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Abstract 

 
In recent years, it has been reported that numbers of Escherichia coli increase 

significantly following centrifugation of sludge during the treatment process. E. 

coli is used as an indicator of the microbiological quality of sludge-derived 

products destined for agricultural recycling and of the efficacy of the sludge 

treatment processes. The re-growth phenomenon is of concern because of the 

potential for additional treatment requirement / higher disposal costs and loss of 

consumer confidence associated with a compliance failure. It is hypothesised 

that a competitive exclusion treatment could be the solution wherein the 

digestate be exposed to a ‘probiotic’ or defined mixture of micro-organisms, to 

effectively out compete or eliminate any resident E. coli remaining following 

treatment. The competitive exclusion principle as a treatment method has 

already seen application in various industrial sectors, the most well-known 

being the poultry industry. In experiments it was determined that an 

antimicrobial producing organism would be most likely to succeed. From the 

candidates screened, Lactobacillus reuteri proved the most promising. L. reuteri 

is a known producer of reuterin in the presence of glycerol and organic acids as 

a part of its normal metabolic activity. In sludge derived nutrient broth in the 

presence of glycerol and low pH, L. reuteri addition resulted in a reduction of E. 

coli to undetectable levels. In sludge cake under the same conditions, L. reuteri 

was less successful. However the addition of glycerol and L. reuteri to sludge 

cake restricted E. coli growth to a 2 log increase from the initial concentration of 

E. coli recorded following pasteurisation (an average of around 1x102 cfu/gDs), 

in comparison in the positive control a 4 log increase was recorded. From this 

result the sludge cake could be defined as conventionally treated. It can be 

concluded that competitive exclusion and L. reuteri show promise as a 

treatment for reducing E. coli re-growth in sludge cake 
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Chapter 1 Introduction and literature review 

1.1 Introduction 
 

The recycling of sludge to agriculture is now regarded as the Best Practical 

Environmental Option in Europe.  However, there are many challenges with the 

practice, with concern about the risk of pathogen transfer to farm produce being 

a major issue. In recent years, it has been reported that numbers of Escherichia 

coli increase significantly following centrifugation of sludge during the treatment 

process. E. coli is used as an indicator of the microbiological quality of sludge-

derived products destined for agricultural recycling and of the efficacy of the 

sludge treatment processes. The re-growth phenomenon is of concern because 

of the potential for additional treatment requirement / higher disposal costs and 

loss of consumer confidence associated with a compliance failure. 

The aim of this study is to utilise the “competitive exclusion principle” to control 

E. coli re-growth in digested cake. Competitive exclusion relies on the principle 

that two or more species competing for the same resources cannot co-exist if 

other ecological factors are constant. The technique has seen widespread 

implementation and success in other industries. The overall aim of the research 

in the short term is to identify organisms with the ability to suppress the growth 

of E. coli either as a sole competitor or in combination in digested sludge. If 

successful, experimental work will focus on optimizing the competitive exclusion 

product. 

1.2 Introduction into waste treatment processes 
 

Waste water derived from sewage is a combination of liquid carried water 

products removed from residential, institutional, commercial and industrial 

establishments, together with ground water, surface water and storm water, as 

may be present (Metcalf & Eddy et al., 1991). In its untreated form wastewater 

cannot be disposed of for several reasons. First, the biological decomposition of 

the organic materials in wastewater consumes oxygen and thus reduces the 

quantity available in the receiving waters for the aquatic life. The decomposition 

also produces large quantities of malodorous gases. Secondly, the numerous 
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pathogenic micro-organisms in untreated wastewater pose a considerable 

health hazard to humans. Third, the toxic compounds, especially heavy metals, 

contained within waste water can be dangerous to both plants and animals, and 

finally the presence of phosphates and nitrogen may lead to uncontrolled 

growth of aquatic life (Tchobanoglous and Burton, 1991). It is therefore 

necessary to reduce the organic components, nitrogen and phosphorus, toxic 

compounds, as well as eliminate the indigenous pathogenic microbial 

community prior to wastewater disposal (Werther and Ogada, 1999).  

 

Whilst the processes used to treat wastewater may have a number of 

variations, generally they have two main stages: primary and secondary. In 

primary treatment, a physical operation, usually sedimentation is used to 

remove a portion of the suspended solids and organic matter from wastewater. 

This typically removes 60-70% of the total chemical oxygen demand (COD) of 

the wastewater (COD is commonly used to indirectly measure the amount of 

organic compounds in water, and therefore is a useful measure of water 

quality). The solids that are removed in the primary treatment are commonly 

known as primary sludge. In secondary treatment, biological and chemical 

processes are used to remove most of the less settleable or soluble organic 

matter still present. In the majority of municipal plants the activated sludge 

process is the most common method utilised. This is performed via injecting air 

into the wastewater to promote the growth of micro-organisms (bacteria and 

protozoa) which remove and oxidise most of the remaining organic 

components. Secondary treatment also incorporates a clarification step where 

settling tanks are employed to remove the micro-organisms (biomass) from the 

treated water.  This biomass is also known as secondary sludge or surplus 

activated sludge (SAS). To further improve the effluent quality before it is 

discharged, a tertiary treatment step can also be introduced. This involves the 

removal of residual suspended solids and other constituents that are not 

reduced significantly by conventional secondary treatment usually by granular 

medium filtration or microscreens (Metcalf & Eddy et al., 1991). Disinfection and 

nutrient removal particularly nitrogen and phosphorus is also typically a part of 
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tertiary treatment. Figure 1.1 shows an overview of the whole treatment 

process. 

.  

Inlet from the sewer 

Screening 

Grit removal 

Primary 

Sedimentation 

Biological 
Treatment (e.g. 

Aeration) 

Tertiary Treatment 

Discharge 

Large solids, rags 

and plastics 

Grit, stones and 

sand 

Primary Sludge 

Surplus Activated 

Sludge 

Tertiary Sludge 

Figure 1.1 - Flow chart depicting the treatment of wastewater. The 
tertiary treatment step displayed in this chart is only utilised in cases 
where high quality effluent is required. 
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1.3 How and why sludge is treated 
 

Following its removal from waste water, sludge is usually in the form of a very 

dilute suspension, which typically contains from 0.25 to 12% solids, depending 

on the operation and treatment process used (Werther and Ogada, 1999).The 

typical chemical composition and properties of untreated sludge are reported in 

Table 1.1. Due to the physical and chemical process involved in the treatment 

of waste water and simply because of what sludge is derived from it tends to 

contain a very heterogeneous microbiological flora, comprising of a variety of 

pathogens including Salmonella spp., Shigella spp., Yersinia spp., Brucella spp. 

and Staphylococcus spp. as well as enterotoxigenic and enteropathic 

Escherichia coli strains (Dumontet et al., 1999). A more complete list of the 

pathogens found in sludge is shown in Table 1.2. In addition sludge can also 

contain concentrated levels of heavy metals (e.g. cadmium, chromium, copper, 

lead, mercury, nickel etc.). These biological and chemical components of sludge 

can potentially pose a risk to the environment, public health and food safety, 

especially if sludge is applied to agricultural land; therefore sludge must 

undergo treatment prior to disposal. Indeed the Sewage Sludge Directive 

86/278/EEC prohibits the use of untreated sludge in agriculture (Directive, 

1986). 

Table 1.1 - Typical chemical composition and properties of untreated sludge (Metcalf & Eddy et al., 
1991). 

Item/Sludge Untreated Primary Activated range 

Range Typical 

Total dry solids (TS) % 2.0-8.0 5.0 0.83-1.16 

Volatile solids (% of TS) 60-80 65 59-88 

Protein (% of TS) 20-30 25 32-41 

Nitrogen (N, % of TS) 1.5-4 2.5 2.4-5.0 

Phosphorus (P2O5, % of TS) 0.8-2.8 1.6 2.8-11.0 

Potash (K2O, % of TS) 0-1 0.4 0.5-0.7 

Cellulose (% of TS) 8.0-15.0 10.0 - 

Iron (not as a sulphide) 2.0-4.0 2.5 - 

Silica (SiO2. % of TS) 15.0-20.0 - - 

Energy content 10,000-12,500 11,000 8000-10,000 

pH 5.0-8.0 6.0 6.5-8.0 
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Table 1.2 - A selection of possible pathogens found in sewage sludge (Carrington, 2001; Deportes 
et al., 1998). 

Viruses Bacteria Fungi 

Polio virus Arizona hinshawii Aspergillus fumigatus 

Coxsachivirus Aeromonas spp. Candida albicans 

Echovirus Bacillus cereus Candida guillermondii 

Influenza Bacillus anthracis Candida krusei 

Adenovirus Brucella spp. Candida tropicalis 

Astrovirus Campylobacter jejuni Cryptococcus neoformans 

Calicivirus Citrobacter spp. Epidermophyton spp. 

Coronavirus Clostridium botulinum Geotrichum candidum 

Enterovirus Clostridium perfringens Microsporum spp. 

Parovirus Enterobacteriaceae Phiolophora richardsii 

Rotavirus Escherichia coli Trichosporon cutaneum 

Norwalk virus Klebsiella spp. Trichophyton spp. 

Hepatitis A virus Leptospira ichterohaemorrhagiae Helminths 

Hepatitis E virus Listeria monocytogenes Ankylostoma duodenale 

Protozoa Mycobacterium tuberculosis Ascaris lumbricoides 

Acanthomoeba Pasturella pseudotuberculosis Echinococcus granulosus 

Dientamoeba fragilis Proteus spp. Echinococcus multilocularis 

Entamoeba hystolitica Providencia spp. Enterobium vermicularis 

Giardia lambila Pseudomonas aeuriginosa Hymenolepsis nana 

Giardia intestinalis Salmonella spp. Necator americanus 

Isospora belli Serratia spp. Strongyloides stercoralis 

Naeglaria fomleri Shigella spp. Taenia saginata 

Palantidium coli Staphylococcus aureus Taenia solium 

Sarcocystis spp. Enterococcus spp. Toxocara cati 

Toxoplasma gondii Vibrio parahaemoliticus Toxocara canis 

 Yersinia enterocolitica Trichuris trichura 

 

Treated sludge is defined as having undergone biological, chemical or heat 

treatment, long term storage or any other appropriate process so as to 

significantly reduce its fermentability and the health hazards resulting from its 

use (Directive, 1999). E. coli is used as an indicator species to demonstrate the 
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presence of faecal and pathogenic bacteria and their removal. The use of 

indicator species is attractive because it reduces the cost and complexity of 

analyzing biosolids for individual pathogens (Sprigings and Le, 2011). E. coli 

was chosen as an indicator species because it is abundant in raw sewage 

sludge and there is a strong correlation between the presence/absence of the 

indicator and faecally derived pathogens (Fenlon et al., 2000; Rice et al., 1992). 

On the standard of the degree of E. coli elimination from sludge, the safe sludge 

matrix (SSM) outlines two different forms of treatment – conventional and 

enhanced (ADAS, 2001). To be defined as conventionally treated, the sludge 

has to have undergone defined treatment processes and standards that ensure 

at least 99% of E. coli present has been destroyed (ADAS, 2001). Additionally 

conventionally treated sludge is only permitted to contain an upper limit of 105 E. 

coli per gram dry weight of sludge (The Environment Agency, 2003a). In 

comparison enhanced treatment, originally referred to as ‘advanced treatment’, 

refers to processes which are capable of eliminating 99.9999 per cent of E. coli, 

furthermore enhanced treated sludge also must be free of Salmonella (ADAS, 

2001). Additionally enhanced treated sludge is only permitted to contain an 

upper limit of 103 E. coli per gram dry weight of sludge (The Environment 

Agency, 2003a). There are many technologies used in sludge treatment, Table 

1.3 outlines the more common types of sludge treatment employed, of which 

various combinations are used according to the end product required 

Anaerobic digestion is a naturally occurring process of decomposition and 

decay, by which organic matter is broken down by micro-organisms into its 

basic chemical components under anaerobic conditions (Monnet, 2003). 

Anaerobic digestion is considered the most attractive method for the treatment 

and recycling of sludge since it reduces waste volume, generates an energy-

rich gas in the form of methane (CH4), and yields a nutrient rich final product 

(Mata-Alvarez et al., 2000). During sludge treatment, the digestion process itself 

takes place in a digester, which can be classified in relation to the temperature 

and the water content of the feedstock. A general schematic for an anaerobic 

digester is shown in Figure 1.2. 
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Table 1.3 - Common methods of sludge treatment (Fytili and Zabaniotou, 2008; Metcalf & Eddy et 
al., 1991) 

Sludge 

Treatment 
Description 

Lime 
stablisation 

Used when digestion is not available. The lime reacts with the water and 
produces heat as well as increasing the pH of the sludge, which helps to kill 
pathogens. Limed sludge is a good soil conditioner in many upland regions with 
acidic soils. 

Thermal 
drying 

Used to convert the sludge to a pelletised or granular form comprising of about 
90% solids. The heating involved also destroys any pathogens. Thermally dried 
sludge is often used in agriculture or for amenity uses. 

Pasteurisation 

In this process sludge is heated to around 70°C for at least 30 minutes, after 
which it is cooled. This does not kill all micro-organisms, instead pasteurization 
aims to reduce the number of viable pathogens but retain the biological quality of 
the sludge 

Dewatering 

Centrifugation or filter presses are often used after digestion to separate the solid 
fraction from the liquid.  The solid fraction, commonly known as Biosolids cake, is 
a compost-like material which can be conveniently transported, stored on farms 
and spread using standard agricultural equipment. 

Composting 

Is an aerobic process that involves mixing the sludge with sources of carbon such 
as sawdust, straw and wood. In the presence of oxygen, bacteria digest both the 
sludge and the added carbon source and, in doing so, produce a large amount of 
heat, causing pathogen destruction. 

 

 

Figure 1.2 - Schematic diagram of an anaerobic digester under mesophilic conditions 
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Anaerobic digestion can occur at two main temperature ranges. Mesophilic 

conditions are designated as between 20-45°C, usually 35°C, with a retention 

time depending on the waste composition of between 15 and 30 days. 

Thermophilic conditions are however between 50-65°C, usually 55°C with a 

retention time between 12 and 14 days (Monnet, 2003). The thermophilic 

anaerobic digestion process is usually characterised by accelerated 

biochemical reactions, higher growth rate of microorganisms and accelerated 

interspecies hydrogen transfer resulting in an increased methanogenic potential 

and therefore a higher gas production rate at lower hydraulic retention 

times (Zbransk et al., 2000). Also, the enhanced hygienisation effect of the 

thermophilic process (Oropeza et al., 2001; Watanabe et al., 1997) complies 

with the safe sludge matrix guidelines for the elimination of pathogens, allowing 

the sludge produced to be defined as enhanced treated (ADAS, 2001; Lafitte-

Trouque and Forster, 2002). Furthermore it has been reported that thermophilic 

anaerobic digestion of sewage sludge can lead to the production of the U.S. 

Environmental Protection Agency’s class A biosolids, which are essentially 

pathogen free and are suitable for subsequent land application (Watanabe et 

al., 1997). However, the use of thermophilic anaerobic digestion has been 

limited, because of some disadvantages like a high energy input requirement, 

poor supernatant quality and poor process stability related to chronically high 

propionate concentrations (Kugelman and Guida, 1989). In comparison 

mesophilic digesters are more stable (Fannin et al., 1987), require less energy 

and have a reduced risk of inhibition by ammonium (Angelidaki and Ahring, 

1994; Hansen et al., 1998) and long-chain fatty acids. Thus on an industrial 

scale, mesophilic digesters are the most widely utilised for the treatment of 

organic waste (Fernández Rodríguez et al., 2012). Regardless of which method 

is used however the performance and stability of anaerobic digestion is highly 

dependent upon the active microbial groups involved in the process (Shin et al., 

2010). Therefore, characterisation of the microbial community structure is 

critical to the efficiency of anaerobic digestion. However, in a study by Laffite-

Trouque and Forster (2002) mesophillic digestion was only capable of reducing 

the faecal concentration of sludge from 1.5x106 g-1DS to 1x104 g-1DS. Berg and 
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Berman (1980) also recorded a similar reduction in faecal coliform 

concentration when using mesophilic digestion as a treatment method for 

sludge. This level of reduction in faecal coliforms however means that sludge 

treated solely by mesophilic digestion cannot be classified as enhanced treated 

under safe sludge matrix guidelines. To produce enhanced treated sludge using 

mesophilic anaerobic digestion, a variety of pre-treatment technologies such as 

enhanced enzymic hydrolysis and thermal hydrolysis can be utilised (Mller, 

2001). Thermophilic digestion however is capable of producing enhanced 

treated sludge, in the same study by Laffite-Trouque and Forster (2002); all the 

thermophilic digestions produced extremely low faecal coliform counts in 

sludge. Following digestion, sludge is then dewatered by centrifugation or belt 

press to produce a sludge ‘cake’ allowing easier storage and transport.   

1.4 Sludge Disposal 
 

During the last few decades there has been a major change in the way that 

sludge is disposed of. Prior to the banning of sludge disposal at sea in 1998 in 

accordance with the terms of the North Sea Conference Agreement (Goldsmith, 

1994), 30% of sludge produced in the United Kingdom (UK) was disposed of via 

this method (Werther and Ogada, 1999). The other conventional option, 

disposal in landfill, has also been effectively eliminated by increased costs and 

legislation such as EU directive 99/31 (Directive, 1999) which set mandatory 

targets for the reduction of biodegradable waste to landfill. Due to these 

restrictions sludge disposal is becoming an increasing problem. The situation is 

only expected to get worse considering the implementation of further EU 

directives such as the urban waste water treatment directive 91/271/EEC 

concerning water purification and enhanced water quality standards expected to 

increase sludge output drastically in the coming years (Council, 1991). It was 

estimated in the EU between 1998 and 2005, 9.4 million tonnes (dry weight) of 

sludge was produced, by 2020 it is expected to exceed 13 million tonnes 

(Léonard, 2011) 
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The obvious answer would to increase the role of incineration in the disposal of 

sludge. As of 2008 in the UK only 16% of sludge produced is incinerated 

(Water, 2010). Sludge incineration enjoys a combination of several advantages 

that are not found in other treatment alternatives, including a large reduction of 

sludge volume to a small stabilized ash, which accounts for only 10% of the 

volume of mechanically de-watered sludge and thermal destruction of toxic 

organic constituents (Vesilind and Ramsey, 1996). Further, the calorific value of 

dry sludge corresponds to that of brown coal, and therefore through incineration 

this energy content maybe recovered (Römer, 1991). Furthermore in large 

urban areas where large quantities of wastewater sludge is produced but land 

available for disposal space and the objections in terms of aesthetics  and odor 

generation of the local population have to be taken into account, incineration of 

sludge is a promising disposal method. However a number of disadvantages 

are apparent, firstly incineration does not constitute a complete disposal method 

since approximately 30% of the solids remain as ash (Malerius and Werther, 

2003). This ash is generally landfilled and in certain cases, it is considered as 

highly toxic because of its heavy metal content. Second, is the general negative 

public reaction to the burning of waste which makes planning permission for 

such facilities difficult to obtain (Matthews, 1992). Finally, during the incineration 

process polynuclear aromatic hydrocarbons and dioxins can be produced and 

possibly released into the environment; this poses an extreme risk due to the 

hazardous properties to human health these chemical compounds possess. In 

addition the amount of greenhouse gases such as carbon dioxide being 

released into the atmosphere has to be considered, especially with the UK 

government agreeing that by 2050, it would achieve an 80% reduction in total 

UK greenhouse-gas emissions from concentrations recorded in 1990, and has 

further committed to achievement of a 34% reduction in greenhouse gases by 

2020 (HM Government, 2009). For these reasons incineration as a principal 

option of disposal is not ideal. 

 

This leaves the recycling of sludge as biosolid based products or to agriculture. 

Regarded as the best practicable environmental option, agricultural recycling is 
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not only economical when compared to other disposal routes such as 

incineration; it is also the most environmentally sustainable. Furthermore based 

on the content of nitrogen, phosphorus and potassium in sludge (Poletschny, 

1988), it shows good fertilizer properties. Sludge recycling as fertilizer has 

several advantages which include the return of organic materials into the bio-

cycle and improves soil structure and water retention (Wallace et al., 2009). 

Sludge also replaces the need for the application of artificial fertilizers whose 

production requires a lot of energy, which comes at an expense and in general 

public opinion of the use of artificial fertilizers on agricultural land is poor (Mara 

et al., 1989). Due to these advantages the sewage sludge directive 86/278/EEC 

seeks to encourage the use of sewage sludge in agriculture (Directive, 1986). 

As of 2008, application of sludge in agriculture takes 77% of sludge produced in 

the UK (Water, 2010). However, despite its advantages agricultural disposal 

comes under pressure from consumer groups and the public due to faecal 

aversion, objection to odour and fears regarding the contamination of grazing 

land and food crops (Le, 2007). Due to this risk of pathogen transfer to farm 

produce, in the UK, biosolids bound for agriculture must conform to standards 

stipulated in the safe sludge matrix (ADAS, 2001).  

 

Iranpour et al. (2002) indicated that wastewater treatment plant operators that 

operate thermophilic digesters designed to meet Class A biosolids requirements 

(ADAS, 2001) have become aware that increases in faecal coliform densities 

are readily occurring in post-digestion biosolids. Cheung et al. (2003) and Qi et 

al. (2004) have also reported significant growth of Escherichia coli, with 

increases as high as 1–2 log10/g dry solids, being measured in digested sludge 

samples collected immediately after centrifugation. This has potentially 

important implications for compliance with E. coli reduction requirements for 

conventional and enhanced treated sludge for agricultural recycling (ADAS, 

2001). With E. coli limits being met after digestion but not after dewatering, 

uncertainty exists about the true density of E. coli and other faecal coliforms in 

biosolids being applied to land. This potentially limits the use of enhanced 
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treated biosolids and consequentially leads to higher disposal costs and loss of 

consumer confidence in the industry. 

 

1.5 Escherichia coli re-growth in digested sludge cake. 
 

 

 

Several theories have been proposed and investigated to explain the sudden 

increases in fecal coliforms and in particular E. coli density immediately after 

dewatering and subsequent storage, a classic example of this is shown in 

Figure 1.3. For example, Qi et al. (2004) suggested regrowth of fecal coliforms 

as a possible cause of the sudden increase. Monteleone et al. (2004) theorized 

that the shear experienced by the solids during high solids centrifugation 

improved the ‘release’ of the bacteria from the floc matrix which increased the 

numbers that could be cultured compared with before dewatering. Iranpour et 

al. (2003) on the other hand reported that contamination of the biosolids with 

fecal coliforms could explain the high counts measured after dewatering and 

storage. Supporting this Baddeley et al. (2009) identified several routes of 

contamination that were believed to be the cause of the increases in bacterial 

density seen in cake; including the use of final effluent as carrier water for 

polymer dilution in dewatering. Removal of this contamination source resulted in 

Figure 1.3 - Fecal coliform and E. coli density measured using qPCR and standard culturing 

methods (SCM) in temperature phased anaerobic digestion process with high-solids centrifugation 
dewatering. E. coli densities in stored cake, is after 24 hour storage (Chen et al., 2011b). 
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the reduction of E. coli numbers in the immediate cake demonstrating that, at 

least for some cases, the increase in E. coli concentration observed may simply 

be due to contamination.  

However problems do exist with these possible explanations. For example, for 

regrowth to occur, a significant amount of time would be required to increase 

the counts to the levels seen in cake immediately following the dewatering 

process. Since the doubling time under ideal conditions for E. coli is around 20 

minutes (about the same as the retention time in high solid centrifuges), the 

large increase in E. coli and indeed fecal coliforms cannot be explained by 

regrowth alone. Secondly it is unlikely the release of E. coli in floc during 

centrifugation is the cause as during conditioning and dewatering, coagulants 

such as cationic polymer are added, which aggregate the floc and allow for the 

formation of cake (Higgins et al., 2007). In addition during the preparation of 

samples for E. coli enumeration samples are typically diluted with water and 

homogenized to break up flocs and release bacteria. Finally, even though 

Baddeley et al. (2009) did report that removal of the known contaminant did 

indeed reduce E. coli numbers in the subsequent cake it did not eliminate the 

bacteria completely and did not prevent the secondary growth in the stored 

cake, suggesting an alternate cause. 

Figure 1.4 - Fecal coliform (FC) and E. coli measured by standard culturing method (SCM) 
and cPCR for mesophillic digestion (Higgins et al., 2007). 
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Higgins et al. (2007) proposed an alternate hypothesis in that two separate 

phenomena, termed reactivation and regrowth were actually responsible for the 

increases in E. coli and fecal coliforms in cake following dewatering and 

subsequent storage. It was theorized that that the bacteria  present during 

digestion enter a state known as viable but non-culturable (VBNC), meaning the 

bacteria are non-culturable and therefore impossible to enumerate and detect 

after digestion using standard culturing methods even though they are still 

present and effectively viable. It is thought bacteria enter this state following 

exposure to environmental stress such as nutrient or substrate deprivation, 

salinity and extreme temperature (Lisle et al., 1998; Makino et al., 2000; 

Mizunoe et al., 1999). Considering the conditions present during digestion, 

namely low substrate and nutrient concentrations and for thermophillic 

digestion, high temperature, it is not unlikely the bacteria would be stressed 

enough to be induced into a VBNC state. Indeed, Higgins et al. (2007) using a 

specific type of quantitative polymerase chain reaction (qPCR) called 

competitive PCR (cPCR) to enumerate E. coli after digestion/before dewatering 

and also immediately after dewatering, showed that the concentration based on 

copies of E. coli DNA were not significantly different before and after 

dewatering, despite the large difference in concentrations shown by the 

standard culturing method (Figure 1.4). This supports the theory that low counts 

following digestion are caused by E. coli entering a VBNC state, however it has 

to be noted that cPCR does not distinguish between live and dead cells and as 

such the concentration of DNA measured cannot be conclusively linked to 

viable cells. However it has been shown previously in various studies that E. 

coli has the capability to enter a VBNC state (Mizunoe et al., 1999; Reissbrodt 

et al., 2002) 

Following on from this Higgins et al (2007) hypothesized that during the 

dewatering process E. coli ‘reactivates’ rendering the cells culturable and 

therefore enumerable by the standard culturing method again. The mechanism 

by which reactivation occurs is unclear although it can be speculated that high 

shear forces caused by the dewatering process (centrifugation) rupture the cell 

membranes of the digestate flora releasing the nutrient rich cell contents. It is 
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these nutrients that support the reactivation/resuscitation of the VBNC E. coli 

cells and subsequent proliferation and rapid colonization of the cake following 

storage. Alternatively the shear forces may result in the release of signaling 

compounds or growth factors such as autoinducers which resuscitate the 

bacteria into a culturable state. Reissbrodt et al. (2002) has shown that addition 

of autoinducers to the media for enumeration of VBNC bacteria resulted in a 

significant increase in the numbers enumerated. Furthermore Higgins et al. 

