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ABSTRACT 

The geotechnical conditions of the soil can fluctuate greatly across the wind 

farm. This is an issue since geotechnical modelling is the base of the structural 

design of an offshore wind farm, and the efficient installation of the wind 

turbines depends on its accuracy. This paper deals with the characterization of 

the seabed, predicting the soil properties over the total affected area by a wind 

farm, with the challenge to reduce the required data samples in the site 

investigation under the number of installed wind turbines, to reduce its cost. 

It is compared the prediction outcome from two different interpolation methods, 

kriging and radial basis function, assessing their accuracy by the Mean-Squared 

Error and the Goodness-of-Prediction Estimate, as well as with a visual 

examination of their mapping; obtaining higher accuracy for radial basis function 

and reducing to half the required sample points, from the initial value of installed 

wind turbines.  

In a second stage it is studied the soil effect over the foundation, analyzing the 

results from a FEA, where different geometries of the structure are compared 

submitted to different load cases to check its limit states.  Those results show 

that the foundation cost can increase four times due to the soil conditions, 

taking into account only the steel volume, and demonstrating how important is 

the soil characterization in the foundation design, as it gives the chance to 

relocate those wind turbines that require more expensive foundations. 
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1 INTRODUCTION 

As European Directive 2009/28/EC established in 2009, all member countries 

from European Union will have to ensure that 20% of total consumed energy is 

satisfied from renewable energy sources, by 2020, under the requirement of 

better cost effective (Department of Energy & Climate Change, 2011). 

Thanks to the energy policy toward a higher participation of renewable energy 

in the overall energy production, the European Union (EU) finished 2013 with 

117.3 GW of installed wind energy capacity, enough to cover 8% of the EU‟s 

electricity consumption ((EWEA), 2014). 

Due to the suitable locations for large wind energy production, preservation of 

landscape, higher wind speed, less turbulence intensity and insignificant 

acoustic emissions, offshore wind energy is leaving the wind resources on land 

behind. 

UK has been the leader in offshore wind since October 2008, with a largest 

capacity than the rest of the world combined. Currently, UK has 3.65GW 

operating across 22 wind farms. UK is on the top of offshore wind and it is 

planning to continue ahead, with other 5.7GW capacity under construction and 

12.3GW under planning (July 2014) (RenewableUK, 2014). 

On the other hand there are extra costs involved with the installation of offshore 

wind energy, i.e in the support structure due to the additional hydrodynamic 

loading, installation and maintenance due to the transportation and limited 

access and the need of offshore electrical transmission. 

Furthermore, as (The Crown Estate, 2012) indicates, the costs of offshore wind 

have been increasing in UK since the first wind farm was installed, by higher 

capacity wind turbines and moving to deeper water locations, reaching in the 

latest wind farm projects £140/MWh (measured cost as LCOE (Levelised Cost 

of Electricity) - lifetime cost of the project per unit of energy generated). If the 

costs continue rising and taking into account the wider financial condition, the 

industry in UK will not be able to meet the stipulated targets, because each time 

it will be less attractive to the financial parts. 
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So, the current challenge becomes to bring costs down and deployment up, to 

achieve the goals by 2020, at the same time, producing more renewable energy 

gives to UK greater independence from fuel price fluctuation, which protects 

consumers, it will create new job opportunities and businesses in this sector, as 

well as it will help with the carbon reduction objectives. 

While technical challenges are accomplished, the LCOE is expected to drop 

throughout time, with the objective to accomplish £100/MWh by 2020 

(Department of Energy & Climate Change, 2011). 

Offshore wind industry is a sector in its infancy and it has been operating based 

on the oil and gas industry standards and also with its products. This does not 

help to develop the sector or reduce its costs. To reduce the cost is necessary 

to achieve an efficient structural design. As wind farms have been working, 

geotechnical survey data were available just on each turbine location, which 

leads to uncertainties in cable layout design. One of the opportunities to reduce 

the costs of offshore wind falls on better knowledge of the seabed conditions, 

because past projects showed unexpected increased cost due to the lack of soil 

characterization (The Crown Estate, 2012). 

According to (Randolph, Cassidy, Gourvenec, & Erbrich, 2005), the costs for 

the vessel for the site investigation are between $250,000 and $500,000 per 

day; although these figures are not up-to-date, they give a very good indication 

of the cost of intervention. Due to this high cost, another chance to decrease the 

energy cost is to reduce the spent amount of money in the site investigation. 

The wind energy production depends on the geographical location, because 

natural resources are not everywhere. But since the wind turbines have 

enlarged, reaching 125 m rotor diameter, producing 5000kW by 2015 

(International Energy Agency, 2013); the production of the wind farms has 

increased so much that it can appear overproduction, which means the wind 

farm is able to produce more energy than the site demand. There are two 

solutions in that case to not to lose energy. One it can be installing a storage 

system, which requires a high extra cost; and another one, geographical 

dispersion, which increases the cost of interconnection cabling in the wind farm 
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collection system (see figure 1), but it is technically beneficial (Van Assen, 

2012). This implies to change the location of some wind turbines, in order to 

place them where the energy it can be introduced to the grid; but at the same 

time, it requires a wider knowledge on the soil conditions. 

 

Figure 1: Offshore wind farm general layout 

Source: (Dicorato, Forte, Pisani, & Trovato, 2011) 

 

1.1 Background 

Until earlier past century, most of the engineering judgements in design and 

construction were based on experience and precedents. Since World War II, the 

judgement has changed significantly as a result of theoretical, experimental and 

developments in engineering; although it is still indispensable in site 

characterisation, selection of appropriate parameters and analysis methods, 

without forgetting the critical evaluation of the results of observations or 

analysis. 

The design objective is to ensure the structure performs satisfactorily within a 

specified period of time. The first traditional deterministic design codes were 

based on safety factors at the design stage, to reduce the risk of potential 

failure. Factors of safety can be misleading, because sometimes are 

recommended without reference to the loads and their evaluation, the analysis 

method, the method of property evaluation, and so on (Kulhawy & Phoon, 

1996). The method was constructed for the engineer to go through the process 

of considering each factor in detail and this process itself can lead to 

inconsistencies. 
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Another doubt to trust this method lies in the relationship between the safety 

factor and the level of risk, because a higher safety factor can not to imply a 

smaller level of risk, considering that at the same time can be present larger 

uncertainties in the design that consume the security of the factor. 

With the evolution of structural safety concepts, those traditional codes have 

been gradually replaced by reliability-based design (RBD) codes, which provide 

consistent assurance of safety based on probabilistic analysis. 

Here appears the concept of limit state design which requires identifying all the 

limit states or potential failure modes, check separately each limit state and 

show that the possibility of occurrence of each limit state is limited. 

Oil and gas industry has already a large developed career in offshore 

construction with experience in very deep water locations. On the other hand, 

near shore has experience on hydrodynamic loading where wave action still 

affects the seabed. But the offshore wind turbine (OWT) structure is placed in 

the intermediate water depths with different characteristics due its location, then 

the design, construction and installation will follow different processes 

(Henderson & Camp, 2001). 

In general, every structure must follow the technical rules collected in the 

Eurocodes, which are developed by the European Committee for 

Standardisation (ECS) for the structural design in the EU, but these ones are 

based on the structural material and they do not give specific instructions for the 

different types of structures.  

For OWT structures there is not available any mandatory code to follow in the 

design process, but partnerships as Det Norske Veritas (DNV) has developed 

some guidelines and standards, based on the experience already achieved by 

the industry, to guide the engineer in the design process. The general document 

for offshore wind energy is DNV-OS-J101, Design of Offshore Wind Turbine 

Structures (2013). 

This standard considers four limit states: 

http://en.wikipedia.org/wiki/European_Committee_for_Standardization
http://en.wikipedia.org/wiki/European_Committee_for_Standardization
http://en.wikipedia.org/wiki/European_Committee_for_Standardization
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 Ultimate limit state (ULS), which verify the structure under maximum 

load. 

 Fatigue limit state (FLS), which correspond to the failure due to the cyclic 

loading. 

 Accidental limit state (ALS), which study the maximum loading capacity 

under accidental loads. 

 Serviceability limit state (SLS), which corresponds to the capacity under 

normal use. 

 

Despite the growth in offshore wind industry, there are still substantial 

uncertainties related to the foundation design due to the offshore environment 

concerning hydrodynamic loading, soil characterisation and the issue of the 

transition piece in monopile foundations (Carswell, Arwade, DeGroot, & 

Lackner, 2014; Negro, Gutierrez, Esteban, & Matutano, 2014). 

The transition piece is the connection element between the tower and the pile 

for the monopile support structures, which represents the main weakness for 

these foundations due to under wind and waves dynamic loads, the grout inside 

the piece crumbles (Negro, Gutierrez, Esteban, & Matutano, 2014). Nowadays 

there are not clear solutions for this, but it is being dealt with new grout or 

conical pieces instead of tubular. 

Hydrodynamic loads in OWT mainly come from waves and currents, but other 

sources like ice drift can also appear. The calculation and determination of the 

design wave loads is a complex undertaking, where both extreme and fatigue 

load cases have to be considered (Henderson & Camp, 2001). 

For small waves in deep waters, the Airy wave model is sufficient for calculating 

the kinematic by its design wave (Mader, 2005), but as wave heights and 

lengths increase by the water depth, other methods need to be considered. As 

(Henderson & Zaaijer, 2008) indicate, from the available methods to calculate 

the hydrodynamic loads, the widely used are Morrison‟s method and diffraction 

theory. Usually for slender structures, such as monopiles or tripods, the 
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appropriate method is Morrison, while for structures such as gravity base, which 

are massive with significant specific surface, the diffraction theory is required. 

