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ABSTRACT 

 

 

World air transport has been on a steady exponential rise since the 1940’s and the 

trend has shown remarkable resilience to external shocks. The level of air traffic has 

greatly exceeded the wildest expectations of the air traffic management pioneers that 

originally defined the basic precepts ATM that persist till today.  

This has stretched ATM to a point where it is starting to show signs of 

ineffectiveness in the face of ever increasing congestion. Delays are on the rise, costs 

are ballooning, flights are being elongated unnecessarily, the system is becoming 

increasingly susceptible to disruption, and the high environmental impact of aviation is 

being compounded by the inability of air traffic controllers to optimise ATM operation 

in real-time. If these trends are not reversed, ATM could eventually face instability. 

The conservative, self-preserving outlook of the ATM community has confined 

progress to relatively minor tweaks of a tired human-centric paradigm. However, the 

diverging gap between ATM performance and fundamental requirements indicates the 

need for a step change.  

In this work, the traditionally incremental approach to ATM research was broken 

to favour a more exploratory mindset. As a result, a new discipline called 

Computational Air Traffic Management has been defined to address the unique set of 

challenges presented by the ATM problem, by taking a more objective scientific 

approach. 

A specific embodiment of a CATM system was designed, constructed, simulated 

and tested and shown to be a significant step towards demonstrating the feasibility of a 

fully autonomous multi-agent-based air transportation system based on optimisation 

principles. The system offers unique advantages in terms of resilience to disruption, 

efficiency and future scalability. The traffic density using such a system can be 

realistically increased many times higher than current levels while significantly 

improving on the current levels of safety, operating cost, environmental impact and 

flight delays. This work advances the field of ATM as well as the fields of 

Computational Intelligence and Dynamic Optimisation of High Dimensionality Non-

Convex Search Spaces. 
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Preface 

Computational Air Traffic Management (CATM) traces its roots to an idea born 

out of a pressing need. This is a long term study in fully airborne, decentralised, 

autonomy for ATM and it all started with a focussed study we undertook on the 

optimisation of continuous descent approaches (CDA) in the presence of air traffic, to 

reduce fuel consumption, noise and emissions by gliding aircraft down to destination 

aerodromes with their engines on low thrust settings. However, it soon became apparent 

that efforts to optimise this phase of flight in isolation would be largely negated by 

constraints imposed, on or by, incoming traffic from the enroute phase. It was hoped at 

first that one could combine and collectively optimise the trailing end of enroute with 

CDAs. However, the problem arose again and again, until it was clear that any serious 

attempts at minimizing the system’s total fuel consumption would have to look at all 

phases of flight... of all aircraft. 

This is essentially the ATM problem, and it highly impinges on most aspects of 

aviation to the extent that it is no longer possible to sideline this major contributor to air 

transport inefficiency and cost, when the rest of the industry spends tens of billions of 

Euros to achieve low single digit improvements elsewhere. ATM is unfortunately a 

rather suboptimal, labour intensive affair, and yet there exists no concerted, in-built 

mechanism to collectively optimise air transport. A closer look at the nature of ATM 

reveals why: Complexity and Legacy.  

 

Europe – 24 hours of flights above 30,000 feet (Source: EuroControl) 
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I. THE RESEARCH CONTEXT 

The majority of research in ATM/ATC is carried out by the ATC supply chain, 

and national / supranational organisations of air traffic controllers (ATCo), (eg: 

Eurcontrol, FAA, NATS etc.) and is by its very nature quite close to the current market. 

On the other hand, it is the author’s perception that a large proportion of unbridled 

fundamental research in the ATM community is conducted by “visiting” researchers 

(such as mathematicians, computer scientists and engineers) that happen to temporarily 

wander-off from adjacent fields to tackle some aspect of ATM... and then leave. 

