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Abstract  

This study focuses on the development of a stochastic simulation methodology to 

study the effects of cure kinetics uncertainty, in plane fibre misalignment and 

boundary conditions uncertainty on the cure process of composite materials. 

Differential Scanning Calorimetry was used to characterise cure kinetics variability of 

a commercial epoxy resin used in aerospace applications. It was found that cure 

kinetics uncertainty is associated with variations in the initial degree of cure, 

activation energy and reaction order. Image analysis was employed to characterise 

in plane fibre misalignment in a carbon fibre ±45º non-crimp fabric. The experimental 

results showed that variability in tow orientation was significant with a standard 

deviation of about 1.2º.  A set of experiments using an infusion set-up was carried 

out to quantify boundary conditions uncertainty related to tool temperature, ambient 

temperature and surface heat transfer coefficient using thermocouples (tool/ambient 

temperature) and heat flux sensors (surface heat transfer coefficient). It was 

concluded that boundary conditions uncertainty can show considerable short term 

and long term variability. Conventional Monte Carlo and Probabilistic Collocation 

Method were integrated with a thermo-mechanical cure simulation model in order to 

investigate the effect of cure kinetics, fibre misalignment and boundary conditions 

variability on process outcome. The cure model was developed and implemented 

using a finite element model incorporating appropriate material sub-models of cure 

kinetics, specific heat capacity, thermal conductivity, moduli, thermal expansion and 

cure shrinkage. The effect of cure kinetics uncertainty on the temperature overshoot 

of a thick carbon fibre epoxy flat panel was investigated using the two stochastic 

simulation schemes. The stochastic simulation results showed that variability in cure 

kinetics can introduce a significant scatter in temperature overshoot, presenting a 

coefficient of variation of about 30%. Furthermore, it was shown that the collocation 

method can offer an efficient solution with significantly lower computational cost 

compared to Monte Carlo at comparable accuracy. Stochastic simulation of the cure 

of an angle shaped carbon fibre-epoxy component within the Monte Carlo scheme 

showed that fibre misalignment can cause considerable variability in the process 

outcome. The coefficient of variation of maximum residual stress can reach up to 

approximately 2% (standard deviation of 1 MPa) whilst qualitative and quantitative 



 

 
 

variations in final distortion of the cured part occur with the standard deviation in twist 

and corner angle reaching values of 0.4 º and 0.05º respectively. Simulation of the 

cure of a thin carbon fibre-epoxy panel within the Monte Carlo scheme indicated that 

surface heat transfer and tool temperature variability dominate variability in cure time, 

resulting in a coefficient of variation of about 22%. In addition to Monte Carlo, the 

effect of surface heat transfer coefficient and tool temperature variations on cure 

time was addressed using the collocation method.  It was found that probabilistic 

collocation is capable of capturing variability propagation with good accuracy while 

offering tremendous benefits in terms of computational costs.   

Keywords: Stochastic Simulation, Cure simulation, Uncertainty, Monte Carlo, 

Probabilistic Collocation Method, Statistics.  
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Notation  

        A) Symbols (in order of appearance) 

𝑣𝑓 Fibre volume fraction 

𝑁𝑒𝑥𝑝 Number of experiments 

𝐾1 Permeability in the longitudinal direction 

𝐾2 Permeability in the transverse direction 

𝐻𝑇 Total heat of reaction 

𝐻𝑒𝑥𝑝 Heat of reaction during dynamic cure 

𝑎𝑜 Initial degree of cure 

𝐻 Heat of reaction  

𝑡1 Time the reaction starts 

𝑡2 Time the reaction is completed 

𝑎 Degree of cure 

𝑓(𝑥, 𝑦) Pixel array of digital image 

𝐹(𝑢, 𝑣) Fourier spectrum 

𝑟𝜃(𝑥, 𝑦) Reference region array 
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𝑘𝜃(𝑥, 𝑦) Kernel of reference region array 

𝑀 Size of reference region array 

𝐾 Size of pixel array 

𝜌(𝜃) Correlation  

𝑟�̅� Average of reference region array 

𝑓 ̅ Average of pixel array 

𝐸(𝜃) Radial energy in polar coordinates 

�̇� Heat flux 

𝐻𝐹 Heat flux sensor output 

𝐶𝑀 Heat flux sensor calibration multiplier 

𝑇𝐶𝐹 Heat flux sensor temperature compensation factor 

ℎ Surface heat transfer coefficient 

𝑇𝑠 Surface temperature 

𝑐𝑝 Specific heat capacity 

𝑟 Spatial coordinate 

𝑡 Time 
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𝑲 Thermal conductivity tensor 

𝜌 Density  

𝝈 Stress tensor 

𝑸 Stiffness matrix 

𝜺 Strain tensor 

𝐶𝑆 Cure shrinkage coefficient tensor 

𝑎𝑡ℎ Thermal expansion coefficient tensor 

𝑛  Vector normal to the surface 

𝑇∞ Fluid temperature 

𝑢𝑥 Displacement in x direction 

𝑢𝑦 Displacement in y direction 

𝑢𝑦 Displacement in z direction 

𝑇𝑔 Glass transition temperature 

𝑇𝑔𝑜 Glass transition temperature for uncured material 

𝑇𝑔∞ Glass transition temperature for fully cure material 

𝜆  Glass transition temperature model fitting constant 
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𝑘1 Reaction rate constant 

𝑘2 Reaction rate constant 

𝑛1 Reaction order 

𝑛2 Reaction order 

𝑚 Reaction order 

𝑘1,𝑐 Chemical reaction rate constant 

𝑘2,𝑐 Chemical reaction rate constant 

𝑘𝑑 Diffusion reaction rate constant 

𝐴𝐷 Pre-exponential factor of diffusion 

𝐴1 Pre-exponential factor  

𝐴2 Pre-exponential factor 

𝐸𝐷 Activation energy of diffusion 

𝑅 Universal gas constant 

𝑏 Cure kinetics constant 

𝑓 Equilibrium free volume 

𝐸1 Activation energy 
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𝐸2 Activation energy 

𝑤 Cure kinetics constant  

𝑔 Cure kinetics constant 

𝑤𝑓 Weight fraction 

𝑐𝑝𝑓 Fibre specific heat capacity 

𝑐𝑝𝑟 Resin specific heat capacity 

𝐴𝑟𝑐𝑝 Resin specific heat capacity model constant 

𝐵𝑟𝑐𝑝 Resin specific heat capacity model constant 

Δ𝑟𝑐𝑝 Resin specific heat capacity model constant 

𝑠𝑖 Resin specific heat capacity model constant 

𝐶𝑟𝑐𝑝 Resin specific heat capacity model constant 

𝐾11 Thermal conductivity in the longitudinal direction 

𝐾22 Thermal conductivity in the transverse direction 

𝐾33 Thermal conductivity in the transverse direction 

𝐾𝑙𝑓 Fibre thermal conductivity in the transverse direction 



 

xii 
 

𝐾𝑟 Resin thermal conductivity 

𝐾𝑡𝑓 Fibre thermal conductivity in the longitudinal direction 

𝐴𝑙𝑓 Fibre thermal conductivity model constant 

𝐵𝑙𝑓 Fibre thermal conductivity model constant 

𝐵𝑡𝑓 Fibre thermal conductivity model constant 

𝑎𝑘𝑟 Resin thermal conductivity model coefficient 

𝑏𝑘𝑟 Resin thermal conductivity model coefficient 

𝑐𝑘𝑟 Resin thermal conductivity model coefficient 

𝑑𝑘𝑟 Resin thermal conductivity model coefficient 

𝑒𝑘𝑟 Resin thermal conductivity model coefficient 

𝐸11 Young modulus in the longitudinal direction 

𝐸𝑟 Resin Young modulus 

𝐸𝑙𝑓 Fibre Young modulus in the longitudinal direction 

𝐸22 Young modulus in the transverse direction 

𝐸33 Young modulus in the transverse direction 

𝐸𝑡𝑓 Fibre Young modulus in the transverse direction 



 

xiii 
 

𝐺12 Shear modulus  

𝐺𝑟 Resin shear modulus 

𝐺13 Shear modulus 

𝐺12𝑓 Fibre shear modulus 

𝐺23 Shear modulus 

𝐺23𝑓 Fibre shear modulus 

𝜈12 Poisson’s ratio 

𝜈12𝑓 Fibre Poisson’s ratio 

𝜈𝑟 Resin Poisson’s ratio 

𝜈13 Poisson’s ratio 

𝜈23 Poisson’s ratio 

𝐸𝑟𝐿
 Resin Young modulus in liquid/rubber state 

𝐸𝑟𝐺
 Resin Young modulus in glassy state 

𝜈𝑟𝐿
 Resin Poisson’s ratio in liquid/rubber state 

𝜈𝑟𝐺
 Resin Poisson’s ratio in glassy state 
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𝜈𝑟 Resin Poisson’s ratio 

𝐺𝑟 Resin shear modulus 

𝐶11
𝑆  Cure shrinkage coefficient in the longitudinal direction 

𝐶22
𝑆  Cure shrinkage coefficient in the transverse direction 

𝐶33
𝑆  Cure shrinkage coefficient in the transverse direction 

𝑉𝑟
𝑆 Resin volumetric shrinkage 

𝑉𝑟
𝑆∞ Maximum resin volumetric shrinkage 

휀𝑖𝑗
𝑆  Cure shrinkage strain components 

휀𝑟
𝑆 Resin incremental cure shrinkage strain 

𝑎11
𝑡ℎ Thermal expansion coefficient in the longitudinal direction 

𝑎𝑟 Resin thermal expansion coefficient 

𝑎𝑙𝑓 Longitudinal fibre thermal expansion coefficient 

𝑎22
𝑡ℎ  Thermal expansion coefficient in the transverse direction 

𝑎33
𝑡ℎ  Thermal expansion coefficient in the transverse direction 

𝑎𝑡𝑓 Transverse fibre thermal expansion coefficient 
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𝑎𝑟 Resin thermal expansion coefficient 

𝑎𝑟𝐺
 Resin thermal expansion coefficient in the glassy state 

𝑎𝑟𝐿
 Resin thermal expansion coefficient in the liquid/rubber state 

𝐴𝑎𝑙𝑓
𝑖  Longitudinal fibre thermal expansion coefficient parameter 
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1. Introduction  

1.1 Motivation and contribution 

The basis for the improved performance of composite materials is the high specific 

strength (strength to density ratio) and specific stiffness (modulus to density ratio) 

[1]. A composite component is significantly lighter than its metallic counterpart for a 

given stiffness and strength. Apart from favouring weight savings, composites 

provide higher corrosion/wear and fatigue resistance. However, the application of 

composite materials is often limited by cost implications due to their complex 

manufacturing.  Modern composite materials were first introduced in the late 1950’s 

and received attention by the aerospace industry, especially the military sector, due 

to their high specific properties and the relative inelasticity of this sector to costs in 

this period. In the late 1960’s, the F-4 (General Dynamics) used boron epoxy 

rudders. Some years later, the F-14 (US Navy) and F-15 (US Air Force) used boron-

epoxy empennages [2]. In the 1980’s composites replaced aluminium alloys in the 

manufacturing of low cost lightweight airframes. In addition, several nacelle and 

engine components were manufactured using composite materials. As time passed, 

composites broadened gradually their application playing a significant role in many 

crucial industry sectors such as: commercial/military aviation, automotive, 

construction, marine, and sports. Nowadays, several large aircrafts use composite 

materials, consuming significantly lower amounts of fuel. For instance, the Boeing 

787 Dreamliner uses approximately 50 % composites by weight [3], consuming 20% 

less fuel than its predecessor 767. Airbus A350 is the company’s first airliner with 

both the wings and fuselage made primarily from composite materials (53% of its 

total weight is manufactured by composites) [3]. The A350 first flew in 2013 and it is 

expected to consume less fuel than the Dreamliner, reducing the operating costs by 

about 8%. (Figure 1-1). However, the use of composites in the aerospace sector is 

still maturing and further improvements are required in process design related to 

manufacturing costs and sustainability, for the market to reach its full potential in the 

future. 
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Fig. 1-1 Manufacturing of fuselage panels for the A350 XWB (© Premium 
AEROTEC GmbH.) [3]. 

Fabrication of thermosetting composites is a complex procedure, involving sub-

processes of different physics such as forming, consolidation/impregnation and 

curing. Each of the manufacturing steps influences subsequent manufacturing sub-

processes, creating strong interdependencies between process parameters and 

properties of the product. Process monitoring, automation and process optimisation 

have become crucial objectives of research as a result of the adoption of advanced 

composites as the main material of choice for large aero-structures. To this end, 

process simulation models have received a great deal of attention in the last 

decades. Most of these models are deterministic, treating all process parameters as 

constants or prescribed. However, in reality the manufacturing processes of 

composites involve many uncertainties. Some research on the effects of 

uncertainties in composite manufacturing has been carried out; however, in its great 

majority has focused on fabric geometrical variability and its effects on the 

impregnation process. On the contrary, very limited data and results exist concerning 

variability during the cure step, whilst the parameters introducing uncertainty into the 

cure step have not been explicitly characterised and evaluated. In particular, several 

input parameters that introduce variability to the process have not been investigated 

explicitly, whilst a limited part of the overall problem has been considered based on 

hypothetical scenarios for the extend and type of variability rather than experimental 

data. Overall, stochastic simulation of the cure has received limited attention. 

Consequently, a significant gap exists between real phenomena and cure simulation 

models. 
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Cure is a global step, i.e. it is a mandatory step in all fibre reinforced thermosetting 

composites manufacturing routes. During the cure process external heat is supplied 

initiating cross – linking chemical reactions in the matrix leading to the solidification 

of the material. The cure is of crucial importance affecting the mechanical and 

physical properties of the product, including part quality, and governing a range of 

potential process defects such as under-curing, residual stresses, shape distortion 

and large exotherms. Thus, a fundamental understanding of the real phenomena is 

critical for the design of the manufacturing process. The development and 

implementation of an integrated stochastic simulation scheme would allow 

incorporation of variability in process design/optimisation to address robustness – 

performance trade-offs to contribute to the development of more efficient process 

cycles in terms of cost and time.  

1.2 Aim and objectives 

The aim of this project is to develop a stochastic cure simulation methodology 

capable of predicting the influence of material property and process parameter 

uncertainty on the variability of the outcome of high performance application cure 

processes. To achieve this, the following objectives have to be met: 

o Development and implementation of an efficient cure simulation model. 

o Quantification of input variable uncertainty as follows: 

o Cure kinetics uncertainty. 

o Fibre misalignment in Non-Crimp Fabrics (NCF). 

o Boundary conditions uncertainty including prescribed temperature, 

ambient temperature and surface heat transfer coefficient.  

o Identification of stochastic parameters that induce significant process 

variability using sensitivity analysis.  

o Statistical characterisation of the stochastic parameters and development of 

the associated models. 

o Development and implementation of a stochastic cure simulation model. 

o Quantification of process outcome variability with respect to: 

o Temperature overshoot. 

o Cure time. 

o Residual stresses formation. 
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o Shape distortion. 

o Evaluation of stochastic simulation methodology efficiency.  

1.3 Project setting  

The present study is part of a multi-institution research project supported by the 

EPSRC Centre for Innovative Manufacturing in Composites (CIMComp). This Centre 

involves four academic institutions including Cranfield University, eight industrial 

partners, an Industrial Doctoral Centre (IDC) and four Technology Centres and aims 

at the creation of an innovative research base for fundamental understanding and 

development of composites manufacturing by focusing on the development of novel 

composites manufacturing processes based on efficiency, sustainability, short cycle 

times and low operational cost. The activity is currently divided in the following core 

projects: 

 Multi-scale Modelling to Predict Defect Formation During Resin Infusion. 

 Novel approaches to the manufacture of complex geometrics from broad 

goods.  

 Structural Joints using Novel Embedded Inserts. 

 Innovative Multi-material and Multi-architecture Preforms. 

 Compression Moulding of Multi-Architecture Composites (CMMC).  

 Defect Generation Mechanisms in Thick and Variable Thickness Composite 

Parts (DefGen). 

The present study is part of the first core project. The partners of this project are 

Nottingham University, University of Bristol and Cranfield University, Rolls-Royce, 

ESI, LMAT, Vestas and Airbus. It focuses on the development and validation of a 

multi-scale approach to predict defect formation and variability in manufacturing 

using resin infusion. 

1.4 Thesis road map  

The main body of this study is divided as follows: 

 Chapter 2 reviews the state of the art of uncertainty in composite 

manufacturing. This chapter summarises experimental and simulation results 
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regarding the quantification and influence of material properties and process 

parameters uncertainty on the process outcome and on process-induced 

defects.  

 Chapter 3 reports the experimental methodology and details of materials used 

in this study.  

 Chapter 4 describes the cure simulation model methodology applied and 

reports the constitutive material models. 

 Chapter 5 presents the stochastic simulation methodology adopted for 

modelling of input parameters variability. 

 Chapter 6 presents results on the influence of cure kinetics uncertainty on 

composites cure. Two case studies are demonstrated; stochastic cure 

simulation of neat epoxy resin (cure kinetics only), and stochastic cure 

simulation of a thick carbon fibre-epoxy flat panel where heat transfer effects 

are considered.  

 Chapter 7 focuses on the effect of fibre misalignment on residual stresses 

formation and shape distortion occurring during the cure process. In 

particular, the cure of an angle shape carbon fibre-epoxy laminate 

subcomponent with three different lay-up sequences is considered.   

 Chapter 8 presents the influence of boundary conditions uncertainty on the 

heat transfer phenomena occurring during the cure. The contributions of the 

all potential stochastic parameters are considered and the most significant 

factors are identified. The development is applied to the simulation of the cure 

of a thin carbon fibre-epoxy flat panel.  

Chapters 9-11 present an overall discussion on the outcomes of this work, 

conclusions and suggestions for areas of further development and investigation 

on  variability in composites manufacturing.   
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2. Uncertainty in the manufacturing of fibrous thermosetting 

composites 

2.1 Introduction 

In this chapter, experimental and numerical results concerning the statistical 

characterisation and the influence of inputs variability on the main steps of 

composites manufacturing including process-induced defects are presented and 

analysed. The manufacturing process of composite materials involves many 

uncertainties which can result in a considerable amount of scrap associated with 

significant cost and environmental implications. Furthermore, the existence of 

defects generated due to variability can compromise the performance of composite 

components, leading to the use of more conservative designs that do not fully exploit 

the performance and environmental opportunities offered by composites. These 

uncertainties can be summarised as follows [4,5]:  

(i) Fibre architecture variations which are usually generated during production, 

handling or storage of pre-pregs, dry textiles and preforms. 

(ii) Matrix material uncertainties caused by variations in storage conditions or 

uncertainties in resin composition and formulation. 

(iii) Variations in environmental parameters and process conditions.  

Fibre heterogeneity can significantly affect the forming/draping step [6], as well as 

introduce permeability and thermal property variability affecting the filling and curing 

steps of processing. Furthermore, fibre architecture governs the structural 

performance of components, with local variability playing a critical role in non-linear 

phenomena such as failure and damage. Matrix material uncertainties influence the 

filling and curing stages which in turn influence the quality of the final product. 

Variations in process parameters may affect all manufacturing steps and 

consequently the quality of the component. A design approach that would take these 

effects into account explicitly would need to be based on stochastic simulations of 

composites manufacturing to allow quantification of process outcome variability as a 
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function of material selection and process parameter definition decisions made at an 

early stage. 

Stochastic simulation involves four main steps (Fig. 2-1): a) quantification of the input 

variable uncertainties (uncertainty quantification); b) development of a stochastic 

model representing the variability of uncertain parameters and their cross correlation 

(stochastic model); c) implementation of a model that propagates uncertainty through 

a deterministic process model (propagator), d) quantification of the output 

parameters uncertainty [7,8]. The input variables are considered to be either time 

independent random parameters, which can be described by multivariate probability 

distributions or random fields, or time dependent stochastic processes described by 

stochastic differential equations. The random fields or stochastic processes are 

uncovered by carrying out relevant experiments.  

The aim of the present chapter is to summarise the state of the art on experimental 

and stochastic simulation methodologies and results focusing on statistical 

characterisation and the influence of input variability on the main steps of composites 

manufacturing including process-induced defects, as well as to highlight the 

interdependencies between the process parameters. Uncertainty introduced by 

experimental methods and modelling practices is also included.  

 

Fig. 2-1 Schematic representation of stochastic simulation. 

2.2 Stochastic simulation methods 

Stochastic simulation methods can be divided into two categories; intrusive and non-

intrusive. Intrusive techniques involve reformulation of the main model equations 

while non-intrusive techniques treat the main model as an independent model. The 

most common non-intrusive method is the Monte Carlo scheme (MC), which is a 

sampling technique used to generate random samples of input variables values from 

their respective statistical distributions [7]. Since random sampling is used, a quite 

Input variability output variability
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large number of the deterministic main model runs is usually required to ensure 

convergence and accuracy, leading to high computational cost, especially in the 

case of complex and multi-dimensional stochastic problems [9]. The Spectral 

Stochastic Finite Element (SSFEM) method is the most common intrusive technique 

[10]. It uses the Karhunen–Loève (K–L) expansion to discretise the input random 

field and the polynomial chaos expansion to represent the output variables using a 

set of orthogonal functions [10]. The coefficients of the polynomial chaos expansion 

are calculated using the probabilistic Galerkin approach. The domain of the solution 

incorporates the probability space resulting in a system of equations significantly 

larger than that of the deterministic problem, with the associated increase in 

computational costs [9]. The Probabilistic Collocation method (PCM) offers an 

intermediate solution between Monte Carlo and stochastic finite elements. This 

method is similar to the SSFEM using both the K–L expansion and the polynomial 

chaos expansion to represent the input and output random fields, respectively. 

However, the unknown polynomial chaos coefficients are calculated by the 

probabilistic collocation approach, which is a weighting technique for minimising 

residuals. The collocation points are the roots of the next higher order orthogonal 

polynomial for each stochastic parameter and are chosen so that the residuals 

between the polynomial chaos expansions and model outputs approach zero, 

implying that the collocation points are selected from regions of higher probability. 

Consequently, a system of linear equations is obtained for every output parameter. 

Using this sampling method, no reformulation of the deterministic model is required, 

which is solved several times for each collocation point. This of course has 

significant benefits in terms of computational efficiency when the number of 

stochastic components is relatively low [9].  

The capabilities of the collocation method have been demonstrated in the context of 

composite manufacturing in the case of simulation of RTM filling. The results 

indicated the capability of the technique and its significant benefits compared to 

Monte Carlo [11]. More details concerning the SSFEM and the probabilistic 

collocation method can be found in [9,10].    
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2.3 Variability of dry textiles and pre-pregs 

Variability is present in all forms of textile reinforcements including pre-pregs and dry 

textiles [12]. Variability in as supplied-dry reinforcements and pre-pregs is associated 

with tow waviness (Fig. 2-2), tow size and shape variations, distribution of fibres 

inside the tows, resin content variations and is generated during production, handling 

or storage [12-16]. For instance, the alignment and stiffness characteristics of the 

rollers used during the production of pre-pregs, can sometimes cause resin content 

variations, or the way pre-pregs are wrapped on to a drum for storage can cause 

wrinkles which in turn may result in considerable tow misalignment [12,15]. 

Geometrical variability of tows spreads to adjacent locations due to friction forces at 

tow crossovers (woven textiles) and fibre continuity [13] resulting in spatially 

correlated random fields of the uncertain variables. Fibre orientation variability can 

be described by a normal distribution [13,17-20] combined with strong spatial 

autocorrelation spread over several unit cells of the textile [13,21,22]. An 

experimental investigation of the internal geometry of 3D woven textiles using micro-

computed tomography underlined the importance of variability in dry reinforcements 

[23]. The coefficient of variation of the dimensions of the tows and the inter-tow 

spacing reaches values of 16 and 6%, respectively. Experimental results on the 

internal geometry of non-crimp woven fabrics showed variability in the range of 4-8% 

for the tows dimensions, of 3-4% for tow spacing [24]. These sources of variation 

exist in the reinforcement in its as received state, setting the minimum level of 

uncertainty in all subsequent steps of composite manufacturing. 

 

Fig. 2-2 Tow waviness. 

warp

weft

warp

weft



Chapter 2 

10 
 

2.4 Uncertainty in forming/draping 

The forming/draping stage of the manufacturing process causes significant shear 

deformation in the case of doubly curved components [25]. There are two main 

mechanisms of shear deformation during the forming/draping step; scissoring i.e. the 

change in the inter-fibre angle, and inter-fibre sliding which occurs in processes 

involving extremely high deformations [26,27]. These phenomena can lead to 

wrinkles and can be eliminated using localised stitching [28]. Shear deformation has 

significant impact on local fibre volume fraction and thickness; regions of higher 

deformation present an increase in fibre volume fraction or thickness depending on 

whether the tooling used is rigid or not [27]. Pre-pregs and dry textiles are not 

perfectly aligned therefore additional localised buckling and wrinkling may occur 

affecting the forming behaviour of the material [29]. Stochastic simulation shows that 

tow orientation uncertainties can cause significant variations in the outcome of the 

forming of woven composites, with coefficients of variation of minimum and average 

wrinkling strain in the range of 10-20% [13]. Initial tow waviness of as-received 

unidirectional pre-pregs may have beneficial effects during draping, since additional 

waviness can be introduced instead of tow misalignment, which may eliminate the 

formation of wrinkles [15]. Apart from the initial fibre angle variations, boundary 

conditions uncertainty, such as variations in the blank holder force may also 

influence the forming step [30]. Furthermore, the fact that there is a large number of 

ways to drape over a complex geometry implies additional uncertainty of the process 

[12,15]. In general the manifestation of variability is more pronounced when manual 

work is involved. Mechanical conditioning is considered to be a way to increase 

repeatability and to reduce variability since the tow tensions due to weaving can be 

balanced [25]. However, it is very difficult to apply mechanical conditioning in 

industrial applications unless handling is adapted for this purpose.  

Therefore, the shear behaviour of reinforcements can show significant variations 

from part to part. These effects can influence a wide variety of parameters such as 

the permeability, the development of residual stresses during the curing stage, 

dimensional accuracy, and the mechanical properties of the final part indicating the 

presence of strong interdependencies of various sources of variability in composite 

manufacturing [12,26-28].  



Chapter 2 

11 
 

2.5 Uncertainty during impregnation/consolidation 

Permeability of dry reinforcement is the key parameter controlling the impregnation 

step in liquid composite moulding processes. Significant amount of research has 

been carried out concerning permeability evaluation to allow consideration of 

process issues such as formation of dry spots and voids; extended impregnation 

cycles, uneven impregnation and resin rich pockets [31]. Preform architecture 

variability due to different handling and storage conditions or shear deformations 

during the forming/draping stage, nesting effects during lay-up, low resistance 

channels along the preform causing macroscopic and microscopic voids, and 

random experimental errors result in considerable permeability variations [14,32-34]. 

Other sources of uncertainty in the impregnation stage can be resin viscosity 

variations, foreign material inclusion during impregnation, preform volume fraction 

variations, as well as accidental misplacement of the preform in the mould [8,35]. 

Experimental and simulation results using non –crimp fabrics have shown that there 

is a linear relationship between the coefficient of variation of permeability and the 

coefficient of variation of fibre volume fraction [17,36]. Several experimental and 

simulation studies have outlined the stochastic nature of permeability. Relative 

standard deviations up to 20% were observed during permeability measurements 

[18,32,33,37-42], while according to other results permeability relative standard 

deviation can reach values up to  30% [17] (Table 2-1). The high scatter observed in 

[17] is probably due to the small number of experiments compared to the other 

studies. Nesting is one of the primary reasons for this large scatter in permeability 

[33]. In addition, experimental results have indicated that the anisotropy ratio of in-

plane permeability, which dictates the filling pattern and thus is of crucial importance 

for mould design, can also show strong variability following a lognormal distribution 

[33]. Different anisotropy distributions among different textiles are observed, even 

when the distribution of the principal permeability values is similar [43]. For instance, 

a plain weave fabric shows the largest scatter in anisotropy, whereas a twill weave 

shows the smallest. This implies that the principal permeability values may show 

strong correlation in some preforms, whereas in other materials little or no correlation 

may be observed [43]. Preforms with strong correlation and small anisotropy scatter, 

are expected to be manufactured more consistently. The flow pattern can 

considerably vary even for configurations of the same porosity, implying that the 
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latter alone cannot be used to predict permeability [44]. Furthermore, for porosities in 

the range of 0.45-0.7, transverse permeability decreases as fibre heterogeneity 

increases [44]. This phenomenon is attributed to the formation of narrow gaps 

between the fibres which lead to permeability reduction. Permeability can show 

considerable variations at the micro-scale; inside the fibre bundles [45,46]. 

