. While it is not a perfect system it remains one the only demon-
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Figure 2.9: Image Pyramid Concept

strations of an absolute visual positioning system with acceptable performance.

There are several ways the system could be improved further, for example by re-

placing the 2DCC matcher with the Scale-Invariant Feature Transform (SIFT)[73].

SIFT describes individual features in an image in a scale, translation and (partially)

illumination invariant way by transforming a visual patch into a feature vector that

can be carefully matched from one frame to the next. Specifically it looks at the

gradients within a 4 x 4 pixels patch and bins them into a 128 byte feature vec-

tor.

However, SIFT is ultimately another approach based on pixel intensities that has a

more fundamental problem. These approaches assume that the scene is completely

static and never changes. This makes them suited for frame by frame analysis used

in tasks such as stereo vision and optical flow but they do not handle temporal

changes very well. Since these descriptors and matchers are based on illumination,

they are very sensitive to changes in the scene lighting and movement. This causes

a number of problems when the methods are applied to real-world data sets, where

the data is usually captured at distinctly different times.

A classic example of this is the sun’s movement throughout the day, which causes a

distinct change in the shading of an image. If the reference imagery is not captured

in the same lighting conditions as the query image then suddenly the pixel-based

matchers drop significantly in terms of success rates. In addition to this, weather

can significantly change the appearance of features in an image by altering the

reflectance of objects. For example, sun, rain and snow have very distinct and
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different appearances. As a result, query images captured in snowy conditions will

not match successfully to a sunny reference and vice versa.

Thus, object-based detection methods are more robust, yet more complex, as they

focus on detecting specific features in a variety of conditions. While work has been

carried out on the detection methods themselves, not much has been done on the

topic of using them for positioning. A few basic attempts have been made, for

example Gu[42] used a distance and heading measure to attempt to describe a

landmark based on its surrounding neighbours.

The descriptor uses the true distance and heading to the nearest neighbour as an

anchor point, along with the distance to all other neighbours in a clockwise circle.

Their work has partially shown the potential to match landmarks, however the

method relies on very high quality feature detection. If the anchor point is incorrectly

detected it will lead to a completely different descriptor for the feature since the

anchor feature that the fingerprint is generated relative to is now different. In

addition, the descriptor is not scale or rotation invariant as it operates in a global

coordinate frame, requiring prior knowledge about the orientation and position of

the camera relative to the terrain. While this approach has the potential to be

tweaked to provide acceptable results if an accurate state estimate is available. It

will fail in a fully-lost scenario and will likely suffer in a real-world operational

situation.

Ultimately the vision-based absolute positioning problem remains unsolved since it

requires a number of methods to be in place before they can be integrated into a

complete system.
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2.5 Landmark Detection

Since pixel-based methods are too sensitive and unreliable, in particular for matching

between images captured at significantly different times, the vision-based system will

need a robust object-based feature detection system.

These robust features should preferably be static features with long lifespans to

avoid having to continuously update the system. They must be relatively easy to

detect and the feature density must be high enough to provide sufficient data for

positioning (see Section 2.7).

A brief study was carried out by the author to investigate which features are used

by humans as aides for localisation. The study consisted of a simple test where

a number of aerial images (rural and urban) were shown to a random selection of

students and pilots at Cranfield University. Images were shown for a varying amount

of time (100 ms - 5 seconds) to investigate whether there was a noticeable difference

between ”instinctive” attentional features found when an image was shown for a

brief time versus more complex features found when the subject had more time to

study the image.

In general, all subjects favoured the same types of features independent of time

exposed to the image: man-made features such as roads and buildings. Other dis-

tinguishing landmarks were lakes, brightly coloured features or objects that uniquely

identified that location. For example, the Xscape Centre in Milton Keynes is

uniquely shaped and instantly recognisable.

While this test is useful to gain an understanding of the features could be used for

positioning it is important to remember that it is a very basic experiment that was

only used to generate ideas. Interpretation of aerial imagery is a highly skilled task

that requires a complex understanding of the situation and that clearly improves

with experience[43].

The features identified in the experiment can be divided into three classes, each of

which would require their own method to analyse:

1. High quantity, low variety features

These features include residential houses, road-intersections, roundabouts and
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other landmarks that are abundant and generally share similar characteristics

such as shape, colour and size.

2. Low quantity, high variety features

These features are the opposites to the previous class of features, they are

highly unique but only exist in small numbers. These features benefit from

the tacit knowledge of the observer, which provides them with substantial

contextual information regarding location, orientation and more. Examples

include the Xscape shopping centre, airports or monuments such as the Eiffel

tower.

3. Attentional features

The final group of features is unique since it does not rely on a high level

analysis or understanding of the image. These features are often noticeable due

to other characteristics that cause them to stand out from their surroundings.

One such characteristic would be colour; when a brightly coloured warehouse

was shown in an image it was consistently picked up as the main feature.

Other characteristics include size, texture or patterns but they are dependent

on the situation (for example, a large warehouse stands out among residential

houses but not when surrounded by other industrial buildings).

The second type can quickly be ruled out for several reasons. First, while a suc-

cessful match of the landmark would provide a wealth of data, it requires a very

significant amount of knowledge to identify it and extract useful data. Second, a

substantial amount of work has been made in this field to associate photos of similar

landmarks. This work has shown that while it is fundamentally possible when given

basic information about the image, a significant amount of time is needed due to

the large number of processing steps required[44]. Additionally, these types of fea-

tures are simply not available in the quantities and densities required for accurate

positioning.

As discussed later in the pose estimation section of this chapter, the state estimation

algorithms need at the very least four (correct) points to determine the pose of the

vehicle. Realistically, a much larger number is desired to ensure that errors due

to detection, matching and estimation are minimised. However, assuming a perfect

scenario where only four points are needed, the vehicle is operating at approximately
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10,000 ft / 3,300 meters and is equipped with a camera that has a field of view of

30◦ x 20◦, then the footprint is:

fx = 3.3km ∗ 2 ∗ tan(30◦/2) = 1.77km (2.5)

fy = 3.3km ∗ 2 ∗ tan(20◦/2) = 1.16km (2.6)

and the feature density ρ:

ρ =
nfeatures
fx ∗ fy

=
4

1.77 ∗ 1.16
= 1.94features/km2 (2.7)

giving a guideline minimum landmark density of 1.94 per square kilometre.

Meanwhile, the third type of features - attention-based features - are interesting due

to their low computational cost. Itti-Koch[45] showed that it is possible to emulate

the human visual attention response by filtering an image in four different ways

(two edge responses, intensity and colour), then combining the normalised response

of each filter into a saliency map. The saliency map highlights the most conspicuous

features in the image and is very effective for finding certain visually outstanding

features. While the filters proposed by Itti-Koch combine to detect colourful and

textured features in the image (since these are found to be eliciting the strongest

response in humans) it is possible to replace the filters to target other types of

features. For example, it is potentially possible to replace or incorporate line or

circle detection to identify features similar to roads and roundabouts.

However, there are three problems with this feature class. The first is that many

of the attention-based features that humans find are context dependent. A large

building will only stand out when surrounded by smaller buildings, to be able to

account for this the detector needs a more sophisticated situational understanding

of the image. Second, the proposed Itti-Koch method is scale and rotation depen-

dent - texture and edge responses vary depending on the scale of features in the

image, making it difficult to reliably extract the same features under varying condi-

tions. This is particularly important if satellite reference data is used to construct

the database as Itti-Koch can give very different results for the reference satellite

image compared to a small segment of the same image. Third, it is difficult to
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ensure that the detector is designed to provide the required feature density for pose

estimation.

This leaves the first class: abundant and visually similar features. These features

are the easiest to detect reliably because of their visual similarity. However, an

individual detection does not provide much information about the feature or where

it might be geographically located.

There are approaches to deal with this lack of contextual data, which will be dis-

cussed in the Data Fingerprinting section. There is also a large number of algorithms

available that can detect this feature class using non-spatial characteristics in a va-

riety of data. For example, a simple approach is to utilise thermal imagery. Houses

are normally heated and thus warmer than their surroundings, which makes it easy

to extract them in aerial imagery (Figure 2.10). This is an approach that can be

implemented with minimal computational cost.

Figure 2.10: Thermal Image of Residential Area

Meanwhile, there are more sophisticated methods that can extract individual build-

ings and shapes with very high accuracy. These methods are often used in geo-

graphic information systems to automatically vectorise aerial and satellite footage

but, while they are accurate, they are also slow[3]. It is not uncommon for the

building extraction to take from several minutes up to hours for a one megapixel

image. Methods exist for road and intersection detection as well, but with similar

performance limitations[46].

There are also other examples that extend the use of a vision-based positioning

system. Cheng[47] has shown a high quality crater detection method that can be
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Figure 2.11: Building Detection Example[3]

used to locate a vehicle visually when orbiting an asteroid. The approach is fast and

robust since craters are circular, a property that makes them visually distinguishable

from their surroundings. Craters are also be excellent candidates for the proposed

positioning system as they are completely random and abundant, in particular for

vehicles in orbit or approach. Meanwhile, Leroy [48] has developed and tested an

integrated inertial VSLAM system using craters to help vehicles navigate during

de-orbit, but the system is relative, not absolute.

2.5.1 Reference Data

In moving towards the more robust and sophisticated approach that was presented

by Marr we not only need the hardware and algorithms for detecting features, we

also need a model. In the case of this project we need a model of the world the

system will be operating in so that the positioning algorithms can obtain a position

in a useful reference frame.

There are a number of things to keep in mind when dealing with this type of data.

Some of the most important questions are, what kind of data do we need? How

much data do we need (what is the size of the operating region) and is that data

available in our data set? How recent and relevant does the data need to be? How

can we efficiently store and retrieve this data? How is a lack of data handled?

The first question about what kind of data we need is the most critical when keeping

the rest of the system in mind. The goal of this project is to develop a landmark

based system, thus at the very minimum the system needs information about where
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each landmark is located in the world. It would be useful for the current project as

well as further work if each landmark also has some additional meta data such as

its type or feature class, geometric data and timestamps for when the feature was

added to the database and when it was last observed or confirmed.

Data Sources

With the previous questions in mind it is useful to review some of the data sources

that are available.

The UK Ordnance Survey’s Master Map is an ideal choice as it contains a topography

layer that not only holds landmark location data but also all of the additional meta-

data (geometry, timestamps, type) that would be useful in the proposed positioning

system.

In addition, the Ordnance Survey also makes extensive use of a topographic identi-

fier known as TOID, now publicly available via the Ordnance Survey’s Open Data

initiative. The TOID is specific for a feature in the database and remains with

it throughout its lifetime, allowing users to uniquely reference specific features. It

would be a perfect descriptor to use for matching landmarks, however the TOID

consists of a random string that is created and assigned when the feature is first

added to the database. As a result, it is not possible to compute a matching TOID

at a later stage. However, since the TOID is used by other databases in the Geo-

graphic Information field, it is useful to retain the TOID to enable alternative uses

of the proposed system. See Section 7.4.5 for a discussion about this.

The Master Map data is provided as raw text in a format known as GML, the Geo-

graphic Markup Language. GML is an extension to XML, a very common markup

language that can be used for a wide variety of data structure tasks. Since XML is

a very popular format, it is very easy to parse these types of files. However there are

no freely available parsers that analyses a GML file and outputs geographic objects,

thus the end user has to implement this aspect to fit with their application.

While the Master Map is a specific product developed in the UK, virtually every

government’s mapping and geographic data agency supplies a similar data layer.

For example, Sweden’s Lantmteriet is selling a virtually identical product known as
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Fastighetskartan providing the equivalent data to the Master Map. Most agencies

provide data in either GML or Shape files, making it straightforward to acquire

up-to-date geographical data for new mission areas.

In the case where building or road layers are not available or other landmark types

are needed one has to fall back on satellite imagery that has to be processed prior

to the flight. This imagery needs to be orthorectified (removing distortions caused

by perspective and uneven terrain) and accurately geo-referenced. There are many

providers of this type of imagery, the two most popular are GeoEye and DigitalGlobe,

who provide a variety products with varying resolution and spectral bands. However,

the most important factor is the age of the data and, depending on the desired

landmarks, that the data is captured in conditions similar to mission conditions. For

example, instead of using buildings it is possible to navigate using agricultural fields.

In the UK, fields are generally unstructured and randomly distributed, making them

perfect candidates for positioning in rural regions. However, when using this data

it is critical to know what time of year the vehicle is operating since the fields

change visually throughout the year and this needs to be considered when tuning

the algorithm[49].

Similarly, a visual landmark based system could also be used to navigate on other

planets using craters as reference points. The Mars Reconnaissance Orbiter (MRO)

has mapped Mars with high accuracy[50], which would be an excellent data source

for a high precision positioning system for future orbiters and landers.

However, to use this type of data one would need to develop a high quality classifier

that can automatically analyse large image sets, and then ensure that the data is

validated. Since this data would be mission critical one would have to ensure that

very strict guidelines are in place so that the preprocessed data can be accurately

detected by the algorithm operating on the vehicle. This could be done automati-

cally, however it may be better to do this manually by using crowd-based websites

such as Amazon’s Mechanical Turk.
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Coordinate Systems

There is also another aspect of the data that needs to be taken into consideration:

the coordinate system. All of the data-sources that have been discussed so far use

national coordinate systems to describe where features are located. For example, the

Ordnance Survey’s Master Map uses the British National Grid (reference OSGB36),

where the British isles are divided into a number of grid squares. A location is

specified by identifying the square it is located in using a two letter alphabetical

code, along with the distance in meters from the lower right corner in the x & y

directions. The datum of the grid is located in the Channel, near the Jersey and

Guernsey islands.

Meanwhile, most satellite imagery is provided in the World Geodetic System (WGS),

a global coordinate system that defines the position of features using an angular

measure along the x and y axises (longitude and latitude) of the earth measured

from a fixed datum. This datum is approximately located where the prime meridian

(a latitudinal line located in Greenwich, London) intersects with the equator.

The WGS was initially developed by the Department of Defence in the United States

as there was a need for a truly global coordinate system, in the early 1900’s most

countries were using national coordinate systems similar to the British National

Grid. In the 1950’s it was clear that these co-ordinate systems are not practical

or accurate enough for demands of a modern global society, hence the need for a

truly global coordinate system - the WGS. The initial standard was proposed in

1966, further refined in 1972 and finally completely reworked and ratified in its

current form in 1984. WGS84 has since become the de-facto standard for global

positioning and is the coordinate system used by virtually all positioning systems

today, including GPS. As a result, it is also used extensively by unmanned vehicles

since they often obtain their global position estimate from GPS.

However, WGS84 has an undesirable property from the point of view of a visual

positioning system. The system is based on an angular measure of a location on

the surface of a sphere, one degree in longitude (along the x-axis) covers different

absolute distances depending on the latitude (y-location), since a longitudinal circle

varies in radius with latitude. This also applies, althought to a lesser degree, to the
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latitude since the Earth is not perfectly spherical. This means that objects that

are defined in WGS84 will distort in a metric coordinate frame at higher latitudes,

as a result the data saved in the reference database would be different from what

would be observed by an airborne vehicle (specifically it’d be compressed along the

x-axis).

The solution to this problem is to introduce a third coordinate system that is fully

metric. The Spherical Mercator is similar to WGS84 but defines points using an

absolute distance (in meters) from the datum. Thus it is possible to avoid the

distortions caused by WGS84 and ensure that what is observed matches the data

that is available in the database. However, Spherical Mercator assumes a perfectly

spherical Earth, an acceptable assumption in our proposed case as it would only

cause very marginal differences to the projected points. It is important to keep this

assumption in mind since it would have a much greater effect in a full 3D scenario

and would require a more detailed model.

As the Spherical Mercator projection is a less accurate coordinate system it is rec-

ommended that the data is stored using WGS84 to avoid loss of precision. Pro-

jecting points from one coordinate frame to another is a straightforward task and

there are several open source packages available that lets software developers easily

carry out projections between hundreds of coordinate systems. One such example

is PROJ.4[51], a package initially developed by the US Geological Survey.

The OGP (International Association of Oil & Gas Producers) Geomatics Committee

maintains a list of most common coordinate systems, allowing users to refer to a

standardised list of coordinate systems using a unique identifier. This system has

been inherited from the now defunct European Petroleum Surveyers Group (EPSG).

As a result the identifiers are of the format EPSG:XXXX where XXXX is a numeric

serial number referencing the exact coordinate system. For example, WGS84 is also

known as EPSG:4326.
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2.6 Information Retrieval

An initial review shows that a navigation system based on matching raw visual data,

such as Conte’s system, is not viable approach for a robust system. The alternative

is to extract and match individual features to a database but this presents a different

challenge since the database will inevitably contain a vast number of features. It

is likely that a complete feature database would contain several million features,

in which case the process of finding and retrieving the matching features becomes

nontrivial. Additionally, since the positioning system is time-sensitive, there is a

strong emphasis on retrieving results with minimum delay.

It is also important to define exactly what the task for the retrieval system is. For

example, there are many methods available in the computer vision world where one

can submit a query image and retrieve similar or even identical images[52][53], even

when parts of the image has been distorted or rescaled. These methods usually rely

on content awareness, where the query image is analysed and reduced to a number

of keywords (a technique known as bag of words or bag of features)[54]. The size

of the target image set is reduced drastically by eliminating all images from the

database that do not match the keywords in the query image. After this initial

filtering it becomes feasible to use an alternative method such as SIFT to extract

feature points in the query and target sets, thus making it possible to find the most

likely match.

However, the task at hand differs since the system does not have to find a similar

feature, it has to find the exact match, otherwise the positioning task will fail.

It must also be robust to distortions and preferably carry out a reduction of the

reference data in order to avoid having to upload several gigabytes of imagery to

the vehicle prior to the flight.

2.6.1 Data Fingerprinting

The data fingerprinting field explores ways of describing data in an efficient and

unique way, so that it can be matched to sets of known features or be used to identify

similar features. Fingerprints can be very simple, a common and efficient example
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are binary feature vectors where each element in the vector indicates the presence

of a certain property. Feature vectors have been used in a range of problems from

identifying plants[55], to finding movie recommendations[56] and even determining

the personal traits of people based on their social network data[57]. Meanwhile,

more complex examples such as SIFT[58] compute a large, numeric feature vector

that holds significantly more data to ensure uniqueness and precision when matching

at the cost of performance.