This distinction in approach is manifested in the trichotomy of research products 

that seems to exist. This influx of researchers is objectively beneficial to the community 

and cross-fertilizes ideas. They enter the field without many pre-conceived ideas and are 

able to look at the problem more broadly. For many years,  the absence of a perennial 

critical mass of dedicated fundamental ATM researchers, meant that a steady reservoir 

of knowledge took long to be created and many worthwhile ideas grew old on the shelf, 

without ever being brought to fruition. This seems to be changing. The air traffic 

research effort that has taken place during the past couple of decades can therefore be 

broadly classified into three clear categories: 

Type I Research: The first type works within the framework of the current ATM 

paradigm. It therefore feeds the relentless demand for new tools to assist air navigation 

service providers (ANSPs) with running their day-to-day task of ensuring the 

harmonious flow and separation of aircraft. These tools automate specific portions of 

the job. Some assist controllers with maximizing productivity, while others attempt to 

reduce operating costs which may coincide with lessening the environmental impact. 

Still other tools are intended as safety-nets and are developed in response to accidents or 

observed failure modes of the system. Minimizing the environmental burden is however 

further down on the ANSP priority list. Thus, in general, these tools aim to mitigate 

only some of the numerous shortcomings of ATC for just the short to medium term. 

This research category includes a long list of technologies, some of which have 

actually found their way into many cockpits and control towers. Such tools play an 

important psychological role as they gradually wean-off ANSPs from tactical traffic 

micro-management while rendering them more acquiescent towards higher levels of 

automation. In fact, the operational philosophy of such tools has gradually shifted 

beyond the mere provision of enhanced usability and ergonomics (eg: electronic flight 

strips) and is now moving to supplant some of the core decision-making that was 

traditionally the prerogative of the human controller (eg: sequencing). The current 

deployments of the AMAN and DMAN are good examples of such a trend.  

However, by their very nature, such technologies remain stop-gap solutions for 

extending the lifespan of a human-centric ATC system which traces its roots to the late-

1920s. Their downside is that such a piece-wise addition of new layers of automation 

tends to introduce new complexity, unforeseen interactions and new system states. 

Some information ends up lost in translation with the result that the ultimate human 

decision maker is deprived from full situational awareness, which when coupled with a 

poor understanding of the underlying automation, can generate new failure modes and 

confuses issues of liability in the case of accidents (refer to EU project ALIAS).  
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Type II Research: It has been generally accepted that the ATM system is well 

past its prime and is long overdue for a major overhaul. To this effect, type II research 

has been established. It is best exemplified by Europe’s SESAR, USA’s NextGen and 

Japan’s CARATS. Over two decades, these large public-private partnerships plan to 

inject the aging infrastructure with new life, add capacity and reduce costs. 

The hallmark feature of such research is the process of unification of concepts 

through higher automation to reduce the level of fragmentation that currently exists. 

System Wide Information Management (SWIM) and 4D Trajectory-based operations 

are excellent examples. The adoption of better streamlined but far reaching, broadly 

applicable concepts multiplies ATM effectiveness while dividing its complexity. 

Although, it was initially hoped that these projects would have fundamentally 

challenged the status quo, in hindsight they seem rather watered-down, and turn out to 

be still producing significant quantities of Type-I research. A considerable number of 

highly-specific crew-support tools are being developed around the incumbent human-

centric paradigm. For instance SESAR proposes dynamic sectorisation, time based 

separation, and virtual control towers as an incremental means of adding capacity and 

reducing costs. These add complexity. The oft-declared a-priori objective of keeping the 

human ATCo in the loop is hampering progress. It partly explains why these projects 

stop short of any truly radical changes to the principles of ATM/ATC. 

Type III Research: On the other hand, at the far end of the scale, there exists a 

third type of research activity which involves rethinking the very foundations of the 

ATM problem and some of this is taking place under SESAR’s Work-Package E. This 

type of research looks beyond current technological, social and political constraints and 

considers instead various “what-if” scenarios that strategically overlook individual non-

fundamental challenges to see past the technological horizon. It is often a matter of time 

for many of these challenges to be addressed, so it appears wise to study in advance the 

possibilities that could be unlocked in that event. It is also possible that what appears to 

be a stumbling block today, might become largely irrelevant in a different context. This 

approach not only broadens the research space, but provides a renewed impetus to 

addressing any extant challenges, once the rewards are so clearly described. 

