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ABSTRACT 

PLGA have already been successfully applied for controlled drug delivery 

systems by the pharmaceutical industry due to its biocompatibility, 

biodegradability and ease of processing. It has recently further been developed 

and formulated into a form of nanoparticle.  

The single emulsion evaporation method was used to prepare nanoparticles in 

this study. By varying different parameters such as the concentration of regents, 

the type of surfactant and emulsion method, different particle sizes and size 

distribution of PLGA nanoparticles could be obtained. 

The stability of PLGA nanoparticles was further investigated by assessing their 

thermal property over a certain period of time using DSC. The decrease of Tg 

confirmed the hydration and degradation of PLGA polymers and nanoparticles. 

The changes of surface morphology showed that the nanoparticles were in 

spherical shape and maintained smooth surface before the storage, whereas 

they started to lose their original shapes as well as agglomerate to each other 

after 2-week storage. These results suggested that there was an erosion and 

degradation of PLGA nanoparticles during storage. 

Ibuprofen-loaded PLGA nanoparticles have been successfully prepared by o/w 

single emulsion evaporation method. During the stability study, a faster 

degradation rate compared to non-loaded PLGA nanoparticles was exhibited, 

showing that Ibuprofen increased the degradation rate of PLGA nanoparticles. 

According to the results of drug releasing study, PLGA nanoparticles exhibiting 

a slower drug release rate than pure drug which proved that drug-nanoparticule 

system could effectively increase the stability of drugs. PLGA polymer is a 

potential material for drug delivery system. 

Keywords:  

Poly (lactic-co-glycolic acid); nanoparticles; Ibuprofen; drug loading; 

characterisation; stability; drug releasing 
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1 Introduction 

1.1 Project overview 

This research study is designed and supervised by the School of Engineering at 

Cranfield University (UK) 

This project mainly focuses on the studies of biodegradable poly lactic-co-

glycolic acid (PLGA) nanoparticles for pharmaceutical applications. Due to its 

biocompatibility, biodegradability and ease of processing, PLGA have been 

extensively used for controlled drug delivery systems by the pharmaceutical 

industry. Biodegradable polymeric nanoparticles may provide many advantages 

in drug delivery systems such as the improvement of bioavailability of poorly 

soluble drug and prolongation of drug release. Moreover, the polymeric 

nanoparticles could deliver the drug more efficient to the targeted tissue as a 

result of improved permeability and drug diffusion .  

1.2 Initiation & Motivation  

The raise of nanotechnology has been helping people to gain the capacities to 

observe and manipulate at a scale of atom and molecule. Nanotechnology is a 

very diverse discipline where it interacts and merges with many other subjects 

such as medicine, engineering and biology. Nanomedicine, the applications of 

nanotechnology in medicine, is an emerging interdiscipline growing at an 

amazing rate.  

A report published by BBC research in 2012 showed that the market value of 

the worldwide nanomedicine industry was undergoing a rapid upward trend. 

The total market value in 2003 was only $500 million, while it expanded to $63.8 

billion and $72.8 billion in 2010 and 2011, respectively. It also estimated that the 

market would reach $130.9 billion by 2016. 

One of the greatest values of nanomedicine could be its applications in new 

medical treatments and more effective drugs. For example, it can make drug 

more stable and improve its bioavailability especially for poorly soluble drug, as 

well as controlled release and delivery to the specific target site. Nanoparticles 
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made with biodegradable polymers haven been widely exploited in drug delivery 

system due to their high biocompatibility and low side effect.  

PLGA is a degradable biopolymer applied in drug delivery system. It has further 

been developed and formulated into a form of nanoparticle (Makadia and Siegel 

2011). While the preparation methods and many characteristics of PLGA 

nanoparticles have been widely investigated, the study of the stability of PLGA 

nanoparticles and their thermal properties, particularly in relation to the 

pharmaceutical manufacture condition, still remains underdeveloped. Therefore, 

this research intends to first evaluate the stability of PLGA nanoparticles which 

will be prepared with the modified emulsion-solvent evaporation method and 

freeze-drying. The properties of those PLGA nanoparticles will be further 

investigated, followed by a preliminary study of controlled drug release. 

Currently, cancer is still a big threaten to human health. It is difficult to find out a 

good way for cancer therapy. Chemotherapy is the most common way which 

causes severe side effect on human body(Zhang, Gu et al. 2008). Therefore, 

scientists and researchers all put great efforts on developing effective method 

for cancer therapy with low side effects. Many literatures have stated that 

ibuprofen is not only the nonsteroidal anti-inflammatory drug, but also shows 

promising potential on the cancer treatment (Bonelli, Tuccillo et al. 2012, Endo, 

Yano et al. 2014). However there is still small numbers of studies regarding the 

Ibuprofen-loaded PLGA nanoparticles. Thus ibuprofen is chosen as the drug to 

be loaded into PLGA nanoparticles in this study. In order to explore the 

feasibility to deliver ibuprofen in PLGA matrix, the preparation and 

characterization of IBU-loaded PLGA nanoparticles, the studies of stability and 

drug release profile are conducted. 
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2 Literature review 

2.1 Nanotechnology 

“Nano” originates from the Greek word “dwarf”. Nanotechnology was first 

proposed in 1959 in the lecture of “there’s plenty of room at the bottom” by 

physicist Richard Feynman, who looked into the future and predicted how 

technology might make things smaller and smaller. In 1974, the Japanese 

researcher Norio Taniguchi used the term “nanotechnology” to describe the 

semiconductor processes in nanometer level. People initially paid much 

attention to the fabrication and purity of nanomaterials themselves, but the focal 

point has now been shifted to apply nanomaterials to various life-related 

applications such as drug delivery system, DNA self-assembly and proteins 

delivery. 

It is undoubted that nanotechnology not only has a huge potential to be applied 

in different kinds of areas, but also can create bigger profits and stronger 

technological competitiveness. Due to the rapid development of 

nanotechnologies, nanotechnology is regarded as the technology which might 

lead to the next industrial revolution in 21st century (Andrew D 2007). 

2.1.1 Nanotechnology & Nanomedicine 

Nanotechnology is a multidiscipline with an integration of traditional sciences 

such as chemistry, physics, biology and materials science. It can be defined as 

“the science and engineering involved in the design, synthesis, characterization, 

and application of materials and devices, whose smallest functional 

organization in at least one dimension, is on the nanometer scale or one 

billionth of a meter” (Emerich and Thanos 2003). In simple terms, 

nanotechnology is a science at a very small scale. At this scale, various 

possibilities can be made. 

Nowadays, nanotechnologies are applied in various areas from manufacturing 

to computing, and even to medicine and cosmetics. Most of applications of 

nanotechnology are based on the fact that nanomaterials can exhibit unique 
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properties which are quite different from their bulk properties. With reduction of 

the size, the surface-to-volume ratio of materials increases. Therefore, a bigger 

area of surface can be exposed and the materials become more active. As a 

result, various functionalization can be made on the surface of nanomaterials. 

Besides the larger surface-to-volume ratio, quantum size effect is another 

important property of nanomaterials. By utilizing this property, nanotechnology 

can be an effective tool for imaging. An example of the materials applied in 

nanotechnology is carbon, which is the basic element in the nature world. It can 

be fabricated into various kinds of nanostructures such as carbon nanotubes, 

carbon dots, carbon fibres, which own higher strength and strong fluorescence. 

Due to their properties, these carbon nanomaterials are widely applied in 

microelectronics, aerospace industry and medicine.  

Nanofabrication could be achieved via two approaches: ‘top-down’ and ‘bottom-

up’. The ‘top-down’ approach starts with a block of material followed by crafting 

into desirable structures by etching or milling. The main challenge for top-down 

manufacture is how to reduce the size of structures while insure the high 

accuracy. In contrast, the ‘bottom up’ approach fabricates nanomaterials by 

assembling the small molecules into bigger shapes. How to effectively build up 

molecules to a bigger size is the crucial problem for this approach. So far, these 

two approaches have been extensively exploited to achieve various 

nanofabrications. The combination of these two approaches now appears to be 

a new trend to modify the preparation techniques (The Royal Society, 2004).  

Nanotechnology undergoing rapid advances triggers a large amount of 

researches and developments in human health. Consequently, a new discipline, 

nanomedcine, emerges from nanotechnology and becomes a hot topic. 

Nanomedicine is the medical application of nanotechnology to disease 

treatment and drugs optimization. Our body consists of different kinds of organs 

which are made up with cells. The major constituent of cells is DNA, proteins 

and some other biological molecules and they are all within nano-scales. 

Applying nanotechnology to medicine makes it possible to let people to better 

observe cells and tissues as well as to design corresponding materials and 
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devices to interact with them where the bulk materials cannot reach. (Silva 

2004). 

2.1.2 Nanoparticles in pharmaceuticals 

Nanoparticles are colloidal polymeric particles with a size between 10 to 

1000nm (Brigger, Dubernet et al. 2012). Nanoparticles may exhibit many 

extraordinary properties such as quantum size effect, surface effect, volume 

effect and macroscopical quantum tunnel effect which cannot be observed in 

fine particles or bulk materials. These properties enable naoparticles to have 

bigger surface to mass ratio, visual effects and advanced bulk materials 

properties. Due to the lager surface to mass ratio, nanoparticles are able to 

encapsulate drugs, proteins and probes as well as bind and adsorb them on the 

surface (De Jong and Borm 2008). Because of their submicron size, 

nanoparticles are small enough to reach the tissues and cells, which can be 

used in drug delivery system, gene delivery, and bio-imaging etc. It is even 

possible for nanoparticles to permeate the blood brain barrier (BBB) by coating 

with different surfactants.  

As shown in Table 2.1, there are different kinds of nanoparticles, including 

liposome, dendrimers, solid lipid nanoparticle, and polymeric nanoparticles etc., 

made from nature materials to synthetic materials. Due to the diversity of 

nanoparticles, they can be designed into different kinds of vehicles for 

therapeutic purpose. Among these applications, drug delivery is the major 

interest group and has received an increasing interest and investments from the 

pharmaceutical industry. The nanoparticles-associated drug delivery could 

target organs directly and specifically and further reduce the toxicity caused by 

free drugs to non-target organs. As a result, the bioavailability of the drugs 

could be increased. 
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Table 2.1 Overview of some nanoparticles and their medical applications (De 

Jong and Borm 2008) 

 

Liposome is the first materials applied in the pharmaceutical field for drug 

delivery. Due to its similarity to biological cells, liposome is biocompatible and 

biodegradable to human body, which shows a promising potential to be applied 

as a vehicle for drug delivery. A wide range of agents have been demonstrated 

that can be effectively encapsulated into liposomes to achieve a better 

therapeutic treatment (Sharma and Sharma 1997). However, liposomes also 

have some limitations, such as poor storage stability, low encapsulation 

efficiency and hard control for drug release. In order to overcome these 

limitations, biodegradable nanoparticles have been widely applied in this field 

and they have shown better results than liposomes (De Jong and Borm 2008). 

Meanwhile, surface modification is another effective way to solve these 

problems.  
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2.2 Biodegradable polymers 

2.2.1 Properties & applications 

Biodegradable materials can be obtained both from the nature and synthesis.  

They are able to be degraded in human body either with enzyme or not. The 

degradation products they produced which are biocompatible and toxicologically 

safe are further eliminated by the normal metabolic pathways. During past 

decades, the applications of biodegradable polymers in controlled drug delivery 

system were undergoing a dramatic development. An increasing number of 

researches have been conducted for biodegradable polymers (Makadia and 

Siegel 2011). 

Biodegradation is generally defined as the process of biomaterials being 

solubilized, hydrolyzed or resolved by enzymes or chemical substances to 

formulate CO2, H2O, CH4 and other low molecular-weight products (Wang, Wu 

et al. 2000). The mechanism of biodegradation can be divided into four steps, 

namely water sorption, reduction of mechanical properties (modulus & strength), 

reduction of molar mass, and weight loss. During the process of degradation, its 

speed can be influenced by PH, temperature and humidity (Kronenthal 1975). 

According to Ikada Y, biodegradable polymers have been mainly applied in two 

areas, namely biomedicine and ecology (Ikada and Tsuji 2000). For ecological 

applications, a large amount of agriculture products and plastics have been 

designed to be biodegradable in order to reduce their pollutions to ecological 

environment (Gross and Kalra 2002). For biomedicine applications, they have 

been widely applied in surgery and pharmacology due to their properties of 

biodegradability and low-toxicity by-products. There are many advantages of 

biodegradable polymers. Unlike biocompatible materials, biodegradable 

polymers could avoid foreign-body reactions since they only stay in the body 

during a short period and then disappear without any traces. As no one want to 

take a risk to carry any foreign materials permanently, biodegradable polymers 

are undoubtedly a good choice for health application (Ikada and Tsuji 2000). 
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2.2.2 PLA, PGA, PLGA polymers 

The thermoplastic aliphatic polymers such as poly (glycolic acid) (PGA) and 

poly (lactic acid) (PLA), and their copolymer poly (lactic-co-glycolic acid) (PLGA), 

have been extensively studied and widely used as biodegradable polymers. 

PGA (Figure 2.1) is the simplest linear polyester with high crystallinity (45%-

55%), which lead to its low-solubility in various organic solvents. It can be 

degrade easily by hydrolyzing the ester bond. Surgical suture and bone internal 

fixation devices have been widely fabricated by PGA to ease the pain for patient 

and to get these things out of our body because of its biodegradability. However, 

the low solubility of PGA restricts its application in a wider field (Middleton and 

Tipton 2000). 

 

Figure 2.1 General Structure of Poly(glycolic acid) (PGA) 

In comparison, PLA (Figure 2.2) is a chiral molecule with two stereoisomers L-

lactic acid and D-lactic acid (Park 1995). As a result, PGA has three forms of 

polymer, namely poly D-lactic acid (PDLA), poly L-lactic acid (PLLA) and poly D, 

L-lactic acid (PDLLA). PDLA is high-crystalline and hard to be processed to 

various structures. For semi-crystalline PLLA, it is degraded in a slow speed 

and can be utilized to bone internal fixation devices. PDLLA is more flexible 

than other two forms and it is amorphous. Therefore it can be easily degraded 

and extensively used in drug delivery system. 
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Figure 2.2 General Structure of Poly (lactic acid) (PLA) 

PLGA (Figure 2.3) is co-polyester approved by the American Food and Drug 

Administration (FDA) and European Medicine Agency, which means PLGA is 

safe enough to be used as biomedical products such as sutures and 

pharmaceutical materials especially in drug delivery system (Zolnik and 

Burgess 2007). While PLGA copolymers are amorphous, their crystallinity is 

reduced and can be hydrolyzed greater than its monomers, PLA and PGA, in 

the presence of water (Park 1995). Furthermore, different ratios of PLGA exhibit 

different properties and degradation times. By changing its ratios, degradation 

time and drug release kinetics can be controlled (Makadia and Siegel 2011). 