Transverse fibre bundles permeability tends to be lower in the case of non-uniformly 

distributed filaments than for fibre bundles with uniform filament arrangements, whilst 

fibre bundle permeability in the axial direction tends to be higher [46]. These findings 

indicate that permeability should be described as a stochastic variable and thus a 

large number of experiments are required to measure it properly [43]. According to 

Hoes et al. [33], at least 20 experiments are required to have a proper estimate of 

the mean value, whereas at least 30 experiments are required to have a proper 

estimate of the standard deviation. Similarly with tow orientation, it has been shown 

that global permeability values can be described by a normal distribution [17-20]. 

However, simulation results indicated that permeability at the mesoscale (unit cell 

size) cannot be represented by a normal distribution [36]. This was also observed in 

the case of a random mat [47].   

Table 2-1 Permeability measurements for two plain weave glass fibre fabrics; 
plain weave glass 1 [17], plain weave glass fabric 2 [33].  

Material Dimensions 𝑣𝑓  𝑁𝑒𝑥𝑝 𝐾1 (10-10 m2) 𝐾2 (10-10 m2) 

Plain weave glass 

fibre 1 

200mm 

(circular) 

53% 19 1.24±0.36 

(±29.2%) 

0.65±0.167 

(±25.7%) 

Plain weave glass 

fibre 2  

300x300mm 41.7% 85 1.79±0.4 

(±22.3%) 

1.44±0.29 

(±20%) 

 

2.5.1 Fabric heterogeneity effects 

As mentioned in section 2.4, during the draping step the fabric is subjected to 

significant shear deformation intensifying the already existing geometrical 

heterogeneities. As a result, the draping step affects significantly the local 

permeability values and thus the flow rate and the injection pressure by altering the 

permeability anisotropy ratio, fibre volume fraction and porosity distribution in the 
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textile [27,48,49]. The permeability decreases in a non-linear manner with increasing 

fibre volume fraction [27,32]. Consequently, one would expect that shear 

deformation caused during draping would always reduce the local permeability 

values in the regions of high shear. However, flow visualisation results indicate that 

in some cases high volume fraction regions caused by shear deformation during 

draping, may result in higher permeability values. The effect of draping on 

permeability is characterised by three competing effects; the reduction of local 

permeability due to higher fibre volume fraction in the regions of high shear, 

reorientation of fibres due to shear leading to reorientation of the permeability 

principal axes, and the fact that a smaller amount of resin is required to saturate the 

textile in the regions of high volume fraction. Therefore, although fibre volume 

fraction is higher at these regions, the flow front can be faster [27]. Similar results are 

found in radial injection experiments, in which the permeability in the fibre direction 

was found to increase slightly with increasing shear up to a maximum, followed by a 

reduction, whereas transverse permeability was found to decrease continuously as 

the shear angle increases [48]. Consequently, when fibre volume fraction effects 

dominate, the permeability is locally reduced due to shear deformation, whilst the 

opposite effect occurs when the influence of the reorientation of the permeability 

principal axes is more pronounced.  

While preform permeability is dependent on fibre distribution at microscopic level, i.e. 

within fibre tows and bundles, [45] as well as at macroscopic level, i.e. fibre angle 

uncertainties, the flow front shape is locally determined by the size of the unit cell 

[4,5,17]. Fibre architecture variability at macroscopic level can be described by the 

fibre angle variation, and the fibre-void distribution [5,17]. Since geometrical 

uncertainties are spread to adjacent locations in the material, the in plane fibre 

spacing can be modelled by continuous random fields based on a spectral 

expansion [4]. Stochastic simulation based on this approach as well as experimental 

results, showed that although the global permeability distribution is governed by local 

permeability variations [50] (global permeability is the spatial harmonic mean of the 

local permeability), global and local permeability uncertainties should be 

differentiated [4,17]. Fibre-void distribution heterogeneities imply high angle 

variations, which consequently result in higher local permeability variations. The 

global permeability variations in turn increase rapidly with fibre angle variations, until 
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they reach a maximum. Thus, there is a critical point beyond which global 

permeability variations start to decrease. Nonetheless the local variations are high, 

at the global scale; the textile appears to be more uniform leading to lower global 

variances [17]. In the case of smaller moulds the effect of fibre misalignment at the 

mesoscale, whether large or small is dominant.  On the other hand, as the mould 

dimensions increase, these local inhomogeneities tend to cancel each other out and 

the textile appears to be more uniform leading to lower global permeability variations 

[17,36]. This suggests that the global permeability distribution is governed by the 

mould dimensions; larger moulds lead to lower global permeability variations [36].    

2.5.2 Nesting effects 

Nesting during the lay-up process is governed by both mechanical and geometric 

phenomena, and it is of crucial importance as it affects the permeability, the thermal 

conductivity and the mechanical behaviour of the composite. In general, nesting 

affects the laminate thickness, the fibre volume fraction and the pore pattern. 

Therefore, nesting can introduce significant spatial scatter in laminate properties at 

different locations over a composite part, as well as considerable batch to batch 

variability [51-55]. Compressibility studies have clearly indicated that irrespective of 

fabric type, for a given pressure, the thickness per layer decreases due to nesting 

[51-56]. However, in the results presented in [57], the thickness per layer increased 

with increasing number of lamina layers, as a result of friction between the layers 

which prevents the occurrence of nesting. 

Several experimental and computational studies have identified the importance of 

nesting on permeability variation, implying that nesting variability is the main reason 

for permeability scatter. Simulations investigating the effect of nesting on the 

permeability of plain weave fabrics showed that permeability values can vary by an 

order of magnitude between maximum and zero nesting conditions [58,59]. 

Experimental results using a large number of samples demonstrate a high 

permeability variation; the highest measured value can be three times the lowest one 

[19]. The same order of scatter can be identified in local permeability calculations 

using the pore network technique [60]. 

Nesting can show considerable scatter associated with several parameters. It has 

been shown that shear deformation has a great impact on nesting. In particular, a 
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textile is less prone to nesting if it is subjected to shear deformation [61]. 

Consequently, at higher shear angles the scatter in thickness per layer is reduced.  

Furthermore, nesting can be confined by increasing the tightness of the textile. When 

the fibre tows are placed tighter, the “hills and valleys” of fibre tows are steeper and 

nesting is more difficult to occur. Inter-tow spacing also affects nesting. The textile 

tightness decreases as the inter-tow spacing increases, and hence nesting is less 

pronounced leading to lower thickness variation. Therefore, tow angle variations 

influence indirectly nesting, as they are associated with inter-tow spacing. In the 

case of non-crimp fabrics the stitching pattern dictates nesting [61]. Nesting is also 

influenced by the tool properties, such as mould stiffness and surface condition, as 

well as the compression force during consolidation. These effects have not been 

investigated so far. 

Another phenomenon associated with compressibility and nesting effects is the 

formation of resin rich zones. Resin rich zones are usually formed in the gaps 

between the internal mould surface and the textile preform, as well as in the fabric, 

around stiches [62]. Shifting of the preform during consolidation may also result in 

resin rich pockets [12]. In the case of curved parts, resin rich zones may be formed 

due to the fact that the preform tends to fit tightly around the corner regions [62]. 

Furthermore, nesting of individual fibre tows may cause local resin rich zones in the 

regions between the tows.  As a result, resin rich zones can lead to additional out of 

plane tow misalignment having detrimental effects on the mechanical properties of 

the final part [12].  The formation of resin rich pockets is difficult to predict, and 

consequently introduces considerable variability in the process. The magnitude of 

the gap between the mould inner surface and the preform is a function of the friction 

between the mould and the preform as well as of the compressibility of the preform 

[62]. This implies that uncertainties on tooling properties such as friction coefficient 

due to repetitive usage or variations on the properties and the amount of release 

agent may influence the formation of resin rich pockets.  

2.5.3 Edge effects 

Race tracking is a source of preform permeability uncertainty during liquid moulding 

processes [63]. Race tracking is inevitable in industrial applications and refers to 

edge effects caused by imperfect fit between the preform and the edges of the mould 
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[64-66]. As a result, low flow resistance channels are formed along the edges, where 

the resin flow front moves faster and the local permeability is considerably higher 

[64,65]. This phenomenon introduces significant variability since it is only dependent 

on how the textile is cut and placed into the mould cavity [65]. A statistical study 

showed that the permeability values caused by race-tracking can be described by a 

Weibull distribution [64]. Therefore, in the case of one-dimensional permeability 

experiments where race tracking is likely, the Weibull distribution can be used to 

characterise permeability instead of the conventional normal distribution [67].  

2.5.4 Void formation 

Liquid composite moulding processes often suffer from flow-induced voids leading to 

poor part quality. Entrapped voids can influence the stress distribution in the part and 

lead to stress concentrations, which can eventually result in local failure. 

Experimental studies have shown that for a 1% increase in void content, the flexural 

strength, flexural modulus, and inter-laminar shear strength can decrease more than 

5% [68-70]. Void formation also reduces the fatigue strength and durability of the 

material and makes it more susceptible to environmental conditioning and moisture 

absorption. Due to these detrimental effects, the void content should be minimised 

as much as possible. The mechanisms leading to entrapped voids are associated 

with preferential flow channels arising from preform heterogeneities which in turn 

lead to permeability variations [71]. Thus, void formation can be considered to be a 

directional phenomenon [72]. However, in some cases void formation is not related 

to resin flow, and can be attributed to initial resin air content, release agent 

evaporation and volatiles formed by the reaction products during cure [71]. These 

mechanisms are more pronounced in autoclave processes [73].  

Two distinct flow patterns occur during resin impregnation due to fibre architecture 

heterogeneities: viscous flow, which is pressure driven and dominates in macro-

pores and capillary flow which is dominant in micro-pores due to capillary forces 

[73,74]. The flow front is usually uneven between these two mechanisms, leading to 

the formation of voids. The viscous flow leads the capillary flow at high injection 

rates, resulting in microscopic intra-tow voids caused by fingering, whereas, at low 

injection rates, the capillary flow is dominant causing macroscopic inter-tow voids 

[74]. These phenomena are usually described by the capillary number expressed as 
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the ratio between viscous and capillary forces [71]. The size and shape of intra-tow 

micro-voids are strongly affected by geometric heterogeneities inside the fibre tows 

as well as non-structural stitches [64]. Race-tracking can sometimes lead to macro-

voids generated when flow patterns reach the vent locations prior to full saturation 

[65].   

Image analysis of glass/epoxy composites with different volume fractions highlighted 

the importance of fibre volume fraction on void formation in resin transfer moulding 

processes [74]. Higher fibre volume fractions result in lower void content and void 

areal density. This behaviour is attributed to higher injection pressures, more uniform 

fibre architecture as well as lower matrix volume fraction. Three distinct types of 

voids can be identified; voids in resin rich areas, intra-tow voids, and inter-tow voids. 

Increasing the fibre volume fraction decreases the contribution of resin voids to total 

void content and total void areal density. On the contrary, the contribution of intra-

tow voids to total void areal density increases by increasing fibre volume fraction, 

while the contribution to total void content is reduced, implying that the size of intra-

tow voids decreases at higher volume fractions. The contribution of voids located 

next to fibre bundles does not show any clear dependence on fibre volume fraction. 

Fibre volume fraction also affects the distribution of voids along the radius of curved 

parts of components [74].  

The size and location of voids can vary significantly. In general, voids can be 

classified to spherical and bigger random-shaped voids [74]. Randomly shaped voids 

have more severe effects on mechanical performance since they can cause 

premature crack initiation. The content and the aerial density of random voids 

decrease at higher volume fractions [74]. Consequently, the probability of premature 

crack initiation is reduced by increasing the fibre volume fraction. The spatial void 

distribution is also an important parameter since it dictates the overall performance 

of the final part [71]. An uneven void content distribution can arise from inter-layer 

space variations or space variations between the preform and the mould [71]. 

Moreover, the fibre content also influences spatial void distribution. At higher fibre 

volume fractions, formation mechanisms can be affected since the elevated injection 

pressure can cause considerable void shrinkage and void transportation may be 

facilitated towards the exit vent locations [74]. Thus, at high fibre volume fractions 
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both preform heterogeneity and void mobility mechanisms affect spatial void 

distribution.  

Nesting effects play an important role on void formation [20,75]. Both the magnitude 

and variability of dry spot content are strongly influenced by nesting and the 

distribution layer permeability in the case of vacuum assisted resin transfer moulding 

processes. Increasing the preform thickness enhances dry spot formation and its 

variability within the textile [75]. High scatter in by-pass paths permeability and high 

values of distribution layer permeability result in high scatter in dry spot content. This 

high scatter can be reduced by lowering the distribution layer permeability. High dry 

spot content variation implies that the formation of dry spots depends on the spatial 

distribution of the by-pass paths permeability.  

2.6 Uncertainty in composites cure 

The cure process is a complex thermo-mechanical phenomenon involving several 

sources of uncertainty such as material and tooling characteristics variation as well 

as environmental/boundary condition uncertainties. These uncertainties can affect 

the formation of residual stresses and can result in under-curing, over-curing, cure-

induced voids and severe temperature overshoots which may cause thermal 

degradation [7,12,76]. 

2.6.1 Material properties and boundary conditions variation effects on cure 

The resin cure kinetics is of crucial importance having a great impact on the curing 

process. The parameters of cure kinetics models are usually estimated using 

Differential Scanning Calorimetry (DSC), and can vary due to different handling and 

storage conditions of the resin or the presence of fibre sizing [77]. Particularly, 

handling and shelf life history uncertainties can cause variability in resin state and 

the initial degree of cure [8,12,77,78]. The thermal, mechanical, and thermo-

mechanical properties of the material can show significant uncertainties affecting the 

cure process. These uncertainties are generated by the inherent uncertainties of the 

constituents as well as the previous steps of the manufacturing process. Thermal 

conductivity variations are caused by variations in fibre orientation and fibre volume 

fraction [79]. Variations in heat capacity can be caused by scatter in the heat 

capacity of the constituents and fibre volume fraction [79]. Thermal expansion 
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coefficients are affected by uncertainty in the moduli and thermal expansion 

coefficients of the constituents, volume fraction variations and ply misalignment 

[79,80]. Fibre volume fraction variations also affect the total heat of reaction, 

whereas mechanical properties uncertainty is a function of material properties and 

fibre volume fraction variations [79].  

Environmental/boundary condition uncertainties including ambient temperature, 

moisture, convective heat, prescribed pressure and temperature can show variations 

introducing additional variability to the process [79,81]. Apart from environmental 

conditions, the convective heat is affected by the geometric characteristics of the 

tools [76] and by other random factors such as wrinkles in vacuum bags. Variability 

in convective heat can result in uneven curing and temperature distribution, which 

can potentially lead to severe temperature overshoots, or even incomplete cure. The 

occurrence of temperature overshoots is also influenced by tool properties [76,82], 

implying that in the case of composite tooling, additional variability may be added.  

Cure temperature and resin kinetics variations have a great impact on cure time 

distribution [7]. In particular, cure temperature variations dominate over resin kinetics 

uncertainties having the greatest influence on cure time variability, while faster 

reacting resins show higher cure time variability than systems with higher activation 

energy [7]. Unlike fibre orientation uncertainties, the variation of cure process 

parameters has been not explicitly quantified.   

2.6.2 Residual stresses-shape distortion 

The cure of composites always results in residual stresses which can lead to 

delamination, crack initiations, and shape distortions such as spring-in or warpage 

[83,84]. The formation of residual stresses is mainly dependent on the mechanical 

and thermo-mechanical properties of the constituents [62,85]. As mentioned in 

section 2.6.1, these properties are strongly influenced by the fibre volume fraction, 

implying that fibre volume fraction variations can introduce considerable scatter to 

the formation of residual stresses [62,86]. Regions with locally lower fibre volume 

fraction are more prone to geometrical distortions and defects due to process-

induced stresses [12,86]. A variation in the order of 6% in fibre volume fraction can 

lead to 5% variation in the spring-in angle [86]. Such deviations can cause serious 

assembly issues. The development of residual stresses is also affected by cure 
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kinetics variations, with variability in activation energy having the greatest impact 

[85].  Tooling properties affect the development of residual stresses as well [87]. 

Numerical simulations [87] have indicated that different mould materials have 

different effects on the development of process-induced residual stresses and 

strains, implying that in the case of composite tools further uncertainties may be 

added.  

2.7 Property measurement and model uncertainties 

There are several techniques and modelling practices to characterise the behaviour 

of composites during the different stages of manufacturing. The shear behaviour of 

preforms can be characterised using optical methods, picture frame experiments or 

bias-extension experiments. Sample size is of crucial importance; a larger shearing 

force is required with increasing sample area. Considerable discrepancies can be 

observed between the three methods, especially at angles above 30º [25]. A round-

robin study involving picture frame experiments and bias-extension experiments for 

different textiles, indicated deviations between the different laboratories. In both 

cases, the scatter increased with shear angle [25].  

In plane permeability can be measured by two principal ways: the radial flow 

technique and the linear flow technique. Both of these methods have several 

variants, such as permeability measurements during saturated or unsaturated flow 

as well as constant pressure or constant flow rate measurements. Since there are no 

standard guidelines established to date, it is debatable which technique is the most 

accurate [88].  It has been shown that unsaturated linear flow experiments show the 

highest reproducibility [37,89,90].  According to [88,91,92], linear flow experiments 

are consistent with radial flow experiments, with the latter showing higher variations, 

whilst in [93] differences were found between the unsaturated linear technique and 

the wetting radial technique. In the case of linear flow experiments, errors can be 

introduced if the flow channel axis does not coincide with the principal axis of the 

fabric [88]. In addition, linear experiments can be significantly influenced by race 

tracking [94]. As Wang et al. [95] recommended execution of both radial and linear 

flow experiments should be carried out in order to obtain accurate experimental 

results. Significant deviations can be observed between the saturated and 

unsaturated flow technique due to transient capillary effects during wetting flow 
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experiments [37,90,91,96]. In general, saturated flow experiments lead to higher 

permeability values than those obtained from unsaturated flow experiments [88]. The 

different types of fluids used to measure permeability can also contribute to 

variability [97].  The shape of the mould can also introduce scatter in permeability 

measurements, implying that measurement performed using conventional 

geometries may not be appropriate for designing complex parts [18]. Although the 

question of sample size is still open [47], as discussed in section 2.5.1, in general, 

larger moulds lead to lower global permeability variations [36].  A scatter of the same 

order as the experimental error was observed during a round-robin exercise between 

three different laboratories. The observed scatter was related to variation in 

specimen preparation [37].  However, round-robin results involving 16 different 

experimental procedures indicated a scatter of up to one order of magnitude in 

principal permeability values, whereas the ratio of principal permeability varied by a 

factor of up to 2. The main source of uncertainty between the different procedures 

was attributed to human factors including misconceptions about the experimental 

process, the use of unsuitable data treatment, different permeability definitions, 

inconsistent use of units and different specimen preparation conditions [88]. In a 

second international permeability round-robin test, nine institutions carried out in-

plane unsaturated permeability measurements of a carbon-fibre fabric using 

common guidelines [98]. It was indicated that the scatter between the different 

institutions was similar to the scatter from each institution, implying that the use of 

benchmark guidelines can assist in obtaining reproducibility in permeability 

measurements. Furthermore, it was shown that the main source of uncertainty lies 

on the different experimental procedures rather than human errors as it was 

suggested by [88].  

There are several cure monitoring techniques such as DSC, dielectrometry, infrared 

spectroscopy, and dynamic mechanical analysis (DMA). In general cure state 

measurements using DSC and dielectrics agree well [99], whereas significant 

differences are observed in the measurement of glass transition temperature 

between different techniques such as DSC and DMA [100]. Although DSC is the 

most common method to characterise cure kinetics, considerable discrepancies can 

be observed due to variability in baseline decision, different range of measured data, 

measurement quality variation, and variation in data reduction decisions. [97]. In 
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addition, significant scatter can be observed between different cure kinetics models 

due to different modelling practices and the aforementioned characterisation 

uncertainties [97].  

2.8 Overview 

The fabrication of thermosetting composites is a very complex procedure, involving 

processes of different physics and scales. Each of the steps of composite 

manufacturing (forming, consolidation/impregnation and curing) introduces variability 

to the subsequent manufacturing processes, creating strong interdependencies 

between the process parameters and their variability and the properties of the 

product. Therefore, deterministic process simulation models are not able to capture 

fully the real phenomena, rendering the development and implementation of 

stochastic simulation tools for composite manufacturing imperative.  

Fibre volume fraction seems to play the dominant role in composites manufacturing. 

Fibre volume fraction variations due to geometrical heterogeneities caused during 

the production of pre-pregs/dry textiles and forming /draping step along with nesting 

and edge effects can introduce significant scatter in permeability during the 

impregnation/consolidation step. This can result in flow-induced voids and resin rich 

zones further affecting the fibre volume fraction distribution. Fibre volume fraction 

also affects the thermal, mechanical and thermo-mechanical properties of the 

constituents introducing variability to the cure of composites. Furthermore, the cure 

process is significantly influenced by environmental/boundary condition uncertainties 

as well as resin property uncertainties due to different handling and storage 

conditions.  These effects can introduce variability in residual stresses/shape 

distortion and can lead to serious cure induced defects. A schematic representation 

of these interdependencies is depicted in Fig. 2-3.  

Unlike permeability variations, limited data exist regarding uncertainty in 

forming/draping. In addition, variability in composites cure has not been explicitly 

characterised; the results presented in the literature were obtained using conceptual 

values for the input variable uncertainties rather than experimental data. Therefore 

further investigation should be carried out towards the statistical characterisation and 
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incorporation of all the sources of uncertainty during the forming/draping and cure 

step.  

The findings presented in this chapter highlight the importance of variability in 

composites manufacturing and thus the need for future development and 

incorporation of stochastic simulation schemes into the existing commercial 

simulation tools. This implies that stochastic simulation should play a major role in 

process design; adopting stochastic simulation tools will have tremendous benefits in 

terms of costs. Benchmark guidelines should be developed regarding 

characterisation techniques and modelling practices in all manufacturing steps, to 

minimise property measurement and model uncertainties. 
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Fig. 2-3 Schematic representation of interdependencies in composite manufacturing.  
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3. Materials and experimental methods 

3.1 Introduction  

Quantification of input parameters uncertainty required a series of experiments. This 

chapter reports the experimental methods and details the materials used to quantify 

and characterise cure kinetics uncertainty, fibre misalignment and boundary 

conditions uncertainty.  

3.2 Materials  

The resin system used was the commercial epoxy resin Hexcel RTM6 [101]. Hexcel 

RTM6 is a premixed mono-component epoxy system, developed to fulfil the 

requirements of the aerospace and space industries in advanced RTM processes. 

The service temperature of RTM6 ranges from -60°C up to 180°C. In addition, at 

room temperature it is a highly viscous translucent paste and its viscosity decreases 

abruptly by increasing the temperature [101]. The textile considered was a 6k HTS 

carbon fibre ±45º NCF by Hexcel [102] with a chain knit stitch pattern. The areal 

density of the fabric is 534 g/m2. A 4.5 mm thick carbon fibre-epoxy flat panel 

fabricated by infusion was used to quantify boundary conditions uncertainty. The 

matrix system of the panel was Hexcel RTM6, whilst the reinforcement was Hexcel 

AS7 12k carbon fibre [103] with an areal density is 268 g/m2.  

3.3 Differential Scanning Calorimetry 

Differential scanning calorimetry (DSC) was used in order to quantify cure kinetics 

uncertainty. In this technique the difference between the heat flow of the sample and 

a reference at the same temperature is recorded. DSC scans can be carried out 

either under isothermal or dynamic conditions at prescribed heating rates. In the 

case of a thermoset, the result of a DSC scan is a curve of heat flux with a peak due 

to the exothermic reactions as a function of time or temperature. DSC curves are 

commonly used to characterise cure kinetics of a sample including the cure reaction 

rate and degree of cure. The cure behaviour of the epoxy system of this study was 

investigated using the TA-instruments DSC Q200 apparatus shown in Figure 3-1. A 
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nitrogen purge gas with a flow rate of 50 ml/min was employed to avoid oxidation of 

samples during the experiments. In addition, a TzeroTM sample press and the 

corresponding pans and lids were used.   

Resin samples of 4-10 mg were encapsulated and placed at the instrument furnace 

under ambient conditions. All tests were equilibrated at 80 ºC and then a heating rate 

of 1ºC/min was applied up to 240 ºC. Samples from four different batches as well as 

different samples from every batch were tested. All batches were within their lifetime.  

The total heat of reaction, 𝐻𝑇, can be calculated as follows: 

 

 𝐻𝑇 =
𝐻𝑒𝑥𝑝

(1 − 𝑎𝑜)
 (3-1) 

where 𝐻𝑒𝑥𝑝 is the total heat of reaction released during the dynamic cure and 𝑎𝑜 is 

the initial degree of cure of the resin.   

During dynamic cure the resin emits or absorbs heat, at a rate depending on heat 

capacity evolution.  Consequently, an appropriate baseline should be chosen 

reflecting this phenomenon in order to carry out the integration shown in Eq. (3-2). 

As shown in Figure 3-2, a dynamic DSC curve typically has a bell shape starting and 

ending at a plateau, which corresponds to the start and the end of conversion, 

respectively. The main functionality of the baseline is to connect the two plateaus 

which are normally not at the same level. In common practice a linear or sigmoidal 

baseline is used, however, there is no theoretical justification for the implementation 

of such a baseline, given the fact that the heat capacity of the resin is not expected 

to change in a linear or sigmoidal fashion. Therefore, an iterative baseline was used 

[104,105] to perform integration of heat flow versus time as follows: 

 

 𝐻𝑒𝑥𝑝 = ∫
𝐻

𝑑𝑡
𝑑𝑡

𝑡2

𝑡1

 (3-2) 
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Here, 𝑡1 and 𝑡2 is the time the reaction started and was completed, respectively. The 

degree of cure 𝑎, at any time 𝑡, can be evaluated using the following expression 

[106]: 

 𝑎 = 𝑎𝑜 +
∫

𝐻
𝑑𝑡

𝑑𝑡
𝑡

𝑡1

𝐻𝑇
 (3-3) 

The heat capacity of the resin is changing gradually from the onset until the end of 

the reaction and its value at any intermediate point is considered as a linear function 

of the progress of the reaction. Thus, at the start of the conversion this method yields 

the initial heat capacity value, whilst at maximum conversion it yields the final heat 

capacity value [104].  

 

 

Fig. 3-1 TA-instruments DSC Q200 apparatus. 
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Fig. 3-2 Evolution of heat flow of during dynamic DSC of RTM6. 

 

3.4 Image acquisition/analysis 

A set of digital images of the textile of this study were acquired using a Sony camera 

to investigate fibre misalignment.  The camera was mounted on a KSL KL150 tufting 

head mounted on a 6-axis robot arm in order to control and record the exact position 

of each image, as shown in Figure 3-3. The position of the robot was controlled 

using KCWIN; an interface appropriate for robot control.  

 

Fig. 3-3 Image acquisition set-up. 
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Investigation of tow orientation variability of a textile requires the development and 

implementation of an image analysis procedure employed at a local level. An in-

house image analysis code [13] developed to characterise fibre misalignment in 

woven textiles has been enhanced in order to characterise fibre misalignment in 

unidirectional materials such as NCF. The image analysis code is based on Fast 

Fourier Transform (FFT) and correlation analysis. The approach adopted involves 

calculation of local fibre direction relative to the fibre orientation of a reference 

image, so that the spatial random field is explicitly quantified.  

A grey-scale image of the unidirectional textile can be represented by a pixel array 

𝑓(𝑥, 𝑦)  expressing the distribution of brightness with its 𝐹(𝑢, 𝑣)  Fourier spectrum. 