This kind of research will complete the unification process initiated by SESAR 

and NextGen. The objective here is to devise and verify new overarching operational 

paradigms that are intrinsically more robust, notwithstanding higher traffic densities, 

whilst guaranteeing equivalent or improved levels of safety, fewer delays, less fuel 

consumption and environmental impact – usually through a far higher degree of 

autonomy and near total reliance on technology. The intention is to develop and 

evaluate a cache of viable alternative paradigms that could eventually displace the 

current system, which is appearing increasingly inadequate to handle much higher 

traffic densities, as envisaged over the longer term.  

However, radical as it may be, the outcome of any Type III research cannot 

overlook the realities of mixed equipage, operational constraints and the need for a 

smooth transition between old and new paradigms, but these matters will become 

research areas in their own right and are given somewhat subsidiary importance in 

relation to the initial development of idealised target concepts. 
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II. THESIS SCOPE, OBJECTIVES AND LIMITATIONS  

This thesis aims to address Type III research questions. It appears that too little is 

being done to rethink ATM at its very roots. We will therefore attempt to reconsider the 

ATM problem in the light of all available modern engineering and mathematical tools in 

order to establish whether a coherent concept can be put together and be realistically 

implemented using current or expected forthcoming technology. We will not however, 

restrict ourselves to any of the limitations imposed by the current ATM paradigm. 

The project is exploratory and will therefore not attempt to develop complete 

finished systems. That is a role that can be filled with diligent engineering spanning 

many years. We will rather focus on the feasibility aspects of the problem by looking at 

the major show-stoppers. The most important thing at this stage, is to establish a way 

forward for all the primary, critical subsystems. The proposed solution can serve as 

guide to steer future ATM research and development efforts. 

III. THESIS OUTLINE AND CONTRIBUTIONS 

This dissertation follows a precise format that first establishes the research 

questions, then the methodology for addressing them, followed by some experimental 

data to substantiate the chosen methodology. It finally provides a list of contributions 

and recommendations for future work.  

A. Research Questions 

The key research question is of course whether a fully autonomous ATM system 

will ever be feasible. The corollary of that question is the method with which it could be 

implemented. The final question is how to plan the changeover between the current 

ATM paradigm and the proposed new system. Throughout this dissertation, the first two 

questions will be addressed while the last question will be only briefly discussed.  

Of course, attempting to answer these basic questions will raise many others of a 

more technical nature, and therefore, more specifically, the following open questions 

will be also addressed and/or discussed: 

 Is there a science underpinning ATM? 

 What structure does a practical autonomous air transport system take? 

 ATM is a large non-convex optimisation problem, how can it be handled in real-time? 

 Is the ATM problem computationally tractable? 

 If tractable, what algorithms and conventional computing platforms can be used? 

 Can sufficient computational resources be afforded in an airborne system? 

 Is an airborne CATM system more vulnerable to failures? 

 Is an airborne distributed trajectory optimisation algorithm feasible? 

 If yes, how will the many aircraft converge to one solution for the airspace? 

 How will the multitude of autonomous aircraft communicate? 

 What language of interchange will be used throughout the system? 
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 How can the system be made to adapt to weather and other disturbances? 

 How can optimisation speed be improved? 

 How can the system be simulated offline? 

B. Methodology 

The problem being considered is way too large for implementation by any single 

person. Therefore, the methodology appropriate for this kind of research project is to 

first understand the current ATM system, and then define the fundamentals, and finally 

move on to suggest and test some partial solutions. We therefore embark on a project 

that will: 

1) Explore the nature of the problem. 

2) Identify the main requirements. 

3) Study and establish its defining features. 

4) Give the problem some formal structure. 

5) Propose a conceptual solution. 

6) Propose a plan for implementation and simulation of CATM systems. 

7) Construct suitable place-holder models for the various sub-systems. 

8) Identify the most challenging sub-systems and sub-problems. 