Since this is an area of active research this project has limited its focus to methods

that are used to finding specific matches. A significant amount of work has been

done on similarity matching, prediction and suggestions using machine learning but

these approaches are not of use for this project. Positioning requires exact matches

to work.

Much work has been carried out in the field of specific matching, there are numerous

research projects and commercial products available. However, very little of the work

has been in the geographic field required for the proposed vision system. Instead

the main focus has been on more commercially viable use cases.

One such example is audio fingerprinting where a song is identified based on a

short recording made by a user’s mobile phone. This is a challenging problem

since the recording has been distorted by low quality audio hardware and is usually

not particularly clean, the recording tends to be contaminated with sounds of the

environment around the users. This audio clip has to be analysed in a way that

lets a short (a few seconds) recording be matched against a vast database of known

songs (one company can match over 50 million songs based on a five second clip) in

just a few seconds. There are several types of methods for this problem created by

companies such as Soundhound and Shazam.

Shazam’s algorithm uses multiple steps to match a recording to its database[59]. The

first is feature extraction where a spectrogram is generated from the recording. The

goal of this step is to extract specific key points in the recording that are considered

to be robust to noise based on intensity and frequency. This results in a 2D-plot that

is due to its similarity to a star field is called a constellation map. The features are

then further analysed for robustness and a number of these key points that satisfy

certain criteria are then considered to be anchor points that will be matched in the



2.6. INFORMATION RETRIEVAL 69

database. Next, individual constellations are created around the anchor points by

selecting nearby key points and a descriptor is calculated based on the frequency

and relative temporal positions of the key points. This results in a number of unique

descriptors that only one specific song within the database would match. However,

matching all the raw descriptors to the database will take significant time, therefore

the authors developed a fast hashing method that converts the fingerprints into a

32 bit long descriptor. Finally, a custom search algorithm is used that provides a

10,000 times faster search than normal methods by exploiting the specificity and

high entropy of the fingerprints.

This allows the exact song to be identified in less than 10 ms for a radio quality

recording (relatively poor quality with some noise interference) against a database

of approximately 20,000 songs. This approach has proven to be very effective at

matching even with compressed and noisy data, indicating that it would be a relevant

method for an image based method as well. However, the audio algorithm has

the benefit of only having to deal with two-dimensional data, time and frequency.

Meanwhile, imagery and other mapping data is more complex, requiring greater care

when constructing the descriptor and matching methods.

Audio fingerprinting is not the only use of data fingerprinting algorithms. These

methods have also been used extensively in other fields such as chemical analysis

where the bonds in chemical compounds can be described in a binary fingerprint

and matched to a database[60].

2.6.2 Relational Mapping and Matching

Another common approach within information retrieval systems is relational map-

ping and matching. In relational mapping features are joined together in a graph

network that is structured to group similar, or more closely related, features near

each other. This approach is commonly used to find similar items or the most

relevant results for a given query. For example, this is used extensively in social

networks to map out connections between people and identify items that could be

of interest to the user[61].

Meanwhile, graph theory is also used extensively in geographic tasks to map out
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networks such as transportation or power networks. Most importantly, they can

also be used within cities to construct a graph that describes the appearance of

the city and the physical relationships between features. An example of this is

navigation and routing where intersections are turned into nodes in a graph.

It also allows graph matching methods to be used to match a small part of a graph

to a reference. This approach is of interest as it does not rely directly on the

physical location of features but rather describe the relationships between them

and enables matching in a connectivity space rather than feature space. Thus, it

would theoretically be possible to extract features from an aerial image, describe

the relationship between them and match them to a known graph.

In addition to matching, graphs can also be analysed to evaluate properties of fea-

tures in a network, such as the connectivity (number of neighbours), or as an input

to a matcher. For example, it is possible to determine whether a region is likely to

match based on the quality of the graph or whether the matching process should

be delayed until higher quality data is available. This will be discussed further in

Chapter 5.

In the end, information retrieval is an important aspect of a positioning system but

the design of the retrieval system is highly dependent on the task at hand. The

system selected for the visual positioning system is described in Chapters 3-5.
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2.7 Pose Estimation

Once the features in the image are known and associated with their real-world

locations the remaining task is to determine the pose of the camera (and thus the

vehicle) when the image was captured.

Pose estimation is a well researched problem in computer vision, that ranges from

simple planar pose estimation to VSLAM where the camera’s position and location

is gradually optimised and refined as more measurements are obtained. This is done

using point correspondences, where a pixel location is matched to a known point in

3D space.

If the system is capable of obtaining exact global coordinate matches for features in

the image and the imaging plane is parallel to the ground plane then the problem

becomes very simple to solve since only four parameters need to be determined: x,

y, z and heading. X, y and heading can be found using simple geometry and the

height can be obtained using the camera model. If the image is undistorted and the

field of view is known, then the altitude can be obtained by constructing a triangle

with its base between the two ground points. By computing the angle between

the two points it is then possible to determine the altitude using straightforward

trigonometry.

While this works in principle it is a naive approach as small errors in detection will

lead to substantial positioning errors. In addition, the assumption is that the vehicle

is equiped with a perfect gimbal that always maintains nadir lock. This is highly

unlikely in a real situation.

The easiest way to deal with this issue is by using homographies, which were de-

scribed in Section 2.4.1. Homographies are mappings between two planes and thus

require the flat earth assumption to generate valid results but it is a straight-forward

and computationally cheap method to estimate the vehicle’s position. The output

of the homography decomposition will be the translation relative to the global co-

ordinate system and the orientation relative to the ground plane, thus giving a full

pose estimate.

A second alternative is full 3D model-based pose estimation, such as POSIT[62]
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or ObjPose[63]. These approaches require a better understanding of what is being

observed, specifically they need an accurate camera model and an the exact 3D

locations of the features on the object that is being observed. They then use iterative

methods to minimise the reprojection error between the observed feature location

and the predicted location based on the object and camera model. This allows the

method to find the optimal, or least costly, orientation of the camera relative to an

object. The benefit of these methods is that they support a 3D terrain model and

can therefore estimate the position of the vehicle with much greater accuracy. They

also provide their results in the global coordinate frame, meaning that terrain height

is being accounted for. However, since the proposed system relies on the flat-earth

assumption there is no benefit from these approaches at this stage.

Visual SLAM systems often take a different approach by solving the PnP problem[64][65],

where n points (between 5 and 8, with varying numerical performance) are asso-

ciated between two frames. Solving the PnP problem resolves the position of the

points in 3D as well as the optimal camera poses for the two scenes. However, the

solution from PnP is subject to an unknown scale factor that needs to be resolved

using external sensors. This makes the PnP methods unsuitable for the proposed

system.
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2.8 Development Environment

A final area to review is the development environment. Having an environment

that is closer to the performance of a real platform allows a better understanding

of the behaviour of the new algorithms and makes it easier to investigate how it

would be designed and implemented in a real scenario. While the real-world usage

of these methods is still far away, it is not a good idea to develop new methods in

”silos” without a consideration for how they would perform with real data and real

hardware.

A secondary area to consider is the future work on this project. By selecting a

portable, easy to learn, development environment and documenting the project well

it is more likely that future work will be carried out without having to spend time

on reimplementing functionality or repeating work in other ways.

There are currently three main programming languages or development environ-

ments used for computer vision algorithm development: Matlab, Python and C++.

Each of these have a number of benefits and drawbacks that make them suitable for

various stages of development.

Before reviewing them however it is worth briefly discussing the difference between

compiled and interpreted languages as it has a very important impact on the per-

formance of each language.

Looking at a program written in machine language is vaguely comparable

to looking at a DNA molecule atom by atom. D. Hofstadter, Gdel,

Escher, Bach (1980). An Eternal Golden Braid. p. 290

Code is usually written in a human-readable language and syntax to simplify devel-

opment. This code cannot be directly executed by a processor and therefore must

be translated to machine code before it becomes useful. There are two ways to do

this, using either a compiler or an interpreter.

A compiler is used to create a standalone executable that anyone (with the correct

operating system and hardware platform) can run. It interprets the code written by

the programmer and, via a number of stages, converts it into machine code that can

be executed straight away. This results in machine code that is highly optimised
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for a specific processor, giving fast performance at the cost of flexibility. It is also

generally a one-way process, while it is possible to decompile executables it is rarely

done due to the complexity of a modern compiler and operating system.

Meanwhile, an interpreter is an application that sits between the code written by

the programmer and the operating system. While a compiler prepares an executable

once, the interpreter analyses and compiles the code every time the user is executing

the application. It does so by analysing the code line by line and executing ready-

made machine code fragments for each function, thereby executing the code on-

the-fly. This has a few advantages because it makes development easier and the

code becomes more portable. A compiled executable is locked down to one platform

while an interpreted application can run on any platform as long as an interpreter

is available. It also means that instead of having to port every application to a new

platform one simply has to port the interpreter, which can often be much smaller in

terms of lines of code. However, it also means that it is less likely to be optimised

for the platform it is running on (there is a clear difference in performance between

the two types of languages).

• Matlab & Simulink

These two products were initially developed to model dynamic systems and

design control systems using an in-house programming language Matlab. Mat-

lab is designed to let users rapidly develop and test new algorithms and can be

extended with new toolboxes that allow the user to work on a wide variety of

problems. One of these toolboxes is the Computer Vision Toolbox and contains

a number of functions for importing, manipulating and analysing imagery in

either Matlab or Simulink. This makes Matlab very easy to get started with

and means it is often used as a very first step to develop and test new methods,

especially since it is a very popular product and many users are familiar with

it.

There are however two important issues with Matlab:

1. Performance

Matlab is an interpreted language meaning that the code is read, inter-

preted and executed on the processor line by line during runtime. In

Matlab’s case the interpreter is very poorly implemented leading to a sig-
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nificant performance hit, making realtime operation of anything beyond

very simple tasks unrealistic. Similarly, threading and other methods to

increase performance are very poorly supported.

2. Portability

Matlab code can only be executed in its own interpreter and with the sup-

porting toolboxes. These parts of the application are not easily portable

to other platforms and can only be run on an x86 processor. Meanwhile,

most platforms used in real-world missions run on low-power ARM pro-

cessors, Digital Signal Processors (DSP) or FPGA arrays, all of which

require distinctly different development tools. This means Matlab code

has to be completely redesigned and reimplemented in a separate lan-

guage before testing on real hardware.

• Python

Python is an open source interpreted language that is designed to be efficient,

capable and easy to learn. The syntax is similar to Matlab but the interpreter

is highly optimised and can be several hundred times faster than Matlab. In

addition, most underlying and supporting libraries are implemented in C/C++

for performance and Python itself has been ported to virtually every operating

system and hardware platform in existence. It is very commonly used as a

prototyping language among researchers but also has many uses in production

environments. For example, it is used extensively in financial trading software

and many web services rely on Python (with the help of various frameworks).

Being an interpreted language it still suffers from a performance penalty when

compared to C++. A particularly limiting factor is a design factor made when

the Python interpreter was created that prevents it from running multiple

threads. The language itself supports concurrent threads but the interpreter

is incapable of executing them simultaneously on multiple processor cores due

to a Global Interpreter Lock (GIL). This can be overcome to a degree by

running multiple interpreters in parallel but performance will still suffer when

data is transferred from one parallel process to another.

• C++

While Matlab and Python are interpreted languages, C++ is a compiled lan-
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guage where the code is converted into executable machine code by a compiler

before runtime. The result of this is highly optimised and fast software that

can take full advantage of the hardware it is running on. However, while in-

terpreted languages manage memory and optimisations automatically, C++

does not and requires the developer to carefully test their code and ensure

that it performs as expected. It is also platform specific, making it harder to

move the codebase from one operating system or processor to another.

Both C++ and Python can be used for computer vision using one of many widely

available computer vision libraries. The most common library is known as OpenCV,

the Open-source Computer Vision library, maintained by the research company

WillowGarage in the United States. OpenCV comes with a wide variety of functions

to capture and analyse imagery including algorithms for calibration, optical flow,

pose estimation, object recognition, 3D reconstruction and more.

A quick performance test comparing the three languages by creating an array and

carrying out various simple calculations in memory (without copying or moving

data) has shown that Matlab is approximately 200 times slower than the same

implementation in C++, and 100 times slower than Python[7].

This leaves a choice between Matlab, Python with OpenCV or C++ with OpenCV.

While Python is a little slower than C++ it results in code that is easy to understand

and allows the developer to focus on the work that needs to be carried out rather

than the specifics of the language. It can also easily be put on a real hardware

platform for initial evaluation and give a reasonably accurate idea of how the overall

system will perform in the field.
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2.9 Conclusion

Vision-based positioning systems are more commonly used today thanks to an ad-

vancement in processing power and the maturation of the underlying algorithms.

As a result there are now substantial amount of techniques available, ranging from

odometry to full SLAM systems capable of extensive operation with minimal drift.

The common drawback for all of these methods is that they are estimating their

position relative to a starting point and most forms of visual interruption will cause

the system to fail.

This is one of the main arguments for the development of an absolute system, it

would be of much greater use in a real mission since it can recover from visual

interruptions. The second feature of an absolute system is that it can act as an

alternative to GPS meaning it can be used as a replacement in environments where

GPS is either being intentionally jammed or is simply not available. It can also act

as a redundancy for GPS, thereby making the vehicle more robust and resistant to

hardware failures.

Developing an absolute vision-based positioning system is not a trivial task and it re-

quires an understanding of a large body of work before a meaningful contribution can

be made. This literature review has explored some of the history behind computer

vision and positioning systems and has reviewed a wide range of computer vision

and computer science techniques that are relevant to the proposed system.

These techniques have loosesly been fitted to David Marr’s framework for a robust

vision system, which states that three problems need to be sovled in order to create

a reliable system: representation, analysis and implementation. Most of the work

in this thesis will focus on the first two problems, representation and analysis, but

there will be strong emphasis on implementation considerations throughout.

In summary, four core topics have been identified that need to be addressed in order

to develop an absolute vision-based positioning system:

1. Detection - identifying features within the image

2. Description - unqiuely describing each feature
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3. Matching - matching the features to a reference data set

4. State Estimation - obtaining the position of the vehicle use feature matches

The core argument of this review is that an absolute vision-based positioning sys-

tem is a challenging but not impossible task. A substantial amount of work has

been made in all of the areas above, some of it directly applied to computer vi-

sion or positioning while other work has been in other fields such as information

retrieval.

For an early prototype, the detection and state estimation problems can be consid-

ered to be solved. There are multiple methods for detecting various forms of land-

marks with high accuracy and low computational cost. Similarly, given a number

of image to world matches and an accurate camera model, it is possible to estimate

a camera’s position relative to the world with a high level of accuracy.

This leaves description and matching, uniquely describing a detected landmark and

matching it to a set of reference data. These two areas have been widely researched

in other fields and all of the required ingredients are available but there has not been

an attempt to apply these methods in the vision-based positioning problem.

Description and matching form the core of the following chapters, which will begin

by outlining an overall architecture for a vision-based system and then continue on

to explore an initial solution to these two problems in detail. This includes a method

to describe landmarks in a unique, scale, rotation and translation way, as well as

the development of a geographic landmark matcher.



Chapter 3

System Overview

The system proposed in this thesis aims to overcome the challenges encountered in

previous work by using a high level object-based matching strategy where individual

landmarks (such as buildings in a city or craters on the Moon) are detected in an

aerial image using feature classifiers and converted to single point features.

These landmarks can be uniquely matched to a global landmark database using a

geometric descriptor, which enables the system to retrieve their real-world locations

of the landmarks. The benefit of this approach is that it allows the system to discard

a vast amount of the data that is captured by the sensor; data which is of no use in

matching landmarks.

The matching process associates the landmarks with a corresponding global feature,

giving a local-global feature correspondence. The camera’s pose, and thus the vehi-

cle’s position, can be recovered once a sufficient number of feature correspondences

have been found.

This system is envisaged to be used in conjunction with other positioning methods,

where the proposed absolute system provides positioning updates at a rate near GPS

frequency (1-5Hz) and other faster methods such as visual odometry and inertial

units provide interim data for the flight control system. It is unlikely that a vision-

based system would be a primary positioning system as long as GPS is available but

it is a strong candidate for a redundant positioning system or for use in situations

where GPS is unavailable.
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The system described in this thesis has initially been designed to operate on a UAV

equipped with a downward looking camera mounted on a perfect gimbal, allowing

the vehicle to maintain the sensor plane parallel to the ground. This assumption

simplifies the matching and pose estimation problems, but Chapter 7 will discuss how

this can be improved in the future. However, there are cases where this assumption

is valid, most notably in satellites, which makes this assumption valid for initial

development.

3.1 Architecture

The core of the system is the control architecture that manages data from capture,

through processing and on to external systems such as the autopilot. This process

consists of four parts that have been designed to be modular and interchangeable so

that the system can easily be modified for various usage scenarios. This modularity

significantly simplifies development and testing and also allows the system to be

used with a range of vehicles with only minor modifications. Finally, it also makes

it easier to parallelise the tasks in the future, thereby speeding up the overall system

on a multicore platform.

Figure 3.1: Overview of System Modules

Figure 3.1 shows a simple overview of the structure of the system. At the top of

the system is a Controller that initialises hardware and loads the relevant mod-

ules for the current mission, which includes specific implementations of a Detector,

Descriptor, Matcher and Pose Estimator.

In addition to these main modules, there are also other components such as feature

selectors, database interfaces and communication modules required for full system
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integration. The controller manages these as well as the overall analysis and com-

munication with other systems on the vehicle.

The entire system has been implemented in Python, ”a programming language that

lets you work quickly and integrate systems more effectively.”[66], and depends on

the following open source projects:

• Python 2.7[66] - programming language

• OpenCV 2.3[17] - computer vision library

• bitarray 0.1.0 - bit array manipulation library

• pyspatialite - geospatial database interface

However, this is a research development environment chosen for its flexibility and

relative performance. It gives a good indication of the final performance of the

system but due to the choice of an interpreted language the results in this thesis

will not be fully representative of a real-world usage scenario.

3.1.1 Module Functionality

The system consists of a number of core modules that can be combined to create a

suitable processing pipeline for a variety of missions. Below is a brief summary of

the functionality required from each module as well as its inputs and outputs.

Controller

The controller manages all other subsystems and is essentially running the show. It

handles initialisation, process flow, data flow and is envisaged to take care of error

handling and parallelisation in the future.