Among these, 50:50 PLGA is the most common one and own the fastest 

degradation rate (Lu, Wang et al. 2009). 

 

 

Figure 2.3 The structure of PLGA copolymer; 

2.2.3 Synthesis of PLGA polymers 

Currently, the most common method to synthesize PLGA polymers is to 

condense the glycolic acid, lactic acid and their oligomers directly or random 

ring-opening copolymerization(R-ROP) between two monomers, the cyclic 
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dimers (1, 4-dioxane-2, 5-diones) of glycolide and lactide. Figure 2.4 illustrates 

the basic polymerization process of synthesis. The first method is to simply 

condense the oligomers of glycolic acid and lactic acid, which means only 50:50 

PLGA polymers can be produced, whilst ROP method is the other method 

shown on Figure 2.4. 

 

Figure 2.4 Molecular structure prepared by SOP(Thomas and Lutz 2011) 

However, ROP method shows a broad polydispersity indexes (PDIs) of the 

molecular weight and wide composition range (Qian, Wohl et al. 2011, Thomas 

and Lutz 2011). Many studies have demonstrated that both molecular weight 

and composition play significant roles in the determination of degradation 

properties and thermal properties of PLGA polymers. In order to achieve 

narrower PDIs and more homogeneous co-polymers, various optimization are 

designed. Stayshich and Meyer has successfully prepared the PLGA polymer 

by segmer-assembly polymerization (SAP) method and demonstrated that 

repeating sequence of PLGA co-polymers exhibit better properties with uniform 

degradation and linear weight loss (Stayshich and Meyer 2010). The synthesis 

method is shown in Figure 2.5, a condensation of fixed sequence of oligomers 

(LG, LL, GG and GL), which can effectively control the sequence of the co-

polymer and obtain varying composition of PLGA. At the same time, differet 

kinds of catalysts are also founded to optimize the fabrication method of PLGA 

polymers. 
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Figure 2.5 Molecular structure prepared by SAP(Thomas and Lutz 2011) 

(L=lactic unit, G=glycolic unit)  
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2.3 PLGA nanoparticles 

2.3.1 Physicochemical properties of PLGA nanoparticles 

The physicochemical properties of PLGA nanoparticles such as surface area, 

size, molecular weight and crystallinity can affect the biodegradation and the 

kinetics of drug release (Zolnik and Burgess 2007).  

Materials can exhibit different properties when they are in the nano-size. As 

discussed before, nanomaterials are able to bind, adsorb and carry other 

compounds more chemically reactive than bulky materials. Their strength 

and/or electrical properties could also be heavily effected (The Royal Society, 

2004).  

PLGA is made up with PLA and PGA and it is generally an acronym for poly D, 

L-lactic- co – glycolic acid where D- and L- lactic acid forms are in equal ratio 

(Makadia and Siegel 2011).PLGA is an amorphous (non-crystalline or semi-

crystalline) material in nature. Thus it can be easily produced into any structures 

and are soluble in common organic solvents (e.g. acetone and ethyl acetate) 

(Makadia and Siegel 2011). Tg is the major characteristic transformation 

temperature of the amorphous phase, which is defined as the temperature 

when a material transforms from glassy structure to rubbery liquid (Sichina W J, 

2000). PLGA copolymers have a glass transition temperature between 40 and 

60 °C higher than physiological temperature (37°C), which means it is glassy in 

nature and have a fairly rigid chain structure which is strong enough to be 

formulated as drug delivery devices (Wang, Wu et al. 2000). The molecular 

weight is also a crucial parameter for determining the mechanical strength of 

the polymer (Wang, Wu et al. 2000). 

Size and size distribution are also of significant importance for nanoparticle-

aided drug delivery systems. The nanoparticle sizes are closely related to drug 

release properties. If the particle size is too small, it may degrade before drugs 

reach the target organs thus causing undesired toxicity. On the contrary, 

nanoparticle may not be able to permeate into cells effectively with bigger size 

(Li, Wang et al. 1997). 
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Meanwhile, different composition of PLGA polymers can exhibit different 

physicochemical properties. 50:50 is the most commonly used composition of 

PLGA co-polymers and it has the shortest biodegradation time lasting only 50-

60 days. In comparison, other copolymer composition, such as 75:25, leads a 

longer time to degrade (Mundargi, Babu et al. 2008). 

Compared to PGA, PLA is more hydrophobic and more difficult to be hydrolyzed 

because of its additional methyl side groups which hinder the water molecular to 

attack. Therefore, glycolic-rich PLGA co-polymers are more soluble to water 

and have a faster degradation (Wang, Wu et al. 2000, Muthu 2009). Their 

molecular weight, Tg, melting point and crystallinity percentage are also altered 

by various ratios of PLGA (Muthu 2009). Due to the lack of any methyl side 

groups in PGA, lactic-rich PLGA co-polymers have a higher molecular weight 

and increased Tg. 

2.3.2 Stability of PLGA nanoparticles 

According to Abdelwahed, the instability of PLGA nanoparticles is a major issue 

for pharmaceutical applications, particularly for the drug delivery system 

(Abdelwahed, Degobert et al. 2006). In order to increase the stability of PLGA 

nanoparticles, proper storage conditions should be employed with a monitoring 

system to track the physiochemical changes. The stability of nanoparticles 

usually refers to physical stability and chemical stability. 

Physical stability is mainly based on the characters of colloid. Due to the size of 

colloids and their high polydispersity, colloidal particles are in the Brownian 

motion, resulting in the suspension of particles in the solution. On the other 

hand, colloid has high surface to mass ratio and large surface area, which 

cause particles to agglomerate together. This is known as the thermodynamic 

instability. Adding stabilizers during the preparation is a good way to avoid 

aggregation (Abdelwahed, Degobert et al. 2006). PVA (polyvinyl alcohol) is the 

most common stabilizing agent for the preparation of PLGA nanoparticles. 

Chemical stability is affected by many parameters such as temperature, pH, 

type/composition of polymers, etc. Lemoine D et al studied the stability of PLGA 
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with different composition ratios by measuring their molecular weight. They 

have found that bigger composition ratios of PLA result in more stable particles. 

The research showed that the molecular weight of 50:50 PLGA decreased 

faster than that of 75:25 PLGA (Lemoine, Francois et al. 1996). The rate of 

degradation remains low at a pH of 7.4 and at a storage temperature of 4 ℃. 

The extreme pH levels (either in strong acid or strong base) can further 

enhance the degradation rate and reduce the stability (Abdelwahed, Degobert 

et al. 2006). In addition, the type of delivered/encapsulated drugs is also an 

important parameter which may affect the physiochemical properties and 

degradation rates PLGA (Makadia and Siegel 2011). 

  



 

15 

2.4 Preparation of PLGA nanoparticles 

Various methods can be applied for manufacturing synthetic polymeric 

nanoparticles. Since the way of preparation might determine the properties of 

nanoparticles, it is essential to optimize the preparation method by adjusting the 

parameters to make desirable PLGA nanoparticles (Nagavarma, Yadav et al. 

2012). 

Preparation of PLGA nanoparticles can be made by two approaches：bottom –

up approach and top down approach (Figure 2.6). The bottom-up approaches 

include emulsion/microemulsion polymerization, interfacial polymerization, and 

precipitation polymerization, while the top-down approaches involve emulsion 

diffusion, solvent displacement, salting out method and emulsion evaporation 

(Astete and Sabliov 2006, Nagavarma, Yadav et al. 2012). 

 

Figure 2.6 Preparation methods of nanoparticles 

Particle size is of significant importance in the preparation of nanoparticles. 

Different particle sizes can be obtained by using different kinds of preparation 

methods. Meanwhile, the variety of particle size also appears in the same 

preparation methods. By modifying some parameters, particle sizes can change 

dramatically. Table 2.2 simply summarizes the PLGA nanoparticles prepared by 

various methods. It also compares the variation of particle size based on one 

method with different parameters (e.g. ratio of PLGA polymer, molecular weight 

of polymer, surfactant and drugs) 
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Table 2.2 Summary of important parameters of PLGA nanoparticles by different 

preparation methods 

PLGA 

Mw 

(Da) 

preparation  

method 
Drug 

paticle 

size(nm) 

Techniques 

for particle 

size 

reference 

50/50 45000 solvent evaporation Gyslosporine 120±15 
Dynamic light 

scattering 

(Chacón, 
Molpeceres et 
al. 1999) 

50/50 8000 
emulsion-solvent 

evaporation  

BSA model 

protein 
168±60 

Dynamic light 

scattering 
(Feczkó, Tóth 
et al. 2011) 

50/50 13500 solvent evaporation Gentamicin 266±100 Dynamic light 

scattering 
(Friess and 
Schlapp 2002) 

50/50 36200 solvent evaporation Gentamicin 553±207 

50/50 6000 
 interfacial 

deposition method 
Paditaxel 122±3 

Photon 

correlation 

spectroscopy  
(Fonseca, 
Simoes et al. 
2002) 

50/50 14500 
 interfacial 

deposition method 
Paditaxel 133±2 

75/25 63600 
 interfacial 

deposition method 
Paditaxel 160±2 

50/50 10000 Nanoprecipitation 
procaine 

hydrochloride 
198±3.4 

Photon 

correlation 

spectroscopy 

(Govender, 
Stolnik et al. 
1999) 

50/50 11000 Nanoprecipitation Rhodamine 300±85 

Scanning 

electron 

microscope y 

(Betancourt, 
Shah et al. 
2009) 

50/50 
40,000–

75,000 

emulsion/solvent 

evaporation 

Dexamethaso-

ne 
500±100 

Scanning 

electron 

microscope 

(Kim and 
Martin 2006) 

50/50 

 

Nanoprecipitation Sparfloxacin 198 ± 4.4 

Photon 

correlation 

spectroscopy  

(Gupta, Aqil et 
al. 2010) 
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2.4.1 Emulsion evaporation Method 

Emulsion evaporation is the oldest method that has existed for over 30 years 

and it is the most commonly-used method to prepare PLGA nanoparticles 

(O'Donnell and McGinity 1997). Emulsion evaporation includes single-

emulsions (oil in water (o/w) or water in oil (w/o)) and double-emulsions (w/o/w). 

Single-emulsion (o/w) is mainly used for hydrophobic drugs which can increase 

the solubility of drugs. In contrast, double-emulsions are suitable to encapsulate 

water-soluble drug (Astete and Sabliov 2006). Figure 2.7 illustrates the 

procedures of emulsion evaporation method. Firstly, oil phase is prepared by 

dissolving the polymer in an organic solvent like chloroform, ethyl acetate, or 

dichloromethane. Then the oil phase is dropped into an aqueous solution with a 

high speed stirring to create an oil-in-water (o/w) emulsion by using a surfactant 

such as poly (vinyl alcohol). After the emulsification between these two phases, 

agitation is continued until the evaporation of the organic solvent. Reducing 

pressure can also be used to evaporating the solvent (Nagavarma, Yadav et al. 

2012). 

 

Figure 2.7 Schematic diagram of O/W emulsion solvent evaporation 

(O'Donnell and McGinity 1997) 
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Parameters like variety of surfactants, homogenizer speed, organic solvents 

and polymer concentration are crucial to determine the size of PLGA 

nanoparticles (Astete and Sabliov 2006, Nagavarma, Yadav et al. 2012). For 

example, homogenization with a high speed is an effective way to reduce the 

particle size. A research conducted by Lemoine and Francois observed that 

with increased surfactants concentration, the size of nanoparticle can have a 

distinct reduction (Lemoine, Francois et al. 1996). Surfactants are used to help 

stabilize the emulsion for the purpose of avoiding aggregation. PVA is a 

surfactant that has been generally employed. Although surfactants play 

important roles in nanoparticles preparations, it is hard to remove them from the 

surface of nanoparticles, leading to potential side effects and toxicity in the 

human body. 

2.4.2 Emulsion Diffusion Method 

In this synthetic scheme, the polymer and the drug are dissolved in a partially 

water-miscible solvent. The organic phase is added onto an aqueous phase 

prepared by a suitable surfactant (e.g. PVA, anionic sodium dodecyl sulphate 

(SDS)) under a mild stirring. The resulted emulsion is diffused into water under 

a moderate stirring to obtain nanoparticles (Astete and Sabliov 2006). 

Parameters such as surfactant, polymer concentration, polymer molecular 

weight and stirring speed are required to be considerate during the nanoparticle 

preparation. Although the stirring speed does not influence the formation of 

nanoparticles, it can determine the particle size of nanoparticles. The higher 

stirring speed is, the smaller the particle size is (Astete and Sabliov 2006).  

Many literatures have shown that emulsion diffusion method is energy-saving 

because it does not require a high speed stirring. However, the main drawback 

of this method is the difficulty to remove the large amount of water. A higher 

centrifugation speed and longer centrifugation time are needed to separate 

nanoparticles and water (Astete and Sabliov 2006, Pinto Reis, Neufeld et al. 

2006). 
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2.4.3 Nanoprecipitation(solvent displacement or solvent diffusion) 

Method 

Nanopercipitaion method is also called as solvent displacement of solvent 

diffusion method. The method is based on the interfacial deposition. Water-

miscible solvent such as acetone, methanol was used to dissolve the polymer 

and drug. Then the solution is poured into an aqueous phase either with 

surfactant or non-surfactant. Nanoparticles are generated spontaneously with 

the organic solvent diffusing into aqueous phase. Normally, water is used as 

aqueous phase. PVA or Poloxamer are the most frequently-used surfactant for 

the nanoprecipitaion method. Both hydrophilic and hydrophobic drugs can be 

applied for preparation the drug-loaded nanoparticles (Astete and Sabliov 2006, 

Rao and Geckeler 2011). 

There are many parameters affecting the physicochemical propertied of 

polymeric nanoparticles. The way to inject the organic phase into aqueous is a 

key procedure. A constant and wise dropping is of importance to determine the 

size and morphology of nanoparticles (Rao and Geckeler 2011). Meanwhile, the 

type of surfactant and organic solvent, the aqueous agitation rate and the 

concentration of polymer are all the critical parameters for the nanoprecipitation 

method (Astete and Sabliov 2006).  

2.4.4 Salting-out 

In order to fabricate the nanoparticles, the polymer and drug are dissolved in 

water-miscible solvent. Then, the prepared solution is added to an aqueous 

phase which prepared with a high-concentrated salt and emulsifier under a high 

stirring speed.   