9) Identify and study the most promising avenues for a breakthrough. 

10) Implement a number of candidate solutions with improvements. 

11) Test the most promising implementation with repeatable test scenarios. 

12) Compare results with current ATM systems. 

13) Draw conclusions on the feasibility of Computational Air Traffic Management. 

C. Contributions 

There are a number of novel contributions of various magnitudes that are 

described in this dissertation. The most important of these are highly conceptual. 

SESAR and NextGen began the process of merging various pieces of automation into 

more powerful tools to assist the human pilot and controller. CATM proposes to take 

this process to the limit and considers the total unification of all blocks of automation 

into a single powerful concept that elegantly deals with the entire problem holistically 

and autonomously, thereby obviating the need of humans in the loop. However, in 

addition to the primary contribution to the ATM domain (which is of a conceptual 

nature), a number of other secondary contributions are offered as supporting evidence in 

favour of the central concepts. The following specific contributions to the fields of 

distributed computational intelligence, optimisation science and ATM were made: 

1) A fundamental rethink of the broad ATM problem from basic requirements. 

2) Defined a novel unifying concept for the entire Air Traffic System (ATS). 

a. Replaces fragmented automation with unified overarching autonomy. 

b. Network-Centric Communications, Navigation and Surveillance (CNS).   

c. Network-Centric real-time Air Space Management (ASM). 
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3) Proposed a new framework and architecture for making ATM Airborne.  

a. Fully distributed, fully autonomous Air Traffic Management. 

b. Grid Avionics was proposed as possible CATM implementation. 

c. Grid avionics was shown to be a feasible CATM implementation. 

4) Posed CATM as a collective optimisation problem and explored the 

implications. 

5) Studied the relationship between the strategic and tactical elements of CATM. 

6) Studied the suitability of various classic global optimisation techniques and 

variations to ATM problem. 

7) Empirically evaluated a novel multi-resolution Iterative Dynamic Routing (IDR) 

technique, by extending ideas taken from iterative dynamic programming (IDP). 

a. Proposed the use of a structured grid for reducing IDR dimensionality  

b. Developed techniques against grid collapse for good dynamic behaviour 

8) Studied suitability of various swarm intelligence and evolutionary approaches 

9) Explored methods for distributing computational intelligence symmetrically 

among aircraft such that the computing power of the machines remains additive. 

10) A Coevolutionary version of Particle Swarm Optimisation (PSO) was adapted to 

cater for dynamic environments using GBest and PBest online re-evaluation.   

11) Ideal attractors were introduced as a technique for speeding up Genetic 

Algorithms and Particle Swarm Optimisation for problems with approximately-

known globally optimum solutions. (such is the case in ATM). 

12) Developed a methodology to address problems of scalability through clustering 

13) Evaluated the suitability of various complexity reduction techniques, such as 

continuous optimisation, receding horizon control, B-Spline interpolation etc...      

14) Empirically demonstrated the linear scalability and unconditional convergence of 

the proposed algorithm. 

15) Studied the requirements for an airborne computational hardware platform. 

16) Implemented and tested a distributed computing hardware and software 

simulation platform for testing CATM ideas. 

17) Gave indications on the communications overhead and bandwidth required 

18) Tested, validated and characterised algorithms on the developed platform. 

19) Enumerated a number of open questions that merit further exploration. 

20) Prepared a number of place holder models for atmospheric effects, aircraft, 

weather, wind, airspace obstacles, traffic, environmental impact and ground 

delays. 
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D. Organization of the Dissertation 

The arguments in this dissertation are developed over six chapters. The following 

provides a brief summary on the purpose and objectives attained in each chapter in turn.      

Chapter 1 - Introduction 

This introduction discusses the problem background and presents a compelling 

argument for ATM reform. The principles of ATM are outlined together with the 

idealised behaviour expected from such a system. This chapter proceeds to discuss the 

historical development of the ideas that were developed into the CATM concept. The 

science applicable to of ATM is discussed followed by a three stage probable 

progression towards full CATM automation. The chapter concludes by providing an 

outline tentative plan for the changeover from conventional ATM to autonomous 

CATM-based paradigm.  