Morrison‟s method suggests that the total wave load is the sum of two 

components, the drag and inertial forces (Wheeler, 1969), where the inertial 

force is calculated by considering the fluid without viscosity accelerating 

uniformly and irrotational; while the drag component introduces a steady flow of 

a viscous fluid. The key to the hydrodynamic uncertainty problem is, therefore, 

to determine the distribution and hydrodynamic properties of the waves, to 

reach an accurate model. 

The soil characterisation is an important issue for the foundations design, which 

requires a large investment to obtain the geotechnical properties and 

parameters of the site, reason for what remains a complicated task, as to 

reduce costs, the soil characterisation in the area is carried through a limited 

number of samples. 

A standard has been developed by Bundesamt Für Seeschifffahrt Und 

Hydrographie (BSH), “Ground investigations for Offshore Wind Farms”, to 

accomplish a ground investigation programme for the planning and construction 

of offshore wind turbines, to meet the requirements of (DNV, DNV-OS-J101: 

Design of Offshore Wind Turbine Structures, 2010). But although this standard 

helps to reduce uncertainties in the ground investigation process, it demands 

the soil characterisation just at turbine sites, leaving the rest and major part of 

the wind farm area under the ignorance, when as it was mentioned before, this 

is leading to rise costs, as it keeps the uncertainty of not knowledge of soil 

conditions over the total area. 

The seabed in the North and Baltic Seas is not a homogeneous volume of 

sediments but may be a highly heterogeneous body on local scale (BSH, 2008). 

Unlike other type of materials like steel or concrete, which properties present a 

small range of variability, the soil properties show a wide range, and they 

cannot be changed to fit the structure. Furthermore, it is not simple to make 

accurate measurements of its properties on the one part that is tested. These 
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can lead to a huge uncertainty on the geotechnical conditions without the proper 

methods. 

The Marine Environmental Mapping Programme (MAREMAP) of the United 

Kingdom Natural Environment Council (NERC) was initiated in June 2010 to 

update the maps of the national marine areas, making use of available data 

such as the British Geological Survey‟s (BGS) database on seabed sediments 

collected in several surveys from 1967 to 2009, or surveying new areas. The 

marine maps generated at 1:250000 scale are already available online (BGS, 

2014) (see figure 2), and they are working interpreting more and new data to 

launch a new map generations at 1:50000 scale. 

 

Figure 2: National area covered by MAREMAP 

Source: (BGS, 2014) 
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In these maps we can see as the soil can change in hundreds of meters or keep 

homogeneous along kilometres, even with the large scale available. Figure 3 

shows us an area where the soil changes between sandy gravel (left top) to 

sand (right bottom), through gravelly sand and slightly gravelly sand. These 

changes in the type of soil carry different soil properties due to their different 

composition. 

 

Figure 3: Random map selected 

Source: (BGS, 2014) 

Although these maps can be valuable to have a general overview of the sites, 

they have been generated in a traditional geological way (Lark, Dove, Green, 

Richardson, Stewart, & Stevenson, 2012), which means from sediment samples 

in addition to geophysical data (Cameron, et al., 1992; Gatliff, et al., 1994). 

More modern techniques strengthen the use of statistical methods for spatial 

prediction to map the seabed continuously, due these methods provide an 

account of the uncertainty in the predictions (Goovaerts, 2001). 

This geographic information (GI) has not been a novelty from the marine 

environment, but another application of this methodology. A GI is the linking 

between locations and properties of those locations. Having properties in some 
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locations and needing to know the value of those properties on locations where 

are unknown, requires the use of spatial interpolation techniques. 

A good soil characterisation allows adapting the foundations design to the soil 

conditions, reducing its uncertainty, but it is inevitable the existence of a certain 

grade of uncertainty. This leads us to considerate, besides the need to 

characterize the soil for all affected area, knowing if it is worth to take into 

account the soil properties, not just to design the foundations, but also to select 

the location of the wind turbines, from the soil conditions point of view. 

1.2 Interpolation techniques in engineering 

Spatial continuous data are significantly important in planning, risk assessment 

and decision making in environmental management. However, they are not 

always available and often difficult to acquire, especially for deep marine 

locations, where it can involve an expensive task. The environmental data is 

collected from field surveys typically made on point locations, but spatial 

continuous data over the region of interest are increasingly required to make 

confident and justified decisions (Collins & Bolstad, 1996; Hartkamp, De Beurs, 

Stein, & White, 1999).  

Spatial interpolation techniques aim to estimate a continuous surface based on 

irregularly distributed data. That surface represents the value of the variable 

under study at any location over the region. The main issue in spatial 

interpolation is how to select an appropriate method to fit the dataset (Burrough 

& Mcdonnell, 1998). 

Through the years, many techniques have been developed for different 

variables (Zhou, Guo, Ho, & Wu, 2007). Many factors such sample size, 

sampling design or the nature of the data may affect the estimation of a spatial 

interpolator, but there are not findings about how they can affect the 

performance of the interpolation (Li & D. Heap, 2008).  

In geostatistics, there are two different methods according to the number of 

involved variables in the prediction; the univariate methods are the ones not 

able to use secondary information, while multivariate methods are able to make 
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use of it and then predict more than one variable at the same time. By other 

features they can be classified into exact vs. inexact, deterministic vs. 

stochastic or gradual vs. abrupt. 

Estimations of almost all the spatial interpolation methods can be expressed as 

weighted averages of data: 

𝑦  𝒙 =  𝜆𝑖𝑦 𝑥𝑖 

𝑛

𝑖=1

 

where 𝑦  is the estimated value of the variable under study at the point of 

interest 𝒙, 𝑦 is the measured value at the sample point 𝑥𝑖 , 𝜆𝑖  is the related 

weight to the sample point and 𝑛 is the number of sample points for the 

estimation (Webster & Oliver, 2001). 

Numerous methods have been developed for spatial interpolation. According to 

(Li & D. Heap, 2008), the used methods on environmental studies can be 

classified into three categories, geostatistical, non-geostatistical and combined 

methods. Geostatistical methods are those ones which provide statistical tools 

to incorporate the spatial coordinates of observations in data processing (Mabit 

& Bernard, 2007), where all samples are dependent from one another. 

However, non-geostatistical methods assume that there is not a spatial 

correlation among the sample data (Rouhani, Srivastava, Desbarats, Cromer, & 

Johnson, 1996). 

Based on the conclusions obtained from 51 studies, kriging (geostatistic), 

inverse distance weighting (non-geostatistic) and cokriging (geostatistic) are the 

most commonly used methods on environmental sciences, including water 

resources, meteorology, ecology, agriculture, soil science and marine 

environmental science; where in general kriging methods perform better than 

non-geostatistical methods (Li & D. Heap, 2008). 

It has been found the application of spatial interpolation techniques for 

characterization of the seabed. (Verfaillie, Lancker, & Meirvenne, 2006) 

compared linear regression and kriging with the version kriging with an external 
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drift to interpolate the variable median grain-size of the sand fraction at the 

Belgian Continental Shelf, where sandbanks and swales impose a high-spatial 

variability. Their study showed twice largest linear regression error than kriging. 

(Li, Heap, Potter, Huang, & Daniell, 2011) compared 14 interpolation methods 

to predict the mud content across the southwest Australian margin from 

collected point sampling, incorporating as well secondary information such as 

bathymetry, distance to coast, slope or geomorphic province. It was found that a 

combined method was the most robust for this variable, random forest and 

kriging. 

(Lark, Dove, Green, Richardson, Stewart, & Stevenson, 2012) illustrated the 

mapping of seabed sediment texture classes from the UK Continental Shelf by 

co-kriging methodology. 

1.3 Aims & Objectives 

The aim of this study is the characterization of the seabed, predicting the soil 

properties over the total affected area by a wind farm from data sample point 

observations, to reduce the project cost, reducing the uncertainties in the 

design. If we achieve to reduce the amount of data points under the number of 

installed wind turbines, the cost for the site investigation will be reduced; 

because the works will take less time, since the amount of data used have been 

the number of wind turbines, to date. Therefore, the soil characterization has to 

use the least amount of data as possible to reduce the site investigation cost. 

In a typical offshore wind energy project, the cost of the foundations supposes 

the 21% of the total cost (RESCO, 2014). Keeping in mind the need of reduction 

the LCOE and taking into account the foundation design is based on the 

geotechnical conditions, is reasonable thinking about changing part or the 

entirety of the wind turbine locations to more strength sites, in order to reduce 

the necessary foundation cost and then reduce the LCOE. Although we cannot 

forget the wind source is not everywhere. 

Dispersion shows that when wind turbines are spread over a larger area, the 

chance of optimal wind for energy production is larger than when wind turbines 
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are placed together in a small area (Van Assen, 2012). Besides, now the wind 

turbine locations are not where the wind gust is higher, but where the energy 

production covers the demand, in order to not need a storage system. So, as 

there is not a unique optimal location for the wind farm, we could introduce the 

request of optimal soil conditions in the decision making of the optimum location 

for the OWT and then also reduce the foundations cost. At the same time the 

demand is covered, also the energy cost can be reduced and meets the target. 