Figure 2.8 exhibit the process of the salting out method.Salting out is similar to 

nanoprecipitation method. However, compared with nanoprecipitaion, salting 

out does not need solvent diffusion that the water-miscible solvent transform to 

the aqueous phase. Due to the existence of salt, nanoparticles can directly 

formulate in the aqueous phase(Pinto Reis, Neufeld et al. 2006). 
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Parameters like concentration of polymer or surfactant, type of surfactant or salt 

and stirring speed all play important roles in the process of salting out 

preparation (Astete and Sabliov 2006). 

  

Figure 2.8 The basic process of salting out method 

(Pinto Reis, Neufeld et al. 2006) 
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2.5 Drug Delivery 

“Drug do not delivery themselves”(Bala, Hariharan et al. 2004). In order to 

delivery drug directly and effectively to the target site, a suitable drug delivery 

system is of the essence. The drug delivery system plays an indispensable role 

in the pharmaceutical field, which is able to improve the performance of the 

drug and increase the possibilities for other innovative therapies (Bala, 

Hariharan et al. 2004). Recently, there is a growing interest on the development 

of polymeric drug delivery. Due to the low toxicity, biodegradable polymer is 

preferred materials for the application of drug delivery. Furthermore, various 

forms of drug delivery agents can be prepared with biodegradable polymer (e.g. 

films, cubes, nanospheres and nanocapsules), which enlarge the choices of the 

methods to deliver drugs. Last but not the least, it has great potential to achieve 

the controlled release and site pacific delivery by using polymers for drug 

delivery. 

PLGA nanoparticle is one of the hot topics in the drug delivery system. The 

main advantage of PLGA nanoparticles is bio-degradation. Therefore, it is easy 

to control the drug release rate by varying the degradation time of polymers. 

There are large numbers of methods to vary the degradation time. Parameters 

like composition of PLGA, particle size, PH and molecular weight are required 

to be considered to determine the degradation rate of PLGA, which will be 

detailedly discussed in the sections below. 

2.5.1 Drug loading 

There are two ways to load drug onto nanoparticles. One is entrapping drugs in 

the core of nanoparticles. The other one is absorbing drugs on the surface of 

nanoparticles. The methods to prepare drug-entrapped PLGA nanoparticles 

have been introduced in the Section2.4. Both hydrophobic and hydrophilic 

drugs can be encapsulated into PLGA nanoparticles by different preparation 

method. The surface-absorbed nanoparticles are achieved by adding drugs into 

a solution containing pre-prepared PLGA nanoparticles or adding them during 

the process of the polymerization (Soppimath, Aminabhavi et al. 2001).  
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High loading capacity is an important property for a successful drug delivery 

system (Kumari, Yadav et al. 2010). Due to the high loading capacity, a 

reduction of the quantity of PLGA polymers and a increase of drug does can be 

achieved, which reduce the toxicity of materials to human. The drug loading 

content (DLC) is used to measure how many drugs have been loaded into 

nanoparticles. In contrast to theoretical weight of drugs, the amount of the drug 

loaded into nanoparticles is determined by encapsulation efficiency (EE).The 

calculation of DLC and EE are shown below. 

DLC(%) =
Drug weight in nanoparticles

nanoparticles weight
 × 100% Equation 2.1 

 

EE (%)  =
actual weight of Drug

theoretical weight of Drug
× 100% Equation 2.2 

However, it is difficult to precisely measure the drug load content of 

nanoparticles due to the problems to completely remove the unloaded-drugs. 

The most common method to remove the unbound drugs from nanoparticles is 

high-speed centrifugation, dialysis method or gel filtration.  

2.5.2 Degradation  

It is commonly acknowledged that the aliphatic polyester nanoparticles degrade 

via a hydrolytic mechanism. PLGA undergoes hydrolysis degradation as well as 

a possible enzymatic degradation which still has not been completely proved by 

the researchers. As shown in Figure 2.9, PLGA polymer degrades with the 

uptake of water and then hydrolysis into lactic acid and glycolic acid.  

 

Figure 2.9 Hydrolysis of poly lactic-co-glycolic acid(Makadia and Siegel 2011) 
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The detailed process of PLGA degradation contains three steps. In the first 

phase of hydrolysis, the molecular weight of PLGA co-polymers reduces 

dramatically with continuously cleavage and solubilization of low molecular 

weight fragments. In this process, the structures of polymer remain the same 

and no monomers are produced. In the second phase of degradation, the D, L-

lactic and glycolic acid monomers and soluble oligomer are formulated, 

resulting in significant loss of mass. Due to the formulation of the acid 

monomers, the pH reduces rapidly and autocatalyses further degradation. In the 

final phase, the soluble oligomers are completely hydrolysed into soluble 

monomers(Bala, Hariharan et al. 2004).  

There are two ways for degradation, namely heterogeneous degradation and 

homogenous degradation. Heterogeneous degradation means that the 

degradation undergoes a more rapidly rate in the core of PLGA nanoparticles 

than at the surface. On the other hand, homogeneous degradation means 

nanoparticles degrade in a same rate both inside and outside. Many studies 

have suggested that the dynamic of PLGA degradation has a heterogeneous 

mechanism. (Park 1995, Athanasiou, Niederauer et al. 1996, Zolnik and 

Burgess 2007). As illustrated above, normally the degradation order of PLGA 

nanoparticle is inside-out. The reason for this phenomenon is that the 

degradation production oligomeric acid, which gathers within the microsphere, 

could decrease the pH and create an acid environment leading to autocatalysis. 

However, when at PH 2.4, the degradation order changes from inside-out to 

outside-in (Zolnik and Burgess 2007).Therefore, the degradation order of PLGA 

nanoparticles greatly depends on the PH. 

Due to the bio-degradation properties of PLGA, PLGA is able to degrade in the 

body under the presence of water. The two hydrolysis products of PLGA, lactic 

acid glycolic acid, are both easily absorbed and metabolized by human body. 

Lactic acid is the basic product of metabolism in the body through anaerobic 

glycolysis and it converts into water and CO2 after Krebs’s cycle. Glycolic acid 

is also the by-product of various metabolic pathways in the body under normal 

physiological conditions such as excretion through urine (Abdelwahed, 
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Degobert et al. 2006). Thus, a minimal systemic toxicity is associated with 

PLGA nanoparticles for drug delivery. 

2.5.3 Factors Affecting Degradation  

In order to design a more efficient drug delivery system, it is essential to 

understand the factors affecting the process of PLGA degradation. By varying 

these factors, different drug-releasing time and degradation properties can be 

obtained. There are many factors influencing the biodegradation of PLGA 

nanoparticles both in vivo and in vitro, including preparation method, 

physicochemical properties of PLGA polymer (composition of polymer, glass 

transition temperature, molecular weight, particle size, shape and morphology), 

nature of hydrolysing media (PH, temperature) (Wu and Wang 2001, Bala, 

Hariharan et al. 2004, Makadia and Siegel 2011).  

Effect of Composition The ratio of PLGA polymer is of significant importance 

during the whole process of degradation, which greatly influences the hydration 

of the polymer matrices. Due to the lack of one methyl comparing to lactic acid, 

glycolic acid is more hydrophilic, which leads to an increase of the weight loss 

of polymer. Many studies have demonstrated that PLGA polymers with a higher 

content of glycolic acids own a faster degradation (Park 1995, Wu and Wang 

2001). Therefore, the proportion of glycolic acids determines the degradation 

and drug release rate. 

Effect of Crystallinity (or Tg) As PLGA polymer is amorphous in nature, glass 

transition temperature is a key physicochemical properties for PLGA polymers. 

Ikada and Tsuji proposed that semi-crystalline polymer owns a greater 

hydrophobicity, leading to a higher rate of degradation (Ikada and Tsuji 2000). 

Therefore, the crystallinity of lactic acid increases the biodegradation rate of 

PLGA. 

Effect of Molecular Weight (Mw) There are two different opinions to the 

effects of molecular weight (Mw).Some studies shows that PLGA with higher 

molecular weight degrade faster. Due to the longer polymer chains of high 

molecular weight polymer, the chance of water molecule attack to polymer chain 
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increase resulting in a higher degradation rate.(Wu and Wang 2001). While 

other studies show that it may spend a longer degradation time with a longer 

polymer chains (Makadia and Siegel 2011).  

Effect of Size The nanoparticle with small particle size has a higher surface 

volume ratio which increases the chances for nanoparticles to exposure in 

water. Therefore, the degradation rate of PLGA nanoparticle increase with the 

reduction of particle size (Makadia and Siegel 2011). 

Effect of pH Both alkaline and strongly acidic media accelerate the degradation 

rate (Zolnik and Burgess 2007). 

Effect of Drug Type The degradation rate of PLGA matrices vary with different 

kinds of drugs. Meanwhile, the drug release profile and the steady-state rate 

also vary dramatically. However, the relationship between the drug types and 

degradation rates are still under investigation (Siegel, Kahn et al. 2006). 

Effect of Drug Load Matrices with bigger amount of drug loading possess a 

faster burst release compared to those with lower drug content. However, this 

load effect only suitable to nanoparticles with certain levels of drug content 

(Makadia and Siegel 2011). 

2.5.4 Drug Release Behaviour 

As described before, different degradation time could be specified by varying 

ratios of PLGA composite. Hence, the drug release in specific time could be 

controlled and achieved (Lewis, 1990). 

When drug is released from PLGA nanoparticles, a tri-phasic drug release 

pattern is normally observed. The pattern shows a high burst effect at the onset, 

a lag phase and a secondary apparent-zero-order release phase (Zolnik and 

Burgess 2007). The high initial burst phase is characterized by the dissolution of 

the drug located near the nanoparticle surface. This dissolution loses the 

binding with PLGA, resulting in more surface pores and more drugs contacting 

to the fluid. Nearly 60% of the drugs are usually released during the first phase. 

Therefore, how to reduce the drugs release in this phase before they arriving 
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the targets seems to be the main challenge for a more efficient drug delivery 

system (Kirby, White et al. 2011). After the first phase, the degradation of PLGA 

nanoparticles occurs and the drug diffuses slowly outside the particles. Finally, 

with the increased solubilization and erosion of the matrix, the secondary burst 

release of drug appears (Friess and Schlapp 2002). 

There are five factors which determine the drug release rate (Soppimath, 

Aminabhavi et al. 2001, Kumari, Yadav et al. 2010): 

 Desorption of drug bound to the surface of nanoparticles 

 Diffusion through the nanoparticle matrix 

 Diffusion through nanocapsules 

 Nanoparticle matric erosion 

 Process with combined erosion and diffusion 

According to the five factors, it can be concluded that drug release rate greatly 

depends on the diffusion and biodegradation of the matrix. Therefore, it is 

important to choose a proper polymer matrix to delivery drugs.  

Drug release mechanism are affected by the type of drugs, the particle size of 

nanoparticles, molecular weight of the polymer and drug loading content. 

Nanoparticles with a small particle size have a faster initial burst rate than the 

ones with big size. Because the smaller the particle is, the bigger surface to 

mass ratio it has, which means more drugs might be bound to the surface 

leading to a higher rate of initial burst. Kumari and Yadav disscued the 

molecular weight in their literature, which said that polymer with higher 

molecular weight might have a faster initial burst(Kumari, Yadav et al. 2010). 

Polakovic et al demonstrated that most of drug is undergoing diffusion model 

once the drug loaded content is below 10% (Polakovič, Görner et al. 1999). 

There are many methods used for the in vitro release study such as biological 

membranes, dialysis bag/tube and ultrafiltration. Among these, dialysis bag/tube 

is the most commonly-used one. In order to separate released-drugs from 

nanoparticles, dialysis tubes/bags are utilized. For the release study, dialysis 

bags with a suspension of nanoparticles are incubated into PBS, which is able 
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to trap high-molecular-weight nanoparticles in the bags as well as release drugs 

into the dissolution medium (Kumari, Yadav et al. 2010). 
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2.6 Pharmaceutical Applications of PLGA nanoparticles 

2.6.1 Cancer treatment 

Nowadays, cancer still keeps on a top position to threaten our health. Although 

chemotherapy is the most traditional way for the cancer therapy, it destroys not 

only the tumour cells but also the normal tissues which could generate great 

adverse effect on human body (Zhang, Gu et al. 2008). 

Due to its small size, PLGA nanoparticle is able to permeate deeper in the 

tissues. Further with the advantage of controlled release, it can prolong drug 

residence time. Therefore, PLGA nanoparticles have been successfully applied 

in the anti-cancer drug delivery system by delivering accumulate therapeutic 

agents with enhanced permeability and retention effect (EPR effect) (Lu, Wang 

et al. 2009, Danhier, Ansorena et al. 2012). 

PLGA nanoparticles can either be the matrix to encapsulate the drugs or have 

functionization on their surface. For example, cancer related drugs, such as 9-

nitrocamptothecin, paclitaxel, and cisplatin, have been encapsulated in PLGA 

nanoparticles successfully. For 9-nitrocamptothecin and paclitaxel, PLGA is 

used to enhance their low solubility and increase the availability of drugs. 

Despite the high toxicity of cisplatin, the encapsulating PLGA nanoparticles can 

make good effect on the target tissues specifically and reduce its toxicity to 

other normal organs (Kumari, Yadav et al. 2010). When PLGA nanoparticles 

are linked with biotargeting ligands, such as hormones, cytokines, 

chemotherapeutic agents and vaccines, it is feasible to make drugs target 

malignant tumour with high affinity and specific (Zhang, Gu et al. 2008). 

2.6.2 Diabetes 

Nowadays, insulin injection is the most common way for the drug therapy of 

patients with insulin-dependent diabetes mellitus (IDDM or Type I diabetes). 

The multiple treatment and high-does injection reduce the life quality of patients 

and may cause severe adverse effects. As a solution, insulin-contained PLGA 

nanoparticles can maintain a long-time release which prolongs the release of 
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insulin from several hours to 1-9 days. The time could be further varied with 

different preparation methods (Takenaga, Yamaguchi et al. 2002). 

The oral delivery system has been developed to bing in convenience and 

exclude potential side effect caused by insulin injection. Cui F and his 

colleagues found that the PLGA-Hp55 nanoparticles (PHNP) could be used in 

oral insulin delivery effectively and successfully. The in vivo tests on rats 

showed that PHNP reduced the serum glucose level over 24 h. The PLGA 

nanoparticles coated with Hp55 has a better drug encapsulation efficiency and 

an increased drug bioavailability by reducing the initial burst of insulin (Cui, Tao 

et al. 2007). 

2.6.3 Vaccine 

PLGA nanoparticles applied in vaccine delivery system can increase the uptake 

of both antibodies and adjuvants. Beside the uptake, it is realizable to combine 

different kinds of antibodies or adjuvants in one particle to exhibit multiple 

functions and control the dose to reduce inflammatory responses and enhance 

the efficiency of vaccines (Danhier, Ansorena et al. 2012). 