Chapter 2 - Computational Air Traffic Management (CATM) 

In this chapter specific detail is given about the CATM concept and its ancillary 

requirements. Complexity considerations about the ATM problem are discussed 

together with the benefits of approximate optimisation, decentralisation, nested 

optimisation and continuous re-convergence. Grid avionics concepts are presented 

together with essential aspects like fast optical communication, security, redundancy, 

sensor networks, flight monitoring, fault tolerance and computing platforms. The 

clustering concept based on the locality principle and sharing of trajectory descriptions 

are also introduced.  

Chapter 3 - Modelling CATM 

Chapter three focuses on the modelling aspects of CATM and the system it needs 

to interact with. These are needed for both operation and simulation. The completely 

revised Air Traffic System Model is presented in a formally structured manner that can 

be extended in future to introduce further detail. The process of flight genesis is 

discussed, starting from planning, inception, through to execution and completion. The 

chapter concludes by describing a number of system models that are suitable for CATM 

simulation including: atmospheric models, aircraft models, traffic models, weather 

models, environmental impact models and ground operations models. 

Chapter 4 - Computational Intelligence in CATM 

A detailed study of the various computational techniques available to optimise 

CATM trajectories is discussed, after providing a detailed topological analysis on the 

exact nature of the ATM problem. Three global optimisers are discussed; one based on 

dynamic programming and two other evolutionary and swarm intelligence 

metaheuristics. A simple collocation technique was outlined as a way of performing 

local search following global search. The chapter finishes by tabulating the salient point 

regarding some of the various global optimisation techniques available together with 

their overall suitability for CATM.  
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Chapter 5 - Simulated Test Scenarios, Results and Discussion 

The testing methodology and the implementation aspects of the test setup are 

discussed in chapter five. Both qualitative and quantitative tests were conducted in order 

to show symmetric distributed particle swarm optimisation in difficult cases, large scale 

traffic handling, dynamic optimisation and the handling of obstacles constraints. 

Scalability was proved empirically as well as the effectiveness of clustering. 

Communications overheads were quantified with and without transmission filtering. 

The effects of particle swarm size and constriction were also quantified and the final 

delay distribution of the converged output was analysed and compared to typical traffic. 

Chapter 6 - Conclusions and Further Work 

The final Chapter concludes the dissertation by summarising the achievements 

and by providing answers to the research questions laid out in the preface. Avenues for 

further research are also outlined. 

IV. PUBLICATIONS ARISING FROM THIS WORK 

A number of publications arose from this work, one published at a leading IEEE 

conference, another one accepted for publication in the AESS magazine, another 

pending review, and two more papers are in preparation for submission to international 

journals. 

A. Published 

[1.1] M.A. Azzopardi and J.F.Whidborne, "Computational Air Traffic Management", 

Proceedings of the 30th AIAA/IEEE Digital Avionics Systems Conference (DASC2011), 

IEEE/AIAA, Seattle, WA, USA, 2011, Oct 16-20, pp. 1.B.5-1. Best Paper of session. 

B. In Press 

[1.2] M.A. Azzopardi and J.F.Whidborne, "The case for Computational Air Traffic 

Management", Aerospace and Electronic Systems Magazine, IEEE, Seattle, WA, USA, 

Accepted, 2015 

[1.3] M.A. Azzopardi and J.F.Whidborne, "Grid Avionics and CATM", Aerospace 

and Electronic Systems Magazine, IEEE, Seattle, WA, USA, Pending review, 2015. 

C. In preparation 

[1.4] M.A. Azzopardi and J.F.Whidborne, "Symmetric Distributed PSO for a CATM 

Grid Avionics System", In preparation for submission to an international journal. 