(2007) showed that the components of centrate (from biosolids displaying 

bacterial growth patterns associated with the VBNC phenomena) and the 

addition of a polymer (used for conditioning) could increase fecal coliform 

enumeration considerably (Figure 1.5). However repeat experiments on 

different months failed to show the same reactivation suggesting any 

compounds in the centrate may be unstable or other factors are important. The 

role of the polymer remains unclear. Either by releasing nutrients or chemical 

compounds the shear forces created by centrifugation clearly have a role in 

reactivation since cake produced by alternative dewatering processes such as 

belt presses which cause minimal shear suffer significantly less re-growth 

(Chen et al., 2011a). Additionally, the basic action of the centrifuge re-

oxygenates the digestate. In the majority of cases where anaerobic digestion is 

used as treatment this rapid shift from an anaerobic to an aerobic environment 

not only aids rapid proliferation and reactivation but also provides E. coli (a 

facultative anaerobe) with a competitive advantage over the digestate flora 

which is mostly comprised of obligate anaerobes. This means the flora cannot 

adapt to the new conditions allowing E. coli, despite only being in smaller 

numbers, to utilize the nutrients with little hindrance, leading to the ‘re-growth’ 

and increase in E. coli concentration. A possible solution to this and to prevent 

unhindered proliferation of E. coli during storage to the point where it exceeds 

safe sludge matrix guidelines is the utilization of the competitive exclusion 
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principle. 

 

1.6 Competitive exclusion 

1.6.1 Introduction to the principle 
 

The competitive exclusion principle, sometimes referred to as Gause’s law of 

competitive exclusion was formulated by Russian ecologist Georgii Frantsevich 

Gause and states two species competing for the same resources cannot coexist 

if other ecological factors are constant. When one species even has the 

slightest advantage or edge over another, the one with the advantage will 

dominate in the long term, leading to either the extinction of its competitor or an 

evolutionary or behavioral shift towards a different ecological niche. The 

principle itself was formulated upon competition experiments using two species 

of Paramecium (unicellular protozoa), namely P. aurelia and P. caudatum 

(Gause, 2003). It was found that in constant conditions (readily available water 

and nutrients) that P. caudatum dominated, however following a prolonged lag 

phase P. aurelia recovered and out competed P. caudatum to the point of 

extinction (Figure 1.6). This is just one example of competitive exclusion. The 

principle itself applies to all organisms such as yeasts where 

Schizosaccharomyces kefir was proven to consistently out compete 

Saccharomyces cerevisiae by producing a higher concentration of ethyl alcohol 

Figure 1.5 - Impact of centrate and polymer on the reactivation of 
VBNC fecal coliforms (Higgins et al., 2007). 
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and thereby causing cessation of its growth (Gause, 1932), to more complex life 

forms, such as the competitive exclusion of the native red squirrel by the grey 

squirrel in Great Britain.  

 

1.6.2 Competitive exclusion treatment application and possible mechanisms of 
action 

 

The competitive exclusion principle as a treatment method has already seen 

application in various industrial sectors, the most well-known being the poultry 

industry. In this case chicks are administered prophylactically a ‘probiotic’, 

which is defined as a live microbial feed supplement which beneficially affects 

the host animal by improving its microbial balance (Fuller, 1991). Basically, the 

newly hatched chicks are exposed to either a defined bacterial mixture or 

undefined caecal culture, in an attempt to instate them with a fully developed 

intestinal flora, thereby controlling and reducing the colonisation of several 

enteropathogens such as Salmonella spp., Escherichia coli, Clostridium 

perfringens, Listeria spp. and Campylobacter spp. 

Figure 1.6 - The growth of the "volume" in Paramecium caudatum and Paramecium aurelia 
cultivated separately and in mixed population on osterhout medium (Gause, 2003). 
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The exact mechanism of this protection is uncertain; though via simply 

providing the chicks with a non-pathogenic gut microbiota, this effectively 

could mean there are no receptor sites for pathogenic bacteria to adhere to 

and thereby colonise and cause disease, or alternatively the addition of the 

microbiota reduces the nutrients available in the gut, reducing the ability of 

pathogenic bacteria to colonise. Either way it is well established within the 

literature that gut microflora is known to play a major role in the protection of 

the colonized host against invasion by pathogens. For example, dosing 

newly hatched chicks per os with fecal suspension from adult hens 

prevented the establishment of salmonellae in the gut (Nurmi and Rantala, 

1973). Additionally germ free animals have been shown to be more 

susceptible to disease than their conventional counterparts who carry a 

complete gut flora. This difference has been shown for infections caused by 

Salmonella enteritidis (Collins and Carter, 1978) and Clostridium botulinum 

(Moberg and Sugiyama, 1979).  

 

Another example of the importance of the gut microflora in preventing 

pathogen colonisation is in humans where the main cause of noso-comial 

infectious diarrhoea in hospitals is believed to be due to the antibiotic 

disruption of the normal intestinal flora, resulting in overgrowth of 

Clostridium difficile (Kyne et al., 2002; Naaber et al., 1998; Thorens et al., 

1996). Like with chicks, this is often treated by giving patients a mixed 

probiotic culture along with the antibiotics. D’Souza et al. (2002) reported 

that live organisms may be effective in preventing antibiotic associated 

diarrhoea, with in this study lactobacilli and Saccharomyces boulardii 

proving particularly successful. This was further supported by Plummer et al. 

(2010) who reported that only 46% of patients provided with a probiotic 

consisting of Lactobacillus and Bifidobacterium along with their antibiotics 

tested positive for C. difficle toxin compared to the 78% that tested positive 

when provided with a placebo. As the competitive exclusion treatment for 

the chicks the mechanism of action is unclear, though it is thought 

competition for receptor sites makes colonisation difficult for pathogens. 



20 

  

However the competition for nutrients and receptor sites may not be solely 

responsible for the reductions in pathogen colonisation and overall inhibiton of 

growth. Instead, production of anti-microbial compounds maybe the source of 

inhibition. There are numerous examples of this within nature and the human 

body. Lactobacillus reuteri, Lactobacillus plantarum and Lactobacillus 

acidophilus just to name a few are all known to be able to produce antimicrobial 

compounds such as reuterin which are effective against pathogens such as E. 

coli (Brashears et al., 2003; Cleusix et al., 2008; Hamdan and Mikolajcik, 1974; 

Niku‐Paavola et al., 1999; Talarico and Dobrogosz, 1989; Barefoot and 

Klaenhammer, 1984; De Klerk and Coetzee, 1961; Silva et al., 1987). 

Streptococcus mutans is known to inhibit the growth of many other oral micro-

organisms via producing lactic acid from fermentable carbohydrates present in 

the host diet (Loesche, 1986). Interestingly, Streptococcus oligofermentans has 

developed the counter-offensive strategy of using the S. mutans-produced lactic 

acid to generate hydrogen peroxide, which is in turn inhibitory to S. mutans and 

many other micro-organisms (Tong et al., 2007). It has also been postulated 

that the production of volatile fatty acids (VFAs) such as propanoic acid could 

be a source of inhibition. Results from Wolin (1969) strongly suggested that 

volatile fatty acid fraction of rumen fluid was capable of inhibiting the growth of 

E. coli. This inhibitory effect of VFAs on E. coli was also reported by Prohaszka 

(1980) in the caecal contents of rabbits, further corroborating VFAs possible 

role in the competitive exclusion of pathogens in particular within the gut. 

 

1.6.3 Possible application of competitive exclusion treatment in sludge cake 
 

It is hypothesised that competitive exclusion as a  treatment method could be 

transferred over to digested sludge cake and that in effect the digestate be 

exposed to a ‘probiotic’ or defined mixture of micro-organisms, to effectively out 

compete or eliminate any resident E. coli remaining following treatment, thereby 

preventing or reducing the level of re-growth. Though the use of competitive 

exclusion as a method of reducing pathogen growth within digested sludge cake 

has never been properly investigated, there are other examples in the literature 

where it has been investigated within similar environments, such as in silage. 
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Silage is fermented, high-moisture stored fodder which can be fed to ruminants 

or used as a biofuel feedstock for anaerobic digesters. Silage is made either by 

placing cut green vegetation in a silo, by piling it in a large heap covered with 

plastic sheet, or by wrapping large bales in plastic film. The production of silage 

relies on anaerobic digestion and it is prone to aerobic and anaerobic spoilage 

by micro-organisms. Many of these spoilage organisms such as Clostridia and 

Listeria not only decrease the nutritional value of the silage, but also have a 

detrimental effect on animal health and/or milk quality (Driehuis and Elferink, 

2000). Therefore it is beneficial for the production of high quality silage to inhibit 

the growth of these micro-organisms, similar to the need to reduce E. coli 

growth in digested sludge cake. In recent years the addition of bacterial 

inoculants to silage has become popular within European countries such as the 

United Kingdom, Germany, Italy and the Netherlands (Wilkinson et al., 1996). In 

the case of silage bacterial inoculants are added in order to stimulate lactic acid 

fermentation, accelerating the decrease in pH, and thus improving silage 

preservation via inhibition of the other microflora and more importantly the 

spoilage micro-organisms. Most available inoculants consist of selected strains 

of homofermentative lactic acid bacteria, such as Lactobacillus plantarum, 

Pediococcus, and Enterococcus species (Weinberg and Muck, 1996). Many 

studies have shown the advantages of such lactic acid bacteria inoculants (Filya 

et al., 2000; Weinberg et al., 1988; Lindgren et al., 1983). A review by Driehus 

and Elferink (2000) further concluded that the quality of silage was dependent 

on the competition between different groups of micro-organisms, with the 

predominance of lactic acid bacteria a requirement for high quality silage. 

Furthermore Van Elsas et al. (2007) showed that in unfumigated soil, over a 60 

day incubation period, the CFU numbers per gram of dry soil of E. coli declined 

by at least six orders of magnitude. In comparison the survival of E. coli in all 

fumigated soils was strongly and significantly enhanced. This result 

demonstrates that modifying soil’s microbial community and removing 

competing organisms can affect the survival of E. coli. Soil and silage are 

similar growth environments to digested sludge cake in that they all contain a 

high concentration of highly diverse microflora. These studies essentially show 
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that using competition exclusion as a treatment method to inhibit the growth of 

undesirable microflora is possible in an environment similar to that of digested 

sludge cake Therefore it can be hypothesised that the use of competitive 

exclusion to reduce E. coli re-growth in sludge cake following treatment is 

feasible.  

 

However applying competitive exclusion treatment to control the growth of E. 

coli in digested sludge cake does pose a challenge for a number of reasons. 

Firstly digested sludge cake has a fairly high nutrient and moisture content, 

hence why it is utilised on agricultural land, this along with storage conditions, 

especially in the summer months, where temperatures can reach up to 30°C 

within the sludge cake, does mean that growth conditions for E. coli are fairly 

hospitable. Considering that E. coli is a fast growing bacterium, capable of 

doubling in population size every 20 minutes given the optimum conditions, 

preventing or reducing exponential growth in digested sludge cake to the point 

where there is no risk of compliance failure will be difficult. Furthermore any 

inoculant added to sludge cake will not only be competing with E. coli, but also 

the rest of the microflora which is very vast and diverse as shown in Table 1.2. 

Digested sludge cake is also not a consistent medium, its physical, chemical 

and biological properties will be subject to change throughout the year and 

between batches, making any effect a probiotic has in one batch of sludge cake 

not necessarily consistent with another. 

 

Being able to apply a competitive exclusion treatment to sludge cake would hold 

its advantages over conventional methods such as chemical addition. Firstly 

costs, a probiotic purely derived from bacteria found freely within the 

environment or gut microflora would cost less than antimicrobials or chemicals 

such as lye especially in the quantities that would be required, even when 

factoring in the cost of culturing and delivery of the probiotic into the sludge 

cake. In addition due to the fact biosolids will inevitably go to agricultural land, 

the question has to be raised with chemicals what would their environmental 

impact be, while with a probiotic the bacteria utilised could be easily screened to 
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ensure no potential pathogens would be present. The use of antimicrobials and 

antibiotics can also result in insufficient exposure for eradicating bacteria such 

as E. coli and potentially create an environment that promotes antibiotic 

resistance. Misuse of antibiotic therapy has ramifications on health and safety 

especially when considering the application to agricultural land. In summary 

probiotics potentially provide a cheaper, safe and possibly effective method of 

preventing E. coli re-growth in stored biosolids. 

1.7 Aims and objectives 
 
The principal hypothesis is: 

‘the regrowth of Escherichia coli in biosolids can be reduced by the application 

of the competitive exclusion principle; e.g. by competition between E. coli and 

non-pathogenic bacteria that will be introduced to the dewatered sludge.’ 

This was achieved via controlled and replicated bench-scale experiments, with 

the aim of identifying promising candidate organisms with the capability of 

suppressing E. coli growth in digested sludge cake. Experimental work was split 

into three sections: preliminary, proof of concept and finally application in sludge 

cake.  

1.7.1 Preliminary experiments 
 
The aim of the preliminary experiments was two-fold. First the basic premise 

was to assess the methodology for accuracy and repeatability. To test this, 

controlled replicated bench scale experiments were designed in which sludge 

samples were sterilised via autoclaving and then spiked with a pure culture of E. 

coli. The E. coli were then recovered from the sludge cake via membrane 

filtration and the recovery rate deduced to determine its accuracy. This 

experiment ensured that the results of every experiment using the methodology 

would be accurate and valid. Second, it was determined whether it is possible to 

simulate E. coli re-growth in digested sludge cake at laboratory scale. Once 

again replicated bench scale experiments were designed in which sludge 

samples were pasteurised and then incubated with E. coli growth measured 

over time. Development of a consistent E. coli re-growth methodology was 
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essential for future competition experiments; it also provided a curve for E. coli 

re-growth in optimal conditions in sludge cake which growth curves from 

competition experiments were compared against. 

 

1.7.2 Proof of concept 
 

Though the competitive exclusion principle has previously been utilised as a 

treatment method in a number of industries to combat  

whether a competitive exclusion treatment for reducing E. coli re-growth 

pathogens such as E. coli, it has never previously been applied to sludge cake. 

Sludge cake is an extremely complex growth matrix. It is therefore unknown 

which micro-organisms will be able grow and thrive in sludge cake and 

competitively inhibit E. coli re-growth. Furthermore it is not known which 

competitive exclusion mechanisms will lead to the highest inhibitory action 

against E. coli in a solid sludge cake environment. Therefore utilising a number 

of bench scale experiments the ability of a range of bacteria and undefined 

mixed cultures to inhibit E. coli growth in both solid sludge cake and a liquid 

sludge derived nutrient broth derived from raw sludge were assessed. These 

experiments provided a rapid screening and optimisation step, with the premise 

being if a competitor organism or culture cannot compete with E. coli in optimal 

conditions in terms of nutrient availability it is unlikely to be effective in sludge 

cake. 

 

1.7.3 Application in sludge cake 
 

In these experiments the results and conclusions of the previous competition 

experiments during the screening and optimisation steps were applied in the 

form of a treatment method to sludge cake post pasteurisation and its effect on 

E. coli re-growth monitored. These experiments determined whether 

competitive exclusion as a treatment method in sludge cake was feasible. They 

also highlighted the differences between growth in solid sludge cake and liquid 

sludge-derived nutrient broth and the effect the growth of the indigenous 

microbial community contained within cake had on the antagonistic effect of 
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competitors on E. coli. Treatment of sludge cake did pose a challenge in that 

what can be added and how much liquid was restricted so as to maintain its 

physical and chemical properties.  

 

A chapter by chapter overview of the experimental hypotheses is displayed 

below 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

: 

 

 

 

 

 

 

 

 

 

 

Concept 
A treatment based upon competitive 
exclusion principle can be utilised in 
sludge cake following treatment to 
reduce or eliminate Escherichia coli re-
growth during storage and thereby 
prevent compliance failure 

Chapter 2 
This chapter was entirely concerned with the three preliminary 
experiments and their hypotheses: 

1. Membrane filtration is a consistent and accurate method for 
the recovery and enumeration of E. coli from digested 
sludge cake. 

2. Pasteurisation of sludge cake at bench scale in the 
laboratory is the most consistent method of reducing the 
microbial load of sludge cake to thereby initiate an E. coli 
re-growth cycle.  

3. It is feasible to generate E. coli re-growth in sludge cake in 
the laboratory and achieve E. coli concentrations similar to 
that recorded in industry. 

Proof of 

concept 

Chapter 3 
The addition of high concentrations of 
undefined diverse microbial cultures to 
sludge cake after pasteurisation will lead 
to competitive inhibition of E. coli re-
growth. 
 

Instead of using unknown diverse 
cultures, a new approach of selecting 
possible candidate organisms for 
competitive exclusion treatment from the 
literature was taken. To speed up the 
selection process and make the 
conditions more controllable, sludge-
derived nutrient broth was used as 
growth medium instead of solid sludge 
cake. 

Chapter 4 
The addition of high concentrations of 
Lactobacillus reuteri, Lactobacillus 
brevis, Lactobacillus acidophilus and an 
unidentified bacterial culture derived 
from sludge cake (UIS) to sludge derived 
nutrient broth inoculated with E. coli in 
combination and as sole competitors will 
lead to the inhibition of E. coli growth 

L. reuteri is the best candidate for 
competitive exclusion treatment out of 
the candidates selected. L. reuteri is 
thought to work via production of an 
antimicrobial called reuterin, produced 
via the fermentation of glycerol. Could 
the addition of glycerol enhance the 
effect recorded in Chapter 4? 
Furthermore Lactobacilli are known to 
prefer more acidic environments. With 
the pH of the sludge cake and the 
sludge derived nutrient broth known to 
be between pH 7.6 and 8.2. Could 
reduction of the pH aid L. reuteri growth 
and further enhance the inhibition of E. 
coli growth 
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Chapter 5 
Supplementing sludge derived nutrient 
broth with glycerol and reducing of pH in 
combination with the addition of a high 
concentration of L. reuteri will lead to an 
enhanced inhibition of E. coli growth 
compared to that recorded in chapter 7. 
Furthermore 10% glycerol is the optimal 
concentration to enhance the 
antagonistic action of L. reuteri against 
E. coli.  

Application in 

solid sludge cake 

Chapter 6 
The addition of L. reuteri in 
combination with 10% glycerol 
and a reduction in the pH of solid 
digested sludge cake will lead to 
the reduction of E. coli re-growth 
post pasteurisation. 
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Chapter 2 Preliminary experiments 
 

2.1 Introduction 
 

To investigate the ability of competitor organisms or cultures to compete with E. 

coli and reduce re-growth in digested sludge cake in a laboratory environment 

at bench scale, two basic methodologies were required. First an accurate and 

reliable method for the recovery and enumeration of resident E. coli in digested 

sludge cake. Second, a reliable method of generating E. coli re-growth in 

digested sludge cake in the laboratory at bench scale to an extent that the 

results mirror that which is recorded in industry. 

 

With regards to the recovery and selective isolation of E. coli from digested 

sludge cake there are three main methods used within the wastewater 

treatment industry (Eccles et al., 2004). Two of these methods use membrane 

filtration techniques, utilising chromogenic E.coli/coliform (CEC) media or 

membrane lactose glucuronide agar (MLGA). The third method however, 

applies the most probable number (MPN) technique using Colilert in Quantitray 

2000 (IDEXX, Westbrook, ME). All these methods are based upon the 

expression of the enzyme ß-glucuronidase. This enzyme has been reported to 

be present in over 94% of E. coli (Hansen and Yourassowsky, 1984).The 

methodology for the enumeration and recovery of E. coli from sewage sludge 

cake is reviewed in more detail elsewhere (The Environment Agency, 2003b). In 

these preliminary experiments only membrane filtration onto MLGA was 

investigated. The method was selected for its simple procedure and low 

apparatus and reagent requirements. Furthermore this method is known to 

provide clear results with the use of selective agar (MLGA) making additional 

confirmation tests in general unnecessary. To determine the accuracy and 

repeatability in terms of recovery percentage of E. coli from digested sludge 

cake, controlled replicated bench scale experiments were designed in which 

sludge samples were sterilised via autoclaving and then spiked with a pure 

culture of E. coli. The E. coli were then recovered from the sludge cake via 

membrane filtration onto MLGA and the recovery rate deduced to determine its 
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accuracy. These experiments were important in confirming the validity of future 

data concerning the concentration of E. coli recovered from digested sludge 

cake using membrane filtration onto MLGA as the primary method of recovery. 

 

With regards to establishing a methodology for generating E. coli re-growth in 

digested sludge cake in the laboratory, upon delivery to Cranfield University the 

E. coli concentration of the sludge cake was measured in certain cases as high 

as 105 cfu/gDs. E. coli as stated previously (Chapter 1.3) is a good indicator 

organism for microbial growth in sludge cake. Considering the high 

concentration of E. coli in the sludge cake it was assumed this indicated a high 

bacterial load. The sludge cake being utilised had already undergone treatment 

at United Utilities wastewater treatment plant at Ellesmere Port and therefore 

the concentration of E. coli and other micro-organisms would have been 

expected to be within compliance guidelines (ADAS, 2001). However the sludge 

cake was not collected immediately following dewatering, and as shown by 

Figure 2.1, growth of coliforms including E. coli in sludge cake at room 

temperature can occur within hours, leading to as much as a one log increase 

within the first 8 hours of sampling in that case. It is therefore highly possible 

that re-growth of the micro-organisms within the cake had begun prior to 

collection and transport. It is hypothesised that during delivery from Ellesmere 

Port to Cranfield University re-growth continued leading to the high bacterial 

load contained within the sludge cake. In these conditions recording an E. coli 

re-growth cycle at bench-scale in the laboratory, never mind the effect of the 

addition of competing organisms on E. coli growth would be improbable. It was 

hypothesised a process could be applied to significantly reduce the number of 

all bacteria in the sludge cake including the E. coli.  By leaving a small number 

of E. coli in the sludge cake with a lot of dead cells it would be expected that E. 

coli numbers would resurge making use of the dead bacteria cytoplasm and any 

remaining nutrients in the sludge cake. It was hypothesised a pasteurisation 

process could provide the necessary reduction in bacterial and thereby 

generate regrowth in the laboratory in a consistent and repeatable way.  
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Figure 2.1 – Rate of growth of coliforms in sludge cake at room temperature. (Baddeley, 2010) 

Pasteurisation is a process which, unlike sterilisation, is not intended to kill all 

micro-organisms, but instead aims to reduce the number of viable pathogens, 

primarily to prevent the transmission of disease. Thermal pasteurisation is the 

most common method applied and is utilised on occasion for wastewater 

treatment. In the case of sludge, whilst specific conditions may differ as a result 

of treatment designs and configurations, generally sludge is heated at a 

minimum temperature of 70°C for at least 30 minutes or a minimum of 55°C for 

at least 4 hours (The Environment Agency, 2003a). Appropriate intermediate 

conditions may also be used. Pasteurisation’s application in wastewater 

treatment is reviewed in more detail at Godfree and Farrell (2005), Hudson and 

Lowe (1996) and Lundin et al. (2004). Though there are a number of alternative 

methods available to treat the sludge cake in such a way to reduce the bacterial 

load, in these preliminary experiments only pasteurisation was investigated. It 

was selected as it is a simple method of reducing the bacterial load of digested 

sludge cake without affecting the chemical, nutritional and physical properties of 

the sludge cake. Considering the sludge cake is intended for agricultural use 

maintaining its properties is an important experimental parameter.  
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The development of a methodology for achieving E. coli re-growth in digested 

sludge cake in the laboratory at bench scale was two-fold. The principle of the 

first experiments was to define the ideal conditions for the thermal 

pasteurisation of sludge cake to effectively reduce its bacterial load to thereby 

initiate an E. coli re-growth cycle and to determine the reliability and consistency 

of the method. To achieve this, controlled replicated bench scale experiments 

were performed, in which sludge samples were pasteurised via placement in a 

dry heat oven set at 62ºC for varying durations of time, with the E. coli 

concentration of the cake measured before and after the process. The 

temperature of 62ºC was selected as it was found that at temperatures above 

70ºC, the E. coli within the sludge cake was eliminated in a relatively short 

duration of time, while at temperatures between 60 and 65ºC the die-off was 

much more controllable. The principle of the second experiments was to 

determine whether thermal pasteurisation and reducing the bacterial load of 

sludge cake would subsequently lead to E. coli re-growth. This was achieved 

via controlled replicated bench scale experiments in which sludge cake was 

pasteurised using the conditions determined in the first experiment and then 

subsequently incubated at a set temperature. To re-create conditions the sludge 

cake would be exposed to in industry, the cake was incubated at 20ºC to 

simulate the conditions experienced during storage.  

 

It was also hypothesised however, that the initial re-growth of micro-organisms 

occurring immediately following de-watering may have caused a decrease in 

the overall nutrient content of the sludge cake. Coupled with the hypothesised 

reduction in moisture content caused by the pasteurisation process, it was 

possible any generated re-growth would be restricted, certainly below levels 

recorded in industry (Figure 2.2). Therefore to increase the nutrients availability, 

a nutrient broth was added following the pasteurisation process to a designated 

set of sludge cake samples. So as to maintain consistency in respect to what 

nutrients the indigenous micro-organisms within the sludge cake would be 

exposed to, the nutrient broth was derived from raw sludge sourced from the 

Cranfield wastewater treatment plant. These experiments were important as 
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they not only proved that generating E. coli re-growth in sludge cake was 

possible at bench scale, they also provided a curve for re-growth in optimum 

conditions where the only competing organisms were those indigenous to 

sludge cake.  

 

 

Figure 2.2 – E. coli re-growth on site in enhanced treated sludge cake (Sprigings and Le, 2011). 