Fourier transform of a linear periodic image yields a two-dimensional spectrum with 

maxima in the direction normal to the orientation of the image [107].  Integration of 

|𝐹(𝑢, 𝑣)|  along radial directions allows estimation of the tows and non-structural 

stitch of the NCF as the directions of maximum accumulated radial energies [107]. 

Here, Fast Fourier Transform is employed to obtain a prior estimation of the fibre 

orientation. The correlation analysis is then used for accurate calculation of local 

fibre orientation using a reference region 𝑟𝜃(𝑥, 𝑦), which is carried out by rotating a 

kernel 𝑘𝜃(𝑥, 𝑦) of size 𝑀 × 𝑀 obtained from a reference image. The reference region 

is: 

 𝑟𝜃(𝑥, 𝑦) = 𝑘𝜃(𝑥𝑐𝑜𝑠𝜃 + 𝑦𝑠𝑖𝑛𝜃,−𝑥𝑠𝑖𝑛𝜃 + 𝑦𝑐𝑜𝑠𝜃) (3-4) 

The correlation of a reference region 𝑟𝜃(𝑥, 𝑦) of size 𝑀 × 𝑀 with the image 𝑓(𝑥, 𝑦) of 

size 𝐾 × 𝐾 is calculated as follows [13]: 

 
𝜌(𝜃) =

∑ (𝑟𝜃(𝑥𝑖, 𝑦𝑖) − 𝑟�̅�)(𝑓(𝑥𝑖, 𝑦𝑖) − 𝑓)̅𝑀,𝑀
𝑖=1,𝑗=1

√∑ (𝑟𝜃(𝑥𝑖, 𝑦𝑖) − 𝑟�̅�)2 ∑ (𝑓(𝑥𝑖, 𝑦𝑖) − 𝑓)̅2𝑀,𝑀
𝑖=1,𝑗=1

𝑀,𝑀
𝑖=1,𝑗=1

 
(3-5) 
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where 𝑟�̅� and 𝑓 ̅are the average of the 𝑟𝜃(𝑥, 𝑦) and 𝑓(𝑥, 𝑦) arrays, respectively. 

The image analysis procedure is as follows: 

 Image acquisition into a discrete pixel array 𝑓(𝑥, 𝑦). 

 Determination of a reference image. 

 Application of Fast Fourier Transform to compute 𝐹(𝑢, 𝑣) and the modulus 

|𝐹(𝑢, 𝑣)|. 

 Calculation of radial energy 𝐸(𝜃)  in polar coordinates, 𝐸(𝜃) =

∫ |𝐹(𝑟, 𝜃)|
+∞

0
𝑑𝑟. 

 Estimation of approximate fibre orientation that maximizes 𝐸(𝜃). 

 Calculation of difference between fibre orientation of reference and current 

image. 

 Calculation of correlation of the current image with the reference image by 

rotating the reference image using directional cosines. 

 Estimation of the angle that maximises correlation.  

The last three steps constitute the modifications made to the original code [13] in 

order measure fibre misalignment in NCF.  

Seven hundred and forty-eight images of size of 640x480 pixels were acquired from 

each side (upper/lower) of the fabric of this study on a 34×22 grid with 5 mm 

spacing. Application of the Fast Fourier Transform was carried out on a 256×256 

region. Implementation of Eq. 3-5 is computationally intensive; therefore the size of 

the reference region 𝑟(𝑥, 𝜃) was 60×60. Additional datasheets on a coarser (10 x 10 

mm) and finer (2.5 x 2.5 mm) grid were produced to investigate the dependence of 

the results on the grid size. The accuracy of the image acquisition and analysis 

procedure was studied by acquiring and analysing 50 images at the same location.  

3.5 Heat flux sensors/ thermocouples 

In order to quantify boundary conditions uncertainty ten tests were carried out using 

the experimental set-up illustrated in Figure 3-4. It comprises an ELKOM 8.4 KW 

electrical heating platen, a 10 mm thick aluminium tooling plate, a nylon N64PS-x 

VAC INNOVATION peel ply fabric, a nylon VAClease xR1.2 VAC INNOVATION 
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vacuum bag, two K-type thermocouples and two RdF micro-foil heat flux sensors 

[108]. A composite panel was placed on the tooling plate, covered with the peel ply 

and the vacuum bag and sealed before testing. Two heat flux sensors were mounted 

on the vacuum bag (Figure 3-4) to measure natural air convection variability as well 

as its spatial dependence. A K-type thermocouple was placed on the tool to quantify 

tool temperature uncertainty and a second one away from the apparatus to measure 

ambient temperature variability. The temperature was equilibrated at 160 ⁰C in all 

tests. A National Instruments LabVIEW in house code was used for data acquisition 

and the data were acquired with a frequency of 0.8 Hz.  

The micro-foil heat flux sensor consists of a thin layer as shown in Figure 3-6, and is 

a differential thermocouple type sensor using a T-type thermocouple. Given that the 

same heat flux should flow through the sensor and the surface where the sensor is 

mounted, the sensor is directly measuring the heat loss or gain through the thin layer 

by measuring the temperature difference between opposite sides of the thin layer. 

This sensor produces a voltage output which is proportional to heat flux. In particular, 

the heat-flux  �̇�  is given by the following relation: 

 �̇� = (𝐻𝐹)/(𝐶𝑀 𝑇𝐶𝐹) (3-6) 

where 𝐻𝐹 is the sensor output, 𝐶𝑀 a calibration multiplier and 𝑇𝐶𝐹 a temperature 

compensation factor. The calibration multiplier (unique to each sensor) is measured 

at 21ºC and is not linear with temperature. The sensors used in this study had a 

calibration multiplier of 0.15 µV per W/m2. The temperature compensation factor is a 

function of temperature and can be found in Figure 3-7 [108]. In the case of the two 

K-type thermocouples as well as the T-type thermocouples incorporated in the 

sensors an output in ºC is produced, whilst in the case of the sensors a voltage 

output is produced and therefore Eq. (3-6) was utilised to calculate the heat flux. 

Subsequently, the heat transfer coefficient ℎ was computed using the measurements 

of bag and air temperature 𝑇𝐴. 

 ℎ =
�̇�

𝑇𝑠 − 𝑇𝐴
 (3-7) 
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where 𝑇𝑠 is the temperature at the surface of the bag.  

 

Fig. 3-4 Experimental set-up for quantification of boundary condition 
uncertainty. 

  

 

Figure 3-5 Schematic representation of cross-section of experimental set-up 
used for quantification of boundary condition uncertainty. 

 

Composite

HF sensor

T/C2

T/C2

Peel ply
Bag

Tooling plate
Hot plate
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Fig. 3-6 Micro-Foil Heat flux sensor [108]. 

 

 

Fig. 3-7 Micro-foil heat flux sensor output compensation factor as a function of 
surface temperature [108].  

3.6 Overview  

The experimental methods and materials used to quantify cure kinetics uncertainty, 

local tow orientation variability and boundary conditions uncertainty have been 

presented. A series of Differential Scanning Calorimetry (DSC) tests were carried out 
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to investigate cure kinetics uncertainty of a commercial epoxy resin used in 

aerospace applications, whilst an in-house image analysis code was enhanced to 

characterise fibre misalignment of a ±45º NCF. An infusion set-up was used to 

quantify tool temperature, ambient temperature and surface heat transfer coefficient 

using thermocouples (tool/ambient temperature) and heat flux sensors (heat transfer 

coefficient).
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4. Cure simulation model 

4.1 Introduction  

The cure simulation model was developed using the commercial Finite Element 

Analysis (FEA) solver MSC.Marc [109]. The modelling approach used in this study 

was based on 3D iso-parametric 8-node composite brick elements; 149 MSC.Marc 

element type for thermo-mechanical analysis and 175 MSC.Marc element type for 

thermal analysis [110]. These elements allow modelling of layered materials; 

different material properties, fibre orientation and thickness can be assigned to 

different layers within the same element. Each layer contains four integration points 

and a numerical integration scheme based on Gaussian quadrature is employed 

[110]. A set of material property user-subroutines were used for the incorporation of 

cure kinetics and the dependence of material properties on the state of material and 

temperature. Initial conditions on the degree of cure and temperature were 

implemented using the USINC user subroutine. Prescribed time-dependent 

temperature boundary conditions were applied using the FORCDT user subroutine, 

whereas natural air convection was implemented via the UFILM user subroutine 

[111]. Mechanical boundary conditions were applied by means of table driven input. 

Post processing of elements and nodal variables was carried out using the PLOTV 

and UPSTNO user subroutines [111]. The mechanical behaviour is considered to be 

quasi static rendering the problem transient/quasi static comprising of a series of 

heat transfer passes and mechanical passes for each increment of the solution.  

4.2 Thermo-mechanical problem 

The full thermo-mechanical problem is described here; the heat transfer problem can 

be considered as a subcase of the coupled solution. A staggered solution approach 

is adopted in the solver [109] to carry out the cure thermo-mechanical analysis. The 

cure kinetics analysis is carried out first, then the heat transfer analysis is performed 

followed by the mechanical analysis. In particular, the cure reaction rate is first 

calculated based on the estimated temperatures at the beginning and end of each 

increment. The heat generation due to the cure reaction is then calculated and 
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added into the heat transfer system of equations (see Eq. 4-1) at the beginning of 

each cycle of the heat transfer pass. The cure shrinkage and the thermal strain is 

then considered in the mechanical pass of the coupled analysis.  

The heat transfer problem applicable during the cure process can be expressed by a 

three-dimensional energy balance combined with Fourier’s heat conduction law and 

incorporating the exothermic heat generated due to the chemical reaction of the 

resin as follows [112]: 

 𝜌𝑐𝑝

𝜕𝑇(𝒓, 𝑡)

𝜕𝑡
= ∇ ∙ 𝑲∇𝑇(𝒓, 𝑡) + (1 − 𝑣𝑓)𝜌𝑟𝐻𝑇

𝑑𝑎

𝑑𝑡
 (4-1) 

 

Here 𝜌  and 𝑐𝑝  are the density and the specific heat capacity of the composite, 

respectively, 𝑲 is the thermal conductivity tensor, 𝑇 the temperature, 𝑡 and 𝒓 the time 

and spatial coordinate and 𝑎 the degree of cure. The rate of heat generation due to 

cure is the product of (1 − 𝑣𝑓) where 𝑣𝑓 is the volume fraction of the fibres, density of 

the resin 𝜌𝑟, total heat of reaction 𝐻𝑇 and cure reaction rate 𝑑𝑎 𝑑𝑡⁄ .  

The mechanical problem is based on the momentum conservation combined with a 

constitutive law incorporating contributions for the elastic response of the material, 

resin shrinkage and thermal expansion/contraction as follows: 

 𝝈 = 𝑸(𝜺 + 𝑪𝒔Δ𝑎 − 𝒂𝒕𝒉Δ𝑇) (4-2) 

here 𝝈 denotes the stress tensor and 𝑸 is the stiffness matrix. The cure shrinkage 

strain is a function of the cure shrinkage coefficient matrix 𝑪𝒔 and degree of cure 

increment Δ𝑎, whereas the thermal expansion strain is a function of  the thermal 

expansion coefficient matrix 𝒂𝒕𝒉, and the corresponding temperature increment Δ𝑇.  

The initial conditions during the cure simulation include initial degree of cure and 

initial temperature as follows: 

 𝛼(𝒓, 0) = 𝑎𝑖 (4-3) 
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 𝑇(𝒓, 0) = 𝑇𝑖 (4-4) 

The time-dependent temperature boundary condition on the prescribed temperature 

side is given by: 

 𝑇(𝒓, 𝑡)𝑓(𝑡), 𝒓𝜖𝑆1 (4-5) 

whilst the natural air convection is defined as: 

 𝑛 ∙ 𝐾∇𝑇(𝒓, 𝑡) = ℎ(𝑇𝑠 − 𝑇∞), 𝒓𝜖𝑆2 (4-6) 

where 𝑓(𝑡)  is the thermal profile followed by the tool during the cure, ℎ is the surface 

heat transfer coefficient, 𝑇𝑠  is the surface temperature, 𝑇∞ the fluid temperature, 𝑛 

the vector normal to the surface and 𝑆1  and 𝑆2 the parts of the boundary where the 

prescribed temperature and natural air convection boundary conditions apply 

respectively. The mechanical boundary conditions comprise displacement 

constraints in different directions as follows: 

 𝑢𝑥(𝒓) = 0, 𝒓 ∈  𝑆3 (4-7) 

 𝑢𝑦(𝒓) = 0, 𝒓 ∈  𝑆4 (4-8) 

 𝑢𝑧(𝒓) = 0, 𝒓 ∈  𝑆5 (4-9) 

where 𝑆3 , 𝑆4 and 𝑆5  denote the parts of the boundary where the x, y and z 

displacement constraints are applied respectively. 

4.2 Constitutive models 

The cure of a thermosetting resin causes complex chemical and physical changes as 

the material is transformed from a viscous liquid to a highly cross-linked solid [106]. 

The cross-linking reaction kinetics is affected by the applied temperature. In addition, 

exothermic heat is generated as the resin cures [113]. Therefore, material properties 

are strongly dependent on material state and thus the corresponding constitutive 

material models need to represent this behaviour accurately. To this end, the 



Chapter 4 

38 
 

approach adopted in this study is based on the development of cure kinetics models 

accompanied by a model of the development of the glass transition temperature. The 

model of the development of the glass transition temperature is used to compute the 

instantaneous glass transition temperature as a function of the current degree of 

cure. Consequently, most of the properties are expressed as a function of material 

state, i.e. whether the temperature is below or over the glass transition temperature 

using an exponential step function, with adjustable height and breadth. The materials 

used to develop the cure simulation model are the commercial epoxy resin Hexcel 

RTM6 [101], and the Hexcel G1157 [114] pseudo unidirectional carbon fibre 

reinforcement.  

A cure simulation model incorporates several sub-models which represent the 

dependence of material properties on current material state. The material sub-

models comprise thermal, mechanical and thermo-mechanical properties and can be 

summarised as follows: 

 Thermal properties 

 Cure kinetics 

 Specific heat capacity 

 Thermal conductivity tensor 

 

 Mechanical properties 

 Elastic tensor 

 Poisson’s ratio 

 

 Thermo-mechanical properties 

 Thermal expansion coefficients 

 Cure shrinkage 

4.2.1 Glass transition temperature 

The Di Benedetto equation has been widely used to describe the behaviour of 

several epoxy resin systems, including Hexcel RTM6. The Di Benedetto equation is 

as follows [115]:  
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 𝑇𝑔 = 𝑇𝑔𝑜 + 
(𝑇𝑔∞ − 𝑇𝑔𝑜)𝜆𝛼

1 − (1 − 𝜆)𝛼
 (4-10) 

 

where 𝑇𝑔𝑜  and 𝑇𝑔∞  are the glass transition temperatures of the uncured and fully 

cured material, respectively, while 𝜆 is a fitting constant controlling the convexity of 

this non-linear dependence. The values of these parameters regarding the RTM6 

epoxy resin are presented in Table 4-1 [116].  

Table 4-1 Di Benedetto equation parameters for RTM6. 

𝑇𝑔𝑜   (
0𝐶) -11  

𝑇𝑔∞   (
0𝐶) 206 

𝜆 0.435  

 

4.2.2 Cure kinetics 

The cure kinetics model of Hexcel RTM6 is a combination of an 𝑛𝑡ℎ order model and 

an autocatalytic model and can be described by the following equation [106,117]: 

 
𝑑𝑎

𝑑𝑡
= 𝑘1(1 − 𝑎)𝑛1 + 𝑘2(1 − 𝑎)𝑛2𝑎𝑚 (4-11) 

 

where 𝑑𝑎 𝑑𝑡⁄    is the reaction rate, 𝑎 the current degree of cure, and  𝑛1 ,  𝑛2 , 𝑚 

reaction  orders. The reaction rate constants incorporate diffusion rate limitation 

terms [116]: 

 
1

𝑘𝑖
=

1

𝑘𝑖,𝑐
+

1

𝑘𝑑
   𝑖 = 1,2 (4-12) 

where 𝑘𝑖,𝑐  are chemical rate constants following an Arrhenius temperature 

dependence: 

 𝑘𝑖𝐶 = 𝐴𝑖𝑒
(
−𝐸𝑖
𝑅𝑇

) 𝑖 = 1,2 (4-13) 
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and 𝑘𝑑 is a diffusion rate constant  defined as [116]: 

 𝑘𝐷 = 𝐴𝐷𝑒(
−𝐸𝐷
𝑅𝑇

)𝑒
(
−𝑏
𝑓

)
 (4-14) 

where 𝑇 is the instantaneous temperature, 𝐸𝑖 activation energies, 𝐴𝑖 pre-exponential 

factors, 𝐴𝐷 and 𝐸𝐷 the pre-exponential factor and activation energy of the diffusion 

process, respectively, 𝑅  the universal gas constant, 𝑏  a constant, and  𝑓   the 

equilibrium free volume expressed as [118]: 

 𝑓 = 𝑤(𝑇 − 𝑇𝑔) + 𝑔 (4-15) 

where 𝑤 and 𝑔 are constants.  

The nominal cure kinetics parameters for RTM6 are listed in Table 4-2. Note that 𝑎𝑜 

is the initial degree of cure which is used in the kinetics model as the initial condition 

of the integration of Eq. (4-4) and its nominal value is 0.02. The total heat of reaction 

of RTM6 is 465 J/g [106], whilst its density is 1110 kg/m3 [101]. 
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Table 4-2 Nominal cure kinetics parameters for RTM6. 

𝐴1(1/𝑠) 17580 [106] 

𝐴2(1/𝑠) 21525 [106] 

𝐴𝐷(1/𝑠) 6.48E+18 [116] 

𝐸1(𝐽/𝑚𝑜𝑙) 70500 [106] 

𝐸2(𝐽/𝑚𝑜𝑙) 59050 [106] 

𝐸𝐷(𝐽/𝑚𝑜𝑙) 136800 [116] 

𝑛1 1.80 [106] 

𝑛2 1.32 [106] 

𝑚 1.16 [106] 

𝑏 0.467 [116] 

𝑤 [1/K]  0.00048 [116] 

𝑔 0.025 [116] 

𝑎𝑜 0.02 [106] 

 

4.2.3 Specific heat capacity 

The composite specific heat capacity is influenced by both constituents. Using the 

rule of mixtures the specific heat capacity of the composite is: 

 𝑐𝑝 = 𝑤𝑓𝑐𝑝𝑓 + (1 − 𝑤𝑓)𝑐𝑝𝑟 (4-16) 

where 𝑤𝑓 is the weight fraction of the fibre, 𝑐𝑝𝑓 the fibre specific heat capacity and 

𝑐𝑝𝑟 the specific heat capacity of the resin. The weight fraction of the fibre is defined 

as: 

 𝑤𝑓 =
𝑣𝑓𝜌𝑓

𝜌
 (4-17) 
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Here 𝜌𝑓 is the density of the fibre whereas 𝜌 is the density of the composite. The 

density of Hexcel G1157 is 1760 kg/m3 [114]. The density of the composite is 

computed using the rule of mixtures: 

 𝜌 = 𝑣𝑓𝜌𝑓 + (1 − 𝑣𝑓)𝜌𝑟 (4-18) 

The fibre specific heat capacity is a linear function of temperature and can be 

expressed as follows [119]: 

 𝑐𝑝𝑓 = 0.0023𝑇 + 0.765 (4-19) 

The specific heat capacity of the resin depends on both temperature and degree of 

cure. The dependence on degree of cure is expressed using a dependence on the 

instantaneous glass transition temperature of the resin as follows: 

 𝑐𝑝𝑟 = 𝐴𝑟𝑐𝑝
𝑇 + 𝐵𝑟𝑐𝑝

+
Δ𝑟𝑐𝑝

1 + 𝑒𝐶𝑟𝑐𝑝(𝑇−𝑇𝑔−𝑠𝑖)
 (4-20) 

Eq.(4-20) results in a linear dependence of specific heat capacity on temperature for 

material in the same state and a step transition around the glass transition 

temperature. Here 𝐴𝑟𝑐𝑝
 and 𝐵𝑟𝑐𝑝

 are constants expressing the linear relation of the 

resin specific heat capacity with temperature, while 𝛥𝑟𝑐𝑝
, 𝐶𝑟𝑐𝑝

 and 𝑠𝑖 are constants 

referring to the strength, breadth and temperature shift of the transition around 𝑇𝑔. 

The values of the coefficients used in Eq. (4-20) were estimated by fitting to 

experimental data produced by modulated scanning calorimetry (MDSC) [119] using 

a Genetic Algorithm and are reported in Table 4-3.  
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Table 4-3  Specific heat capacity parameters. 

Constants  RTM6 

𝐴𝑟𝑐𝑝
(𝐽𝑔−1℃−2) 0.0025 

𝐵𝑟𝑐𝑝
(𝐽𝑔−1℃−1) 1.80 

∆𝑟𝑐𝑝
(𝐽𝑔−1℃−1) -0.25 

𝐶𝑟𝑐𝑝
(1/℃) 1.10 

𝑠𝑖(℃) 16.5 

 

Figure 4-1 illustrates the response of the resin specific heat capacity model. A step 

change is observed at the glass transition of the material. At the transition from a 

viscous liquid or rubber to a solid glass the vibrational and configurational behaviour 

of the system becomes subject to additional constraints leading to reduced heat 

absorption and lower heat capacity.  

 

Fig. 4-1 Response of the resin specific heat capacity model. 

[J
/g

/C
]
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4.2.4 Thermal conductivity 

Each composite lamina is considered a transversely isotropic material. The thermal 

conductivity in the longitudinal direction can be calculated as follows [120]: 

 𝐾11 = 𝑣𝑓𝐾𝑙𝑓 + (1 − 𝑣𝑓)𝐾𝑟 (4-21) 

𝐾𝑙𝑓 and 𝐾𝑟 are the thermal conductivity of the fibre in this direction and of the resin. 

In the transverse direction the thermal conductivity can be computed as follows 

[120]: 

 

𝐾22 = 𝐾33 = 𝑣𝑓𝐾𝑟 (
𝐾𝑡𝑓

𝐾𝑟
− 1) + 𝐾𝑟 (

1

2
−

𝐾𝑡𝑓

2𝐾𝑟
)

+ 𝐾𝑟 (
𝐾𝑡𝑓

𝐾𝑟
− 1) √𝑣𝑓

2 − 𝑣𝑓 +
(
𝐾𝑡𝑓

𝐾𝑟
+ 1)

2

(
2𝐾𝑡𝑓

𝐾𝑟
− 2)

2 
(4-22) 

 

where 𝐾𝑡𝑓 is the fibre conductivity in the transverse direction.  The fibre conductivity 

in the longitudinal and transverse direction is defined as follows: 

 𝐾𝑙𝑓 = 𝐴𝑙𝑓𝑇 + 𝐵𝑙𝑓 (4-23) 

 𝐾𝑡𝑓 = 𝐵𝑡𝑓 (4-24) 

The thermal conductivity of the resin can be expressed as [119]: 

 𝐾𝑟 = 𝑎𝐾𝑟
𝑇𝑎2 + 𝑏𝐾𝑟

𝑇𝑎 + 𝑐𝐾𝑟
𝑇 + 𝑑𝐾𝑟

𝑎2 + 𝑒𝐾𝑟
𝑎 + 𝑓𝐾𝑟

 (4-25) 

The coefficients of equations (4-21)-(4-25) are presented in Table 4-4. 
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Table 4-4 Thermal conductivity coefficients. 

Coefficients RTM6 G1157 

𝐴𝑙𝑓(𝑊𝑚−1℃−2) - 0.0074 [121] 

𝐵𝑙𝑓(𝑊𝑚−1℃−1) - 9.7 [121] 

𝐵𝑡𝑓(𝑊𝑚−1℃−1) - 0.84 [121] 

𝑎𝐾𝑟(𝑊𝑚−1℃−2) 0.0008 [119] - 

𝑏𝐾𝑟(𝑊𝑚−1℃−2) -0.0011 [119] - 

𝑐𝐾𝑟(𝑊𝑚−1℃−2) -0.0002 [119] - 

𝑑𝐾𝑟 -0.0937 [119] - 

𝑒𝐾𝑟 0.22 [119] - 

𝑓𝐾𝑟 0.12 [119] - 

 

4.2.5 Mechanical properties 

A widely used micro-mechanics model was chosen [122] to model the composite 

mechanical properties. The longitudinal and the transverse moduli are calculated as 

follows: 

 𝐸11 = (1 − 𝑣𝑓)𝐸𝑟 + 𝑣𝑓𝐸𝑙𝑓 (4-26) 

 
𝐸22 =

𝐸𝑟

1 − √𝑣𝑓 (1 −
𝐸𝑟

𝐸𝑡𝑓
⁄ )

= 𝐸33 
(4-27) 

where 𝐸𝑟  is the isotropic moduli of the resin and 𝐸𝑙𝑓  , 𝐸𝑡𝑓  the fibre moduli in the 

longitudinal and transverse fibre directions respectively. The composite shear 

modulus and Poison’s ratio can be modelled as follows [122]: 
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𝐺12 =

𝐺𝑟

1 − √𝑣𝑓 (1 −
𝐺𝑟

𝐺12𝑓
⁄ )

= 𝐺13 
(4-28) 

 
𝐺23 =

𝐺𝑟

1 − √𝑣𝑓 (1 −
𝐺𝑟

𝐺23𝑓
⁄ )

 
(4-29) 

 𝜈12 = 𝑣𝑓𝜈12𝑓 + (1 − 𝑣𝑓)𝜈𝑟 = 𝜈13 (4-30) 

 𝜈23 =
𝐸22

2𝐺23
− 1 (4-31) 

The mechanical properties of the resin system of this study were modelled using a 

relation that allows a step transition around the instantaneous glass transition 

temperature as follows: 

 𝐸𝑟 = 𝐸𝑟𝐿
+

𝐸𝑟𝐺
− 𝐸𝑟𝐿

1 + 𝑒𝐶𝑟𝑐𝑝(𝑇−𝑇𝑔−𝑠𝑖)
 (4-32) 

 𝜈𝑟 = 𝜈𝑟𝐿
+

𝜈𝑟𝐺
− 𝜈𝑟𝐿

1 + 𝑒𝐶𝑟𝑐𝑝(𝑇−𝑇𝑔−𝑠𝑖)
 (4-33) 

 𝐺𝑟 =
𝐸𝑟

2(1 + 𝜈𝑟)
 (4-34) 

 

The values of 𝐶𝑟𝑐𝑝
 and 𝑠𝑖 are identical to those reported in relation to the specific 

heat capacity constitutive model for the same epoxy system. The subscripts 𝑟𝐺 and 

𝑟𝐿 indicate the material properties in the glass and rubber/liquid state respectively. 

The mechanical properties of both the resin and the fibre are presented in Table 4-5. 

Figures 4-2 and 4-3 illustrate the response of the resin mechanical properties model. 

A step change is observed in the modulus of the resin at the glass transition of the 

material. The modulus of the resin increases abruptly during the transition from the 

viscous liquid or rubber state of low stiffness to the glassy solid state of high 
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stiffness. In addition, the Poisson’s ratio decreases significantly presenting a step 

change, as illustrated in Figure 4-3. These phenomena are attributed to the fact that 

the mobility of the polymer system becomes gradually limited as the polymer network 

becomes fixed allowing the material to be capable to sustain higher stresses.  

Table 4-5 Mechanical properties. 

Mechanical properties RTM6  G1157  

𝐸𝑙𝑓 (𝐺𝑃𝑎) - 238 [123] 

𝐸𝑡𝑓 (𝐺𝑃𝑎) - 28 [123] 

𝐺12𝑓 (𝐺𝑃𝑎) - 24 [123] 

𝐺23𝑓 (𝐺𝑃𝑎) - 7.2 [123] 

𝜈12𝑓  - 0.23 [123] 

𝜈23𝑓 - 0.33 [123] 

𝜈31𝑓 - 0.03 [123] 

𝐸𝑟𝐺
 (𝐺𝑃𝑎) 3.07 [124] - 

𝐸𝑟𝐿
 (𝐺𝑃𝑎) 0.033 [125] - 

𝜈𝑟𝐺
  0.38 [125] - 

𝜈𝑟𝐿
  0.495 [125] - 
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Fig. 4-2 Response of the resin modulus model. 