This paper aims to address the issues set above, through employing 

approximation methods to „map‟ a potential area of deployment of a wind farm, 

looking into the impact that reduction in sample points may have to the 

prediction results. Further, the impact of installation of a unit in locations with 

different geotechnical features is discussed in order to illustrate how the 

foundation design efficiency can influence the structural performance of 

structures. 
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The flowchart set above shows the process that has been followed in this study. 

Once the soil properties are known in all the area under study, a finite element 

analysis is carried out to design wind turbine foundations for different locations 

inside the area, with different geotechnical characteristics. The different 

foundations are assessed to compare the geotechnical influence on its design, 

and then its influence on the total cost. 
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2 MODELLING OF GEOTECHNICAL CONDITIONS USING 

INTERPOLATION METHODS 

The main objective of this study is to employ tools to determine the soil 

properties over the entire potential area of the wind farm deployment, just with 

the soil properties measured at a limited number of points. Although soil 

properties seem to show a random variability, it has been observed that close 

points to each other have similar characteristics (Webster, 1985). Due to this 

spatial dependence, classical statistic is not capable to analyze this kind of 

variable, as the data are assumed measured independently (Warrick, 1998). 

Interpolation methods allow calculating the unknown values of any variable at 

points of interest by referring to the information of neighbouring points (Yang, 

Kao, Lee, & Hung, Twelve different interpolation methods: a case study of 

surfer 8.0, 2012). The variables in this research will be any necessary soil 

property to characterize the seabed of the wind farm. 

Commonly, interpolation methods have been used in the fields of water 

resources, mathematics, ecology, petroleum engineering (Li & D. Heap, 2008). 

Further, applications can be found on mapping soil properties for geotechnical 

purposes as can be found in (Karydas, Gitas, Koutsogiannaki, Lydakis-

Simantiris, & Silleos, 2009; Zandi, Ghobakhlou, & Sallis, 2012; Kazemi 

Poshtmasari, Tahmasebi Sarvestani, Kamkar, Shataei, & Sadeghi, 2012); but 

these geotechnical mapping applications are mostly found with environmental 

or agricultural objectives. However, this research aims to introduce it in the 

structural design for wind turbine installations. 

2.1 Interpolation methods 

The result of the prediction through approximation methods is a map which 

specifies the value of the variable at any location, which means to convert data 

from point observations to continuous map (Karydas, Gitas, Koutsogiannaki, 

Lydakis-Simantiris, & Silleos, 2009). Selecting of the most appropriate 

interpolation method is a crucial decision, since different methods can result in 
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different outcomes (Zandi, Ghobakhlou, & Sallis, 2012) as will be discussed 

later on the relevant section. 

For this study two different methods are employed for soil characterization, in 

order to benchmark their accuracy and efficiency. As we could see in the 

previous section, kriging has been used several times to interpolate variables to 

characterize the seafloor. Kriging and also Radial Basis Functions (RBF) are 

two well-known spatial interpolation techniques (Zandi, Ghobakhlou, & Sallis, 

2012) and are found to perform well comparing obtained results to actual 

quantities (Yang, Kao, Lee, & Hung, 2012). 

2.1.1 Radial Basis Functions 

Radial basis function was first introduced by the geodesist Roland Hardy in 

1968. We can find applications from medical purposes (Carr, Fright, & Beatson, 

2002) to engineering problems in fields as solar energy (Mohandes, 

Balghonaim, Kassas, Rehman, & Halawani, 2000) or tidal energy (Yin, Zoua, & 

Xu, 2013), among others. 

RBF works given data sites ξ in n dimensions, where ξ ∈ ℝn   and function 

values that we know are fξ = f ξ  ϵ ℝ. What this method will seek is an 

approximation s: ℝn → ℝ to the function f: ℝn → ℝ. 

To approximate s to f, it is explicitly required  s Ξ =  f Ξ, where Ξ ⊂ ℝn  is the set 

of data sites, which means the approximation function will have the same value 

of the data over the sample data locations. 

This is a diverse group of interpolation methods, in which five deterministic 

interpolation techniques are part of it: thin-plate spline, spline with tension, 

completely regularised spline, multi-quadric function and inverse multi-quadric 

function (Zandi, Ghobakhlou, & Sallis, 2012; Sarra & Kansa, 2009). The 

obtained results are quite similar for all of them (Burrough & Mcdonnell, 1998), 

but according to (Yang, Kao, Lee, & Hung, 2012), multi-quadric method is 

considered the best.  

A RBF is a function based on a scalar radius: 
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𝜙 𝑟 = 𝜙( 𝑥 − 𝑥𝑖 ) 

where radius, r =  x − xi , represents the radial distance, between the 

predicted point and the data ones, taking into account that x represents the 

location of the predicted point, and xi represents the data point locations. 

For multi-quadric method, the expression of the basis function is: 

𝜙 𝑟 =  1 +
𝑟2

𝜎2
 

where σ is the shape parameter, which is the average distance between data 

points. Normally, the radial basis function method accuracy increases with σ 

(Bayona, Moscoso, & Kindelan, 2011). 

Given this information, the approximant is created by the sum: 

𝑠 𝑥 =  𝜆𝜉𝜙(

𝜉∈Ξ

𝑟)                      𝑥 ∈ ℝ𝑛  

where λξ are scalar parameters. But sometimes the existence of the 

interpolation just can be guaranteed by a small variation of this function, adding 

polynomials to s. Therefore, the approximation function has the form: 

𝑠 𝑥 = 𝑐0 + 𝑐1𝑥 +  𝜆𝜉𝜙(

𝜉∈Ξ

𝑟)                      𝑥 ∈ ℝ𝑛  

with real coefficients c0, c1, and λξ . This coefficient values will be calculated by 

forcing the function to meet the real values at the prediction points and taken 

into account this two conditions:  𝝀𝒊
𝒏
𝒊=𝟏 = 𝟎    and      𝝀𝒊𝒙𝒊

𝒏
𝒊=𝟏 = 𝟎, while n is 

the amount of sample points. 

2.1.2 Kriging 

The mining engineer Danie Krige developed the spatial interpolation technique, 

kriging, to predict the mineral concentration in the ground. Geostatistical 

interpolation by kriging is long-established (Matheron, 1963; Journel & 
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Huijbregts, 1978; Webster & Oliver, 2001) and has been applied on 

environmental sciences including hydrology (Zimmermann, Zehe, Hartmann, & 

Elsenbeer, 2008), agronomy (Bishop & Lark, 2007) and soil survey (Burgess & 

Webster, 1980), among others. Afterwards it has been also used with 

geotechnical purposes to solve other environmental problems (Dai, Zhou, Lv, 

Wang, & Liu, 2014; Chica-Olmo, Luque-Espinar, Rodriguez-Galiano, Pardo-

Igúzquiza, & Chica-Rivas, 2014; Gong, Mattevada, & O‟Bryant, 2014). 

This method is a linear combination of radial basis function, with centres on 

data points, where µ is a constant term from which prediction starts that will 

move with some deviations. 

𝑦 𝒙 = 𝜇 + 𝑍(𝒙) 

where x is an n-dimensional vector (n design variables) and 𝑍(𝒙) represents a 

local deviation from the global model. The sample points are interpolated with 

the Gaussian random function as the correlation to estimate the trend of the 

stochastic processes. The correlation between 𝑍(𝒙𝒊) and 𝑍(𝒙𝒋) is related to the 

distance between the two corresponding points, but instead of use the 

Euclidean distance, it is used this expression: 

𝑑 𝒙𝒊, 𝒙𝒋 =  𝜃𝑘

𝒏

𝒌=𝟏

 𝒙𝒊𝒌 − 𝒙𝒋𝒌 
2
 

which weights different each design variable; where 𝜃𝑘  (0 ≤ 𝜃𝑘 ≤ ∞) is the kth 

element of the correlation vector parameter 𝜽. By using this expression for the 

distance and the Gaussian random function, the correlation between both points 

is: 

𝑐𝑜𝑟𝑟 𝑍 𝒙𝒊 , 𝑍 𝒙𝒋  = 𝑒−𝑑 𝒙
𝒊,𝒙𝒋  

Then Kriging predictor is: 

𝑦  𝒙 = 𝜇 + 𝐫′
T
𝐑−1(𝐲 − 𝟏𝜇 ) 

where 𝜇  is the estimated value of 𝜇, R denotes the 𝑛𝑥𝑛 matrix whose (𝑖, 𝑗) entry 

is its correlation, r is vector whose ith element is 𝑟𝑖 𝒙 ≡ 𝑐𝑜𝑟𝑟 𝑍 𝒙 , 𝑍 𝒙𝒊   and 
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𝒚 = [𝑦 𝑥1 , … , 𝑦 𝑥𝑛 ]. The complete derivation of the predictor can be found in 

(Koehler & Owen, 1996). 

The unknown parameter to construct Kriging model is 𝜽, which can be 

estimated by maximizing the likelihood function presented in (Jeong, 

Murayama, & Yamamoto, 2004). 

2.2 Case study data set 

Taking into account that the soil-structure interaction method used will be 

Winkler method, which will be justified later; the necessary soil properties are 

Young‟s modulus and Poisson‟s ratio. 

The Young‟s modulus, 𝐸𝑠, is the property of the soil which describes its 

stiffness. It is a measure of the ability of the soil to resist changes in length 

when is under tension or compression, which has a large range of variation. For 

granular soils we can find a range between 7 to 320 MPa, and for cohesive soils 

from 0.35 to 80 MPa (Kezdi, 1974; Prat, Bisch, Millard, Mestat, & Cabot, 1995). 