Inputs

• Modules

• Processing script

• Hardware interfaces
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Outputs

• Vehicle position

Detector

The detector analyses raw data and generates a list of local coordinates for features

found in the data set. As discussed in the literature review, there are a wide range of

techniques for this purpose and the correct algorithm will depend on the sensor, the

mission and the available computational power. A common and efficient solution

that will be used as an example in this thesis is the crater detector since it is a

robust, efficient and proven algorithm.

Inputs

• Visual data

• Environmental and situational data

Outputs

• List of point features in local coordinate frame (parallel to ground-plane)

Descriptor

The descriptor processes the list of features identified by the detector and computes

a unique identifier for each landmark. The development and performance of this

process is described in Chapter 4. The system uses a geometric descriptor that en-

codes the feature’s geometric relationship to surrounding features in a scale, rotation

and translation invariant feature vector.

Inputs

• List of local point features

Outputs

• List of features in local coordinate frame with associated feature descriptor
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Matcher

The matcher takes over once the descriptor has computed the identifier for each

landmark. This module handles all steps required to associate features with their

corresponding global coordinates. This includes eliminating weaker and less suit-

able features from the process, fencing the target global region, selecting appropriate

matching strategies and final association of strong features (see Chapter 5).

Inputs

• Local features and descriptors

• Estimated position and error

• Interface to global feature database

• Descriptor scoring method

• Feature selection method

Outputs

• Associations between local and global features
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Feature Selector

The feature selector is a submodule in the Matcher which uses a variety of tech-

niques to identify weak or otherwise unsuitable features from the matching set. The

selection process is highly dependent on the rest of the system as it needs to take

the specifics of the sensor, descriptor and matcher into account. A discussion and

initial development of this module can be found in Chapter 5.

Inputs

• Local features and descriptors

Outputs

• List of strong features and their descriptors (optionally with an associated

score)

Pose Estimator

The last core module takes the point correspondences and determines the position

of the system, given a model of the sensor.

Inputs

• Local and global feature correspondences

• Sensor model

• Estimated current / prior position

Outputs

• Position, altitude and heading of the vehicle in WGS84.



3.2. DATA MANAGEMENT 85

3.2 Data Management

The initial aim for this system is to manage a small number of features that can

be expected to be found during a short mission (an estimated area of 20 km2).

However, the goal is for the system to be suitable for unmanned vehicles that carry

out long endurance missions and can be expected to have nearly global coverage.

This results in a vast number of features that need to be obtained from a suitable

data source, be in a standard format and be accessible enough so that the matcher

can retrieve a relevant subset with minimal delay.

3.2.1 Reference Data

This thesis makes extensive use of data from the Ordnance Survey’s MasterMap as

it contains a vectorised building layer. The building layer is a GML file that contains

the outline of every man-made building in the selected region. This data can easily

be reduced to point features by computing the centroid of each outline.

However, the MasterMap data presents a challenge as it separates parts of buildings

into different entities with unique TOIDs if they were not constructed at the same

time (such as an extension to a house). This can lead to problems during matching

since the global database appears to contain additional features that are not present

in the aerial capture. While the system is capable of handling a small number

of unexpected or changed features, the MasterMap contains every modification to

every building that requires planning permission. This means that if each raw shape

in MasterMap is reduced to a point feature the number of features in the set nearly

doubles, yet the feature locations are not matching what will be observed from the

air.

To overcome this, intersecting or joining shapes have been merged before the centroid

for the building is computed (this process assumes that the building detector can

compute the complete outline of the building).

This is currently not an issue as the focus of this thesis is to demonstrate the use of

geographical relationships to match landmarks, thus the structure of landmarks is

of higher importance than fully accurate landmark detection. Once the description
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and matching techniques have been refined it is worth revisiting the detector and

finding methods to obtain source data that closely matches what the detector will

be observing in air.

Finally, the data has been further simplified by using a flat-earth assumption. All

3D data has been projected onto the ground plane as described by the WGS-84

global coordinate system. This results in a loss of elevation data, but since one

of the main assumptions behind the initial development of the system is that the

vehicle produces a nadir image, the effects of elevation is minimal in the image and

can be removed completely.

To enable matching, the reference data has been also processed by the descriptor

so that each landmark has a corresponding feature vector. However, the data in

MasterMap is in the British National Grid system. Meanwhile, the descriptor uses

a local metric system and the positioning system is designed to provide data to other

systems in WGS84. To overcome this the raw MasterMap data is first reprojected

to metric World Mercator (EPSG:3395) before being passed to the descriptor in

order to maintain the correct aspect ratio of the region during the fingerprinting

process.

3.2.2 Database

The reference data can produce millions of features that need to be stored and

accessed quickly. In particular, the speed of retrieval is critical to a navigation

system since the relevance of the results of the system is dependent on time. Thus,

naive methods such as storing the features in a text or XML file are can immediately

be ruled out, not only due to the difficulty of managing large versions of these files

but also because of the difficulty in carrying out geographical queries (such as retrieve

all features in the region (15,10) and (20, 15)) on the data.

This is a common problem within geographic information systems and there are

several high-performance databases available that enable efficient access to features

within the dataset. A classic example is the commerical application ArcGIS, while

the work in this thesis has been developed using the open source database Spa-

tialite.
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Spatialite is a geospatial database built upon the SQLite database engine[67]. It

extends SQLite by implementing a large number of geographical queries and an ef-

ficient method for managing geographical data. This means that data can quickly

be accessed using geographic SQL queries (such as SELECT centroids FROM land-

marks WHERE MBR(...)1). Spatialite and SQLite are designed to be portable and

easy to use rather than optimal in terms of performance, but are easy to integrate

into a new system and can be ported to a wide range of platforms. However, their

performance may suffer when given very large datasets.

To further simplify and standardise development, the thesis uses an intermediate

database interface that provides a standard API to the rest of the modules and

translates the calls into a relevant database query. Similarly, the database interface

translates the results from the database to a standard object oriented format used

in the rest of the system. This has two benefits: it standardises and abstracts away

access to the database and it makes it easy to modify the database interface, which

lets the system use alternative databases in the future.

In addition, the database interface also implements a number of functions that are

required by the matcher. For example, the matcher makes extensive use of not only

the target feature but also its nearest neighbours. The list of nearest neighbours

is populated when the database is generated, but retrieving all the neighbours can

become a convoluted process if it is not carried out at a database level. Thus, the

database interface handles these tasks as well, and provides simple functions for the

matcher. An example of such a function is getNeighboursForLandmarkID, which

retrieves all the neighbours surrounding the given landmark.

3.3 Conclusion

This chapter has given an overview of the most important aspects of the system ar-

chitecture for the proposed visual navigation system. The core design considerations

have been flexibility, modularity and ease of development. However, the design of

the architecture and selection of external libraries has been made with some con-

1Minimum Bounding Rectangle - the query asks the database to return all centroids from the

table landmarks that lie within the given bounding box.
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sideration to performance as well in order to ensure the results in this thesis give

a meaningful understanding of how a final implementation of the system would be-

have. The chapter has concluded with an overview of how the reference data used

in the following chapters has been obtained, processed and stored in a geospatial

database.



Chapter 4

Feature Description

4.1 Introduction

This chapter discusses the development of a scale, rotation and translation invariant

feature descriptor that can be used to uniquely identify geographic landmarks. As

previously discussed in the literature review, descriptors are a non-trivial problem

for a number of reasons such as uniqueness (the ability to distinguish one feature

from another), robustness (support for detection errors), repeatability (consistent

descriptor for a given set of inputs) and computational performance (time to com-

pute and memory requirements). They are also designed for specific use cases -

generic descriptors do not exist, making it difficult to repurpose an existing descrip-

tor.

The biggest challenge for a landmark descriptor is that landmarks have a very low

variety in their appearance and properties, making it difficult to uniquely distinguish

a specific landmark. To further complicate the problem, the proposed positioning

system only has approximate information about the current position and orientation

and is designed to ideally be able to operate with highly inaccurate positioning

estimates. For this reason the descriptor must be scale and rotation invariant and

cannot rely on any absolute reference points. This eliminates many previously used

approaches where individual landmarks in an image are projected on to the ground

plane (for example to use the estimated global feature coordinates for matching),

such as discussed in [68]. As a result of this constraint the descriptor can only
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use information contained within the image itself and it must be independent of

the relative scale, rotation and translation of features projected onto the image

frame.

Several such descriptors have been developed in the computer vision field. A popular

example is the Scale Invariant Feature Transform (SIFT) [58] that is often used for

matching point features from one frame to the next. SIFT is heavily used in visual

odometry, optical flow and other matching applications. However, SIFT and similar

descriptors are unsuitable for this problem as they rely on the visual appearance of

the feature. For example, SIFT will detect a specific feature such as the corner of

a box and find this corner in a subsequent image, by matching a visual descriptor

of the feature. This is not a viable approach when attempting to match landmarks

such as houses and junctions due to the low visual variety in the set. Buildings

generally look about the same when observed from the air, which would result in a

large number of incorrect matches.

SIFT and its sibling SURF (Speeded Up Robust Features)[69] have been shown to

be usable for relative positioning methods such as visual odometry but they lack

higher level robustness to be able to support the task discussed in this thesis.

To overcome this, a new type of descriptor has been developed during this thesis.

This new descriptor ignores the visual appearance of features and instead simply

assumes that landmarks are point features. Thus, instead of focusing on the visual

appearance, it describes the geometric patterns that the point features form. This

is founded on the assumption that the world is relatively static; that there exists a

region of features in the real world and database that is identical to the region that

was just observed by the vehicle. One can therefore assume that a given landmark

will be surrounded by the same neighbours in both the image and the real world. As

a result the descriptor describes the geometric relationship between the feature and

its neighbours, allowing it to encode an entire region into a binary vector referred to

as a fingerprint. A similar approach has successfully been used in several other fields

to uniquely identify songs [59], or to describe and match molecules in computational

chemistry [70].

This descriptor comes with a number of benefits, of which the most important is

flexibility. The proposed descriptor is fully decoupled from the detection method,
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unlike SIFT and SURF. Since the visual appearance is no longer needed to identify

a feature the descriptor becomes independent of the detection method. This enables

its use with a wide variety of sensor types and detection methods, such as optical,

thermal and various forms of radar.

It can also relatively easily be extended to more complex environments. The current

descriptor is only operating in 2D, where all features are assumed to lie in the same

plane, however the approach can be extended to a fully 3D environment if such data

can be delivered from the sensor. This type of description has not been explored

in this thesis due to the assumption that the primary landmark sensor is a single

optical sensor, which is unable to deliver 3D data in a single frame. Further, the

fingerprint can be tagged with additional data to further improve performance in

highly complex environments.

Finally, the process of generating a fingerprint is computationally a very light-weight

process that can be implemented highly efficiently, thereby reducing the time per

description to less than a millisecond.

4.2 The Fingerprinting Process

The process to generate a fingerprint for a feature begins by finding n (normally 5-

10) of the feature’s nearest neighbours (Figure 4.1a), based on the euclidean distance

to the neighbours. When the neighbours are found they are sorted clockwise relative

to the coordinate system’s north (the starting point is arbitrary due to the rotation

invariance of the descriptor) and tesselated as shown in Figure 4.1b. The tesselation

process for this region is simple, a triangle is created between the points Plandmark,

Pn and Pn+1 where n is the index in the clockwise sorted list of neighbours.

Each triangle formed by the landmark and two of its neighbours encode the ge-

ometric relationship between the three features. This triangle can be described

using two internal angles, giving a scale and rotation invariant measure of its ge-

ometric shape (Figure 4.1c). For a given landmark this results in a list of angles

(|angles| = 2 ∗ nNeighbours) that uniquely describe the pattern formed with its

neighbours and can be used to match to a global database.
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Figure 4.1: The Fingerprinting Process

To increase the speed of matching and reduce the amount of data required to store

each fingerprint, the list of angles is converted into a binary vector that is 180 bits

long (Figure 4.1d), where each bit is a flag indicating the presence of an angle at

that point (Equations 4.1-4.2).

f = zeros(180, 1) (4.1)

f(angles) = 1 (4.2)

As an example, the 69 degree angle found in triangle 4 in Figure 4.1c results in the

following fingerprint (the subscript indicates the index in the vector):

f = [00, ..., 067, 068, 169, 070, 071, ..., 0180] (4.3)

The initial 180 bit vector size has been chosen since it allows every possible angle

in a triangle to be encoded in the fingerprint with a resolution of 1 degree per bit.

Higher or lower resolutions can be used at the cost of computational time for an

increase in resolution due to the additional data, or reduced matching accuracy for

lower resolution due to the decreased variety in the vector. There is no benefit from

increasing the resolution of the vector unless the detector can register landmarks
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with very high accuracy (for a 640 by 480 image with approximately 100 features

the detection error would need to be less than 1 pixel from the truth).

The result of creating a binary representation of the fingerprint is that each finger-

print and its associated data can be stored in less than 50 bytes, allowing memory

efficient storage and fast retrieval of the data. The descriptor also implements a

scale factor that allows fingerprints to be down-sampled to further decrease the size

of the feature vectors, but it is currently not used and set to be 1.0.

It is worth noting that this final step has a significant trade-off by being a destructive

one-way process as it is not possible to reconstruct a region given a binary fingerprint.

Since the actual region shape is not required at any point in the proposed system

this is considered an acceptable trade-off given the increase in performance.

4.3 Scale, Translation and Rotation Invariance

Scale, translation and rotation (STR) invariance is one of the key properties that

provides the power and versatility of the proposed fingerprinting method. By being

STR invariant a feature can be observed from any altitude, position and heading

(in case of an air vehicle), while the descriptor consistently computes the same

descriptor for each feature. The one condition for this is that the complete region

(landmark and neighbours) must be available in the captured frame, this will be

discussed further in the Feature Selection section of Chapter 5.

The invariance significantly reduces the computational requirements for the sys-

tem compared to previous approaches and makes the proposed descriptor a viable

candidate for a real positioning system.

Figure 4.2 illustrates the effects of scale and rotation on a sample fingerprint. The

figure shows a specific feature in a region that is observed from various altitudes and

rotation angles. In each case the descriptor produces an identical fingerprint as long

as the same features can be extracted from the source image. Thus the limitation

of the system is based on the limits of the feature detection method. As long as the

sensor is capable of robustly registering landmarks, the descriptor will be able to

compute a repeatable unique identifier for the landmark.
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Figure 4.2: Effects of Scale and Rotation on a Fingerprint.
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However, while the descriptor is scale, rotation and translation invariant it is worth

keeping in mind that the invariance is in the 2D image plane, not in the global 3D

frame. This means that in a 3D scenario the descriptor is invariant to vehicle heading

and altitude. However, rotations in pitch and roll distort the fingerprint and require

an iterative approach to resolve. Nonetheless this is a significant improvement over

the approach used by Conte [2] as the number of degrees of freedom that needs to

be resolved iteratively have been reduced from six (x, y, z, yaw, pitch and roll) to

two (pitch and roll).

4.4 Uniqueness & Robustness

A very important factor in any descriptor is the level of uniqueness and robustness

of the feature vectors. Stronger and more unique feature vectors reduce amount of

work required to find a correct match. This can easily be achieved by including

additional information in the vector but it often results in a trade-off where other

aspects of the system have to give. For example, one way to improve the uniqueness

of a feature descriptor is to include a patch of the visual appearance of the feature,

such as in SIFT, but this would remove most of the benefits of the descriptor (reso-

lution and rotation independence). Similarly, adding information about the feature

type could be beneficial but it would depend on the detector being able to obtain

this information accurately. Since this is difficult to assess for a relatively generic

descriptor the system will only use the the angular vector but the underlying code

has been developed so that it can easily be extended to improve results with specific

detectors.

4.4.1 Multilayer Descriptors

A more likely way to improve uniqueness and robustness would be to add a second

fingerprint angle layer. This layer could be computed slightly differently, for example

by skipping certain features or by constructing other types of polygons such as quads

instead of triangles. However, when doing this one has to be careful to ensure that

new information is added to the descriptor, there is no benefit in simply multiplying
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data since it will not increase matching accuracy but will decrease performance due

to the increased overhead. This has not been explored in detail since it does not

seem to result in an increase in quality of the fingerprints. The current method fully

encodes the shape of a region well and adding another representation of the same

region does not solve any of the underlying problems caused by poor detection.

4.4.2 Variance

Theoretically there are 2180 (approximately 1.5∗1053) combinations of data that can

be stored in the proposed fingerprint vector, which vastly outnumbers to number of

features in the world. However, this would only be achievable if the world consisted of

a completely random and non-repeating arrangement of landmarks. Unfortunately

that is not the case, modern societies have a preference for constructing grid-based

cities for example, which increases the probability of finding angles within the 45-135

degree region in a fingerprint since neighbouring buildings are located at roughly

north, south east and west of the target building. Similarly, it is very rare for a

region to contain very sharp or very shallow angles (where the angle is less than

about 20 degrees or greater than 160). The effect of this can be seen in Figure

4.3 where a sample of 40,000 fingerprints generated from the Ordnance Survey’s

MasterMap have been normalised and binned into a histogram.
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Figure 4.3: Fingerprint Uniqueness with OS MasterMap Data
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In addition, while it might be possible to generate close to perfect fingerprints for

landmarks using professionally created datasets, an automatic detector on a moving

vehicle will inevitably cause a further loss in accuracy. As such a more relevant

measure for uniqueness is how accurately one can match a given feature from a noisy

source to a reference database. The first part of this, how individual fingerprint can

be matched one to one will be discussed in the next section, while a more complete

matching approach will be developed in Chapter 5.

4.5 Fingerprint Similarity Scoring

The first part of matching a fingerprint involves computing a similarity score that

provides a numerical measure of the similarity between two fingerprints (usually

between 0-1). Scorers are used extensively in the matcher to determine whether two

landmarks are matching and, as discussed in the next chapter, sometimes need to

be computed several thousand times per second.

4.5.1 Simplistic Methods

Because of this performance requirement it might be tempting to use a naive method,

such as simply checking whether the query fingerprint is identical to the target:

Fq == Ft (4.4)

This approach will yield extremely fast matching but it will fail almost instantly

because a difference in a single bit will cause the comparison to fail. It also does not

provide a measure of how similar two fingerprints are in case the comparison fails.