The viral nucleocapsid hepatitis B core antigen (HBcAg) is a useful antigen for 

patients infected by HBV. Chong and Cao et al. have found that a vaccine 

formulation containing MPLA + HBcAg encapsulated PLGA nanoparticles 

showed a stronger Th1 cellular immune response with a predominant 

interferon-γ (IFN-γ) profile than those induced by HBcAg alone, suggesting that 

the vaccine-loaded PLGA are more effective in terms of the therapeutic effect 

(Chong, Cao et al. 2005). 
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2.7 Ibuprofen-loaded PLGA nanoparticles 

2.7.1 Ibuprofen 

Ibuprofen is a nonsteroidal anti-inflammatory drug (NSAID) (Bonelli, Tuccillo et 

al. 2012, Dian, Yang et al. 2013), which is generally used to reduce the 

inflammation as well as relieve the pain, especially for the pain caused by 

inflammation. It has been proved that ibuprofen is effective to treat rheumatoid 

arthritis, rheumatoid osteoarthritis, ankylosing spondylitis etc. Moreover, 

ibuprofen has been approved by World Health Organization (WHO) and Food 

and Drug Administration (FDA) as a necessary medicine for the basic health 

system and the preferred anti-inflammatory drug for children (Dian, Yang et al. 

2013).  

Many studies have observed that the nonsteriodal anti-inflammatory drugs 

(NSAIDs) are able to inhibit cellular proliferation of some tumors effectively 

within the concentration from 400 to 800 μM. Ibuprofern as one of the NSAIDs, 

have been proved by Patrizia Bonelli and his colleagues having the potential to 

anti-proliferate the human gastric cancer cell line MKN-45 (Bonelli, Tuccillo et al. 

2012). Meanwhile, Endo H et al. have also demonstrated that ibuprofen can be 

used as a chemotherapeutic agent for the lung cancer. The downregulation of 

Hsp70 in cancer cells can prevent the cancer cell from progressing. Ibuprofen 

enables to suppress the Hsp70. Therefore, the combination of ibuprofen and 

cisplatin as a chemotherapeutic agent can not only enhance the antitumoral 

activity of cisplatin to fight against the lung cancer cells, but also can reduce the 

doses of cisplatin, which lead to a higher efficiency of chemotherapeutic and 

lower toxicity to patients (Endo, Yano et al. 2014). 

 

Figure 2.10 Structure of Ibuprofern 
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However, the main obstacle for the application of ibuprofen in pharmaceutical 

field is its low water solubility. Figure 2.10 shows the structure of Ibuprofen. 

Functional groups such as phenyl group and isobutyl group both are the 

hydrophobic groups, which demonstrate the hydrophobicity of the drug. 

Therefore, an increasing number of researches are conducted to increase the 

solubility and bio-availability of Ibuprofen.  

2.7.2 Ibuprofen-loaded nanomaterials 

In order to enhance the solubility and bioavailability of ibuprofen, various 

methods have been found and studied, such as the use of permeation 

enhancers, solid dispersion, nanoparticles, nanocubes and films. Different 

materials are chosen as vehicles for the delivery of Ibuprofen  

Lipid-based cubic liquid crystalline nanoparticles have been designed for drug 

delivery. Due to their lipid matrix, cubic nanoparticles are biocompatible and 

able to encapsulate varied drugs from hydrophilic to hydrophobic, to amphiphilic 

drugs. Meanwhile, cubic phase nanoparticles can increase the stability of drugs. 

Dian and his colleagues have prepared the ibuprofen-loaded cubic phase 

nanoparticles by liquid phytrantriol for the oral delivery system, which has 

proved that ibuprofen-loaded cubic nanoparticles has a longer release time than 

pure ibuprofen, showing sustained releasing profile (Dian, Yang et al. 2013). 

Jiang, Hu et al. used DEAE dextran as a stabilizer to prepare the ibuprofen-

loaded nanoparticles by co-precipitation method. The nanoparticles have been 

successfully prepared with an average size of 14.7nm and have been proved 

more stable than the pure drug (Jiang, Hu et al. 2005). 

2.7.3 Ibuprofen-loaded PLGA nanoparticles 

Using PLGA polymeric nanoparticles as vehicles to delivery drugs is one of 

promising methods in the pharmaceutical areas. Many studies have been 

proved that the advantage of nanoparticles is that poorly water-soluble drugs 

can be delivered in higher efficiency in the aqueous environment when 

entrapped in the nanoparticles (Bonelli, Tuccillo et al. 2012). Moreover, the 
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nanoparticles can increase the stability of drugs as well as controlled-release 

the drug in the pacific target.  

Meanwhile, there are many advantages to use PLGA as the material for 

preparing the drug-loaded nanoparticles. PLGA, which have been introduced in 

precious section, is a biodegradable and nontoxic polymer approved by FDA. 

Therefore it is a suitable material for drug delivery. Secondly, due to the 

hydrophobicity of ibuprofen, it is easy to load the drug into the hydrophobic 

material---PLGA. Both Single emulsion evaporation method and emulsion 

diffusion method can be used to prepare the ibuprofen-loaded PLGA 

nanoparticles. Only a certain amount of drug is needed to be added in the oil 

phase during the preparation, and then the drug-loaded PLGA nanoparticles 

can be obtained (Soppimath, Aminabhavi et al. 2001). Numbers of research 

have shown the potentials to utilized PLGA nanoparticles as drug carries for 

ibuprofen delivery (Siegel, Kahn et al. 2006, Bonelli, Tuccillo et al. 2012).  

According to the crucial role of ibuprofen in the treatment of some tumors, 

increasing the solubility as well as the bioavailability of the drugs seems to be 

an urgent problem needed to be tackled. Therefore, encapsulating ibuprofen 

into the PLGA nanoparticles is one of the powerful and effective ways to 

delivery drugs. 

  



 

33 

2.8 Characterization Techniques 

Adequate and proper characterization of PLGA nanoparitcles is essential for its 

quality control. The important parameters which need to be evaluated for the 

PLGA nanoparticles are particle morphology, particle size and size distribution, 

molecular weight and thermal analysis (e.g. crystallinity and Tg). When PLGA 

nanoparticles are produced by different preparation methods and with different 

composition ratios of PLGA co-polymer, these changes may cause varieties of 

its physicochemical properties and affect the degradation time and drug release 

kinetics (Hausberger and DeLuca 1995). 

On the other hand, since PLGA is polyester, the major challenge for using this 

polymer is its chemical and physical instability during storage and/or drug 

delivery. During storage, aggregation and unwilling degradation may take place. 

Characterization techniques are used to track these changes and ensure the 

quality of the products used in drug delivery system (Abdelwahed, Degobert et 

al. 2006).  

2.8.1 Particle morphology 

The particle morphology can be observed by scanning electron microscopy 

(SEM), transmission electron microscopy (TEM), cryogenic transmission 

electron microscopy (cryo-TEM) and atomic force microscopy (AFM) (Astete 

and Sabliov 2006). TEM and SEM are both very useful for producing the 

particle images. TEM is commonly applied to see the shape, aggregation and 

internal details of particles (Astete and Sabliov 2006). TEM can provide a broad 

image of a sample which has up to 50 million magnification level with a high 

resolution. When preparing the samples of TEM，nanoparticles should be 

diluted in water. During the capture of images, the electron can be transmitted 

through the particles. Thus a detailed internal image of nanoparticles can be 

obtained by TEM. Due to the understory of samples and the high resolution, 

TEM techniques are more suitable to biologic samples. The limitation of TEM is 

that it only can show a two-dimensional structure of the image.  
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In comparison, SEM is usually applied for observing sample’s surface and 

monitoring the degradation process (Park 1995, Zolnik and Burgess 2007). 

Since it can provide a three-dimensional and deeper image, SEM can further be 

used to estimate the size distribution (Hausberger and DeLuca 1995). However, 

samples are required to be conductive when using SEM. The non-conductive 

samples should be coated by gold leading to destroy and non-recovery of the 

samples. In order to avoid the non-conductive to be destroyed, environmental 

scanning electron microscopy (E-SEM) is designed which introduce small 

amount of water in the vacuum making the non-conductive samples detected by 

electron. Due to its low resolution, only a bigger size of particles can be imaged 

by E-SEM. 

AFM is another powerful technique to analyze the 3-D topology of a surface.  

AFM is used for qualitative and quantitative study of properties like surface area, 

size and volume distribution. For example, Ravi Kumar et al. has applied AFM 

to observe the size and surface morphology of PLGA, which clearly showed the 

electrostatic interaction between positively charged PLGA nanospheres and 

negatively charged DNA (Ravi Kumar, Bakowsky et al. 2004). 

2.8.2 Particle size and distribution 

Dynamic light scattering (DLS), analytical ultracentrifugation, and transmission 

electron microscopy (TEM) have been broadly used for analyzing particle size 

and size distribution. TEM not only can detect the particle morphology, but also 

be used in size distribution measurement.  

DLS, also known as (PCS) photon correlation spectroscopy, is the most 

common technique for determining the size distribution profile of small particles 

in suspension or polymers in solution. For the analysis of PLGA nanoparticles, 

they normally should be sonicated in advance in order to reduce aggregation 

(Astete and Sabliov 2006, Holzer, Vogel et al. 2009). DLS is a technique 

measuring the variation of intensity fluctuations in the scattered light over time. 

Once nanoparticles are suspended in a liquid, they will move in irregular 

Brownian motion. Based on the Brownian motion, the speed of particle 

movement is closely related to the particle sizes. Particles with smaller sizes 
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can move faster than those with bigger sizes, which lead to a slower fluctuation 

in the scattered intensity, showing the difference in the intensity fluctuation 

among different sizes. Finally, particle sizes can be calculated according to the 

rate of the intensity fluctuation. DLS is an effective method to measure particle 

sizes, especially for the particles in micro and nano scales. 

Analytical ultracentrifugation measures the size distribution based on 

sedimentation velocity analysis. In a research conducted by Holzer M and his 

colleagues, due to the higher resolution of analytical ultracentrifugation, which is 

able to measure the size distribution of the samples even if it is in an extended 

size range, this technique was employed to get more detailed information about 

particle size distribution and support the results measured by DLS (Holzer, 

Vogel et al. 2009).  

2.8.3 Molecular weight 

Molecular weight plays an important role in the process of nanoparticle 

preparation and the studies of degradation. Static Light Scattering (SLS) is the 

technique that can be applied to measure the molecular weight of the sample in 

solution. The Zetasizer Nano S from Malvern is one of facilities that have the 

technique of SLS. It can measure the intensity of scattered light ( 
𝐾

𝐶𝑅𝜃
 ) under 

different concentrations© of one sample. Equation 2.4 is the Rayleigh equation. 

𝐾𝐶

𝑅𝜃
=

1

𝑀
+ 2𝐴2𝐶 Equation 2.3 

 (  Rθ: The Rayleigh ratio; C: concentration; K: constant; M: molecular weight; A2: 

2nd
 virial coefficient) 

According to the equation, the relationship between molecular weight and 

intensity of scattered light ( 
𝐾

𝐶𝑅𝜃
 ) is linear. 
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Figure 2.11 The example of the Debye Plot 

(Malvern Instruments Ltd. 2003, 2004) 

Therefore, a Debye Plot can be obtained based on their relationship. The 

intercept point on the X axis can be measured as the molecular weight, 

meanwhile the gradient of the line stands for the 2nd virial coefficient, which 

“describing the interaction strength between the particles and the solvent or 

appropriate dispersant medium.” (Malvern Instruments Ltd. 2003, 2004) 

Although the basic principle of SLS is easy to understand, a high standard of 

sample preparation is required. Furthermore, the molecular weight measured by 

SLS is only the relative molecular weight and it is hard to obtain molecular 

distribution by SLS, which are the main reasons for the uncommonly application 

of this technique. 

Gel-permeation chromatography (GPC), also known as size exclusion 

chromatography (SEC), is another technique to determine the molecular weight. 
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The basic principle of GPC is the separation of molecules by different size. The 

columns are used to achieve the size exclusion. The pores in the columns are 

able to trap small particles inside which leads to bigger molecules being 

removed earlier than small ones. Due to the size exclusion from big molecules 

to small ones, a distribution of molecular weight can be obtained (Hausberger 

and DeLuca 1995). Therefore, GPC can not only measure the number average 

molecular weight (Mn) and the weight average molecular weight (Mw), but also 

can provide a basic idea of the distribution of molecular weight. It has been 

demonstrated as a suitable and reliable technique to determine the molecular 

weight.  

2.8.4 Thermal analysis 

Thermal analysis is a group of techniques that study the relationship between a 

sample property and its temperature, which can be characterized by thermo 

gravimetric analysis (TGA), differential scanning calorimetry (DSC) and 

differential thermal analysis (DTA) (Rouquerol, Rouquerol et al. 2006). 

DSC is the most widely used thermo analytical technique since it is easy to be 

operated and it enables user to obtain the results quickly and precisely. It not 

only can be used to measure various temperatures, such as glass transition 

temperature (Tg), melting temperatures (Tm), crystallization temperature and 

phase transition temperature, but also is an effective techniques for the 

degradation study of polymers (Hausberger and DeLuca 1995). Since most of 

the PLGA copolymers are amorphous in nature, they only have Tg without 

having Tm. The change of Tg during storage could well reflect the degradation 

process (Hausberger and DeLuca 1995). 

According to Rouquerol J et al., DSC is defined as “a technique where the heat 

flow rate difference into a sample and a reference material is 

measured”(Rouquerol, Rouquerol et al. 2006). The physical transformations of 

samples are either exothermic or endothermic resulting in less or more heating. 

Therefore they are required more or less heat flow to keep the same 

temperature as the reference. For example, when PLGA polymers change from 

glass to rubbery which is an endothermic phase transition, it leads to an 
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increase of heat flowing through the samples to balance the 

temperature(Hausberger and DeLuca 1995). As shown in  

Figure 2.12, when reaching the glass transition temperature, amorphous 

polymer changes from glassy polymer to rubbery polymer. The heat flows into 

the sample results in an increase of heat capacity and a significant change in 

DSC curve. 

 

 

Figure 2.12 Features of a DSC curve (Menczel, Judovits et al. 2008) 

The method to calculate the Tg is illustrated in Figure 2.13. First, three tangents 

should be drawn, namely at the beginning, at the turning point and at the end of 

the curve which enable us to get the crossover point representing T1 and T2 

respectively. Tg is the average of these two temperature. Normally, the onset 

point (T1), the temperature first occurs when polymer become glassy, is used 

for data analysis since it is more convenient and precise than Tg which may 

cause some errors during calculation. 

Tg: glass transition temperature, Tc: crystallization 

temperature, Tm: melting temperature 
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Figure 2.13 Assignments of DSC Tg (Sichina W J, 2013) 
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3 Project overview 

3.1 Overall aims 

Nanomedicine is an emerging multiple-discipline and it has become a buzz 

word in pharmaceutical industry. Nanoparticles, as a novel vehicle to carry 

drugs, show great potentials for advanced drug delivery system.  