Poisson‟s ratio, 𝜈𝑠 , is the ratio of transverse to longitudinal strain under an 

applied stress. When rigidity is zero, Poisson‟s ratio is 0.5 (Hamilton, 1979), but 

most natural sediments and rocks have enough rigidity, so Poisson‟s ratio uses 

to be less than 0.5 (Hamilton E. , 1971). We can understand that if the soil 

would be extremely rigid, Poisson‟s ratio would reach the value of zero, 

therefore Poisson‟s ratio can vary from 0 to 0.5. 

Based on this, a typical data map has been generated for each property; 

representing by contours the value of the properties at every point in the area. 

See figure 4. 
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Figure 4: Real contours for Young’s modulus [MPa] and Poisson’s ratio 

respectively 

As all the operational wind farms in UK cover approximately an area between 4 

(Scroby Sands) and 146 km2 (Greater Gabbard) (4COffshore, 2014), but most 

of them are under 40 km2, it has been selected a middle area of 15 km2 (5000 

m x 3000 m). This assumption makes us unable to extrapolate the results from 

this study in terms of numerical values; meanwhile it helps us to determine the 

accuracy of the method. 

The soil properties are considered constant with depth to simplify the 

calculations, although in reality they are not. In any case, the methodology 

developed herein can be extended to account for the depth coordinates of 

spatial points. 

As the aim of this research requires that the amount of data is the minimum as 

possible, four sets of data have been selected with 7, 15, 20 and 96 sample 

points in total, which will be the input in the prediction methods (see figure 3). 

We will compare their results and select the minimum. 

It is recommended that sampling is randomly distributed in the space (Li & D. 

Heap, 2008), because this is expected to lead to higher accuracy in the 

prediction; although the data distribution for 96 points is uniform as it would not 

differ too much. 
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Figure 5: Distributions for 7, 15, 20 and 96 points 

These are the distributions for the young‟s modulus, which will be exactly the 

same for the Poisson‟s ratio. 

2.3 Prediction models and their validation 

As not all prediction methods give the same results, to find the optimal choice 

from which have been proposed, it is necessary to measure the accuracy of 

each method. 

According to (Krivoruchko & Gotay, 2003), the accuracy is measured by the 

Mean-Squared Error (MSE) and one measure of effectiveness is Goodness-of-

Prediction Estimate (G), both necessary to assess the prediction. 

The MSE is given by the equation: 

𝑀𝑆𝐸 =
1

𝑛
   𝑧 𝑥𝑖 − 𝑧 (𝑥𝑖)  

2

𝑛

𝑖=1
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where z xi  is the measured value at data survey on location i, z (xi) is the 

predicted value at location i and n is the sample size. A small value of MSE 

indicates more accurate prediction (Karydas, Gitas, Koutsogiannaki, Lydakis-

Simantiris, & Silleos, 2009). 

And G might be calculated as: 

𝐺 =  1 −
  𝑧 𝑥𝑖 − 𝑧 (𝑥𝑖) 

2𝑛
𝑖=1

  𝑧 𝑥𝑖 − 𝑧  2𝑛
𝑖=1

 ∙ 100 

where z xi  is the measured value at data survey on location i, z (xi) is the 

predicted value at location i, z  is the sample mean and n is the sample size. A G 

value of 100% indicates a perfect prediction (Karydas, Gitas, Koutsogiannaki, 

Lydakis-Simantiris, & Silleos, 2009). 

2.4 Results 

2.4.1 Evaluation of the prediction maps 

The outcomes from the prediction methods have been evaluated by MSE and 

G, which results are shown in figures 6 and 7. 

 

Figure 6: Evaluation of the Young’s modulus prediction 
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Figure 7: Evaluation of the Poisson’s ratio prediction 

In last two figures it can be seen represented by a red line the optimum value of 

both the Mean-Squared Error and the Goodness-of-Prediction Estimate. 

Observing the obtained results for the Young‟s modulus variable, we see as not 

for all data predictions the same approximation method gives better results. In 

general, radial basis function offers better results, with MSE values closer to 

zero and G values closer to 100%, but in the case of 7 sample points the 

accuracy is the smallest one with the bigger generated error. Nevertheless for 

Poisson‟s ratio variable, RBF gives better results all the time, with higher 

accuracy and smaller error. 

It attracts our attention the fact that not bigger amount of samples offer better 

results by Kriging method, as in Young‟s modulus prediction with 20 sample 

points the accuracy of the results is worst than for 7 or 15; and in Poisson‟s ratio 

it happens the same with 7 sample points, which offer better results than 15 

samples and almost the same as 20. 

In order to make a visual examination of both methods, it has been represented 

in the next figures the real data (red surface) against the measured values. 
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Figure 8: Actual vs. Measured Young’s Modulus data – Kriging method 

 

 

Figure 9: Actual vs. Measured Young’s Modulus data – RBF method 
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Figure 10: Actual vs. Measured Poisson’s Ratio data – Kriging method 

 

 

Figure 11: Actual vs. Measured Poisson’s Ratio data – RBF method 
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Comparing the visual representations of the results in three dimensions (3D), 

Young‟s modulus graphs by Kriging method confirm as the prediction with 20 

sample points is less accurate than the rest and the same for Poisson‟s ratio 

variable which results with 7 samples give better accuracy than with 15 or even 

20; while RBF method performs better the real data when higher amount of 

samples are available. 

2.4.2 The best prediction method 

The method selection is based on how the prediction is able to perform the 

reality, which is the real value of the variables, based on the validation process. 

From our evaluation we are looking for the prediction with the minimum MSE 

and the G value closer to 100%, which will mean it is the most accurate 

prediction between which we have. But at the same time, it is compulsory for 

this research to meet the requirement of fewer amount of samples for the 

prediction. So, based on this evaluation, the selected method as the best for 

both variables in this case is radial basis functions performed with 20 sample 

points, because this reaches at least a 90% of effectiveness. 

The amount of data is 1.33 samples/km2, which will be compared with the 

amount of installed wind turbines. Thus, we will have to assume as good the 

MSE values, which are not minimum because as it is obvious a greater amount 

of data gives less MSE, for the selected method.  

We cannot conclude that RBF is the best method, because there is no general 

best prediction method, as each one can be the best for a specific variable 

(Isaaks & Srivastava, 1989); that is the reason to use at least two different 

methods, to compare their results and find the best one for our case. But 

although we cannot say RBF is the best method, observing its behaviour along 

the predictions, it gives in general better results than Kriging, with higher 

accuracy as bigger amount of sample points available; its performance tells us 

that it is better method than Kriging, although in one prediction with fewer 

samples might give better results. 
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2.4.3 Prediction maps of soil properties 

Based on the selected method as the best one for our soil properties (20 

sample points by RBF), the prediction maps are: 

 

Figure 12: Young’s modulus [MPa] and Poisson’s ratio prediction, respectively 

Putting together both soil properties and according to (Kezdi, 1974; Prat, Bisch, 

Millard, Mestat, & Cabot, 1995; Hamilton E. L., 1979; Hamilton E. , 1971), we 

can identify three different types of soil: clay, dense sand and very dense sand, 

as it can be seen in figure 13. 

 

Figure 13: Soil type identification 
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3 DESIGN OF FOUNDATIONS FOR WIND TURBINE MONOPILE 

STRUCTURES 

3.1 General 

The foundation comprises a set of components which aim to transfer the loads 

from the structure to the soil. They have to redistribute the loads in order for the 

settlement and the stresses do not exceed the allowable maximum. The design 

of foundations requires selecting the appropriate geometry for the selected 

foundation type, according to the conditions that the foundation has to 

accomplish to ensure the safety and functionality of the structure. 

There are five different main offshore wind turbine support structures, monopile, 

gravity, tripod, jacket and floating structures (Buren & Muskulus, 2012): 

 The monopile foundations consist on a tubular steel structure to support 

the tower, either directly or through a transition piece. This tube extends 

down the water, into the soil, with a depth limitation up to 25 m (DNV, 

2010). 

 The gravity type support structures are a concrete flat based structure 

which width is adjusted to suit the soil conditions. Its design requires a 

steel or concrete shaft for connection with the wind turbine tower. These 

types of structures are suitable for sites with firm soils or those with a 

minor need of improvement on water depths up to 25 m (DNV, 2010). 

 The tripod foundation consists on a tripod structure anchored to the soil 

either by piles or suction buckets, depending on the soil conditions. This 

support structure suits well on water depths between 20 to 50 m (DNV, 

2010). 

 The jacket structures or lattice towers, consist on a four-legged tower 

interconnected with bracings. At the seabed the structure is connected to 

piles, one per leg, to gain stability of the structure. These structures are 

recommended for water depths between 20 to 40 m (DNV, 2010). 

 The floating systems for wind turbines consist on a floating platform with 

enough buoyancy to support the wind turbine weight and its own. These 

are a new generation of support structures for the offshore wind turbines 
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to reach deeper waters, as they are suitable for depths greater than 50 m 

(Lefebvre & Collu, 2012). 

The majority of the operational and decommissioned offshore wind farms in the 

UK are at locations where water depths do not exceed the 30 m (Higgins & 

Foley, 2014). The next expected step in the near future is to continue growing 

into further from shore and deeper site locations (Buren & Muskulus, 2012). 