 

2.2 Materials and methodology 
 

2.2.1 Recovery and enumeration of E. coli from digested sludge cake 
 

2.2.1.1 Strains, culture media and growth conditions 
 

Escherichia coli was recovered and isolated from digested sludge cake 

provided by United Utilities and sourced from Ellesmere Port and grown and 

maintained at 37°C on tryptone soya agar (TSA; Oxoid CM131) slopes. TSA 

was prepared following the manufacturer’s instructions and autoclaved at 121°C 

for 20 minutes prior to use.  
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2.2.1.2 Collection and storage of digested sludge cake 
 

Digested sludge cake was collected from the outlet of the United Utilities’ sludge 

centrifuge at the Ellesmere Port wastewater treatment plant and dispatched to 

Cranfield University via courier contained within a refrigerated box and 

subsequently stored at 5 ºC upon delivery. Though the supplier of the sludge 

cake and source remained constant throughout the study, deliveries were 

limited to 5kg batches. This means that the sludge cake was not constant 

throughout in terms of nutritional, physical and microbial composition, due to the 

use of different batches in different experiments. The concentration of E. coli 

contained within the sludge cake was recorded upon delivery and 48 hours prior 

to every experiment. 

2.2.1.3 Preparation of inocula 
 

E. coli was grown up overnight in 100ml of tryptone soya broth (TSB; Oxoid 

CM129) in a Duran bottle and incubated at 37°C under constant shaking at 

150rpm. The cells were then harvested by centrifugation at 755g for 10 minutes. 

The supernatant was removed and the cells subsequently re-suspended in 

10ml maximum recovery diluent (MRD; Oxoid CM0733). The optical density 

(O.D) at 600nm of this suspension was then recorded and standardised at an 

O.D of 1.7 using sterile MRD. At this optical density from plate counts previously 

performed it is known that the concentration of the E. coli suspension is 

between 107 and 108 cfu/ml. Following this the suspensions were 10 fold serially 

diluted in MRD to a degree of 10-8.  

2.2.1.4 Preparation and inoculation of digested sludge cake 
 

Firstly the digested sludge cake was broken down manually to ensure an even 

particle size was achieved. The sludge cake was then divided into 5g sub-

samples (wet weight) and placed in separate 30ml universal bottles (Figure 2.3) 

and sterilized by autoclaving at 121ºC for 30 minutes. The sludge cake samples 

were then inoculated with 1ml of the 10-4 and 10-5 (chosen due to the higher 

likelihood of providing readable counts) E. coli inocula dilutions prepared earlier 

and vortexed for 1 minute to ensure even distribution of the E. coli within the 
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sludge cake. This was done in triplicate. To determine the concentration of the 

E. coli inoculum, 100µl of dilutions 10-6, 10-7 and 10-8 of the original E. coli 

suspension were plated onto TSA in triplicate. After incubation at 37ºC for 24 

hours, colonies were counted. 

 

Figure 2.3 – 5g sub sample of sludge cake in a universal bottle following manual break down to 
ensure even particle size. 

2.2.1.5 Recovery of E. coli from digested sludge cake 
 

Immediately following inoculation, 10ml of MRD was added to the universals 

(Figure 2.4) and vortexed for 1 minute. A negative control was also prepared, in 

which the digested sludge cake was only autoclaved and not inoculated to 

ensure the autoclaving process was successful in sterilising the sludge cake.  

 

 

Figure 2.4 – The three bottles to the left show the 5g samples of sludge cake in a universal bottles 
following the addition of 10 ml MRD prior to vortexing. The four bottles to the right are preparation 
for serial dilution.  

 



34 

  

2.2.1.6 Enumeration of E. coli via membrane filtration 
 

1ml of sample was removed from the universal bottle and 10-fold serially diluted 

in MRD. 1ml of each dilution was then filtered through a 0.45µm cellulose 

acetate filter (Eccles et al., 2004; Sartory and Howard, 1992). Due to the 

volume of the inocula to be filtered being below 10ml, additional MRD was 

added to the funnel to aid the dispersion of the bacteria over the entire surface 

of the membrane filter during the filtration process. Following filtration, the filter 

was placed onto membrane lactose glucuronide agar (MLGA; Oxoid CM1031) 

and incubated at 30°C for 4 hours and then transferred to 37°C for a further 14 

hours.  This was performed in triplicate for each time point. The colonies were 

then enumerated with all green colonies counted and considered as 

presumptive E. coli. Figure 2.5 shows examples of MLGA plates after 

incubation following the membrane filtration of samples derived from sludge 

cake. 

 

Figure 2.5 - MLGA plates after incubation following the membrane filtration of samples derived 
from sludge cake. Green colonies represent E. coli, yellow colonies represent faecal coliforms and 
pinks colonies represent non-lactose fermenters. 
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2.2.2 Bench scale pasteurisation of digested sludge cake 

 

2.2.2.1 Preparation and pasteurisation of digested sludge cake 
 

Firstly the digested sludge cake was broken down manually to ensure an even 

particle size was achieved. The sludge cake was then divided into 5g sub-

samples and placed in separate 30ml universal bottles, this was done in 

triplicate so each time point had three samples each to be analysed. The cake 

was then heated in a dry heat oven at 62ºC. 

2.2.2.2 Sampling 

 

Samples were removed from the oven every 15 minutes for one hour, and 10ml 

of maximum recovery diluent (MRD; Oxoid CM0733) was added to the 

universals and then vortexed for one minute. The procedure for the 

enumeration of E. coli via membrane filtration reviewed in section 2.2.1.6 was 

then performed. A sample was also analysed prior to heating (i.e. time 0 hours) 

to act as a control. The moisture content of the digested sludge cake was 

established via heating a 5g sample at 121ºC for 24 hours and measuring the 

percentage weight difference. 

 

2.2.3 Generating Escherichia coli re-growth in digested sludge cake at bench-
scale in the laboratory 

 

2.2.3.1 Preparation of sludge derived nutrient broth 
 

Raw sludge from Cranfield University’s sewage treatment works was first stirred 

to break up the biomass and ensure nutrients would be released into 

suspension and then centrifuged at 84g for one minute to remove the heavier 

biomass. The supernatant was poured off and then autoclaved at 121ºC for 15 

minutes to ensure sterility.  

2.2.3.2 Preparation and pasteurisation of digested sludge cake 
 

Firstly the digested sludge cake was broken down manually to ensure an even 

particle size was achieved. The sludge cake was then divided into 5g sub-
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samples and placed in separate 30ml universal bottles, this was done in 

triplicate so each time point had three samples each to be analysed. Using the 

conditions determined in the previous experiment regarding pasteurisation the 

cake was then heated in a dry heat oven at 62ºC for 45 minutes. In the first 

experiment immediately following pasteurisation the digested sludge cake 

samples were incubated at 20°C. In the second experiment immediately 

following pasteurisation 1ml of sludge derived nutrient broth was added to half 

the samples and 1ml of 50% sludge derived nutrient broth (10ml MRD and 10ml 

sludge derived nutrient broth) added to the other half, they were both then 

incubated at 30ºC. The incubation temperature was raised from 20ºC to more 

accurately mirror the conditions during storage especially during the summer 

months, as it was discovered that on site storage temperatures of sludge cake 

can reach up to and above 30ºC (Sprigings and Le, 2011). One set of samples 

post pasteurisation was not inoculated with sludge derived nutrient broth to act 

as a negative control and one set was inoculated with 1ml of sterile MRD to 

determine if any effect was caused by the addition of nutrients or moisture. 

These were then incubated under the same conditions.  

2.2.3.3 Sampling 
 

A universal bottle containing a 5g sample of sludge cake was taken immediately 

after the pasteurisation process and 10ml of maximum recovery diluent (MRD; 

Oxoid CM0733) was added to the universal and then vortexed for one minute. 

The procedure for the enumeration of E. coli via membrane filtration presented 

in section 2.2.1.6 was then performed. This was repeated every 6 hours for 24 

hours and then every 12 hours for the subsequent 24 hours. A sample was also 

analysed prior to pasteurisation to determine how effective the pasteurisation 

process was. The moisture content of the digested sludge cake was also 

established via heating a 5g sample at 121ºC for 24 hours and measuring the 

percentage weight difference. 
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2.2.3.4 Statistical analysis 
 

All data was input into Microsoft Excel. An F-test was performed to determine 

variance and then a t-test to determine statistical differences between data sets. 

A p value below 0.05 resulted in the rejection of the null hypothesis. Graphs 

were generated by converting the data into log numbers and inputting into JMP 

statistical software (SAS). An adjusted form of the Baranyi-Roberts equation 

(Baranyi and Roberts, 1994) devised by Miconnet et al. (2005) was utilised to fit 

curves to the data. Only curves with a root-mean-square error (RMSE) of below 

0.5 were accepted. This modified equation was used because it allows for a 

more accurate representation of the lag phase of growth. Furthermore the 

Baranyi-Roberts model has proven to be more robust when compared with the 

alternative, the modified Gompertz equation, when used to fit survival curves, 

such as those with lag and sigmoidal (Xiong et al., 1999). Additionally when 

used in conjunction with JMP software the equation provides figures to calculate 

the growth rate. This equation, however does not allow for the death phase of 

the bacterial growth curve. Hence, the death phase is not represented in the 

graphs with a line. All graphs were produced using Microsoft Excel. The mean 

generation times (g) were calculated using the equations shown in Figure 2.6. 

Nt was determined from the graphs and the curve of the line and represents the 

number of E. coli at the point where exponential growth ceases. N0 was also 

determined from the graphs and the curve of the line and represents the 

number of E. coli at the point in which the lag phase of growth ceases and 

exponential growth begins. The value of t is dependent upon the incubation time 

in hours between point N0 and Nt.  

 

𝑔 =
(𝑙𝑜𝑔10𝑁𝑡 − 𝑙𝑜𝑔10𝑁0)

𝑙𝑜𝑔102
 

 

(
𝑡 (ℎ𝑜𝑢𝑟𝑠)

𝑔
) × 60 

Figure 2.6 – Equations for the calculation of the mean generation times (g) in minutes.  
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2.3 Results and discussion 
 

2.3.1 Recovery and enumeration of E. coli from digested sludge cake 
 

It was determined from spread plate counts of the original E. coli suspensions 

that 1.14 x 104 E. coli were added to the sludge cake in the initial experiment, 

1.39 x 104 in the first repeat and 1.24 x 104 in the second repeat (Table 2.1). 

The average number of E. coli recovered in 1ml from the sludge cake was 1.16 

x 102 in the initial experiment, 1.4 x 102 in the first repeat and 1.15 x 102 in the 

second repeat (Table 2.1). This represents a recovery rate of 101.75%, 100.5% 

and 92.5% in the initial, first repeat and second repeat experiments 

respectively. The recovery rate was calculated using the equation shown in 

Figure 2.7. Taking into consideration the overall volume of the sludge cake 

following the addition of MRD for recovery of E. coli was 10ml and the sludge 

cake/MRD suspension had to be diluted 10 fold (10-1) to allow membrane 

filtration. 

Table 2.1 - Recovery of E. coli from digested sludge cake using the membrane filtration technique 
onto MLGA 

Number of E. coli added 
to sludge cake  per ml 

Number of E. coli recovered 
from sludge cake per ml 

Average number of E. coli 
recovered from sludge cake  per 

ml 

Initial experiment 

1.14E+04 

106 

116 ± 11 113 

128 

First repeat 

1.39E+04 

137 

140 ± 14 156 

128 

Second repeat 

1.24E+04 

108 

115 ± 7 116 

121 
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𝑅𝑒𝑐𝑜𝑣𝑒𝑟𝑦 𝑅𝑎𝑡𝑒 (%) =  

(

 
 
 
 
 
 (

𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸. 𝑐𝑜𝑙𝑖 𝑟𝑒𝑐𝑜𝑣𝑒𝑟𝑒𝑑 
𝑓𝑟𝑜𝑚 𝑠𝑙𝑢𝑑𝑔𝑒 𝑐𝑎𝑘𝑒 

× 𝑆𝑙𝑢𝑑𝑔𝑒 𝑐𝑎𝑘𝑒 𝑑𝑖𝑙𝑢𝑡𝑖𝑜𝑛
× 𝑉𝑜𝑙𝑢𝑚𝑒 𝑜𝑓 𝑠𝑙𝑢𝑑𝑔𝑒 𝑐𝑎𝑘𝑒 𝑠𝑢𝑠𝑝𝑒𝑛𝑠𝑖𝑜𝑛 (𝑚𝑙)

)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝐸. 𝑐𝑜𝑙𝑖 𝑎𝑑𝑑𝑒𝑑 𝑡𝑜 𝑠𝑙𝑢𝑑𝑔𝑒 𝑐𝑎𝑘𝑒

)

 
 
 
 
 
 

× 100 

Figure 2.7 – Equation for the calculation of the recovery rate of E. coli from digested sludge cake 
using the membrane filtration method.  

The high recovery rates calculated in these experiments were unexpected, 

especially considering only vortexing was used to homogenise and mix the 

samples when the standard operating procedure states the need for a 

stomacher (The Environment Agency, 2003b). There are a number of possible 

causes for the high recovery rates, one of which is contamination. During the 

first repeat experiment, the negative control tested positive for E. coli. This 

suggests the autoclave process was unsuccessful in sterilising the sludge cake 

in this case, compromising the validity of the E. coli count in this experiment and 

leading to a high recovery rate. However at no point did any of the negative 

controls test positive for E. coli in the initial and second repeat experiments. 

This suggests the probability that contamination is the cause of the high 

recovery rates doubtful.  Another possible cause is growth of the E. coli 

following inoculation into the sludge cake. As stated in chapter 1, sludge cake 

contains numerous nutrients, which is why it is applied to agricultural land; this 

makes it an ideal growth matrix for micro-organisms. E. coli inoculation into 

sterilised digested sludge cake would undoubtedly lead to unrestricted 

exponential growth, not only because of the high nutrient availability but also 

because of the lack of microbial competition, leading to a high E. coli recovery. 

This would also explain the recovery of a higher number of E. coli than 

inoculated into the sludge cake. However the time between inoculation and 

recovery was restricted to at most a few minutes, making any growth and 

thereby increases in the recovery of E. coli highly unlikely. The most likely 

cause of the high recovery rates is that the E. coli being recovered is not 

indigenous and therefore ingrained in the cake in such a way that 

homogenisation is essential for recovery. The sludge cake in these experiments 
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has been spiked with E. coli. Spiking 5g of sterilised sludge cake with a high 

moisture content (in these experiments consistently around 75%) with 1ml of an 

E. coli suspension, lead to excess inoculum in the universal bottle, due to the 

cake being saturated. Furthermore the inoculum that was absorbed into the 

sludge cake will only have been on the surface, these factors combined means 

the vortexing procedure will have been sufficient to release the majority if not all 

the E. coli inoculated into suspension allowing a high E. coli recovery.  It would 

be expected in future experiments, where the sludge cake is not spiked and 

vortexing is the sole method of homogenisation and mixing, the recovery rate 

would be significantly lower.  

 

Regardless the results from the initial and second repeat experiments do 

confirm that membrane filtration onto MLGA is a consistent and accurate means 

of recovering and enumerating E. coli from digested sludge cake, these findings 

match those of Eccles et al. (2004) and Sartory and Howard (1992). With 

regards to the other methods not tested Eccles et al. (2004) found that all three 

methods gave comparable recoveries and results did not vary by greater than 

one order of magnitude (1 log). However Eccles et al. (2004) found membrane 

filtration onto MLGA occasionally gave lower counts compared to the other 

methods. This was attributed to MLGA providing slightly lower presumptive 

results. Sartory and Howard (1992) reasoned that the green colouration by E. 

coli can be suppressed when the membrane has high numbers of non-target 

organisms present. This was not investigated during these experiments; 

however this effect can be nullified by sample dilution to a range of between 20 

to 70 target colonies, making accurate dilution key to this technique.  

 

2.3.2 Bench scale pasteurisation of digested sludge cake 
 

For pasteurisation to be deemed an acceptable method for the reduction in the 

bacterial load of sludge cake, the method had to be capable of consistently 

reducing the concentration of E. coli within the sludge cake below 103 cfu/gDs. 

This was to ensure conditions in the sludge cake in terms of microbial growth 

were as close to what is recorded in industry as possible. Enhanced treated 
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sludge cake to be applicable for disposal to land is only permitted to contain an 

upper limit of 103 E. coli per gram dry weight of sludge (The Environment 

Agency, 2003a). Results from the pasteurisation of digested sludge cake 

(Figure 2.8), show that an exposure time of at least 30 minutes at 62°C, had 

little to no effect on the viability of the resident E. coli within the sludge cake. 

While an exposure time of 45 minutes at the same temperature caused a near 3 

log reduction in the concentration of E. coli recovered, reducing it below the 103 

cfu/gDs threshold previously stated. However 60 minutes eliminated all resident 

E. coli within the sludge cake with no viable count found from any of the 

samples. Furthermore there was very little variability between the repeats, 

confirming the pasteurisation method is consistent, regardless of exposure time. 

 

 

Figure 2.8 - Results for the enumeration of E. coli derived from digested sludge cake using the 
membrane filtration technique following pasteurisation at 62°C for between 0 and 60 minutes. The 
log concentration of E. coli was calculated from the averages of plate counts, the error bars 
represent the standard deviation.  

 

However in the final two exposure times (45 and 60 minutes) there was a 

significant drying of the cake, with a between 5 and 30% drop in moisture 

recorded. As no investigation into growth after pasteurisation was performed at 
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this stage it is unknown what the impact this reduction in moisture content could 

have on growth of the indigenous microbial community and in particular E. coli. 

It is also unknown if the heat led to other changes in the physical or nutritional 

properties of the sludge cake which could also hamper microbial growth. 

Despite this at this stage only an exposure time of 45 minutes at 62°C showed 

the capability of consistently reducing the concentration of E. coli contained 

within sludge cake below 103 cfu/gDs. Therefore these were the conditions used 

in future experiments to pasteurise sludge cake to reduce the bacterial load. 

 

2.3.3 Escherichia coli re-growth in digested sludge cake at bench-scale in the 
laboratory 

 

2.3.3.1 Re-growth with no nutrient addition 
 

 

Figure 2.9 - Enumeration of E. coli in digested sludge cake incubated at 20°C following 
pasteurisation at 62°C for 45 minutes using the membrane filtration technique. The Baranyi-
Roberts model (Baranyi and Roberts, 1994) adjusted by Miconnet et al. 2005 was used to fit curves 
to the data. 

As shown in Figure 2.9 E. coli regrowth in cake was generated following 

pasteurisation in the laboratory, with a 2 log increase recorded. This is a similar 

result to that reported by Qi et al. (2004) in digested sludge samples 

immediately following centrifugation. However in this experiment, it took E. coli 
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48 hours to achieve this level of growth, and even then the highest 

concentration of E. coli recorded was only 4.41x105 cfu/gDs. Furthermore the 

mean generation time was calculated to be 326 minutes. Comparing this result 

to what is documented in industry, Baddeley (2010) recorded a 3 log increase in 

E. coli concentration within 24 hours in class A biosolids following dewatering 

and storage, with E. coli reaching a high of just under 1x107 cfu/gDs after 48 

hours. Additionally, Sprigings and Le (2011), recorded a similar level of E. coli 

re-growth on site at a wastewater treatment facility in enhanced treated sludge 

cake (Figure 2.2), from these results it was estimated the mean generation time 

to be 101 minutes, 3 times faster than that recorded in Figure 2.9. Although in 

this case environmental temperatures were much higher than the incubation 

temperature of 20ºC used in this experiment, therefore it is unsurprising a faster 

growth rate was recorded. Overall it is clear from these results that not only the 

growth rate of E. coli but also the amount of re-growth generated after 48 hours 

in this experiment is much reduced when compared to the levels recorded 

within industry. Therefore the methodology at this stage is unsuitable for future 

competitive exclusion experiments due to insufficient amount of E. coli 

generated within 48 hours and the slow growth rate 

2.3.3.2 Re-growth with nutrient addition 
 

As shown by Figure 2.10, the addition of nutrient to the digested sludge cake 

post pasteurisation resulted in a reduction in lag times, increase in growth rate 

and a significant increase (p ≤ 0.05) in E. coli growth when compared to the 

sludge cake without nutrient addition. The addition of undiluted nutrient lead to 

an around 3 log increase recorded after 18 hours and a mean generation time 

of 89 minutes, this is a similar value to that estimated for Figure 2.2. In 

comparison, with no nutrient addition only an around 1 log increase was 

documented within the same time frame and the mean generation time was 

calculated to be 184 minutes. This is a similar to result to that documented in 

the first experiment (Figure 2.9), in terms of the maximum concentration of E. 

coli recorded, however the growth was significantly reduced by almost a factor 
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of 2. This is most likely due to the 10ºC increase in incubation temperature 

between experiments.  

 

There was no significant difference (p > 0.05) in E. coli growth between sludge 

cake supplemented with 1ml undiluted nutrient or 1ml of half fold diluted 

nutrient. This suggests that a higher concentration of nutrient had little to no 

effect as the E. coli within the sludge cake was growing at or near its maximal 

rate regardless. Although the use of half fold diluted nutrient, did minimally 

increase the mean generation time to 94 minutes, 5 minutes more than in cake 

supplemented with undiluted nutrient. Furthermore the addition of a higher 

nutrient concentration did result in a marginally higher final concentration of E. 

coli; this is most likely due to the sludge cake being able to support more growth 

due to the excess nutrient availability.  

 

Without nutrient addition a 10°C increase in incubation temperature still resulted 

in reduced overall growth. This suggests the E. coli is at its maximal growth rate 

in the conditions of the unaltered cake, validating the hypothesis that the sludge 

cake was nutritionally deficient, most likely as a result of the previous microbial 

re-growth cycle. This is further supported by the significant increase in E. coli 

growth following nutrient addition. Additionally re-wetting the sludge cake with 

MRD had no significant effect on growth (p > 0.05). This confirms that the 

reduction in moisture content caused by the pasteurisation process does not 

hinder E. coli growth and is not the source of the reduced growth. 

 

Overall these experiments have shown that it is possible to generate E. coli re-

growth in digested sludge cake in the laboratory at bench scale; however the 

supplementation of additional nutrient is required to achieve similar results to 

that which is recorded in industry. 
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Figure 2.10 - Enumeration of E. coli in digested sludge cake incubated at 30°C following 
pasteurisation at 62°C for 45 minutes and addition of a nutrient broth derived from raw sludge 
using the membrane filtration technique. The Baranyi-Roberts model (Baranyi and Roberts, 1994) 
adjusted by Miconnet et al. 2005 was used to fit curves to the data. 

 

2.4 Conclusions 
 

 Membrane filtration onto MLGA is a consistent and accurate method of 

recovering and enumerating E. coli from digested sludge cake. 

Additionally the method has a simple procedure, low apparatus and 

reagent requirements and provides clear results with the use of selective 

agar (MLGA) making additional confirmation tests in general 

unnecessary. Therefore membrane filtration onto MLGA will be the 

method of choice for the recovery and enumeration of E. coli from 

digested sludge cake in future experiments. 

 

 Reviewing the literature there are no large differences in terms of 

accuracy of enumeration between the three suggested methods of 

membrane filtration onto either CEC media or MLGA and utilising the 
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MPN technique. Furthermore though not tested during these 

experiments, MLGA can occasionally provide lower counts if in presence 

of a high concentration of non-target organisms, making proper dilution 

key to this technique, especially considering the high microbial diversity 

of sludge cake.  

 

 During the recovery and enumeration of E. coli, higher than expected 

recovery rates were recorded. This is likely attributed to the spiking of 

sludge cake with a high moisture content with E. coli making the recovery 

simpler as homogenisation and mixing is not as essential in non-spiked 

sludge cake. It is anticipated in future experiment where vortexing is the 

sole method of homogenisation and mixing prior to recovery, the rates 

will be significantly lower.  

 

 Thermal pasteurisation at bench scale using a dry heat oven is an 

acceptable method for reducing the bacterial load in digested sludge 

cake. Heating of the digested sludge cake to 62°C for 45 minutes was 

found to be capable of consistently reducing the E. coli concentration 

below the 103 cfu/gDs threshold. However under these conditions the 

sludge cake experienced a between 5 and 30% reduction in moisture 

content.  

 

 It is possible to generate E. coli re-growth in digested sludge cake in the 

laboratory at bench scale; however the supplementation of additional 

nutrient post pasteurisation and incubation at 30ºC is required to achieve 

similar results to that which is recorded in industry. This was shown in 

the mean generation times. Using the results from Sprigings and Le 

(2011) shown in Figure 2.2 it was estimated the mean generation time of 

E. coli in industry in enhanced treated sludge cake on that particular site 

was 101 minutes. This is a similar result to that recorded for sludge cake 

supplemented with undiluted nutrient (89 minutes), while sludge cake 

with no nutrient addition had a much higher mean generation time (184 
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minutes). Furthermore with the addition of nutrient broth, the E. coli 

concentration within cake was measured at over 1x107 cfu/gDs within 24 

hours; this is once again a similar result to what is recorded in industry. 

In comparison without nutrient broth addition, E. coli concentration only 

ever reached a maximum of around 5x105 cfu/gDs within the same 

timeframe.  

 

 There was no significant difference between addition of 1ml undiluted 

nutrient broth and 1ml of half fold diluted nutrient broth, in both cases 

addition led to an increased level of E. coli growth when compared to the 

sludge cake with no nutrient addition. This suggests that a higher 

concentration of nutrient had little to no effect as the E. coli within the 

sludge cake was growing at or near its maximal rate regardless. 

 

 Addition of 1ml MRD had no effect on the growth of E. coli in sludge 

cake, confirming that the reduction in moisture content caused by the 

pasteurisation process does not hinder E. coli growth. Furthermore it 

validates the hypothesis that the increased availability of nutrients and 

not the addition of moisture is the cause of the increased E. coli in sludge 

cake growth following supplementation with nutrient broth. 

 

 Without nutrient addition a 10°C increase in incubation temperature still 

resulted in reduced overall E. coli growth within the sludge cake, only 

when nutrients were introduced did it increase. This suggests the E. coli 

is at its maximal growth rate in the conditions of the unaltered cake, 

validating the hypothesis that the sludge cake was nutritionally deficient. 
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Section 2: Proof of concept 

Introduction 

In industry it has been shown that E. coli in sludge cake is capable of a 2 log 

increase in a 12 hour period (Figure 2.2), at bench scale a 3 log increase 

was recorded in the same time frame (Figure 2.10). This rapid growth rate 

combined with a number of other variables including the nutrient content of 

and high biodiversity of sludge cake makes the development of a 

competitive exclusion treatment extremely difficult. Furthermore the 

experimental parameter of not adversely changing the physical and/or 

chemical properties of sludge cake due to its land applications restricts what 

can be added and in what volume. The following chapters detail the 

experiments setup to develop and optimise such a method for use in 

digested sludge cake.  

Chapters 3 and 4 focus on the initial screening process for candidate organisms 

and cultures capable of competing with E. coli, thereby inhibiting its growth. 