 

 

Fig. 4-3 Response of the resin Poisson’s ratio model. 
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4.2.6 Cure shrinkage 

The composite presents a direction-dependent shrinkage strain due to its 

transversely isotropic nature. The anisotropic cure shrinkage coefficients are 

computed as follows [126]: 

 𝐶11
𝑆 =

(1 − 𝑣𝑓)𝐸𝑟

(1 − 𝑣𝑓)𝐸𝑟 + 𝑣𝑓𝐸𝑙𝑓

 (4-35) 

 𝐶22
𝑆 = (𝜈𝑟 + 1)(1 − 𝑣𝑓) − 𝜈12𝐶11

𝑆 = 𝐶33
𝑆  (4-36) 

 

where 𝐶11
𝑆  is the cure shrinkage coefficient in the longitudinal direction and 𝐶22

𝑆  is the 

cure shrinkage coefficient in the transverse direction. The fibre is not active in terms 

of chemical shrinkage, whereas the resin can be assumed to follow a linear 

dependence on the degree of cure 𝑎 given by:  

 𝑉𝑟
𝑆 = 𝑉𝑟

𝑆∞𝑎 (4-37) 

Here 𝑉𝑟
𝑠  is the volumetric cure shrinkage and 𝑉𝑟

𝑆∞  is the maximum volumetric 

shrinkage. The maximum volumetric shrinkage 𝑉𝑟
𝑆∞ is 0.018 [125]. The incremental 

cure shrinkage strain of the resin is then calculated as follows [126]: 

 휀𝑟
𝑠 = (1 + 𝑉𝑟

𝑠)1/3 − 1 (4-38) 

The shrinkage strain components of the composite are calculated by using the 

directional cure shrinkage coefficient matrix: 

 휀𝑖𝑗
𝑆 = 𝐶𝑖𝑗

𝑆휀𝑟
𝑠 (4-39) 

 

4.2.7 Thermal expansion coefficients 

The composite thermal expansion coefficients can be modelled using 

micromechanics as follows: 
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 𝑎11
𝑡ℎ =

(1 − 𝑣𝑓)𝐸𝑟𝑎𝑟 + 𝑣𝑓𝐸𝑙𝑓𝑎𝑙𝑓

(1 − 𝑣𝑓)𝐸𝑟 + 𝑣𝑓𝐸𝑙𝑓

 (4-40) 

 

𝑎22
𝑡ℎ = (1 − 𝑣𝑓)𝑎𝑟 + 𝑣𝑓𝑎𝑡𝑓 + (1 − 𝑣𝑓)𝑎𝑟 + 𝑣𝑓𝜈12𝑓𝑎𝑙𝑓

− 𝜈12𝑎11
𝑡ℎ = 𝑎33

𝑡ℎ  (4-41) 

where 𝑎11
𝑡ℎ and 𝑎22

𝑡ℎ  are the longitudinal and transverse coefficients, respectively. 𝑎𝑟 is 

the resin isotropic thermal expansion coefficient and 𝑎𝑙𝑓 and 𝑎𝑡𝑓 are the longitudinal 

and transverse coefficients of the fibre, respectively.  The coefficient of thermal 

expansion of the resin follows a step transition around the glass transition which is 

represented similarly to the specific heat capacity and mechanical properties models 

as follows: 

 𝑎𝑟 = 𝑎𝑟𝐿
+

𝑎𝑟𝐺
− 𝑎𝑟𝐿

1 + 𝑒𝐶𝑟𝑐𝑝(𝑇−𝑇𝑔−𝑠𝑖)
 (4-42) 

As Eqs. (4-43)-(4-44) indicate, the fibre thermal expansion coefficients are a 

polynomial function of temperature [127].  

 𝑎𝑙𝑓 = ∑ 𝐴𝑎𝑙𝑓
𝑖

𝑖=0,4

𝑇𝑖 (4-43) 

 𝑎𝑡𝑓 = ∑ 𝐴𝑎𝑡𝑓
𝑖

𝑖=0,3

𝑇𝑖  (4-44) 

All parameters required for computation of the thermal expansion coefficients are 

listed in Table 4-6 [127]. The response of the resin thermal expansion coefficient 

model is presented in Figure 4-4. The coefficient of thermal expansion of the resin 

drops significantly at the glass transition, due to the significant decrease in 

intermolecular motion caused by the transition of the resin from the viscous liquid or 

rubber state to the solid glassy state.  
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Table 4-6 Thermal expansion coefficients parameters. 

Parameters RTM6  G1157  

𝐴𝑎𝑙𝑓 
3 (𝐾−3) - 4.92E-15 

𝐴𝑎𝑙𝑓 
2 (𝐾−2) - -1.57E-11 

𝐴𝑎𝑙𝑓 
1 (𝐾−1) - 1.70E-08 

𝐴𝑎𝑙𝑓 
0  - -4.75E-06 

𝐴𝑎𝑡𝑓 
2 (𝐾−2) - -6.95E-12 

𝐴𝑎𝑡𝑓 
1 (𝐾−1) - 1.55E-08 

𝐴𝑎𝑙𝑓 
0  - -6.19E-07 

𝐴𝑎𝑙𝑓 
3 (𝐾−3) - - 

𝑎𝑟𝐿
 1.36E-4 - 

𝑎𝑟𝐺
 6.90E-5 - 
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Fig. 4-4 Response of the resin coefficient of thermal expansion model.  

 

4.2.8 Implementation of constitutive models 

A set of user subroutines were used to implement the relations described in section 

4.2; each sub-model was incorporated to the main code using the respective user 

subroutine. All user subroutines are called at each increment for every integration 

point per element in the mesh as shown in Figure 4-5. Examples of the UCURE, 

ANKOND, HOOKLW and ANEXP user subroutines can be found in Appendix A.  
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Fig. 4-5 Schematic representation of the interface between the main solver and 
the user defined subroutines.  

 UCURE 

This user subroutine is used to compute the cure kinetics, degree of cure and total 

heat of reaction using the equations described in section 4.2.1 and 4.2.2. The degree 

of cure is calculated at each increment for every element using explicit numerical 

integration. In addition, if the degree of cure reaches values above 0.999 the cure 

rate is forced to be zero, implying fully cured material. 

 USPCHT 

As discussed in the previous section the specific heat capacity depends on both the 

cure temperature and degree of cure. Therefore, the ELMVAR subroutine is used to 

extract the degree of cure at each integration point of the mesh as the degree of cure 

cannot be specified in the USPCHT subroutine. The specific heat is computed at 

each increment for every integration point per element in the mesh using Eqs. (4-

16)- (4-20).  

 

 

User defined subroutines

Material properties

Solver
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 ANKOND 

This subroutine is used to compute the anisotropic thermal conductivity matrix of the 

composite. As the composite laminate is considered to be a transversely isotropic 

material, the diagonal elements i.e. the thermal conductivity in the three main 

directions are calculated according to the equations presented in section 4.2.4, whilst 

the remaining elements of the matrix are set to zero. The ELMVAR subroutine is also 

incorporated to extract the degree of cure at each integration point of the mesh. The 

thermal conductivity matrix is: 

 
𝐾 = [

𝐾11 𝐾12 0
𝐾21 𝐾22 0
0 0 𝐾33

] 
(4-45) 

 

 HOOKLW 

The HOOKLW subroutine is used to define the stress-strain law. The compliance 

matrix  [𝐵]−1 is first defined and the INVERT subroutine is then called to return [𝐵] 

so that: 

 

[
 
 
 
 
 
𝜎11

𝜎22

𝜎33

𝜎23

𝜎13

𝜎12]
 
 
 
 
 

=

[
 
 
 
 
 
𝐵11 𝐵12 𝐵13 𝐵14 𝐵15 𝐵16

𝐵21 𝐵22 𝐵23 𝐵24 𝐵25 𝐵26

𝐵31 𝐵32 𝐵33 𝐵34 𝐵35 𝐵36

𝐵41 𝐵42 𝐵43 𝐵44 𝐵45 𝐵46

𝐵51 𝐵52 𝐵53 𝐵54 𝐵55 𝐵56

𝐵61 𝐵62 𝐵63 𝐵64 𝐵65 𝐵66]
 
 
 
 
 

 

[
 
 
 
 
 
휀11

휀22

휀33

𝛾12

𝛾23

𝛾31]
 
 
 
 
 

 

 

 

(4-46) 

The compliance matrix [𝐵]−1  is defined according to the transversely isotropic 

material properties as follows [122]: 
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[
 
 
 
 
 
휀11

휀22

휀33

𝛾12

𝛾23

𝛾31]
 
 
 
 
 

=  

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1

𝐸11

−𝜈21

𝐸22

−𝜈31

𝐸33
0 0 0

−𝜈12

𝐸11

1

𝐸22

−𝜈32

𝐸33
0 0 0

−𝜈13

𝐸11

−𝜈23

𝐸22

1

𝐸33
0 0 0

0 0 0
1

𝐺12
0 0

0 0 0 0
1

𝐺23
0

0 0 0 0 0
1

𝐺13]
 
 
 
 
 
 
 
 
 
 
 
 
 

 

[
 
 
 
 
 
𝜎11

𝜎22

𝜎33

𝜎12

𝜎23

𝜎13]
 
 
 
 
 

 

 

 

(4-47) 

The elements of [𝐵]−1 are calculated using the equations presented in section 4.2.5. 

The ELMVAR subroutine is called to incorporate the dependence of the composite 

mechanical properties on the degree of cure.  

 USHRINKAGE 

The degree of cure shrinkage, the volumetric shrinkage strain as well as the 

directional cure shrinkage coefficient matrix is computed using the USHRINKAGE 

subroutine. The direction cure shrinkage strain is computed at each increment for 

every integration point per element in the mesh using Eqs. (4-35)- (4-39).  

 ANEXP 

This user subroutine is used to define the strain increments of the composite due to 

thermal expansion. The coefficients of thermal expansion are calculated using the 

respective equations. Then, the incremental thermal strain in the three main 

directions is calculated as follows: 

 Δ휀𝑖𝑗
𝑡ℎ = 𝑎𝑖𝑗

𝑡ℎ𝑇𝑖𝑛𝑐 (4-48) 

where 𝑎𝑖𝑗
𝑡ℎ is the thermal expansion coefficient and 𝑇𝑖𝑛𝑐 is the temperature increment. 

The thermal strain at each time increment is given by the following relation: 

 
휀𝑖𝑗

𝑡ℎ = ∑ Δ휀𝑖𝑗
𝑡ℎ

𝑖𝑛𝑐

𝑘=1

 
(4-49) 
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4.3 Overview  

A coupled thermo-mechanical cure simulation model using the finite element 

analysis solver MSC.Marc has been developed. The model is three dimensional and 

transient. The materials considered were Hexcel G1157 pseudo unidirectional 

carbon fibre reinforcement and Hexcel RTM6 epoxy resin. The material properties 

depend on both temperature and degree of cure and the material sub-models of cure 

kinetics, specific heat capacity, thermal conductivity, moduli, cure shrinkage and 

thermal expansion were implemented in user defined subroutines UCURE, 

USPCHT, ANKOND, HOOKLW, USHRINKAGE and ANEXP. 
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5. Stochastic simulation methodology 

5.1 Introduction 

The stochastic simulation methodology developed and implemented in this study is 

presented and analysed in this chapter. The methodology presented here is used to 

model input parameters uncertainty and to investigate its propagation through the 

curing process. The stochastic processes used to model input parameters 

uncertainty were chosen based on the experimental results of this study. The 

presentation corresponds to non-intrusive stochastic simulation techniques and 

second order stationary Gaussian stochastic processes, i.e. processes with mean 

and variance independent of time or space.  

5.2 Representation of input parameters uncertainty 

5.2.1 Random series of observations 

Surface heat transfer coefficient was modelled using random series of observations. 

A random series is a sequence of observations which are ordered randomly in time 

and thus are independent of one another presenting no serial correlation over time. 

The stochastic equation of a random series of observations 𝑋 is the following: 

 𝑋 = 𝜇𝑟 + 𝜎𝑟𝑦 (5-1) 

where 𝜇𝑟 is the mean value, 𝜎𝑟 the standard deviation and 𝑦 a set of independent 

identically distributed normal variables equal to the number of time steps.  

5.2.2 One dimensional mean-reverting Ornstein-Uhlenbeck process  

A mean-reverting stochastic process variable in time was employed to simulate tool 

and ambient temperature. The Ornstein-Uhlenbeck process (OU) is an 

autoregressive second order stationary Gaussian random process, which is widely 

used for modelling of mean reverting processes. These are processes that tend to 
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return to a long term mean with speed that is proportional to the distance from it. The 

stochastic differential equation of an OU process 𝑆 is as follows [128]: 

 𝑑𝑆 = 𝜆(𝜇 − 𝑆)𝑑𝑡 + 𝜎𝑑𝑊𝑡 (5-2) 

Here 𝑊𝑡 is a Brownian motion so that 𝑊𝑡~𝑁(0,1) and 𝑑𝑊𝑡~𝑁(0, √𝑑𝑡), 𝜆 controls the 

speed of reversion around the mean of the process, 𝜇 is the long term mean of the 

stochastic process and 𝜎 the process volatility. The analytical solution of Eq. (5-1) is 

[128]:  

 

𝑆𝑡 = 𝑒−𝜆Δ𝑡𝑆𝑡−1 + (1 − 𝑒−𝜆Δ𝑡)𝜇 + 𝜎√
(1 − 𝑒−2𝜆Δ𝑡)

2𝜆
𝑊𝑡 

(5-3) 

where Δ𝑡 is the time increment. Estimation of the parameters of Eq. (5-2) using the 

experimental data obtained for the tool and ambient temperature was based on the 

maximisation of the likelihood function [128]. Maximisation of the log-likelihood 

function yields the following equations for the mean 𝜇 and the rate of the reversion 𝜆 

respectively: 

 
𝜇 =

𝑆𝑦𝑆𝑥𝑥 − 𝑆𝑥𝑆𝑥𝑦

𝑁(𝑆𝑥𝑥 − 𝑆𝑥𝑦) + (𝑆𝑥
2 − 𝑆𝑥𝑆𝑦)

 
(5-4) 

 
𝜆 = −

1

Δ𝑡
𝑙𝑛

𝑆𝑥𝑦 − 𝜇𝑆𝑥 − 𝜇𝑆𝑦 + 𝑁𝜇2

𝑆𝑥𝑥 − 2𝜇𝑆𝑥 + 𝑁𝜇2
 

(5-5) 

where 𝑁 is the number of samples and 

 
𝑆𝑥 = ∑𝑆𝑖−1

𝑁

𝑖=1

 
(5-6) 

 
𝑆𝑦 = ∑𝑆𝑖

𝑁

𝑖=1

 
(5-7) 
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𝑆𝑥𝑥 = ∑𝑆𝑖−1

2

𝑁

𝑖=1

 (5-8) 

 
𝑆𝑥𝑦 = ∑𝑆𝑖−1𝑆𝑖

𝑁

𝑖=1

 (5-9) 

 
𝑆𝑦𝑦 = ∑𝑆𝑖

2

𝑁

𝑖=1

 (5-10) 

The volatility 𝜎 is given by: 

 

𝜎 = √
2𝜆[𝑆𝑦𝑦 − 2𝑎𝑆𝑥𝑦 + 𝑎2𝑆𝑥𝑥 − 2𝜇(1 − 𝑎)(𝑆𝑦 − 𝑎𝑆𝑥) + 𝑁𝜇2(1 − 𝑎)2]

(1 − 𝑎2)𝑁
 

 

(5-11) 

where 

 𝑎 = 𝑒−𝜆Δ𝑡 (5-12) 

 

5.2.3 Two-dimensional Ornstein-Uhlenbeck field 

Local tow orientation was treated as a spatial random field variable in space and its 

auto-covariance function was modelled using the two-dimensional Ornstein-

Uhlenbeck sheet (OU) which is a variant of the stochastic process presented in 

section 5.2.2 appropriate for modelling spatial random fields with mean reverting 

features. The auto-covariance function of the two-dimensional Ornstein- Uhlenbeck 

sheet  is defined as [129,130]:  

 𝐶(𝑥, 𝑦) = 𝜎𝑐
2𝑒−|𝑥1−𝑥2| 𝑏𝑥⁄ −|𝑥1−𝑥2| 𝑏𝑦⁄  (5-13) 

Here 𝜎𝑐 is the standard deviation, 𝑏𝑥 and 𝑏𝑦 are the correlation lengths in the 𝑥 and 𝑦 

directions, respectively, which determine the decay rate of autocorrelation between 

two points of the process. Eq. (5-13) was used as the basis to discretise the resulting 
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random field using the Cholesky factorisation, spectral decomposition and Karhunen- 

Loève expansion.  

5.2.4 Cholesky factorisation   

The covariance matrix 𝛴 and the vector of mean values 𝜇𝑐 include all the information 

on the statistical properties of the stochastic variables and their cross-correlation. By 

definition, the covariance matrix 𝛴  is symmetric and positive definite and can be 

expressed as: 

 Σ = 𝐿𝐿𝑇 (5-14) 

where 𝐿 is a lower triangular matrix and is the Cholesky root. The product of the 

Cholesky root with the vector 𝑌  of independent identically distributed normal 

variables is a vector 𝑉 that has the statistical properties of the stochastic field, and is 

defined as follows: 

 𝑉 = 𝐿𝑌 (5-15) 

The methodology described by Eqs. (5-14) and (5-15) is employed in two steps. 

First, the Cholesky root is evaluated as defined in Eq. (5-14). This step has relatively 

high computational cost depending on the number of stochastic variables; however, 

it needs to be executed only once. Realisations of the random vector 𝑌 are then 

generated and transformed to realisations of the vector 𝑉 using Eq. (5-15). This step 

is of low computational cost and is executed a number of times equal to the number 

of required realisations of the stochastic variables.  

In addition to local tow orientation, the Cholesky factorisation was used to model 

cure kinetics uncertainty. In this case the covariance matrix is generated using the 

experimental data by calculating the variance and covariance of the stochastic 

parameters; variance values appear along the diagonal and covariance values 

appear in the off-diagonal elements.  
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5.2.5 Spectral decomposition 

The spectral decomposition method expands the random field 𝑉(𝑥, 𝑦) as a series of 

trigonometric functions with random phase angles as a function of its spectral density 

function 𝑆(𝑘𝑥, 𝑘𝑦). According to the Wiener-Khintchine theorem, the autocorrelation 

function of a second order stationary random process has a spectral decomposition 

defined by the power density function of that process. Therefore, given a two-

dimensional second order stationary random field 𝑉(𝑥, 𝑦)  with zero mean,  

autocorrelation function 𝐶(𝑥, 𝑦)  and power spectral density function 𝑆(𝑘𝑥, 𝑘𝑦) , the 

following relationships hold (Wiener-Khintchine transform) [131]: 

 𝑆(𝑘𝑥, 𝑘𝑦) =
∫ ∫ 𝐶(𝑥, 𝑦)𝑒−𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦) d𝑥d𝑦 

∞

−∞

∞

−∞

(2𝜋)2
 

          

(5-16) 

 

 𝐶(𝑥, 𝑦) =
∫ ∫ 𝑆(𝑘𝑥, 𝑘𝑦)𝑒𝑖(𝑘𝑥𝑥+𝑘𝑦𝑦) d𝑘𝑥d𝑘𝑦 

∞

−∞

∞

−∞

(2𝜋)2
 (5-17) 

where 𝑥, 𝑦 are coordinates over the space domain and 𝑘𝑥 and 𝑘𝑦 the corresponding 

wave numbers over the frequency domain. The power spectral density 𝑆(𝑘𝑥, 𝑘𝑦) is a 

real symmetric non-negative function. Therefore, the bi-quadrant power spectral 

density 𝐺(𝑘𝑥, 𝑘𝑦) can be defined as follows [131]: 

 𝐺(𝑘𝑥, 𝑘𝑦) = 2𝑆(𝑘𝑥 , 𝑘𝑦) (5-18) 

 

The spectral representation of the random field 𝑉(𝑥, 𝑦)  is given by the following 

relation [132-134]: 

 

𝑉(𝑥, 𝑦) = ∫ ∫ [𝑐𝑜𝑠(𝑘𝑥𝑥 + 𝑘𝑦𝑦)𝑑𝑢(𝑘𝑥, 𝑘𝑦)
∞

−∞

∞

−∞

+ 𝑠𝑖𝑛(𝑘𝑥𝑥 + 𝑘𝑦𝑦)𝑑𝑣(𝑘𝑥 , 𝑘𝑦)] 
(5-19) 
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where  𝑢(𝑘𝑥, 𝑘𝑦) and 𝑣(𝑘𝑥, 𝑘𝑦) are real independent Gaussian stochastic fields with 

zero mean and orthogonal increments 𝑑𝑢(𝑘𝑥, 𝑘𝑦)  and 𝑑𝑣 (𝑘𝑥, 𝑘𝑦)  that satisfy the 

following expression: 

 

 𝐸[𝑑𝑢2(𝑘𝑥, 𝑘𝑦)] = 𝐸[𝑑𝑣2(𝑘𝑥, 𝑘𝑦)] = 2𝑆(𝑘𝑥, 𝑘𝑦)𝑑𝑘𝑥𝑑𝑘𝑦 (5-20) 

 

Algebraic manipulations of Eq. (5-19) presented in detail in [134], lead to   

 

�̂�(𝑥, 𝑦) = √2 ∑ ∑ [𝐴𝑛𝑥𝑛𝑦
𝑐𝑜𝑠 (𝑘𝑥𝑛𝑥

𝑥 + 𝑘𝑦𝑛𝑦
𝑦 + 𝜙𝑛𝑥𝑛𝑦

(1)
)

𝑁𝑦−1

𝑛𝑦=0

𝑁𝑥−1

𝑛𝑥=0

+ �̃�𝑛𝑥𝑛𝑦
𝑐𝑜𝑠 (𝑘𝑥𝑛𝑥

𝑥 − 𝑘𝑦𝑛𝑦
𝑦 + 𝜙𝑛𝑥𝑛𝑦

(2)
)] 

(5-21) 

where: 

 𝐴𝑛𝑥𝑛𝑦
= √2𝑆 (𝑘𝑥𝑛𝑥

, 𝑘𝑦𝑛𝑦
) Δ𝑘𝑥Δ𝑘𝑦  (5-22) 

 

 �̃�𝑛𝑥𝑛𝑦
= √2𝑆 (𝑘𝑥𝑛𝑥

, −𝑘𝑦𝑛𝑦
) Δ𝑘𝑥Δ𝑘𝑦 

 

(5-23) 

 

 𝑘𝑥𝑛𝑥
= 𝑛𝑥Δ𝑘𝑥    ;    𝑘𝑦𝑛𝑦

= 𝑛𝑦Δ𝑘𝑦 (5-24) 

 

 Δ𝑘𝑥 =
𝑘𝑥𝑢

𝑁𝑥
    ;    Δ𝑘𝑦 =

𝑘𝑦𝑢

𝑁𝑦
 (5-25) 

and: 
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𝐴0𝑛𝑦
= 𝐴𝑛𝑥0 = 0    for   𝑛𝑥 = 0,1, …𝑁𝑥 − 1 

and    𝑛𝑦 = 0,1, …𝑁𝑦 − 1 

(5-26) 

 

�̃�0𝑛𝑦
= �̃�𝑛𝑥0 = 0    for   𝑛𝑥 = 0,1, …𝑁𝑥 − 1 

and    𝑛𝑦 = 0,1, …𝑁𝑦 − 1 

(5-27) 

Eqs. (5-25) and (5-26) are equivalent to:  

 𝑆(0, 𝑘𝑦) = 𝑆(𝑘𝑥, 0) = 0  (5-28) 

Thus, the power spectral density function is discretised in 𝑁𝑥  × 𝑁𝑦  intervals. Here  

𝑘𝑥𝑢  and 𝑘𝑦𝑢   denote the upper cut-off wave numbers in the frequency domain, 

implying that the power spectral density function is considered to be zero outside the 

following region:  

 −𝑘𝑥𝑢 ≤ 𝑘𝑥 ≤ 𝑘𝑥𝑢  and  −𝑘𝑦𝑢 ≤ 𝑘𝑦 ≤ 𝑘𝑦𝑢                                  (5-29) 

Here 𝜙𝑛𝑥𝑛𝑦

(1)
 and 𝜙𝑛𝑥𝑛𝑦

(2)
 are different sets of random phase angles distributed uniformly 

over the interval [0,2𝜋]. The conditions set in Eqs. (5-26) and (5-27) are necessary to 

ensure that the mean value and the autocorrelation function of a sample function are 

identical to the respective targets as 𝑁𝑋, 𝑁𝑦 → ∞.  

In the case of the Ornstein-Uhlenbeck sheet, described by Eq. (5-13), the spectral 

density function is: 

 
𝑆(𝑘𝑥, 𝑘𝑦) =

𝜎2

𝜋2

𝑏𝑥𝑏𝑦

(1 + 𝑏𝑥
2𝑘𝑥

2)(1 + 𝑏𝑦
2𝑘𝑦

2)
 

(5-30) 
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5.2.6 Karhunen- Loève expansion  

The Karhunen- Loève expansion (K-L) is a series representation utilising 

eigenfunctions as the orthogonal basis [98-99]. For a second order stationary 

random field 𝑉(𝑥, 𝑦)   defined on a probability space (Ω, 𝐴, 𝑃)  and indexed on a 

bounded domain 𝐷 the random process can be expanded as follows [10,134-136]: 

 𝑉(𝑥, 𝑦) = 𝜇 + ∑√𝜆𝑖𝑓𝑖(𝑥, 𝑦)𝜉𝑖

𝑀

𝑖=1

 (5-31) 

in which 𝜆𝑖  and 𝑓𝑖(𝑥, 𝑦)  are the 𝑀  larger eigenvalues and the corresponding 

eigenfunctions of the covariance function 𝐶(𝑥, 𝑦), whereas 𝜉𝑖 is a set of independent 

identically distributed normal variables. Given that the covariance function is 

bounded, symmetric and positive definite, it has the following eigen-expansion [137]: 

 𝐶(𝑥1, 𝑦1; 𝑥2, 𝑦2) = ∑𝜆𝑖

∞

𝑖=1

𝑓𝑖(𝑥1, 𝑦1)𝑓𝑖(𝑥2, 𝑦2) (5-32) 

The eigenvalues and the corresponding eigenfunctions are the solution of the 

Fredholm integral equation defined as [10]: 

 ∫ 𝑉(𝑥1, 𝑦1; 𝑥2, 𝑦2)
𝐷

𝑓𝑖(𝑥2, 𝑦2)𝑑𝑥2𝑑𝑦2 = 𝜆𝑖𝑓𝑖(𝑥1, 𝑦1) (5-33) 

Eq. (5-33) arises from the fact that the eigenfunctions form a complete orthogonal 

set satisfying the relation [135,136]: 

 ∫ 𝑓𝑖(𝑥, 𝑦)
𝐷

𝑓𝑗(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝛿𝑖𝑗 (5-34) 

where 𝛿𝑖𝑗 is the Kronecker delta function. 

Implementation of this discretisation technique is often hindered by the difficulty to 

solve the Frefholm integral equation shown in Eq. (5-33). Analytical solutions are 
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available only for a limited number of covariance functions [136]. In the general case, 

numerical techniques are used to approximate the eigenvalues and the 

eigenfunctions such as the wavelet- Galerkin scheme [136]. The efficiency and the 

accuracy of the technique is hence dictated by the accuracy of the eigen-pairs as 

well as the value of 𝑀. It has been shown that the performance of K-L is high only in 

the case of highly correlated stochastic fields, where only a few terms, corresponding 

to the 𝑀 larger eigenvalues are required to capture accurately variability propagation 

of the random field [134,135].  