Monopile support structures have been used for the 96% of the commissioned 

offshore wind turbine foundations and the 4% remaining are jackets (Higgins & 

Foley, 2014). Although normally monopile foundations have been 

recommended for water depths up to 25 m, as they are the more developed and 

best well known, the cost of the support structure supposes less investment in 

the total cost than for the rest of the foundation types (Lozano-Minguez, Kolios, 

& Brennan, 2011); then paying more attention to the design, studies as (Scharff 

& Siems, 2013) demonstrates as monopile foundations can be used as support 

structures for wind turbines at deeper locations. 

Then monopile support structures are selected for the study of this research. 

3.2 Basis for analysis 

Design of offshore structures is governed by relevant design standards, ie DNV-

OS-J101 or DNV-OS-C101, which include provisions for derivation of reliable 

support structures. Design requirements include ultimate and fatigue limit states 

to be examined in order to assess structural resistance to the loads the 

structure should withstand. 

3.2.1 Ultimate limit state assessment 

For the comparative nature of the present work, a simplified approach has been 

adopted, by considering the ultimate resistance of each of the different 

geometries through estimation of the Von Mises stress combined with the 

verification of the maximum deflection for each different topology. Hence, when 

measured stress (σv) exceeds the yield strength of the material (Sy = 355 MPa), 

it is considered to have failed: 
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σv <
Sy

γ
 

Where γ is the global safety factor to reduce the yield stress, which is obtained 

considering the equilibrium state between loads (L) and resistance (R): 

𝛾𝑖 ∙ 𝐿 =
𝑅

𝛾𝑀
 

𝐿 =
𝑅

𝛾𝑀 ∙ 𝛾𝑖
=
𝑅

𝛾
 

γ is the product between the material safety factor (𝛾𝑀) and the partial load 

safety factor (𝛾𝑖), which values are 1.15 and 1.35, respectively (British 

Standard, 2006), so 𝛾 = 1.55. This is the minimum safety factor to require to the 

structure. 

On the other hand, as there is no official recommendation for the horizontal 

deflection, it has been selected a maximum allowable deformation up to 2% of 

the total length of the structure. 

3.2.2 Fatigue limit state assessment 

The fatigue is the degradation of the material caused by cyclic loading. As DNV-

RP-C203 recommends, the fatigue analysis is based on S-N curves, where S is 

the fatigue strength and N the fatigue life, measured in number of cycles.  

As the potentially sources of fatigue cracking are the joints, due to the stress 

concentration as they are discontinuities in the structure; the fatigue 

assessment is carrying on focus at the joints tower-transition piece and 

transition piece-pile. Based on the detail of these joints, the selected curves are 

D from the DNV-RP-C203 joint classification, in air and seawater, respectively.  

This RP (recommended practice) points that for offshore structures significant 

damage occurs for 𝑁 ≥ 107cycles, so the requirement to meet by our structures 

is: 

𝑁 < 107cycles 
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Figure 14: S-N curves in air 

Source: DNV-RP-C203 

 

Figure 15: S-N curves in seawater 

Source: DNV-RP-C203 
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Although these curves are different for each environment, as they have different 

slope, the maximum operational stress allowable, given by the maximum 

number of cycles is the same, 33.3 MPa.  

The structure is able to withstand higher stresses, as it can be read in figures 14 

and 15. We can see as a higher stress can be allowed, but the fatigue life of the 

structure would be shorter; this means those higher stresses must occur on 

temporary situations, when its number of repetitions is smaller, as it happens on 

the ultimate limit state. 

3.3 Finite element model 

3.3.1 Structural modelling 

Displacements and corresponding stresses have been derived by using 

commercial Finite Element Analysis (FEA) tool ABAQUS CAE. Based on the 

geometry to be modelled, beam elements were employed with a mesh 

independence study on a generic case to illustrate the optimum mesh size that 

was later used in all cases. 

The next figures show the stresses and displacements for different mesh sizes 

in the finite element analysis on a generic case. In figures 16 and 17 it can be 

seen as the results converge as the mesh size becomes smaller and we can be 

underestimating the stresses by selecting an inappropriate mesh size. From this 

study it is concluded the optimum mesh size is 0.1 m, from the point of view of 

the reliability of the results. 

Figure 18 shows the mesh size against the corresponding number of elements 

for the analysis. We can see as for mesh sizes smaller than 0.1 m, the number 

of elements excessively increases. As the calculating time is related to the 

number of elements, greater amount of elements implies higher calculating 

time; so the mesh size 0.1 m offers reliability results without waste time. 
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Figure 16: Maximum Mises stress vs. mesh size 
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Figure 17: Maximum displacement vs. mesh size 

 

Figure 18: Number of elements vs. mesh size 
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an indirect approach, as the soil is modelled with springs and dampers based 

on its properties. 

The offshore standard DNV-OS-J101 recommends the p-y curves method, 

which is an indirect method, to introduce the realistic stiffness values for the 

soil, in the case of dynamic analysis of the system for pile foundations, following 

the recommendation from the American Petroleum Institute (API) code, which 

recommends the p-y method for the design of horizontal loaded piles. 

This method models the soil reaction as localized nonlinear springs based on 

Winkler‟s method (Kikuchi & Kimura, 2007). The p-y curve represents the lateral 

soil resistance (p) expressed as function of lateral soil movement (y). It is based 

on test results of laterally loaded piles; its empirical formulation of the curves 

are different for different type of soils and depend on the pile diameter, the soil 

strength and the loading conditions, although other effects like layered soils or 

the space between piles is also considered (Chen & Duan, 1999). 

Although the p-y method is the widely used (Heidari, Naggar, Jahanandish, & 

Ghahramani, 2014), it was developed for piles with diameters up to 2 m and as 

(Abdel-Rahman & Achmus, 2005) conclude, comparing the behaviour of larger 

monopiles by using p-y curves and a three dimensional numerical model, the p-

y method underestimates pile deformations. 

Direct methods like the three dimensional numerical model which gives the total 

solution based on a finite element analysis, where the soil is modelled as a big 

volume, enough for the structure does not affect its external edge, are more 

accurate, but at the same time require more calculation time. 

In this research the performed analysis is just static, with the aim to obtain the 

structure deformations and the generated stresses under the different loading 

cases. Considering the steel is an elastic material, the relationship between the 

stress and the deformation is linear, so it is considered an indirect approach is 

enough for the purpose of this study.  

As it was mentioned before, the indirect method p-y is the widely used and 

recommended from several industrial organizations, but at the same time it 
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cannot be used for monopile structures, as normally have a wider diameter. P-y 

method is based on Winkler‟s method, which ignores the global effect of a 

continuum, but allows us to model the soil-structure interaction for piles with 

diameter wider than two meters; for this reason it has been selected for this 

research. 

Winkler method models the interaction from the soil over the structure by 

replacing the elastic soil medium by closely spaced and independent elastic 

springs (Winkler, 1867). The stiffness of these springs, also called modulus of 

subgrade reaction, is: 

𝑘𝑠 =
𝑝

𝑦
 

where 𝑝 is the soil reaction on the structure per length unity and 𝑦 is the 

deflection. 

For the modulus of vertical subgrade reaction, 𝑘𝑠𝑣, the elastic deformation under 

a circular area, which diameter is D, supporting a uniformly spread load, 𝑞, is: 

𝑦 =
𝐷𝑞(1 − 𝜈𝑠

2)

𝐸𝑠
 

being 𝜈𝑠  the Poisson‟s ratio and 𝐸𝑠 the elasticity modulus. And with the 

combination of the last two expressions, we have: 

𝑘𝑠𝑣 =
𝐸𝑠

𝐷(1 − 𝜈𝑠2)
 

The Winkler model can be simplified by means of finite number of springs of 

stiffness K, instead of the springs bed (Aysen, 2005), which expression is: 

𝐾 = 𝑎𝑘𝑠𝑣 

Where a is the contact area corresponding to a single spring. 

On the other hand, to the modulus of horizontal subgrade reaction, 𝑘𝑠ℎ , we do 

not have a only expression, but we will have a expression to every soil type. 
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For granular soils, 𝑘𝑠𝑣 is considered directly proportional to depth: 

𝑘𝑠ℎ = 𝑛ℎ  𝑥 

Where 𝑛ℎ  is the constant of horizontal subgrade reaction and x is the depth. 𝑛ℎ  

depends on the soil damp and its density. The suggested values are: 

Relative density of sand Loose Medium Dense 

Range of values of A 100-300 300-1000 1000-2000 

Adopted values of A 200 600 1500 

Dry or moist sand, values of 

𝒏𝒉 

7 21 56 

Submerged sand, values of 

𝒏𝒉 

4 14 34 

Table 1: 𝒏𝒉 values in tons/cu 

Source: (Terzaghi, 1955) 

In this case, the stiffness for each spring is: 

𝐾 = 𝐿 𝑘𝑠ℎ  

Where L is the length associated to each spring. 