PLGA is a biodegradable co-polymer and it has been applied as a 

biocompatible material used in pharmaceuticals in the form of nanoparticle. It is 

acknowledged that parameters like particle sizes, molecular weights and 

thermal properties could greatly affect the mechanical strength and controlled-

release properties of various drug delivery devices. This study thus aims to 

study the stability of PLGA nanoparticles by monitoring their physiochemical 

properties (e.g. size and size distribution, molecular weight, shape and Tg), 

followed by an evaluation on their controlled release performance. A primary 

study of drug-loaded PLGA nanoparticles is conducted later. Ibuprofen, as a 

potential drug for cancer theraoy is applied in this research. In order to gain a 

basic view of the properties and stability of Ibuprofen-loaded PLGA 

nanoparticles, the storage stability and drug releasing properties is studied. 

3.2 Specific objectives 

The overall aims could be realized after achieving the following specific 

objectives: 

I. Fabrication of PLGA nanoparticles and optimization 

II.  Characterization(particle sizes, molecular weight, surface morphology) 

III. Degradation and storage study 

IV. Preliminary study of drug-loaded nanoparticles 

 Preparation and characterization of Ibuprofen-loaded PLGA 

nanopartilces 

 Storage stability 

 Drug releasing  
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4 Materials and methodology 

The research was conducted at the School of Engineering, Cranfield University 

(UK).This chapter presents the methods and materials used in the research. 

Major materials are presented in Section 4.1.1. Other general materials are 

described in Appendix A.1. 

4.1 Preparation of PLGA nanoparticles 

4.1.1 Materials 

 Two PLGA polymers with different ratios were used to prepare 

nanoparticles. PLGA 50:50(Mw 24000-38000) & PLGA 75:25(Mw 76000-

115000), CAS 26780-50-7, from Sigma Aldrich UK  

 Polyvinyl alcohol (87-89% hydrolyzed, Mw 31,000-50,000) (PVA),  CAS 

9002-89-5, from Sigma Aldrich UK 

 Dichloromethane (DCM): from Fisher Scientific UK Ltd 

 Dimethyl sulfoxide (DMSO) anhydrous, ≥99.7%, CAS 76-68-5, Mw 78.13, 

Fisher Scientific UK Ltd 

 Ethanol absolute 99.9%, CAS 64-17-5, Mw 46.06, VWR Prolab 

 Ibuprofen ≥98%, Mw 206.28, CAS 15687-27-1, Sigma Aldrich UK  

4.1.2 Equipment 

Materials were weighted by using analytical balance with accuracy of 0.1mg. In 

order to aid to dissolve the PVA completely, the water bath and ultrasonic bath 

(Patternson Scientific) were used. For high speed emulsification, a Silverson 

SL2T homogenizer (Kinematica AG. Luzern, Switzerland) was applied. The 

homogenizer was fitted with a Polytron PT-DA 3030/2 (Kinematica AG. Luzern, 

Switzerland) homogenizer generator. Centrifugation was obtained by Heareus 

Megafuge 16R (Thermo Scientific). A freeze-dryer (Edwards Modulyo) was 

used to remove the water from the samples. 
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4.1.3 Methodology 

4.1.3.1 Single emulsion evaporation method 

PLGA nanoparticles were prepared via a modified single emulsion evaporation 

method (see the general method below). Several conditions were further 

modified and assessed in order to optimize the preparation method of making 

PLGA nanoparticles. The variations and modification were focused on 

homogenization (step3) and centrifugation (step 5).  

 

General method 

1. 200 mg PLGA polymer in 5 m DCM. 

2. A 20 ml aqueous solution of 1 % PVA (1g in 100 mL water) was prepared. 

The mixture was placed in a water bath (40---60︒C) to improve the 

solubility. 

3. Homogenization and emulsion formation 

The aqueous PVA solution was first transferred into a 500ml beaker. The 

PLGA solution was then drip manually added drip wise into the PVA solution 

while homogenizing. The adding time was approximately 2.5 minutes and 

the speed of homogenization was set at 9,000 rpm. After the adding of 

PLGA solution, the mixture was further left homogenizing for another 5 

minutes at 9,000 rpm. 

4. The resulting mixture was stirred for 15 hours at 300 rpm on a magnetic 

stirrer at room temperature (RT) in order to evaporate DCM completely. 

5. In prior to centrifugation, the mixture was vortexed. After a centrifugation at 

3,000 rcf at RT for 10 minutes, the supernatant was removed by pipette. 

Fresh deionized water (45ml) was added to the precipitate and the mixture 

was vortexed followed by another centrifugation. This procedure was 

repeated for 3 times. Finally the precipitate was transferred into an anti-

crack vial/container. 
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The sample in the anti-crack vial was frozen by liquid nitrogen and then placed 

in a freeze-dryer overnight. The dried sample (white power) was collected and 

weighed. 

Modified method A 

Step3: The period drip of adding PLGA solution into PVA solution was 

increased from 2.5 minutes to 6 minutes. After that, the mixture was left 

homogenizing for 7 minutes at 9,000 rpm. 

Modified method B 

Step3: Very similar to the above modified method A but a constant dripping 

rate (0.5ml/min) was set by applying a syringe pump to drip add the PLGA 

solution drip. 

Modified method C 

Step3: A smaller size beaker (250ml) was used and placed on an ice bath. 

PLGA solution was added into PVA solution manually within a period of 6 

minutes with homogenization followed by another 7-minute homogenization. 

The speed of homogenizer was set at 9000 rpm. 

Step5: A longer period of centrifugation and lower temperature were applied. 

The first centrifugation was set at 3,000 rcf at 5 °C for 30 minutes. Then the 

supernatant was removed by glass pipette. Fresh deionized water (45ml) was 

added to the precipitate and the mixture was vortexed followed by another 

centrifugation for 10 min. This procedure was repeated for 2 times. 

Modified method D 

Step3: A higher homogenization speed was applied, which increased to 

15000rpm. 
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Table 4.1 summarizes the varying parameters when using the single emulsion 

evaporation for preparation based on methodologies shown above. 

Table 4.1 Single Emulsion Evaporation Method by varying different parameters 

Method 
 
Parameters 

General 
method 

Modified 
Method 

A 

Modified 
Method 

B 

Modified 
Method 

C 

Modified 
Method 

D 

Homogenization 
time(min) 

2.5 6 6 6 6 

Dropping method manual manual 
syringe 
pump 

manual manual 

Stirring speed(rpm) 9000 9000 9000 9000 15000 

Ice bath  (-) (-) (-) (+) (+) 

Volume of beaker(ml) 500 500 500 250 150 

centrifugation 
time(min)/temperature

(℃) 
10min/20℃ 

10min/20

℃ 

10min/20

℃ 
30min/5℃ 

30min/10

℃ 

Centrifugation 
speed(rpm) 

3000 3000 3000 3000 5000 

 

4.1.3.2 Emulsion Diffusion Method 

1. 100mg PLGA were co-dissolved in a binary organic solvent which was 

prepared by 4ml DMSO: EtOH (50:50, v/v). 

2. 8ml 0.5% (w/w, 0.5g in 100 mL water) PVA water solution was prepared as 

the aqueous phase. 

3. The organic phase was dropped into aqueous phase under 500rpm 

magnetic stirring/ 15000rpm homogenizer to get the nanoemulsion. 

4. In order to form the nanoprecipitaion, the nanoemulsion was poured into 

160ml fresh deionized water under the 500rpm magnetic stirring/ 15000rpm 

homogenizer. 

5. The resulting mixture was then obtained by centrifugation at 9,000 rpm at 

5︒C for 20 minutes. The supernatant was removed by pipette to get the 

solids which were washed by fresh deionized water (45ml) subsequently. 

Another two centrifugations were repeated to remove the PVA. Finally the 

precipitate was transferred into an anti-crack vial/container. 
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6. The sample in the anti-crack vial was frozen by liquid nitrogen and then 

placed in a freeze-dryer overnight. The dried sample (white power) was 

collected, weighed. 

4.1.3.3 Preparation of drug-loaded PLGA nanoparticles 

The preparation method of drug-loaded PLGA nanoparticles was developed 

based on Modified single emulsion evaporation method D. 

1.40mg Ibuprofern and 200 mg PLGA polymer were co-dissolved in 5 ml 

dichloromethane (DCM) as the organic solution. 

2. 20 ml aqueous solution of 1 % PVA (1g in 100 mL water) was prepared.  

3. The aqueous PVA solution was transferred into a 250ml beaker. The organic 

solution was dropped manually into the PVA solution under a high speed 

homogenization (15,000rpm) for approximately 6 minutes. Then the mixture 

was kept being homogenized for another 7 minutes. 

4. The resulting mixture was stirred on a magnetic stir plate for 15 hours at 300 

rpm at room temperature (RT) to achieve the complete solvent evaporation. 

5. In prior to centrifugation, the mixture was vortexed. Then the resulting mixture 

was recovered by centrifugation at 3,000 rcf at 5︒C for 30 minutes. The 

supernatant was removed by pipette to get the solids which were washed by 

fresh deionized water (45ml) subsequently. Another two centrifugations were 

repeated to remove the PVA and unencapsulated drugs. Finally the precipitate 

was transferred into an anti-crack vial/container. 

6. The sample in the anti-crack vial was frozen by liquid nitrogen and then 

placed in a freeze-dryer overnight. The dried sample (white power) was 

collected, weighed. 

4.2 Characterizations 

The main physicochemical properties studied in this project include the particle 

size, thermal properties (e.g. glass transition temperature), molecular weight 



 

46 

and particle morphology. Table 4.2 shows the techniques which have been 

utilized in the project. 

Table 4.2 Characterization techniques used in the project 

 

4.2.1 Particle size & morphology 

1. Dynamic light scattering (DLS) 

Dynamic light scattering technique was used to measure the mean particle 

size and size distribution (Holzer M et al., 2009; Astete C E, 2006). In this 

project, the particle sizes of PLGA nanoparticles were obtained by using a 

Malvern Zetasizer Nano S (Malvern UK) with a HeNe laser (633nm ‘red’ 

laser). The software used to analyze and exhibit the result is DTS (Nano) 

software. 

Methodology 

 The nanoparticles were evenly suspended in the water by mixing the 

nanoparticles and deionised water with a ratio of 1:600 (1g: 600 mL). 

 The solution of reconstituted nanoparticles was placed in a sonic bath 

for sonication for 5-10 minutes to prevent aggregation. 

 1 mL sample solution was pippetted into a disposable cuvette for the 

measurement. 

 The average of three measurements was taken and then calculated. 

2. Scanning Electron Microscope (SEM) 
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SEM can not only be used to observe the shape and the morphology of 

PLGA nanoparticles, but also can be applied to measure the particle size. 

The samples were firstly gold-coated and then analyzed by a Carl Zeis 

HD15 EVO Scanning Electron Microscope. The resolution of the SEM was 

10Kv. 

4.2.2 Molecular weight 

Zetasizer Nano S (Malvern) combines both dynamic and static light scattering 

(DLS & SLS) techniques, which is able to measure the particle size and 

molecular weight. DLS is proved to be a powerful technique to obtain the 

particle size, while the SLS can be used for the measurement of molecular 

weight. 

Methodology  

1. All glassware and apparatus were washed with water and rinsed with 

acetone. Then these glassware and apparatus were flashed with 

nitrogen gas and kept dry in a dust free place at 25°C. 

2. The PLGA solution was prepared in toluene. The concentration of PLGA 

is 0.5mg/mL, 1mg/mL and 1.5mg/ml. The prepared samples were 

standed for 1 hour to ensure complete solubilization of the polymer in the 

solvent. 

3. Sample solution was pippetted into a quartz cuvette for the measurement. 

4. Different concentrations of samples were respectively inserted into 

machine to get the Debye plot 

4.2.3 Thermal analysis 

The thermal analysis was accomplished by using the Jade Differential Scanning 

Calorimeter (DSC) (Perkin-Elmer, UK) with nitrogen gas as the inert gas. 

Methodology 

1. The samples were loaded into aluminum pans before the pans were sealed 

by crimper. 

2. The samples were placed in the DSC and then scanned from -30︒C to 
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180︒C with a heating rate of 20︒C min-1 

3. The curve was shown in the Pyris Software. 

4.2.4 Drug loading 

Measurement of calibration curve for Ibuprofen in THF 

1. Three concentrations of Ibuprofen were prepared in THF, 0.1mg/ml,0.3mg/ml 

and 0.5mg/ml.  

2. Different UV absorptions were measured by UV spectrophotometer at 

wavelength 264nm (the typical absorption of IBU in THF). According to the 

Beer–Lambert law, the standard line could be obtained. The X-axis stands for 

the concentration of IBU, while the y-axis is the UV absorptions at λ=264nm. 

Drug loading  

1. An accurately weighted amount of nanoparticles (approximately 10mg) was 

dissolved in 5ml acetonitrile and then detected by UV spectroscopy under 

λ=264nm. 

2. The concentration of the IBU in nanoparticles can be measured according to 

the standard line. The encapsulation efficiency (EE) and Drug loading 

content (DLC) were determined using the following equations. 

DLC (%) = (IBU weight in nanoparticles/nanoparticles weight) ×100% 

EE (%) = (actual weight of IBU/theoretical weight of IBU) × 100% 

4.3 Storage stability study 

PLGA nanoparticles were stored in 75% humidity and 40︒C, which is the 

standard storage condition for the study of storage stability in pharmaceutical 

industry. The samples were reserved in a small bottle put into dessicator with 

saturated NaCl solution to ensure the constant humidity. Then they were stored 

in the oven for two weeks. After two-week storage, the samples were analyzed 

by SEM and DSC for the surface morphology and Tg respectively to study their 

stabilities. The picture of the setting is shown in Appendix A.2. 
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4.4 In vitro releasing study 

4.4.1 Measurement of calibration curve for Ibuprofen in PBS (PH=7.4) 

1. Four concentrations of Ibuprofen were prepared in PBS, 6µg/ml, 8µg/ml, 

10µg/ml and 12µg/ml 

2. Different UV absorptions were measured by UV spectrophotometer at 

wavelength 221nm (the typical absorption of IBU in PBS). The calibration curve 

could be obtained based on the Beer–Lambert law 

4.4.2 Drug releasing study 

1. 10mg Ibuprofen-loaded nanoparticles were suspended in 1ml phosphate 

buffered saline (PBS) in a sealed filter membrane. The sealed membrane 

was immersed into PBS (50ml, PH7.4) which was stored at 37︒C with 

moderate shaking(100rpm). The facilities are shown in Appendix A.3. 

2. For comparison, 10mg of pure Ibuprofen and raw PLGA nanoparticles were 

weighted and stored in the same condition. 