In the case of a stochastic process defined over the interval [−𝛼, 𝛼] and [−𝛽, 𝛽] over 

the 𝑥  and 𝑦  direction, with a covariance function as defined by Eq.(5-13), the 

eigenvalues and the eigenfunctions are obtained by solving the integral equation 

(Eq. (5-33)) analytically [9]:  

for odd 𝑖: 

 𝜆𝑖 = 𝜎2 (
2𝑏𝑥

𝜔𝑥𝑖
2 + 𝑏𝑥

2

2𝑏𝑦

𝜔𝑦𝑖
2 + 𝑏𝑦

2
) (5-35) 

 

𝑓𝑖(𝑥, 𝑦) =
cos (𝜔𝑥𝑖𝑥)

√𝑎 +
sin (2𝜔𝑥𝑖𝑎)

2𝜔𝑥𝑖

cos (𝜔𝑦𝑖𝑦)

√𝛽 +
sin (2𝜔𝑦𝑖𝑎)

2𝜔𝑦𝑖

 

(5-36) 

for even 𝑖: 

 𝜆𝑖
∗ = 𝜎2 (

2𝑏𝑥

𝜔𝑥𝑖
∗2 + 𝑏𝑥

2

2𝑏𝑦

𝜔𝑦𝑖
∗2 + 𝑏𝑦

2
) (5-37) 

 
𝑓𝑖

∗(𝑥, 𝑦) =
cos (𝜔𝑥𝑖

∗ 𝑥)

√𝑎 +
sin (2𝜔𝑥𝑖

∗ 𝑎)
2𝜔𝑥𝑖

∗

cos (𝜔𝑦𝑖
∗ 𝑦)

√𝛽 +
sin (2𝜔𝑦𝑖

∗ 𝑎)

2𝜔𝑦𝑖
∗

 
(5-38) 

where 𝜔𝑖𝑗 and 𝜔𝑖𝑗
∗  are computed by the following transcendental equations: 
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 𝑏𝑗 − 𝜔𝑖𝑗 tan(𝜔𝑖𝑗𝑎) = 0 (5-39) 

 𝜔𝑖𝑗
∗ + 𝑏𝑗 tan(𝜔𝑖𝑗

∗ 𝛽) = 0 (5-40) 

for 𝑗 = 𝑥, 𝑦. 

5.3 Monte Carlo Scheme 

Monte Carlo (MC) is the most common stochastic simulation method used in the 

context of composite manufacturing, due to its simplicity [4,5,13,17]. In this method 

𝑁𝑀𝐶  random samples of the input stochastic parameters are generated using a 

random number generator and appropriate treatment to produce variables with the 

correct statistical behaviour. These are subsequently utilised to execute the direct 

model leading to a population of the response vector. Thus, the deterministic model 

runs 𝑁𝑀𝐶  times. The process outcome uncertainty is then characterised by the 

distribution of output parameters and its moments. For instance, if 𝑥𝑖  is the 

temperature overshoot of a thick laminate during its cure cycle, then the unbiased 

estimates of the mean value 𝜇𝑀𝐶  and standard deviation 𝜎𝑀𝐶  of the sample are 

defined as follows: 

 𝜇𝑀𝐶 =
∑ 𝑥𝑖

𝑁𝑀𝐶
𝑖=1

𝑁𝑀𝐶
 (5-41) 

 𝜎𝑀𝐶 = √
∑ (𝑥𝑖

2 − 𝜇2𝑁𝑀𝐶)𝑁𝑀𝐶

𝑖=1

𝑁𝑀𝐶 − 1
 (5-42)  

The accuracy of the method depends on the number of samples generated. Given 

that the mean value of a parameter converges faster than its standard deviation, the 

number of samples is determined by the convergence of the standard deviation. In 

particular, the estimate of standard deviation is inversely proportional to √𝑁𝑀𝐶 . A 

respectively large number of the deterministic model runs are required to ensure 

convergence and accuracy, implying high computational cost, especially in the case 

of large-scale stochastic problems [134]. Given that MC is providing unbiased 
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estimates of the statistical properties of the response vector, it is often used as a 

benchmark technique for validating other stochastic simulation methods.  

The Monte Carlo scheme was employed in this work to investigate the effect of all 

three input parameters (cure kinetics uncertainty, fibre misalignment, boundary 

conditions uncertainty) on the outcome of the manufacturing process.  

5.4 Probabilistic Collocation Method 

The Probabilistic Collocation Method (PCM) [138] has been developed to reduce the 

cost of computationally expensive stochastic problems. In general, the collocation 

method is a typical technique in mathematics for reducing a complex problem to a 

simpler form [139]. The main concept of PCM is to construct a response surface for 

every output parameter, as a function of uncertain parameters in the form of 

orthogonal polynomials, called the polynomial chaos. The polynomial chaos is a 

function of uncorrelated Gaussian variables and is defined as [9,10]: 

 

𝑢 = 𝑎0Γ0 + ∑ 𝑎𝑖1Γ1

∞

𝑖1=1

(𝜉𝑖1)

+ ∑ ∑ 𝑎𝑖1𝑖2Γ2

𝑖1

𝑖2=1

(𝜉𝑖1 , 𝜉𝑖2)

∞

𝑖1=1

+ ∑ ∑ ∑ 𝑎𝑖1𝑖2𝑖3Γ3

𝑖2

𝑖3=1

(𝜉𝑖1 , 𝜉𝑖2 , 𝜉𝑖3)

𝑖1

𝑖2=1

∞

𝑖1=1

+ ⋯, 

(5-43) 

where  Γ𝑝 (𝜉𝑖1 , … . , 𝜉𝑖𝑝)  is the polynomial chaos of order 𝑝  and {𝜉𝑖𝑘}𝑘=1

𝑀
 a set of 

independent identically distributed normal variables. The polynomials given in Eq. (5-

43) are orthogonal with respect to the Gaussian probability measure 𝑒−
1

2
𝜉𝑇𝜉𝑑𝜉 , which 

implies that in the case of Gaussian variables the polynomial chaos is defined as a 

set of Hermite polynomials. Therefore, the polynomial chaos of order 𝑝  can be 

expressed as [10]: 

 Γ𝑝 (𝜉𝑖1 , … . , 𝜉𝑖𝑝) = (−1)𝑝
𝜕𝑝

𝜕𝜉𝑖1 , … . , 𝜕𝜉𝑖𝑝

𝑒−
1
2
𝜉𝑇𝜉

 (5-44) 
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Details concerning the construction of the polynomial chaos can be found in [10].  

The probabilistic collocation method is used to compute the unknown coefficients in 

the polynomial chaos expansion. The residuals between the actual model outputs 

and the corresponding response surfaces are required to be zero at a set of 

collocation points. Thus, the unknown coefficients are estimated by equating the 

model outputs to the corresponding polynomial chaos expansions at a set of 

collocation points in the sample space [9]. The number of collocation points is at 

least equal to the number of unknown coefficients. Therefore, for each output 

parameter a set of linear equations results with the respective polynomial chaos 

coefficients as the unknowns. Linear solvers can be used to solve these equations. 

Having constructed a response surface for each output parameter, statistical 

analysis is carried out to quantify output parameters uncertainty. Following this 

strategy, the size of the stochastic problem is significantly reduced, since execution 

of the deterministic model is required only a few times, at the set of collocation 

points. 

The collocation points are combinations of the roots of the next higher order Hermite 

polynomial than the order of the response surface. This selection methodology is 

identical to Gaussian quadrature for integral estimation [9,139]. For instance, the first 

to third order Hermite polynomials are: 

 𝐻1(𝜉) = 𝜉 (5-45) 

 𝐻2(𝜉) = 𝜉2 − 1 (5-46) 

 𝐻3(𝜉) = 𝜉3 − 3𝜉  (5-47) 

The collocation points for a second order response surface are combinations of the 

roots of the third order Hermite polynomial (-√3, 0, +√3).  

Special care must be taken so that the collocation points are selected from regions 

of high probability. In general, it is advised that the collocation points should be close 

to the origin (0,0) and be symmetric with respect to the origin [140]. In addition, it is 

important to include the origin, since in the case of Gaussian variables it corresponds 

to the region of highest probability [9]. Therefore, in the case of a fourth order 
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response surface it is desirable to include the origin, even if it is not a root of the fifth 

order Hermite polynomial. This methodology is illustrated in Fig. 5-1. The largest 

discrepancy between the response surface and the actual model occurs at regions of 

low probability, thus only a small error is produced. The collocation method can be 

sometimes unstable; therefore, a modified regression based collocation approach is 

usually employed to improve accuracy. Given that several combinations of 

collocation points can be chosen, the number of collocation points used is higher 

than the number of the unknown coefficients, implying that the effect of each 

collocation point is reduced [9]. The steps in performing a stochastic analysis using 

PCM, are presented in Fig. 5-2.  

The Probabilistic Collocation method was applied to quantify the effect of cure 

kinetics uncertainty on temperature overshoot variability. Furthermore, PCM was 

implemented to study the influence of surface heat transfer coefficient and tool 

temperature variability on cure time. In both cases, PCM was compared to MC in 

terms of accuracy and efficiency.  

 

 

Fig. 5-1 Collocation points selection at high probability regions. 
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Fig. 5-2 Schematic representation of Probabilistic Collocation Method. 

5.5 Implementation of stochastic simulation methodology 

In this section the framework developed to couple the stochastic simulation 

methodology with the FEA solver for the investigated input parameters is described. 

Examples of the developed interfaces between the stochastic simulation models and 

the FEA solver can be found in Appendix B.  

5.5.1 Cure kinetics uncertainty/ boundary conditions uncertainty 

Investigation of the effect of cure kinetics uncertainty and boundary conditions 

uncertainty on the process outcome was carried out using both MC and PCM. 

Consequently, an interface was developed to integrate the FE cure model described 

in Chapter 4 with the two stochastic simulation models. The interface was 

implemented in FORTRAN and its functionality is shown schematically in Figure 5-3. 

Generate set of 
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Construct response 

surface of order n  for 

each output parameter 

Run deterministic 

model at set of 

collocation points

Solve set of linear 

equations for 

approximation
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The stochastic simulation model generates realisations of the stochastic parameters. 

The interface reads the MSC.MARC input file and user defined subroutines 

developed to carry out the stochastic cure simulation and identifies the location of 

the stochastic variables. A new input file and set of user subroutines are written 

using the generated realisations of the stochastic parameters. The solver is then 

called and a cure simulation is executed using the new input file and user subroutine. 

At the end of each simulation the parameters of interest are saved in a matrix. In the 

case of MC realisations of the input parameters are generated randomly and the 

process is iterated a number of times until the mean and standard deviation of the 

output parameters converge. In the case of PCM realisations of the stochastic 

variables are generated at a set of collocation points and the process is iterated a 

number of times equal to the number of collocation points. The values of the output 

parameters calculated at the set of collocation points are then used to construct the 

corresponding surrogate models. A statistical analysis is then performed using the 

developed surrogate models as described in section 5.4. Table 5-1 summarises the 

input and output parameters and the corresponding stochastic simulation method 

used for investigation of the influence of cure kinetics uncertainty and boundary 

conditions uncertainty on the process outcome using the interface illustrated in 

Figure 5-3.  
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Fig. 5-3 Interface between stochastic simulation model and FEA solver: cure 
kinetics uncertainty/ boundary conditions uncertainty. 

 

Table 5-1 I/O for interface between stochastic simulation model and FEA 
solver; cure kinetics uncertainty, boundary conditions uncertainty. 

Case study Stochastic variables Output parameters Stochastic 
simulation  

method 

 
Cure kinetics 
uncertainty 

Activation energy, 𝐸2  
Temperature 

overshoot 

 
Monte Carlo/ 
Collocation 

Reaction order, 𝑚 

Initial degree of cure, 𝑎𝑜 

 
Cure kinetics 
uncertainty 

Activation energy, 𝐸2  
 

Cure time 

 
 

Monte Carlo 
Reaction order, 𝑚 

Initial degree of cure, 𝑎𝑜 

 
Boundary 
conditions 
uncertainty 

Tool temperature  
 

Cure time 

 
 

Monte Carlo 
Ambient temperature 

Surface heat transfer 
coefficient 

Boundary 
conditions 
uncertainty 

Surface heat transfer 
coefficient 

 
Cure time 

 
Collocation 

Tool temperature 

 

Stochastic simulation 

model

Realisations of stochastic 

variables

Write new MSC.MARC 

input file/ user subroutine

MSC.MARC execution

Output parameters

Read MSC.MARC input 

file/user subroutine
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5.5.2 Fibre misalignment  

An interface between the Monte Carlo scheme and the thermo-mechanical finite 

element based cure simulation model was developed to allow quantification of the 

effect of fibre misalignment on residual stresses generation and shape distortion. 

The interface was developed in FORTRAN and its functionality is illustrated in Figure 

5-4. The stochastic simulation model generates realisations of local tow orientation 

for each layer of the fabric incorporating spatial autocorrelation. Realisations of tow 

orientation between each layer are generated independently implying that no nesting 

effects are considered. These realisations are then saved in a number of text files 

equal to the number of the layers of the fabric. Subsequently, the FEA solver is 

called and a cure simulation is executed. During the execution of the process 

simulation, the user defined subroutine developed to incorporate the constitutive 

material models is reading the generated realisations in order to incorporate fibre 

misalignment in the cure simulation model. Incorporation of fibre misalignment is 

carried out by modifying the thermal conductivity matrix, compliance tensor, cure 

shrinkage coefficient matrix and thermal expansion coefficient matrix (section 7.3.1.). 

At the end of each simulation the output parameters are saved in a matrix. This 

procedure is iterated until the mean and the standard deviation of the investigated 

output parameters converge. Table 5-2 summarises the input and output parameters 

used for investigation of the effect of fibre misalignment on the process outcome 

using the interface illustrated in Figure 5-4.  
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Fig. 5-4 Interface between stochastic simulation model and FEA solver: fibre 

misalignment.  

Table 5-2 I/O for interface between stochastic simulation model and FEA 
solver; fibre misalignment. 

Stochastic variables Output parameters Stochastic simulation 
method 

 
Local tow orientation 

Maximum longitudinal 
residual stress 

 
Monte Carlo 

Corner angle 

Twist angle 

   

5.6 Overview  

The stochastic simulation methodology presented here was implemented to carry out 

the stochastic cure simulation for the different case studies. K-L has the potential to 

represent a stochastic field with a considerably smaller number of independent 

normal variables compared to Cholesky factorisation and spectral decomposition. 

However, K-L can perform accurately only in the case of highly correlated random 

fields, unlike the other two techniques which are not limited by the correlation lengths 

of the random field. Two stochastic simulation schemes were developed; the 

traditional Monte Carlo scheme and the Probabilistic Collocation Method. Monte 

MSC.MARC execution

Stochastic simulation 

model

Realisations of local tow 

orientation  

Residual stresses/ shape 

distortion

MSC.MARC user 

subroutine

Incorporation of local tow 

orientation
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Carlo is the simplest stochastic simulation scheme and is not limited by the 

dimension of the problem but due to its random nature is computationally expensive. 

On the contrary, the collocation method has the potential to offer a solution with 

considerably lower computational cost; however, if the dimension of the problem is 

large, the collocation method is limited by the large number of polynomial chaos 

coefficients. For instance, a four-dimensional third order polynomial is consisted of 

thirty four terms. Due to its unbiased estimates, Monte Carlo is used as a benchmark 

method to assess the collocation method in terms of accuracy.  

Two interfaces were developed to link the cure simulation model with the 

corresponding stochastic simulation models for the different case studies. The first 

interface allows quantification of the effect of cure kinetics and boundary conditions 

uncertainty on the process outcome and was used to couple the FEA cure model 

with both MC and PCM. The second interface allows investigation of the influence of 

fibre misalignment on residual stress formation and shape distortion and was used to 

integrate the FEA cure simulation model with MC.   
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6. Stochastic simulation of the influence of cure kinetics 

uncertainty on temperature overshoot in composites cure 

6.1 Introduction 

The cure process can be potentially influenced by resin behaviour variability due to 

variations in handling and storage conditions.  Naturally these effects can play a role 

in cure process defects such as severe temperature overshoots or under-cure and 

also introduce variability in residual stresses/shape distortion. The effect of cure 

temperature variations and cure kinetics uncertainty on cure time has been 

investigated in a pure simulation study by coupling a cure kinetics model with a Latin 

Hypercube sampling scheme showing that cure temperature variations tend to 

dominate cure time variability [7]. Furthermore, taking into account uncertainty in the 

optimisation of the cure process, has shown that optimal cure time increases with 

increasing variability [141]. These results, which are based on simulation and 

hypothesised levels of uncertainty, gain significant practical importance when their 

conclusions are combined with experimental studies of uncertainty in cure kinetics. 

In addition to material behaviour and process parameters uncertainty, cure kinetics 

can show significant variations due to experimental characterisation and data 

reduction discrepancies [97]. 

In this chapter, results from the quantification of cure kinetics uncertainty due to 

variable resin handling/storage conditions and investigation of its propagation 

through the manufacturing process are presented, with a focus on the influence on 

temperature overshoot. A series of experiments was carried out using Differential 

Scanning Calorimetry (DSC) to characterise cure kinetics uncertainty of Hexcel 

RTM6 epoxy resin. The variability in experimental behaviour is attributed to certain 

parameters of cure kinetics as expressed by a phenomenological model and the 

corresponding stochastic object is developed. The resulting stochastic simulation 

problem is addressed by coupling the cure simulation model presented in Chapter 4 

with conventional Monte Carlo (MC) and an implementation of the Probabilistic 

Collocation Method (PCM) (Chapter 5). The Cholesky factorisation described in 

detail in section 5.2.4 is employed to model input parameters uncertainty. Two case 
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studies are investigated; cure simulation of neat resin and the cure process of a thick 

carbon fibre-epoxy laminate. In both cases, the two stochastic simulation 

approaches are compared in terms of accuracy and efficiency. 

6.2 Analysis of cure kinetics uncertainty 

Investigation of cure kinetics uncertainty required a series of experiments using 

Differential Scanning Calorimetry (DSC). The aim was to quantify cure kinetics 

uncertainty by fitting the experimental data with the cure kinetics model described in 

Chapter 4. The variability in experimental behaviour was attributed to certain 

parameters of cure kinetics as expressed by a phenomenological model and the 

corresponding stochastic object was developed.  

6.2.1  Experimental results 

A series of DSC experiments was carried out using a TA-instruments DSC Q200 

apparatus (section 3.3). Dynamic heating runs were conducted at a constant heating 

rate in order to determine the total heat of reaction released during the dynamic cure 

and the evolution of the degree of cure as well as of the reaction rate for all tests 

carried out. Samples from four different batches were tested. Tests were duplicated 

within each batch. All samples were within their lifetime. All DSC tests were carried 

out at a heating rate of 1ºC/min from 80 ºC to 240 ºC after equilibration at the initial 

temperature. The degree of cure and the corresponding cure reaction rate were 

computed by integrating the heat flow versus time data using an iterative baseline 

[104] as described in section 3.3. 

Fig. 6-1 illustrates the results expressed as reaction rate versus temperature for the 

eight tests carried out. All curves had the same qualitative characteristics with a peak 

at intermediate temperatures and a shoulder towards the end of the reaction. The 

main peak of the reaction is slightly asymmetric and ends with a plateau at a low 

reaction rate. This is followed by a drop to negligible reaction at very high 

temperatures. The repeatability is very high within the same batch with curves being 

almost identical. In particular, the absolute differences between curves of the same 

batch for values of degree of cure of 20%, 40%, 60% and 80% varied from 8×10-6 to 

2×10-5 s-1, which was more than one order lower than the values of cure reaction 

rate obtained in the experiments. This shows that the experimental and signal 
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analysis method induced negligible variations to the results. In contrast, significant 

variability can be observed in the comparison between batches. This variability is 

manifested in the maximum reaction rate, the position of the maximum, the 

temperature at which the reaction starts and the temperature of the high temperature 

shoulder. 

 

Fig. 6-1 Evolution of reaction rate as a function of temperature during dynamic 
cure at 1ºC/min. Letters denote the different batches of resin and numbers 

different samples within the same batch.  

6.2.2 Quantification of cure kinetics uncertainty 

The procedure for the estimation of the cure kinetics model parameters for the 

different DSC tests is shown schematically in Fig. 6-2. The parameters in Eqs. 

(4.11)- (4.15) were estimated using the hybrid Genetic Algorithm implemented in the 

Solver Add-in of Microsoft Excel [142]. In addition to these parameters the procedure 

was utilised to estimate the initial degree of cure, which is involved in the kinetics 

model as the initial condition of the integration.  The overall model for the kinetics 

parameters was obtained by carrying out an overall fitting based on the published 

values for the resin system presented in section 4.2.2 (Tables 4-1 and 4-2), in order 

to define relatively narrow ranges for the search. The mean value of the total heats 

of reaction computed after integration of each experimental curve was used to obtain 

an initial guess for the initial degree of cure. The determination of the cure model 
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parameters and initial degree of cure for each sample was then followed by fitting 

each experimental curve to the cure kinetics model. This procedure provided 

estimation of the mean value 𝜇 and standard deviation 𝜎 of each parameter. Table 6-

1 reports the values of the kinetics parameters estimated following this procedure. A 

sensitivity analysis was carried out by using the cure kinetics model described in 

section 4.2.2 to determine which of the parameters should be considered as 

stochastic. Each parameter was varied by one positive (+𝜎) and one negative (-𝜎) 

standard deviation and the average relative absolute differences of predicted 

reaction rates from the cure kinetics model using the estimated parameter value 

were computed. The mean between these two values was used as an indication of 

the model sensitivity to the level of variability of each of the model parameters (Table 

6-1). It should be noted that this relative difference corresponds to increments equal 

to one standard deviation around the mean, i.e. a 68% probability assuming a 

normal distribution of the variables.  

The activation energy 𝐸2 , the reaction order 𝑚  and the initial degree of cure 𝑎𝑜 

introduced the highest discrepancies, presenting a relative difference of 11%, 10% 

and 4%, respectively, whilst the rest of parameters induced discrepancies lower than 

3%. Consequently, the main sources of uncertainty in the experimental results are 

the variability in the initial degree of cure 𝑎𝑜, activation energy 𝐸2 and reaction order 

𝑚.  

Figures 6-3, 6-4 and 6-5 illustrate the sensitivity analysis results for the three 

variables. The initial degree of cure influences the temperature of reaction onset 

introducing a shift to the cure reaction rate - temperature curve.  The reaction order 

𝑚 and the activation energy 𝐸2 mainly affect the height and the position of the main 

reaction rate peak. Figures 6-6 and 6-7 present the sensitivity analysis results for the 

𝑛𝑡ℎ order term parameters in Eq. (4.11). As it can be observed, the reaction order 𝑛2 

affects the height of the main cure reaction rate peak, whilst the reaction energy 𝐸1 

influences the height and the position of the main reaction rate peak as well. 

However, given the observed spread of values, they introduce relatively lower 

discrepancies compared to 𝐸2 , 𝑚  and 𝑎𝑜  (Table 6-1), and therefore can be 

considered as deterministic.  
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Fig. 6-2 Schematic representation of methodology for quantification of cure 
kinetics uncertainty. 

Table 6-1  Estimated kinetics parameters, standard deviation of kinetics 
parameters, coefficient of variation of kinetics parameters, sensitivity 

analysis results.  

Parameter value 𝜎 𝜎/𝜇 [%] relative difference [%]  

𝐸2 [J/mol] 57820  600 1 11 

𝑚 1.29  0.094 7 10 

𝑎𝑜 0.033  0.006 19 4 

𝐴1 [1/s] 19000 677 3.5 0.4 

𝐴2 [1/s] 22080 583 2.6 1.7 

𝐴𝐷 [1/s] 6.76E+18 2.75E+17 4 0.02 

𝐸1 [J/mol] 72900 897 1 2.5 

𝐸𝐷 [J/mol] 138000 3155 2 0.5 

𝑛1 1.97 0.18 9 0.2 

𝑛2 1.53 0.09 6 2 

𝑏 0.4524 0.05 11 0.7 

𝑤 [1/K] 0.00047 8.3E-5 9 0.5 

𝑔 0.029 0.006 19 0.4 
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Fig. 6-3 Sensitivity analysis results; reaction energy 𝑬𝟐. 

 

 

Fig. 6-4 Sensitivity analysis results; reaction order 𝒎.  
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Fig. 6-5 Sensitivity analysis results; initial degree of cure 𝒂𝒐.  

 

 

Fig. 6-6 Sensitivity analysis results; reaction energy 𝑬𝟏. 
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Fig. 6-7 Sensitivity analysis results; reaction order 𝒏𝟐.  

 

6.2.3 Statistical properties of cure kinetics  

The basic statistical properties of the three stochastic variables are summarised in 

Table 6-2. The initial degree of cure presents the highest level of variation among the 

three stochastic variables. This can be attributed to thermal history variations 

between the different batches during their storage and transport. The activation 

energy 𝐸2  and the reaction order 𝑚 are strongly correlated, whilst 𝑎𝑜  and 𝑚 show 

moderate correlation (Table 6-3). 

Table 6-2 statistical properties of uncertain parameters. 

variables 𝑎𝑜 𝐸2 [J/mol] 𝑚 

𝜇 0.033 57820 1.29 

𝜎 0.006 600 0.094 

𝜇/𝜎 [%] 18 1 7 
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Table 6-3 Correlation matrix of kinetics parameters. 

variables 𝑎𝑜 𝐸2 𝑚 

𝑎𝑜 1 -0.09 0.55 

𝐸2 -0.09 1 -0.84 

𝑚 0.55 -0.84 1 

 

The Kolmogorov-Smirnov goodness of fit test was carried out to investigate which 

statistical distribution is suitable to fit the stochastic variables, due to the limited 

number of experimental data. 

The stochastic variable Ψ, with 𝜓1, 𝜓2, … , 𝜓𝑁  values is considered. If Φ∗(𝜓) is the 

cumulative distribution and Φ(𝜓)  the corresponding cumulative function of the 

statistical distribution for which the goodness of fit test is carried out for values ≤ 𝜓, 

then the maximum absolute difference between the observed and expected 

cumulative distribution for values ≤ 𝜓 is the following [143]: 

 𝐷𝑁(𝜓) = 𝑚𝑎𝑥|Φ∗(𝜓) − Φ(𝜓)| (6-1) 

If the value of 𝐷𝑁(𝜓) is high, then the hypothesis is rejected and Ψ does not follow 

the statistical distribution for which the analysis is carried out. In particular, the 

hypothesis is rejected if 𝐷𝑁(𝜓) ≥ 𝐷(𝜓) , where 𝐷(𝜓)  is the Kolmogorov-Smirnov 

critical value for a given level of confidence. Values for 𝐷(𝜓) can be found in [143]. 

Table 6-4 illustrates 𝐷𝑁(𝜓) for the three stochastic variables for a normal distribution. 

In the case of eight samples and for 99% level of confidence, 𝐷(𝜓)  is 0.54. 

Consequently, all variables can be represented by a normal random variable with 

99% level of confidence.  

Table 6-4 Maximum absolute difference between the observed and expected 
cumulative distribution; Kolmogorov-Smirnov goodness of fit. 

variable 𝑎𝑜 𝐸2 𝑚 

𝐷𝑁(𝑥) 0.10 0.17 0.17 
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6.3 Stochastic cure simulation: cure kinetics only 

The cure process of Hexcel RTM6 [101] epoxy resin was simulated by using Eqs. (4-

10)- (4-15). The stochastic cure kinetics simulation model was implemented in 

FORTRAN by coupling the cure kinetics model with MC and PCM (section 5.5.1, 

Appendix B). The instantaneous cure reaction rate and the degree of cure evolution 

were computed by integrating Eq. (4-11) numerically. Explicit numerical integration 

was employed. The applied cure profile is illustrated in Figure 6-8.  