For cohesive soils, 𝑘𝑠𝑣 is: 

𝑘𝑠ℎ =
𝑘ℎ   

5 𝐷
 

Where 𝑘ℎ    is the constant of horizontal subgrade reaction and D the pile 

diameter. The constant of horizontal subgrade reaction in this case depends 

also on the damp and density of the soil and the suggested values are: 
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Consistency of clay Stiff Very stiff Hard 

Range of 𝒒𝒚, tons/sq. ft 1-2 2-4 > 4 

Range for 𝒌𝒔𝟏 50-100 100-200 > 200 

Proposed values 75 150 300 

Table 2: 𝒌𝒉     values in tons/cu 

Source: (Terzaghi, 1955) 

Finally, the stiffness for each spring in cohesive soil is: 

𝐾 = 𝐷 𝑘𝑠ℎ  

As it was mentioned previously, Winkler method ignores the global effect of a 

continuum, it idealizes the soil assuming that the deflection of the soil at any 

point on the surface is directly proportional to the stress applied at that point 

and independently of any stress applied at other locations, which is not normally 

true, because deflection will occur also within a limited region outside the 

loaded area (Selvadurai, 1979). So, this limits its application to soils with 

slighted cohesion or transmissibility of applied loads. But its simple expression 

allows applying it frequently to flexible elements, like in (Zhong & Huang, 2013). 

In this case it has been used the simpler model of Winkler, replacing the soil by 

lateral translational springs 10 m spaced along the pile length relating horizontal 

displacement at a particular depth, and another one relating the toe resistance. 

Other more sophisticated and accurate versions of Winkler method add springs 

relating the rotation along the foundation periphery as (Gerolymos & Gazetas, 

2006) does. Based on this version, in order to make the model more accurate it 

was limited the rotation of the pile according to its torsional resistance, as if it 

would have been applied a rotational spring. This torsional resistance (𝐾𝑡𝑜𝑟 ) is 

calculated as (Bowles, 1996) indicates, which is also: 

𝐾𝑡𝑜𝑟 =
𝑀𝑡𝑜𝑟

𝜃
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the relationship between the torsional moment (𝑀𝑡𝑜𝑟 ) and the rotation (𝜃).  

 

 

Figure 19: Soil model 

 

Figure 20: Rotational boundary condition (red marked) 

 

3.3.3 Load cases 

Three load cases have been considered in the analysis to cover the fatigue and 

ultimate limit state assessments, operational conditions (1), maximum 

operational conditions (2) and maximum wind (3).  
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All load cases have the same hub and nacelle weight, which is given by the 

selected turbine, 6.2M126 (previous RePower 6M) (Senvion, 2014) and 

according to the fictitious selected location, the water depth has been fixed in 40 

m. 

The wave, current and wind loads have been calculated as in (Lozano-Minguez, 

Kolios, & Brennan, 2011), assuming the same conditions; where the wave loads 

have been calculated by the third-order Stokes wave theory in combination with 

the Morison equation; the current loads have been calculated according to 

(Wilson, 2003), taking into account the current is generated on one part by the 

tide and on another part by the local wind; the wind loads have been calculated 

from the gust wind speed with a drag coefficient. It has been considered that the 

wave and current loads are the same in all cases. 

Fx [N] Fz [N] 

550460.43 524501.01 

Table 3: Wave loads 

  

Dp = 3 m Dp = 4 m Dp = 5 m Dp = 6 m Dp = 7 m Dp = 8 m 

y [m] u(y) Fy [N/m] Fy [N/m] Fy [N/m] Fy [N/m] Fy [N/m] Fy [N/m] 

-4 0.97 1873.07 1873.07 1873.07 1873.07 1873.07 1873.07 

-4 0.97 936.53 1248.71 1560.89 1873.07 2185.24 2497.42 

-12 0.90 809.96 1079.94 1349.93 1619.92 1889.90 2159.89 

-20 0.82 679.51 906.01 1132.51 1359.01 1585.51 1812.01 

-28 0.73 537.81 717.08 896.35 1075.62 1254.89 1434.17 

-36 0.60 354.69 472.93 591.16 709.39 827.62 945.85 

Table 4: Current loads by pile diameter (Dp) and depth (y) 

3.3.3.1 Operational conditions 

This load case is necessary to carry out the fatigue limit state assessment, as 

the fatigue is produced by the loading cycles generated under the operational 

conditions. Under these conditions the structure must withstand the 
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aerodynamic, wind, wave and current loads, apart from the hub and nacelle 

weights. 

v [m/s] 𝑭𝒙 [N] 𝑭𝒚 [N] 𝑭𝒛 [N] 𝑴𝒙 [Nm] 𝑴𝒚 [Nm] 𝑴𝒛 [Nm] 

10 1.08 E+06 8.40 E+04 -3.48 E+06 5.28 E+06 -1.11 E+07 -3.7 E+06 

Table 5: Operational aerodynamic loads 

Source: (Subroto, 2006) 

which orientation can be founded in (Subroto, 2006). The wind loads have been 

calculated following the procedure mentioned above, with a gust wind speed of 

10 m/s. 

y [m] Diameter [m] Thickness [m] u(z) Fy [N/m] 

2.5 6 0.05 8.705505633 177.34 

9.865 6 0.025 9.986417279 233.36 

19.595 5.76 0.02375 10.69583087 256.99 

29.325 5.52 0.0225 11.13586102 266.96 

39.055 5.28 0.02125 11.45955265 270.42 

48.785 5.06 0.02 11.71732918 270.94 

58.515 4.82 0.01875 11.93237026 267.65 

68.245 4.58 0.0175 12.11733414 262.27 

77.975 4.34 0.01625 12.27992002 255.24 

87.705 4.1 0.015 12.42517274 246.86 

Table 6: Wind operational loads 

3.3.3.2 Maximum operational conditions 

The ultimate limit state assessment has to be verified for the extreme conditions 

the structure must withstand. The maximum operational condition is that one in 

which the aerodynamic loads are maximum. The extreme aerodynamic loads 

are given by (Subroto, 2006) for our wind turbine: 
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v [m/s] 𝑭𝒙 [N] 𝑭𝒚 [N] 𝑭𝒛 [N] 𝑴𝒙 [Nm] 𝑴𝒚 [Nm] 𝑴𝒛 [Nm] 

12 1.15 E+06 8.20 E+04 -3.49 E+06 5.27 E+06 -1.30 E+07 -4.10 E+06 

Table 7: Extreme aerodynamic loads 

Source: (Subroto, 2006) 

which orientation can be founded in (Subroto, 2006). And for this case the wind 

gust is 12 m/s. 

y [m] Diameter [m] Thickness [m] u(z) Fy [N/m] 

2.5 6 0.05 10.44660676 255.37 

9.865 6 0.025 11.98370074 336.05 

19.595 5.76 0.02375 12.83499704 370.07 

29.325 5.52 0.0225 13.36303322 384.43 

39.055 5.28 0.02125 13.75146318 389.40 

48.785 5.06 0.02 14.06079502 390.15 

58.515 4.82 0.01875 14.31884431 385.41 

68.245 4.58 0.0175 14.54080097 377.67 

77.975 4.34 0.01625 14.73590403 367.54 

87.705 4.1 0.015 14.91020729 355.48 

Table 8: Wind loads 

3.3.3.3 Maximum wind load 

The second load case to verify the ultimate limit state is in which the wind load 

is maximum, where the maximum gust wind speed is 35 m/s in our case. When 

the wind speed becomes so fast, the aerodynamic loads are not present, as the 

turbine does not work under this condition (Senvion, 2014). 

y [m] Diameter [m] Thickness [m] u(z) Fy [N/m] 

2.5 6 0.05 30.46926972 2172.40 

9.865 6 0.025 34.95246048 2858.72 

19.595 5.76 0.02375 37.43540803 3148.13 
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29.325 5.52 0.0225 38.97551357 3270.30 

39.055 5.28 0.02125 40.10843427 3312.61 

48.785 5.06 0.02 41.01065213 3319.01 

58.515 4.82 0.01875 41.7632959 3278.70 

68.245 4.58 0.0175 42.41066948 3212.78 

77.975 4.34 0.01625 42.97972008 3126.67 

87.705 4.1 0.015 43.4881046 3024.05 

Table 9: Maximum wind loads 

3.3.4 Tower 

Considering the characteristics of the selected wind turbine, the geometry for 

the tower has been modelled in nine linear pieces with the same length, rising 

87.57 m, but variable diameter from 6 m to 4.1 m and also variable thickness 

due to fatigue assessment (see table 6). 
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4 CASE STUDY 

From the soil properties map generated through RBF, three different pairs of 

soil properties have been selected, each from a different soil type, to compare 

their effect over the foundation design. 