3. At the time intervals of 0.5, 1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 8.0, 12.0 and 24.0 h, 

32h, 40h, 48h, 72h ,2ml of medium were withdrawn. At the same time, the 

same volume of PBS solution was added in order to maintain the volume of 

the medium at 50ml.  

4. The concentration of released Ibuprofen was then analyzed by UV 

spectroscopy under λ=221nm.  
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5 Results & Discussion 

5.1 Fabrication of PLGA nanoparticles  

Two approaches were used to prepare the PLGA nanoparticles, namely single 

emulsion evaporation method and emulsion solvent diffusion method. Section 

5.2.1 shows the results of nanoparticles prepared by single emulsion 

evaporation method. Section 5.2.2 summary the results of nanoparticles 

prepared by nanoprecipitation 

5.1.1 Single Emulsion Evaporation Method 

5.1.1.1 Observation of Nanoparticles 

The product of PLGA nanoparticles looks to be in the form white powder. After 

freeze-drying, the PLGA nanoparticles takes a cotton-like appearance. The 

process of removing the nanoparticles from its beaker is a tedious process. It 

had to be separated by spatula and removed into bottles piece by piece. 

However, after being grinded and stored in the freezer, the PLGA nanoparticles 

transform a white powder form. While PLGA nanoparticles were insoluble in the 

water, it could completely disperse in water after sonication. Thus, water can be 

used as a liquid phase when utilizing the DLS. 

5.1.1.2 Particle size 

Table 5.1 shows the particle sizes and polydispersity (PdI) of PLGA 50:50 and 

PLGA 75:25 nanoparticles prepared with different parameters. According to the 

table below, it could be noted that the preparation method plays an important 

role in terms of the size and polydispersity of PLGA nanoparticles. It has been 

argued that by varying different parameters such as the concentration of 

regents, the surfactants and emulsion method, different particle sizes and size 

distribution could be obtained (Astete and Sabliov 2006, Nagavarma, Yadav et 

al. 2012). Figure5.1 to Figure 5.7 shows examples of DSC results, which all 

shows a single peak of size distribution. More results of particle sizes are shown 

in Appendix A.4.  
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Table 5.1 Summary of the particle size and PdI of NP50:50 and NP75:25 

Method 
Ratio of 

PLGA 
Sample 

Particle 

size(nm) 
Polydispersity(PdI) 

General method 50:50 SYQ_50_2 3340 0.246  

Modified Method 

A 

50:50 

SYQ_50_3 746.1 0.584  

NP50-1 585.9 0.696  

NP50-3 439.8 0.533  

NP50-4 1872 0.180  

75:25 

NP75-1 630.3 0.568  

NP75-3 2164 0.258  

Modified Method 

B 

50:50 NP50-2 1570 0.842  

75:25 NP75-2 1903 0.199  

Modified Method 

C 

50:50 

NP50-4 548 0.027  

NP50-5 555.1 0.057  

NP50-6 591.2 0.099  

75:25 NP75-4 656.1 0.042  

Modified Method 

D 

50:50 NP50/15000-1 420 0.099  

75:25 NP75/15000-1 509.8 0.052  

As shown in Table 5.1 the size of some PLGA particles, such as SYQ_50_2, 

NP50-2, NP50-4, NP75-2, NP75-3, are not within the range of normal size of 

nanoparticles which is 100-1000nm. The rest of products are all within 100-

1000nm size range, well within what could be defined as nanoparticles.  

Product SYQ_50_2, which is a microsphere, was prepared by the general 

method, due largely to it being the biggest in particle size. Whilst, the size 

distribution range is wide and the single peak shown on DLS report is 
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dissymmetry. Current literature have suggested that the key step in the whole 

procedure lies in the emulsion formation stage, which have a great impact on 

the particle size (O’Donnell and McGinity 1997, Rosca, Watari et al. 2004). 

Thus a longer period of dripping organic phase into liquid phased and prolonged 

homogenization time (modified method A) could significantly affect the particle 

size. Based our study and research, product SYQ_50_2, produced by using the 

modified method A, show a much smaller size of 746.1nm. 

Particles SYQ_50_3, NP50-1, NP50-3, NP50-4, NP75-1 and NP75-4 were all 

prepared by modified method A. However, the DLS results (Table 5.1) seem to 

suggest that these samples are too polydisperse. Polydispersity (PDI) could be 

defined as the width of particle size distribution in the field of light scattering. 

The smaller the PDI is, the better the samples are. In normal circumstances, if 

the PDI is less than 0.04, samples is considered to be monodisperse (Arzenšek 

D, 2010). As given in Table 5.1, the PDI of these particles are from 0.199 to 

0.842. Figure 5.8 is the quality report to illustrate that a high degree of 

polydispersity could cause problems to the distribution and accumulation 

analysis, resulting in a poor DLS result. Besides the problem of high 

polydispersity, the poor reproducibility in terms of the particle sizes from 

batches to batches, was also observed while using modified method A. The size 

of particles varies from 439.8nm to 1872nm. Thus, modified methods B & C 

were developed to overcome these shortcomings.  

In order to introduce the constant rate of dropping the PLGA solution for a better 

control and reproducibility of results, a syringe pump was introduced into the 

process. However, the particle sizes of (NP50_2: 1570nm, NP75_2: 1903nm) 

were found to be unsatisfactory. The fixed position of syringe and needle for 

dripping PLGA solution in this method, may have caused the homogenization of 

PLGA and PVA solutions to be lacking when compared to the general method. 

It appears that the constant dripping rate does not have great impact on the size 

of resulting nanoparticles. Thus, further investigation is needed.  

Modified method C was developed based on a method reported by Javadzadeh, 

Ahadi et al. (Javadzadeh, Ahadi et al. 2010). The ice bath was used during the 
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process of emulsion and a smaller beaker was chosen. The results improved 

significantly, as shown in the DLS reports (Figure 5.4-5.7). The results quality 

were better with the PDI being reduced drastically and were all below 0.1. 

Therefore, this seems to suggest that the ice bath could be an effective method 

to produce a better, more sufficient emulsion process which in turn generate a 

more homogeneous particles. Literatures have shown that temperature plays a 

significant role during the preparation of the nanoemulsion, which has an effect 

on the viscosity of the dispersed phase, the Ostwsld ripening and the 

evaporation speed of the solvent (Yang, Chia et al. 2000, Tadros, Izquierdo et 

al. 2004). Yang,Chia et al. have studied the effect of temperature on the 

emulsion evaporation method. They have demonstrated that the smaller particle 

sizes and lower polydispersity can be obtained under the lower temperature 

preparation (Yang, Chia et al. 2000). Another possible reason could be due to 

Ostwald ripening (the tendency of the small particles redeposit onto large 

particles). Ostwald ripening increases with the temperature. With an increase in 

temperature, the smaller droplets decrease in size and the bigger ones get 

bigger, which leads to a higher polydispersity (Tadros, Izquierdo et al. 2004). 

Besides the importance of the homogenization time and the preparation 

temperature, stirring speed is another key factor for the particles size (Jain 

2000). It has been demonstrated that using a higher stirring speed can 

effectively reduce the size of the particles (Astete and Sabliov 2006, 

Nagavarma, Yadav et al. 2012). Therefore, modified method D was utilized to 

get a smaller size of nanoparticle. As shown in the Table 5.1, the stirring speed 

was increased from 9000rpm to 15,000rpm, which the particle sizes of PLGA 

50:50 and PLGA 75:25 have both reduced over 100nm as compared to the 

nanoparticles prepared by modified method C. 

According to the different ratios of the PLGA polymer, it could be noted that the 

particle sizes of PLGA 75:25 nanoparticles are bigger than PLGA 50:50 

nanoparticles based on the same preparation method. This could be due to the 

fact that they have different ratio of co-polymers. PLGA 75:25 contains more 

lactic acid than PLGA 50:50, resulting in a higher molecular weight than PLGA 
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50:50. The higher molecular weight, the bigger the particle size. Moreover, 

Table 5.1 also indicate that nanoparticles with bigger sizes could gain a higher 

yield. This is mainly so because bigger particles are easy to be precipitated 

during centrifugation, while the smaller ones may be suspended in water 

leading a poor precipitation. Even longer centrifugation time and lower 

temperature have been adapted in modified method C; the products with 

smaller size were still in a low yield.  

It has been reported that a wide range of particle sizes of PLGA nanoparticles 

can be obtained by single-emulsion evaporation method, varying from 200nm to 

750nm (Astete and Sabliov 2006, Kim and Martin 2006). All the products 

prepared by Method C & D falls within this range. Another point of note is that 

DSL results of these nanoparticles all showed a single and fairly narrow peak 

with a low polydispersity. Therefore, it can be concluded that Method C & D are 

the moderate method for generating PLGA nanoparticles in uniform sizes. 

 

Figure 5.1 Size Distribution by Intensity for SYQ_50_2 prepared by General 

Method 
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Figure 5.2 Size Distribution by Intensity for NP50-2 prepared by Method A 

 

Figure 5.3  Size Distribution by Intensity for NP50-4 prepared by Method B 

 

Figure 5.4  Size Distribution by Intensity for NP50-5 prepared by method C 
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Figure 5.5 Size Distribution by Intensity for NP50/15000-1 prepared by method D 

 

Figure 5.6   Size Distribution by Intensity for NP75-4 prepared by Method C 

 

Figure 5.7 Size Distribution by Intensity for NP75/15000-1 prepared by Method C 
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Figure 5.8   Quality report for NP50-3     Figure 5.9   Quality report for NP50-7 
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5.1.1.3 Surface morphology 

‘  

Figure 5.10 SEM image of NP50-5 

 

Figure 5.11 SEM image of NP50-5 

Due to the large numbers of prepared samples, a series of SEM images have 

been captured. According to the SEM images, the nanoparticles prepared by 

single emulsion evaporation method all showed similar SEM results. Therefore, 

NP50-5 was chosen as an example to show the surface morphology of PLGA 

nanoparticles prepared by single emulsion evaporation method. 
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It can be seen in Figure 5.10 that PLGA nanoparticles showed relatively 

smooth surface and are spherical in shape. Figure 5.11 captured the 

nanoparticles in a larger magnification. The arrangement of nanoparticles 

shown in Figure 5.11 was mostly in piece and in chain. As seen in a study by 

De and Robinson, all nanoparticles are dispersive entities initially and closely 

arranged as fibre after freeze-drying, which explain the SEM result of PLGA 

nanoparticles after the procedure of freeze-drying (De and Robinson 2004). 

Meanwhile, some of particle sizes have been labelled in Figure 5.10. Most of 

them were in a uniform size. Compared with the DLS results of NP50-5 (Table 

5.1, 555.5nm), the particle sizes shown on the SEM is smaller than 555.5nm 

from 279nm to 480nm, There are two reasons causing the difference in particle 

sizes. One is that PLGA nanoparticles may have shrunk during the sample 

preparation for SEM. In order to make PLGA nanoparticles conductive, Au-

shadowing is required, which carries the risk that the particles might shrink 

(Bootz, Vogel et al. 2004).The other possibility is that some particles may be 

aggregated together leading to bigger particle sizes when using the DLS 

technique (Bootz, Vogel et al. 2004). Although the results of particle sizes are 

different between two techniques, DLS technique remains more reliable than 

SEM. While DLS is able to aggregate the average size of nanoparticles, SEM 

only captured a small part of image which is difficult to be repeated and involves 

more uncertainties. 
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5.1.1.4 Thermal Analysis 

Differential Scanning Calorimeter (DSC) was used for thermal analysis which 

yield the DSC thermogram showing the change at the glass transition 

temperatures of PLGA polymers and nanoparticles. The onset value is taken as 

the standard of the Tg. 

Table 5.2 Glass transition temperature of PLGA 50:50 and PLGA 75:25 polymer 

and nanoparticles 

Sample 
Glass transition temperature(℃) 

PLGA 50:50 PLGA 75:25 

PLGA polymer 46.40  50.98 

PLGA nanoparticles 45.59  50.76  

As PLGA are amorphous in nature, glass transition temperature represents its 

major temperature characteristic. Table 5.2 summarized the Tg values of PLGA 

50:50 and 75:25 calculated after freeze-drying.  

 

Figure 5.12  DSC result of PLGA polymers 
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Figure 5.13 DSC result of PLGA nanoparticles  

Figure 5.12 exhibited the Tg of the PLGA raw material, which demonstrated 

that PLGA 75:25 had a higher Tg as compared PLGA 50:50. The difference of 

ratios was considered to be the main reason. Lactic acid has one more methyl 

side group when compared to glycolic acid. The higher contents of lactic acid in 

PLGA 75:25 leads to a higher molecular weight. According to Wang N et al., the 

molecular weight can determine the mechanical strength of the polymer (Wang 

N et al., 1995). PLGA 75:25 owns a higher molecular weight, which has a 

stronger mechanical strength. Thus, PLGA 75:25 is more difficult to transform 

from glassy state to rubber state which results in a higher Tg. Moreover, the Tg 

of the initial PLGA 75:25 and PLGA 50:50 polymers shown on the Figure 5.12 

confirmed to the range of Tg provided from the manufacturer SIGMA-Aldrich 

(Polysciences Inc.2013). 

In Figure 5.12 and Figure 5.13, both PLGA 50:50 and PLGA 75:25 

nanoparticles showed a decrease in Tg after single emulsion. The decrease of 

the Tg proved the fact that the hydration has an effect on the Tg. During the 

preparation of PLGA nanoparticles and freeze-drying, it was hard to remove all 

the water. Some of moisture still remained in the nanoparticle products leading 

to a slight decrease in Tg as shown in the Table 5.2.  
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5.1.2 Emulsion Diffusion Method 

Table 5.3 Summary of particle sizes prepared by Emulsion Diffusion Method 

Ratio of PLGA stirring speed(rpm) Particle size(nm) 

50:50 
500 

685 
magenative stirring 

50:50 
15000 

314 
generator 

Although nanoparticle with a  size of 200—780 nm is able to pass through the 

vascular endothelium of tumor or inflammatory tissue for cancer treatment, a 

smaller size from 70 to 200nm is desirable as it could provide for better 

treatment (Gaumet, Vargas et al. 2008). As stirring speed is one of the key 

factors to reduce the particle size for the single emulsion evaporation method. A 

higher stirring speed might be effective in reducing particle size. However, due 

to the restriction of the homogenizer, 15000rpm is the maximum stirring speed. 

Therefore, in order to reduce the particle size, an emulsion diffusion method is 

applied, and this allows the process to yield nanoparticles between 95nm and 

300nm (Astete and Sabliov 2006, Ye and Squillante 2013). 

Two different stirring speeds (500rpm, 15000rpm) are applied in this method. 

According to the results of size distribution, both samples showed single peak. 