As a result this method will only work in perfect scenarios where there is a one to

one match for a query feature.

One way to overcome this is to use a logical exclusive OR (XOR):

K = Fq ⊕ Ft (4.5)
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This logical operation can only be used on binary fingerprints and checks whether a

bit in a given position in the query is equal to the bit in the target. If the two bits

are equal (ie 0, 0 or 1, 1) the result is 0 but if the two bits are different (1, 0 or 0,

1) the result is 1. Thus the result of running an XOR operation on two fingerprints

is a new vector that reveals all the differences between the two fingerprints. This

is a good improvement over a simple comparison as the scoring method now can

be used to determine how similar the fingerprints are by simply adding up the bits

in the XOR vector. In a perfect scenario where two fingerprints are identical the

XOR vector will be a zero vector, giving a sum of the XOR vector to be zero. As

the differences increase between the two vectors the more bits will be turned on,

resulting in an increasingly higher score.

Testing of XOR scoring shows that it is an extremely fast (since it is a very sim-

ple operation built into the CPU) but very sensitive scoring method. Even small

amounts noise in the detection method will result in bit-offsets in the fingerprint,

which are propagated through to the final score. Since it is very likely that feature

observations are noisy, the scoring method must be more directly measuring the

similarity of the feature, however the proposed XOR matcher can give the same

score for two very similar and two very different fingerprint vectors.

4.5.2 Cosine-based Methods

This leads to the most common approach to comparing two feature vectors, cosine

similarity[71]:

K = cos(θ) =
Fq · Ft
|Fq||Ft

(4.6)

This measure computes the cosine of the angle between two vectors, where two

very similar vectors will have a small angle giving a score of one, while completely

dissimilar (orthogonal vectors) will have a score of zero. The cosine measure is

notably different from the previous methods since it supports non-binary values for

fingerprints while still being independent of the total magnitude of the vector. This is

a very useful property that will be exploited later, but it has other uses in information

retrieval systems as well. For example documents can be compared by creating a
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word-frequency vector for two documents. Thanks to the magnitude invariance two

documents of varying length can be compared to determine similarities in writing

styles and content, thereby providing a measure of relevance or relatedness.

Meanwhile, since cosine similarity scoring supports numeric fingerprint vectors, it

would be possible to define a degree of confidence in a certain landmark observation.

For example, a certain landmark gives rise to two angles (α1 and α2) that will be

encoded in the fingerprint vector. In a binary fingerprint the bits at positions α1

and α2 would be switched on, however, since the detection method is noisy, it is

possible that this measurement is incorrect. Due to the resolution of the fingerprint

vector (1 deg/bit) it is very likely that even a few pixels noise in the detector will

cause a mismatch with the database vector.

4.5.3 Error Models

One way to overcome this is to incorporate a probability distribution that describes

the estimated error and encode this distribution in the fingerprint. Thus, instead of

simply switching on the bit at location α, the distribution is encoded in the elements

surrounding α:

F = [00, ..., 0.0567, 0.268, 0.569, 0.270, 0.0571, ..., 0180] (4.7)

This results in two difficulties: how are overlapping error distributions dealt with and

what noise model should be used to represent the performance of the detector?

Starting with the overlapping distributions, what should be done if the features F1

and F2 intersect in the fingerprint? Since the two features are independent the two

distributions cannot simply be added together. A way to to avoid this would be

give up the fingerprint vector model and instead store angles and their respective

estimated error models, but this would make matching significantly more difficult

and slower than using a single feature vector. Another way would be to create

independent feature vectors for each angle but this would force a discretisation and

loss of accuracy of the error model and still result in an increased computational

expense.
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As for the error models themselves, it would be possible to assume a simple hat,

linear or Gaussian model but this error will be dependent on the internals of the

detection algorithm as well as any transformations to the image (such as perspective

and scale due to altitude and orientation, terrain effects and more). This will either

require additional inputs and a bespoke error model for the sensor and detector or

a very simplistic error model.

A flat error model has been chosen for this work for two reasons. First, a simple

model makes the descriptor generic and means that minimal work is required to

adapt it to a variety of sensors and detection methods. Second, calculating cosine

scores with numerical values is a very costly computation since it involves a large

amount of floating point operations. Further, a numeric fingerprint with 4 byte

float values for each element occupies 720 bytes of memory (excluding additional

metadata about position, ID and neighbours), nearly 30 times more memory than

a binary fingerprint.

4.5.4 Efficient Scoring

However, it is possible to exploit the magnitude invariance of the cosine scorer to

avoid the additional computational overhead and memory usage. To do this, we first

use a simple flat ”hat” error distribution with an equal probability for each possible

angle element surrounding the measured angle. This is the equivalent of saying that

the detector has an equal probability of registering a landmark at any point within

a given region around a real landmark. The detection error is purely random:

errordetection = landmarktruth + rand(−maxError : maxError) (4.8)

Secondly, we simplify further by assuming that each detected feature in the image

has the same error distribution. This means that the detector is unaffected by lens

distortion, terrain effects and other local visual distortions. This simplification is

required to avoid dependencies on additional information such as position, orienta-

tion, terrain type, elevation maps and more, which would otherwise be required to

account for these effects appropriately.



4.5. FINGERPRINT SIMILARITY SCORING 101

The process for incorporating a landmark observation into a fingerprint then be-

comes very straight forward. If a feature is detected at a position α with an esti-

mated error of ±2deg and an equal probability of being anywhere within this region,

then the resulting data in the fingerprint vector becomes:

[0.00, ..., 0.2α−2, 0.2α−1, 0.2α, 0.2α+1, 0.2α+2..., 0.0180] (4.9)

Finally, the cosine similarity measure is magnitude invariant, which means that the

numerical fingerprint vector is equivalent to a binary fingerprint (since the numeric

fingerprint simply is a scaled version of the binary fingerprint):

cosineSimilarity(n ∗ Fq, Ft) = cosineSimilarity(Fq, Ft), n > 0 (4.10)

thus:

[0.00, ..., 0.2α−2, 0.2α−1, 0.2α, 0.2α+1, 0.2α+2..., 0.0180]

= 0.2 ∗ [00, ..., 1α−2, 1α−1, 1α, 1α+1, 1α+2..., 0180]

≡ [00, ..., 1α−2, 1α−1, 1α, 1α+1, 1α+2..., 0180]

(4.11)

This reverts the memory requirements back to the expected binary memory usage

but the computational issue remains (although to a lesser degree). To overcome

this, the original cosine similarity scorer can be replaced by the Ochiai measure[72].

The Ochiai is a measure that has primarily been used in biology to study similarities

between animal species in different geographical regions, however it is identical to

the cosine similarity measure when used with binary feature vectors. The Ochiai

measure is defined as:

K(Fq, Ft) =
n(Fq ∩ Ft)√
n(Fq) ∗ n(Ft)

(4.12)

where n(F) is the number of enabled bits in the bit-vector F. This is a dramati-

cally faster computation since the binary set intersection (AND) is much quicker to

compute than the dot product that is required in the cosine similarity measure.
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4.5.5 Jaccard Index

The Jaccard index is an alternative binary similarity measure that was first used by

Paul Jaccard. It is defined as:

Ts(U, V ) =

∑
i(Ui ∧ Vi)∑
i(Ui ∨ Vi)

(4.13)

This index is very similar to the Ochiai measure but it falls off linearly with respect

to similarity, while the Ochiai measure follows a cosine. As a result the Jaccard

index penalises small differences between vectors harder, which enforces a stricter

similarity requirement between vectors than the Ochiai index. This is preferable in

the proposed system since the variety between vectors in the database of landmarks

is relatively low (a challenge that will be discussed in chapter 5), meaning that

two different landmarks can have very similar fingerprint vectors. By allowing the

score to fall of quicker only the most similar vectors will remain in the matching

set, making it less likely that an incorrect feature is matched. Conversely, this has

the effect that correct features will be rejected due to unexpected detection errors.

However, this is ultimately preferable for the system since a small number of high

confidence matches are more reliable and will give a better final positioning estimate

than a large number of potentially incorrect matches.

4.6 Results

4.6.1 Synthetic Data Generation

The following results have been generated by randomly distributing 500 features

in a simulated world. This data does not reflect a real-world scenario (such as a

city layout), it is only used to evaluate the performance of the different scoring

methods. A simulated aerial capture is generated by selecting a subregion, then

gradually distorting it to evaluate which scorer results in the highest number of

accurate matches for a given distortion level.

The distortion has been designed to simulate realistic errors introduced by the de-

tection stage and consists of three types:
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1. Shift - a bit in the vector is shifted either left or right to simulate a noisy

detection

2. Insertion - a new angle is introduced in the vector to simulate a false detection

3. Deletion - an existing angle is removed from the vector to simulate a failed

detection

These are randomly applied to the features, each with equal probability, with a final

check to ensure that a correct number of angles are present in the fingerprint. If not

(e.g. if the deletion distortion has been applied multiple times), random angles are

added or removed to the vector.

The number of distortions is gradually increased while the performance is measured

by selecting 100 features at random and scoring them against the true set. A cor-

rect match is recorded if the distorted fingerprint scores the highest when matched

against its truth.

For each match a ”true” vector quality score is also calculated which is determined

by calculating the cosine similarity score between the original and the distorted

fingerprints. This is used to bin fingerprints by their level of distortion, since the

quality of a distorted vector depends strongly on which type of distortion was ap-

plied. Thus, even if the same number of distortions were applied to a fingerprint

the resulting quality can vary significantly, which is accounted for by binning by

quality.

4.6.2 Accuracy

Results from this test are shown in Figure 4.4. For reference, since the vector quality

is based on the cosine of the angle, a score of 0.707 means that there is a 45 degree

angle between the query and target fingerprint.

As expected the equality condition and XOR scorer does not fare well, with the

former failing as soon as any distortion is introduced. The XOR scorer performance

drops off very quickly as well and is not useful in any form of realistic scenario.

This leaves the cosine (Ochiai) and Jaccard index, both of which are much more

robust to distortions. These maintain their matching accuracy up to high distortion
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Figure 4.4: Fingerprint Scorer Performance (Vector Quality 0.0 = fully destroyed,

1.0 = perfect and undistorted)

levels (vector qualities of 0.4-0.6) but then fail rapidly as fingerprints are further

distorted.

Since the detector is expected to be noisy it is also possible to estimate the resulting

quality level of a certain detector. For a detector that detects features within ±2

pixels of the truth, with an average distance from landmark to neighbours of 50

pixels, the resulting angular error in the vector is approximately 2 degrees. Given

this error the estimated vector quality is 0.5.

As such, the scorers must be able to perform at this level. Both the Jaccard index

and the Ochiai similarity scorer perform very well at this range with greater than

97% accuracy, with the Jaccard scorer marginally outperforming the Ochiai.

These results come with a significant caveat though since they have been carried out

on a relatively small sample set where there are few ambiguous features. The number

of incorrect matches will increase as the feature set increases due to the relatively

low variety in the feature vectors. As such, a simple one to one scorer is useful for

determining the similarity between a small number of candidates but it is unusable

for large scale matching using tens or hundreds of thousands of features. This
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Table 4.1: Scoring Methods Performance

Scorer OPS

== 970,000

XOR 8,200

Cosine (numeric) 350

Ochiai (binary) 3,000

Jaccard (binary) 2,900

will require a higher level matcher that can reduce the target set to a manageable

number and exploit additional information that is available in the data set. This

will be discussed in more detail in Chapter 5.

4.6.3 Performance

In addition, each method was evaluated for performance. To do this, two fingerprints

were generated then each scorer was repeatedly calculating the score for these for

60 seconds while the number of executions was recorded. This gives the number of

Operations Per Second (OPS), which can be compared to give the relative speed

of each method. The true performance is highly dependent on the implementation

of the scorer, the programming language and the speed of the processor that is

executing the code. In this case the test was carried out using 32bit Python 2.7.4 on

Mac OS X 10.9.1, running on a 3.5 GHz Intel i7 processor. The results also include

examples for a numeric cosine scorer to illustrate the computational cost of dealing

with numerical vectors instead of binary.

While the equal and XOR scorer are much faster than the other scoring methods,

results in Figure 4.4 has shown that these two methods are nearly useless. More

interestingly, the performance results show that the binary scorers are nearly ten

times faster than numeric scorer. Since these have been tested in an interpreted en-

vironment (Python) rather than as a compiled application it is reasonable to expect

an additional overall 50-100x speed up in a compiled implementation. However, for

prototyping purposes the current implementation is fast enough.
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4.7 Conclusion

This chapter has discussed the challenges of feature description (robustness, unique-

ness, repeatability and computational performance) and new type of feature descrip-

tor for geographical landmarks has been developed. The new descriptor uses the

pattern constructed by a landmark and its surrounding neighbours and encodes it

in a scale, rotation and translation invariant way. By adding a simple error model

and using a binary scorer it is possible to obtain better than 97% matching accuracy

for small sets in the target operating conditions, with the best scorers taking less

than 0.33 milliseconds to compute a score.

However, these results also demonstrate the need for a higher level matcher that

can reduce the target set to avoid mismatches. There are several benefits to using

a higher level matcher that is independent of the scoring method and this matching

strategy will be discussed in the next chapter.



Chapter 5

Feature Matching

Chapter 4 discussed the development of a feature descriptor for landmarks that is

scale, rotation and translation invariant. It also described a number of one-to-one

scoring methods that computes how similar two fingerprints are and evaluated their

performance under varying distortion levels. While the best matchers performed

respectably well under distortion the results showed that a bigger problem is finding

a match for a single fingerprint in a large set (10,000+ features).

There are two main reasons for why the descriptor fails in large sets:

1. Region similarity - man-made landmarks are semi-structured. While there is

variety in the placement of individual landmarks, they tend to be placed in

regular grid-like layouts, such as cities and along roads. This causes a non-

uniform distribution of features in the fingerprint and makes it much more

likely that two geographically distant regions have a very similar geometric

appearance.

2. Data reduction - the proposed feature descriptor discards a substantial amount

of data about landmarks (such as appearance and feature class, which is dis-

carded since it will not aid the matching process) and then further reduces the

amount of data available by irreversibly compressing the region into a binary

fingerprint. This gives a very memory efficient descriptor that is still capable

of uniquely describing the landmark.

However, these two combine to make the descriptor very sensitive. Even small errors

107
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such as detection noise can have a big impact on the fingerprint vector and can cause

wildly incorrect matches. Since the goal of the project is to match a small number

of landmarks detected in an aerial image to a vast database of landmarks with high

accuracy (or at the very least low rates of false positives), it is clear that a more

sophisticated matching approach is needed. This chapter describes a solution to

this matching problem that improves matching accuracy under normal operating

conditions. Following this will be a discussion of alternative matching methods as

well as a number of optimisations that can be done to further speed up or otherwise

improve the matching accuracy and performance.

5.1 Contextual Information

In the previous chapter, a single feature was matched to a large set of features.

This provided adequate results but was found to not be accurate enough to be used

in a real system since there are too many ambiguous matches. Thus, to improve

the matching accuracy the system needs a way to reduce the number of target

features in the database and thereby reduce the risk of a failed match. An obvious

example of this would be to use the current best estimated of the vehicle’s position,

speed, altitude and field of view to predict which part of the database is likely to be

observed next. Another would be to compute a metric that is specific to the feature

(such as roundness of a crater), that can be used to further narrow down the target

set. However, there are other, more powerful, methods that can further improve

the accuracy and speed of matching, which do not directly use the descriptor of

the fingerprint itself but instead rely on other contextual information about the

scene.

One effective approach is to analyse of the arrangement of features. Due to the na-

ture of the descriptor, it is impossible to construct a fingerprint for a single landmark

since its surrounding neighbours are required to compute the descriptor. This means

that each aerial image capture must contain multiple features, which is additional

information that can be used to improve the matching quality significantly.

A quick calculation shows that it is realistic to assume that an image taken over a
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densely populated area can contain approximately a hundred landmarks 1. Matching

each of these individually to an entire database will yield a very low success rate, but

there are several ways to compute metrics about the query set that can help increase

the matching performance. A simple example is elimination of poorly conditioned

features and ranking of features by their quality (and thus probability to match

correctly).

These methods rely on a simple assumption, that the landmarks are static and per-

manent. This means that, assuming the detector is performing correctly, the UAV

will observe a number of local landmarks for which there are corresponding matches

in the database that are arranged in a similar way relative to each other (with the

exception of scale and rotation). An alternative way to express this assumption is

that each query landmark will be surrounded by the same neighbours in both the

aerial capture and the database. A certain amount of flexibility must be permitted

to allow some changes in the environment, such as newly constructed buildings that

are not available in the database, or failures in the feature detector but these must

not make up more than a small percentage of the total number of features.

5.1.1 Feature Selectors

During the development of the geometric descriptor it became apparent that certain

landmarks result in higher quality descriptors than others. More importantly, the

reverse was also found to be an issue, the descriptors for certain landmarks can

be too badly conditioned to be of any value during the matching process and can

even result in a degradation of the overall result. This degradation can occur when

poorly conditioned features are used to identify a target region using RANSAC since

the features can match to a large number of incorrect landmarks, thereby throwing

off the algorithm. In a worst case scenario a large number of poorly conditioned

features are used in the same update in RANSAC, which can result in a completely

random target region being selected. At this point even high quality features that

normally should match if the correct region is identified will fail.

1Assuming a landmark size of ten by ten meters, landmark density of 70%, captured from 500

meters altitude with a regular 20 x 30 degree field of view lens
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However, the weak landmarks can also cause problems even if the correct region is

found, by causing incorrect matches within the local region. Since the correspon-

dences between local and global features are used to compute the position of the

vehicle it would be preferable to have a high quality rather than high quantity of

matches. Weak features can therefore mistakenly be used to compute the position

of the vehicle, which can result in a number of effects depending on the algorithm

chosen.

In an ideal scenario the false match will be rejected using an outlier elimination

method while the correct matches are kept, in which case there is no effect on

positioning. However, this approach is risky as outlier elimination methods require

that at least a majority of correspondences are correct (i.e. fit the desired model).

In many scenarios this is true but as we will soon see it is not unlikely for a visual

positioning system to obtain inputs that can be very badly conditioned. In some

cases it is possible to obtain a poorly conditioned capture where a large majority

of the features are unsuitable for matching, at which point it is important to either

prevent these features from being matched or alternatively reject the entire image

and capture a new input.