[1.5] M.A. Azzopardi and J.F.Whidborne, "On the linear scalability of Computational 

Air Traffic Management", In preparation for submission to an international journal. 
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Chapter 1 
Introduction 

This chapter proposes the notion of Computational Air Traffic Management 

(CATM) as the discipline, that is focussed on establishing ways of mathematically 

posing the ATM problem, that subsequently leads to computationally tractable solutions 

that can form the basis for an ideal ATM system. The features of an ideal ATM system 

are first discussed and developed objectively in contrast to current systems. A high level 

top-down approach is then adopted to define the requirements of such a system, while 

also looking at the time-proven characteristics that have allowed present-day ATM to 

maintain its enviable safety record. However, the shortcomings of the current ATM 

paradigm are also enumerated and discussed and the case is made for a new autonomous 

traffic management methodology that relies far more on distributed computational 

intelligence, inter-aircraft communication and surveillance, than present, to holistically 

address the scalability problems faced by ATM today, while minimizing any negative 

environmental or societal impact of air transport. 

Closer analysis reveals CATM as the natural convergence of the seemingly 

disparate, air traffic technologies that have been evolving over the past two decades. An 

inventory of interesting unanswered research questions in the overall CATM picture is 

gradually drawn-up along the discussion to indicate promising research directions 

leading towards CATM. 

1.1 THE MOTIVATION 

Air Traffic Management (ATM) is the all encompassing term for a worldwide 

distributed system tasked with keeping global air transport organised, interoperable, 

reliable, efficient, and safe. To this list we could add: secure, cost-effective and 

environmentally sustainable. ATM‘s remarkable history dates to the early 20
th

 century 

[1.1], conceived out of necessity following the popularisation of powered flight during 

WW1 for military purposes, but it was not until after WW2 that the International Civil 

Aviation Organization (ICAO) was set up, in 1944 at the Chicago Convention, to 

organise the advent of commercial aviation. The ATM system was very successful at 

reaching its primary objectives and as of 2013 boasted of a sterling safety record of less 

than one hull loss accident in 5 million hours flown on western-built aircraft [1.2]. This 

should be taken in the context of 5.7 trillion annual revenue passenger miles (RPM) on a 

fleet of 26,600 airliners making around 100,000 flights daily. However, if air traffic 

continues to increase, as it has for the past 65 years, many things will have to change in 

order to maintain these levels of safety and reliability. Efficiency and reliability are 

already starting to falter [1.3] and the environmental impact is worrying [1.4]. 
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1.1.1 The Problem Background 

For many decades, structured airspace has been used [1.5]. This discretized the 

airspace into flight levels and airways between fixed navigation aids, (NAVAIDS) 

(Fig. 1.1.1) respecting the early limitations in navigation instrument accuracy [1.6]. 

However, it also transformed ATM into a combinatorial problem that makes it easier for 

human controllers to tackle conflict resolution at short notice. As traffic density grew, 

recursive sectorisation further divided the problem into manageable portions assigned to 

individual controllers. This also facilitated some VHF radio channel reuse [1.7].   

  

Figure 1.1.1:  Structured Airspace over Central Mediterranean, and Central Europe [1.8] 

However, subdivision of the airspace cannot go on indefinitely as it adds to the 

complexity, leads to instability and generates numerous handover requests between 

sectors, which is bounded by the limited number of non-interfering VHF radio channels 

that can be accommodated in a given area. When coupled with aircraft separation 

minima, structured airspace also brought with it a significant restriction in traffic 

capacity as well as significant elongation of routes. The shift to area navigation (RNAV) 

[1.9], and more recently, satellite-based RNAV [1.10], eased this problem by exploiting 

better accuracy of navigation equipment, allowing intermediate ephemeral waypoints to 

be defined as necessary (Fig. 1.1.1). This allowed more direct routes and airways to be 

established, but it was not long before congestion caught up with these advantages. 

 

Figure 1.1.2:  Measured by Eurocontrol, ATM accounts for a high proportion of Flight Delay [1.11] 
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The effects of congestion are well known (Fig 1.1.2), and typically translate in 

delays and higher costs for the travelling public [1.3], [1.11]. Efficient wind-optimised 

(eg: jet-stream) or minimum length great-circle routes have to be forfeited around zones 

of high traffic density, resulting in higher fuel burn, CO2 emissions and delays. There is 

a point, in the not too distant future, where the current ATM paradigm will meet stiff 

challenges, and it may no longer be possible to incrementally adjust, as we have been 

doing so far, without significant impact on performance (Fig 1.1.3).  