The particle size of nanoparticles prepared by 15000rpm stirring speed produce 

products that are half the size of those prepared by magnetic stirring. However, 

the size remains over 300nm, which was not in the desirable size range of 70 to 

200nm. Therefore, a further modification to variables such as solvent, 

concentration of PLGA and the way in which oil addition phase to aqueous 

phase, can be applied to generate smaller particle size. 

The results of particle sizes showed a significant reduction (Table 5.3), which 

process that stirring speed is an effective method to reduce the particle size in 

either the homogenizer step or during the step of water addition for emulsion 

diffusion method (Astete and Sabliov 2006). Nonetheless, the SEM images 

(Figure 5.16, Figure 5.17) were still not desirable enough. The prepared 

samples are in irregular shape, which is more likely to fibre. The surface of 
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products were rough and uneven. The irregular shape of samples may be 

attributed to the recovery procedure. The organic solvent might not have been 

thoroughly removed and washed out by water during centrifugation step, which 

caused the nanoparticle coalescence (Bilati, Allémann et al. 2005). The 

potential reasons for such an occurrence requires further investigation. 

 

Figure 5.14 DSC result of samples prepared under 15000rpm 

 

Figure 5.15 DSC result of samples prepared under 15000rpm 
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Figure 5.16 SEM image of sample prepared by 500 rpm 

 

Figure 5.17 SEM image of sample prepared by 15000rpm 

  



 

65 

5.2 Molecular weight of PLGA nanoparticles 

 

Figure 5.18  Debye Plot of PLGA 50:50 nanoparticles 

Figure 5.18 exhibited the debye plot of PLGA 50:50 nanoparticles. As shown in 

the figure, the molecular weight of PLGA 50:50 was 2800±10.6 kDa meanwhile 

the 2nd virial coefficient was around 0.0546 above zero which means the 

particles are stable in the solution. According to the manual of the Zetasizer 

nano series, the intensity of scattered light is proportional to the sample 

concentration, the result of the Debye Plot concur with the study.  

As mentioned in Section 2.6.3, the standards required in the sample 

preparation in SLS technique is extremely strict. Sample should be monomodal 

which means the intensity particle size distribution (PSD) of samples can only 

have one peak. In order to ensure that only one mode is present, samples 

should be filtered before measurement. However, the filtration will remove some 

of the material. Therefore, the concentration of the filtered sample needs to be 

determined, as this is one of the factors affecting the accuracy of the results. 

For the SLS technique, the purity of the sample plays a key role in the whole 

experiment procedures. Even small dust particualte would affect the results. 

Due to the obstacles in preparing samples as well as the sample loss during the 

filtration, the SLS method of molecular measurement is hard to execute and 
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repeat. Gel permeation chromatography (GPC) or size exclusion 

chromatography (SEC) might be more suitable choices to measure the 

molecular weight. 

5.3 Drug-loaded nanoparticles 

5.3.1  Particle Size  

Table 5.4 Summary of particle size of ibuprofen-loaded nanoparitcles 

Ratio of PLGA Sample 
Particle size(nm) 

peak 1 peak 2 

50:50 

IBU-NP50-1 570.2(94.8%) 4854.0(5.2%) 

IBU-NP50-2 705.6(95.3%) 5024.0(4.7%) 

IBU-NP50-3 591.8(94.5%) 4885.0(5.5%) 

IBU-NP50-4 587.1(91.0%) 4776.0(7.0%) 

75:25 IBU-NP75-1 545.2(94.2%) 4962.0(5.8%) 

A number of literature have shown that o/w single emulsion method could be 

applied to encapsulate hydrophobic drugs. While w/o/w double emulsion 

method is suitable to hydrophilic drugs (Soppimath, Aminabhavi et al. 

2001)(Astete and Sabliov 2006). Due to the hydrophobicity of ibuprofen, 

modified single emulsion evaporation method D was applied in this study for the 

preparation of IBU-loaded PLGA nanoparticles.  

Table 5.4 summarized the particle sizes of different batches of samples. Figure 

5.2019-23 shows the results of DLS report. As shown in figures, the size 

distributions for the samples all have two peaks. One is within the range of 

nanoparticles, the other one is around 5000nm which might be the sizes of 

unloaded drugs. Excluding IBU-NP50-2, the particle sizes of samples were all 

around 570±20. Meanwhile, the proportion of peak1 is also similar to each 

sample. Therefore, the preparation method used in the study shows a relatively 

uniform size. 
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Figure 5.19 Size Distribution by Intensity for IBU-NP50-1 

 

Figure 5.20 Size Distribution by Intensity for IBU-NP50-2 

 

Figure 5.21 Size Distribution by Intensity for IBU-NP50-3 
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Figure 5.22 Size Distribution by Intensity for IBU-NP50-4 

 

Figure 5.23 Size Distribution by Intensity for IBU-NP75-1 
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5.3.2 Drug Efficiency 

 

Figure 5.24 calibration curve for Ibuprofen in THF 

Table 5.5 Drug loading content and Encapsulate efficiency for ibuprofen-loaded 

nanoparticles 

UV was utilized for the study to measure the drug loading content. Different UV 

absorptions were obtained and compared against ibuprofen concentration 

ranging from between 0.3 to 1 mM. The calibration curve (A=0.8884C+0.2308, 

R2=0.9983) was calculated and fits the Lambert and Beer’s Law: the concretion 

of drugs is proportional to the UV absorption. Therefore, the concentration of 

ibuprofen in PLGA nanoparticles can be calculated according to the calibration 

curve. 

The results of drug loading and encapsulation efficiencies of each batch are 

exhibited in Table 5.5. It is notable that the drug loading content for samples 

y = 1.3414x + 0.0079 
R² = 0.996 

-0.2

0

0.2

0.4

0.6

0.8

1

0  0 . 1  0 . 2  0 . 3  0 . 4  0 . 5  0 . 6  

U
V

 A
B

SO
P

TI
O

N
 (

P
B

S)
 

 

CONCENTRATION  (µG/ML) 

IBU CALIBRATION CURVE(THF) 

Sample UV Absorption Drug loading(%) 
Encapsulate 
Efficiency(%) 

IBU-NP50-1 0.418  16.17% 80.85% 

IBU-NP50-2 0.533  20.74% 103.73% 

IBU-NP50-3 0.598  23.41% 117.07% 

IBU-NP50-4 0.440  16.93% 84.63% 

IBU-NP75-1 0.406 15.53% 77.65% 
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(IBU-NP50-1, IBU-NP50-4, IBU-NP75-1) exhibit satisfactory results of more 

than 75%. However, the drug loading content for IBU-NP50-3 and IBU-NP50-3 

are larger than the theoretic loading (20%). A likely reason is that unloaded 

drugs could not be completely washed out by water, resulting in a higher 

concentration of ibuprofen. With a comparison between NP50 and NP75, the 

drug loading content of NP50 is higher than NP75 which is in line with the study 

by Fernadez-Carballido et al. (2004), whose studies point out that drug loading 

content increases with a decrease of PLGA molecular weight. 

5.3.3 Thermal Analysis 

There are two ways for drugs to be loaded on PLGA nanoparticles, absorbing 

on the surface of nanoparticles or encapsulating inside the PLGA matrix. 

Therefore, DSC technique were carried out to determine whether ibuprofen was 

bounded on the surface or incorporated in the PLGA matrix. At the same time, it 

is also able to determine the physical form of ibuprofen existing in the PLGA 

matrix whether in a crystalline form or amorphous form. Table 5.6 exhibits both 

onset Tg and Tm of samples, which gives a comparison of each samples.  

Table 5.6 Summary of Tg and Tc for PLGA nanoparticles and Ibuprofen 

Sample 
Glass transition 

temperature(℃) 
Melting temperature(℃) 

Ibuprofen - 77.85 

PLGA NP50 45.59 - 

IBU-NP50 43.24 72.06 

PLGA NP75 50.76 - 

IBU-NP75 42.06 - 
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Figure 5.25 DSC result of ibuprofen 

Ibuprofen exists in crystalline form and has a melting point under an increase of 

temperature. Figure 5.25 is the DSC result of ibuprofen and it shows that 

Ibuprofen’s melting point stands at 77.85℃. As stated in the Material Safety 

Data Sheet from Sigma-Aldrich, the melting point of ibuprofen is between 77℃ 

and 78℃. Thus result in the study is within the range of its standard melting 

point. 

 

Figure 5.26 DSC result of Ibuprofen-loaded PLGA 50:50 nanoparticles 
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Figure 5.27 DSC result of Ibuprofen-loaded PLGA 75:25 nanoparticles 

Figure 5.26 and Figure 5.27 draws comparisons between ibuprofen-loaded 

PLGA nanoparticles and non-loaded PLGA nanoparticles. According to Figure 

5.26, there were two peaks shown in the DSC thermogram which respectively 

represented the glass transition temperature of PLGA and the melting 

temperature of ibuprofen. The two temperatures were lower than their original 

value. The DSC curve for PLGA 75:25 nanoparticles with ibuprofen showed a 

lower Tg for PLGA 75:25 nanoparticles, but no characteristic ibuprofen peak is 

observed in the thermogram.  

It is notable that both ibuprofen-loaded PLGA 50:50 nanoparticles and 

ibuprofen-loaded PLGA 75:25 nanoparticles showed peak shift in the DSC 

thermogram compared to the non-loaded nanoparticles. This confirmed the 

existence of drug-polymer interaction. As mentioned in study of Fernández-

Carballido et al., due to the structure of PLGA and ibuprofen, carboxylic acid 

end groups in ibuprofen might form hydrogen bonding with PLGA polymer 

showing the drug-polymer interaction (Fernández-Carballido, Herrero-Vanrell et 

al. 2004). The polymer peak for ibuprofen PLGA75 NP in DSC curve showed a 

bigger temperature shift than ibuprofen PLGA50 NP, which indicated a higher 

interaction between PLGA 75:25 and ibuprofen.  

As mentioned above, due to the different composition of PLGA polymer, 

PLGA75:25 NP exhibited a higher Tg than PLGA50:50 NP. However ，

ibuprofen-loaded PLGA NP shows a reverse result. This might also associate 
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with the drug-polymer interaction. PLGA 75:25 with a higher molecular weight 

might increase the chance to interaction with acid drugs. The study to illustrate 

the specific interaction between ibuprofen and PLGA polymer is still limited. 

Therefore, a further study is needed to demonstrate it.  

The two curves for ibuprofen-loaded nanoparticles show different results. The 

thermogram of Ibuprofen PLGA50 NP shows both polymer peak and drug peak, 

while thermogram of Ibuprofen PLGA75 NP does not show the drug peak. The 

result of Ibuprofen PLGA75 NP is in accordance with previous studies that drug 

peak is not seen in the DSC curve for drug-nanoparticule system (Fernández-

Carballido, Herrero-Vanrell et al. 2004, Agnihotri and Vavia 2009, Gupta, Aqil et 

al. 2010). As stated in the study of Gupta, Aqil et al., the diminished drug peak 

attributes to the dilution effect and entrapment of ibuprofen in PLGA 

matrix.(Gupta, Aqil et al. 2010). Due to the lower drug loaded content of PLGA 

75:25 than PLGA 50:50, a smaller concentration of ibuprofen in PLGA75:25 

polymer exhibits, resulting in the suppression of ibuprofen peak. Furthermore, 

the result of IBU PLGA75:25 nanoparticles proved that most of ibuprofen was 

encapsulated in the matrix of PLGA 75:25. 

 The two endothermic peaks of IBU PLGA50:50 NP, which is indicated that 

some of the ibuprofen is absorbed on the surface of PLGA50:50. This can be 

attributed to the fact that nanoparticles were broken and ibuprofen leaked out 

under the high speed homogenization and centrifugation during the process of 

sample preparation. The molecular weight is a crucial parameter for determining 

the mechanical strength of the polymer. Thus PLGA 50:50 with a lower 

molecular weight leads to a weaker mechanical strength which is easier to be 

crushed by physical stress.  

The results for the two ibuprofen-loaded PLGA nanoparticles with different 

compositions showed that some of the drugs were absorbed on the surface of 

PLGA50:50 nanoparticles, whereas PLGA 75:25 successfully encapsulated 

drugs into the polymer matrix. This was both attributed to the composition of 

PLGA polymer and the preparation procedure. The peak shifts of both samples 

demonstrated the interaction between the drugs and PLGA polymers.  
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5.4 Stability study 

Sample NP50/15000-1, NP75/15000-1, IBU-NP50-4 and IBU-NP75-1 were 

used for the degradation study. Due to the limitation of time, storage condition 

of 40℃ and 75% relative humidity were applied to shorted the degradation time. 

5.4.1 PLGA nanoparticles 

5.4.1.1 Surface morphology 

 

Figure 5.28 SEM images for NP50/15000-1 

(D0: after freeze-drying; D3: 3-day storage; D7: 7-day storage) 

The Scanning electron microphotographs about PLGA 50:50 stored in 40℃ and 

75% relative humidity  are presented in Figure 5.28. The three pictures were 

respectively captured when samples prepared after freeze-drying (D0) and 

stored for 3 days and 7 days in certain storage condition. According to the 

variation of the morphology of PLGA nanoparticles, the degradation of PLGA as 

well as the difference between PLGA 50:50 and PLGA 75:25 could be observed.  

As shown in Figure 5.28, the PLGA nanoparticles after freeze-drying (D0) had 

a spherical geometry. Meanwhile, the surfaces of the nanoparticles were 

smooth. After 3 day storage, PLGA nanoparticles started to agglomerate and 
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fuse together. Most of nanoparticles were lost their shapes. Only some big 

particles remained their spherical geometries. At the same time, the chain 

arrangement of PLGA polymer still existed. By day 7, nanoparticles had 

completely lost their original shape and changed into block polymer. All the 

small particles agglomerated into big particles as shown on the Figure 5.28 

 

Figure 5.29 SEM images for NP75/15000-1 

(D0: after freeze-drying; D3: 3-day storage; D7: 7-day storage) 

Figure 5.29 shows PLGA 75:25 nanoparticles prepared after sing emulsion 

method and stored in stated condition. It can be seen in Figure 5.29(D0) that 

NP75 before storage exhibits spherical shape with smooth surface. By Day 3, 

NP75 showed a similar degradation state as NP50 which nanoparticles sticked 

to each other in a form of chain or piece. However, after a seven-day storage, 

NP75 shows a different SEM result as shown in Figure 5.29(D7). Although 

most of particles agglomerated together, there still a small numbers 

nanoparticles existed showing part of spherical geometry as well as remaining 

the chain arrangement.  