If the outlier rejection fails or is found to be unsuitable then the incorrect matches

will give rise to other problems. The effect depends on the pose estimation algorithm

but will likely lead to either gradual drift or a complete failure. Both of these should

be corrected once well conditioned data is captured, but if the matching errors are

not caught it can result in issues in other systems that make use of the positioning

data.

In short, the pose estimation performs better and becomes more robust with a small

number of high quality features rather than a large number of low quality features.

Because of this, the system strongly benefits from having a method to reject poor

features.

In the context of the geometric feature descriptor poor features can be defined as

features that either have an incomplete descriptor (because insufficient neighbours

are identified) or a descriptor that is too similar to others. There are three main

cases where this can occur:



5.1. CONTEXTUAL INFORMATION 111

1. Single features

In cases where only a small number of features are found in an image (less than

the number of neighbours required for fingerprinting) the fingerprints are too

weak to match reliably. For example, this can occur when the system relies

on buildings but is currently operating over a sparsely populated area. When

this is the case the system should temporarily disable itself until the feature

count increases above a required threshold.

2. Line features

In cases where a set of features form a line, such as buildings placed along a

single road, the region encoded in the fingerprint will be too similar as the

neighbours used are placed directly to the left and right of the query feature.

This leads to nearly identical fingerprints for a number of features, causing

matching to fail.

3. Edge features

Features placed near the edge of the image will fail to match as their finger-

prints rely on neighbours that fall outside the image. The fingerprints for these

features will be incomplete and will therefore not be strong enough to match.

Two methods have been found to effectively identify and eliminate these types of

features. Both methods produce a normalised score between zero and one, which

lets the matcher select a small number of the highest ranking features for matching

and eliminates any potentially difficult, low scoring, candidates.

Central Features

Starting with simplest failures, failure case 3 - edge features, the problem is that

features located near the edge of the image likely depend on features that lie outside

the captured region. Therefore the fingerprinting process for these features will

produce incomplete fingerprints and the subsequent analysis for these features will

fail.

A simple way to overcome this is to add a selection criteria where features closer to

the centre of the image are favoured. This is implemented as a distance measure

where the distance from the centre of the image is calculated for each feature, if
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the feature falls outside a limiting distance it is not considered for the matching.

Further, features closer to the centre are weighted higher than outlying features and

are therefore given priority in the matching process.

This approach is currently favoured over the use of a hard threshold distance where

all features that lie within the limiting distance are equally scored. While dense

scenes may contain features that are excellent for matching but do not lie near

the centre of the image, sparse scenes are suffering from the opposite effect. By

introducing a linear score based on the normalised distance, poorly conditioned and

outlying features are automatically removed from the matching process.

This might adversely affect densely populated scenes by favouring more central

features over better conditions but outlying features. However, there are additional

selectors that analyse other metrics and the combined score can be used to identify

a sufficient number of strong candidates even given this weakness.

The final output of this method is a list of all features that fall within the safe

region, sorted by their proximity score.

Connectivity Analysis

The second selector method is more complex as it analyses the connectivity between

features. Connectivity analysis deals with the other two types of difficult features:

line features and single features. These features are easily detected due to their

poor connectivity with their neighbours, for example features on a road are only

connected to its two nearest neighbours and single features have a very low number

(often zero) of neighbours.

Additionally, since the descriptor is based on the surrounding neighbours there is

a direct relationship between the connectivity of a feature and the strength of its

descriptor. Connectivity analysis therefore provides a good measure of how well

connected and thus how likely a specific feature is to be described and matched

successfully. Similarly to the central feature descriptor, this is used to rank a query

set and limit the matching task to the n highest scoring features.

The proposed selector is based on the Gabriel graph, a graph that connects first
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degree nearest neighbours. A first degree connection is defined as a connection that

can not be made using shorter segments via other features. To determine whether

a connection between two points, A and B, is a valid first degree connection, one

constructs a circle with its centre at the midpoint between A and B with a diameter

of the distance between the two points (Figure 5.1). If no other points fall within

this circle the connection is valid, otherwise the graph is refined by adding the

intermediate point.

The result of applying this to a real geographical region is shown in Figure 5.2. A

Gabriel graph makes it very easy to identify line features as they only have two

connections to neighbouring features, the two immediate neighbours. Therefore by

eliminating features with a low connection count in a Gabriel graph one can avoid

line features and other weak regions where the descriptors are likely to be weak.

The Gabriel graph has one final benefit, it not only identifies weak features it also

locates the strongest features in the set, the features with the most number of

strong first degree connections. This allows the matcher to start the process with

the strongest features that are the most likely to match and gradually refine the

results using weaker features.

Figure 5.2 shows the result of constructing a Gabriel graph for a small region. Green

features have been accepted while red features have been rejected. In addition to

this the connections between features have been coloured to indicate whether that

connection will be encoded in the fingerprint, green indicates encoded connections

while black indicates lost data. An interesting point to note is that even though

a large number of features have been eliminated from the direct matching process

most of the data they represent, the connections they are based on, is still encoded

in the fingerprints. Thus, very little information is lost by eliminating troublesome

features but the matching accuracy improves significantly.

While this approach provides excellent selection results it can be a computationally

intensive method since it first requires the computation of the Delaunay triangula-

tion (an O(n log n) function) for the set, which is then further processed with an

O(n) function to obtain the Gabriel graph. This means the computational time re-

quirement primarily logarithmically as the number of features increase, which could

potentially cause problems if a very large number of features are suddenly detected.
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(a) Valid (b) Invalid

Figure 5.1: Gabriel Graph Connectivity Rules

Figure 5.2: Gabriel Graph for East Cranfield

A simple solution to this is to restrict the Gabriel graph to only work on the set of

features selected by the Central Selector, which makes the Gabriel graph work as an

additional refinement of the selector set rather than an independent selector.

5.1.2 Neighbours

As previously discussed, matching a single feature is difficult as there can be a

number of ambiguous matches in the region, even if the feature itself is very well

conditioned and has a robust set of neighbouring landmarks. The most effective way

to reduce this number is to include additional information that further distinguishes
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the correct feature from the incorrect matches. Fortunately there is a very cheap

and easy source for this information: the feature’s neighbours.

The neighbours surrounding the query feature are already known since they are re-

quired to compute the fingerprint. Thus, the information contained in these neigh-

bouring features can easily be added to the current fingerprint to effectively encode

a larger region for the feature. This means that the fingerprint will now encode not

only first degree neighbours but also second degree, with the result that third degree

features will be affecting the descriptor (the the neighbouring features encode their

neighbours in their fingerprint). This increases the size of the region drastically

and, depending on the number of shared neighbours, up to a quadratic increase in

features.

However, simply concatenating the fingerprint vectors and forming one large feature

vector is for many reasons not a good idea. The first issue is that the process would

be order dependent. Changing the order (such as concatenating the fingerprints

clockwise instead of counterclockwise or changing the starting point) will result in

a completely different fingerprint. It would also be easy to accidentally create an

ordering process that is dependent on additional variables. For example, the starting

point for a clockwise ordering process adds a heading requirement, which we would

like to avoid in the system.

In addition, if the fingerprint is order dependent then a failure to visually detect one

of the neighbours can cause a partially incorrect fingerprint where first half might

match but the second half does not since the remainder of the vector has been

shifted one feature step. It may be possible to resolve this , but it causes further

ambiguities and adds complexity to the system.

Finally, concatenating the fingerprints causes a large duplication of data as a fea-

ture’s fingerprint is repeated in all of its neighbours. This increases the computa-

tional cost at all points in the system and makes it harder to update the database

in case a new feature needs to be added.

A more efficient solution is to add an ID number to each feature and during con-

struction of the reference database store the ID numbers of the neighbours associated

with the current feature. This allows the matcher to retrieve the target feature and,
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if required, come back and fetch the neighbouring features for validation, as these

fingerprints should match the neighbours observed in the aerial capture. It also

reduces the cost of modifying the database as only the features directly affected by

the change need to be updated.

However, this requires an assignment method to work since the order of the neigh-

bours is unknown. Thus, each query neighbour feature is matched to each potential

target neighbour to determine their match. This gives a cost matrix that can be

evaluated using the Hungarian algorithm to determine the optimal assignment that

maximises the overall score, and thus the (likely) correct matches for each neigh-

bour.

Incorporating this information significantly improves the system’s tolerance to noise

and poor detections. In effect it shifts the descriptor matching results in Section

4.6.2 - Figure 4.4 left, meaning the required fingerprint quality is reduced.

Given the same parameters, when only the query fingerprint is degraded and the

neighbours are unchanged the required matching quality drops to 0.3. In a more

realistic degradation scenario where both the query feature and the neighbours are

degraded the matching quality settles at 0.39 as the neighbours can not be relied on

to the same degree.

5.2 Matching Strategies

Ultimately, carrying out the matching process as a one to one task on a global scale is

futile. The world is simply too ambiguous to allow correct matching on a large scale,

even given very well conditioned features and neighbourhood matching. However,

while the end result requires a one to one match for each feature, the matching

processes does not necessarily have to work this way. This section discusses various

approaches to the matching problem, which help obtain high quality results.

The following methods can be seen more as filters and refinements rather than full

matching as they process and validate an initial set of potential matches for a query

feature. This set is obtained by carrying out a one to one match for each feature in

a certain region but rather than saving only the best match, the n best matches are
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kept. The assumption is that the operating conditions are such that the quality of

the feature fingerprints exceed the threshold to obtain a successful direct match in

at least 50% of the cases. This means that the correct match may not be the best

scoring match in the candidate set but it is likely to be a member of the set, thus the

problem to a degree becomes an assignment problem where the best solution is the

one that assigns each query feature to a target feature so that the overall fit between

the query and target regions is maximised. This is a difficult computation as each

possible combination needs to be evaluated to determine the best assignment.

5.2.1 Constraints

The most effective way to filter the results is to match the entire set of selected

features at once and apply a number of constraints before the best matches is se-

lected. For example, while the likelihood of a single feature having several ambiguous

matches is quite high, the probability of several features having incorrect matches

in the same region is much lower.

Internal Distance

A simple constraint method is to minimise the internal distance of the target set.

This is the simplest interpretation of the example above, where it is assumed that the

correct assignment of features is the one where all features lie near each other.

This metric is very easily evaluated for an assignment by calculating the distance

matrix from the selected features. The score of the assignment is then obtained by

calculating the the total sum of the elements in the distance matrix. Theoretically,

the correct assignment is the one that minimises this sum.

Since the distance matrix is symmetric only half of the elements in the matrix needs

to be computed, making this a quite cheap method. However, it is a quadratic

function (O(n2)) of the number of candidate features, so if the system is configured

to use a larger number of candidates the workload increases significantly.

The downside of this constraint is that it does not actually consider whether the

assignments are correct and fit any sort of model - it simply attempts to find the
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assignments that place the features as close together as possible. If there are false

matches in the same region it is possible to end up with an incorrect assignment,

which, as previously discussed, can cause issues in the state estimator and should

be avoided.

An alternative to this method is to use a clustering method such as Qualitative

Threshold (QT) clustering[74]. QT clustering is a method that identifies clusters of

specific sizes in a dataset, but it can also be used as a method to determine whether

a set of points form a cluster of a given size. Thus it is possible to set a size limit for

the cluster based on the estimated size of the query set2 and score the quality of the

match depending on the number of clusters found in the target set. If more than

one cluster is returned then the assignment involves a target region that is larger

than the query set.

However, this is a risky assumption due to false matches. It is likely that certain

features in the query set will not match to the query set for various reasons. These

will be randomly placed in the search region and will therefore form separate clusters.

Because of this, it is not only the number of clusters that is relevant, it is also

dependent on the number of features in each cluster. A simple way to overcome

this issue is to instead rely on the number of features in the largest cluster and

computing the final score as the percentage of features that fall in this cluster.

Unfortunately, QT clustering is currently a prohibitively expensive method. The

initial part of the clustering process is similar to the previously discussed distance

minimisation method, since both approaches compute a distance matrix. However,

the QT clustering algorithm then creates each cluster by iteratively attempting

every cluster combination to determine the largest one. If additional clusters are

needed the process is repeated until every feature has been assigned to a cluster.

This effectively increases the computational cost of evaluating the QT cluster score

compared to internal distance from O(n2) to O(n3), which will greatly increase the

time it takes to evaluate an assignment.

2This is possible if an approximate altitude is known, see Section 5.2.2 for a discussion on the

use of positioning data.
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Region Similarity

The region similarity approach is a different type of constraint which tries to ensure

that the assignments match a slightly more complex model, thus making it more

likely to obtain the correct assignments (unlike the internal distance constraint). It

makes use of the previously discussed static world assumption to identify whether

the region constructed from the proposed assignment matches the region constructed

from the query features.

An obvious way to do this would be to compute a fingerprint for the query features

and then attempt to replicate the fingerprint using each assignment combination of

the candidate features.

This approach is difficult to implement in reality as the fingerprinting algorithm is

based on a specific feature. Thus this approach requires an anchor point, a feature

which is central in the shape, around which the remaining features are treated as

neighbours. However, selecting an anchor point is not easy as that feature must be

guaranteed to be correct in order for the fingerprints to match when all the correct

assignments are made. If the anchor point is matched incorrectly the fingerprint for

the target region will be completely different from the query region. Since it is not

possible to make this guarantee an alternative approach is needed.

An successful approach has been to construct simple shapes from a random selection

of features. If a polygon is constructed from a number of features in the query set

then the correct assignment in the target set should produce the same polygon.

Once a set of assignments has been identified a new polygon is constructed with a

random set of features and the process is repeated. This allows the system to keep

track of features that continuously become selected as matches in the polygons, the

candidate features which are most likely to be the correct assignments.

There are a number of benefits to this approach, first the polygon matching (based

on the internal angles similar to the geometric descriptor) does not need to be

very precise as it is unlikely that an incorrect arrangement of features will produce

a matching shape, in particular considering that the candidate matches are often

spatially very distant. Since the only error, theoretically, on the polygon shapes will

be due to detection errors, the matching conditions can also be fairly tight to ensure
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only a very similar arrangement is accepted.

Secondly, the polygon matching approach is much more efficient than the internal

distance measure. Instead of attempting every single assignment combination among

all the target features only the features that are known to be match candidates for

the vertices in the polygon are used. This could also in the future allow the system

to lock down features it is particularly confident about, and continue constructing

polygons where some of the vertices in the polygon are known with good confidence

while others still need to be resolved.

The implementation of this approach is very similar to the fingerprint matching. For

simplicity and speed the current implementation uses triangles, so three vertices are

picked from the query set (that has been filtered by the feature selector). A triangle

is constructed from these features and the internal angles are computed to avoid

scale and rotation dependencies. However, instead of producing a fingerprint vector

the three angles are kept as numerical values and sorted in ascending order.

A candidate triangle can then be evaluated against the query shape by checking

whether each angle falls within a certain threshold of the angle in the query. The

threshold is primarily a function of the expected error from the detector, similar to

the thresholds used in the geometric descriptor.

5.2.2 Positioning Data

The goal of this project has been to avoid using as much external information as

possible in order to develop a system that is independent from other positioning

methods. This has led to the development of a new type of descriptor and a large

amount of work on improving the matching performance for very large queries.

These techniques have shown promising results but the decision to not make use of

information that would be readily available in a flying vehicle would unnecessarily

rule out some of the most effective methods for improving matching accuracy.

The most important additional piece of information is the vehicle’s approximate

location and altitude. It is reasonable to assume that the vehicle will have at least

a rough estimate of its current location in order for critical systems such as the

autopilot to function correctly. Ignoring that this information is available only serves
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to make the proposed visual positioning system harder to design, unnecessarily

complex and less robust without providing any tangible benefits.

Depending on this information does mean that certain positioning scenarios are no

longer possible, the main issue being a fully lost scenario where the vehicle has no

knowledge of its position. However, an aerial or space vehicle will not begin a mis-

sion without this information and reasonably accurate estimates of the position are

required to maintain safe flight. As such, it is fair to assume an operating scenario

where the starting position and orientation is provided along with a secondary po-

sitioning system such as GPS and/or a dynamic model that allows the vehicle to

predict its position with acceptable accuracy until it has reached sufficient altitude

to enable the vision-based positioning system.

Similarly, it is likely that a vehicle will operate using a more power efficient system

such as GPS until a failure or interference is detected, at which point the VPS can

be initialised with the last known or the current predicted position and take over

positioning duties until the primary system becomes available again.

Region Selection

The most important use of positioning data is to restrict the matching process to

a smaller region of the database. As a result the matching process is carried out

against a much smaller set which will significantly increase the likelihood that correct

matches are identified. It will also provide a very drastic performance improvement

as the initial candidate search is directly dependent on the number of features in

the target set.

Ensuring that the correct geographic region is selected from the database is not

quite as simple as selecting a region around the last known position since the correct

region is not only dependent on the position of the vehicle, it is also affected by the

altitude, velocity and heading of the vehicle. In addition, it is useful to know the

estimated error for each of these parameters as this allows a very targeted search in

the database.

As long as control inputs and a vehicle model is known it is also possible to gradually

extend the search region as a function of the estimated errors in case the VPS fails
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to obtain a position estimate (such as in the case of operation in an area low in

landmarks).

The effect of this on the performance of the visual positioning system is significant.

If the vehicle’s position is known to GPS accuracy it is possible to extract a region

that matches the exact footprint of the sensor. This lets the matching process

be simplified to the point where it effectively confirms the matches found by the

sensor. This is done by computing the fingerprints for features in the field of view

of the sensor, passing them through the feature selector and confirming that the

selected features are present in the search region. In the future this can also be

extended so that position data is fed back to the detector in order to provide an

initial guess of where landmarks may appear. This feedback loop should provide

improved performance for the landmark detector and improve the overall speed of

the system.

However, this is only the case when good positioning data and a well conditioned

view of the landmarks is available. If there are problems with either of these the

system must fall back on a larger regional search and use the previously discussed

methods to confirm the matches.

5.3 The Matching Process

This chapter has discussed a number of approaches to identify suitable features,

correctly match these to a database and to verify this assignment. Figure 5.3 shows

how these fit together to form the complete matching process. Each step has one or

more inputs that can be tailored to the specific task at hand, but overall the system

has been designed to follow a predictable and repeatable process.