Initially the emphasis was on utilising undefined mixed cultures such as soil, the 

hypothesis being that the addition of a high concentration, diverse microbial 

culture to digested sludge cake would result in the reduction of E. coli re-growth 

via most likely direct nutrient competition. Following on from this the possible 

use of single candidate organisms capable of producing antimicrobials or 

alternatively those with a rapid growth rate capable of directly competing with E. 

coli for nutrients were also analysed as individuals and combined in defined 

mixed cultures. These experiments were important in proving the concept of 

competitive exclusion as a means to reduce E. coli growth in a sludge cake 

environment, and in highlighting promising candidates for optimisation.  

 

Chapters 5 focuses on the optimisation of the competitive exclusion treatment 

process using the candidate organisms identified during the screening process. 

There were two defined methods of optimisation utilised. First it was 

hypothesised that by changing the sludge cake environment to suit the growth 

of the competitor organisms, for example by reducing the pH it would increase 
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the ability of the organisms to compete with E. coli and thereby increase any 

reduction in growth recorded in previous experiments. Second it was 

hypothesised that the addition of precursor compounds to antimicrobials 

generated by the competitor organisms would increase their production thereby 

increasing the inhibition of E. coli growth in sludge cake. These experiments 

were important in maximising any effect the competitor organisms had on E. coli 

growth, and understanding their mechanism of action.  

Chapter 3 Competitive exclusion of Escherichia coli re-growth 
in digested sludge cake using high diversity cultures 

 

3.1 Introduction 
 

The competitive exclusion principle also known as Gause’s Law (Gause, 2003), 

contends that to coexist in a stable environment two competing species must 

differ in their respective ecological niche; without differentiation, one species will 

eliminate or exclude the other through competition. Throughout nature, there 

are a large number of well-studied examples of populations which are held in 

balance, or driven to transition, by competitive forces, a classic example within 

bacterial populations is within the gastrointestinal tract. The indigenous 

microflora of the gastrointestinal tract inhibit exogenous pathogenic colonisation 

by creating a barrier effect and occupying available adhesion sites at the 

mucosal layer, competing for metabolic substrates and producing regulatory 

factors such as short-chain fatty acids and bacteriocins (Hao and Lee, 2004). 

 

Competitive exclusion as a treatment method to control the concentration of 

pathogens has been utilised in a number of industries from the production of 

silage (Driehuis and Elferink, 2000; Wilkinson et al., 1996) to preventing noso-

comial infectious diarrhoea in hospitals (D'Souza et al., 2002; Plummer et al., 

2010). In the poultry industry competitive exclusion treatment is used primarily, 

as a prophylactic measure that is aimed at increasing the resistance of chicks or 

turkey poults to salmonella infection by the administration of an oral preparation 

from a pathogen-free adult bird (Mead, 2000; Nurmi and Rantala, 1973). 
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Currently for poultry several competitive exclusion treatment products are 

commercially available, including Aviguard (Bayer) and Mucosal Starter Culture 

(MSC; Wayne Farms LLC, Oakwood, Ga.). Both of these products are mixed 

cultures derived from the caecal contents and/or wall of domestic fowl 

(Schneitz, 2005), and have shown to be effective in both laboratory and field 

trials for controlling Salmonella in chickens. For example, Ferreira et al. (2003) 

showed that the administration of Aviguard or MSC, protected chicks from the 

specific challenge of Salmonella Kedougou, as evidenced by the statistically 

significant reduction (p < 0.05) in chicks that tested positive for Salmonella 

(7.3% for MSC and 18.2% for Aviguard) and by the low levels of caecal carriage 

observed. Competitive exclusion treatments using mixed cultures have also 

been shown to be effective against other pathogens other than Salmonella. 

Schoeni and Doyle (1992); showed that the addition of a nine-strain mixture of 

caecal bacteria provided from 41 to 85% protection from Campylobacter jejuni 

colonisation. In another study by Hakkinen and Schneitz (1996) protection 

against both avian pathogenic E. coli and human pathogenic E. coli O157:H7 

was obtained in chickens by administering Broilact. Broilact like MSC and 

Aviguard is a competitive exclusion product defined as mixed culture derived 

from the caecal contents and scrapings of the caecal wall of a healthy adult hen 

(Schneitz, 2005). The precise mechanism of the protective effect of these 

products is unknown, and may never be determined because of the complexity 

of the gut as a habitat for micro-organisms and the variety of host–microbe and 

microbe–microbe interactions that can occur (Rolfe, 1991). However several 

theories have been proposed, including competition for (unspecified) receptor 

sites within the gut (Soerjadi et al., 1981; Soerjadi et al., 1982),  production of 

antimicrobials such as volatile fatty acids (Barnes et al., 1979; Corrier et al., 

1995a; Corrier et al., 1995b; Mead, 2000; Nisbet et al., 1993) and finally 

competition for limiting nutrients (Ha et al., 1994).  

 

It was hypothesised that by applying the methodology used within the poultry 

industry for competitive exclusion treatment, in terms of the addition of a 

carefully selected mixed culture, a similar protective effect against E. coli growth 
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could be obtained in sludge cake. This hypothesis was tested by separately 

adding two competitor cultures derived from soil and a commercially available 

fermented milk product in high concentration to digested sludge cake post 

pasteurisation. Soil was selected as a source for competitor organisms due to 

its large microbial biomass. It has been calculated that in temperate grassland 

soil the bacterial and fungal biomass amounted to 1–2 and 2–5 t ha-1, 

respectively (Killham, 1994). In addition soil is known to contain a high level of 

microbial diversity; Torsvik et al. (1996) calculated the presence of about 6000 

different bacterial genomes per gram of soil by taking the genome size of E. coli 

as a unit. It was hypothesised that this high biodiversity would increase the 

probability of introducing an organism or group of organisms capable of 

competing with E. coli within sludge cake either via direct nutrient competition or 

via production of antimicrobials. The fermented milk product was chosen on the 

other hand due to it being stated to contain a number of lactobacilli including 

Lactobacillus casei in high concentration. In the poultry industry as stated 

previously a large proportion of mixed cultures utilised in competitive exclusion 

treatments are sourced from the microflora of the intestinal tract of healthy 

chickens. It was therefore hypothesised that the highest probability of success 

was via using cultures of organisms that are normal inhabitants of the intestinal 

tract, such as lactobacilli. Furthermore lactobacilli are known to possess anti-

microbial activity, with the primary antimicrobial effect of lactobacilli exerted via 

the production of lactic acid and reduction of pH (Daeschel, 1989). In addition 

lactobacilli can produce various antimicrobial compounds, such as hydrogen 

peroxide (H2O2), carbon dioxide (CO2), diacetyl (2,3-butanedione) and 

bacteriocins (Ouwehand and Vesterlund, 2004; Piard and Desmazeaud, 1991; 

Piard and Desmazeaud, 1992). Additionally previous competitive exclusion 

experiments using lactic acid bacteria have proven successful albeit in cattle 

(Brashears et al., 2003) and turkeys (Milbradt et al., 2014). These factors make 

lactobacilli ideal candidate organisms for competitive exclusion treatment. 
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3.2 Materials and methodology 
 

3.2.1 Collection and storage of digested sludge cake. 
 

Digested sludge cake was collected from the outlet of the United Utilities’ sludge 

centrifuge at the Ellesmere Port wastewater treatment plant and dispatched to 

Cranfield University via courier contained within a refrigerated box and 

subsequently stored at 5 ºC upon delivery. The concentration of E. coli 

contained within the sludge cake was recorded 48 hours prior to the 

experiment, to ensure there as a sufficient amount (above 103 cfu/gDs) for an 

experiment to be performed.  

 

3.2.2 Preparation of sludge derived nutrient broth 
 

Raw sludge from Cranfield University’s sewage treatment works was first stirred 

to break up the biomass and ensure nutrients would be released into 

suspension and then centrifuged at 84g for one minute to remove the heavier 

biomass. The supernatant was poured off and then autoclaved at 121ºC for 15 

minutes to ensure sterility.  

3.2.3 Preparation of soil and fermented milk product inoculums 
 

In the initial experiment 50g of soil was collected from a location on Cranfield 

University campus and put through a fine sieve to ensure even particle size. 

Following this 100ml of maximum recovery diluent (MRD; Oxoid CM0733) was 

added and the solution vigorously stirred until the soil was in complete 

suspension. In a previous chapter (Chapter 2.3.3.2) it was concluded the 

addition of sludge derived nutrient broth to sludge cake was required to 

generate an acceptable amount of re-growth within 48 hours, due to a 

hypothesised nutrient deficiency within the sludge cake. Therefore to support 

the growth of E. coli and the competitor cultures, 10ml of the soil suspension 

and 10ml of a commercially available fermented milk product were removed and 

separately combined with 10ml of sludge derived nutrient in separate 30ml 

universal bottles and vortexed for 1 minute. In the second experiment, the 

inoculum was concentrated so that only the bacterial portion of the fermented 
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milk product was added to the sludge cake. This was achieved by isolating the 

cells from the fermented milk product via centrifugation at 755g for 10 minutes. 

The supernatant was removed and the cells washed via re-suspension in 10ml 

MRD. This suspension was then centrifuged again under the same conditions. 

The supernatant was once again removed and the cells re-suspended in 10ml 

MRD. This was then combined with 10ml of sludge derived nutrient in a 30ml 

universal bottle and vortexed for 1 minute. The soil inoculum was not used in 

the second experiment. 

 

3.2.4 Preparation and pasteurisation of digested sludge cake and addition of 
nutrient and competitor cultures 

 
Firstly the digested sludge cake was broken down manually to ensure an even 

particle size was achieved. The sludge cake was then divided into 5g sub-

samples and placed in separate 30ml universal bottles. The sludge cake was 

then heated in a dry heat oven at 62ºC for 45 minutes. In the first experiment 

immediately following pasteurisation 1ml of the soil inoculum was added to half 

the samples and 1ml of the fermented milk product inoculum was added to the 

others, they were both then incubated at 30ºC. To determine the effect the 

competitor cultures had on E. coli growth one set of samples post pasteurisation 

was inoculated with 1ml of a 1:1 dilution of sludge derived nutrient to act as a 

positive control. To determine the effect of adding 1ml of moisture and to 

confirm the addition of nutrient was once again required to achieve re-growth as 

in the previous chapter (Chapter 2.3.3.2) 1ml of sterile MRD was added to 

another set of samples post pasteurisation to act as a negative control. Both of 

these controls were then incubated under the same conditions. In the second 

experiment immediately following pasteurisation 1ml of the bacterial culture 

derived from the fermented milk product inoculum was added to the sludge 

cake sample and then incubated at 30ºC. One set of samples post 

pasteurisation was inoculated with 1ml of sterile MRD and another inoculated 

with 1ml of a 1:1 dilution of sludge derived nutrient and MRD to act as a 

controls, these were then incubated under the same conditions. This segment 

of the methodology is summarised in Figure 3.1. 
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Figure 3.1 – Diagram explaining the inoculation of sludge cake post pasteurisation 
with competitor cultures and the controls, described in Chapter 3.2.4 
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3.2.5 Sampling and enumeration of E. coli via membrane filtration 
 

A sample of the sludge cake was taken immediately after the pasteurisation 

process and 10ml of maximum recovery diluent (MRD; Oxoid CM0733) was 

added to the universal and then vortexed for one minute. 1ml of the sludge 

cake/MRD suspension was then removed from the universal bottle and 10-fold 

serially diluted in MRD. 1ml of each dilution was then filtered through a 0.45µm 

cellulose acetate filter (Eccles et al., 2004; Sartory and Howard, 1992), this was 

performed in triplicate for each dilution at each time point. Due to the volume of 

the inocula to be filtered being below 10ml, additional MRD was added to the 

funnel to aid the dispersion of the bacteria over the entire surface of the 

membrane filter during the filtration process. Following filtration, the filter was 

placed onto membrane lactose glucuronide agar (MLGA; Oxoid CM1031) and 

incubated at 30°C for 4 hours and then transferred to 37°C for a further 14 

hours. The colonies were then enumerated with all green colonies counted and 

considered as presumptive E. coli. This was repeated every 6 hours for 24 

hours and then every 12 hours for the subsequent 24 hours. A sample was also 

analysed prior to pasteurisation to determine how effective the pasteurisation 

process was. The moisture content of the digested sludge cake was also 

established via heating a 5g sample at 121ºC for 24 hours and measuring the 

percentage weight difference. 

 

3.2.6 Statistical analysis 
 

See section 2.2.3.4. 

3.3 Results and discussion 
 

In the first experiment as shown by the results of Figure 3.2 there was no 

statistically significant (p > 0.05) effect on E. coli re-growth as a result of the 

addition of either soil or the fermented milk product to sludge cake post 

pasteurisation. In both cases E. coli was able to achieve a near 4 log increase 

in growth to reach a concentration of around 107 cfu/gDs within 24 hours. This 

result is comparable with that of the positive control, in which only sludge 
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derived nutrient broth was added. Though it does appear the addition of the 

fermented milk product caused an increase in the final concentration of E. coli, it 

was confirmed not a statistically significant (p > 0.05) increase. The mean 

generation times of E. coli were calculated as 92.5 minutes in the positive 

control, 93 minutes in the sludge cake in which the soil inoculum was added 

and finally 94.7 minutes in the sludge cake in which the fermented milk product 

inoculum was added. The lack of difference in generation times in comparison 

to the positive control, shows the growth rate of E. coli was largely unaffected 

by the presence of the soil or fermented milk product inoculum. This further 

proves that neither culture was capable of competing with E. coli in sludge cake.  

 

Figure 3.2 - Competitive exclusion of Escherichia coli in digested sludge cake using a solution 
undefined micro-organisms defined from soil and a commercially available fermented milk product 
stated to contain L. casei shirota. The Baranyi-Roberts model (Baranyi and Roberts, 1994) adjusted 
by Miconnet et al. 2005 was used to fit curves to the data. 

The statistically significant (p < 0.05) reduction in E. coli growth caused by not 

adding sludge derived nutrient broth and only adding 1ml MRD to sludge cake, 

confirms as in the previous chapter (2.3.3.2) that its addition is required to 

generate sufficient E. coli re-growth. This also justifies the addition of sludge 

derived nutrient broth in combination with the competitor cultures to support 

their growth and that of E. coli in sludge cake. 
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In the second experiment as shown by the results in Figure 3.3 isolating the 

micro-organisms contained within the fermented milk product thereby 

concentrating the number of competitor organisms added to the digested sludge 

cake had no statistically significant (p > 0.05) effect on E. coli growth. Even in 

the presence of the competitor culture, E. coli was able to achieve a near 4 log 

increase in growth to reach a concentration of around 107 cfu/gDs within 24 

hours. The mean generation time of E. coli in this case was calculated to be 

97.1 minutes. In comparison in the positive control, in which only sludge derived 

nutrient broth was added to sludge cake, the mean generation time was 

calculated to be 97.4 minutes. Furthermore E. coli achieved similar increases in 

growth in the same timeframe. This is a comparable outcome to that shown in 

Figure 3.2, further proving that the fermented milk product in particular is 

unsuitable for use in competitive exclusion treatment of sludge cake to reduce 

E. coli re-growth.  

 

Figure 3.3 - Competitive exclusion of Escherichia coli in digested sludge by a commercial 
fermented milk product stated to contain L. casei shirota following centrifugation and re-
suspension of cells. The Baranyi-Roberts model (Baranyi and Roberts, 1994) adjusted by Miconnet 
et al. 2005 was used to fit curves to the data. 

There are a number of explanations as to why the addition of neither soil nor a 

commercially available fermented milk product had any effect on E. coli growth. 
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Firstly, the fermented milk product itself was designed for oral administration 

and to be effective within the human intestinal tract, which is an anaerobic 

environment. As well as L. casei, the product was stated as containing other 

bacterial species including a high concentration of bifidobacteria. Bifidobacteria 

are anaerobic (Lievin et al., 2000), therefore due to the aerobic nature of these 

experiments, the sludge cake would not have supported their growth. 

Essentially a fraction of the micro-organisms contained within the fermented 

milk product were not suited for growth in the sludge cake or the environment 

created by these experiments. This reduces the probability the product as a 

whole would be capable of competing with E. coli. This could explain why even 

after isolating and concentrating the micro-organisms contained within the 

fermented milk product, no effect on E. coli re-growth was recorded. This also 

could be true for the soil inoculum. Due to the lack of a screening step it is 

unknown what micro-organisms were actually present, especially when 

considering the high biodiversity of soil (Torsvik et al., 1996). It therefore can be 

hypothesised an insufficient number of micro-organisms suited to the growth 

environment within sludge cake and consequently capable of growing and 

competing with E. coli in said environment and those created for these 

experiments were present. Due to the advantages that the indigenous E. coli 

has including being already adapted to the sludge cake environment, a rapid 

growth rate and in the case of these experiments a fairly high initial 

concentration at around 103 cfu/gDs. Any increase in lag times or reduction in 

ability to produce antimicrobial compounds or compete for nutrients as a result 

of not being suited to the growth environment would lead to unrestricted growth 

of E. coli as shown in Figure 3.2 and 3.3. It can also be hypothesised that the 

micro-organisms that could have been effective were too low in concentration 

and were essentially out competed by E. coli and the other micro-organisms 

indigenous to sludge cake leading to results recorded in Figure 3.2 and 3.3.  

 

Alternatively the mechanism of competing with E. coli or the micro-organisms 

present could have been unsuitable for sludge cake. Some strains of bacteria 

contained within probiotics like the fermented milk product in question are 
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selected for their ability to adhere to the epithelial wall of the gut mucosa and 

thus compete with pathogens for the adhesion receptors (Fuller, 1991). 

Essentially this method creates a physical barrier preventing colonisation and 

has been shown to be effective (Soerjadi et al., 1981; Soerjadi et al., 1982; 

Stavric et al., 1987). However in sludge cake this mechanism of action would be 

ineffective, not only due to the lack of corresponding receptor sites because of 

the non-existence of an epithelial cell wall but also because creating a physical 

barrier to prevent colonisation would be highly improbable in sludge cake. It is 

also possible that without a screening step, considering that the fermented milk 

inoculum was derived from a commercial product and the soil inoculum from a 

random environmental source it is possible that the micro-organisms contained 

within were in poor condition or non-viable, leading to the unhindered E. coli 

growth recorded.  

 

It is hypothesised that with a proper identification and screening step for an 

ability to grow in sludge cake and inhibit E. coli growth, the use of mixed 

cultures in competitive exclusion treatments could still prove successful. Despite 

the results in these experiments soil is still a promising mixed culture, due to the 

fact it is known to contain numerous micro-organisms capable of producing 

potent antimicrobials. Nolan and Cross (1988), even go as far to recommend 

the screening of new soils for micro-organisms able to produce bioactive 

compounds. Actinomycetes are one of the major communities of the microbial 

population present in soil, with historically the most commonly isolated of the 

genera being Streptomyces and Micromonospora. In a study by Basilio et al. 

(2003) 77% of Streptomyces and 49% of other actinomycetes isolated from soil 

showed antimicrobial activity against a panel of clinically relevant bacteria, 

yeast and fungi. Furthermore many species and strains of the Bacillus genus 

commonly isolated from soil produce a large number of substances with 

antimicrobial action. In a study by Todorova and Kozhuharova (2010), Bacillus 

subtilis showed antimicrobial action against a number of fungi and bacteria 

including Pseudomonas syringae and Alternaria solani. Foster, Yasouri and 

Daoud (1992) also reported that 77% of soil myxobacteria had antibacterial 
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activity against Micrococcus luteus. Many of these also showed activity against 

fungus and gram negative bacteria. If soil was to be utilised again however in 

competitive exclusion treatments, it would have be as defined mixed cultures. 

Using undefined mixed cultures of soil as in these experiments in terms of 

accurately repeating successful experiments using the exact same combination 

of micro-organisms in the same concentration for every experiment would be 

problematic. However the production of defined mixed cultures in terms of 

isolating and identifying these antimicrobial producing bacteria would be very 

difficult considering the high biodiversity of soil (Torsvik et al., 1996). 

Furthermore this process would also be inevitably time consuming, especially 

considering the source of the soil with regard to location having to also be 

carefully selected. It is known that the conditions of the environment have a 

large impact on the composition of indigenous micro-organisms. Therefore it 

can be hypothesised that soils in some locations would be better at producing 

antimicrobials than others and therefore be more suited for utilisation in 

competitive exclusion treatments. For example Bull et al. (1992) stated that 

Brazilian tropical soils were an extremely rich source of biological compounds. 

Furthermore in a study by Basilio et al (2003) it was concluded that the best 

group of isolates in terms of production of active secondary metabolites were 

the ones isolated in saline conditions. For these reasons and the time 

constraints of this study, soil was not used in further competitive exclusion 

experiments. This is also true for other undefined mixed cultures, as they also 

pose the possible problem of containing pathogens due to the lack of a 

screening step. In the case of digested sludge cake destined for agricultural 

land this would be highly undesirable. Furthermore the unsuccessful nature of 

these experiments doesn’t provide any significant incentive to proceed with 

further investigation of their possible application. Therefore an alternative 

approach was taken in subsequent experiments, with the careful identification of 

individual organisms and analysis of ability to inhibit E. coli in a sludge cake 

environment the desired method to proceed with. 
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3.4 Conclusions 
 

 The addition of an inoculum derived from soil or a commercially available 

fermented milk product to digested sludge cake post pasteurisation had 

no statistically significant (p > 0.05) effect on E. coli re-growth.  

 

 It is unknown why either inoculum failed to cause any significant 

reduction in E. coli growth. Although it was hypothesised that the majority 

of the micro-organisms contained within the mixed cultures were either 

unsuited for growth within sludge cake or in the experimental conditions.  

It also thought that the rapid growth rate of E. coli and the fact it is 

adapted to the sludge cake environment alongside the questionable 

viability of the competitor organisms considering their origin played a 

role.  

 

 Undefined mixed cultures will not be used in future experiments, due to 

the problems they can pose. However considering their successful use 

within the poultry industry and other applications, the promise of the 

approach cannot be overlooked. There would almost certainly be an 

organism within soil for example capable of competing and possibly 

eliminating E.coli, however this would entail a substantial and time-

consuming screening programme, considering its high biodiversity, which 

is at present not feasible. 

 

 A targeted review of the literature and a more rapid screening process is 

required to identify candidate organisms capable of competing with E. 

coli in a sludge cake environment. 
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Chapter 4 Screening for competitive exclusion candidate 
organisms 

 

4.1 Introduction 
 

Nicholson (1954) loosely categorized competition for a limiting resource into two 

broad groups, scramble and contest. Scramble competition (or exploitation 

competition), involves rapid utilisation of the limiting resource without direct 

interaction between competitors. Contest competition (or interference 

competition) involves direct, antagonistic interactions between competitors, with 

the better adapted organism appropriating the resource. Study into interspecies 

competitive strategies has revealed that there are many diverse mechanisms by 

which micro-organisms can coexist with, or dominate, other organisms. A few 

examples of such mechanisms include biofilm formation, activation of flagellum 

and the production of adhesins or receptors that bind to specific surface 

features; these are reviewed in more detail by Hibbings et al. (2009). In terms of 

competitive exclusion strategies, that could prove successful against E. coli in 

digested sludge cake, the focus will be on two mechanisms; nutrient acquisition 

and production of antimicrobial compounds.  

There are a number of methods micro-organisms can employ to sequester 

nutrients and thereby out-compete other organisms; this includes the restriction 

or removal of essential nutrients such as carbon, phosphorus or iron from an 

environment by direct targeted acquisition. An example of this is via the 

production of iron scavenging molecules called siderophores (Wandersman and 

Delepelaire, 2004). However the simplest method of direct nutrient competition 

is a fast growth rate. E. coli in particular is known to be a fast growing 

bacterium. This is shown in previous experiments (Figure 2.10), where a 4 log 

increase in E. coli concentration was recorded within 12 hours in optimal 

conditions in digested sludge cake. Possessing a fast growth rate allows E. coli 

to utilise a high proportion of the nutrients within an environment, making it less 

hospitable and thereby limiting the growth of any competitors, while maximising 

its own growth. Considering this, to compete with E. coli directly for nutrients in 
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digested sludge cake, any competitors will need a similar if not faster growth 

rate or alternative method of competing.  

Some micro-organisms are capable of producing antimicrobials to eliminate or 

inhibit the competing organisms in their environment. Certain species of the soil 

bacteria Streptomyces have been shown to synthesize multiple antimicrobial 

compounds, with their genome sequence analysis indicating a potential for the 

synthesis of even more putative antimicrobial compounds that have yet to be 

detected under laboratory culture conditions (Challis and Hopwood, 2003). 

Staphylococcus epidermidis is capable of producing a protease to inhibit 

Staphylococcus aureus biofilm formation and nasal colonisation (Iwase et al., 

2010). It has also been reported by several investigators that lactobacilli are 

able to produce antimicrobial substances when grown in specific media 

(Barefoot and Klaenhammer, 1984; Chung et al., 1989; De Klerk and Coetzee, 

1961; Hamdan and Mikolajcik, 1974; Silva et al., 1987). For example, 

Lactobacillus salivarus has specifically been shown to exhibit antagonistic 

properties against Listeria (Barrett et al., 2007; O'Shea et al., 2011), Salmonella 

(Casey et al., 2007; Pascual et al., 1999), Campylobacter (Robyn et al., 2012) 

and other pathogenic bacteria (Corr et al., 2007; Neville and O'Toole, 2010). 

The ability of L. salivarus to inhibit these pathogens has been attributed to 

production of bacteriocins (Corr et al., 2007; O'Shea et al., 2011) and the 

antimicrobial compound salivaricin (Barrett et al., 2007) among other attributes. 

However, to effectively inhibit competitors, antimicrobials must be produced in a 

sufficient quantity, therefore to inhibit E. coli growth in digested sludge cake 

competitors will need to be capable of growing and thriving in digested sludge 

cake and as a result be able to produce enough antimicrobials. 