In the collocation method implementation, a second order response surface was 

constructed to represent the cure reaction rate at every increment (Fig. 6-9). A 

modified regression-based collocation approach was implemented to improve 

accuracy. The number of collocation points used was larger than the number of the 

unknown coefficients. In particular, the number of the unknown coefficients for a 

three dimensional second order polynomial chaos is 10 [9], however, 21 collocation 

points were used in this study, implying that only 21 deterministic model runs were 

required. In addition, a crude Monte Carlo simulation was performed to carry out the 

statistical analysis using the constructed response surface.  The second order 

response surface for the maximum cure reaction rate following this approach was 

found to be: 

𝑑𝑎

𝑑𝑡

̂

𝑚𝑎𝑥
= 3.43 10−4 − 7.18 10−6𝜉1 − 3.4 10−5𝜉2 − 3.71 10−6𝜉3 − 4.93 10−7(𝜉1

2

− 1) + 1.14 10−8𝜉1𝜉2 − 2.45 10−6𝜉1𝜉3 + 2.03 10−6(𝜉2
2 − 1)

− 4.58 10−7𝜉2𝜉3 − 2.42 10−6(𝜉3
2 − 1) 

(6-2) 

 

The cure reaction rate as a function of time is illustrated in Fig. 6-9. As it can be 

observed, the maximum cure reaction rate as well as the region before the second 

ramp exhibit significant variability. This is due to the fact that the three stochastic 

variables i.e. the initial degree of cure 𝑎𝑜, activation energy 𝐸2 and reaction order 𝑚 

mainly affect the position and the height of the maximum cure reaction rate. It was 

shown that the maximum cure reaction rate presented a coefficient of variation of 

about 11%. This can introduce significant variability to the temperature overshoot as 

well as influence the cure time for different cure cycles.  Limited variability was 
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manifested in the remaining regions. Figures 6-10 and 6-11 illustrate the evolution of 

statistics of the cure reaction rate as a function time, for the two stochastic simulation 

schemes. Note that the second peak in Figure 6-9 is due to post-cure (second dwell 

in Figure 6-8). The results suggest that very good agreement is presented between 

the Monte Carlo scheme and the collocation method, especially for the mean value. 

Given that the standard deviation converges slower than the mean value, the 

convergence criteria were based on the convergence of the standard deviation. The 

convergence behaviour of the statistics of the mean and the standard deviation of 

the maximum cure reaction rate is presented in Figures 6-12 and 6-13, respectively. 

Considering a convergence criterion of 5% of coefficient of variation in the standard 

deviation of maximum cure reaction rate, a quite satisfactory convergence was 

achieved after 250 Monte Carlo realisations, with the discrepancies between the two 

methods being negligible. Examination of the probability distribution of the maximum 

cure reaction rate shown in Fig. 6-14 indicates that the maximum cure reaction rate 

can be represented by a normally distributed variable. Table 6-5 summarises the 

cure stochastic simulation results. 

The results presented here suggest that cure kinetics variability due to different resin 

handling/storage conditions can significantly affect the curing process with potential 

implications in the temperature overshoot and cure time. Moreover, the Probabilistic 

Collocation Method has clearly demonstrated its capabilities in this context providing 

an efficient way of simulating this variability. 
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Fig. 6-8  Prescribed temperature boundary condition. 

 

 

 

Fig. 6-9 Cure reaction rate vs time.  
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Fig. 6-10 Evolution of mean of cure reaction rate vs time. 

  

 

Fig. 6-11 Evolution of standard deviation of cure reaction rate vs time. 
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Fig. 6-12 Convergence of statistics of mean of maximum cure reaction rate. 

 

 

Fig. 6-13 Convergence of statistics of standard deviation of maximum cure 
reaction rate. 
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Fig. 6-14 Probability distribution of maximum cure reaction rate. 

 

Table 6-5 Stochastic cure simulation results; maximum cure reaction rate.  

Process output Statistical Moments Monte Carlo  Collocation  

Maximum cure 

reaction rate  

𝜇 [1/s] 3.4 E-04 3.4 E-04 

𝜎 [1/s] 3.7 E-05 3.6 E-05 

𝜎/𝜇 [%] 11.2 10.4 

 

6.4 Stochastic cure simulation: thick carbon fibre-epoxy laminate 

The cure of a 30 mm thick carbon fibre- epoxy laminate fabricated by infusion was 

modelled by coupling the two stochastic simulation schemes (MC, PCM) with the 

finite element based cure simulation model (section 5.5.1, Appendix B). The 

materials involved are described in Chapter 3 and the cure simulation procedures 

using MSC.Marc in Chapter 4. The applied cure profile is illustrated in Fig. 6-8. The 

lay-up sequence of the laminate considered was [0º/90º/90º/0º]25. The initial 
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the nodes in contact with the mould, whereas natural air convection with a surface 

heat transfer coefficient of 5 W/(m2K) was applied on the surface in contact with the 

vacuum bag. The parameters of investigation were the temperature overshoot and 

the time at which the temperature overshoot occurs.  

In the implementation of the collocation method a second order response surface 

was constructed for both investigated parameters and 21 collocation points were 

considered. This was followed by a Monte Carlo simulation using the corresponding 

response surfaces. The second order response surface for the temperature 

overshoot was the following: 

�̂�𝑒𝑥 = 23.19 − 2.63𝜉1 − 5.01𝜉2 − 3.32𝜉3 + 2.58 10−2(𝜉1
2 − 1) + 7.12 10−2𝜉1𝜉2

+ 1.56 10−2𝜉1𝜉3 + 0.33(𝜉2
2 − 1) + 0.29𝜉2𝜉3 − 0.36(𝜉3

2 − 1) 

(6-3) 

 

whilst the surrogate model for the time of temperature overshoot was: 

�̂�𝑒𝑥 = 6906.06 + 20.53𝜉1 − 11.22𝜉2 + 75.38𝜉3 − 1.48(𝜉1
2 − 1) − 18.92𝜉1𝜉2

− 10.03𝜉1𝜉3 + 16.29(𝜉2
2 − 1) − 55.6𝜉2𝜉3 − 8.15(𝜉3

2 − 1) 

(6-4) 

 

Figures 6-15- 6-19 present deterministic cure simulation results at three different 

points across the thickness of the laminate. Point A lies on the prescribed 

temperature boundary condition; point B is located at the centre of the laminate and 

point C lies on the natural air convection boundary condition at the top of the 

laminate. A large out of plane temperature gradient is present due to the low thermal 

conductivity of the material in the through the thickness direction, as illustrated in 

Figures 6-15 and 6-16. The temperature at points B and C is initially lower than the 

prescribed temperature, whereas a temperature overshoot occurs at the beginning of 

the second dwell due to high exothermic heat. This is followed by a decrease until 

the end of the cycle. However, the temperature at point C is lower than that of point 

B throughout the duration of the cycle due to dissipation of heat caused by natural air 

convection. In addition, heat dissipation introduces higher temperature gradients 

over time at point C. These phenomena lead to different cure reaction rate and 

degree of cure evolution through the thickness of the laminate, as shown in Figures 

6-17 and 6-18, respectively. As it can be seen the onset of the reaction is shifted 

from point A to point C with point C presenting the highest maximum cure reaction 
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rate and point B and point A to follow. This is explained by the different temperature 

gradients over time observed through the laminate thickness (Figure 6-16). As 

illustrated in Figure 6-18 the degree of cure at point B and C is lower than the 

nominal value at the initial stage of the process, whilst it increases abruptly at the 

time of temperature overshoot. Similarly to temperature point C presents lower 

degree of cure than point B throughout the cycle due to heat dissipation.  

 

 

Fig. 6-15 Colour map of laminate temperature; point A prescribed temperature 
boundary condition, point B centre of the laminate, point C natural air 

convection boundary condition. Deterministic model results. 
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Fig. 6-16 Evolution of laminate temperature; point A prescribed temperature 
boundary condition, point B centre of the laminate, point C natural air 

convection boundary condition. Deterministic model results. 

 

 

Fig. 6-17 Evolution of cure reaction rate; point A prescribed temperature 
boundary condition, point B centre of the laminate, point C natural air 

convection boundary condition. Deterministic model results. 
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Fig. 6-18 Evolution of laminate degree of cure; point A prescribed temperature 
boundary condition, point B centre of the laminate, point C natural air 

convection boundary condition. Deterministic model results. 
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in Figure 6-21 indicates that temperature overshoot can be considered a normally 
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overshoot in the case of MC (Figure 6-24) is due to the fact that a fixed number of 

time increments was used in the FEA solver. Refining the time increments could 

overcome this issue, however, this would increase the computational cost 

significantly especially in the context of stochastic simulation. 

 

Fig. 6-19 Convergence of statistics of mean of temperature overshoot. 
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Fig. 6-20 Convergence of statistics of standard deviation of temperature 
overshoot. 

 

 

Fig. 6-21 Probability distribution of temperature overshoot. 
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Fig. 6-22 Convergence of statistics of mean of time of temperature overshoot. 

 

 

 

Fig. 6-23 Convergence of standard deviation of time of temperature overshoot. 
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Fig. 6-24 Probability distribution of time of temperature overshoot. 

 

Table 6-6 stochastic cure simulation results; temperature overshoot, time of 
temperature overshoot. 

Process output Statistical 

moments 

Monte Carlo collocation 

 

Temperature overshoot  

 𝜇 [ºC] 23.2 23.2 

𝜎 [ºC] 7.3 6.6 

𝜎/𝜇 [%] 31.4 28.6 

Time of temperature 

overshoot  

𝜇 [s] 6937 6906 

𝜎 [s] 119 107 

𝜎/𝜇 [%] 1.7 1.6 

The stochastic cure simulation results are summarised in Table 6-6. Both MC and 

PCM have the capability of capturing variability propagation, with the MC presenting 

a computationally expensive and rich solution and the PCM offering an efficient 

approximation (e.g. for the given case, the computational cost of the PCM is 2 % of 

that of the MC), with comparable accuracy. The results presented here show that 

cure kinetics uncertainty can introduce significant variability in temperature overshoot 

with considerable cost implications in industrial practice, especially in the case of 
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ultra-thick complex geometry components where exothermic effects can be severe. 

Consequently, variability effects should be incorporated in cure profile optimisation to 

minimise the probability of resin degradation due to temperature overshoot variations 

whilst using a process design as efficient as possible in terms of duration and energy 

consumption. This can be achieved by integrating the stochastic simulation 

methodology presented here with an optimisation tool.  

6.5 Overview 

The methodologies demonstrated here allow the quantification of the influence of 

variability on the cure process outcome. The experimental results showed that the 

cure behaviour of high specification thermosets involves uncertainty, which in turn 

can introduce significant variability to the process outcome. It was found that the 

main source of uncertainty is caused by variations in the initial degree of cure, 

activation energy and reaction order. The stochastic simulation results suggested 

that temperature overshoot can present a coefficient of variation of about 30 %, with 

potential implications in the amount of scrap during the manufacturing process of 

composite materials. Furthermore, the time of temperature overshoot showed a 

coefficient of variation of about 1.7 %. The collocation method has clearly 

demonstrated its capabilities in this context, inducing tremendous advantages 

(computational time of the PCM is 2 % of that of the MC) in terms of computational 

time compared to MC with comparable accuracy. 
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7. Stochastic simulation of the influence of fibre path variability on 

residual stress and distortion generated during composites cure 

7.1 Introduction 

Fibre misalignment is mainly associated with in-plane and out-of-plane tow waviness 

and can be caused during the manufacturing, transport and storage of dry fabrics 

and pre-pregs as well as during forming/draping of doubly curved parts where the 

fabric is subjected to considerable shear deformation, which may intensify the 

already existing geometrical heterogeneities. Fibre misalignment along with fibre 

volume fraction variations can potentially affect the mechanical, thermo-mechanical 

and thermal properties of the material during the curing process. For instance, the 

compressive strength of the material is the property with the highest sensitivity to 

local variations in the orientation of the reinforcement [144]. Therefore, fibre 

architecture plays a crucial role in the structural performance of composite materials 

governing non-linear phenomena such as failure and damage initiation. Furthermore 

these effects can effect cure process defects and introduce variability in residual 

stresses/shape distortion. Residual stresses are of crucial importance since they can 

initiate delamination, matrix cracks and distortion such as warpage and spring-in 

affecting the performance and dimensional fidelity of the produced part [145-147].  

The influence of geometrical heterogeneity effects on the cure process has received 

little attention so far in the literature and consequently has not been investigated 

explicitly. A characterisation and modelling approach that takes these effects into 

consideration explicitly can be beneficial as it allows quantification of corresponding 

process outcome variability within a stochastic simulation framework.  

In this chapter the methodology developed to characterise and model in plane fibre 

misalignment in non-crimp fabrics described in chapter 3 and 5 is used to investigate 

the influence of fibre misalignment on the cure process and its outcome. The image 

analysis methodology based on fast Fourier Transform (FFT) and correlation 

analysis presented in section 3.4 was used to measure local fibre angle variability on 

a ±45º NCF. The autocorrelation structure of the fabric is modelled using a two- 

dimensional second-order autoregressive process, the Ornstein-Uhlenbeck (OU) 
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sheet described in section 5.2.3. Generation of realisations of the tow orientations of 

the textile was performed using Cholesky factorisation. The resulting stochastic 

process is simulated by coupling the coupled thermo-mechanical cure simulation 

model, described in Chapter 4 with the Monte Carlo (MC) scheme (section 5.5.2, 

Appendix B). This stochastic simulation approach is applied to the cure process of a 

bracket carbon fibre-epoxy subcomponent with three different lay-up sequences to 

study the effect of fibre misalignment on residual stress generation and shape 

distortion. 

7.2 Analysis of fibre misalignment of non-crimp fabrics 

A set of digital images were acquired from each side (upper/lower) of the 6k carbon 

fibre ± 45º NCF HTS Hexcel [102] as detailed in section 3.4. The image analysis 

results are illustrated as two lines; (i) stitch orientation, set always at 0º, (ii) carbon 

tow orientation (Figure 7-1).  

It was indicated that the analysis results do not depend on the grid size in terms of 

variance and autocorrelation structure.  

 

 

Fig. 7-1 Image analysis of ± 45º NCF. 

 

 a b

40 mm

Outcome of image analysis of  45º NCF.

53 mm
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7.2.1  Statistical properties and spatial autocorrelation 

Table 7-1 summarises the basic statistical properties of tow orientation of the 6k 

carbon fibre ± 45º NCF HTS. The experimental results indicated that both sides 

present identical statistical behaviour in terms of standard deviation and 

autocorrelation structure. The probability distributions of the upper and lower side of 

the ± 45º NCF are depicted in Figures 7-2 and 7-3, respectively. Fibre angles were 

measured in an anti-clockwise direction relative to the stitch of the fabric (0º) as 

depicted in Figure 7-1. The statistical properties detailed in Table 7-2, include the 

average 𝜇  and the standard deviation 𝜎  of the sample field. The fabric showed 

variability in tow orientation of about 1.2º. This result should be compared with the 

standard deviation obtained for the set of images from a single location which was 

0.1º, showing that the experimental and signal analysis method introduced negligible 

variations to the results. The results reported in Table 7-2 show that there is no 

correlation between tow orientations of the two sides. Examination of Figures 7-2 

and 7-3 suggests that tow orientation in both sides can be represented by a normally 

distributed variable. The discrepancies between the experimental data and 

corresponding normal fits can be attributed to the fact that only one sample was 

used to characterise fibre misalignment. 

Table 7-1 Statistical properties of tow orientation of carbon fibre ± 45º NCF.  

variable upper side lower side 

𝜇 [º] 45 -45 

𝜎 [º] 1.2 1.2 

 

Table 7-2  Correlation matrix of tow orientation of carbon fibre ± 45º NCF. 

variable upper side lower side 

upper side 1 0.014 

lower side 0.014 1 
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Fig. 7-2 Probability distributions of fibre orientation of carbon fibre ± 45º NCF; 

upper side. 
 
 

 
Fig. 7-3 Probability distributions of fibre orientation of carbon fibre ± 45º NCF; 

lower side. 

 
The autocorrelation structure of the orientation of the tows was investigated in order 

to estimate the spatial dependence of variability. The method of moments was used 

to quantify spatial autocorrelation as a function of distance and direction [13]. The 

correlation between two samples of all pairs of points obtained from the experimental 

results located at a specific distance and direction was calculated and is reported in 

Figure 7-4 as a function of distance. It can be observed that fibre misalignment of the 

± 45º NCF exhibits high anisotropic spatial autocorrelation with the major direction of 

autocorrelation coinciding with the direction of the stitch (0º). This would indicate that 
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a major part of the misalignment of non-crimp fabrics is introduced during the 

stitching process. Autocorrelation in the ±25º directions reaches a value close to zero 

at about 40 mm, whilst autocorrelation in ±50º and ±75º directions shows a faster 

decay reaching zero at approximately 25 mm. It can be observed, that the 

autocorrelation in opposite directions is very similar, suggesting that the 

autocorrelation structure of this fabric is quadrant symmetric. The fluctuations 

observed above 50 mm can be attributed to long term trend effects.  Spatial cross-

correlation between orientation of the tows of the two sides was found to be 

negligible.  

 

Fig. 7-4 Directional autocorrelation of fibre orientation of carbon fibre ± 45º 
NCF. 

 

7.2.2 Stochastic textile simulation 

The random field was modelled using a two-dimensional autoregressive random 

process, the Ornstein-Uhlenbeck sheet (OU) (section 5.2.2), as shown in Eq. (5-13).  

Estimation of 𝑏𝑥 and 𝑏𝑦 in Eq. (5-13) was carried out using least squares and it was 

performed by the Evolutionary Optimisation method implemented in Microsoft Excel 

[148]. This approach yielded a value of 20.21 mm for 𝑏𝑥 and 4.67 mm for 𝑏𝑦.  

Cholesky factorisation, spectral decomposition and the Karhunen–Loève (K–L) 

expansion as presented in chapter 5 were utilised to simulate fibre misalignment of 

the 6k carbon fibre ± 45º NCF HTS. The three discretisation techniques were 
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compared in terms of efficiency and accuracy. Figures 7-5 and 7-6 illustrate the 

autocorrelation of the simulated tow orientation generated on a 68×22 grid with 5mm 

spacing. The autocorrelation of the sample field generated using the K-L is not 

presented due to the poor quality of results. This is attributed to the fact that the 

performance of the K-L is high only in the case of highly correlated stochastic fields 

[135]. The intervals 𝑁𝑥 and 𝑁𝑦 (section 5.2.3) were set at 68 and 22, respectively, in 

order to compare the Cholesky factorisation and the spectral decomposition in terms 

of accuracy and efficiency. It can be observed that both discretisation techniques can 

reproduce the stochastic field with very good accuracy, with the discrepancies 

between the two methods being negligible. In addition, there were some 

discrepancies between the two techniques and the experimental data at the region of 

the plateau; however this introduces a negligible error since the autocorrelation is 

close to zero at this region. Therefore, given the similar computational effort, both 

techniques are capable of modeling fibre misalignment of the fabric of this study, 

with quite good accuracy. Consequently, the Cholesky method was considered to be 

the most appropriate technique to reproduce the stochastic field of this study, due to 

its simplicity in comparison to spectral decomposition.    

 

 

Fig. 7-5 Directional autocorrelation of simulated tows; 0º.  
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Fig. 7-6 Directional autocorrelation of simulated tows ±25 º. 

  

7.3 Stochastic cure simulation  

A coupled thermo-mechanical cure simulation model was implemented in the finite 

element analysis solver MSC.Marc as described in Chapter 4. The model was three 

dimensional and transient. The materials considered were HTS carbon fibre [102] 

and Hexcel RTM6 [101] epoxy resin. The material sub-models of cure kinetics, 

specific heat capacity, thermal conductivity,  moduli, cure shrinkage and thermal 

expansion were implemented in user defined subroutines UCURE, USPCHT, 

ANKOND, HOOKLW, USHRINKAGE and ANEXP [111], as described in chapter 4. 

The parameters required for the cure kinetics material sub-model were those 

obtained from the DSC tests, as reported in section 6.2.2.  

The cure of an angle shape carbon fibre- epoxy subcomponent was modelled by 

coupling a Monte Carlo scheme with the finite element cure simulation model. The 

bracket is 2 mm thick, with two arms of 100 mm in length whilst the inner radius is 3 

mm (Figure 7-7). The width of the part is 40 mm.  The applied cure profile and the 

nominal evolution of the degree of cure at the boundary are illustrated in Figure 7-8. 

Three different lay-up sequences were investigated: a cross-ply [0/90/90/0]s , and 

bias-ply [45/-45/-45/45]s  and a quasi-isotropic (QI) [0/45/-45/90]s laminate; here all 

orientations are with respect to the long axis of the component. The initial 

temperature was set at 15 ºC and was applied to all the nodes of the model. A 

prescribed temperature boundary condition defined by the cure profile was applied to 
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the nodes in contact with the mould, whereas natural air convection with a surface 

heat transfer coefficient of 5 W/(m2K) was applied on the surface in contact with the 

vacuum bag.   

Generation of residual stresses/shape distortion is mainly caused by thermal 

expansion coefficient mismatch between the different layers of the material, resin 

cure shrinkage and tool-part interactions [149]. The latter was not taken into 

consideration since the aim of this study was to investigate the influence of inherent 

material properties variability on the cure process.  

 

Figure 7-7 Angle shape carbon fibre- epoxy subcomponent. 

 



Chapter 7 

108 
 

 

Fig. 7-8 prescribed temperature boundary condition, degree of cure at 
boundary. 

7.3.1 Incorporation of fibre misalignment 

Incorporation of local tow waviness was carried out by modifying the thermal 

conductivity matrix, compliance tensor, cure shrinkage coefficient matrix and thermal 

expansion coefficient matrix. This was performed by applying the coordinate 

transformation corresponding to the rotation of the principal axis of the individual 

plies by the angle corresponding to the local fibre misalignment of each element.   

7.3.1.1 Thermal conductivity 

The textile used in this study comprised unidirectional layers. The rotation 

transformation of the components of the conductivity matrix (Eq. 4-45) of a single 

lamina for an in plane rotation is given by the following relations [120]: 

 𝐾11
′ = 𝐾11 cos2(𝜃) + 𝐾22 sin2(𝜃) (7-1) 

 𝐾22
′ = 𝐾22 cos2(𝜃) + 𝐾11 sin2(𝜃) (7-2) 

 𝐾12
′ = (𝐾11 − 𝐾22) cos(𝜃) sin(𝜃) = 𝐾21

′  (7-3) 
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 𝐾33
′ = 𝐾33 (7-4) 

Here 𝐾11, 𝐾22 and 𝐾33 denote the thermal conductivity in the three principal lamina 

directions respectively, whilst 𝜃  is the angle between the perfect nominal tow 

orientation and the local fibre misalignment. 

7.3.1.2 Mechanical/ thermo-mechanical properties 

The rotation transformation of the stress tensor 𝝈 for an in plane rotation 𝜃 can be 

computed using directional cosines and is given by 𝝈′ = 𝑱𝝈𝝈 [150]:  
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where 𝑐 = cos 𝜃  and 𝑠 = sin 𝜃 . Similarly, the rotation transformation of the strain   

tensor is given by 𝜺′ = 𝑱𝝐𝜺 [150]: 
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(7-6) 

The rotation transformation for the compliance matrix 𝑸 is defined as [151]:  

 𝑸′ = 𝑱𝝐𝑸𝑱𝝈
−1 (7-7) 

The cure shrinkage and thermal expansion coefficient matrices are rotated using 

directional cosines as follows [150]:  
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7.3.2 Stochastic cure simulation results 

Figure 7-9 illustrates the final stress state in the fibre direction of the outer layers and 

the final distortion of the component for the deterministic model and one realisation 

of the stochastic simulation for each case study. It should be noted that the distortion 

shown in the deformed shape is multiplied by a factor of 50 to facilitate visualisation.  

Compressive residual stresses are generated in the longitudinal direction whilst 

tensile residual stresses are generated in the transverse direction, due to the fact 

that the response of the ply in the longitudinal direction is dominated by the fibre 

properties and in the transverse direction by the matrix. Shape distortion in the form 

of spring-in was observed in the case of both the deterministic models and the 

models incorporating variability in fibre orientation. This is a result of the difference in 

thermo-mechanical behaviour between the out-of-plane and the in-plane directions.  

In addition to this type of distortion, laminates with stochastic fibre orientation present 

qualitative differences compared to the nominal cases, as shown in Figure 7-9.  In 

the case of the cross-ply and quasi-isotropic laminates a twist is present in the 

realisations of the stochastic model. The twist tends to be more pronounced in the 

cross ply than in the quasi-isotropic layup. A similar effect occurs in the bias ply 

laminate, with the qualitative difference that distortion is manifested mainly as 

bowing of the flange. These effects are due to deviations from the perfect nominal 
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orientations which induces local asymmetry and imbalance in the layup. The 

differences in the type and magnitude of distortion are governed by the differences in 

stiffness in each layup. In the case of the cross ply laminate small variations in fibre 

angle induced a twisting moment that is not resisted sufficiently by the material, 

given that no fibres are aligned to the bias direction. As a consequence, twisting 

becomes the dominant mode of distortion. In contrast, in the case of the bias layup 

twisting is counteracted by the ±45º layers, whereas any asymmetry induced 

bending moment is not resisted sufficiently, due to the lack of fibres aligned to the 

longitudinal direction of the component, resulting in some bowing.  The case of the 

quasi-isotropic laminate is intermediate, with twisting being the main mode of 

distortion due to the fact that the outer layers are 0º and the overall twisting kept 

significantly lower than in the case of the cross ply laminate.  
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Fig. 7-9 Residual stress of the outer layers in the fibre direction at the end of 
the process after release from the tool and final distortion multiplied by a 

factor of 50: (a) cross ply-deterministic model; (b) cross ply-stochastic model; 
(c) bias ply-deterministic model; (d) bias ply-stochastic model; (e) quasi-

isotropic-deterministic model; (f) quasi-isotropic-stochastic model. 
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Here, the convergence criterion was based on the convergence of the standard 

deviation; 5% of coefficient of variation in standard deviation of the output 

parameters. Satisfactory convergence was obtained in the Monte Carlo simulation 

for the first and second statistical moments of maximum longitudinal residual stress 

of all layers in the fibre direction after 200 iterations as shown in Figures 7-10 and 7-

11. The results suggest that maximum longitudinal residual stress have a coefficient 

of variation of 2.3, 1.4 and 1.2 % (standard deviation of 1.29, 0.76 and 0.75 MPa), for 

the cross ply, bias ply and quasi-isotropic laminate respectively. Examination of the 

probability distributions shown in Figure 7-12 indicates that maximum stress can be 

considered a normally distributed random variable for all three lay-ups. The mean 

value of stress is higher than the corresponding nominal value resulting from the 

deterministic simulation in all three case studies, as shown in Figure 7-12. This is 

due to the fact that the distribution of residual stresses over the laminate depends on 

the local properties of the laminate and deviations of the nominal fibre orientation at 

a local level generate higher levels of stresses locally.  

 

Fig. 7-10 Convergence of Monte Carlo simulation: mean of maximum 
longitudinal residual stress.   
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Fig. 7-11 Convergence of Monte Carlo simulation: standard deviation of 
maximum longitudinal residual stress.   

 

 

Fig. 7-12 Probability distribution of maximum longitudinal residual stress. 

Figures 7-13 and 7-14 depict the convergence of the mean and standard deviation of 

corner distortion of the lower flange, respectively. The corner distortion refers to the 

angle observed at the edge of the lower flange 100 mm distance from the corner and 

it is a combination of spring-in and bowing effects. As it can be observed, 
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satisfactory convergence was obtained for the mean and standard deviation of the 

corner angle for all three cases. The distortion angle exhibits small variation with a 

standard deviation not higher than 0.05 º for all lay-ups and can be represented by a 

normally distributed variable as shown in Figure 7-15. In addition, small differences 

exist between the mean values of distortion angle for the different lay-ups. Given that 

the effective in-plane CTE is the same for the three lay-ups, this can be attributed to 

the presence of twist and bowing effects. Examination of Figures 7-16 and 7-17 

indicates that a quite satisfactory convergence was obtained after 200 Monte Carlo 

iterations for both the statistical moments of the twist angle. It should be noted that 

twist refers to the angle observed at the edge of the upper flange 100 mm distance 

from the corner. Figure 7-18 shows that twist angle can be represented as a normal 

random variable for the three lay-up sequences studied.  

The mean values of both distortion angle and twist converge to values close to the 

corresponding results from the deterministic simulation for all three lay-ups. 