As previously discussed, the process begins by extracting and processing the local

query features. A new set of data is captured from the sensor, which is processed

to extract specific landmarks, such as buildings or craters. These point features are

processed to generate a feature vector, or fingerprint, for each landmark and then

passed through a feature selector that identifies the features that are most likely (or

not) to match.
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Figure 5.3: Matching Flowchart
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Once the local features are ready for matching the system begins the matching

process. The first step is to obtain the latest position estimate and retrieve the

corresponding region from the database. The size of this region is dependent on the

estimated accuracy of the position data.

At this stage the system reaches the first of two decision points. If the position

estimate is good enough, most easily evaluated by checking the number of target

features that have been retrieved from the database, it starts an optimised and

simplified matching process. In this case the selected query features are directly

matched to the target set and the best match is simply considered to be the best

scoring match. Once each match has been identified it is validated using the region

similarity method (the internal distance method is of no use in this case since the

correct region already has been identified, it would effectively attempt to minimise

the size of the same cluster over and over).

This is the second decision point, if the assignments pass validation then the correct

matches are returned to the controller, otherwise it the system falls back on a full

match. This is the same process that is carried out in case the position estimate is

too poor, resulting in a larger search region.

In this case the system obtains the n best matches for a feature and uses them as

candidates. Each combination of these candidates will be validated using a con-

straint method that produces a fitness score, indicating whether the current assign-

ment clusters the features close together (internal distance) and whether the regions

match (region similarity). This results in a much slower but more accurate process,

although it can still fail occasionally. A failure is determined to occur in case the

best fitness score is low, in which case the matcher informs the controller of a failure

and starts over from the beginning. The difference is that on the next update the

search region is deliberately expanded to increase the chance of recovery in case of

drift.
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5.4 Matching and Energy Costs

So far this chapter has discussed a number of methods to identify the correct match

for a query feature. The overall goal has been matching accuracy, a correct assign-

ment is critically important in order to obtain an accurate pose estimate. A small

temporal delay of the positioning data due to computational overhead is acceptable

and data fusion with lagging sensors is a well researched area[75]. However, a more

important issue is the time to match, since it is directly dependent on the selected

processing chain and the processing platform (such as CPU, GPGPU or FPGA)

which can consume a significant amount of power.

The overall goal of this thesis is to investigate and develop algorithms for unmanned

aerial vehicles and space vehicles, two types of vehicles that typically operate with

strict power limitations. The available power varies from vehicle to vehicle but

typically it ranges from the low hundreds of Watts for a small fixed wing UAV to

about 2,000 Watts for a satellite in orbit. A a number of systems such as flight

control, propulsion and communications all compete for this power which leaves a

small portion available for mission tasks, such as sensors and analysis. The proposed

visual positioning system takes advantage of the mission sensors and is therefore

constrained by their the power limitations.

As such, the actual design and selection of sensors is directly dependent on the type

of vehicle, the available sensors and the available processing power. Fortunately, the

UAV world is moving towards a scenario where more and more processing is carried

out on the vehicle in order to increase the level of autonomy of the vehicle. Mean-

while, advances in processor design and manufacturing is continuously following

Moore’s law, which dictates that the number of transistors in a processor approx-

imately doubles every two years. Similarly, studies have shown that the electrical

efficiency of processors has doubled every 18 months for the past 60 years[76].

This means that methods that currently are too slow to be used on a real platform

due to power constraints are likely to be applicable in the future. There is also

a rise in parallel computing and the use of GPGPUs (General Purpose Graphics

Processing Units), which are highly efficient massively parallel processing platforms.

These would enable the positioning system to operate in parallel, either to increase
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the update rate of the system or by reducing the time to match. In particular,

this would speed up the scoring methods which match a small set of query features

against a large target set since this process is highly repeatable and each computation

is independent of the result of the others.

It would also allow the system to parallelise one of the currently slowest parts of

the matching process: the constraint evaluation. Since the algorithm is evaluating

each constraint for each assignment combination this involves a large number of

computations, which again are repeatable and independent. These algorithms would

suit a GPGPU perfectly.

GPGPUs give a large performance boost and compare favourably with CPUs in

terms of computations per Watt for parallel tasks[77], but they still add a signifi-

cant power demand to the system. A current high-performance GPU can consume

over 250 Watts[78], which could be suitable for a crater matching satellite in or-

bit that only needs to correct its position occasionally, while a different low power

design would be required for a small fixed-wing UAV. The benefit of the proposed

architecture and methods is that the algorithms are interchangeable and can easily

be targeted to a specific vehicle with particular power requirements.

5.5 Conclusion

This chapter has presented the two main problems with matching the geometric

descriptor: multiple regions around the world can have a very similar appearance

and the descriptor uses an aggressive data reduction method in order to efficiently

store the geometric region. These issues mean that a single feature vector is too

ambiguous to be matched directly to a large database and a more sophisticated

approach is required.

Feature matching, in particular for positioning, is a difficult process that is con-

strained by a number of factors. One is the pose estimation following the matching

process. Pose estimation algorithms usually do not require a large number of fea-

ture matches, but they require high accuracy for those matches. Another is time

to match, an issue that is highly dependent on the platform and the operational
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scenario.

Because of this a number of methods have been developed that helps increase the

chance of identifying correct matches. These include feature selectors that identify

poorly conditioned query features and constraint methods that identify whether a

match is correct.

In addition, the system takes advantage of the current estimated position. This esti-

mate is critical for various systems onboard unmanned vehicles and is a very effective

way to speed up the matching process. In practice it is used to extract a specific

region from the database, thereby limiting the size of the target set drastically but

speeding up the matching process and increasing the accuracy.

In cases where the position estimate is highly accurate, i.e. the extracted target

region matches the query region very closely, the matcher can be further optimised

by bypassing the candidate search and validation. This drastically increases the

speed of matching and lets the system run at a higher rate once a position ”fix” has

been obtained.

Ultimately, the matching process is a computationally intensive process that is de-

pendent on the operational parameters, the type of vehicle and the available power.

For that reason the matcher has been designed to be modular, allowing various

algorithms to be enabled or disabled as needed.

The following chapter will look at two matcher configurations in order to evaluate

the performance of the descriptor and matcher system.
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Chapter 6

System Performance

The previous chapters have developed a new type of descriptor and matcher for

landmarks but the algorithms have been discussed in relatively conceptual terms.

This chapter aims to put some numbers behind the algorithms by creating two

potential implementations of the system and analysing how these perform. The

implementations have been chosen to simulate two vehicles at opposite ends of the

unmanned vehicle spectrum, one being a small fixed-wing UAV needing continuous

positioning updates in a small operating region and the other being a Mars lander

that uses the visual positioning system for a short period of the flight to enable high

accuracy landings on a remote planet.

Additionally, the two vehicles would be operating using two distinctly different land-

mark arrangements. The UAV uses buildings, meaning it relies on man-made semi-

structured landmarks. Meanwhile, the lander will be designed to use craters that are

nearly randomly distributed on the surface of the planet, which negates the benefits

of some of the algorithms developed in the previous chapters.

Each vehicle will be discussed in detail, starting with assumptions about the oper-

ating scenario and mission as well as the performance of external systems or algo-

rithms. After this, each implementation will be detailed, relevant parameters will

be defined along with a motivation for the values they are assigned, and finally the

performance of the system will be evaluated.

These tests aim to show some of the strengths of the system, primarily by being able

129
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to match landmarks to known references even given relatively large initial positioning

errors. Further, the computational performance and the effects of computational

constraints imposed by the two vehicles will be discussed.

Since these vehicles are made up for the performance evaluation most of the vehicle

parameters are based on realistic assumptions. Actual vehicles, in particular fu-

ture vehicles that the VPS may be implemented on, will likely perform better than

assumed as well as be equipped with more robust systems.

6.1 VPS System Design for Mini-UAV

The first of the two platforms is a hypothetical low-cost Mini-UAV that is carrying

out a short mission (around 2-3 hours) in a small region of about 100 km2. As an

example, the missions this vehicle could carry out would be to monitor events in

a city or being launched from a military vehicle to assess a city or village ahead.

This vehicle is used to demonstrate the functionality of the system for low cost

and low performance UAVs. In addition, the operating regions are fairly small but

challenging due to the structured nature of cities.

6.1.1 Imaging System and Landmarks

The vehicle can be assumed to be operating at an altitude of 1,500 ft (500 m) and

equipped with an imaging system with a field of view of 20 x 30 degrees. This gives a

footprint for a nadir camera of 260 m x 175 which, as previously discussed in Section

5.1, gives a maximum of approximately a hundred landmarks per capture. The

sensor is assumed to have a resolution 2000 by 1300 pixels, giving a spatial resolution

of 0.13 meters per pixel and an estimated average landmark size of approximately

80 by 80 pixels. These landmarks have an estimated detection error of two pixels

and a failure rate of 2%.

Both of the proposed missions involve small regions that can be very dense in terms

of landmarks. These landmarks are likely to be either structured (placed along a road

or in distinct repeating patterns) or semi-structured (generally aligned to the vertices

in a grid but with some variety in their arrangement). The reference database has
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Figure 6.1: Map of Region Covering Milton Keynes and Cranfield Used for Mini-

UAV Tests (captured from Google Maps)

been constructed using data from the Ordnance Survey’s MasterMap (as discussed

in Chapter 3). A region covering the city of Milton Keynes and Cranfield (Figure

6.1) has been extracted from the MasterMap, giving a total of 50,000 features from

a 15 km x 10 km region, that includes both urban and rural areas.

6.1.2 Current Positioning Systems

Small unmanned vehicles of this type are generally using low-cost GPS-aided inertial

systems such as the Xsens MTI-G-700. These units provide position and attitude

in global coordinates (WGS84) but are dependent on the GPS to correctly estimate

these parameters. The proposed VPS is intended to replace GPS in case of a failure,

thus the time between the failure of the GPS and the loss vehicle control is criti-

cal parameter since the VPS must obtain a position estimate followed by full rate

positioning updates before this time has passed.

The Xsense IMUs are often chosen as they provide a high accuracy estimate of the

vehicle’s attitude for a long period of time (the MTI-G-700 claims a gyro drift of 10

degrees per hour). Unlike acceleration, which only affects the estimated position of
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the vehicle, gyros are used to estimate the attitude of the vehicle and ensure that

the vehicle maintains stable flight. This means that an unmanned fixed-wing vehicle

can continue to operate without a position estimate for a period of time but drift

or loss of attitude data is a critical failure.

Normally the drift is caused by biases on the gyros, which can be estimated by

fusing IMU and GPS data as discussed in Chapter 2. Therefore the failure point

is dependent on the autopilot’s ability to control the vehicle given slightly incorrect

attitude data. This is dependent on the robustness of the control system and it is

reasonable to assume that a few degrees is acceptable as other critical and control-

lable parameters such as airspeed, angle of attack and altitude are available from

other sensors.

However, while the vehicle might not need a positioning estimate to continue flight,

the VPS will need an approximate starting location. When GPS fails this esti-

mate is maintained by integration of IMU data, including accelerometers. These

accelerometers will not only be measuring the motion of the vehicle but also gravity,

which must be subtracted from IMU the readings in order to provide an accurate

positioning estimate. This gives rise to the most critical problem when using IMUs

for positioning; if the gyros drift by even a small amount the gravity which normally

acts along the Z-axis will begin to contaminate the X and Y axes. As a result the

velocity and position estimates will begin to drift approximately quadratically as

seen in Figure 6.2, where the effect of a linearly increasing (from zero to one degree)

gyro error in one axis on the position estimate is shown with respect to time. In

reality there will be drift on all three axes, giving an even larger final error.

Figure 6.2 shows a quadratic positioning error with respect to time, which is directly

related to the size of the search region the VPS matcher will have to process. The

time taken to match in the VPS is in turn a non-linear function of the number of

features in the search area. As a result, the exact time when the VPS is no longer

able to match due to time constraints is dependent on the processing power of the

vehicle, but a reasonable estimate is around a hundred seconds, giving a positioning

error of up to 150 meters per axis assuming the control inputs are known.
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Figure 6.2: Position Drift due to Increasing Gyro Bias Error (linear increase from

zero to one degree)

6.1.3 Reference Data

Figure 6.1 shows the area that is being used for this test. The extracted landmarks

have been processed to join intersecting or overlapping features and the centroid

for each feature has been computed. This reduced the database to approximately

40,000 features, which have been reprojected from British National Grid coordinates

to Spherical Mercator in order to preserve the aspect ratio of the landmarks and

provide the same view as observed by a UAV (Figure 6.3). Finally, these features

have been fingerprinted using the geometric descriptor with a resolution of one degree

per bit and the ten nearest neighbours have been stored for each fingerprint.

The use of a landmark database instead of raw imagery results in a significant

reduction in the size of the database, allowing the vehicle to carry a larger regional

database. The geospatial database used for testing contains over 40,000 fingerprinted

features distributed over a 150 km2 area and is 15 MB in size. By comparison, the

aerial dataset covering the same area at 0.5 m/pixel resolution and using standard

JPEG compression is 400 MB.
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Figure 6.3: Result of Processing Building Features from the OS MasterMap of

Cranfield

6.1.4 Visual Positioning System Configuration

Since the VPS will be operating in a semi-structured environment it will be needing

a full processing chain, including feature selection, neighbourhood scoring and con-

straint validation in order to obtain an initial match. Once the first match has been

correctly obtained the system can optimise itself by switching over to feature verifi-

cation, which will significantly speed up the time to match and provide positioning

data at a higher rate.

Descriptor

Given a landmark size of 80 x 80 pixels, a spacing of approximately 80 pixels between

each landmark and a detection error of two pixels, the estimated angular error in the

fingerprint is ± 1 degree. In order to match the database, each fingerprint encodes

its ten nearest neighbours for validation.

Feature Selectors

As the environment is semi-structured, the VPS will use both the Gabriel Graph

and Central feature selector. The Central feature selector is used to avoid matching
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incomplete features near the edges of the frame, while the Gabriel graph eliminates

poorly conditioned features such as features placed along a road.

The Central feature selector has been configured to use a linear scale, that provides

a score from zero to one where zero is at the x or y limits of the image and one is

at the centre of the image. As previously discussed in Section 5.1.1, this approach

has been chosen as it favours more complete features in sparse scenes.

Meanwhile, the Gabriel graph requires very little configuration as it only requires

a integer specifying the number of features to return. Thus the Gabriel graph

algorithm will always return the same number of features but the scores for the

features are normalised to the set, the first feature returned will always have a

score of one, then the n next best features are returned to the matcher. In the

UAV configuration the VPS will be time constrained, so the Gabriel graph has been

configured to return the 20 best features in each scene.

Database Region Extraction

The system needs a number of parameters in order to extract the expected region

from the database. This depends on the last known position, the vehicle’s velocity,

control inputs from the autopilot and the drift on the inertial sensors. In order to

simplify the problem the vehicle’s movement and control inputs have been taken out

of the system. Once the simulated vehicle looses GPS it maintains the last known

position with an increasing positioning error.

While it is possible to add the control inputs from the autopilot, these parameters

have no meaningful effect on the performance of the descriptor and matcher, which

are benchmarked on the recall rate (see Section 6.3 for further details). In addi-

tion, the control inputs add further errors which cannot be modelled without more

information about the vehicle and autopilot.

The region selection is thus computed as the last known position plus the estimated

distance travelled according to the IMU. In addition, this region is expanded by the

estimated drift in X and Y as a function of time seen in Figure 6.2. The drift has

been scaled up by a factor of two to cover other unknown in the system, such as

changes in altitude.
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Thus, if a new image is captured dt seconds after the loss of GPS the search region

is:

Xc = X0 + ∆XIMU (6.1)

where Xc is the centre of the search region, X0 is a 1D vector of the last known

position and ∆XIMU is the change in position integrated from the IMU. The size of

the search region is:

Xs = Sf + 2 ∗D(dt) (6.2)

where Xs is a 1D vector composed of the width and height of the search region, Sf

is a vector of the sensor footprint and D(dt) is the drift error as a function of time

since last GPS update.

Optimisation Threshold

If the estimated drift is low then the system can disable the initial candidate search.

This threshold is dependent on the number of estimated additional features in the

image, thus if the drift is low there will only be a small number of additional features,

while a high drift error yields a large number of features and causes the direct

matcher to fail. In this test the threshold has been set to 25 meters which, given the

estimated feature density, gives up to 40 additional features in each frame depending

on the type of scene.

Constraints

The system will only use the region similarity constraint since the search region is

small and the last known position is known (the internal distance constraint will not

be able to provide meaningful data when used with small search regions). Region

similarity returns a score for the fit of each assignment and the highest scoring

assignment is assumed to be correct.



6.2. VPS SYSTEM DESIGN FOR MARS LANDER 137

When constraints are used for validation in the optimised matching method, the

system returns the percentage of triangles that matched between the query and

target set. The assignment is considered to be correct if at least 95% of the triangles

match.

6.2 VPS System Design for Mars Lander

The second platform falls into the other end of the unmanned vehicle spectrum by

being a high risk and high cost vehicle where the success of the mission is critically

dependent on the positioning system. The aim of a lander is to set down as close

as possible to a designated area of scientific interest on another planet. Failure to

land at the correct region can at worst lead to a complete failure of the mission, at

a cost of several hundred million pounds.

Another aspect to consider is the available computational power. Computers oper-

ating in space need to be hardened to handle radiation that would otherwise cause

memory corruption and crashes (this is also a common issue on earth, critical com-

puter systems such as servers use error checking and hardened memory modules to

prevent data loss caused by background radiation). Hardening processors and mem-

ory modules for operation in space causes the hardware to lag behind the current

state of the art by up to ten years, thus severely restricting which algorithms can

be used on the vehicle.

By design, landers can provide short periods of high power, for example for critical

parts of the flight such as landing. This is supplied from batteries that are charged

by solar panels during the cruise phase and means that processors can run at the

highest possible clockspeeds and high power components can be considered if they

provide a signficant benefit to the mission.

6.2.1 Imaging System and Landmark Detection

As previously discussed in Section 2.5, there has been a signficant amount of work

done on detecting craters, primarly by researchers at NASA’s Jet Propulsion Lab-

oratory. These detection methods are efficient and have been paired with SLAM
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algorithms to provide an additional odometry estimate during landing, which has

been validated using real drop tests on earth [47]. SLAM gives a relative position

estimate and helps ensure that the vehicle maintains the planned trajectory during

atmospheric entry but does not provide an absolute position needed to ensure an

accurate landing.