In previous experiments (Chapter 3) the use of highly diverse undefined 

cultures proved unsuccessful. It was hypothesised this was due to the micro-

organisms contained within the cultures not being suited to the sludge cake 

environment and therefore unable to compete with E. coli effectively. In 

response a screening step was put in place using sludge derived nutrient broth 

to rapidly assess the ability of any candidate organisms to compete with E. coli 
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in a sludge cake environment. This was performed via replicated bench-scale 

experiments in which the candidate organisms were separately inoculated in 

high concentration to sludge derived nutrient broth inoculated with a low 

concentration of E. coli. It was hypothesised that organisms that were capable 

of reducing E. coli growth in the nutrient rich environment of sludge derived 

nutrient broth would be more likely to be successful when applied to digested 

sludge cake. The nutrient broth was inoculated with a low concentration of E. 

coli to simulate the conditions post pasteurisation, a point in which the 

concentration of E. coli in sludge cake would be at its lowest. While a high 

concentration of candidate organisms was inoculated to provide a competitive 

advantage and to off-set the rapid growth rate of E. coli and the fact the bacteria 

is already adapted for growth in a sludge cake environment. Sludge derived 

nutrient broth was used because unlike standard broth media such as tryptone 

soya broth (TSB; Oxoid) it is a more realistic representation of the sludge cake 

environment in terms of nutrients available. Furthermore variables that exist in 

sludge cake do not in nutrient broth, such as, differing moisture contents, 

competing indigenous microflora and changing nutrient availability and 

composition. This makes the results more consistent and representative of how 

effective the candidate organisms are at inhibiting E. coli growth when in 

optimal conditions.  

To select candidate organisms for screening prior to this experiment a targeted 

review of the literature was performed to identify promising candidates capable 

of competing with E. coli in a sludge cake environment. The criteria by which 

candidates were selected are shown in Table 4.1 and the candidates identified 

in Table 4.2. Of the candidate organisms identified Lactobacillus acidophilus, 

Lactobacillus brevis, Lactobacillus reuteri and an unidentified bacterial 

specimen (UIS) isolated and derived from digested sludge cake were selected.  

UIS only satisfied two of the essential criteria but was still selected due to the 

bacterium being an indigenous member of the digested sludge cake microflora; 

therefore adapted for growth. Due to the mechanism of competitive action of 

UIS being unknown, this factor at least maximises the possibility of direct  
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Table 4.1 - Criteria for identifying candidate organisms for competitive exclusion screening 
experiments 

Criteria Reason for requirement 

Has the candidate organism previously 

shown a capability of competing with 

or inhibiting E. coli growth? 

Main aim of these experiments is to 

reduce E. coli growth, if a candidate 

has not shown a previous ability to do 

so; it is unlikely to be successful in 

sludge cake. 

Has the candidate organism shown an 

ability to actively grow in sludge cake 

or a similar environment? 

In Chapter 4 one of the hypotheses for 

the lack of reduction in E. coli re-

growth was the competitor cultures 

were unsuited for the environment. 

Therefore it is essential any candidate 

can actively grow in a sludge cake 

environment. 

Can the candidate organism be readily 

handled, maintained and isolated in 

the laboratory? 

If a candidate does not meet this 

criteria it cannot be utilised in any 

controlled experiments, making it 

unsuitable 

Does the candidate organism produce 

any antimicrobial compounds? 

Not an essential criteria, however if 

successful during the screening 

process it is an ability to exploit during 

optimisation 

  

nutrient competition with E. coli. L. acidophilus, L. brevis and L. reuteri however 

were chosen due to the fact they satisfied all of the essential criteria (Table 4.1). 

Furthermore isolates of each of these bacteria were readily available, with each 

being derived from the mammalian digestive tract. It was hypothesised that this 

factor would make the probability that candidates would be able to readily grow 

in sludge cake and therefore compete with E. coli more likely. All of the selected 
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lactobacilli have also been shown to possess antimicrobial activity. L. 

acidophilus is known to produce a number of antimicrobial compounds, 

including lactocidin, a substance active against gram negative bacteria (Vincent 

et al., 1959) and acidolin, which was found to be inhibitory to enteropathogenic 

and spore forming organisms (Hamdan and Mikolajcik, 1974). L. brevis has 

been reported to produce bacteriocins that have a broad spectrum of inhibition 

against both pathogenic and food spoilage organisms (Ogunbanwo et al., 

2003). L. reuteri in the presence of glycerol is known to produce reuterin, a 

broad-spectrum antimicrobial substance active in a wide range of pH values 

against Gram-positive and Gram-negative bacteria (especially E. coli), yeasts, 

fungi, protozoa and viruses (Cleusix et al., 2007; Vollenweider and Lacroix, 

2004). Furthermore lactobacilli overall are known to exert an antimicrobial effect 

via the production of lactic acid and reduction of pH (Daeschel, 1989) and 

additionally their use has previously proven successful in competitive exclusion 

treatments (Brashears et al., 2003; Milbradt et al., 2014; Schneitz, 2005). These 

factors make lactobacilli ideal candidate organisms for competitive exclusion 

treatment. 
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Table 4.2 – Candidate organisms for possible selection to the screening process. 

Organism Reason for selection Satisfy Criteria? Paper(s) information was sourced from 

Lactobacillus acidophilus 

Capable of inhibiting E. coli in manure over a 48 hour 
period suggesting a strong antagonistic action. 
Furthermore L. acidophilus has been reported to 
produce a number of antimicrobial compounds.  
  

L. acidophilus satisfies all criteria (Barefoot and Klaenhammer, 1984; 
Brashears et al., 2003; De Klerk and 
Coetzee, 1961; Hamdan and Mikolajcik, 
1974) 

Lactobacillus brevis 

Like L. acidophilus showed a capability to competitively 
inhibit E. coli in manure over a 48 hour period. Stated 
to be a promising candidate as a probiotic supplement 
in dairy products. L. brevis has also been reported to 
produce antimicrobial compounds. 

L. brevis satisfies all criteria (Brashears et al., 2003; Ogunbanwo et al., 
2003; Rönkä et al., 2003) 

Lactobacillus salivarus 

Shown to be capable of significantly inhibiting E. coli 
and Salmonella growth. L. salivarus is a normal 
member of the mammalian digestive tract and is known 
to produce a number of antimicrobial compounds. 

L. salivarus satisfies all criteria, 
although strains are expensive.  

(Barrett et al., 2007; Corr et al., 2007; Diaz 
et al., 2013; O'Shea et al., 2011)  

Enterococcus faecium, Enterococcus 
faecalis and Enterococcus hirae 

Intestinal bacteria currently used in probiotics and 
reported to depress the growth of E. coli. However can 
be sometimes considered pathogens themselves.  

Enterococcus spp. satisfies all 3 
essential criteria. 

(AFRC, 1989; Vahjen et al., 2007) 

Proteus mirabilis 

Reduced E. coli number in the digestive tract of a 
number of animals in vitro. Mode of action however 
reported to be via preventing 0157:H7 attaching to the 
intestinal cell wall, which would be ineffective in sludge 
cake. 

P. mirabilis satisfies all 3 essential 
criteria, but due to the reported 
mechanism of inhibition there are 
doubts over its effectiveness in 
sludge cake. 

(Zhao et al., 1998) 

Lactobacillus reuteri 

Known to produce the broad spectrum antibiotic 
reuterin. Shown to be effective at inhibiting E. coli 
growth. The MIC of E. coli to reuterin was found to be 
between 7.5 and 15mM. L. reuteri is also derived from 
the mammalian digestive tract. 

L. reuteri satisfies all criteria (Cleusix et al., 2007; Cleusix et al., 2008; 
Diaz et al., 2013; Schneitz, 2005) 

Bifidobacterium 

Currently used in commercially available probiotics. 
Claimed in many papers to be similar to Lactobacillus 
in their ability to depress E. coli growth and go as far to 
state antimicrobial activity. No particular strains have 
been highlighted though. However Bifidobacteria do 
require anaerobic conditions. 

Bifidobacteria satisfy 3 criteria, 
however due to their requirement for 
anaerobic conditions they are 
unsuitable. 

(Liévin et al., 2000) 

Unidentified bacterial specimen (UIS) 

Bacterial isolate derived from sludge cake. Indigenous, 
therefore adapted to growth in sludge cake. It is 
unknown if it is capable of producing any antimicrobials 
or indeed compete efficiently with E. coli at this stage. 
 
 
 

UIS satisfies 2 criteria. N/A- 
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4.2 Materials and methodology 
 

4.2.1 Strains, culture media and growth conditions 
 

Escherichia coli and the unidentified bacterial specimen (UIS) were both 

recovered and isolated from digested sludge cake provided by United Utilities 

and sourced from Ellesmere Port and grown and maintained at 37°C on 

tryptone soya agar (TSA; Oxoid CM131) slopes. Lactobacillus acidophilus 

(NCIMB 2663), Lactobacillus brevis (NCIMB 11973) and Lactobacillus reuteri 

(NCIMB 11951) were grown and maintained at 37°C on De Man, Rogosa, 

Sharpe agar (MRSa; Oxoid CM361). All agar was prepared following the 

manufacturer’s instructions and autoclaved at 121°C for 20 minutes prior to use. 

Stock cultures were stored in a cold room at 5°C, and sub-cultured and 

analysed for purity every two weeks. 

 

4.2.2 Preparation of sludge derived nutrient broth 
 

Raw sludge from Cranfield University’s sewage treatment works was first stirred 

to break up the biomass and ensure nutrients would be released into 

suspension and then centrifuged at 84g for one minute to remove the heavier 

biomass. The supernatant was poured off and then autoclaved at 121ºC for 15 

minutes to ensure sterility.  

4.2.3 Preparation of inoculum 
 

The E. coli and UIS were both grown up overnight in 100ml of tryptone soya 

broth (TSB; Oxoid CM129) in a Duran bottle and incubated at 37°C under 

constant shaking at 150rpm. L. acidophilus, L. brevis and L. reuteri were grown 

up overnight in 100ml of De Man, Rogosa, Sharpe broth (MRSb; Oxoid CM359) 

in a Duran bottle and incubated at 37°C under constant shaking at 150rpm. For 

every bacteria the cells were then harvested by centrifugation at 755g for 10 

minutes. The supernatant was removed and the cells subsequently re-

suspended in 10ml maximum recovery diluent (MRD; Oxoid CM0733). 

Following this the suspensions were 10 fold serially diluted in MRD and a plate 
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count performed on TSA for E. coli and UIS and MRSa for L. acidophilus, L. 

brevis  and L. reuteri. 

 

4.2.4 Inoculation of sludge derived nutrient broth 
 

1ml of the UIS inoculum (i.e. dilution 0) and 1ml of the E. coli inoculum (i.e. 

dilution 10-8) were added to 100ml of the sludge-derived nutrient broth and 

incubated at 30°C in a shaking incubator set at 150rpm. This was repeated for 

L. acidophilus, L. brevis and L. reuteri. 100ml of sludge-derived nutrient broth 

was also inoculated with 1ml of all the inocula. A positive control (only 

inoculated with E. coli) and a negative control (sterile sludge-derived nutrient 

broth) were also incubated under the same conditions. Growth of E. coli was 

measured every 3 hours for 24 hours with a break after 15 hours, if the 

stationary phase of growth was not reached after 24 hours, sampling would 

continue until it was reached.  

 

4.2.5 Enumeration of E. coli via membrane filtration 
 

1ml of sample was removed from the Duran bottles and 10-fold serially diluted 

in MRD. 1ml of these dilutions was then filtered through a 0.45μm cellulose 

acetate filter. Due to the volume of the inocula to be filtered being below 10ml, 

additional MRD was added to the funnel to aid the dispersion of the bacteria 

over the entire surface of the membrane filter during the filtration process. 

Following filtration, the filter was placed onto membrane lactose glucuronide 

agar (MLGA; Oxoid CM1031) and incubated at 30°C for 4 hours and then 

transferred to 37°C for a further 14 hours. This was performed in triplicate. The 

colonies were then enumerated with all green colonies counted and considered 

as presumptive E. coli. 

 

4.2.6 Statistical analysis 
 

See section 2.2.3.4. 
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4.3 Results and discussion 
 

As shown in Figure 4.1 in sludge-derived nutrient broth it was found E. coli had 

a lag time of 1 hour and reached a maximum concentration of around 1x109 

cfu/ml in 15 hours, with a mean generation time of 24.4 minutes. The addition of 

UIS did have a statistically significant effect (p < 0.05) on the growth of E. coli,. 

The mean generation time of E. coli was increased to 33. 7 minutes and the 

maximum concentration E. coli reached was reduced to around 1.6 x108 cfu/ml, 

representing a 1 log reduction. The increase in growth rate and reduction in 

overall E. coli growth does suggest that UIS was capable of growing and 

competing with E. coli in sludge derived nutrient broth, most likely via direct 

nutrient competition. However the largely unhindered growth of E. coli recorded 

suggests that UIS couldn’t sequester enough nutrients or does not have a fast 

enough growth rate to fully out-compete E. coli. This result however may have 

been compromised by a 2 log increase in the initial E. coli concentration. It is 

unknown what the cause of this increase was, as no contamination was 

recorded throughout these experiments. 

 

Figure 4.1 - Competitive exclusion of E. coli in sludge derived nutrient broth using UIS, 
Lactobacillus acidophilus and Lactobacillus reuteri and a combination of all three. The Baranyi-
Roberts model (Baranyi and Roberts, 1994) adjusted by Miconnet et al. 2005 was used to fit curves 
to the data. 
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The addition of L. acidophilus led to a very similar result to that recorded for UIS 

in that the addition of L. acidophilus did have an overall significant effect (p < 

0.05) on E. coli growth. The effect on the lag time of E. coli was very small when 

compared with the positive control, extending it by only 0.7 hours and the 

maximum concentration of E. coli was reduced by 1 log to 9.8 x107 cfu/ml. 

However the addition of L. acidophilus had no effect on the growth rate of E. 

coli, with the mean generation time calculated to be 24.1 minutes. The initial 

increase in lag time and decrease in final concentration of E. coli does suggest 

L. acidophilus was capable of growing and competing with E. coli in sludge 

derived nutrient broth to a least a minor degree. As stated previously L. 

acidophilus is known to be capable of producing antimicrobial compounds 

(Barefoot and Klaenhammer, 1984; Vincent et al., 1959). This lack of inhibition 

suggests that the L. acidophilus strain used in these experiments isn’t capable 

of producing the antimicrobials or simply sludge derived nutrient broth doesn’t 

support sufficient L. acidophilus growth, or doesn’t contain the precursor 

compounds for their production, making antimicrobial production not possible or 

ineffective. It is therefore hypothesised that without the ability to produce 

antimicrobial compounds L. acidophilus is unable to directly compete with E. 

coli for nutrients leading to the unrestricted growth recorded. These results 

therefore suggest it is unlikely UIS or L. acidophilus will find much success in 

digested sludge cake. It could also suggest that direct competition for nutrients 

is not a method that will provide much success in reducing E. coli numbers in 

sludge cake following treatment. 

As with L. acidophilus and UIS, the addition of L. reuteri had a significant effect 

(p < 0.05) on E. coli growth, however L. reuteri had a greater deal of success. 

Though the lag time of E. coli was only extended to 2.9 hours, the growth rate 

was significantly depressed, with the stationary phase of growth not reached 

even after 36 hours and the mean generation time of E. coli calculated to be 97 

minutes, three times longer than that calculated for the positive control. 

However Nt could not be accurately calculated as the stationary phase was not 

met during the duration of the experiment due to the presence of contaminant 

recorded during the 48 hour sampling point. Therefore the last point recorded 
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on the graph was used, if the experiment had continued to completion, it would 

be expected that the mean generation time calculated would be higher. As 

stated previously the Lactobacillus metabolism is known to produce 

antimicrobials as standard such as hydrogen peroxide, lactic acid and other 

organic acids, which inhibit pathogen growth by chelating essential nutrients or 

sensitising bacteria to antimicrobial assault (Neville and O'Toole, 2010). 

Furthermore L. reuteri is also a known producer of reuterin (Cleusix et al., 

2008), an anti-microbial compound, and it is hypothesised that the production of 

these antimicrobial compounds is the cause of the depressed growth rate and 

slightly extended lag time as opposed to direct competition for nutrients.  

 

Figure 4.2 - Competitive exclusion of E. coli in sludge derived nutrient broth using Lactobacillus 
brevis. The Baranyi-Roberts model (Baranyi and Roberts, 1994) adjusted by Miconnet et al. 2005 
was used to fit curves to the data. 
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E. coli still reached a final concentration of around 1x108 cfu/ml within 30 hours, 

when compared to the positive control; this represents only a 1 log reduction in 

the final concentration of E. coli. This final result is similar to that recorded in 

Figure 4.1 for L. acidophilus and UIS. As stated previously L. brevis is a known 

producer of the bacteriocin OG1, which has shown the ability to inhibit 

pathogenic bacteria including E. coli (Ogunbanwo et al., 2003). While the 

reasons why L. brevis is less effective than L. reuteri in supressing E. coli 

growth are unknown it can be speculated that the antimicrobials produced by L. 

brevis are less effective or L. brevis growth rate or antimicrobial production is 

lower than L. reuteri in sludge derived nutrient broth. The eventual failure of L. 

brevis and L. reuteri to repress E. coli growth could be because of a number of 

reasons. Firstly the antimicrobials may have eliminated all the susceptible E. 

coli leaving those that are only resistant. It is these E. coli that following the 

removal of the competition began to grow, leading to the exponential growth 

that was recorded. Secondly it is possible that E. coli simply adapted to the 

conditions in the nutrient broth and the antimicrobial compounds present or that 

in the conditions provided in this experiment L. brevis and L. reuteri were just 

unable to produce enough antimicrobial compounds to permanently suppress or 

eliminate E. coli. 

In an attempt to maximise any effect UIS, L. acidophilus or L. reuteri had as 

sole competitors on E. coli growth, they were used in combination. The addition 

of this mixed culture had a statistically significant effect on E. coli growth (p < 

0.05). A reduction in the growth rate of E. coli was recorded with the mean 

generation time of E. coli calculated to be 67.17 minutes; this is significantly 

longer than that calculated for the positive control (24.4 minutes) and the 

experiments involving UIS (33.7 minutes) and L. acidophilus (24.1 minutes) as 

sole competitors. However, once again the maximum concentration of E. coli 

was reduced by only 1 log to 5.9 x 107 cfu/ml. Overall the combination of UIS, L. 

acidophilus and L. reuteri together was more successful in slowing E. coli 

growth than either UIS or L. acidophilus as sole competitors, though it was less 

successful than L. reuteri on its own. Furthermore the reduction in E. coli growth 

is most likely largely due to the presence of L. reuteri and not UIS or L. 
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acidophilus. In fact the higher growth rate of E. coli seen from these results in 

comparison with those for L. reuteri as the sole competitor is most likely due to 

UIS and L. acidophilus competing with L. reuteri and thereby restricting its 

growth and ability produce enough antimicrobial compound to effectively 

compete with E. coli. L. brevis was not used in combination, due to poor growth 

during the culturing step of the experiment, therefore there were no cells 

available for harvesting via centrifugation and a L. brevis inoculum could not be 

made.  

4.4  Conclusions 
 

 UIS and L. acidophilus did have a statistically significant impact (p < 

0.05) on E. coli growth in sludge-derived nutrient broth though it was 

minimal, with addition leading to a 1 log reduction in the final 

concentration of E. coli recorded in comparison with the positive control. 

However no significant effect was recorded on the growth rate or lag time 

of E. coli. Therefore it is unlikely that any effect will be recorded in solid 

digested sludge cake. From these results direct nutrient competition is 

probably not going to be successful considering that E. coli can reach the 

stationary phase of growth within 15 hours. 

 L. brevis showed an increased capability of competing with E. coli in 

sludge-derived nutrient broth, possibly due to the production of 

antimicrobials, however the inhibition wasn’t long lasting, with final 

concentration recorded similar to that detected in the experiments 

involving UIS and L. acidophilus.  

 L. reuteri showed the most promise in suppressing E. coli growth in 

sludge-derived nutrient broth. It is hypothesised that this organism is 

capable of competing with E. coli due to the production of an 

antimicrobial compound, probably reuterin.  

 Though combining competitors proved to hinder the effect of L. reuteri on 

E. coli growth, it will not be ruled out as a possible method in the future to 
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attain exclusion of E. coli. Just organisms that complement each other’s 

effects need to be utilised. 

 The successful demonstration of the competitive exclusion principle in 

sludge-derived nutrient broth is a promising development. The next steps 

are to repeat the results in solid digested sludge cake and attempt to 

optimise process in a bid to enhance the inhibition of E. coli growth. 
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Chapter 5 Competitive exclusion using Lactobacillus reuteri as 
a means to reduce E. coli growth in sludge-derived nutrient 
broth  

 

5.1 Introduction 
 

Lactic acid bacteria are a physiologically diverse group of organisms, which can 

be generally described as Gram-positive, non-sporing cocci or rods with lactic 

acid as the major product of carbohydrate fermentation (Axelsson, 2004). Lactic 

acid bacteria comprise four genera Lactobacillus, Leuconostoc, Pediococcus, 

and Streptococcus (Yang, 2000). Lactic acid bacteria have been used for 

centuries in the production of a variety of foods such as cheese and fermented 

meat products. As well as contributing to the flavour and general characteristics 

of these foods (Fox and Wallace, 1997), it is thought the lactic acid bacteria also 

exert a strong antagonistic effect against many food borne pathogens as a 

result of the production of organic acids, hydrogen peroxide, diacetyl, inhibitory 

enzymes and antimicrobial compounds (Piard and Desmazeaud, 1992). Indeed 

it has been reported in several studies that lactobacilli are capable of producing 

antimicrobial substances when grown in specific media (Barefoot and 

Klaenhammer, 1984; De Klerk and Coetzee, 1961; Hamdan and Mikolajcik, 

1974; Tagg et al., 1976; Vincent et al., 1959). Furthermore Brashears et al. 

(2003) was able to reduce the concentration of E. coli 0157:H7 recorded in the 

manure and rumen fluid of cattle over the space of 48 hours via introduction of 

lactic acid bacteria as a primary probiotic agent. Brashears et al. (2003) 

speculated the mode of action of these lactic acid bacteria would most likely be 

due to factors that may include production of bacteriocins, hydrogen peroxide, 

low-molecular weight metabolites or enzymes. One lactic acid bacteria of 

particular interest with regards to antimicrobial activity is Lactobacillus reuteri. 

 

Despite its well documented antimicrobial activity, L. reuteri has not been widely 

utilised or well researched as a possible probiotic agent, with the exception of 

its application as a probiotic in dairy products (Rothschild, 1995). Lactobacilli as 

a group have been used successfully as probiotics, being used to reduce 
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Salmonella loads and eradicate various pathogens from chickens, pigs and 

other animals (Avía et al., 1998; Corr et al., 2007; Pascual et al., 1999). It is 

hypothesised that L. reuteri can be utilised as a means of competitive exclusion 

(Gause, 2003; Hardin, 1960) treatment to control (if not eliminate) E. coli growth 

in digested sludge cake following the final dewatering step of cake manufacture 

where E. coli numbers have been reported to significantly increase (Qi et al., 

2007; Higgins et al., 2007) leading to compliance failure (ADAS, 2001).  

L. reuteri in previous experiments (Figure 4.1) was capable of significantly 

inhibiting E. coli growth in sludge derived nutrient broth for a number of hours; 

however the effect was not sustained. The source of the inhibition is 

hypothesised to be via the production of antimicrobial compounds. L. reuteri is 

known to produce the antimicrobial compound 3-hydroxypropionaldehyde (3-

HPA), also referred to as reuterin (Axelsson et al., 1989; Talarico and 

Dobrogosz, 1989). Reuterin has proven to be a potent antimicrobial agent 

active against Gram positive and Gram negative bacteria, as well as yeasts, 

moulds and protozoa (Axelsson et al., 1989). Cleusix et al. (2007) calculated 

the minimum inhibitory concentration of reuterin against E. coli to be between 

7.5-15mM and the minimum bactericidal concentration to be between 15-30mM. 

The mechanism of action by which reuterin exerts its antimicrobial effects has 

largely remained unknown. However Schaefer et al. (2010) using microarray 

analysis of cells treated with reuterin discovered that the cells showed signs of 

oxidative stress and through further analysis concluded that the bioactive 

component of reuterin is the aldehyde form interacting with thiol groups of small 

molecules and proteins. 

 

Reuterin is produced as an intermediate step in the conversion of glycerol to 

1,3-propanediol, a pathway proposed to regenerate NAD+ from NADH and to 

contribute to improved growth yield (Lüthi-Peng et al., 2002). For reasons that 

are unclear, L. reuteri secretes high levels of reuterin when grown or incubated 

in the presence of excess amounts of glycerol. It was therefore hypothesised 

that supplementing sludge derived nutrient broth with glycerol would increase 

the ability of L. reuteri to produce reuterin, thereby enhancing and or prolonging 
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the ability of L. reuteri to inhibit E. coli growth. This hypothesis was tested by 

performing replicated bench-scale experiments in which L. reuteri was 

inoculated in high concentration to sludge derived nutrient broth inoculated with 

a low concentration of E. coli and supplemented with varying concentrations of 

glycerol.  The aim of the experiment was to determine whether the addition of 

glycerol enhanced the ability of L. reuteri to inhibit E. coli growth via the 

hypothesised production of reuterin and if so which concentration of glycerol 

yielded the best results. 

 

Following this the effect of lowering pH along with addition of glycerol on E. coli 

growth in the presence of L. reuteri was also tested. Lactobacilli are known to 

prefer lower pH environments usually around pH 6.0 for optimal growth (De 

Man et al., 1960; Giraud et al., 1991). Therefore it was hypothesised that 

lowering the pH of sludge derived nutrient broth would favour L. reuteri growth, 

leading to reduced lag times, an increased growth rate and hasten the 

production of antimicrobials. Furthermore the optimal pH for the growth of E. 

coli is around pH 7.0, so lowering the environmental pH, will have the reverse 

effect, in terms of reducing growth rate, providing L. reuteri with a competitive 

advantage and maximising the inhibition of E. coli growth further. This was 

performed via replicated bench-scale experiments in which L. reuteri was 

inoculated in high concentration to pH adjusted sludge derived nutrient broth 

inoculated with a low concentration of E. coli and supplemented with 10% 

glycerol. The aim of the experiment was to determine whether changing the 

environmental conditions to suit L. reuteri growth would increase its ability to 

compete with E. coli in sludge derived nutrient broth. 

5.2 Materials and methodology 
 

5.2.1 Strains, culture media and growth conditions 
 

Escherichia coli was recovered and isolated from digested sludge cake 

provided by United Utilities and sourced from Ellesmere Port and grown and 

maintained at 37°C on tryptone soya agar (TSA; Oxoid CM131) slopes. 

Lactobacillus reuteri (NCIMB 11951) was grown and maintained at 37°C on De 
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Man, Rogosa, Sharpe agar (MRSa; Oxoid CM361). All agar was prepared 

following the manufacturer’s instructions and autoclaved at 121°C for 20 

minutes prior to use. Stock cultures were stored in a cold room at 5°C, and sub-

cultured and analysed for purity every two weeks. 