Examination of the deterministic model results illustrated in Figure 7-18 suggest that 

the quasi-isotropic laminate presents a small but finite twist, with the bias-ply and 

cross-ply laminate showing negligible twist. In the case of the deterministic model the 

perfect cross ply laminate presents no twist due to the fact that no twisting moment is 

generated. In the case of the perfect bias-ply lay-up twisting is counteracted by the 

±45º layers, whereas in the case of the perfect quasi-isotropic lay-up the twisting 

moment is not resisted sufficiently at the bias direction showing the highest levels of 

twist. This explains the deterministic model results for the maximum longitudinal 

stress shown in Figure 7-12; higher levels of distortion correspond to higher stress 

levels. The results suggest that the twist presents a standard deviation of 0.4º, 0.01º 

and 0.08º, for the cross ply, bias ply and quasi-isotropic laminate respectively. This is 

attributed to the differences in stiffness in the bias direction in each lay-up. 

Therefore, the cross ply laminate is the most susceptible in local deviations from the 

perfect nominal orientations, presenting the highest variability in twist given that no 

fibres are aligned in the ±45º. In addition, the different levels of variability in twist can 

explain the differences in standard deviation of maximum stress between the three 

lay-ups as shown in Figure 7-11. Although for small levels of misalignment the bias 

ply laminate is expected to show the highest variability in the effective in plane CTE, 

the quasi-isotropic laminate exhibits the lowest variation in corner angle, whilst the 
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other two lay-ups show higher and similar levels of variability. This is due to the fact 

that the cross ply and bias ply laminates have high levels of variability in twist and 

bowing, resulting to higher levels of variability in corner angle, given that the 

variations are a combination of spring-in, twist and bowing. In the case of the quasi-

isotropic laminate the low levels of variability in twist and bowing lead to small 

variability in corner angle. Table 7-3 summarises the deterministic and stochastic 

cure simulation results for the three case studies.  

 

Fig. 7-13 Convergence of Monte Carlo simulation: mean of corner angle of the 
lower flange. 

 

0.79

0.8

0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0 50 100 150 200

M
e

a
n

 o
f 
c
o

rn
e

r 
a

n
g
le

 [
º]

Monte Carlo iterations

cross ply

bias ply

QI



Chapter 7 

117 
 

 

Fig. 7-14 Convergence of Monte Carlo simulation: standard deviation of corner 
angle of the lower flange. 

  

 

Fig. 7-15 Probability distribution of corner angle. 
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Fig. 7-16 Convergence of Monte Carlo simulation: mean of twist angle of the 
upper flange.   

 

 

Fig. 7-17 Convergence of Monte Carlo simulation: standard deviation of twist 
angle of the upper flange.   
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Fig. 7-18 Probability distribution of twist angle of upper flange.  

Table 7-3 Deterministic model and stochastic simulation results: maximum 
longitudinal residual stress, corner angle and twist angle of the upper flange. 

Parameter Results Cross-ply Bias-ply QI 

Maximum 

longitudinal residual 

stress 

Deterministic [MPa]  52.4 53.4 57.5 

𝜇 [MPa] 56.9 56.1 60.5 

𝜎 [MPa] 1.29 0.76 0.75 

Corner angle  Deterministic [º] 0.81 0.82 0.8 

𝜇 [º] 0.81 0.82 0.8 

𝜎 [º] 0.04 0.04 0.01 

Twist angle-upper 

flange 

Deterministic [º] 0 0.005 0.013 

𝜇 [º] -0.008 0.005 0.017 

𝜎 [º] 0.4 0.001 0.08 
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The results presented here indicate that fibre misalignment in the order of 1º can 

introduce significant variability in residual stresses, implying that in the case of higher 

levels of variability phenomena such as matrix pre-cracking may be affected at a 

local level. In addition, it is shown that fibre misalignment can considerably alter the 

final shape of the formed part depending on the lay-up sequence. 

A sensitivity analysis was carried out to investigate the effect of different levels of 

variance and autocorrelation on the process outcome in the case of the cross ply 

laminate. In particular, three different case scenarios were investigated to study the 

effect of different levels of variance by setting a standard deviation of 2.5º, 5º and 

7.5º, whilst the experimental values of correlation lengths were used in all three 

cases. In addition, four different case scenarios were studied to investigate the effect 

of different autocorrelation structure by setting zero correlation lengths, correlation 

lengths half, double and quadruple the corresponding experimental values, whilst the 

experimental value of standard deviation was used in all four cases. These results 

were used alongside the results of the deterministic model and the results of the 

variability corresponding to the experimental results. All the cases considered are 

summarised in Table 7-4. 

Table 7-4 Sensitivity analysis case scenarios. 

Cases 𝜎 [º] 𝑏𝑥 [mm] 𝑏𝑦 [mm] 

Case 1 2.5 20.21 4.67 

Case 2 5 20.21 4.67 

Case 3 7.5 20.21 4.67 

Case 4 1.2 0 0 

Case 5 1.2 10.11 2.34 

Case 6 1.2 40.42 9.34 

Case 7 1.2  80.84 18.68 



Chapter 7 

121 
 

The dependence of output variability on standard deviation of the fibre misalignment 

is illustrated in Figure 7-19. As it can be observed in Figure 7-19a both the maximum 

longitudinal stress average and standard deviation increase with increasing the 

standard deviation. The mean of maximum residual stress increases due the fact 

that twist is more pronounced due to higher levels of variability; higher levels of 

distortion result in higher stresses. The increase of the maximum stress average is 

non-linear and convex, i.e. the sensitivity of maximum stress on standard deviation 

of fibre misalignment increases with increasing input variability. This can be 

explained by the local character of the generation of residual stress which results in 

higher maximum stress over the whole component as the probability of extreme local 

variability increases. The trend of maximum residual stress standard deviation is 

linear as a function of the standard deviation of tow orientation (Figure 7-19a), with a 

sensitivity of about 1 MPa per 1º of misalignment. This behaviour points to a generic 

behaviour of a strong dependence of maximum stress and of the likelihood of 

potential damage on increased variability with the effect being accentuated as 

variability reaches higher levels. This is combined with a slow decrease in coefficient 

of variation of the maximum residual stress, indicating that the certainty of the highly 

non-desirable possibility of damage due to the residual stress increases with 

increasing variability.   

Similarly to residual stresses, increasing the standard deviation in local tow 

orientation induces an increase of the standard deviation in both corner and twist 

angle (Figure 7-19b). This effect is non-linear following a concave dependence, i.e. 

the positive sensitivity of both corner and twist angle on the standard deviation of 

fibre misalignment decreases with increasing variability. This can be explained by 

the stronger random character of variability as standard deviation increases at the 

same level of autocorrelation length. Since macroscopic manifestations of variability, 

such as the twist and corner angle, are affected by the misalignment over an area of 

the component the increase in random misalignment, whilst global imbalance of the 

layup is kept at the same level, results in a lower sensitivity at higher levels of 

variability. 
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a 

 

b 

 

Figure 7-19 Sensitivity analysis results, standard deviation: (a) maximum 
longitudinal stress; (b) shape distortion.  
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Figure 7-20 illustrates the effect of correlation lengths. It can be observed that the 

influence on the mean of maximum residual stress is negligible, whilst the standard 

deviation of maximum residual stress presents a slight increase as the correlation 

length increase from zero to the nominal values with a plateau occurring at higher 

values of correlation lengths (Figure 7-20a). This can be attributed to the fact that 

formation of residual stresses is a local phenomenon; therefore it is governed by 

local tow orientation rather than the dependence of fibre misalignment over the 

space domain. The slight initial increase in standard deviation of maximum residual 

stress is due to the fact that tail events are reinforced due to the increased 

correlation; this influences the standard deviation but not the maximum as the effect 

is symmetric. The effect on standard deviation becomes weaker at high correlation 

lengths (over 20 mm in the x direction) as the characteristic patches of variability 

reach a size similar to the width of the component (40 mm).   

The standard deviation of both corner and twist angles increases as correlation 

lengths increase. This is attributed to the fact that shape distortion is a macroscopic 

phenomenon and it increases as the imbalances in layup introduced by variability 

increases in size. The dependence is non-linear with a convex curvature at low 

autocorrelation lengths and a concave curvature at high lengths. The initial increase 

in sensitivity is due to the stronger effect of macroscopic balances. The sensitivity 

dependence reverses over 20 mm in the x direction as the size of misaligned areas 

reached the size of the component. Table 7-5 summarises the sensitivity analysis 

results for the seven case scenarios.  
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a 

 

b 

 

Figure 7-20 Sensitivity analysis results, autocorrelation: (a) maximum 
longitudinal stress; (b) shape distortion.  
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Table 7-5 Sensitivity analysis results. 

Parameter Results  Case 1  Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 

Maximum 
longitudinal 

residual 
stress 

𝜇 [MPa] 64.3 82.1 103.8 56.16 
 

56.75 56.74 56.27 

𝜎 [MPa] 2.5 4.8 6.8 0.75 1 1.4 1.4 

Corner angle 𝜎 [º] 0.08 0.13 0.17 0.01 0.024 0.06 0.09 

Twist angle 𝜎 [º] 0.74 1.14 1.44 0.1 0.24 0.6 0.9 

7.4 Overview  

The methodologies demonstrated in this chapter allow the quantification of the 

influence of variability in fibre orientation on the cure process outcome. The 

experimental results showed that high specification fabrics can involve considerable 

geometrical variability, which in turn can introduce significant variation to the process 

outcome. It was found that tow orientation of high specification carbon NCFs can 

vary with a standard deviation of 1.2º, showing high anisotropic autocorrelation with 

the major direction of autocorrelation coinciding with the direction of the non-

structural stitching of the fabric. Furthermore, it was shown that the Cholesky 

factorisation and spectral decomposition are capable of representing the spatial field 

accurately with the same accuracy and efficiency. On the contrary, the Karhunen- 

Loève expansion yielded poor results for the given study. The Cholesky method was 

deemed to be the most appropriate technique to reproduce the stochastic field of this 

study due to its simplicity in comparison to the spectral decomposition.   

The stochastic simulation results suggested that maximum residual stress can 

present a coefficient of variation up to about 2%, whilst the average level of stress is 

higher than that for the nominal fibre orientations, with potential implications in the 

performance of manufactured parts. Although the variability in distortion angle is 

small in absolute terms, considerable qualitative variations in shape can be induced 

by the presence of fibre geometrical variability. Moreover, the way shape distortion 

due to fibre misalignment is manifested is sensitive to the lay-up, with fibre 

misalignment having a stronger effect in modes of distortion manifested in the most 

compliant direction of the component. These findings are of crucial importance since 

shape variations lead to considerable part quality and assembly issues, especially in 

the case of large components. 
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8. Stochastic simulation of the influence of boundary conditions 

and cure kinetics uncertainty on cure time in composites cure 

8.1 Introduction 

In this chapter the influence of variability on heat transfer effects occurring during the 

cure process is presented. Boundary condition uncertainty is quantified 

experimentally as detailed in section 3.5 and appropriate stochastic processes are 

developed to represent variability in tool/air temperature and surface heat transfer 

coefficient. This information is combined with the models of cure kinetics variability 

presented in chapter 6 and the overall stochastic simulation problem is addressed by 

coupling the finite element based cure simulation model (Chapter 4) with the Monte 

Carlo scheme (MC) and an implementation of the Probabilistic Collocation Method 

(PCM) presented in Chapter 5. The methodology is demonstrated in the case of thin 

carbon fibre-epoxy laminates. 

8.2 Stochastic process development  

The procedure for selecting and developing the boundary condition stochastic 

models uncertainty is illustrated in Figure 8-1. The first step is to estimate the 

autocorrelation structure of the raw data for each variable in order to investigate the 

dependence of variability on time. In the case of a stationary process no trend is 

present in the data and the autocorrelation decays close to the zero value within 

several time increments. If the autocorrelation is close to zero on average, the time 

series is considered a random sequence of observations that are independent and 

therefore can be modelled as a random variable. If the autocorrelation does not 

decay towards a negligible plateau in the long term, i.e. the population shows strong 

autocorrelation with time (the population presents a trend over time) then the 

process is considered non-stationary and de-trending needs to be applied in order to 

generate a stationary stochastic process (Figure 8-1). After removing the trends, the 

residual variability is modelled using a stationary stochastic process. This procedure 

is repeated for every experimental curve of the three parameters to model variability 

across the different experimental runs. 
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Fig. 8-1 Schematic representation of methodology for modelling of boundary 
conditions uncertainty.  

 

8.3 Boundary conditions uncertainty 

8.3.1 Experimental results 

Figures 8-2, 8-3 and 8-4 summarise the experimental results of tool temperature, 

ambient temperature and surface heat transfer coefficient evolution for the ten tests 

carried out using the experimental set-up illustrated in Figure 3-4. A variable level 

across the different experimental runs is observed for all three parameters. This 

implies that in addition to time variations there is a dependence of the underlying 

level of each parameter across the different runs.  

In terms of time dependence the tool temperature presented a periodic trend and 

short term variability as shown in Figure 8-2. The periodic trend is more pronounced 
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set up of this study.  It is expected that in the case of larger components and more 

complex geometries deviations from the nominal set point can be higher, resulting in 

a periodic trend of higher amplitude. The ambient temperature measurements exhibit 

a non-periodic long term trend and short term variability (Figure 8-3). This behaviour 

is attributed to several factors including the local temperature conditions, humidity, 

the use of heating or cooling systems and the quality of the insulation of the 

laboratory.   

The differences between the results obtained by the two heat flux sensors placed at 

different location on the vacuum bags are negligible implying that there is no spatial 

dependence of the surface heat transfer variability. The surface heat transfer 

coefficient shows short term variability and a variable level. This type of variability 

can be attributed to the fact that natural air convection is driven by buoyancy forces 

caused by density differences due to temperature variations in air. As temperature 

increases the density of the fluid in the boundary layer decreases which causes the 

fluid to rise and be replaced by cooler fluid that also will heat and rise. Consequently, 

natural air convection is strongly influenced by the motion of air streams at a local 

level. No correlation is observed between the three variables implying that variability 

is generated independently between the three variables. 

 

Fig. 8-2 Tool temperature as a function of time. 
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Fig. 8-3 Ambient temperature as a function of time. 

 

 

Fig. 8-4 Surface heat transfer coefficient as a function of time. 
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8.3.2 Stochastic processes 

Figures 8-5, 8-6 and 8-7 illustrate the autocorrelation structure for one experiment 

(Run 1) for the three variables. Each variable had identical autocorrelation structure 

across different runs. Both tool temperature and ambient temperature present long 

term strong autocorrelation (Figures 8-5 and 8-6), implying non-stationary processes. 

Autocorrelation measures the extent to which variation of a variable behaves 

similarly for specific time lags. A periodic and a constant autocorrelation structure are 

observed in the case of tool temperature and ambient temperature, reflecting the 

periodic trend (Figure 8-2) and linear trend (Figure 8-3) in the experimental data, 

respectively. Consequently, de-trending needs to be applied to generate stationary 

stochastic processes for these two variables.  The stationary stochastic process 

adopted to represent the ambient and tool temperature residuals after de-trending is 

the Ornstein-Uhlenbeck process (OU) described in detail in section 5.2.2.  

In the case of surface heat transfer coefficient the autocorrelation structure shows 

very fast decay reaching a value close to zero after the first lag of time, implying that 

heat transfer coefficient shows no serial correlation over time (Figure 8-7). Therefore, 

the surface heat transfer coefficient can be treated as a random series of 

observations over time (section 5.2.1) and modelled as follows: 

ℎ = 𝐴ℎ + 𝐵ℎ𝑦 (8-1) 

where 𝐴ℎ  expresses the level and is the mean value and 𝐵ℎ  the volatility of the 

process for each experimental run, whilst 𝑦  is a standard normal variable.  
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Fig. 8-5 Autocorrelation as a function of time lag- Run 1; tool temperature. 

 

 

Fig. 8-6 Autocorrelation as a function of time lag- Run 1; ambient temperature. 

 

 

Fig. 8-7 Autocorrelation as a function of time lag- Run 1; surface heat transfer 
coefficient. 
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Figure 8-8 illustrates the results obtained in the different steps of the analysis of tool 

temperature variability. Fast Fourier transform (FFT) implemented in MATLAB was 

used to estimate the frequency of the periodic component of the process shown in 

Figure 8-2. A cosinusoidal fit (Figure 8-8a) was performed using the generalised 

reduced gradient non-linear optimisation method implemented in Microsoft Excel 

[148] to obtain an estimate of the amplitude of the periodic component. The residuals 

from the cosinusoidal fit present strong autocorrelation; therefore linear regression 

was applied to the residuals to remove the remaining trend as shown in Figure 8-8b. 

The residuals from the linear fit are modelled using Eq. (5-3). Figure 8-8d illustrates 

the autocorrelation of simulated residuals of tool temperature generated using a time 

increment of 1.25 s. It can be observed that the OU process reproduces the decay of 

the autocorrelation structure successfully. There are some discrepancies in the 

region of the plateau; however, this introduces a negligible error since the 

autocorrelation is close to zero at this region.  

This procedure was iterated for every experimental run and yielded the following 

stochastic equation: 

𝑇𝑇 = 𝐴𝑇 + 𝐵𝑇𝑡 + 𝐶𝑇 cos(𝜔𝑇𝑡) + 𝑆𝑇 (8-2) 

The first two terms express the linear fit and represent the level and slope of each 

experimental curve, whilst 𝐶𝑇  and 𝜔𝑇  are the amplitude and the frequency of the 

cosinusoidal fit, respectively. In addition, 𝑆𝑇 expresses the mean reverting stationary 

stochastic process (OU).  

Figure 8-9 illustrates the analysis steps in the case of ambient temperature 

variability. As shown in Figure 8-9a, a linear fit was carried out to remove the long 

term trend in ambient temperature over time. The residuals resulting from the linear 

fit present strong autoregression (Figure 8-9b) and are modelled using Eq. (5-3). 

Figure 8-9c illustrates the autocorrelation of simulated residuals of ambient 

temperature generated using a time increment of 1.25 s. Similarly to tool 

temperature, the OU process is capable of capturing the decay of the autocorrelation 

structure successfully.  

Ambient temperature variability is modelled using the following stochastic relation: 
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𝑇𝐴 = 𝐴𝐴 + 𝐵𝐴𝑡 + 𝑆𝐴 (8-3) 

where 𝐴𝐴 and 𝐵𝐴 are the constants of the linear fit and represent the level and slope 

of each experimental curve, and 𝑆𝐴  is a mean reverting stochastic process 

expressed by Eq. (5-3).  

All terms in Eqs. (8-1), (8-2) and (8-3) were estimated for each experimental curve 

for the three parameters and were considered normal random variables across 

different runs constant with time. Table 8-1 summarises their statistical properties. 

Examination of Table 8-1 suggests that all three variables (tool/ambient temperature, 

heat transfer coefficient) present a significant variation in level (𝐴ℎ, 𝐴𝑇, 𝐴𝐴) across 

the different runs with  the surface heat transfer coefficient showing the highest 

variability. The mean value of 𝜆𝐴 is considerably higher than that of 𝜆𝑇, implying that 

ambient temperature shows stronger autoregression than tool temperature. 
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a 

 

b 

 

c 

 

d 

 

Fig. 8-8 Procedure of modelling of tool temperature uncertainty (a) 
cosinusoidal fit, (b) linear fit, (c) modelling of stationary process, (d) 

autocorrelation of simulated residuals over time. 
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a 

 

b 

 

                                    c 

 

Fig. 8-9 Procedure of modelling of ambient temperature uncertainty (a) linear 
fit, (b) modelling of stationary process, (c) autocorrelation of simulated 

residuals over time. 
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Table 8-1 Statistical properties of boundary conditions uncertainty across 
different experimental runs. 

Boundary 

conditions 

Stochastic 

model 

parameter 

 

Mean 

Standard 

deviation 

 

ℎ [W/m2/ºC] 

𝐴ℎ 13.47 1.65 

𝐵ℎ 1.16 0.04 

 

 

 

𝑇𝑇 [ºC] 

 

𝐴𝑇 161.59 1.39 

𝐵𝑇 0.004 0.0006 

𝐶𝑇 0.16 0.02 

𝜔𝑇 0.004 0.00006 

𝜆𝑇 1.95 0.4 

𝜇𝑇 -0.00006 0.004 

𝜎𝑇 0.21 0.004 

 

 

𝑇𝐴 [ºC] 

 

𝐴𝐴 24.5 1.2 

𝐵𝐴 -0.011 0.007 

𝜆𝐴 3.13 1.14 

𝜇𝐴 -0.055 0.18 

𝜎𝐴 0.43 0.085 

 

8.4 Stochastic cure simulation 

The cure of a 3.6 mm thick carbon fibre- epoxy laminate fabricated by infusion was 

modelled using the stochastic simulation approach developed in this study. The lay-

up sequence of the laminate is [0º/90º/90º/0º]3. The initial temperature is 15 ºC and is 

applied to all the nodes of the model. A prescribed temperature boundary condition 

defined by the cure profile is applied to the nodes in contact with the mould, whereas 

a natural air convection boundary condition is applied on the surface in contact with 

the vacuum bag. The standard cure profile for the epoxy system of this study (Hexcel 

RTM6) is used comprising two dwells at two different temperatures linked by two 
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standard ramps of 1 ºC/min. The temperature of the first dwell 𝑇1  as well as the post 

cure temperature 𝑇2 are considered stochastic following Eq. (8-2). In the case of 𝑇2 

the mean value of 𝐴𝑇 is 180 ºC.  

A time increment of 1 min is used in the cure simulation and the three parameters 

are set at the mean values of 𝐴ℎ , 𝐴𝑇  and 𝐴𝐴 , respectively. Figure 8-10 presents 

deterministic cure simulation results at three different points across the thickness of 

the laminate. The three points are located at the lower boundary (prescribed 

temperature boundary condition), middle and top (natural air convection boundary 

condition) of the laminate. An out of plane degree of cure gradient is present, due to 

heat dissipation caused by natural air convection at the top of the laminate. This 

leads to different degree of cure and cure reaction rate evolution through the 

thickness of the laminate, as shown in Figure 8-10. The onset of the reaction is 

shifted towards higher times from the lower side to the top of the laminate. This is 

explained by the presence of a temperature gradient through the thickness of the 

laminate; the temperature at the top of the laminate is lower than the control 

temperature throughout the cycle resulting in a lag in reaction progress. Similarly, the 

degree of cure at the end of the cycle is maximised on the lower face with a value of 

0.95, in contrast to a final value of 0.91 at the upper face of the curing component 

(Figure 8-10).  
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Fig. 8-10 Evolution of laminate degree of cure and temperature through the 

thickness of the laminate. Deterministic model results. 

 

8.4.1 Short term variability 

The effect of variability over time for the three parameters is investigated to study the 

influence of short term variability on the process outcome. This was carried using 

Eqs. (8-1), (8-2) and (8-3) assuming constant values for 𝐴ℎ, 𝐴𝑇 and 𝐴𝐴 equal to the 

corresponding means. Three cases are considered; surface heat transfer coefficient 

uncertainty over time only, tool temperature variability over time only and ambient 

temperature variability over time only. A time increment of 1.25 s is used in all three 

cases in order to reproduce the dependence of variability on time for these 

parameters accurately, increasing significantly the computational cost.  

 

Table 8-2 summarises the stochastic simulation results for the three cases. Figures 

8-11, 8-12 and 8-13 present the evolution of temperature and degree of cure for the 

three cases respectively. In the case of surface heat transfer coefficient variability 

over time (Figure 8-11), the temperature at the natural air convection boundary 

condition presents strong variations, governed by variations in surface heat transfer 

coefficient with time. The temperature at the middle of the laminate shows 

considerably weaker variation with lower volatility, whilst the evolution of degree of 

cure through the thickness of the laminate is not affected, implying that time 
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variations in surface heat transfer coefficient uncertainty introduces negligible 

variability on the cure process outcome. In particular, the absolute differences in the 

degree of cure between this case and the deterministic model vary from 9×10-8 to 

5×10-5.  

In the case of tool temperature variability over time, the temperature at the 

temperature boundary condition shows a periodic trend reflecting the periodic trend 

of tool temperature (Figure 8-12). Similar behaviour is observed through the 

thickness of the laminate, implying that tool temperature variations propagates 

evenly through the thickness of the laminate; however, the evolution of degree of 

cure through the thickness of the laminate is not influenced with the absolute 

differences in the degree of cure between this case and the deterministic model 

varying from 8×10-8 to 7×10-5.  

Time variations of ambient temperature uncertainty introduce negligible variability in 

the temperature field and consequently in the degree of cure of the laminate (Figure 

8-13), due to the fact that ambient temperature plays a less important role in heat 

dissipation caused by natural air convection. The absolute differences between this 

case and the deterministic model varied from 9×10-8 to 5.5×10-5. 

These results show that time variability has a negligible influence on the outcome of 

the process. This is due to the fact that for the given spread of values, the 

autoregressive nature of the stochastic parameters compensates their instantaneous 

variations over time introducing negligible variability to the cure process outcome. 

The stochastic simulation results indicate that variability over time introduces 

negligible variations in cure time, with a coefficient of variation of 0.9 %, 0.01% and 

0.007% for the surface heat transfer coefficient, tool temperature and ambient 

temperature, respectively. In addition, the mean value of cure time converges to the 

corresponding nominal value resulting from the deterministic simulation in all three 

case studies, implying that the response of the model is not biased by short term 

variability. Therefore, stochastic simulation using the three levels as the only 

stochastic parameters and a time increment of 1 min in the simulations is sufficient to 

capture variability propagation accurately.  
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Fig. 8-11 Surface heat transfer coefficient variability over time; evolution of 
laminate degree of cure and temperature through the thickness of the 

laminate. Inset: detail during the first dwell. 
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Fig. 8-12 Tool temperature variability over time; evolution of laminate degree of 
cure and temperature through the thickness of the laminate. Inset: detail 

during the first dwell. 
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Fig. 8-13 Ambient temperature variability over time; evolution of laminate 
degree of cure and temperature through the thickness of the laminate. Inset: 

detail during the first dwell. 

 

Table 8-2 Stochastic simulation results; effect of variability over time on cure 
time. 
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𝑇𝐴  207.69  0.016  
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8.4.2 Effect of level variability across different runs 

Following from the results of the previous section the overall simulation can be 

carried out considering the variability of the level of surface heat transfer coefficient 

and tool and air temperature. Thus Eqs. (8-1), (8-2) and (8-3) can be truncated to: 

ℎ = 𝐴ℎ (8-4) 

𝑇𝑇 = 𝐴𝑇 (8-5) 

𝑇𝐴 = 𝐴𝐴 (8-6) 

In addition to boundary conditions variability the effect of cure kinetics uncertainty is 

considered using the uncertainty model detailed in Chapter 6.  

Five different cases are investigated using Monte Carlo taking into account: (i) cure 

kinetics and boundary conditions uncertainty, (ii) cure kinetics uncertainty only, (iii) 

ambient temperature variability, (iv) tool temperature variability and (v) surface heat 

transfer coefficient variability. The stochastic simulation results for the five cases are 

summarised in Table 8-3. Considering a convergence criterion of 5% of coefficient of 

variation in the standard deviation of cure time, satisfactory convergence is obtained 

in the Monte Carlo simulation after 1000 iterations for the first and last cases, whilst 

500 iterations are required for the rest. Figures 8-14 to 8-18 illustrate the probability 

distribution of cure time for the five cases. The results suggest that cure time 

presents a coefficient of variation of 21.8 %, 1.2%, 1.1%, 12% and 17.4% (standard 

deviation of 47.4, 2.6, 2.3, 25.7 and 37.4 min) for the five cases. Examination of the 

probability distribution for the different cases shown in Figures 8-14 to 8-18 indicates 

that cure time can be considered a normally distributed random variable. These 

findings show that the surface heat transfer coefficient and tool temperature 

dominates cure time variability. Cure kinetics (Figure 8-15) and ambient temperature 

(Figure 8-16) uncertainty affect cure time variability; however, their influence is weak 

compared to variations in surface heat transfer coefficient and tool temperature as 

shown in Figures 8-14, 8-17 and 8-18. Furthermore, the mean value of cure time 

converges to the corresponding nominal value resulting from the deterministic 

simulation in the second and third cases, whilst it is slightly higher for the rest. This 
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implies that there is a non-linear relation between cure time and surface heat transfer 

and tool temperature.  

 

Table 8-3 Stochastic cure simulation results; effect of level variability on cure 
time. 