The VPS would be of benefit since it can locate the vehicle in the planet’s local

coordinate system and help ensure a highly accurate descent to the intended scientific

target. VPS benefits from having a highly unstructured and robust environment to

navigate by, craters can be assumed to be randomly and uniformly distributed on

the planet’s surface and they are long lasting features. Further, due to the thin

atmosphere there are no clouds that can obscure the view during descent and dust

storms tend to be local events that does not affect the visibility of large landmarks

such as craters.

Determining the properties of the imaging system is a difficult task, since it requires

a system that is capable of detecting features at high altitude and throughout the

descent. This will inevitably require a system with a variable focal length and, since

craters are of varying sizes, a contextual database that can switch between different

detection levels as features scale in and out of the view. In order to simplify this

study the performance of the system is based on a vehicle currently in orbit and

equipped with a detector based on the work by Cheng [47]. In this report, craters

are detected with greater than 95% accuracy and subpixel accuracy, given an image

size of 830 by 470.

Each capture by the system has been designed so that it captures approximately

150 features, which is the equivalent of a 7% by 7% capture of the database.

6.2.2 Current Positioning Systems

Landers fuse several data sources during the flight. During the cruise phase the

vehicle is kept on its intended trajectory using IMUs, which are corrected using star

trackers that provide attitude to within 0.1 degree. In addition, the vehicles are

affected by the planets’ spin rates, thermal and ration pressure from the sun and

even the wobble of each planet’s magnetic axis, all of which need to be modelled
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and taken into account for the navigation solution. These models allow the vehicle

to reach the planet and enter orbit but additional corrections are required to ensure

an accurate landing on target.

In recent years radio signals transmitted via the Deep Space Network (DSN) have

been used to help estimate Mars landers’ position and velocity in orbit, which has

resulted in highly accurate insertions at the top of the atmosphere (the Mars Ex-

ploration Rover was within 200 meters of its target). Radio-based methods require

a large amount of human interaction and can not be used to maintain the vehicle’s

position estimate during the descent where primarily drag and wind can cause large

positional errors.

6.2.3 Reference Data

Mars has been extensively mapped in the past twenty years, in particular using the

Mars Reconnaisance Orbiter’s HiRISE camera. This has provided a highly accurate

terrain map of Mars with a planar resolution of approximately 0.3 meters per pixel

and an elevation map with up to 0.25 meter resolution. This map can be processed

using a crater detector at different scales in order to provide a reference database

for the VPS.

Fortunately it is very easy to emulate this, unlike features on earth craters are

randomly distributed on the surface of the planet. This has been simulated by

creating 30,000 features in the database, each of which has been fingerprinted with

one degree per bit resolution and assigned ten neighbours.

6.2.4 Visual Positioning System Configuration

The VPS configuration for the lander is generally the same as for the Mini-UAV with

a few exceptions in order to account for the crater detector, larger search region and

unstructured landmark distribution. Unless otherwise specified this configuration is

using the same parameters as described in Section 6.1.4.
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Descriptor

The detector is capable of detecting landmarks with subpixel accuracy, which gives

an angular error of less than one degree. This is lower than the design resolution

for a fingerprint (one degree per bit), which has therefore been modified to provide

a resolution of 0.5 degrees per bit and one degree error. This gives a 360 bits long

feature vector with a flat error of ± 2 bits per angle.

Feature Selectors

Unlike the Mini-UAV, the lander is operating in an unstructured environment. This

results in a very low level of weak features which means that the Gabriel graph

becomes ineffective and, to a great extent, unneccessary. As a result the lander has

been configured to use the same central feature selector as the Mini-UAV while the

Gabriel graph selector has been disabled. The matcher selects the 20 highest scor-

ing features from the central feature selector and then proceeds with the matching

process.

This has a side-effect of matching a majority of features near the centre of the

image. Large numbers of central features can have a detrimental effect on the pose

estimation algorithm - in particular on the elevation estimate, but this is dependent

on the pose estimation and data fusion methods used.

Database Region Extraction

Since the database has been randomly generated it does not have a specific scale and

the details of the capture location and altitude have not been defined. As discussed

in 6.2.1, the detection has been designed to simulate a capture of a 7% by 7% square

from the database. If the database is the equivalent to a hemisphere it is reasonable

to assume that the initial position is known to within 15 percent of the database. As

such, the search region is 40% by 40% square, giving approximately 4,500 features

in the target set.
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Optimisation Threshold

The lander is equipped with high performance inertial sensors and startrackers that

are able to maintain the attitude of the vehicle for an extended period (the MRO was

estimated to have drifted 3.7 km in ten days without corrections). As such, there is

no reason to run the VPS at high rates, and slower but more accurate algorithms

are favourable.

Constraints

Both constraint methods will be applied for this method since the target region

contains significantly more features than the region matched by the Mini-UAV.

The internal distance metric is therefore a very effective method to ensure that the

assignment of the candidate features results in a cluster in the same region.

The system is also using 20 candidates instead of ten, in order to improve the chances

that a correct match will be identified.

6.3 Matching Performance

The primary performance indicator of the descriptor and matching system is the

recall rate. The recall rate gives a measure of how successful a query was and is

computed as the ratio of the number of features that were successfully matched to

the number of features in the query. The query features are the features initially

extracted by the landmark detector unless a feature selection algorithm is used, in

which case the query features are the features selected by the algorithm.

In each evaluation 500 random queries are matched and averaged to give the es-

timated recall rate. Since both systems use a reference database it is possible to

extract a truth from the database and modify it to simulate the different parameters

studied in the following sections and still maintain a correct ID for each feature.

Each section will evaluate the effect of various parameters compared to the baseline

system configurations described in the previous sections.
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6.3.1 Detector

Table 6.1 shows the effect of detection noise on the recall rate. These results have

been produced by adding random noise to each feature in the query set before

generating the fingerprint. As expected, the system performs very well as long

as the noise matches the expected parameters (recall that the descriptor for the

Mini-UAV was designed for a detection error of two pixels while the lander system

expects an error of less than one pixel). Once the error increases far beyond the

intended detection error the recall rate drops off signficantly and becomes unusable

for positioning.

Further, Table 6.2 show the performance of the system with two pixels noise but

gradually decreasing detection rates. In this case 5% and 10% of the features were

either moved or removed from the query set prior to fingerprinting and show that

a poor detection method has a very detrimental effect on the system. These results

emphasizes how important it is to have a robust and predictable detector, that is

less likely to suffer from false or failed detections.

While the lander has a technically more accurate detector since there is less variety

in the set of features it is trying to detect, it also suffers more when there is an

increase in ambiguity due to incorrect fingerprints.

Meanwhile, Figure 6.4 shows the effect of a change in view angle. The project has so

far assumed a fully top-down view of the terrain below but the built in noise model,

neighbourhood matching and constraint evaluation makes it possible to offset the

camera relative to the ground and still obtain relevant matching results (assuming

the detector is capable of dealing with the perspective change). While the angular

limit for acceptable matching is relatively low (approximately 13 degrees), the re-

sults show that small changes on the camera’s orientation do not pose a significant

problem for the matcher.

6.3.2 Feature Selector

Table 6.3 shows the impact of the feature selector. Eliminating incomplete features

with the central feature selector has a significant impact on the recall rate and the
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Table 6.1: Effect of Detection Noise on Recall Rate

Noise (pixels) Mini-UAV Lander

0 99% 99%

2 96% 72%

4 92% 34%

6 68% 15%

Table 6.2: Effect of Detection Rate on Recall Rate

Detection Rate Mini-UAV Lander

100% 96% 97%

95% 85% 78%

90% 67% 54%
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Figure 6.4: Recall Rate for Increasing View Angles
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Table 6.3: Effect of Feature Selector on Recall Rate

Test Condition Mini-UAV Lander

No selector 79% 84%

Central only 89% 96%

Central + Gabriel 93% 95%

Mini-UAV benefits from the additional use of the Gabriel selector. However, the

Gabriel selector has little effect on the lander due to the unstructured landmarks

- weak, ambiguous or poorly conditioned features are much rarer in unstructured

environments - which is reflected in the recall rate. The Grabriel graph has only

been applied to illustrate this issue.

6.3.3 Matcher and Constraints

Table 6.4 shows the effect of varying the number of candidates on the recall rate for

the two vehicles. The Mini-UAV outperforms the Lander since it is matching to a

smaller region and is able to further reduce the number of features in its target set

thanks to a very targeted search region.

As a result, it is more likely that the correct match will be one of the best scoring

candidates once the neighbourhood verification has been carried out. This can also

be observed by looking at the effect of increasing the number of candidates for the

Mini-UAV further, which does not result in a meaningful increase in the success

rate. Since the correct assignment is likely to be a high scoring match additional

features simply increase the time to match, and can occasionally result in a failed

match as more false matches are introduced into the constraint algorithm.

However, increasing the number of candidates is noticeably improving the recall

rate for the lander since it has a larger search region resulting in a higher number of

ambiguous features. By obtaining more candidates the system increases the chance

that the correct match is a member of the candidate set.

The Mini-UAV benefits from the lower candidate count since it reduces the compu-

tational overhead. Table 6.5 shows the effect of increasing the number of candidates
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Table 6.4: Effect of Number of Match Candidates on Recall Rate

Number of Candidates Mini-UAV Lander

5 84% 64%

10 93% 82%

20 94% 95%

Table 6.5: Effect of Number of Match Candidates on Matching Time

Number of Candidates Mini-UAV Lander

5 220 ms 353 ms

10 532 ms 814 ms

20 1236 ms 1,828 ms

on the time to match, once the query set has been passed through the feature selec-

tion.

The lander takes longer to carry out a match since it uses a 360 bit long feature

vector versus the 180 bit feature vector for the UAV. In addition, it uses both the

internal distance and region similarity constraints to evaluate assignments, unlike

the Mini-UAV which only uses region similarity. This results in a relatively long

time required to match but it is worth keeping in mind that these times have been

obtained using a research version of the VPS implemented in Python and can be

reduced significantly with proper software implementation and optimisation.

Table 6.6 shows the results of the constraints on the recall rate. As a comparison,

a direct match without candidates and validation is shown as well, which results in

poor matching accuracy for both vehicles. The lander is doing much worse due to

Table 6.6: Effect of Constraints on Recall Rate

Test Condition Mini-UAV Lander

Highest Candidate Score 56% 28%

Internal Distance (ID) 76% 73%

Region Similarity (RS) 94% 85%

ID + RS 94% 95%
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the larger target region but at these matching rates either system is unusuable for

positioning.

Introducing the constraints improves the results drastically though. Both constraints

increase the recall rate sufficiently to use a positioning method that uses outlier

rejection, but the region similarity is much more effective for the Mini-UAV.

Combining the two constraints drastically improves the performance for the lander

as the two methods effectively reject invalid assignments in a large region. The Mini-

UAV meanwhile does not benefit from the same increase in performance, since the

internal distance constraint is only effective on large regions. On small regions it pro-

vides similar, but more ambiguous results than the region similarity method.

6.3.4 Optimised Matcher

The Mini-UAV (and to a lesser degree the Lander) is able to use an optimised

matching process when the position is known with high confidence that effectively

lets the system lock on to a position. This matching process does not use candi-

dates or constraints, instead it relies solely on the neighbourhood score to identify

correct matches. The method requires a low likelyhood of ambiguous matches and

is therefore only applicable in highly targeted matches but it removes one of the

most computationally expensive stages of the matching process.

Table 6.7 shows the performance of the matcher with increasing positioning errors

when the candidate and constraint matching is disabled. When the target region

is known with less than 25% error the optimised matcher performs as well the full

matcher but once the search region grows due to uncertainties then the performance

tapers off very quickly. However, for a 25% uncertainty the matching time reduces

to 83 ms per match, compared to 532 ms for for the full matcher.

6.4 Conclusion

This chapter has developed two configurations of the VPS for two distinctly different

types of missions. One is a Mini-UAV designed to operate in an urban region with



6.4. CONCLUSION 147

Table 6.7: Recall Rate for Optimised Matcher

Test Condition Recall Rate

Exact Region 95%

25% Region Growth 91%

50% Region Growth 82%

100% Region Growth 47%

semi-structured landmarks while the other is a Mars lander designed to operate with

unstructured landmarks.

The differences in landmark structure gives two different systems since certain al-

gorithms and methods are not applicable in each case. For example, the Mini-UAV

does not use the internal distance measure since it is ineffective in targeted search

regions. Meanwhile, the lander does not use an optimised matcher once a position

has been obtained with high confidence. This is due to the performance of other on-

board positioning systems which can maintain positioning estimates with sufficient

accuracy. As a result it is preferrable to carry out a full match and ensure higher

matching performance but with a longer matching time.

In addition, differences in the performance of sensors and detection methods on

each vehicle affect various aspects of the VPS. These changes have been discussed

in detail and each system has been validated by adjusting various parameters and

studying the performance of the VPS.

The performance has been evaluated by analysing the recall rate, the number of

features correctly matched as a ratio of the number of features in the query for each

parameter as well as the optimised matching strategy.

Results show that the VPS performs well sa long as it is given scenes that are within

the design of the system. However, over-designing the system in order to cover for

unknowns can have a detrimental effect, with reduced recall rates and an increase

in false matches. As a result, it is important to fully understand the performance of

each sensor on the vehicle and extensively test the system prior to deployment.

The following chapter will review the results of this thesis and discuss the validity

of the overall system.
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Chapter 7

Discussion

7.1 Background

This project has aimed to investigate the current state of visual positioning systems

for unmanned aerial vehicles and to develop a new approach to vision-based posi-

tioning that can provide an absolute rather than relative position estimate. The

primary advantage of utilising vision for positioning is that visual systems can op-

erate independently of external signals and thus provide a robust and independent

positioning system. Current common positioning systems, such as GPS, rely on ex-

ternal signals and thus can fail due to interference (e.g. urban canyons in cities) or

lack of signals (e.g. GPS is unavailable for a lander on Mars) and are also susceptible

to tampering, either through spoofing or jamming. Furthermore, a vision-based po-

sitioning system can complement other positioning systems by providing a fallback

system in the case of failure, improving the overall robustness and reliability of the

vehicles positioning system as a whole.

Vision is an information-rich data source. Since the late 1960s, the potential of

vision as a sensor within computer science has been explored; however, the prob-

lem has proven to be more complex than initially expected. Vision is not simply a

visual task; it requires both the identification and interpretation of features within

the environment. Vision thus requires recognition; for example, the human brain

combines both visual data and contextual information to provide a high level under-

standing of what is seen. In recognition of this, David Marr developed a framework

149
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where he aimed to outline the challenges that are required to be overcome in com-

puter vision in order to mimic the brain’s abilities to recognize and interpret visual

information.

Whilst these challenges have yet to be fulfilled, the field of computer vision contin-

ues to be extensively researched and a vast number of algorithms have since been

developed, ranging from corner detection and camera calibration algorithms to com-

plex 3D modeling and facial recognition methods. In addition, vision has proven to

be an effective method for solving certain navigation problems; for example, visual

odometry can in certain scenarios provide a highly accurate position estimate over

long periods of time.

Each of these tasks, however, need to be carefully controlled in order to achieve

the desired results. Whilst Marr’s model has encouraged researchers to explore and

study methods that enables vision systems to incorporate higher level information,

the work is still in its infancy.

As a result, the majority of the current work on visual positioning systems has

focused on relative positioning. Relative systems rely on a frame-to-frame analysis,

where a feature is matched from one frame to the next. This enables algorithms, such

as optical flow and SLAM, to track features that can then be used to determine the

motion of the vehicle. Whilst relative positioning attempts to demonstrate Marrs

model, the frame-to-frame analysis requires very little understanding of the scene,

and thus simplifies the problem significantly.

The main challenge with relative positioning methods is that they cannot be used to

correct the true position of the vehicle. For example, a lander that has flown to Mars

will only be able to determine its position relative to its starting location, and will

not be able to align itself with the local coordinate system and/or perform a landing

at a specific location. The systems are also highly vulnerable to visual interruptions,

such as if the vehicle flies through a cloud. This temporary obscuration of the camera

forces the vehicle to fall back on less accurate sensors and introduces considerable

positioning errors that cannot be recovered once visual tracking is resumed.

To overcome these issues, the literature review was used to investigate the current

state of the art for absolute visual positioning systems. The review identified that
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absolute positioning is currently studied and used extensively for localised problems,

such as augmented reality applications. In an augmented reality application, a 3D

graphic is overlaid on a display of the real world. The graphic can then be viewed

from different perspectives by using an algorithm that tracks the position of the

camera relative to the target. The system that tracks the position consists of two

stages. First, specific features on a marker are detected and associated with known

3D coordinates (feature detection) and then the position and orientation of the

camera relative to the target is determined by the pose estimation algorithm (pose

estimation).

As it is unrealistic and impractical to distribute markers around the world, a marker-

based system is not sufficiently scalable to assist UAVs with navigation. Thus re-

search in the field of absolute visual positioning has required the development of

other methods. The most promising work has been carried out by Conte[2], who

used a 2D cross-correlation method to match an image captured from a vehicle to a

satellite image of the region. Pose estimation is carried out by identifying to optimal

alignment of the aerial image within the geo-referenced satellite image. This method

has been flight-tested but struggles under anything but perfect conditions.

As a result, this literature review has taken a step back to the methods used in

augmented reality applications and found that these algorithms could be applied on

a global scale by using landmarks as known reference features (rather than markers).

In order for this to work, three different areas needed to be explored: landmark

detection, feature matching and pose estimation.

The review demonstrated that the detection and pose estimation problems have been

extensively studied and, to a large degree, solved. To facilitate feature detection, for

example, there are algorithms for that enable accurate detection of buildings, roads

and other landmarks in satellite and aerial imagery, as well as methods to detect

craters in imagery captured by satellites and landers. Similarly, pose estimation

algorithms have been developed that allow accurate positioning of cameras relative

to a target once the camera and vehicle model has been defined. The accuracy and

reliability of the pose estimation depends on obtaining a sufficient number of point

correspondences, where the features in the aerial image can be associated with their

global reference matches.
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The literature has shown extensive work on matching features to a reference, such

as song matching, but none of this work has been applied to geographic features.