The changes of surface morphology showed that the nanoparticles were in 

spherical shape and maintained smooth surface before the storage, whereas 
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they started to lose their original shapes as well as agglomerate to each other 

after 1 week storage. These phenomena were the signs of the erosion and 

degradation of PLGA nanoparticles. The degradation process of PLGA is 

undergoing an uptake of water. Therefore, the hydrophilic of polymer is an 

important factor needed to be considered. It is notable that PLGA 75:25 owns a 

slower degradation rate than PLGA 50:50. As stated by (Mundargi, Babu et al. 

2008), PLGA 50:50 is the most common composition owning a shortest 

degradation time in comparison to other composition of PLGA polymer, which 

has been demonstrated in this study. Due to the fact that PLGA 75:25 has more 

lactic acid content, PLGA 75:25 is less hydrophilic than PLGA 50: 50 leading to 

a slower degradation rate.  

The storage condition is another fact that influences the degradation rate of 

PLGA. It is reported that a higher storage temperature and relative humidity 

increase the moisture content. More water is able to attach the chain of PLGA 

polymer for the hydrolysis which results in a shorter degradation time and 

higher degradation rate. (De and Robinson 2004). Therefore, in order to 

accelerate degradation speed, 40℃ and 75% relative humidity is used in this 

study. PLGA 50:50 nanoparticles have completely lost their original shape and 

become block polymer within seven days. At the same time, PLGA 75:25 

nanoparticles have sticked to each other and start to fuse into block polymer. 

Both samples showed a faster degradation speed under 40℃ in comparison to 

those stored in 4℃ and 25℃ shown in the study of (De and Robinson 2004). 

In conclusion, both storage condition and PLGA composition are of importance 

to polymer degradation rate. The degradation rate is increased with the storage 

temperature, relative humidity and the lactic acid content. A further study can be 

conducted to investigate the effect of PH and molecular weight to the 

degradation rate.  

5.4.1.2 Thermal analysis 

Differential Scanning Calorimeter (DSC) was used for thermal analysis which 

yielded the DSC thermogram showing the change of glass transition 
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temperature of PLGA polymers and nanoparticles. The onset value is taken as 

the standard of the Tg. 

Table 5.7 Glass transition temperature of PLGA 50:50 and PLGA 75:25 

nanoparticles 

Sample 
Glass transition temperature(℃) 

PLGA 50:50 PLGA 75:25 

PLGA nanoparticles 45.59  50.76  

PLGA nanoparticles  (D7) 44.53  49.82  

 

Figure 5.30 DSC result of PLGA 50:50 and PLGA 50:50 nanoparticles 

 

 

Figure 5.31  DSC result of PLGA 75:25 and PLGA 75:25 nanoparticles 

Thermal analysis was an indispensable property for the stability study of PLGA. 

As shown in the Table 5.7, Tg exhibited slight decline after one-week storage, 
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The degradation of PLGA polymers under the exposure of water was 

accountable for the decrease. Furthermore, with observing the red curve, it is 

notable that some fluctuations showed at the end of curve. This result might 

account to the fact that PLGA nanoparticles started to degrade into highly 

crystallisable lactic acid and amorphous glycolic acid oligomers. Therefore, the 

crystalline melting peaks might appear on the DSC thermogram (over 100℃) 

during the degradation of PLGA polymers, which was also another fact of the 

degradation of the polymers. 

With comparison the Tg variation of two polymers, PLGA NP 50:50 underwent a 

bigger decline than PLGA NP75:25. The higher ratios of glycolic acid in PLGA 

50:50 increase the hydriphility of the polymer making it easier to be degraded 

under the exposure of water resulting in a bigger extent of decline. Accordingly, 

PLGA 75:25 has a higher content of lactic acid hence absorbing less water and 

reducing the rate of degradation. The SEM images also can support the DLS 

results, which PLGA 75:25 degraded in slower speed. 

5.4.2 IBU-loaded nanoparticles 

5.4.2.1 Thermal analysis 

 

Figure 5.32 SEM images for ibuprofen-loaded PLGA 50:50 nanoparticles 
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Figure 5.33 SEM images for ibuprofen-loaded PLGA 75:25 nanoparticles 

Figure 5.32 and Figure 5.33 respectively show the degradation process of IBU-

NP50 and IBU-NP75. Both two samples own spherical geometry with a low 

surface roughness after freeze-drying. By Day 3, most of IBU-NP50 had lost 

their chain-like arrangement and fused into block polymer, whereas IBU-NP75 

showed a lower extent of degradation, which still remained the chain-like 

arrangement. By the seventh day, all the IBU-NP50 particles have collapsed as 

well as IBU-NP75. 

With tracking the SEM image, it is concluded that IBU-NP50 degrade faster 

than IBU-NP75 which is the same result as non-loaded PLGA nanoparticles. 

However, in comparing to non-loaded PLGA nanoparticles, it is observed that 

Ibuprofen-loaded PLGA nanoparticles exhibit a faster degradation rate than 

non-loaded ones, which can be proved on Day 3 when NP50 still arrange in 

chain while IBU-NP50 has collapsed into block polymer. 
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5.4.2.2 Thermal analysis 

 Table 5.8 Summary of Tg and Tm for Ibuprofen-loaded PLGA nanoparticles and 

Ibuprofen 

It was seen in Table 5.8 that the change of Tg for ibuprofen-loaded PLGA 

nanoparticles shows a similar trend to non-loaded nanoparticles. Both samples 

showed a decline in their Tg and PLGA 50:50 underwent a bigger decline than 

PLGA 75:25. The reasons have been mentioned in Section 5.4.1.2 which is 

associated to their composition. However, with a closer look at ibuprofen-loaded 

PLGA 50:50 nanoparticles, it can be found that the characteristic drug peak 

exhibited the same temperature after storage 7 days showing that ibuprofen is 

relatively stable in the PLGA matrix. 

It was noted that Ibuprofen-loaded nanoparticles experienced a bigger decline 

of Tg than non-loaded nanoparticles, which is also observed in the results 

obtained by SEM, showing that Ibuprofen increased the degradation rate of 

PLGA nanoparticles. This result is agreement with the study of Siegel et al. and 

Li et al, who stated that the drugs in PLGA matrix were able to affect the 

degradation rate of polymer (Li, Girod-Holland et al. 1996, Siegel, Kahn et al. 

2006). It has been stated that the chemical structures of drugs affect both matrix 

degradation rate and water absorption rate. Therefore, a faster degradation rate 

compared to non-loaded PLGA nanoparticles was shown in this study. 

Sample Ibuprofen 
IBU-PLGA 

50:50 
IBU-PLGA 
50:50(D7) 

IBU-
PLGA 
75:25 

IBU-
PLGA 

75:25(D7) 

Glass transition 

temperature(℃) 
- 43.24 38.53 42.06 40.88 

Melting temperature(℃)  77.85 72.06 72.06 - - 
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Figure 5.34 DSC result of ibuprofen-loaded PLGA 50:50 nanoparticles for 7-day 

storage 

 

Figure 5.35 DSC result of ibuprofen-loaded PLGA 75:25 nanoparticles for 7-day 

storage 
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5.5 In vitro releasing study 

 

 

Figure 5.36 Drug releasing curve for ibuprofen-loaded PLGA nanoparticles 
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Figure 5.37 Calibration curve for Ibuprofen in PBS 

The drug releasing study was evaluated by UV technique. Ibuprofen calibration 

curve was obtained to calculate the concentration of ibuprofen in PBS buffer 

(PH7.4) which is used as the dissolution medium. 

Ibuprofen-loaded nanoparticles were prepared with different polymer 

compositions, PLGA 50:50 and PLGA 75:25. Figure 5.36 shows the cumulative 

ibuprofen release rate. According to Figure 5.37, three curves respectively 

represent IBU-NP50, IBU-NP75 and ibuprofen. All the three samples were 

shown 100% drug release.  Among these three curves, pure ibuprofen showed 

the fastest drug releasing rate, which was seen to be completely released after 

9 hours. PLGA 50:50 and 75:25 nanoparticles showed 72.9% and 60.8% 

release of total drug within 9 hours respectively, which indicated that PLGA 

50:50 nanoparticles underwent a higher release rate than PLGA 75:25 

nanoparticles. It can be observed that drug release profile for both PLGA50:50 

and PLGA75:25 suggested the existence of three zones, namely the first 4h, 

4h-24h and 24h-96h.The  ibuprofen release rate increased dramatically in the 

first 4h which can be attributed to diffusion of ibuprofen from the surface of 

nanoparticles. The rate of drug releasing slowed down between 4h to 24h 

indicating that most of drugs absorbed on the surface have diffused into PBS. 

From 24h to 96h, a climb in drug release was observed suggesting the PLGA 

degradation. It is reported that drug release undergoes three steps: dissolution 

of drug absorbed on the nanoparticle surface, drug diffusion outside the 
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particles with the degradation of nanoparticles and the erosion of polymer 

matrix (Soppimath, Aminabhavi et al. 2001, Kumari, Yadav et al. 2010). In this 

study, drug release profile exhibited the same procedures as shown in the 

literatures.  

It is notable that PLGA with an increase in lactic acid content exhibited a 

reduction in drug release rate. This observation can be explained by the 

composition of PLGA polymer, the degradation rate increase with the reduction 

of lactic acid content (Mundargi, Babu et al. 2008). Therefore, a faster drug 

releasing rate can be obtained by PLGA 50:50, which was well agreed with the 

results of stability study in former section.  

These results showed that PLGA nanoparticles exhibiting a slower drug release 

rate than pure drug are able to effectively increase the stability of drugs. Thus 

controlled drug release can be achieved by drug-nanoparticles system and 

PLGA polymer is a suitable carrier for the drug delivery. 
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6 Conclusions 

In this study, various method modifications have been developed and assessed 

based on the general single emulsion evaporation method to prepare PLGA 

nanoparticles. It was found that longer homogenization time and lower 

temperature during the process of emulsion could effectively reduce the 

polydispersity of PLGA nanoparticles. The particle sizes of nanoparticles 

produced by modified method C could be successfully controlled between 548 

to 591nm. Modified method D increased the stirring speed to 15000rpm, which 

demonstrated that a higher homogenization speed could effectively reduce the 

particle size. Meanwhile, according to the SEM image, nanoparticles prepared 

by single emulsion evaporation method showed spherical geometry with smooth 

surface. 

In order to gain a smaller particle sizes, emulsion diffusion method was applied 

for PLGA nanoparticles preparation, which is a two stage method combined 

with emulsion and diffusion. Although smaller size of particles (314nm) was 

obtained when using the same stirring speed (15000rpm) as emulsion 

evaporation method, the surface morphology didn’t show a desirable result 

which might relate to incompletely removal of the solvent. 

The stability of PLGA nanoparticles was further investigated by assessing their 

thermal property over a certain period of time using DSC. The decrease of Tg 

confirmed the hydration and degradation of PLGA polymers and nanoparticles. 

Furthermore, the figure of SEM also has demonstrated that PLGA nanoparticles 

showed degradation and aggregation after two-week storage under 40℃ and 

75% humidity. PLGA 75:25 with higher lactic acid content showed slower 

degradation rate compared to PLGA 50:50. 

Ibuprofen-loaded PLGA nanoparticles have been successfully prepared by o/w 

single emulsion evaporation method. Nanoparticles ranging from 500nm to 

700nm with relatively high drug loading content were generated by this method. 

The reduction of lactic acid content showed the increase of drug efficiency. DLS 

SEM and DSC were utilized for the characterization of Ibu-loaded nanoparticles. 
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According to the DSC result, a slight peak shift of Tg can be observed in the 

thermograms compared to non-loaded nanoparticles. It can be proved the 

existence of drug-polymer interaction between the ibuprofen and PLGA polymer. 

During the stability study, it is notable that IBU-loaded nanoparticles underwent 

a faster degradation rate than non-loaded ones. Thus drug would influence the 

stability of PLGA polymer due to the drug-polymer interaction which was well 

agreement with the results of DSC. Meanwhile, the diminishment of the drug 

peak in thermogram for IBU-loaded PLGA 75:25 demonstrated that drug was 

encapsulated in the PLGA matrix rather than absorbed on the surface.  

In the drug releasing study, all the samples showed initial burst release in the 

first 4 hours. The slower release rate in the following hours was the sign of 

PLGA degradation. With a comparison to two samples, ibuprofen released in 

slower rate from PLGA 75:25 nanoparticles due to its low degradation rate. The 

results of drug releasing study showed that both PLGA nanoparticles underwent 

a slower release rate than pure drug which has potential application to the drug 

delivery system. 

Further work would involve the modification of emulsion diffusion method to get 

better shapes of nanoparticles and more uniform sizes. Meanwhile, the 

measurement of molecular weight and the characterization under the various 

storage conditions are also essential for the stability study of PLGA 

nanoparticles. Moreover, the interaction between polymer and different drugs 

are required for the further study. 
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APPENDICES 

A.1 Reagents and chemicals 

PLGA 50:50 Mw 24000-38000, CAS 26780-50-7, Sigma Aldrich UK 

PLGA 75:25, Mw 76000-115000, CAS 26780-50-7, Sigma Aldrich UK  

Polyvinyl alcohol (PVA) 87-89% hydrolyzed, Mw 31,000-50,000, CAS 9002-

89-5, Sigma Aldrich UK 

Dichloromethane (DCM) Mw: 84.93, Fisher Scientific UK Ltd 

Dimethyl sulfoxide (DMSO) anhydrous, ≥99.7%, CAS 76-68-5, Mw 78.13, 

Fisher Scientific UK Ltd 

Ethanol absolute 99.9%, CAS 64-17-5, Mw 46.06, VWR Prolab 

Ibuprofen ≥98%, Mw 206.28, CAS 15687-27-1, Sigma Aldrich UK  

Laboratory Reagent Grade Sodium Chloride (NaCl), Fisher Scientific UK Ltd 

Phosphate buffered saline tablet (PH=7.4) (PBS), Sigma- Aldrich. MO, USA 

Tetrahydrofuran (THF) 99.8+%, Fisher Scientific UK Ltd 

Toluene anhydrous, 99.8%, Mw 92.14, CAS 108-88-3, Sigma Aldrich UK 

Water, deionized water 
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A.2 Storage study 
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A.3 Drug releasing study 
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A.4 Results 

 

Size Distribution by Intensity for SYQ_50_2

 

Size Distribution by Intensity for SYQ_50_3 
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Size Distribution by Intensity for NP50-1 

 

Size Distribution by Intensity for NP50-2 
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Size Distribution by Intensity for NP50-3 

 

Figure5.7 Size Distribution by Intensity for NP50-4 
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Size Distribution by Intensity for NP50-5 

 

Size Distribution by Intensity for NP50-6 
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Size Distribution by Intensity for NP50-7 

 

Figure 5.11 Size Distribution by Intensity for NP75-1 
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Size Distribution by Intensity for NP75-2 

 

Size Distribution by Intensity for NP75-3 
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Size Distribution by Intensity for NP75-4 

 