Case  Mean [min] Standard deviation [min] 

kinetics, ℎ, 𝑇𝑇, 𝑇𝐴 217.97 (MC) 47.41 (MC) 

ℎ 215 (MC) 37.4 (MC) 

𝑇𝑇 212.6 (MC) 25.7 (MC) 

𝑇𝐴 207.7 (MC) 2.31 (MC) 

kinetics 208.3 (MC) 2.63 (MC) 

ℎ, 𝑇𝑇 219.7 (MC), 218.6 (PCM) 49.5 (MC), 47.8 (PCM) 

 

 

8-14 Probability distribution of cure time for boundary conditions and cure 
kinetics uncertainty. 
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8-15 Probability distribution of cure time for cure kinetics uncertainty only. 

 

 

8-16 Probability distribution of cure time for ambient temperature uncertainty 
only. 
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8-17 Probability distribution of cure time for tool temperature uncertainty only. 

 

 

8-18 Probability distribution of cure time for heat transfer coefficient 
uncertainty only. 
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activation energy result in a shift to the peak of reaction to lower times leading to 

lower cure times.   

Figure 8-19 illustrates the evolution of cure reaction rate with time for two realisations 

of the stochastic simulation model considering the combined effect of boundary 

conditions and cure kinetics uncertainty and for the deterministic model. The two 

stochastic cases reported represent the extremes of maximum and minimum cure 

time.  Table 8-4 reports the values of the stochastic parameters for the two 

realisations. In realisation 1 (maximum cure time) the cure reaction rate has lower 

peak values throughout the thickness of the laminate, with the peak of reaction at the 

top of the laminate shifted considerably towards higher times leading to longer cure 

time. This is due to the high surface heat transfer coefficient, low tool temperature 

and low initial degree of cure values corresponding to this realisation. In contrast, in 

the case of realisation 2 (minimum cure time), the reaction starts considerably earlier 

and the peak is higher than the other two cases. Furthermore, the time lag of the 

onset of reaction between the lower side and the top of the laminate is significantly 

lower for minimum cure time case (realisation 2). This behaviour can be explained by 

the low surface heat transfer coefficient, high tool temperature and high initial degree 

of cure of this realisation (Table 8-4).  

 

8-19 Evolution of cure reaction rate as a function of time through the thickness 
of the laminate. 
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Table 8-4 Values of stochastic parameters for two realisations of stochastic 
model. 

Values Realisation 1 Realisation 2 

𝑎𝑜 0.025 0.039 

𝐸2 [J/mol] 58045 58589 

𝑚 1.2 1.16 

ℎ [W/m2/ºC] 18.6 8.75 

𝑇𝐴 [ºC] 24.1 25.1 

𝑇1 [ºC] 159.9 163.4 

𝑇2 [ºC] 177.2 183.2 

 

Surface heat transfer coefficient and tool temperature uncertainty dominate cure time 

variability explaining more than 90% of the overall variability. Therefore, for 

carbon/epoxy composites stochastic simulation can be limited to these two factors, 

when efficiency is important, e.g. in iterative use. In addition, utilisation of a surrogate 

model based on PCM can reduce execution times further. This scenario is tested 

here, with the simulation of surface heat transfer and tool temperature variability 

propagation using both MC and PCM. In the implementation of the collocation 

method in this study a third order response surface was constructed to represent 

cure time as a function of the stochastic parameters. The number of the unknown 

coefficients for a three dimensional third order polynomial is 20 [9] and 39 collocation 

points were used to improve accuracy. Therefore, the final Monte Carlo simulation 

using the surrogate model based on the PCM representation required only 39 

evaluations of the cure model. The third order response surface expressing the cure 

time as a function of three standard normal variables 𝜉1, 𝜉2 and 𝜉3 which represent 

the three stochastic parameters (ℎ, 𝑇1, 𝑇2)  is reported in Table 8-5.   
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Table 8-5 Third order response surface of cure time. 

Polynomial coefficients  Uncertain parameters 

13168 - 

2241.7 𝜉1 

-64.9 𝜉2 

-1665.2 𝜉3 

457.9 𝜉1
2 − 1 

-10.4 𝜉1𝜉2 

-659 𝜉1𝜉3 

3.4 𝜉2
2 − 1 

5.9 𝜉2𝜉3 

292.9 𝜉3
2 − 1 

64.4 𝜉1
3 − 3𝜉1 

1.7 𝜉1
2𝜉2 − 𝜉2 

-181.8 𝜉1
2𝜉3 − 𝜉3 

-3.9 𝜉2
2𝜉1 − 𝜉1 

4.4 𝜉1𝜉2𝜉3 

114.4 𝜉3
2𝜉1 − 𝜉1 

-0.4 𝜉2
3 − 3𝜉2 

-3.4 𝜉2
2𝜉3 − 𝜉3 

0.65 𝜉3
2𝜉2 − 𝜉2 

-34.5 𝜉3
3 − 3𝜉3 

The stochastic simulation results are reported in Table 8-3. Figure 8-20 illustrates the 

probability distribution of cure time and Figures 8-21 and 8-22 present the 

convergence of the mean and standard deviation of cure time for the two stochastic 

simulation schemes. Satisfactory convergence is obtained for the first and second 

statistical moments of cure time after 1000 Monte Carlo iterations for both stochastic 
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simulation schemes. A very good agreement is achieved between Monte Carlo and 

the collocation method for the first two statistical moments of cure time. Both 

stochastic simulation schemes are able to capture the combined effect of surface 

heat transfer coefficient and tool temperature variability on cure time accurately. The 

Monte Carlo is a computationally expensive and rich solution, whereas the PCM 

offers an efficient approximation with significant benefits in terms of computational 

cost (for the given case, the computational cost of the PCM is 3.9 % of that of the 

MC), and comparable results.  

 

Fig. 8-20 Probability distribution for cure time; surface heat transfer coefficient 
and tool temperature uncertainty. 
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Fig. 8-21 Convergence of mean of cure time; surface heat transfer coefficient 
and tool temperature uncertainty. 

 

Fig. 8-22 Convergence of standard deviation of cure time; surface heat transfer 
coefficient and tool temperature uncertainty. 
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8.5 Overview  

The methodologies developed in this chapter allow the quantification of the influence 

of boundary conditions variability, cure kinetics uncertainty and their combined effect 

on the cure process outcome. The experimental results showed that boundary 

conditions have considerable variability, which in turn can introduce significant 

variation to the process outcome. It was found that the main source of uncertainty in 

boundary conditions is the variation in level across different runs. The stochastic 

cure simulation results taking into account level variability suggest that surface heat 

transfer coefficient and tool temperature dominate cure time variability, introducing a 

coefficient of variation of about 22%, with considerable implications in cost 

associated with process duration and part quality. Cure kinetics and ambient 

temperature variations introduce negligible variability in cure time in the case of thin 

epoxy carbon fibre composites. Variations over time introduce negligible variability in 

cure time in this type of application; however, the effect of variability over time could 

be significant in cases which variations in surface heat transfer coefficient and tool 

temperature are more pronounced (e.g. wind turbine blade manufacturing). These 

uncertainty effects can be more pronounced in industrial practice where boundary 

conditions can show significant variability. Overall, the modelling approaches 

demonstrated in this study can be implemented to characterise and model boundary 

conditions uncertainty as well as cure kinetics variability in industrial scale 

applications and to investigate its influence on heat transfer effects and residual 

stress formation during the cure process. 
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9. Overall discussion 

This investigation concerned the development and implementation of a stochastic 

simulation methodology to study the effect of material properties and process 

parameters variability on the cure process. Up to now stochastic simulation studies 

in the context of composites manufacturing have predominantly focused on the filling 

stage of the process investigating the effect of fibre geometrical heterogeneity on 

permeability variations. The present study constitutes the first comprehensive 

investigation on variability in the cure stage of advanced composites manufacturing 

and is focused on the quantification of cure kinetics uncertainty, fibre misalignment 

and boundary conditions variability related to tool temperature, ambient temperature 

and surface heat transfer coefficient, and their propagation through the process of 

cure. So far studies of the influence of cure kinetics uncertainty and boundary 

conditions variability on the process outcome were based on hypothetical values of 

variability rather than experimental data. The methodologies presented here move 

towards the direction of eliminating the gap between real phenomena and process 

simulation.  

A methodology was developed and implemented to characterise cure kinetics 

uncertainty due to variable resin handling/storage conditions based on dynamic DSC 

tests. The experimental data were fitted with a cure kinetics model and the variability 

between the different experimental runs was attributed to certain parameters of cure 

kinetics. An infusion set-up was used to quantify boundary conditions uncertainty 

using thermocouples (tool/ambient temperature) and heat flux sensors (heat transfer 

coefficient). This uncertainty was modelled considering variation in time using a one- 

dimensional stochastic process as well as variability across different experimental 

runs. Although fibre misalignment has been investigated in detail in several studies, 

its influence on the outcome of the curing process has not been investigated so far. 

In this study, image analysis was used to quantify fibre misalignment and the spatial 

dependence of variability was modelled using a two-dimensional stochastic field. It 

was indicated that high specification thermosets and reinforcements can show 

significant variability in cure kinetics and local tow orientation, respectively. In 
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addition, boundary conditions can show considerable variations related to short term 

and long term variability. 

A finite element based cure simulation model was implemented comprising material 

sub-models of cure kinetics, specific heat capacity, thermal conductivity, moduli, 

thermal expansion and cure shrinkage. The material sub-models used in this work 

can serve as sub-models of a cure simulation in any commercial simulation tool, 

where they can be implemented directly as user subroutines. Two stochastic 

simulation approaches were developed based on conventional Monte Carlo (MC) 

and the Probabilistic Collocation Method (PCM), respectively. The two stochastic 

simulation models were coupled with the finite element based cure simulation model. 

In terms of development, MC is considerably simpler than PCM; however, PCM has 

the potential to decrease the computational cost significantly.  Flexibility of the 

corresponding interfaces allows integration of the two stochastic simulation 

approaches with different FEA solvers as well as implementation of stochastic 

simulation in different applications in the context of composites manufacturing. 

The Monte Carlo scheme was implemented in all cases presenting a robust but 

computationally expensive solution, whilst the collocation method was used only in 

the case of cure kinetics uncertainty, as well as in the case of surface heat transfer 

coefficient and tool temperature uncertainty showing tremendous benefits in terms of 

computational cost with quite good accuracy. The Monte Carlo scheme is not limited 

by the dimensionality of the stochastic problem and therefore is capable to address 

every stochastic problem in the context of composites manufacturing. On the 

contrary, the collocation method can offer an efficient alternative to Monte Carlo for a 

small number of Gaussian stochastic variables, implying that it is limited to 

addressing specific sub-problems of the manufacturing process (for example cure 

kinetics uncertainty) and not the full stochastic problem, where several sources of 

variability are in action. Therefore, the collocation method is not indicated to address 

stochastic problems involving stochastic fields such as fibre misalignment, due to the 

fact that in most cases a large number of stochastic variables is required to 

represent a stochastic field accurately. However, the collocation method has the 

potential to provide an efficient and accurate solution in the case highly correlated 
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stochastic fields which can be represented with a small number of stochastic 

variables using the Karhunen–Loève expansion [11].  

The implementation of the stochastic simulation approaches allowed quantification of 

the influence of input parameters variability on the process outcome. It was shown 

that variability in cure kinetics can introduce significant scatter in temperature 

overshoot with considerable cost implications related to the amount of scrap. 

Considering a process tolerance of 30 º C the probability of severe temperature 

overshoots in the case of a thick carbon fibre epoxy laminate is about 20%, implying 

that the manufacturing of thick laminates can involve a significant amount of scrap 

related to defects due to temperature overshoots. Local tow orientation variability 

can lead to significant variations in residual stress generation, which in the case of 

higher levels of variability phenomena such as matrix pre-cracking, may be initiated 

at a local level affecting part quality. Furthermore, fibre misalignment introduces 

considerable qualitative variations in shape distortion, altering the final shape of the 

formed part depending on the lay-up sequence. These findings are of crucial 

importance in the case of curved parts since shape variations can lead to 

considerable part quality and assembly issues, especially in the case of large 

components such as c-spars used in aerospace applications. In addition, the 

dependence of maximum residual stress and shape distortion on different levels of 

fibre misalignment and autocorrelation highlight the significance of fibre variability in 

the development of residual stress during the process and final distortion of the 

component. The potentially damaging maximum residual stress increases non-

linearly in an unfavourable manner with increasing variability. Therefore the benefits 

of controlling closely tow orientation can be significant even in situations where the 

process involves low quality reinforcement. The influence of autocorrelation lengths 

on macroscopic distortion metrics is significant at lengths that are small compared to 

the size of the component, highlighting the importance of controlling the size of 

variability patches in high end applications. Variations over time in boundary 

conditions introduce negligible variability in cure time; however, the effect of 

variability over time can be significant in industrial scale applications in which tool 

temperature can show considerable variations over time related to the controller. The 

stochastic cure simulation results, taking into account level variability in boundary 

conditions, suggest that surface heat transfer coefficient and tool temperature 
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dominates cure time variability introducing a coefficient of variation of about 22%. 

More specifically, the probability of under cure in the case of a thin laminate using 

the standard cure profile of RTM6 [101] is about 10% implying that conventional cure 

profiles should be modified to minimise defect generation due to variability.  

These variability effects can be more severe in processes involving higher variability 

due to lower specification materials and/or higher levels of variability in boundary 

conditions. For instance, in the case of wind turbine applications [152-154], where 

lower specification resins and fabrics are used and boundary conditions are subject 

to limited control compared to the aerospace industry, uncertainty can be 

considerably more pronounced introducing higher levels of variability on the heat 

transfer effects and residual stresses/ shape distortion, respectively. In addition, 

variations in surface heat transfer coefficient can be more pronounced presenting 

spatial dependence in the case of large components of complex geometries due to 

formation of wrinkles in the vacuum bags.  

The findings presented here brought light to the qualitative and quantitative 

characteristics of material properties and process parameters variability and 

uncovered the relationship between this variability and the curing process outcome. 

This enhances the knowledge of the curing process and brings new awareness in 

terms of decision making. In addition, this work provided greater insight regarding 

the sources of variability in composites cure, which in turn can be used in order to 

eliminate this variability. The methodologies developed in this study can serve as a 

starting point for incorporation of variability in process design/optimisation to 

minimise the probability of process induced defects such as resin degradation due to 

temperature overshoot variations, undercure, matrix cracks due to variations in 

residual stresses generation and shape distortion while using a process design as 

efficient as possible in terms of duration and energy consumption. This requires 

integration of the stochastic simulation schemes presented here with multi-objective 

optimisation tools [155,156] to address performance robustness trade-offs of the 

manufacturing process.  

The cost of the manufacturing process and the quality of the final part are of crucial 

importance and are dictated by material properties and process design. A process 

design procedure that does not take into account variability is not capable of 



Chapter 9 

157 
 

predicting the amount of scrap accurately leading to underestimation of the 

manufacturing costs. Understanding and quantifying the relationship between 

process parameters and material properties will allow identification and evaluation of 

trade-offs between process robustness, part quality and manufacturing costs. The 

outcome of this work constitutes a powerful tool for designers, which is capable to 

characterise uncertainty in composites manufacturing and investigate how this 

variability can affect the manufacturing process. The methodologies presented here 

can contribute towards the development of a standard procedure for characterisation 

and quantification of input parameters uncertainty. Implementation of stochastic 

simulation will provide the designer with important information for evaluation of 

whether eliminating variability is beneficial in terms of part quality and cost or not. 

Incorporation of stochastic simulation in industrial practice can result in significant 

benefits in several aspects. The amount of scrap can be reduced considerably and 

delivery delays can be minimised. The duration of process cycles can be optimised 

and the use of extended and conservative cycles can be eliminated. Consequently, 

manufacturing costs can be reduced significantly.  The manufacturing process of 

composite materials can become a more sustainable and environmentally friendly 

procedure consuming less energy while minimising the emission of pollutants and 

the amount of scrap.  Overall, incorporation of stochastic simulation in composites 

manufacturing can contribute towards the optimisation of the process in terms of part 

quality, time and cost as well as minimise its environmental footprint.  
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10. Conclusions 

The main outcomes of this study can be summarised as follows: 

Stochastic simulation 

 A stochastic cure simulation methodology based on the conventional Monte 

Carlo scheme and on the Probabilistic Collocation Method has been 

developed and implemented. 

 The Monte Carlo scheme is capable of predicting uncertainty propagation with 

high accuracy and it is not limited by the dimension of the stochastic problem; 

however it is computationally expensive.  

 The Probabilistic Collocation Method can offer a considerable reduction in 

computational costs compared to Monte Carlo, with quite good accuracy; 

however, this method can produce good quality results only if the dimension 

of the problem is small i.e. up to four stochastic variables, otherwise it 

becomes unstable producing poor quality results. 

 Both stochastic simulation schemes are able to predict the influence of cure 

kinetics uncertainty on the heat transfer effects of the cure of a thick carbon 

fibre epoxy panel, with the computational cost of the collocation method being 

less than 3 % of that of the Monte Carlo. 

 The Probabilistic Collocation Method can also be used to study the effect of 

surface heat transfer coefficient and tool temperature variability on cure time 

predicting uncertainty propagation with quite good accuracy, while offering 

tremendous benefits in terms of computational cost (the computational cost of 

the collocation method was less than 4 % than that of the Monte Carlo).  

Cure kinetics uncertainty 

 Cure kinetics uncertainty of a commercial epoxy resin used in aerospace 

applications was characterised using Differential Scanning Calorimetry and it 

was shown that high specification thermosets can involve considerable 

variability in cure behavior. 
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 Variability in resin kinetics can be attributed to initial degree of cure, activation 

energy and reaction order uncertainty, showing a coefficient of variation of 

19%, 1% and 7%, respectively for the resin system of this study. 

 Cure simulation of heat transfer effects of a thick carbon fibre epoxy panel 

indicated that cure kinetics uncertainty can introduce a significant scatter in 

the process outcome with a coefficient of variation of about 30% and 1.7% in 

temperature overshoot and time of temperature overshoot, respectively.  

 Stochastic simulation of the cure of a carbon fibre epoxy flat panel within the 

Monte Carlo scheme showed that cure kinetics uncertainty introduced 

relatively low variability in cure time showing a coefficient of variation in cure 

time of about 1%.    

Fibre misalignment 

 Image analysis was used to characterise tow orientation variability of a ±45⁰ 

non- crimp fabric and the experimental results showed that tow orientation of 

high specification carbon NCFs can vary with a standard deviation of 1.2º with 

strong anisotropic spatial autocorrelation and the major direction of 

autocorrelation coinciding with the direction of the non-structural stich.  

 Cure simulation of an angle shape carbon fibre epoxy panel using the Monte 

Carlo scheme showed that fibre misalignment can introduce considerable 

variability in process outcome, presenting a coefficient of variation of up to 2% 

(1MPa standard deviation) in maximum longitudinal residual stresses.  

 Local tow orientation variability can introduce qualitative and quantitative 

scatter in shape distortion with the standard deviation in twist and corner 

angle reaching values of 0.4º and 0.05º respectively. 

 Increasing the standard deviation of fibre misalignment induces an increase of 

standard deviation in maximum residual stress in a linear fashion, whilst the 

standard deviation of both corner and twist angle increases following a 

concave dependence. 

 Increasing the correlation lengths induces a slight increase to the standard 

deviation of maximum residual at low values of correlation lengths with a 

plateau occurring at higher values of correlation lengths, whilst the standard 
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deviation of both corner and twist angle increases presenting a convex 

dependence. 

Boundary conditions uncertainty 

 An infusion set-up was used to characterise tool temperature, ambient 

temperature and surface heat transfer coefficient variability, and it was shown 

that boundary conditions can involve considerable uncertainty presenting 

variation over time as well as variability across different experimental runs.   

 Tool temperature showed a periodic trend and short term variability over time 

and was modelled using a cosinusoidal trend and a second order stationary 

stochastic process, the Ornstein-Uhlenbeck process. 

 Ambient temperature presented long term trend and short term variability over 

time and was modelled using a linear trend and the Ornstein-Uhlenbeck 

process.  

 Surface heat transfer coefficient presented no serial correlation over time and 

was modelled as a random series of observations.  

 Stochastic cure simulation of a thin carbon fibre epoxy flat panel using the 

Monte Carlo scheme showed that variability over time introduces negligible 

variability in cure time.  

 Investigation of the effect of level variability across different runs showed that 

surface heat transfer coefficient and tool temperature uncertainty dominates 

cure time variability, introducing a coefficient of variation of about 22% in cure 

time, whilst ambient temperature introduced variability in the order of 0.5%.  
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11. Suggestions for further investigations 

The stochastic simulation methodology developed here can be coupled with 

optimisation tools, such as Genetic Algorithms to enhance optimisation stability and 

address the process performance-robustness trade-off. This would require the 

development of an interface between the stochastic simulation model and an 

optimisation tool. Optimisation can result in unstable solutions, implying that small 

variations in the input parameters can introduce considerable changes in the 

objective solution. Solutions of this type can be theoretically acceptable but not 

appropriate in real world applications. Process robustness in terms of minimum 

output variations, process performance in terms of time, and part quality expressed 

as minimum shape distortion and even temperature distribution are the primary 

objectives in every cure process. Consequently, integration of the stochastic 

simulation methodology presented here with optimisation tools will contribute 

towards the creation of a trade-off map quantifying the relationship between these 

competing parameters. This will add important information on process design and 

decision making in composite manufacturing.  

The modelling approaches demonstrated in this study can be extended to 

characterise and model out of plane fibre misalignment and investigate its influence 

on heat transfer effects and residual stress formation during the cure process. This 

could be achieved using X-ray micro- tomography (X-ray micro CT). In addition, the 

effect of in plane and out of plane fibre misalignment on the structural behavior of 

composites can be investigated. Tool temperature variations can be further 

investigated using industrial scale equipment, where tool temperature can show 

considerable variability. In addition, the spatial dependence of surface heat transfer 

coefficient requires further investigation, as wrinkles in vacuum bags and nesting 

between flexible layers of ancillary materials and reinforcement may affect the heat 

transfer mechanisms, especially in the case of complex geometries, introducing 

considerable variations in surface heat transfer coefficient. The combined effect of 

fibre misalignment, cure kinetics uncertainty and boundary conditions uncertainty, as 
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well as their relative importance on the heat transfer and process stress effects can 

be investigated within an integrated framework.  

A defect map can be generated providing information regarding the importance and 

the type of defects that can arise from variability. Defects can be categorised 

depending on the source of variability and the type of components that are more 

likely occur in. This can provide guidelines for decision making towards potential 

routes of the manufacturing process that eliminate variability and consequently the 

defects that are associated to this variability.  

The methodologies presented here can be used to investigate the effect of variability 

in other manufacturing steps such as forming and impregnation. This would require 

the integration of constitutive material models related to forming and impregnation as 

well as the development of an interface between the stochastic simulation model and 

the corresponding constitutive models. In addition, an integrated framework can be 

developed and implemented to investigate variability propagation through all the 

manufacturing steps. This will provide qualitative and quantitative information 

regarding the interdependencies between the different manufacturing steps and 

provide a greater insight into the manufacturing process of composites.   

Real time monitoring can be integrated with the methodologies developed in this 

study to improve both robustness and quality of the manufacturing process. 

Variability related to material properties and process parameters uncertainty can be 

reduced in every step of the manufacturing process using on line monitoring.. A 

stochastic simulation scheme can be used to model this variability in real time in 

order to adapt the process parameters based on the data obtained gradually during 

the manufacturing process.  

Overall, stochastic simulation can be incorporated into existing commercial 

simulation tools to address variability in composites manufacturing. This would 

require a user friendly interface where the user could choose a stochastic simulation 

method, the stochastic variables and the output parameters. This would have 

considerable benefits as stochastic simulation would become accessible to process 

engineers and incorporation of variability in industrial practice would be easier. 
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Appendices 

Appendix A Cure simulation model user subroutines 

Examples of the user subroutines used to incorporate the respective material sub-

models described in Chapter 4 to the main code are presented in this section. These 

user subroutines can be used with any MSC.Marc cure simulation model. Listing A-1 

presents the UCURE subroutine used to implement the cure kinetics model 

described in section 4.2.2.   

 

Listing A-1 Implementation of UCURE subroutine for RTM6 epoxy resin. 
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Listings A-2, A-3  and A-4 show the ANKOND, HOOKLW and ANEXP subroutines 

used for the implementation of the thermal conductivity, mechanical properties and 

thermal expansion material sub-models, respectively.  

 

Listing A-2 Implementation of ANKOND subroutine for RTM6 epoxy resin and 
G1157  pseudo unidirectional carbon fibre reinforcement. 

 

Thermal conductivity matrix
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Listing A-3 Implementation of HOOKLW subroutine for RTM6 epoxy resin and 
G1157  pseudo unidirectional carbon fibre reinforcement. 

Compliance matrix



 

183 
 

 

Listing A-4 Implementation of ANEXP subroutine for RTM6 epoxy resin and 
G1157  pseudo unidirectional carbon fibre reinforcement. 

 

 

 

 

 

 

 

 

Thermal expansion coefficient matrix

Incremental thermal strain matrix
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Appendix B Interfaces between stochastic model and FEA solver 

Examples of the interfaces developed to link the stochastic simulation models 

described in Chapter 5 with the finite element based cure simulation model 

presented in Chapter 4 are presented in this section.  

Appendix B.1 cure kinetics uncertainty/ boundary conditions uncertainty 

Listing B-1 shows the part of the interface developed to identify the location of the 

stochastic parameters in the MSC.Marc user defined subroutine and write a new 

user subroutine using the realisations generated for each of the stochastic variables. 

This was used in both the Monte Carlo and collocation method.  
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Listing B-1 Identification of location of stochastic variables in user subroutine, 
writing new user subroutine. Cure kinetics uncertainty/ boundary conditions 

uncertainty stochastic cure simulation interface.  

The temperature overshoot and the time of temperature overshoot are identified by  

using the UPSTNO subroutine as shown in Listing B-2. The difference between the 

nodes temperature (Tcurrent) and the one at the boundary (Tbound) is computed for 

each node of the model and is stored in Tmax if its value is higher than the former. 

The corresponding time is stored in t_tmax. 

 
 
 

Identification of location of boundary 

conditions parameters in MSC.MARC 

user subroutine

Identification of location of cure kinetics 

parameters in MSC.MARC user 

subroutine

Write new user subroutine using the 

generated realisations of the stochastic 

parameters
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Listing B-2 Computation of temperature overshoot and time of temperature 
overshoot using UPSTNO user subroutine. Cure kinetics uncertainty 

stochastic cure simulation interface.  

Computation of the cure time is carried out using the UEDINC user subroutine as 

reported in Listing B-3.  The minimum degree of cure stored in amin is compared 

with a predefined limit of 0.90 and the time that amin is equal or higher than this limit 

is considered as the cure time and it is stored in tcure.  

 

Listing B-3 Computation of cure time using UEDINC user subroutine. Cure 
kinetics uncertainty stochastic cure simulation interface.  
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Appendix B.2 Fibre misalignment 

Listing B-4 reports part of the interface developed to read realisations of local tow 

orientation and incorporate local tow orientation to each integration point of the 

model according to the position. This is followed by the rotation transformation of the 

thermal conductivity matrix, compliance tensor, cure shrinkage coefficient matrix and 

thermal expansion coefficient matrix. as presented in section 7.3.1.  

 

Listing B-4 Read realisations of local tow orientation, Incorporation of local 
tow orientation to integration points. Fibre misalignment stochastic cure 

simulation interface.  

Read realisations of local 

tow orientation 

Identification of coordinates 

of each integration point 

Incorporation of local tow 

orientation according to 

position.
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Computation of the maximum longitudinal residual stress, corner angle and twist 

angle is carried out using the PLOTV user subroutine as illustrated in Listing B-5.  

The maximum residual stress is stored in maxstress whilst corner angle and twist 

angle are stored in disp(1) and disp(2), respectively.  

 

 

Listing B-5 Computation of maximum longitudinal residual stress, corner 
angle and twist angle using PLOTV subroutine. Fibre misalignment stochastic 

cure simulation interface.  
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