 

Figure 21: Selected soil data 

 

 E [MPa] ν 

MODEL 1 100 0.38 

MODEL 2 100 0.36 

MODEL 3 240 0.3 

Table 10: Model soil properties 

4.1 Comparative analysis 

Depending on the stiffness of the soil, different resistance requirements will be 

required from the analysis in order to accommodate the environmental and 

operational loads, hence an iterative process should be employed towards 

optimizing the design of components in order to perform with adequate reliability 

(respecting the ALARP principals). 
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4.1.1 Comparative analysis Model 1 

Following the process explained before, for the clay soil, the results from the 

analysis are given in tables 11-13: 

    

Tower-T.Piece T.Piece-Pile 

D 
[m] 

Thickness 
[m] 

Lpile 
[m] 

Vsteel [m
3] σv

1
 [Pa] 

σv
1
 

[MPa] 
σv

2
 [Pa] σv

2
 [MPa] 

7 0.1 30 65.03096793 2.54E+07 25.42 1.24E+07 12.39 

7 0.08 30 52.17557079 2.54E+07 25.42 1.24E+07 12.39 

7 0.06 30 39.24477543 2.54E+07 25.42 1.24E+07 12.39 

7 0.04 30 26.23858184 2.54E+07 25.42 1.24E+07 12.39 

6 0.06 30 33.58990865 2.54E+07 25.42 1.24E+07 12.39 

5 0.08 30 37.09592605 2.54E+07 25.42 1.24E+07 12.39 

4 0.1 30 36.75663405 2.54E+07 25.42 1.24E+07 12.39 

4 0.09 30 33.16579364 2.54E+07 25.42 1.24E+07 12.39 

Table 11: Comparative analysis Case 1 - Model 1 

 

D 
[m] 

Thickness 
[m] 

Lpile 
[m] 

Vsteel [m
3] 

Disp. Max 
[m] 

σv [Pa] 
T-TP 

σv [Pa] 
max 

ɣ 

7 0.1 30 65.03096793 1.01758 2.74E+07 8.69E+07 4.08 

7 0.08 30 52.17557079 1.03785 2.74E+07 8.69E+07 4.08 

7 0.06 30 39.24477543 1.07721 2.74E+07 8.69E+07 4.08 

7 0.04 30 26.23858184 1.17423 2.74E+07 8.69E+07 4.08 

6 0.06 30 33.58990865 1.0903 2.74E+07 8.69E+07 4.08 

5 0.08 30 37.09592605 1.07033 2.74E+07 8.69E+07 4.08 

4 0.1 30 36.75663405 1.09481 2.74E+07 8.69E+07 4.08 

4 0.09 30 33.16579364 1.11389 2.74E+07 8.69E+07 4.08 

Table 12: Comparative analysis Case 2 - Model 1 
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D 
[m] 

Thickness 
[m] 

Lpile 
[m] 

Vsteel [m
3] 

Disp. Max 
[m] 

σv [Pa] 
T-TP 

σv [Pa] 
max 

ɣ 

7 0.1 30 65.03096793 2.61896 2.61E+07 2.61E+07 13.60 

7 0.08 30 52.17557079 2.64128 2.61E+07 2.61E+07 13.60 

7 0.06 30 39.24477543 2.67925 2.61E+07 2.69E+07 13.21 

7 0.04 30 26.23858184 2.75792 2.61E+07 4.01E+07 8.85 

6 0.06 30 33.58990865 2.74888 2.61E+07 3.59E+07 9.89 

5 0.08 30 37.09592605 2.80132 2.61E+07 3.83E+07 9.26 

4 0.1 30 36.75663405 2.95761 2.61E+07 4.77E+07 7.45 

4 0.09 30 33.16579364 3.00498 2.61E+07 5.27E+07 6.74 

Table 13: Comparative analysis Case 3 – Model 1 

These tables show, for the case 1, the stresses at tower-transition piece 

connection (σv
1) and transition piece-pile joint (σv

2); and for the cases 2 and 3, 

the maximum displacement of the top of the tower (Disp. Max), the maximum 

stress (σv max) regardless of its location, and the stress at the joint between the 

tower and the transition piece (σv T-TP), for each studied pile geometry. The 

global safety factor (ɣ) has been obtained from the maximum stress, in order to 

check the most unfavourable situation.  

Case 1 is which studies the fatigue, while case 2 is which studies the maximum 

operational loads and case 3 studies the maximum wind condition, last both to 

check the ultimate limit state. Following the trial and error process it has been 

obtained different acceptable geometries for this soil, under the different load 

cases, meeting the requirements for both limit states. 

According to the considered conditions, based on the pile length (Lpile) for this 

model (30 m), the maximum acceptable deflection at hub height in this case is 

3.25 m, which is the 2% of the total length of the structure. And as it was 

calculated before, the minimum acceptable global safety factor to our structure 

is 1.55. 
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4.1.2 Comparative analysis Model 2 

Following exactly the same process which was followed in the previous step, it 

was obtained for the dense sand: 

    

Tower-T.Piece T.Piece-Pile 

D 
[m] 

Thickness 
[m] 

Lpile 
[m] 

Vsteel [m
3] σv

1
 [Pa] 

σv
1
 

[MPa] 
σv

2
 [Pa] 

σv
2
 

[MPa] 

4 0.03 20 7.483273701 3.17E+07 31.73 3.58E+07 35.75 

4 0.04 20 9.952565527 3.17E+07 31.73 3.08E+07 30.77 

3 0.05 20 9.267698328 3.17E+07 31.73 3.30E+07 32.95 

3 0.04 20 7.439291404 3.17E+07 31.73 4.10E+07 40.98 

Table 14: Comparative analysis Case 1 - Model 2 

 

D 
[m] 

Thickness 
[m] 

Lpile 
[m] 

Vsteel [m
3] 

Disp. Max 
[m] 

σv [Pa] 
T-TP 

σv [Pa] 
max 

ɣ 

4 0.03 20 7.483273701 - - - - 

4 0.04 20 9.952565527 0.643 3.42E+07 8.69E+07 4.08 

3 0.05 20 9.267698328 0.692 3.42E+07 8.69E+07 4.08 

3 0.04 20 7.439291404 - - - - 

Table 15: Comparative analysis Case 2 - Model 2 

 

D 
[m] 

Thickness 
[m] 

Lpile 
[m] 

Vsteel [m
3] 

Disp. Max 
[m] 

σv [Pa] 
T-T.P. 

σv [Pa] 
max 

ɣ 

4 0.03 20 7.483273701 - - - - 

4 0.04 20 9.952565527 1.242 3.26E+07 1.16E+08 3.07 

3 0.05 20 9.267698328 2.097 3.26E+07 1.63E+08 2.18 

3 0.04 20 7.439291404 - - - - 

Table 16: Comparative analysis Case 3 – Model 2 

As in this model the pile length is 20 m, the maximum acceptable deformation is 

3.05 m, a bit lower than in the previous model, as the pile length is 10 m 

shorter. 
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For this soil type, as it is stronger, the required diameters are smaller than for 

the clay type, therefore the structure has been analyzed to the diameters which 

are necessary for the structure. 

Observing table 14, we can see as it has been highlighted in red two of the 

results, this has been because the obtained stress at the connection between 

the transition piece and the pile (σv
2), exceed the maximum admissible (33.3 

MPa) to meet the fatigue assessment; so keeping that geometry, the structure 

would fail by fatigue. The next simulation has increased the thickness for the 

first case (0.04 m) and in the second one means that we cannot reduce the 

thickness for that diameter (3 m).  

Although the loads are almost the same as the ones from the previous soil type, 

as the soil is able to resist much more, it restricts more the displacements, so 

there is less deformation. But in this case, the geometry of the foundation is 

slimmer and also the movement is restricted, thus the stresses are larger than 

for the clay soil. 

4.1.3 Comparative analysis Model 3 

Finally, for the third soil conditions, very dense sand, it has been obtained the 

next comparative analysis: 

    

Tower-T.Piece T.Piece-Pile 

D 
[m] 

Thickness 
[m] 

Lpile 
[m] 

Vsteel [m
3] σv

1
 [Pa] 

σv
1
 

[MPa] 
σv

2
 [Pa] 

σv
2
 

[MPa] 

4 0.03 20 7.483273701 3.17E+07 31.73 3.58E+07 35.75 

4 0.04 20 9.952565527 3.17E+07 31.73 3.08E+07 30.77 

3 0.05 20 9.267698328 3.17E+07 31.73 3.30E+07 32.95 

3 0.04 20 7.439291404 3.17E+07 31.73 4.10E+07 40.98 

Table 17: Comparative analysis Case 1 - Model 3 
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D 
[m] 

Thickness 
[m] 

Lpile 
[m] 

Vsteel [m
3] 

Disp. Max 
[m] 

σv [Pa] 
T-TP 

σv [Pa] 
max 

ɣ 

4 0.03 20 7.483273701 - - - - 

4 0.04 20 9.952565527 0.369 3.42E+07 8.69E+07 10.39 

3 0.05 20 9.267698328 0.535 3.42E+07 8.69E+07 10.39 

3 0.04 20 7.439291404 - - - - 

Table 18: Comparative analysis Case 2 - Model 3 

 

D 
[m] 

Thickness 
[m] 

Lpile 
[m] 

Vsteel [m
3] 

Disp. Max 
[m] 

σv [Pa] 
T-TP 

σv [Pa] 
max 

ɣ 

4 0.03 20 7.483273701 - - - - 

4 0.04 20 9.952565527 1.1649 3.26E+07 1.16E+08 3.07 

3 0.05 20 9.267698328 2.0413 3.26E+07 1.63E+08 2.18 

3 0.04 20 7.439291404 - - - - 

Table 19: Comparative analysis Case 3 - Model 3 

where, exactly the same as in the previous model, the pile length (Lpile) is 20 m, 

so the maximum acceptable deformation is 3.05 m. 

The considered geometries in this model have been the same as the ones 

considered in model 2 and as the loads are the same, it has been obtained that 

the deformation is smaller than for the dense sand conditions, as the soil is 

even stronger. We can see again as there are two pile geometries that would 

not resist the cyclic loading and would fail by fatigue. 

Comparing the obtained results under the third load case (extreme wind), for 

the soils, dense sand and very dense sand, we can see as they are practically 

the same; that is why the geometry of the tower does not change between the 

models, then the wind loads do not change under the same load case. At the 

same time, the pile geometries considered for these both soils are the same; so 

the small difference obtained between the results is due to the different soil 

resistance. 
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4.1.4 Comparative analysis between soils 

Having found different optimum geometries for every soil condition, a separate 

analysis has considered the behaviour of the same geometry for the complete 

structure, in the different soil condition scenarios. It has been selected a 

monopile foundation with 5 m of diameter, 30 m length and 0.08 m thickness, 

which results are shown in the next tables. 