5.2.2 Preparation of sludge-derived nutrient broth  
 

Raw sludge from Cranfield University’s sewage treatment works was first stirred 

to break up the biomass and ensure nutrients would be released into 

suspension and then centrifuged at 84g for one minute to remove the heavier 

biomass. The supernatant was poured off and then autoclaved at 121ºC for 15 

minutes to ensure sterility.  

5.2.3 Preparation of inoculum 
 

E. coli was grown overnight in 100ml tryptone soya broth (TSB; Oxoid CM129) 

in a Duran bottle and incubated and incubated at 37°C under constant shaking 

at 150rpm. L. reuteri was grown overnight in 100ml De Man, Rogosa, Sharpe 

broth (MRSb; Oxoid CM359) in a Duran bottle and incubated at 37°C under 

constant shaking at 150rpm. The cells were then harvested by centrifugation at 

755 g for 10 minutes. The supernatant was removed and the cells subsequently 

re-suspended in 10ml maximum recovery diluent (MRD; Oxoid CM0733). 

Following this the suspensions were 10 fold serially diluted in MRD and a plate 

count on TSA for E. coli and MRSa for L. reuteri performed. 

 

5.2.4 Inoculation of sludge derived nutrient broth 
 

A 1ml volume of the L. reuteri inoculum (i.e. dilution 0) and 1ml volume of the E. 

coli inoculum (i.e. dilution 10-8) were added to 100ml of the sludge-derived 

nutrient broth and incubated in a shaking incubator at 30°C and 150rpm. A 

positive control (inoculated with E. coli only) and a negative control (sterile 

sludge-derived nutrient broth) were also incubated under the same conditions. 

Growth of E. coli was measured every 3 hours for 24 hours with a break after 15 

hours. If the stationary phase of growth was not reached after 24 hours, 

sampling continued until it was reached.  
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5.2.5 Enumeration of E. coli via membrane filtration 
 

1ml of sample was removed from the Duran bottles and 10-fold serially diluted 

in MRD. 1ml of these dilutions was then filtered through a 0.45μm cellulose 

acetate filter. Due to the volume of the inocula to be filtered being below 10ml, 

additional MRD was added to the funnel to aid the dispersion of the bacteria 

over the entire surface of the membrane filter during the filtration process. 

Following filtration, the filter was placed onto membrane lactose glucuronide 

agar (MLGA; Oxoid CM1031) and incubated at 30°C for 4 hours and then 

transferred to 37°C for a further 14 hours. This was performed in triplicate. The 

colonies were then enumerated with all green colonies counted and considered 

as presumptive E. coli. 

 

5.2.6 Effects of the addition of L. reuteri and glycerol 
 

A 100ml volume of sludge-derived nutrient broth was combined with 29ml of 

sterile distilled water and 15ml sterile glycerol (Fisher scientific, 98.0+ %). This 

was then inoculated with 5ml of the L. reuteri inoculum (i.e. dilution 0) and 1ml 

of the E. coli inoculum (i.e. dilution 10-8), to give a total volume of 150ml and a 

10% glycerol solution in sludge-derived nutrient broth. A concentration of 10% 

glycerol was chosen as it was determined via spread plates to be the highest 

concentration of glycerol that could be used without adversely affecting E. coli 

growth. This was then incubated at 30°C in a shaking incubator set at 150rpm. 

A positive control (sludge-derived nutrient broth inoculated with E. coli only) and 

a negative control (sterile sludge-derived nutrient broth with 10% glycerol) were 

also incubated under the same conditions. Growth of E. coli was measured 

every 3 hours for 24 hours with a break after 15 hours. If the stationary phase of 

growth was not reached after 24 hours, sampling would continue until it was 

reached.  
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5.2.7 Analysing of Lactobacillus reuteri growth in sludge derived nutrient broth 
with glycerol addition 

 
A 100ml volume of sludge-derived nutrient broth was combined with 34ml of 

sterile distilled water and 15ml sterile glycerol. This was then inoculated with 

1ml of the L. reuteri inoculum (i.e. dilution 10-7), to give a total volume of 150ml 

and a 10% glycerol solution in sludge-derived nutrient broth. This was then 

incubated in a shaking incubator at 30°C and 150rpm. An additional 100ml 

volume of sludge-derived nutrient broth was combined with 49ml sterile distilled 

water and inoculated with 1ml of the L. reuteri inoculum (i.e. dilution 10-7), to 

give a total volume of 150ml. This acted as a control. Growth of L. reuteri was 

measured every 3 hours for 24 hours with a break after 15 hours. If the 

stationary phase of growth was not reached after 24 hours, sampling would 

continue until it was reached. To analyse growth a 1ml sample was removed 

and 10-fold serially diluted in MRD. 100µl of these dilutions was then plated 

onto De Man, Rogosa, Sharpe agar (MRS; Oxoid CM361) in triplicate and 

incubated at 37ºC for 48 hours, after which all colonies were counted. 

 

5.2.8 Effects of the addition of L. reuteri and varying concentrations of glycerol 
 

Varying volumes of sterile glycerol (Fisher scientific, 98.0+ %) and sterile 

distilled water were added to several different Duran bottles containing 100ml of 

sludge derived nutrient broth. These were then inoculated with 5ml of the L. 

reuteri inoculum (i.e. dilution 0) and 1ml of the E. coli inoculum (i.e. dilution 10-

8), to give a total volume in each bottle of 150ml and five different glycerol 

concentrations (1%, 5%, 10%, 15% and 20%). They were then incubated at 

30°C in a shaking incubator set at 150rpm. A positive control (sludge-derived 

nutrient broth inoculated with E. coli only) and a negative control (sterile sludge-

derived nutrient broth with 10% glycerol) were also incubated under the same 

conditions. Growth of E. coli was measured every 3 hours for 24 hours with a 

break after 15 hours. If the stationary phase of growth was not reached after 24 

hours, sampling would continue until it was reached. 
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5.2.9 Effects of the addition of L. reuteri and glycerol at reduced pH 
 

Varying volumes of sterile distilled water and 0.1M hydrochloric acid (Fisher 

Scientific) were added to 100ml volume of sludge-derived nutrient broth 

supplemented with 15ml sterile glycerol (Fisher scientific, 98.0+ %), to create 

four batches of sludge derived nutrient broth at pH 6.5, 6, 5.5 and 5. These 

were then inoculated with 5ml of the L. reuteri inoculum (i.e. dilution 0) and 1ml 

of the E. coli inoculum (i.e. dilution 10-8), to give a total volume of 150ml and a 

10% glycerol solution in sludge-derived nutrient broth. They were then 

incubated at 30°C in a shaking incubator set at 150rpm. Two positive controls 

(sludge-derived nutrient broth inoculated with E. coli only with and without pH 

reduction) and a negative control (sterile sludge-derived nutrient broth with 10% 

glycerol) were also incubated under the same conditions. Growth of E. coli was 

measured every 3 hours for 24 hours with a break after 15 hours. If the 

stationary phase of growth was not reached after 24 hours, sampling would 

continue until it was reached.  

 

5.2.10 Isolating and confirming the production of reuterin 
 

Reuterin was produced as previously described by Vollenweider et al. (2003). L. 

reuteri was inoculated at 1% (v/v) in 10 ml MRS broth, incubated overnight in a 

shaking incubator at 37°C in a shaking incubator set at 150rpm and added to 50 

ml MRS medium which was then incubated for 3 h under the same conditions. 

This culture was then added to 1L of MRS broth supplemented with 20 mM 

glycerol and incubated overnight at 37°C in a shaking incubator set at 150rpm. 

The cells were then harvested by centrifugation at 1500g for 10 minutes, 

washed with potassium phosphate buffer (0.1 M, pH 7.0), re-suspended in 300-

ml sterile aqueous solution of glycerol (200 mM) and incubated for 2 h at 37°C 

in a shaking incubator set at 150rpm. The cells were removed by centrifugation 

(1500g for 10 minutes). The supernatant was then filter sterilised through a 

0.22µm cellulose acetate filter. To confirm the presence of reuterin, the agar 

disc diffusion method was used. For this 0.1ml of E. coli was inoculated and 

spread evenly across the surface of a TSA plate to create an even bacterial 
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lawn. Following this, a 0.45µm cellulose acetate filter was cut into circles and 

saturated with the filter sterilised supernatant. After a brief drying period, two 

were placed on each inoculated TSA plate. To act as a control another cellulose 

acetate filter circle was saturated with a sterilised aqueous solution of glycerol 

(200mM) and also placed on each inoculated TSA plate. The TSA plates were 

then incubated overnight at 37°C. The zones of inhibition were measure using a 

standard 30cm ruler.  

 

5.2.11 Statistical analysis 
 

See section 2.2.3.4. 

5.3 Results and discussion 
 

5.3.1 Effect of L. reuteri on the growth of E. coli  
 

Results for the competitive exclusion of E. coli in sludge-derived nutrient broth 

using L. reuteri proved variable.  During the initial screening experiment 

conducted in Chapter 4 (Figure 4.1) the addition of L. reuteri resulted in a 

statistically significant reduction (p < 0.05) in E. coli growth with the lag time of 

E. coli calculated to be 2.9 hours and the mean generation time 97 minutes, 

both 3 times longer than that calculated for the control. Overall the stationary 

phase of growth for E. coli was not reached within 36 hours when L. reuteri was 

present. In the repeat of the screening experiment (Figure 5.1) the addition of L. 

reuteri once again caused a significant reduction (p < 0.05) in the growth of E. 

coli. The growth rate of E. coli was again restricted with the mean generation 

time calculated to be 54.2 minutes. The stationary phase of growth was also not 

reached until after 24 hours, in both cases this over twice as long as that 

calculated for the control. Furthermore the final concentration of E. coli was 

reduced by around one log. Though L. reuteri proved successful in restricting E. 

coli growth the effect was less pronounced than that recorded in the initial 

experiment (Figure 4.1). The inconsistencies in the ability of L. reuteri to inhibit 

E. coli growth are further seen in the second repeat (Figure 5.2), where addition 

of L. reuteri had no significant effect (p > 0.05) on E. coli growth. Despite the 
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conditions of the experiments being replicated throughout, the inhibitory effect 

L. reuteri has on E. coli is highly variable. These inconsistencies are most likely 

linked with the ability of L. reuteri to produce antimicrobial compounds in the 

sludge-derived nutrient broth. If this is the case then this variability suggests 

that without the production of antimicrobials, L. reuteri is unable to directly 

compete with E. coli.  
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Figure 5.1 - Competitive exclusion of E. coli in sludge derived nutrient broth using 
Lactobacillus reuteri in the first repeat. The Baranyi-Roberts model (Baranyi and Roberts, 1994) 
adjusted by Miconnet et al. 2005 was used to fit curves to the data. 
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5.3.2 The effect of glycerol addition 
 

Despite the inconsistencies between experiments (Figure 4.1, 5.1 and 5.2), L. 

reuteri did show potential as a possible competitor organism. As stated 

previously it is hypothesised these inconsistencies are due to an inability to 

produce antimicrobials and in particular reuterin consistently. Considering that 

the nutrient broth is derived from raw sludge which in turn consists of organic 

and inorganic components originating from among other things human waste. 

Glycerol is a precursor of triacylglycerols (a main constituent of vegetable oils 

and animal fats) and phospholipids (major component of cell membranes) and 

is a compound found naturally, it is therefore likely that at least a small 

concentration of glycerol would be present in the sludge-derived nutrient broth. 

However the exact nutritional composition of sludge-derived nutrient broth and 

its consistency between experiments is unknown. It is therefore suggested that 

in the initial experiment (Figure 4.1) L. reuteri was exposed to a glycerol 

concentration sufficient to enable the production of enough reuterin to suppress 

Figure 5.2 - Competitive exclusion of E. coli in sludge derived nutrient broth using 
Lactobacillus reuteri in the second repeat. The Baranyi-Roberts model (Baranyi and Roberts, 
1994) adjusted by Miconnet et al. 2005 was used to fit curves to the data. 
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growth but not enough to do so permanently, thereby allowing the eventual 

exponential growth recorded. In contrast, in the two repeat experiments, it is 

likely that L. reuteri was exposed to limited amounts of glycerol and therefore 

produced little or no reuterin, and as a consequence E. coli growth was only 

marginally affected. Therefore to maximise the ability of L. reuteri to produce 

antimicrobials and in particular reuterin and thereby consistently compete with 

E. coli, glycerol, the precursor compound of reuterin, was added to the sludge-

derived nutrient broth.  

 

 

 

The addition of 10% glycerol and L. reuteri to cultures had a significant impact 

(p < 0.05) on E. coli growth (Figure 5.3). The initial rate of growth of E. coli was 

not too dissimilar to that observed in the positive control, with the mean 

generation times calculated as 66.6 minutes and 52.6 minutes respectively. 

This may be attributed to a lag in L. reuteri growth and the conversion of 

glycerol to reuterin and eventual release. However, the final concentration of E. 

coli recorded was significantly reduced in comparison to the positive control to 
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Figure 5.3 - Competitive exclusion of E. coli in sludge derived nutrient broth containing 10% 
glycerol using Lactobacillus reuteri initial experiment. The Baranyi-Roberts model (Baranyi and 
Roberts, 1994) adjusted by Miconnet et al. 2005 was used to fit curves to the data 
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around 1x103 cfu/ml, representing a 5 log reduction. Furthermore it appears that 

after 72 hours the concentration of E. coli was actually in decline. This 

experiment was repeated and as shown in Figure 5.4 the effect was similar. The 

addition of L. reuteri in combination with 10% glycerol resulted once again in a 

significant reduction (p < 0.05) in the maximum concentration of E. coli 

recorded, but not in the initial growth. However in the case of the repeat 

experiment E. coli was completely eliminated from the sludge-derived nutrient 

broth within 48 hours.  The reason L. reuteri was able to completely eliminate E. 

coli in the repeat (Figure 5.4) and not the initial experiment (Figure 5.3) within 

the duration of the experiment is unknown. However, in the initial experiment L. 

reuteri displayed a longer lag time and sluggish initial growth and this is most 

likely the cause. Clearly the addition of glycerol not only maximises the effect of 

L. reuteri on E. coli growth, but also makes it more consistent.   
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Figure 5.4 - Competitive exclusion of E. coli in sludge derived nutrient broth containing 10% 
glycerol using Lactobacillus reuteri repeat experiment. The Baranyi-Roberts model (Baranyi and 
Roberts, 1994) adjusted by Miconnet et al. 2005 was used to fit curves to the data 
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To eliminate the possibility that the effect on E .coli was due solely to the 

addition of glycerol, the experiment was repeated but the sludge-derived 

nutrient broth of the positive control was also supplemented with 10% glycerol. 

Comparing the results for the positive control in Figure 5.3 to those for Figure 

5.4 it is clear that the addition of 10% glycerol alone to sludge-derived nutrient 

broth does have a significant effect (p < 0.05) on the initial growth of E. coli, 

extending the lag time. This can be largely attributed to the effect that glycerol 

has on the water activity (Aw). However following this, E. coli reached a 

concentration of around 1x109 cfu/ml within 30 hours, this is a similar result to 

that recorded in the positive control of the initial experiment. Furthermore the 

mean generation time in the first repeat was calculated as 42.7 minutes, this is 

actually a reduction to that calculated for the initial experiment. This suggests 

that following the initial lag, growth was unhindered by the presence of glycerol. 

This further supports the hypothesis that L. reuteri is the source of inhibition, 
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Figure 5.5 - Growth of Lactobacillus reuteri in sludge derived nutrient broth and sludge derived 
nutrient broth supplemented with 10% glycerol. The Baranyi-Roberts model (Baranyi and Roberts, 
1994) adjusted by Miconnet et al. 2005 was used to fit curves to the data. 
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Figure 5.5 shows that L. reuteri was capable of growing in sludge-derived 

nutrient broth and that the addition of 10% glycerol had no significant effect (p > 

0.05) on growth. With or without glycerol addition L. reuteri reached the 

stationary phase of growth within 24 hours, achieving a final concentration 

greater than 109 cfu/ml. This further confirms the results shown in Figure 5.3 

and 5.4 and is consistent with the hypothesis that L. reuteri and the subsequent 

conversion of glycerol to reuterin is responsible for the inhibition and the 

eventual elimination of E. coli in sludge-derived nutrient broth. Furthermore it 

confirms that the inhibition is not caused by the addition of glycerol or any other 

variable 

 

5.3.3 The effect of varying glycerol concentration 
 

 

Figure 5.6 - Growth of E. coli in sludge derived nutrient broth supplemented with varying 
concentrations of glycerol in the presence of Lactobacillus reuteri. The positive control represents 
growth of E. coli in sludge derived nutrient without glycerol supplementation and without addition 
of L. reuteri.  The Baranyi-Roberts model (Baranyi and Roberts, 1994) adjusted by Miconnet et al. 
2005 was used to fit curves to the data. 
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From Figure 5.6 it is clear that addition of L. reuteri combined with even the 

lowest concentration of glycerol results in substantial significant effect (p < 0.05) 

on not only E. coli growth rate but also the maximum cell yield, in comparison 

with the positive control. The optimal concentration of glycerol however, seems 

to be between 10-15%, with there being no significant statistical difference (p > 

0.05) in E. coli growth rate or maximum cell yield between these two 

concentrations. The most likely cause of this being that L. reuteri is producing 

as much reuterin at this point to suppress E. coli as it can regardless of the 

glycerol that is present, hence the lack of change between the two 

concentrations. To further confirm L. reuteri as the source of the inhibition, from 

Figure 5.7 it is obvious that the addition of glycerol by itself is not the cause, 

with in all cases where no L. reuteri was added, E. coli was capable of reaching 

a maximal cell yield of 1x109 cfu/ml by at least 36 hours regardless of the 

concentration of glycerol present. In comparison even with just 1% glycerol 

supplementation, in the presence of L. reuteri, E. coli could only manage to 

reach a maximum cell yield of roughly 5x107 cfu/ml within the same time period 

(Figure 5.6). That being said glycerol is still hygroscopic in nature and does 

have an effect on water activity (Aw), as shown in figure 5.7. Glycerol by itself 

did at concentrations of 10 and 15% initially limit E. coli growth and at 20% 

completely eliminated both E. coli and L. reuteri. This is a similar result to that 

recorded in Figure 5.4 where the addition of 10% glycerol to sludge-derived 

nutrient broth led to an increase E. coli lag time. Due to this fact and with future 

implementation in sludge cake destined for agricultural land in mind, it is 

important to limit the effect any treatment has on the chemical composition and 

properties of the sludge cake. Therefore since 10% glycerol supplementation by 

itself has only a minor effect on E. coli growth, while significantly enhancing the 

inhibitory effect L. reuteri has on E. coli, it was chosen as the default 

concentration of glycerol to be utilised in further competition experiments. 
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Figure 5.7 - Growth of E. coli in sludge derived nutrient broth supplemented with varying 
concentrations of glycerol.  The positive control represents growth of E. coli in sludge derived 
nutrient broth without glycerol supplementation. The Baranyi-Roberts model (Baranyi and Roberts, 
1994) adjusted by Miconnet et al. 2005 was used to fit curves to the data. 

5.3.4 The effect of reduced pH 
 

The results from supplementing sludge derived nutrient with glycerol and 

introducing L. reuteri were highly successful with a 6 log reduction in E. coli 

growth recorded in the case of 10% glycerol addition (Figure 5.4). However it is 

hypothesised that this inhibition could be enhanced further. Lactobacilli are 

known to be acid-tolerant, with their optimal growth conditions being below 

neutral pH, around 6.0 (De Man et al., 1960; Giraud et al., 1991). When 

analysed using a pH meter, sludge derived nutrient broth with and without 

glycerol addition measured consistently between pH 7.6 and 7.9, making growth 

conditions less than ideal for L. reuteri. Furthermore though E. coli is also acid 

tolerant (Conner and Kotrola, 1995), its optimum growth conditions are more 

neutral, making the sludge derived nutrient more suited for E. coli growth. 

Effectively this means that in sludge derived nutrient without pH reduction the 
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lag time for E. coli will be shorter. However the lag time for L. reuteri will be 

extended as it requires time to adjust to the pH of the environment, probably via 

the release of organic acids such as lactic acid, which is made naturally during 

the fermentation of glucose, which would in turn reduce the pH of the 

environment and thereby allowing exponential growth. However since E. coli 

has a fast growth rate and is capable of reaching a concentration of 1x109 

cfu/ml within roughly 9 hours as shown in Figure 5.7, any delay in the ability of 

L. reuteri to achieve exponential growth and produce reuterin and thereby 

compete with E. coli, will ultimately lead to uninhibited E. coli growth. Assuming 

no attempts are made to pre-manufacture reuterin for introduction to sludge 

cake, this could have severe consequences for the success of any treatment 

process using L. reuteri as its main probiotic 

 

Figure 5.8 - Growth of E. coli in sludge derived nutrient broth supplemented with 10% glycerol in 
the presence of Lactobacillus reuteri at a range of different pH values. The positive control 
represents growth of E. coli in sludge derived nutrient at pH 7.7 without glycerol supplementation 
and without addition of L. reuteri.  The Baranyi-Roberts model (Baranyi and Roberts, 1994) 
adjusted by Miconnet et al. 2005 was used to fit curves to the data. 
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As shown by Figure 5.8, lowering the pH had a significant effect (p < 0.05) on 

the ability of L. reuteri to inhibit E. coli growth in the presence of 10% glycerol. 

When the pH of the sludge derived nutrient was unaltered in the presence of 

10% glycerol, L. reuteri was capable of limiting E. coli growth, however in all 

cases where the pH reduced; E. coli was completely eliminated within 75 hours 

of the experiment. Where the pH was reduced to 5.5 and 4.94, the E. coli 

concentration measured within the sludge derived nutrient never increased 

above 1x101 cfu/ml and was eliminated within 30 hours. As shown in figure 5.9, 

solely reducing the pH and adding 10% glycerol does have a statistically 

significant effect (p < 0.05) on E. coli growth, however the effect is only seen on 

the growth rate, as expected the lag time is lengthened, however maximum cell 

yield is not, with E. coli reaching a maximum cell yield regardless of pH and 

Figure 5.9 - Growth of E. coli in sludge derived nutrient broth supplemented 10% glycerol at a 
range of pH values  The positive control represents growth of E. coli in sludge derived nutrient 
broth at pH 7.7 without glycerol supplementation. The Baranyi-Roberts model (Baranyi and 
Roberts, 1994) adjusted by Miconnet et al. 2005 was used to fit curves to the data. 
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glycerol concentration of between 1 x108 and 109 cfu/ml within 36 hours in all 

cases. This once again proves that L. reuteri is the source of the inhibition.  

 

5.3.5 Isolation and confirmation of reuterin production 

 

It is hypothesised the increased inhibition seen at reduced pH is due to L. 

reuteri being in its optimal growth conditions leading to a faster growth rate and 

therefore an enhanced production of reuterin.  As shown in Figure 5.10 and 

Figure 5.11, the agar disc diffusion method though just a preliminary experiment 

proved that a soluble substance was being produced that led to an inhibitory 

effect on E. coli growing in ideal conditions. Though it wasn’t conclusively 

proven that the antimicrobial substance is reuterin, it is reasonable to assume 

so, considering L. reuteri is known to produce reuterin in the presence of excess 

glycerol. Despite the apparent success of this preliminary experiment at most a 

1-2mm zone of inhibition was recorded. Cleusix et al. (2007) determined the 

minimum inhibitory concentration (MIC) of E. coli to reuterin was between 7.5 

and 15mM, therefore it would be expected the zones of inhibition would be 

larger. However it is possible that the E. coli used in this experiment is partially 

resistant to reuterin or more likely that the reuterin concentration in suspension 

is at a far too low concentration to be isolated and detected by methods utilised 

in these experiments. Indeed Talarico and Dobrogosz (1989) for example 

utilised liquid chromatography mass spectrometry (LC-MS) a far more sensitive 

method to identify reuterin. However, an alternative mechanism of action could 

be responsible for the inhibitory action exerted by L. reuteri on E. coli. 

Lactobacilli are known to produce organic acids, indeed lactic acid is the major 

metabolite of lactobacilli fermentation (Yang, 2000). Organic acids are known to 

possess antimicrobial activity (Bracey et al., 1998; Gould, 1991; Podolak et al., 

1996; Thevelein, 1994; Van Immerseel et al., 2006; Van Immerseel et al., 2004; 

York and Vaughn, 1964). However the antimicrobial activity of an organic acid 

depends on its pKa, or the pH at which it is partially dissociated, which is 

between pH 3 and 5 (Dibner and Buttin, 2002), this would explain the enhanced 

E. coli inhibition recorded at low pH. The production of organic acids also 
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explains the decrease in pH recorded in the sludge derived nutrient broth 

following the inoculation of L. reuteri. However the production of organic acids 

does not explain the enhanced effect L. reuteri has on E. coli in the presence 

glycerol especially at a more neutral pH, it is therefore most probable that 

reuterin and organic acid production play a dual role in inhibiting E. coli growth. 

Furthermore it is hypothesised that reuterin production by L. reuteri occurs 

under anaerobic conditions (Chung et al., 1989). It is possible due to the 

aerobic nature of these experiments that reuterin production is minimalised, 

hence why without pH reduction and with only reuterin production as a source 

of inhibition E. coli growth is only reduced at neutral pH while at low pH with the 

additional inhibitory action of organic acids it is eliminated.  

 

 

 

Figure 5.10 – Initial agar disc diffusion analysis on TSA plate inoculated with E. coli to confirm the 
production of reuterin. Disc A is saturated with 200mM glycerol. Disc B and C are saturated with a 
solution suspected to contain reuterin 
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Figure 5.11 – Repeat agar disc diffusion analysis on TSA plate inoculated with E. coli to confirm the 
production of reuterin. Disc C is saturated with 200mM glycerol. Disc A and B are saturated with a 
solution suspected to contain reuterin 

 

5.4 Conclusions 
 

 Lactobacillus reuteri when added as a sole competitor in sludge-derived 

nutrient broth has an inconsistent effect on E. coli growth 

 

 With the addition of 10% glycerol L. reuteri is more consistent and is able 

to completely eliminate E. coli within 48 hours 

 

 The optimal glycerol concentration for Lactobacillus reuteri to have the 

maximum effect on Escherichia coli growth in sludge derived nutrient is 

between 10-15% 
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 Glycerol as a sole inhibitor does have an effect (p < 0.05) on E. coli 

growth at concentration of 10% and over, however at 10% and 15% only 

the lag time and growth rate were affected, with the maximum cell yield 

unaffected. This confirms L. reuteri is the source of the E. coli inhibition. 