Consequently, it was identified that a primary aim for the thesis should be to in-

vestigate the possibility of developing a geographic feature descriptor and matcher

that enables pose recovery from aerial images.

A key issue to consider during the development of a localisation system is the reliance

on other data. The aim has been to avoid relying on prior knowledge about position

and orientation of the vehicle in order to develop a system that is independent or,

at most, loosely coupled with other systems on the vehicle. If the proposed system

is overly reliant on inputs from other systems it will fail as they fail, making the

system largely unusable. However, it has been assumed that the vehicle has an

approximate position and accurate attitude estimate since these are required for

critical flight control tasks.

7.2 Landmark Detection and Availability

To locate a vehicle from aerial and satellite imagery, as this thesis has shown, re-

quires a distinct type of topography: landmarks (features) that are abundant and

reliably detectable. The primary feature of focus for this thesis has been residential

buildings, identified due to their consistent appearance (usually slanted roofs and

rectangular shapes), an attribute which makes them relatively easy to detect reli-

ably. Furthermore, as building detection is used extensively in many applications

within Geographic Information Systems (GIS) and mapping, a significant amount

of research has been carried out in this field.

The use of residential buildings as a primary feature however can limit the applica-

bility of the system, and thus operational scenario, to urban areas. To overcome this

limitation, the system could incorporate additional feature detectors that can run

in parallel or contextually, depending on the current mission. For example, build-

ings can be used in urban regions while farms and forests are used in rural areas.

Similarly, road-junctions can be used in either scenario. Ultimately, the system has

been designed to support any class of point feature that can be reliably detected

from the vehicle.
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One requirement the system design cannot account for is the availability of features

to detect. If the requisite features are not present or not available in the minimum

quantities required to match, then the proposed system will be unable to compute

a position estimate. Furthermore, visual sensors are susceptible to obscuration by

clouds or inclement weather, thus making it unsuitable for use as a primary posi-

tioning system. However, unlike a relative system, clouds do not pose a significant

problem for the proposed system as the position of the vehicle can be recovered

on exiting a formation, whilst being maintained using other systems. In addition,

from a practical viewpoint, it is unlikely that unmanned vehicles would operate ex-

tensively in poor weather conditions and heavy cloud as often the primary mission

is to capture imagery of ground targets. Clouds and poor weather would prevent

adequate imagery from being captured and thus it is unlikely that the mission would

be launched.

The vision sensor that captures the aerial imagery may also be supplemented by

other sensor data that can help detail the ground below. For example, many vehicles

that operate at high altitudes use other types of sensors including synthetic aperture

radars, which can penetrate clouds to build a map of the terrain below. This data

can be used to identify landmarks and provide an input to the proposed positioning

system. As a result, the visual positioning system is not strictly visual and can be

modified to work with a number of sensors.

Finally, the current work is exploratory, to determine whether it is possible to match

semi-structured landmarks accurately for use in positioning. Due to this the sens-

ing aspect of the problem has taken a back-seat to the description and matching

issues.

7.3 Description and Matching

The majority of previous work studying feature description and matching has fo-

cused on matching of visual appearance between aerial captures and reference im-

agery, such as the work by Conte. This type of matching restricts the performance of

the system as it requires recent reference imagery that matches the current weather

and lighting conditions. To overcome the limitations brought on by temporal and/or
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seasonal changes, the proposed system uses widely available but visually similar fea-

tures, such as buildings, to help locate the vehicle.

Further, landmarks cannot be matched by their individual appearance - a residential

home seen from the air in London can appear virtually identical to a home in

Aberdeen. This rules out a significant number of the current state of the art feature

descriptors in computer vision, such as SIFT and SURF, which match features based

on their appearance. Instead the system takes an alternative approach by matching

the features collectively; thus an alternative descriptor was developed that encodes

the geographic relationship between features.

The descriptor is based on the concept that landmarks can be recognised not by

their individual appearance but how they are related to other surrounding features.

For example, most people can identify their home among a number of houses along

a road in a satellite image, even if the house is identical to the others.

To replicate this interpretation, the new descriptor encodes the relationship between

a feature and its immediate neighbours. The relationship is encoded in a binary fea-

ture vector, known as a fingerprint, that is scale, rotation and translation invariant.

For performance reasons, the descriptor is aggressive and discards most of the data

associated with the feature that is irrelevant to interpreting location. The shape of

the region is encoded in the feature irreversibly, making it a strictly one-way pro-

cess. However, the descriptor is fully repeatable for varying scales and rotations,

making it suitable for the detection of geographic landmarks from various altitudes

and rotations. This ensures that the features identified by the detector produced

the same fingerprints as those within the reference database, whether the latter was

extracted from aerial or satellite imagery.

As a result, the operational envelope scope of the system is not limited by the visual

positioning system itself, but rather the landmark detection algorithm. In some

scenarios this is not an issue, for example, craters can be detected at a variety of

sizes, but in building detection amongst others the envelope is much tighter.

Since landmarks, in particular man-made landmarks, tend to be semi-structured

the descriptor on its own is not strong enough to match landmarks on a large scale.

Semi-structured regions mean that fingerprints for two features can be very similar,
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even if they are geographically distant, which becomes a significant issue in the pose

estimation algorithm.

This led to the development of a number of strategies in order to reduce the risk

of incorrect matches. These include the elimination of poorly conditioned features,

high-level region matching and methods to reduce the potential target set extracted

from the database. This improved matching performance, giving up to 95% match-

ing accuracy in both test scenarios: urban, semi-structured environments and un-

structured crater matching.

The results of the project also demonstrated the effect of sub-optimal matching

situations, caused by a poorly designed and configured system. In these situations,

the matching performance was greatly reduced, with certain parameters rapidly

reducing the matching accuracy to less than 30%. It is critically important that

any real world implementation of a vision-based positioning system considers the

precise requirements in order to optimise the performance of the landmark sensor

and associated algorithms. For example, a fundamental assumption in the proposed

system is that landmarks can be detected with a low false positive rate and a specific

estimated error. If the detection rate of the landmark algorithm is only slightly lower

than expected in flight, it will have a dramatic impact on the performance of the

overall system.

The results of the project have shown that vision-based positioning systems are

highly sensitive; changes in parameters and inputs can have both positive and neg-

ative effects on the overall performance. Consequently any proposed system will

require extensive tuning tailored for the prescribed task. This is not unique to this

project. For example, Visual-SLAM systems, which are among the most robust

visual positioning systems currently available, have a multitude of parameters that

need to be adjusted depending on the vehicle, trajectory type and likelihood of loop

closures.

In addition, the processing platform on which the proposed vision-based positioning

system is implemented can limit the overall functionality of the system. For exam-

ple, some of the tasks executed by the system, such as landmark detection and the

constraint stages of the matcher, can be very computationally expensive and there-

fore restrict the use of the system in real vehicles. Fortunately, processing hardware



156 CHAPTER 7. DISCUSSION

is becoming faster and more energy efficient every year; at the moment the mobile

devices industry is aggressively advancing technology in this field. It is thus likely

that by the time VPS is ready for flight testing, the technology will have sufficiently

developed to meet the computation demands.

Ultimately, the performance results for the VPS have merit and show the potential

for the descriptor and matcher when used in a complete positioning system. How-

ever, current work is still in the proof of concept stage and a significant amount of

work is required to move towards flight testing.

7.4 Future Work

There are a number of areas where progress is required in order to advance the

system to the stage where it can be flight tested and validated. Some of these areas

are critical for accurate positioning in the real world, while others are optional.

There are also a number of opportunities for areas where the current descriptor can

be applied to add new or improved functionality.

7.4.1 3D Terrain

The flat earth assumption is one of the core assumptions behind the current work.

This has helped simplify the problem to reach a state where the initial idea can

be validated and proven. However, the world is not two-dimensional and the third

dimension needs to be incorporated into the system to obtain a true position esti-

mate.

This should be a straight-forward task since reference maps such as the Ordnance

Survey contain elevation data and the database can associate any form of meta-

data with a feature. As such, the core issue is to obtain accurate elevation maps

and associate each building feature with elevation data. This data can immediately

be used in the pose estimation algorithms to determine not only the latitude and

longitude but also the elevation of the vehicle above mean sea level (AMSL) as

measured in WGS84.
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7.4.2 Non-nadir Sensors

The second assumption in this project is that the sensor is mounted on a gimball

in lock-down mode, thus making the sensor plane parallel with the ground plane

at all times. As a result the image is similar to what would be observed by a

satellite, making the features easier to match by avoiding perspective distortions

and minimising the effect of uneven terrain.

In a real operational scenario, this would require an an additional sensor and gimbal

dedicated purely to positioning, thus doubling the payload a vehicle would need to

carry; a less than ideal situation when considering the potential increase in weight

and power demands of the vehicle. Thus a better approach would be to take ad-

vantage of the sensor already mounted for the mission and correct for perspective

distortions in the VPS software. The results obtained in this thesis has shown that

the system can cope with perspective distortions of up to 13 degrees (see Section

6.3.1). This would allow the gimbal’s own state estimates to be used to approxi-

mately transform the image coordinates from the sensor plane to an intermediate

plane parallel to the ground.

This approach may face difficulties if the ground is not planar; for example, if some

of the features lie on a hill that is being observed at an angle. It is possible to

make use of a known elevation map however this introduces an additional external

dependence and requirement to the system. This is highly impractical and defeats

the purpose of the system: to create a positioning system that locates a vehicle

without the use of external inputs.

An alternative method may be to generate an estimated elevation map using either

a structure from motion algorithm or a simplified version thereof. For example, it

is trivial to track simple features such as Harris corners[10] between frames. If an

aircraft travels far enough between frames to produce a reference baseline then it

becomes possible to triangulate features and determine their approximate position

relative to the camera. This is a very light-weight method to obtain approximate

elevation data for landmarks and handle unexpected view angles. Furthermore, since

this approach is independent from the feature detector, it can run at a high rate to

ensure accurate feature tracking and improved elevation recovery. Meanwhile, the
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landmark detector can be cued on key frames at low rates to conserve energy.

A final difficulty faced with non-nadir sensors is the change in appearance of 3D

features. A simple example is buildings; whilst they may have very similar roof-

tops, their facades can be completely different. This makes detection a much harder

problem and thus requires a more sophisticated feature detection algorithm. Fortu-

nately this is only applicable to 3D features; 2D features, such as craters, are only

distorted due to the perspective (e.g. circles become ovals), which can be handled

by the detector.

7.4.3 Parallelisation and Optimisation

The current processing chain is completely linear which results in a longer time to

find a match. However, some of the slowest tasks such as constraint validation are

independent and can be carried out in parallel if the processing platform supports

it. This is covered in more detail in Section 5.4.

7.4.4 Altitude layers

The proposed visual positioning is ultimately constrained by the landmark detection

algorithm. If the detection algorithm is unable to detect features due to altitude

then the entire system fails. In some cases, such as building detection, there are

not many options other than tuning the detector and providing feedback to it to

compensate for altitude changes.

However, in the Mars lander scenario, the problem is exacerbated since the vehicle

descends from orbit to ground level in a matter of minutes. During this descent,

the features undergo a massive scale change relative to the vehicle; large features

that were previously visible leave the view, while small features now occupy enough

space in the image to be detected.

To account for these scale changes, it would be useful to construct a multi-layer

database for vehicles that carry out this type of descent where the system intelli-

gently switches between layers as the vehicle descends.
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Similarly, to optimize the detection of features, it would be advantageous for the

system within an aerial vehicle to be capable of switching the context or reference

layer depending on the current location. This would allow a vehicle to navigate

using buildings in urban areas but switch over to agricultural fields once it reaches

rural areas.

7.4.5 Alternative Uses

There are a number of areas where either part or all of the proposed system can be

used in alternative ways. Note, these are ideas that have arisen during the work on

this thesis and are not in any way an exhaustive list.

Descriptor

The detector is a basic but efficient approach to uniquely describing geometric re-

lationships between features. It is robust to tracking errors, whilst scale, rotation

and translation invariant, and can work with any type of point feature. As a result,

the descriptor can be applied to a number of problems outside landmark descrip-

tion:

• Face recognition - Locations of key features in a face, such as corners of eyes

and mouth, can be extracted and encoded in a fingerprint.

• Data encoding - There are use cases where QR codes are required but the code

itself is too complex to be detected reliably. The descriptor could be used to

encode data, such as developing a serial number that can reliably/readily be

detected from all angles and distances.

• Star trackers - Star trackers are mounted on satellites and continuously track

stars by matching them to a reference database. This task is remarkably sim-

ilar to the proposed system, although it only obtains attitude. Star trackers

also use comparatively complex methods to match star patterns. The descrip-

tor could be used to quickly encode star patterns, giving either higher rate

attitude estimates or lower power consumption.
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VPS

Developing the VPS for real-time vehicle positioning is difficult; a single positioning

error can have significant repercussions. However, there are other reasons to obtain

positioning information where real-time matches are not required. For example, as

discussed in Section 2.3.3, UAVs produce vast amounts of data that needs to be

geo-referenced and tagged in order to be of value.

The VPS can thus be used to automatically geo-reference both UAV and satellite

imagery, but it has the additional benefit of being able to identify specific features

in an image. This allows the processing of historic data from vehicles and enables

searches for landmarks instead of coordinates. For example, it becomes possible to

search for all aerial views of a specific building between two dates.

This feature-based approach to mapping can be further expanded by referencing

the features to other databases. The best example of this is the Ordnance Survey’s

TOID, which is a unique identifier for all features in the UK. The TOID is used

in a wide range of databases, from planning permissions to energy usage and crime

reports. This data can be pulled in and associated with each feature in the VPS,

allowing high-level querying of UAV data.

Finally, it can be used for systems such as Argus-IS (see Section 2.3.1) that provide

a persistent eye in the sky, as it simplifies the identification of particular areas of

interest and helps manage the vast amounts of data generated by the sensor.
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Conclusion

This thesis has developed a new approach to visual positioning for unmanned aerial

vehicles which, unlike previous methods, is designed from the bottom up to provide

absolute positioning data within a global coordinate frame. The aim of the thesis is

to provide an alternative to GPS, which enables positioning in GPS-denied environ-

ments (due to interference or jamming) or in areas where GPS is not available.

The majority of previous work within vision-based positioning systems has focused

on relative positioning methods, such as visual odometry and Self-Location And

Mapping (SLAM), whilst comparatively little work has examined and explored the

potential for absolute positioning. This disparity is propagated because relative

positioning tends to be a simpler task to solve; it relies solely on a frame-by-frame

analysis, however does suffer from visual hiatuses or discontinuities (such as clouds).

Absolute methods, whilst expected to be more complicated to develop, can recover

their position once the hiatus is over and allow vehicles to continue their mission,

thus making the system a viable alternative to GPS.

Absolute methods use feature correspondences between an aerial capture and a

reference database to obtain global positioning. The challenge with this approach is

that even the most robust and reliable landmarks, such as buildings and junctions

(often chosen for their low visual variety and long lifespans), can be organised in

semi-structured ways (such as in grid-like arrangements or other repeating patterns)

that can be difficult to match

161
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To overcome this challenge, this thesis has presented a new framework for an absolute

positioning system that consists of four main tasks:

• Landmark Detection

• Feature Description

• Landmark Matching

• Pose Estimation

Through a comprehensive review of current literature, it is acknowledged that two

of these tasks within the framework, landmark detection and pose estimation, have

been discussed extensively, and in some cases solved. The two outstanding tasks,

feature description and landmark matching would need to be solved in order to fulfill

the requirements of the framework, and the aim of this thesis.

These requirements have led to the development of a feature descriptor that uniquely

describes landmarks based on their geographic arrangement relative to their neigh-

bours. The descriptor is scale, rotation and translation invariant and allows the

system to accurately distinguish similar or ambiguous features within the same re-

gion. It encodes the appearance of the region in a binary fingerprint that allows

memory efficient storage of a large number of features.

The results from the initial tests of the descriptor showed that it can accurately

match in small regions, however its performance suffers as the size of regions in-

creases. As a result, a more complex matching approach was necessitated. This

approach involved several stages: feature selection, candidate matching, neighbour-

hood verification and constraint validation.

In feature selection, the query features are down-selected to ensure only well-conditioned

features are matched, using a new approach based on connectivity graphs. Candi-

date matching is a straight-forward scoring matcher; it uses neighbourhood veri-

fication to determine a set of potential matches for each query feature. Finally,

constraint validation ensures that the selected best matches among the candidates

fit with an overall model. The model is based on calculating/matching/comparing

the region similarity between the aerial capture and the correct target region in the

database.
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The results show that in two test scenarios, a mini-UAV operating over a city and a

Mars lander preparing for a precision descent, the system can achieve a better than

95% matching accuracy, given a well configured system and good conditions. While

these results are promising, it also revealed that the system is sensitive to incorrect

estimates of certain parameters, such as the performance of the feature detector.

As a result, it is critical for a designer of a future visual positioning system to fully

understand the performance and limitations of not only the sensor but also the

algorithms and the complete system.

Whilst these sensitivities and limitations are not inconsequential, it is shown that

the system can still operate successfully. As shown in the literature review, most

visual positioning systems today suffer from similar issues, which, at the core. Is due

to an overreliance on vision alone. Although pure vision is an information-rich data

source, it requires additional contextual information to truly achieve robustness and

reliability.

In addition, it should be noted that in order to prove the concept a number of

assumptions were made, which should be addressed in any opportunity of further

work. The system currently relies on a flat earth model and does not support

changes in elevation. It also assumes that the sensor plane is parallel with the

ground plane in order to avoid perspective distortions and distortions due to uneven

terrain. This requires the use of a lock-down gimbal and a postioning-dedicated

sensor in addition to the mission sensor, which both would add further weight and

power requirements.

As discussed, these problems can be overcome and would allow the system to work

in parallel with the mission task. Further, since the core of the positioning system

relies on point features, any sensor that is capable of detecting point features can

be used, such as visible light and thermal cameras or synthetic aperture radars. In

particular, the incorporation of radar would allow the system to operate in poor

weather conditions.

Finally, there are other uses for the new descriptor besides its implementation within

the visual positioning system. The most noteworthy is the potential of the descriptor

to process and automatically geo-reference imagery captured by UAVs and satellites

whilst tagging landmarks present within the scene. These landmarks can then be
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associated with external databases, allowing high-level queries in visual data.
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