SOIL 
Tower-T.Piece 

σv
1
 [MPa] 

T.Piece-Pile 

σv
2
 [MPa] 

CLAY 25.42 12.39 

DENSE SAND 25.42 12.39 

VERY DENSE SAND 25.42 12.39 

Table 20: Analysis load case 1 

 

SOIL 
Disp. Max 

[m] 

σv [MPa] 

Tower-T.Piece 
ɣ 

CLAY 1.07 27.4 4.08 

DENSE SAND 0.324 27.4 4.08 

VERY DENSE SAND 0.189 27.4 4.08 

Table 21: Analysis load case 2 

 

SOIL 
Disp. Max 

[m] 

σv [MPa] 

Tower-T.Piece 
ɣ 

CLAY 2.801 26.1 9.26 

DENSE SAND 0.435 26.1 9.26 

VERY DENSE SAND 0.394 26.1 9.26 

Table 22: Analysis load case 3 
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Figure 22: Von Mises stresses represented over the deform shape for load case 3 

We can see as the maximum stress appears when the soil interaction affects 

the structure (see figure 22), which means when the soil restricts the 

movement; but this stress is not realistic, because the springs represent 10 m of 

soil column, that is why this point cannot be taken as comparative. The 

comparison stresses have been selected at the bottom of the tower level, on its 

joint with the transition piece, as well as at the connection between the 

transition piece and the pile; because these points represent a discontinuity or 

weak point for the structure. 

In the last comparative analysis, for the same structure geometry considering 

different soil scenarios, we can see as under the same load case the stresses 

are the same at both considered points, tower-transition piece and transition 

piece-pile, although the deformation at the top of the tower is not the same. This 

can be explained by the redistribution of stresses, which means the stress 

excess at the top of the tower is supported by the tower, redistributed along its 

length, and then the stress at tower-transition piece level is the same. 

Observing tables 21 and 22, we can see as the top tower deformation (Disp. 

Max) is different for different soil conditions with the same geometry under the 

same load case, which means the resistance is different on each selected soil; 

as the soil is stronger, less deformation occurs. 
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Comparing the obtained results from both sandy soils (models 2 and 3), as the 

considered geometries are the same for both of them, we can see as the 

stresses are the same for the same load case, although there is a small 

difference between their deflections at the top of the tower, where the stronger 

soil presents less deformation. This is due to the previous given explanations, 

stress redistribution and soil resistance. 

In the comparative analysis by model, we could see as the stress is always the 

same for different geometries under the same soil conditions and the same load 

case at tower-transition piece level; this is because the tower is longer enough 

to redistribute the stresses along its length for all cases (see tables 11-19 and 

figure 23). On the other hand, under the same soil conditions and load case, the 

stresses sometimes are not the same for different pile geometries at transition 

piece-pile level (tables 14 and 17 and figure 24); this just can be explained by 

the slimness of the piles, as it does not happen for the clay soil, where the pile 

geometries are less slim. When the pile geometry is slimmer, the structure is 

more expose to the deformation and then to suffer higher stresses.  

 

Figure 23: Stresses along tower for different pile geometries - Clay - Case 1 
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Figure 24: Stresses along pile (water) for different pile geometries - Very dense 

sand - Case 1 

The global safety factors (𝛾) have been calculated with the maximum stress for 

each model. That maximum stress has been found sometimes at the top of the 

tower, due to the aerodynamic loads, or at the first spring level (soil); as it is not 

always located at the same point, it was not possible to take it as a comparative 

for all cases. But nevertheless, it has been used to calculate the safety factor in 
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overestimated (soil level), if it remains on the safety side, the structure meets 

the ultimate limit state stress requirement. 

Also from the last analysis it can be seen as the design of these foundations is 

managed by the fatigue limit state, as the structures are able to withstand 
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the design conditions. Aspects as material availability, fabrication process, 

storage, welding, fatigue test or corrosion have been taking into account to 

select the appropriate geometry for each model. 

MODEL 1: the diameter-thickness combination which better fits the cost criteria, 

based on material availability, steel volume, fabrication, transport and assembly, 

is pile diameter 5 m and 8 cm of thickness, with pile length 30 m. 

MODEL 2 and 3: as it is better to use as less different geometries as possible, 

and both of this models can use the same geometry, it will be used the same 

foundation for them. In this case, in order to reduce the slimness of the 

foundation, although it would be taken deepest account in the corrosion, the 

selected geometry has 20 m length for the piles, 4 m diameter and 4 cm of 

thickness. 

4.2 Wind farm layout 

In order to optimize the use of the wind, offshore wind farms are laid out in a 

specific configuration. The layout depends on the main wind direction to avoid 

turbulence from other wind turbines, where the minimum distance in main wind 

direction is 5-8 times rotor diameter (E.ON, 2012) and 3-5 times in the 

perpendicular direction. 

As the used wind turbine is 6.2M126, the rotor diameter is 126 m. Following this 

thumb rule and assuming the main wind direction is east, the layout in this wind 

farm would be: 
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Figure 25: Wind farm layout 

Where there are 38 wind turbines and it can be seen in red, the wind turbines 

with the geometry foundation corresponding to model 2 and 3, and in blue the 

wind turbines corresponding to model 1. These two different geometries show 

as the foundation cost for a wind turbine can increase even four times due to 

the soil conditions requirements. 
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5 CONCLUSIONS 

5.1 Discussion 

In general, although we cannot say one method is better than another one 

because it depends on each case, it could be said RBF will always be faster 

and more exact as far as the value of the variable at data points meets the data 

value and it has not to estimate the values at data points. 

Logically we understand the accuracy of a method should be higher with a 

bigger amount of data points, which happens with RBF as it can be seen in 

figures 6 and 7. But observing the analysis results from Kriging, we can see as 

the accuracy in the prediction for Young‟s modulus is higher for 15 data points 

than for 20. And it happens exactly the same from Poisson‟s ratio between 7 

and 15 data samples. This shows a weakness of the method, because we could 

not ensure higher accuracy by taking a bigger amount of data. 

5.2 Assumptions and limitations of the methodology 

This study has presented a methodology for the soil characterization of the 

offshore wind farms, in order to reduce the lack of knowledge about its 

geotechnical conditions. Considering the unavailability of real data to carry out 

the research, this offers in detail the process to follow, having considered 

fictitious data which could be real. 

The calculated samples ratio is used to compare the required data points for the 

method and the amount of installed wind turbines in order to see if the site 

investigation cost could be reduced; but it cannot be taken as general rule, as it 

depends on the wind farm size and specially, on the variability of the variable 

values along the area. 

The variables Young‟s modulus and Poisson‟s ratio have been considered 

constant by depth, which assumption is not real. Taking into account that they 

can change by depth, also other interpolation techniques could have been used 

considering secondary information. 
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The estimated soil properties to characterize the wind farm are based on 

Winkler soil modelling method, which is not the most accurate. If the FEA would 

use i.e. a 3D soil model, other soil properties such specific gravity should be 

considered. 

Due to the lack of information in the standards, the maximum allowable 

deflection has been considered the 2% of the total length of the structure. This 

limit value should be calculated studying the maximum deflection under the 

wind turbines operate, as well as the maximum registered deformation before 

bending failure in past accidents, to check which situation corresponds with the 

ultimate state of failure. 

The foundation design analysis should be completed to ensure the structure 

support against other phenomenons, i.e. buckling, as this was just a first basis 

analysis. 

5.3 Achievements 

This paper has presented a methodology for predicting the soil properties over 

the total affected area by a wind farm, in order to reduce the installation cost of 

this machines and then to reduce the LCOE. From a limited amount of data (20 

sample points) it has been possible to predict the soil properties reaching an 

accuracy of 90% or higher. The data ratio of 1.33 samples/km2 has been 

probed as smaller than the amount of wind turbines that could be installed on 

the entire area; considering that its ratio is 2.53 turbines/km2, this leads to 

suppose a 50% reduction in site investigation cost, taking into account that this 

cost depends only on the number of needed samples. 

Also the fact to know the soil properties over the total area makes a reduction in 

the total cost, as it will not appear unexpected costs due to the lack of soil 

characterization.  

Comparing the foundation geometries necessary for each soil type and 

supposing that the foundation cost depends only on the steel volume, we would 

have in this wind farm 8 wind turbines (model 1) almost 4 times more expensive 

than the rest of them. Taking benefit on the soil characterization and making 
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use of the dispersion alternative, it is recommended changing the location of 

those 8 wind turbines to other locations either inside the same area or outside, 

depending on the benefit for the grid, as it is worth to reduce the foundation 

cost; regardless the increasing cabling cost. 

5.4 Future work 

The geotechnical conditions of the soil can fluctuate greatly across the wind 

farm. This is an issue since geotechnical modelling is the base of the structural 

design of an offshore wind farm. One way to deal with it is considering the soil 

properties as random variables and predict them there where they are unknown 

by using any of the available interpolation techniques, processing the samples. 

To take greater benefit from this soil characterization, it could be calculated the 

failure probability of the structures at every single point of the wind farm, in 

order to base the wind turbine locations on its failure probability due to the soil 

conditions. 

The soil properties interpolation gives us the uncertainty value of its prediction, 

with which by running a Monte Carlo based reliability simulation, can be 

obtained the probability of failure for each soil condition, with the suitability of a 

support structure. 
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