 

 Reducing the pH has a significant effect (p < 0.05) on the ability L. reuteri 

to compete with E. coli, reducing the pH to 6.5 and below results in 

complete inhibition of E. coli within 75 hours. 

 

 Reduced pH and addition of 10% glycerol to sludge derived nutrient does 

have an effect on E. coli growth, but once again only the lag time and 

growth rate were affected, confirming L. reuteri is still the source of the 

inhibition and not pH or glycerol addition. 

 

 The link between glycerol addition and the enhancement of the inhibitory 

action of L. reuteri, suggest reuterin production is the source. Preliminary 

experiments using the agar disc diffusion method proved the presence of 

a soluble antimicrobial substance, though the zones of inhibition were 

smaller than expected suggesting a low level of production. This 

combined with the reduction in the pH of sludge derived nutrient broth 

following L. reuteri inoculation and further enhancement of inhibitory 

action at low pH suggests a role for organic acids, which L. reuteri is 

known to produce as a natural part of its metabolic action. 
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Section 2 conclusions 

The addition of undefined diverse microbial inoculum derived from soil and a 

fermented milk product to digested sludge cake post pasteurisation had no 

significant effect (p > 0.05) on E. coli growth.  It is unknown why either inoculum 

failed to cause any significant reduction in E. coli growth. Although it is 

hypothesised that the micro-organisms contained within the mixed cultures 

were in majority unsuited for growth within sludge cake or in the experimental 

conditions. However it also thought that the rapid growth rate of E. coli and the 

fact it is adapted to the sludge cake environment alongside the questionable 

viability of the competitor organisms considering their origin played a role. It was 

therefore determined that a rapid screening step was required to screen 

candidates for a number of criteria (Table 4.1), including essentially an ability to 

grow in a sludge cake environment and compete with E. coli. Soil though not 

successful as an undefined mixed culture, would certainly contain a number of 

organisms which fit these essential criteria due to its high biodiversity. However 

identification and isolation would entail a substantial and time-consuming 

screening programme which would not be feasible, therefore a targeted review 

of the literature was performed and a number of candidates identified (Table 

4.2). 

 

Of the candidate organisms identified, L. acidophilus, L. brevis, L. reuteri and 

UIS were selected. For the targeted screening process sludge derived nutrient 

broth was used because unlike solid sludge cake certain variables do not exist 

such as differing moisture contents, competing indigenous microflora and 

changing nutrient availability and composition. This makes the results more 

consistent and representative of how effective the candidate organisms are at 

inhibiting E. coli growth when in optimal conditions. During the screening 

process it was concluded that competition for nutrients was an unfeasible 

mechanism of action for the inhibition of E. coli in digested sludge cake. Both L. 

acidophilus and UIS addition only resulted in a 1 log reduction in the maximum 

cell yield and didn’t have any significant effect on growth rate of E. coli. 

However both L. reuteri and L. brevis were the complete opposite, with addition 
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leading to a significant inhibition of initial E. coli growth, the mechanism of 

action of both these organisms was speculated to be via production of 

antimicrobials. Out of these two bacteria, L. reuteri proved to be the most 

promising candidate. Though L. brevis also showed an increased capability of 

competing with E. coli in sludge-derived nutrient broth, the inhibition wasn’t long 

lasting, with the final concentration recorded similar to that detected in the 

experiments involving UIS and L. acidophilus (Chapter 4). 

 

In repeat experiments involving L. reuteri, it was the found the effect its addition 

had on E. coli growth proved inconsistent. L. reuteri is known to produce an 

array of antimicrobial compounds including organic acids and reuterin. Reuterin 

is produced as an intermediate step in the conversion of glycerol to 1,3-

propanediol, a pathway proposed to regenerate NAD+ from NADH and to 

contribute to improved growth yield. With the addition of 10% glycerol L. reuteri 

proved more consistent in its inhibition of E. coli growth, capable of completely 

eliminating E. coli within 48 hours. This result suggests that the production of 

reuterin by L. reuteri is not only the source of inhibition but required for L. reuteri 

to effectively compete with E. coli. The optimal glycerol concentration for L. 

reuteri to have the maximum effect on Escherichia coli growth in sludge derived 

nutrient was determined to be between 10-15%. However glycerol as a sole 

inhibitor was found to have an effect on E. coli growth at concentrations of 10% 

and over, however at 10% and 15% only the lag time and growth rate were 

affected, with the maximum cell yield unaffected. This confirmed L. reuteri as 

the source of the E. coli inhibition. To limit the hygroscopic effect of glycerol 

addition, but still maintain the elevated antagonistic action of L. reuteri, 

supplementation with 10% glycerol will be used in future competition 

experiments.  

 

Though the results from supplementing sludge derived nutrient with glycerol 

and introducing L. reuteri were highly successful with a 6 log reduction in E. coli 

growth recorded in the case of 10% glycerol addition. It was hypothesised that 

the effect could be enhanced further. Lactobacilli are known to be acid-tolerant, 
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with their optimal growth conditions being below neutral pH. When analysed 

using a pH meter, sludge derived nutrient with and without glycerol addition 

measured consistently between pH 7.6 and 7.9, making growth conditions less 

than ideal for L. reuteri. Reducing the pH had a significant effect on the ability L. 

reuteri to compete with E. coli, with pH 6.5 and below resulting in complete 

inhibition of E. coli within 75 hours. Reduced pH and addition of 10% glycerol to 

sludge derived nutrient does have an effect on E. coli growth, but once again 

only the lag time and growth rate were affected, confirming L. reuteri is once 

again still the source of the inhibition and not pH or glycerol addition. 

 

The link between glycerol addition and the enhancement of the inhibitory action 

of L. reuteri, suggest reuterin production is the source. Preliminary experiments 

using the agar disc diffusion method proved the presence of a soluble 

antimicrobial substance, though the zones of inhibition were smaller than 

expected suggesting a low level of production. This combined with the reduction 

in the pH of sludge derived nutrient broth following L. reuteri inoculation and the 

further enhancement of inhibitory action recorded at low pH suggests a role for 

organic acids, which L. reuteri is known to produce as a natural part of its 

metabolic action. Organic acid production however does not explain the 

increased inhibitory action recorded after glycerol supplementation, therefore it 

is likely reuterin and organic acids work in combination to eliminate E. coli at low 

pH, but at more neutral pH only reuterin is effective leading to only a reduction 

in E. coli growth not elimination.  

 

The next step was to experiment with reducing the pH of sludge cake and the 

addition of L. reuteri and glycerol in solid digested sludge cake. Issues that were 

investigated include: the effect of lower nutrient availability in cake; the ability of 

L. reuteri to grow in solid digested sludge cake; the effect of additions on cake 

structural integrity; and, confirmation of the production of reuterin by L. reuteri, 

to determine the optimal conditions required to maximise reuterin production.  
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Section 3: Application in digested sludge cake 

Introduction 
 

In the previous chapters it has been shown that competitive exclusion as a 

treatment method to reduce E. coli growth in sludge derived nutrient broth 

has been successful. Furthermore Lactobacillus reuteri has proven to be the 

most effective candidate at inhibiting E. coli especially when used in 

combination with glycerol and low pH (below pH 6.5). However sludge-

derived nutrient broth does not provide an accurate representation of the 

conditions within sludge cake.  

 

Firstly sludge-derived nutrient broth is likely to have more readily utilisable 

carbon contained within than digested sludge cake. Digested sludge cake 

has been through anaerobic digestion, converting readily degradable carbon 

into methane and more biomass. Sludge derived nutrient broth however is 

derived from undigested raw sludge, effectively it is a mix of fresh faeces 

and biomass from the filters at the Cranfield sludge treatment works.  

Therefore it is unknown if L. reuteri will be able to grow to the same degree 

as seen in broth (Figure 5.5). Furthermore previous attempts of using 

lactobacilli for competitive exclusion treatments in sludge cake were 

unsuccessful (Chapter 3), though the viability of these cultures was 

questionable. Second, is the presence of indigenous microflora other than 

E. coli. Sludge derived nutrient broth is sterilised via autoclaving and 

therefore previously the only competing organism has been E. coli. However 

in sludge cake pasteurisation only reduces the bacterial load, therefore in 

competition experiments in sludge cake, E. coli will not be the only organism 

L. reuteri has to compete with, potentially limiting growth and any inhibition 

on E. coli growth.  

 

Finally, an important parameter of these experiments is that the sludge cake 

being used must retain its basic physical structure. Consequently the 

amount of liquid and therefore additives supplemented into sludge cake is 
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limited. From previous experiments it has been estimated, the limit is around 

1-2ml. This is a relatively small amount considering, glycerol, sludge-derived 

nutrient broth to support growth, a high concentration of L. reuteri and acid 

to reduce pH must be added to replicate conditions used in sludge derived 

nutrient broth that proved so successful (Chapter 5).. The following chapter 

details the experiments setup to apply a competitive exclusion treatment 

methodology in sludge cake using the previous research as a guideline. 

Chapters 6 focuses on the use of L. reuteri as the primary probiotic agent, with 

the initial hypothesis being L .reuteri can competitively inhibit E. coli re-growth 

following pasteurisation in digested sludge cake. Following on from this the 

emphasis was on the optimisation of the process with addition of glycerol and 

reduction in pH being the primary methods, on the basis of their success in 

sludge derived nutrient broth. These experiments are important in proving 

competitive exclusion to be a feasible method of pathogen control in sludge 

cake. 

Chapter 6 Competitive exclusion using Lactobacillus reuteri as 
a means to reduce E. coli regrowth in solid digested sludge 
cake 

 

6.1 Introduction 
 

For several years, reports in the literature have documented significant 

increases in concentrations of pathogen indicator bacteria (E. coli/faecal 

coliforms) in biosolids following centrifugal dewatering (Cooper et al., 2010; 

Higgins et al., 2007; Qi et al., 2007). The concentration of E. coli in particular 

can often reach levels which exceed both enhanced and conventional treatment 

standards as defined by the safe sludge matrix (ADAS, 2001), making this 

resurgence of E. coli following treatment a major concern. There are a number 

of theories behind the cause of this phenomenon (Higgins et al., 2007; Iranpour 

et al., 2003; Monteleone et al., 2004; Qi et al., 2004), though no definitive 

mechanism has been elucidated. 
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Nurmi and Rantala (1973) introduced the concept of competitive exclusion 

treatment as a means to reduce Salmonella infections. This was achieved via 

introducing a probiotic comprised of intestinal flora from adult chicken to young 

birds as suspensions. A probiotic is defined as a live microbial food supplement 

that benefits the host by improving its microbial balance (Hentges, 1992). 

Competitive exclusion treatment and use of probiotics has already been 

adopted in a number of industries for the purpose of combating unwanted 

pathogen growth, examples include preventing noso-comial infectious diarrhoea 

in hospitals (D'Souza et al., 2002; Plummer et al., 2010) to preventing or 

controlling paratyphoid salmonella bacteria colonisation of the gastrointestinal 

tract in poultry (Schneitz, 2005). It is hypothesised that by adding a probiotic 

organism or culture to sludge following treatment that the E. coli re-growth 

detected following centrifugal dewatering and during sludge cake storage could 

be inhibited. 

 

During the screening process for possible candidate probiotic organisms 

Lactobacillus reuteri proved to be the most effective in terms of inhibitory action 

against E. coli in sludge-derived nutrient broth. It is theorised the mechanism of 

action of L. reuteri is via the production of antimicrobial compounds. L. reuteri is 

known to produce an array of antimicrobials including reuterin (Axelsson et al., 

1989; Talarico and Dobrogosz, 1989). Reuterin is a potent antimicrobial agent, 

produced via the conversion of glycerol by glycerol dehydratase (Talarico et al., 

1988) and is proven to be active against Gram positive and Gram negative 

bacteria, as well as yeasts, moulds and protozoa (Axelsson et al., 1989). Indeed 

when combined with glycerol in reduced pH sludge-derived nutrient broth 

(adjusted to below pH 6.5), L. reuteri was capable of completely supressing E. 

coli growth in previous experiments. It is hypothesised that this effect can be 

transferred to solid digested sludge cake if the conditions of the previous 

experiments are replicated. It is also hypothesised L. reuteri will be able to 

actively grow and compete in sludge cake, since the bacteria has shown to be 

previously capable of achieving exponential growth in sludge-derived nutrient 
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broth. It is also speculated that L. reuteri will be capable of producing the 

antimicrobial agent reuterin in sludge cake based on the data recorded in 

previous experiments using sludge-derived nutrient broth. This is unsurprising 

considering the faecal content of sludge cake and that L. reuteri naturally 

resides in the gastrointestinal tract of healthy humans and animals (Axelsson 

and Lindgren, 1987; Kandler et al., 1980). Therefore it is feasible that a 

treatment method using L. reuteri will be successful in inhibiting E. coli re-

growth in solid digested sludge cake. 

 

In these experiments the ability of L. reuteri to inhibit E. coli re-growth in solid 

digested sludge cake following pasteurisation in the laboratory were analysed 

and the effect of the addition of a precursor molecule, glycerol determined. 

Following this the effect of lowering the pH of the sludge cake combined with 

the addition of a set concentration of glycerol and L. reuteri was investigated. 

Though these treatment methods proved highly successful in liquid nutrient 

broth derived from sludge, solid sludge cake is a highly complex growth matrix 

and a number of variables which cannot be readily controlled exist, which do not 

in the liquid based circumstances. Examples include the existence of other 

organisms in the form of the natural microbial microflora of sludge cake, 

inconsistences of the nutrient content of sludge cake and the pasteurisation 

process. It will be determined how these variables affect how successful the 

treatment method is and the extent of the difference between solid sludge cake 

and liquid nutrient broth derived sludge as growth media. 

6.2 Materials and methodology 
 

6.2.1 Collection and storage of digested sludge cake and strains, culture 
media and growth conditions 

 

Digested sludge cake was collected from the outlet of the United Utilities’ sludge 

centrifuge at the Ellesmere Port wastewater treatment plant and dispatched to 

Cranfield University via courier contained within a refrigerated box and 

subsequently stored at 5 ºC upon delivery. The concentration of E. coli 

contained within the sludge cake was recorded 48 hours prior to the 
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experiment, to ensure there as a sufficient amount (above 103 cfu/gDs) for an 

experiment to be performed. Lactobacillus reuteri (NCIMB 11951) was grown 

and maintained at 37°C on De Man, Rogosa, Sharpe agar (MRSa; Oxoid 

CM361). All agar was prepared following the manufacturer’s instructions and 

autoclaved at 121°C for 20 minutes prior to use. Stock cultures were stored in a 

cold room at 5°C, and sub-cultured and analysed for purity every two weeks. 

 

6.2.2 Preparation of sludge derived nutrient broth 
 

Raw sludge from Cranfield University’s sewage treatment works was first stirred 

to break up the biomass and ensure nutrients would be released into 

suspension and then centrifuged at 84g for one minute to remove the heavier 

biomass. The supernatant was poured off and then autoclaved at 121ºC for 15 

minutes to ensure sterility.  

 

6.2.3 Preparation of L. reuteri inoculum 
 

L. reuteri was grown overnight in De Man, Rogosa, Sharpe broth (MRSb; Oxoid 

CM359) at 37°C. The cells were then harvested by centrifugation at 755 g for 10 

minutes. The supernatant was removed and the cells subsequently re-

suspended in maximum recovery diluent (MRD; Oxoid CM0733). 10ml of the L. 

reuteri suspension was then combined with 10ml of sludge derived nutrient in a 

30ml universal bottle and vortexed for 1 minute. The original L. reuteri 

suspension was also 10 fold serially diluted in MRD and a plate count on MRSa 

performed. 

 

6.2.4 Preparation and pasteurisation of digested sludge cake and addition of L. 
reuteri inoculum 

 

Firstly the digested sludge cake was broken down manually to ensure an even 

particle size was achieved. The sludge cake was then divided into 5g sub-

samples and placed in separate 30ml universal bottles. The sludge cake was 

then heated in a dry heat oven at 62ºC for 45 minutes. Immediately following 

pasteurisation 2ml of the L. reuteri inoculum was added to the samples, they 
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were then incubated at 30ºC. One set of samples post pasteurisation was 

inoculated with a combination of 1ml of a L. reuteri suspension (dilution 0) and 

1ml sterile MRD, another inoculated with a combination of 1ml of sludge derived 

nutrient and 1ml sterile MRD and another was inoculated 2ml of sterile MRD to 

act as a controls, these were then incubated under the same conditions.  

 

6.2.5 Sampling and enumeration of E. coli via membrane filtration 
 

A sample of the sludge cake was taken immediately after the pasteurisation 

process and 10ml of maximum recovery diluent (MRD; Oxoid CM0733) was 

added to the universal and then vortexed for one minute. 1ml of the sludge 

cake/MRD suspension was then removed from the universal bottle and 10-fold 

serially diluted in MRD. 1ml of each dilution was then filtered through a 0.45µm 

cellulose acetate filter (Eccles et al., 2004; Sartory and Howard, 1992), this was 

performed in triplicate for each dilution at each time point. Due to the volume of 

the inocula to be filtered being below 10ml, additional MRD was added to the 

funnel to aid the dispersion of the bacteria over the entire surface of the 

membrane filter during the filtration process. Following filtration, the filter was 

placed onto membrane lactose glucuronide agar (MLGA; Oxoid CM1031) and 

incubated at 30°C for 4 hours and then transferred to 37°C for a further 14 

hours. The colonies were then enumerated with all green colonies counted and 

considered as presumptive E. coli. This was repeated every 3 hours for 24 

hours with a break after 15 hours. If the stationary phase of growth was not 

reached after 24 hours, sample was taken every 12 hours until reached. A 

sample was also analysed prior to pasteurisation to determine how effective the 

pasteurisation process was. The moisture content of the digested sludge cake 

was also established via heating a 5g sample at 121ºC for 24 hours and 

measuring the percentage weight difference. 

. 

6.2.6 Effect of the addition of L. reuteri and glycerol 
 

Following pasteurisation a combination of 1ml of the L. reuteri inoculum and 1ml 

of a sterile 60% glycerol solution was added to the samples, they were then 
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incubated at 30ºC. A solution of 60% glycerol was used to accommodate for 

diluting effect of the moisture content of sludge cake and the addition of the L. 

reuteri inoculum. It was estimated a 60% glycerol solution would actually be 10-

15% in the sludge cake. One set of samples post pasteurisation was inoculated 

with a combination of 1ml of 50% sludge derived nutrient solution and 1ml a 

60% glycerol solution to act as a control; the samples were then incubated 

under the same conditions. The sample procedure detailed in section 6.2.5 was 

then repeated 

 

6.2.7 Effect of the addition of L.reuteri, glycerol and reduction in the pH of 
digested sludge cake 

 

Firstly the digested sludge cake was broken down manually to ensure an even 

particle size was achieved. 5M hydrochloric acid (Fisher scientific) was added to 

the sludge cake to adjust the pH of the cake to between pH 4 and 5. The sludge 

cake was then divided into 5g sub-samples and placed in separate 30ml 

universal bottles. The cake was then heated in a dry heat oven at 62ºC for 45 

minutes to simulate pasteurisation. Following this, a combination of 1ml of the L. 

reuteri inoculum and 1ml of a sterile 60% glycerol solution was added to the 

samples, they were then incubated at 30ºC. One set of samples post 

pasteurisation was inoculated with a combination of 1ml of 50% sludge derived 

nutrient solution and 1ml a 60% glycerol solution to act as a control; the 

samples were then incubated under the same conditions. The sample 

procedure detailed in section 6.2.5 was then repeated 

 

6.2.8 Statistical analysis 
 

See section 2.2.3.4. 
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6.3 Results and discussion 
 

6.3.1 The effect of L. reuteri on E. coli re-growth 
 

The addition of L. reuteri as a sole competitor had no statistically significant 

effect (p > 0.05) on E. coli re-growth following pasteurisation of the digested 

sludge cake (Figure 6.1). The mean generation time of E. coli in presence of L. 

reuteri with and without nutrient addition was 63.4 and 52.9 minutes 

respectively. In comparison in the positive controls they were calculated as 47.7 

minutes with nutrient addition and 48.6 minutes without nutrient addition. First of 

all this result shows that nutrient addition had a very little effect in terms of 

generating E. coli re-growth in sludge cake and in fact seems to have proven 

more useful in supporting L. reuteri growth, allowing the bacteria to more 

actively compete. This result confirms that there is variation in terms of nutrient 

content between batches of sludge cake, with the cake used in Chapters 2 and 

3 requiring nutrient addition to generate high levels of re-growth, however in this 

chapter this was not the case. This is unsurprising since sludge cake is derived 

from wastewater and wastewater itself is not consistent in terms of composition 

and therefore nutrient content and can be influenced by a number of factors 

including environmental (e.g. seasonal changes) and even which wastewater 

treatments are used to generate the sludge cake. This natural variation could be 

problematic in terms of consistency. It is possible a competitive exclusion 

treatment methodology could be highly successful in one batch of sludge cake 

but not in another. Apart from this, the results also show the addition of L. 

reuteri did have a minimal effect on the growth rate of E. coli, though it was to a 

much lower degree when compared with the results recorded in similar 

experiments but in sludge derived nutrient broth (Chapter 4 and 5). In both 

cases with and without sludge-derived nutrient addition E. coli was able to reach 

a final concentration of around 1x107 cfu/gDs within 24 hours, a similar result as 

recorded for the positive control.  
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Figure 6.1 - Growth of E. coli in digested sludge cake in the presence of Lactobacillus reuteri with 
and without sludger derived nutrient addition. The positive control represents growth of E. coli in 
digested sludge cake with and without nutrient addition. The Baranyi-Roberts model (Baranyi and 
Roberts, 1994) adjusted by Miconnet et al. 2005 was used to fit curves to the data. 

There are a number of reasons for the difference between the results in liquid 

sludge-derived nutrient broth and solid digested cake. First, is that L. reuteri is 

unable or finds it more difficult to utilise or sequester nutrients contained within 

the solid sludge cake. This is supported by the minor increase in the capability 

of L. reuteri to compete with E. coli as a result of the addition of sludge-derived 

nutrient broth as evidenced by the decrease in E. coli growth rate. The ability of 

L. reuteri to grow in sludge cake had never previously been assessed, instead it 

had been assumed so based upon its ability to achieve exponential growth in 

sludge-derived nutrient broth. This result does suggest that the sludge derived 

nutrient broth screening process is flawed in terms of determining whether a 

candidate organism can actively grow and compete in sludge cake. As stated 

previously nutrient availability in terms of carbon is higher in the broth due to 

fact it is derived from undigested raw sludge. It is also possible that L. reuteri 

simply prefers a liquid environment to growth on a solid matrix. Either of these 

would lead to an increased lag time and reduced growth rate and therefore a 

reduced production of antimicrobial compounds including reuterin. Any delay in 
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the competition for nutrients and production of antimicrobial compounds would 

inevitably lead to the dominance of E. coli due to its rapid growth rate. It also 

has been hypothesised previously based on the variance in effectiveness of L. 

reuteri in inhibiting E. coli when glycerol was not readily available (Chapter 5 

and Figure 5.2) that L. reuteri is unable to inhibit E. coli growth if unable to 

produce antimicrobials compounds. This would explain the result recorded in 

Figure 6.1, glycerol was not supplemented into sludge cake at this stage of the 

experiment and no investigation has been performed on the chemical 

composition of sludge-derived nutrient broth or sludge cake, so it is unknown if 

glycerol in any concentration is present.  

 

Alternatively competition could be the source of the lack of inhibition. Sludge 

cake is known to contain a large variety of indigenous micro-organisms (Table 

1.2), even following treatment and pasteurisation in these experiments a variety 

of heat resistant micro-organisms would inevitably survive. In a previous 

experiment it was shown that the ability of L. reuteri to inhibit E. coli growth can 

be reduced by the presence of competing organisms other than E. coli (Figure 

4.1). In the case of that experiment, the competing organisms Lactobacillus 

acidophilus and an unidentified bacterial specimen derived from sludge were 

able to significantly reduce the inhibitory effect L. reuteri exerted on E. coli 

growth, possibly via direct nutrient competition. Furthermore in sludge cake, the 

competition for nutrients alone, without factoring in the possibility of 

antimicrobial production by other organisms would be far greater in terms of 

concentration and variety of competing organisms. Additionally sludge-derived 

nutrient broth is not a selective medium and it would have supported and aided 

in the growth of all the organisms contained within sludge cake, increasing the 

competitive pressure. Overall an increased level of direct nutrient competition 

on L. reuteri from other sources than E. coli would explain the difference in the 

level of inhibition between the competition experiments using sludge derived 

nutrient broth as a growth medium (Figure 4.1 and Figure 5.1) and those using 

solid digested sludge cake (Figure 6.1), especially considering the sludge 

derived nutrient broth was sterile prior to inoculation with L. reuteri and E. coli. 
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However due to time restrictions none of these hypotheses could be validated 

by performing the necessary experiment, analysing the ability of L. reuteri to 

grow in sludge cake following pasteurisation using selective agar to recover, 

isolate and enumerate only L. reuteri.   

 

6.3.2 Effect of glycerol addition 
 

In previous experiments the addition of glycerol, the precursor compound for 

reuterin production increased the ability of L. reuteri to consistently inhibit E. coli 

growth in sludge derived nutrient broth (Figure 5.3 and 5.4).. As shown in Figure 

6.2 and Figure 6.3, the addition of glycerol at a concentration between 10 and 

15% and L. reuteri in combination had a similar effect in solid digested sludge 

cake. As shown in Figure 6.2 and Figure 6.3 a significant decrease (p < 0.05) in 

the overall final concentration of E. coli was documented, with only 1x104 

cfu/gDs recorded in the initial experiment and around 3x104 cfu/gDs in the 

repeat. This represents in both cases in comparison with the positive control a 

just over 1 log decrease. Furthermore in the initial and repeat experiments for 

the positive controls the mean generation times were calculated as 48 and 

58.39 minutes respectively. However with the addition of L. reuteri and glycerol 

they were significantly increased to 85.4 and 125.6 minutes in the initial and 

repeat experiments, this represents a substantial decrease in growth rate. It 

should also be noted though in the initial experiment a more profound effect 

upon the lag time was recorded, with it being extended it to around 9 hours, this 

effect was not evident in the repeat. Overall though in both experiments the 

results were a significant improvement on those shown in Figure 6.1. 

Additionally as shown in Figure 6.3 the addition of glycerol alone did have an 

effect on E. coli growth in terms of reducing the overall final concentration of E. 

coli recorded. However in comparison with the result where L. reuteri was 

present, the reduction was minimal and there was no effect on growth rate or 

lag time, confirming L. reuteri as the primary source of inhibition. This is the 

same conclusion established in previous experiments (Figure 5.4, 5.6 and 5.7) 
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In both experiments where L. reuteri and glycerol were added in combination 

the concentration of E. coli within the sludge cake was only increased by 2 logs 

from the initial concentration measured post pasteurisation. It is hypothesised 

that with an enhanced pasteurisation procedure to reduce the initial 

concentration of E. coli to below 1x101 cfu/gDs, the inhibitory effect of L. reuteri 

and glycerol addition to sludge cake recorded in Figure 6.2 would be sufficient 

to allow the sludge cake to be classified as enhanced treated. The upper limit of 

E. coli permitted for this type of sludge is 103 E. coli per gram dry weight of 

sludge (The Environment Agency, 2003a), which the sludge cake at the 

conclusion of this experiment could have satisfied. Currently with these results 

the sludge cake could be classified as conventionally treated since the upper 

limit in that case is 105 E. coli per gram dry weight of sludge (The Environment 

Agency, 2003a). 

 

 

 
Figure 6.2 – Competitive exclusion treatment of digested sludge cake following pasteurisation, 
initial experiment Treatment represents the addition of Lactobacillus reuteri and a 60% glycerol 
solution  The positive control represents growth of E. coli in digested sludge cake with addition of 
a 25% sludge-derived nutrient broth solution. The Baranyi-Roberts model (Baranyi and Roberts, 
1994) adjusted by Miconnet et al. 2005 was used to fit curves to the data. 
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Figure 6.3 - Competitive exclusion treatment of digested sludge cake following pasteurisation, 
repeat experiment Treatment represents the addition of Lactobacillus reuteri and a 60% glycerol 
solution. The positive controls represent growth of E. coli in digested sludge cake with addition of 
a 25% sludge-derived nutrient broth solution and growth of E. coli in digested sludge cake with 
addition of 1ml of a 50% sludge-derived nutrient broth solution and 1ml of a 60% glycerol solution . 
The Baranyi-Roberts model (Baranyi and Roberts, 1994) adjusted by Miconnet et al. 2005 was used 
to fit curves to the data. 
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growth. In the case of these experiments an on average 5 log reduction in the 

final concentration of E. coli was recorded. Additionally in one instance E. coli 

was completely eliminated from the sludge-derived nutrient broth within 48 

hours (Figure 5.4), further proving that L. reuteri is either most likely more 

effective in a liquid environment or is itself being competitively excluded by the 
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nutrient broth, the nutrient is under constant shaking and therefore L. reuteri, 

glycerol and any antimicrobials including reuterin produced are evenly 

distributed throughout the liquid. With solid digested sludge cake, there are 

certain restrictions which do not exist in the liquid medium experiments. Firstly 

only a maximum 2ml of treatment inoculum can be added per 5g of sludge 

cake, so it maintains its structural integrity. Secondly the sludge cake cannot 

undergo constant mixing and is only vortexed after inoculation with the 

treatment inoculum and prior to sampling. These two factors combined means 

there is a possibility the treatment inoculum is not evenly distributed and 

sections of the sludge cake are not exposed to glycerol, L. reuteri and any 

antimicrobials produced. Therefore in sections of the cake E. coli may be able 

to grow unrestricted leading to the higher concentrations recorded in sludge 

cake. 

6.3.3 Effect of pH reduction 
 

In the previous experiment (Figure 6.2 and 6.3) the pH of the sludge cake was 

measured to be 8.01, this is fairly alkaline. Lactobacilli are known to prefer 

acidic environments for growth; therefore sludge cake is less than optimal 

growth environment for L. reuteri, reducing its ability to effectively compete with 

E. coli. Reducing the pH of sludge derived nutrient broth below 6.5 and 

subsequent addition of a high concentration L. reuteri inoculum in combination 

with glycerol in previous experiments (Figure 5.8) led to the complete 

elimination of E. coli within 75 hours of the experiment. Where the pH was 

reduced to 5.5 and 4.94, the E. coli concentration measured within the sludge 

derived nutrient never increased above 1x101 cfu/ml and was eliminated within 

30 hours. In solid sludge cake however, the replication of the conditions of the 

previous experiments was not as successful. 

 

As shown in Figure 6.4 the reduction of the pH of cake down from 8.05 to 5.85 

combined with the addition of an L. reuteri and glycerol based treatment 

inoculum post pasteurisation led to an around 1.5 log reduction in E.coli re-

growth. In comparison the addition of the same treatment to sludge cake post 

pasteurisation but without pH reduction, led to a less than 1 log reduction in E. 
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coli re-growth recorded. In the repeat of this experiment (Figure 6.5) the result 

was very similar. In the case of this set of experiments the reduction of pH 

increases the effectiveness of L. reuteri in its ability to inhibit E. coli re-growth. 

This result is the same as recorded in sludge derived nutrient broth, though at 

reduced magnitude, suggesting a similar mechanism of inhibitory action. 

Furthermore as in sludge derived nutrient broth a decrease in pH was recorded 

in sludge cake inoculated with L. reuteri from pH 5.85 to 4.83 over the course of 

the experiment (Figure 6.3), supporting the hypothesis that organic acids along 

with reuterin play a role in the inhibition of E. coli re-growth. 

 

 

Figure 6.4 - Growth of E. coli in pH reduced digested sludge cake (pH 8.05) and pH reduced 
digested sludge cake (5.85) with the addition of a Lactobacillus reuteri and 60% glycerol. The 
positive control represents growth of E. coli in digested sludge cake (pH 8.05) and pH reduced 
digested sludge cake (5.85) with addition of a 25% sludge-derived nutrient broth solution. The 
Baranyi-Roberts model (Baranyi and Roberts, 1994) adjusted by Miconnet et al. 2005 was used to 
fit curves to the data. 
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Figure 6.5 – Repeat experiment analysing the growth of E. coli in pH reduced digested sludge cake 
(pH 8.05) and pH reduced digested sludge cake (5.85) with the addition of a Lactobacillus reuteri 
and 60% glycerol. The positive control represents growth of E. coli in digested sludge cake (pH 
8.05) and pH reduced digested sludge cake (5.85) with addition of a 25% sludge-derived nutrient 
broth solution. The Baranyi-Roberts model (Baranyi and Roberts, 1994) adjusted by Miconnet et al. 
2005 was used to fit curves to the data. 

However in both the initial and repeat experiments (Figure 6.4 and 6.5) reducing 

the pH of the sludge cake resulted in an overall 1.5 log increase in the final 

overall concentration of E. coli recorded. The cause of this occurrence is 

unknown, however due to it happening in both the positive control and samples 

with treatment inoculum addition, it is hypothesised the cause of the increase 
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acid. There is no documented evidence in the literature of hydrochloric acid 

addition resulting in elevated E. coli concentrations, furthermore in sludge-

derived nutrient broth hydrochloric acid addition had very little effect on E. coli 

growth, and actually resulted in growth inhibition at higher concentrations 
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concentration of E. coli recorded. This would explain the shorter lag time but 

similar growth rates recorded throughout and why such increases in E. coli 

growth didn’t occur in sludge derived nutrient broth following pH reduction using 

hydrochloric acid. Unfortunately due to time restrictions this hypothesis could 

not be validating by repeating the experiment using alternative methods of 

reducing the pH of sludge cake.  

 

As in the previous experiments in sludge derived nutrient broth (Chapter 5) the 

addition of L. reuteri to sludge cake led to the decrease in the pH over the 

course of both experiments (with and without pH adjustment). This suggests 

organic acids were being produced and since organic acid production is a by-

product of L. reuteri metabolic activity, it can be deemed an indicator of growth. 

The consistent reduction in pH in only the sludge cake inoculated with L. reuteri 

suggests it is capable of growing and indeed thriving in sludge cake. However 

without analysing the growth of L. reuteri in sludge cake using selective media 

to recover, isolate and enumerate the bacteria, this cannot be confirmed. 

Though the increased inhibition in E. coli re-growth recorded following the 

supplementation with glycerol does suggests it is present and capable of 

producing reuterin. It is suggested that the reduction in inhibitory action exerted 

by L. reuteri in sludge cake when compared to sludge derived nutrient broth is 

not caused by an inability to grow in sludge cake or produce antimicrobial 

compounds. This does validate the earlier hypothesis, that a lack of constant 

mixing during the solid cake experiments is a likely cause of the increased E. 

coli re-growth.  

 

6.4 Conclusions 
 

 Lactobacillus reuteri as a sole inhibitor is ineffective in sludge cake in 

terms of inhibition of E. coli re-growth, with and without the addition of 

sludge derived nutrient broth to support growth. The cause is unknown 

but it is hypothesised to be due to L. reuteri being unable to use or 

sequester readily the nutrients available within sludge cake, or possibly 
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due to increased competition due to the presence of indigenous 

microflora other than E. coli  

 

 The addition of glycerol with L. reuteri, with a minimal amount of sludge-

derived nutrient broth to support early growth resulted in an around 1 log 

reduction in E. coli re-growth in sludge cake following pasteurisation in 

both the initial and repeat experiments. Furthermore this treatment 

limited growth to a 2 log increase above the initial concentration of E. coli 

recorded following pasteurisation. With these current results, the sludge 

cake could be designated as conventionally treated as the upper limit for 

E. coli in that case is 105 E. coli per gram dry weight of sludge (The 

Environment Agency, 2003a). It is hypothesised that with an enhanced 

pasteurisation procedure to reduce the initial concentration of E. coli to 

below 1x101 cfu/gDs, the inhibitory effect of L. reuteri and glycerol 

addition to sludge cake recorded in Figure 6.2 would be sufficient to 

allow the sludge cake to be classified as enhanced treated. The upper 

limit for E. coli in that case being 103 E. coli per gram dry weight of 

sludge (The Environment Agency, 2003a). 

 

 Reducing the pH of sludge cake in combination with the addition of 

glycerol with L. reuteri, with a minimal amount of sludge-derived nutrient 

broth to support early growth resulted in a minor increase in the ability of 

L. reuteri to inhibit E. coli re-growth in sludge cake following 

pasteurisation. 

 

 In liquid sludge derived nutrient broth L. reuteri in combination with 

glycerol and reducing pH was capable of completing eliminating inhibiting 

E. coli, however this was not the case in solid sludge cake. Indeed 

throughout L. reuteri was less effective in sludge cake. It was 

hypothesised due to the lack of constant mixing during the solid sludge 

cake competition experiments. 
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 Reducing the pH of sludge cake however also resulted in a 2 log 

increase in the final concentration of E. coli recorded in sludge cake. It is 

hypothesised that the hydrochloric acid used for pH reduction interacted 

with the sludge cake resulting an increased release of nutrients to 

support growth. 
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Chapter 7 Final discussion 

7.1 Conclusions 
 

Analysing the experiments performed previously it can be concluded that a 

treatment method based upon the competitive exclusion principle, where in a 

probiotic organism or culture would be added to sludge cake to reduce E. coli 

re-growth is feasible. It was determined that as a probiotic agent, a defined 

mixed culture or sole competitor organism would be preferred. The use of 

undefined microbial cultures derived from soil and a fermented milk product in 

competition experiments proved unsuccessful. Furthermore their use as a 

probiotic presents a number of concerns. First it is unknown whether the 

inoculum itself may also contain pathogens, which in the case of digested 

sludge cake destined for agricultural land would be undesirable. Secondly in the 

event of a reduction in E. coli growth following treatment, it would be very 

difficult to ascertain the cause and which micro-organisms were responsible. 

However, soil cannot be ruled out as a possible source in the future for 

candidate organisms for competitive exclusion treatment. This is mainly due to 

the fact soil is known to contain a number of antimicrobial producing organisms 

(Basilio et al., 2003; Bull et al., 1992; Foster et al., 1992; Nolan and Cross, 

1988; Todorova and Kozhuharova, 2010) that potentially not only have the 

ability to actively inhibit E. coli growth but also grow and thrive in digested 

sludge cake. It was only due to time constraints that this avenue of research 

was not pursued, due to the biodiversity of soil (Torsvik et al., 1996) and its 

composition largely relying on environmental factors, any screening process 

would inevitably be costly in terms of time. 

 

Through screening defined cultures and individual competitor organisms for 

inhibitory action against E. coli in sludge derived nutrient broth it was concluded 

that the optimal mechanism of inhibition of any organisms utilised in a 

competitive exclusion treatment would be via the production of antimicrobial 

compounds. Alternative mechanisms of inhibition such as direct competition 

were largely unsuccessful, unsurprising considering the rapid growth rate of E. 
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coli and the conditions within sludge cake, in terms of the nutrients available, 

the storage temperature and pH being fairly optimal for exponential growth.  

 

Lactobacillus reuteri proved to be the most promising candidate organism, 

fulfilling the criteria in terms of being a known antimicrobial producer. L. reuteri 

is a known to produce reuterin (Cleusix et al., 2008; Cleusix et al., 2007; Lüthi-

Peng et al., 2002), a potent antimicrobial agent via the fermentation of glycerol. 

L. reuteri was capable of consistently inhibiting E. coli growth in sludge derived 

nutrient broth. Furthermore the addition of glycerol and reduction of sludge 

derived nutrient broth pH below 6.5 in combination enhanced the effect of L. 

reuteri, leading to the complete elimination of E. coli. Additionally low pH and 

glycerol as sole inhibitors proved ineffective, confirming L. reuteri as the source 

of the inhibition. However the mechanism of action of L. reuteri is suggested to 

be two-fold. At neutral pH it is thought reuterin production is the source of 

inhibition due to the link between glycerol addition and enhanced antagonistic 

action of L. reuteri. Furthermore preliminary experiments using the agar disc 

diffusion method proved the presence of a soluble antimicrobial substance 

capable of inhibiting E. coli growth in optimum growth conditions following 

incubating L. reuteri in broth supplemented with glycerol. However at low pH it 

is thought the combined effect of reuterin and the production of organic acids 

are the cause of the complete elimination of E. coli. Furthermore organic acids 

are a natural by-product of lactobacilli metabolic activity (Yang, 2000), the 

decrease in pH recorded in the sludge derived nutrient broth following the 

inoculation of L. reuteri lends evidence of their production and the fact organic 

acids are known to exert a higher antimicrobial activity at low pH (Eklund, 

1983), validates this hypothesis. 

 

Regardless of the mechanism of action and despite the successes in sludge 

derived nutrient broth, the application of L. reuteri in solid sludge cake post 

pasteurisation to reduce E. coli re-growth was less successful in every 

experiment performed in terms of magnitude of E. coli inhibition recorded. 

However despite this the addition of glycerol and L. reuteri in combination still 
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inhibited the growth of E. coli to a 2 log increase above the initial concentration 

of E. coli recorded following pasteurisation. With this result, the sludge cake 

could be designated as conventionally treated as the upper limit for E. coli in 

that case is 105 E. coli per gram dry weight of sludge (The Environment Agency, 

2003a). It is hypothesised that with an enhanced pasteurisation procedure to 

reduce the initial concentration of E. coli to below 1x101 cfu/gDs, a designation 

of enhanced treated could be achievable, with the upper limit for E. coli in that 

case being 103 E. coli per gram dry weight of sludge (The Environment Agency, 

2003a). Following on from this, pH reduction in combination with glycerol and L. 

reuteri addition did slightly increase the inhibition of E. coli as was the case in 

sludge- derived nutrient broth. However the results were compromised by an 

elevated level of E. coli growth possibly caused by the interaction of the 

hydrochloric acid (HCl) used to adjust the pH interacting with the sludge cake 

leading to an increased availability of nutrients. An experiment was planned to 

investigate this in which two sludge cake samples, one acidified with HCl and 

one not, were to be sterilised and then spiked with E. coli, to determine if 

additional nutrient availability was the cause.  Unfortunately this result was 

obtained at the conclusion of the study and there was not enough time to 

thoroughly perform this experiment or analyse the sludge cake further.   

 

As for the source of the variance in L. reuteri effectiveness between sludge 

cake and sludge-derived nutrient broth there are a number of hypotheses. 

Firstly L. reuteri is unable to utilise or sequester nutrients contained within the 

solid sludge cake. This was supported by the minor increase in the ability of L. 

reuteri to compete with E. coli as a sole competitor when sludge-derived 

nutrient broth was also added (Figure 6.1). Prior to that experiment, the growth 

of L. reuteri within solid sludge cake had never been analysed, it had been 

assumed capable due to its proven ability to achieve exponential growth in 

sludge-derived nutrient broth (Figure 5.5) and its status as a normal inhabitant 

or the mammalian digestive tract. However, without an experiment to analyse 

the growth of L. reuteri in sludge cake, these hypotheses cannot be definitively 

confirmed. Though if this hypothesis is correct it does suggest that using 
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sludge-derived nutrient broth in the screening process to determine the 

capability of candidates to grow in sludge cake is flawed and maybe should be 

limited to proving an ability to compete with E. coli, or replaced altogether. A 

promising alternative would be utilising sterilised sludge cake, wherein sludge 

cake would be autoclaved to eliminate all micro-organisms. Following this step 

a competitor organism would be spiked into the sludge cake and the growth 

monitored. Using sterilised sludge cake would ensure any candidate organisms 

would be capable of growing and competing in sludge cake and would provide a 

more realistic screening process. However it is unknown how the autoclaving 

process would affect the physical and chemical composition of sludge cake and 

as stated previously there is natural variation in composition of sludge cake 

making it an inconsistent growth medium. Furthermore sludge-derived nutrient 

broth though not ideal, does provide a fast and simple screening process, with 

easily controllable variables.  

 

Another viable hypothesis for the variance in results between sludge derived 

nutrient broth and sludge cake is competition. In a previous experiment (Figure 

4.1), the ability of L. reuteri to inhibit E. coli growth was reduced by the 

presence of two other competing organisms, in that case L. acidophilus and 

UIS. In sludge cake this competition would magnified as sludge cake is known 

to contain a large variety of indigenous micro-organisms (Table 1.2) a number 

of which will have the capability of antimicrobial production and even following 

treatment and pasteurisation in these experiments a variety of heat resistant 

micro-organisms would inevitably survive. A possible solution to this would be to 

pre-manufacture the reuterin and add it directly to sludge cake. However this 

does pose the risk that any resistant strains to the antimicrobial would be 

unaffected by the treatment and therefore free to grow, leading to re-growth 

regardless.  

 

However the favoured hypothesis is that unlike the sludge derived nutrient broth 

competition experiments; sludge cake cannot undergo constant mixing and is 

only vortexed after inoculation with the treatment inoculum and prior to 
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sampling. These two factors combined means there is a possibility the 

treatment inoculum is not evenly distributed and sections of the sludge cake are 

not exposed to glycerol, L. reuteri and any antimicrobials thereby produced, 

leading to unrestricted growth of E. coli. This is validated by decrease in sludge 

cake pH recorded following inoculation with L. reuteri. This suggests organic 

acids were being produced, which due to them being a metabolic by-product 

can be deemed an indicator of L .reuteri growth, suggesting it is capable of 

growing and indeed thriving in sludge cake. Therefore the reduction in inhibitory 

action exerted by L. reuteri in sludge cake when compared to sludge derived 

nutrient broth is likely not caused by an inability to grow in sludge cake and 

therefore production of antimicrobial compounds. This validates the hypothesis 

that the lack of constant mixing during the solid cake experiments is the most 

likely cause of the increased E. coli re-growth. A possible solution to this is 

scaling up the experiment. At present a 5g sub-sample in a 30ml universal 

bottle is difficult to thoroughly mix consistently, however if the process was to be 

scaled up to a higher quantity of sludge cake in a larger container this process 

would be simpler. Alternatively L. reuteri and glycerol could be added prior to 

sludge cake manufacture, to ensure even mixing in the liquid digestate.   

 

Overall in conclusion the use of competitive exclusion treatment to reduce or 

prevent E. coli re-growth in digested sludge cake is feasible with the appropriate 

organism. L. reuteri did show promise as a possible candidate and was capable 

of reducing the re-growth of E. coli to below conventionally treated sludge 

standards (The Environment Agency, 2003a). It is hypothesised that with an 

enhanced pasteurisation procedure to reduce the initial concentration of E. coli 

to below 1x101 cfu/gDs, enhanced treated sludge standards could have been 

achieved. With an improved understanding of how reuterin produced and the 

array of antimicrobials L. reuteri is capable of producing including organic acids, 

any inhibition of E. coli recorded in these experiments could be enhanced 

further. For this reason it is concluded that L. reuteri is suitable for scale up 

experiments. However using the current methodology that eventuality is 

improbable. If used in the exact same concentrations in terms of glycerol and L. 
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reuteri in particular if used in a higher quantity of sludge cake the amount of 

reagents and consumables required would be enormous and unfeasible at 

present. Furthermore considering the hypothesis of a required mixing step, this 

would be essential, probably to the scale of what is used in an anaerobic 

digester (Figure 1.2) if any scale up was performed to ensure a constant 

distribution of glycerol, L. reuteri and any antimicrobials produced. Also further 

research is required on the reduction of pH in combination with L. reuteri and 

glycerol addition, as the effect recorded in sludge-derived nutrient was too 

promising to discount on the basis of a hypothesised unforeseen reaction to the 

addition of hydrochloric acid to sludge cake.  

 

The competitive exclusion principle as a treatment method shows great 

promise. Apart from L. reuteri from the literature lactobacilli do seem to be a 

good starting point for candidate selection, with L. acidophilus, L. plantarum and 

L. salivarus, known to produce antimicrobials and in the case of a few are 

known to be utilised in the control of spoilage microbial growth in silage. This 

method of treatment also has possible applications in other industries and is 

worth pursuing in the future.  

7.2 Experimental limitations 
 

The primary limitation of these experiments involved the inconsistencies 

between batches of sludge cake delivered from the United Utilities’ sludge 

centrifuge at the Ellesmere Port waste water treatment plant. Despite being 

collected from the same location, in the same quantity and delivered to 

Cranfield University by the same method, there was a constant shift in the 

nutrient availability of sludge cake batches. This led to poor results or complete 

experimental failures. In sludge cakes batches with poor nutrient availability, E. 

coli re-growth was sub-standard and not reflective of what is recorded in 

industry, therefore not suitable for competition experiments and required the 

addition of a sludge derived nutrient broth to support growth and make it usable. 

However the addition of sludge derived nutrient broth to sludge cake with high 

nutrient availability led to a higher rate of E. coli re-growth, causing variance in 
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results. Furthermore there was no method of assessing the nutrient content of 

sludge cake prior to an experiment. A possible solution to this would have been 

manufacturing the sludge cake, rather than relying on a supplier. This would 

have ensured that no extra nutrient would have been required to generate E. 

coli re-growth and L. reuteri and glycerol could have been added prior to cake 

manufacture.  

 

A secondary limitation was that the sludge cake upon delivery had already 

undergone a cycle of re-growth during transport from Ellesmere Port to 

Cranfield University, leading to an on average high concentration of resident 

microbial growth. This level of growth made the cake unsuitable for use in re-

growth or competition experiments, therefore to reduce microbial load to allow 

for re-growth, a pasteurisation step had to be added to the methodology, which 

was successful. 

 

A third limitation was the inconsistencies in the microbial concentration within 

solid sludge cake upon delivery. While assessing the E. coli concentration using 

MLGA plates, it was found on occasion that sludge cake had a low E. coli 

concentration but high faecal coliform concentration and sometimes the exact 

opposite. This led to inconsistencies in the pasteurisation process. The 

conditions used in pasteurisation for sludge cake with a low resident E. coli 

concentration were often too extreme, leading to the complete elimination of E. 

coli and experimental failure. In sludge cake with a high resident E. coli 

concentration the conditions were not strong enough, leading to a sub-standard 

pasteurisation and higher starting E. coli concentration, which in the case of 

competition experiments is undesirable. To monitor the inconsistencies, the 

concentration of sludge cake stored was measured upon delivery and 24 hours 

prior to an experiment. 

 

A fourth limitation was that the amount of fluid that could be added to sludge 

cake and therefore the amount of competitor organisms to reduce E. coli re-

growth was restricted. Due to the high moisture content of sludge cake (70-
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75%) the amount of fluid that can be added without the cake losing its structural 

integrity was limited to 2ml in 5g cake. Maintaining the physical and chemical 

properties of cake was an important condition of any treatment method. This 

proved difficult considering especially in the final competition experiments cake 

the requirement for the addition of sludge derived nutrient broth, glycerol and a 

high concentration of L. reuteri.  

 

7.3 Future research 
 
The work carried out during this thesis suggests substantive possible future 

research opportunities as follows: 

 

 More research is required on the cause of the increase in E. coli growth 

as a result of acidification of sludge cake using hydrochloric acid. The 

method when used in combination with L. reuteri and glycerol, led the 

complete elimination of E. coli in most cases. If the methodology could 

be successfully applied in sludge cake and the problems overcome it 

would be very advantageous. 

 

 The addition of more vigorous and constant mixing step than vortexing to 

test the hypothesis that a lack of mixing led to the reduction in the ability 

of L. reuteri to inhibit E. coli in sludge cake. If a simple procedure such as 

constant mixing is the only obstacle preventing similar reductions in E. 

coli growth recorded in sludge-derived nutrient broth to be repeated in 

sludge cake, then it has to be implemented. To consistent mixing 

procedure with a 5g sample of sludge cake is unfeasible, therefore a 

scale up would be required for this to be achieved. However a scale up 

does pose its own challenges in terms of the amount of reagents and 

consumables required to achieve the same conditions utilise in bench 

scale experiments. Furthermore the pasteurisation process would have 

to be intensified due to the increase quantity of sludge cake being used. 
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 Analysing the possible application of other organisms such as lactobacilli 

known to produce antimicrobials such as L. plantarum and L. salivarus. 

Furthermore look at the possibility of pre-manufacture of antimicrobials 

for addition to sludge cake. This has the benefit of removing the 

requirement for the candidate organisms to competitive or indeed be able 

to grow in sludge cake. However it does pose the risk that resistant 

micro-organisms would survive and have no competitors to hinder growth 

leading to re-growth regardless of treatment 

 

 Analyse the possible application of a defined mixed culture of lactobacilli 

known to produce antimicrobials. 

 

 Analyse the effect of the consistent use of antimicrobial producing 

bacteria in sludge cake, in the generation of highly resistant strains in 

particular of E. coli. This poses a problem, if resistant strains emerge and 

the competitive exclusion treatment relies on the production of 

antimicrobials then the treatment will no longer be feasible. 

 

 Longer term experiments, to analyse the long term survival of L. reuteri 

and E. coli in storage conditions and to assess the long term 

effectiveness of any antimicrobials produced.  
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