 

Figure 1.1.3: Current and Projected Delay Distribution due to Increased Congestion [1.3] 

Flexibility, efficiency and capacity is ostensibly maximised with the 1995 concept 

of free-flight [1.12]-[1.15], that proposed to do away with centralised separation control. 

However, studies have shown that reactive conflict detection and resolution (CD&R) 

strategies, considered necessary for pilot-driven free-flight, result in a domino effect at 

high traffic densities, where resolving one traffic conflict creates new conflicts further 

down the line [1.16]-[1.18], which suggests that more sophisticated alternatives will be 

needed before the free-flight scenario can be taken further. 

1.1.2 The Cost of Human ATM 

Air Traffic Management is a very expensive enterprise weighing-in on a very cost 

sensitive industry, that is critically important to the world economy. With 195,000 Air 

Traffic Controllers (ATCo‘s) and executives, ATC costs the world around €25 billion 

annually to operate. It costs €579 in the EU, and €438 in the USA per IFR flight hour 

[1.19], [1.20]. Then there are the costs of ATM inefficiency. The industry estimates that 

in 2012, in Europe, delays cost €4.5 billion to airlines and €6.7 billion to passengers 

[1.20]. To that one must then add the ripple effect through the economy. Similar figures 

are found in the US. In 2012, air transport generated or induced €2 trillion (or 3.4%) of 

the world‘s economic activity, keeping 58.1 million people in employment [1.21]. This 

must be put in the perspective of the €600 billion in revenues for an airline industry, that 

in 2014 generated a meagre €16 billion in collective net profit for a 2.65% profit margin 

[1.22]. Airlines generated just €4.8 of net profit for every passenger carried. 

Airline pilots are also a very expensive component of ATM, costing a 

conservative €120,000 to train and another €150,000 per annum in salaries and benefits, 
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per pilot. It is therefore estimated that over the 25 year life span (90,000 hours) of a 

large wide-bodied airliner such as the Airbus A380-800, an airline will incur some 

€40-€50 million in ATC costs, some €64 million in pilot salaries and about 2 million in 

training assuming an average of 17 employed crew per long haul aircraft [1.23]. To this, 

one must add the regular training in simulators and the significant cost of the cockpit 

and the crew-support avionics hardware that is found within. All this must finally be 

compared to the 2015 list price of the vehicle, at €350 (USD $428) million.  

Therefore, there is an opportunity cost of over €100 million per aircraft that could 

potentially be better spent on an alternative, possibly autonomous, ATM system. 

1.1.3 Future Trends in Demand 

 

Figure 1.1.4: Growth Trend Spanning 65 years in Aviation Industry (Source: ICAO)[1.24] 

If past trends are anything to go by, we can expect a continued exponential growth 

in air traffic for the foreseeable future. For the past 15 years, RPM has increased at a 

compounded 5% average annual rate, as the world economy increased by 2.8% per 

annum [1.24]. This growth trend is highly robust seems unfazed even by major security 

and economic world events. Just when growth appears to falter, it is soon followed by a 

renewed surge that resumes the steady exponential trajectory (Fig 1.1.4).  

A rough, but conservative, back-of-the-envelope calculation based on currently 

available data, [1.25][1.26], quickly shows that even if the world population stays static, 

the potential for growth in air traffic is enormous. If China, India and Indonesia alone 

reach the same average level of RPM, per year, per capita to just match the average 

United States citizen, today, we can expect a tenfold increase in commercial air traffic 

volumes. This assumes (quite unrealistically) that the rest of the world stays put and that 

demographics do not change from 2014 levels. Eastern European countries are also on 

the path of rapid expansion in air travel rates [1.27]. In their case, the added effect 

compounds an already heavily congested region. The airframers predict 29,220 new 

airliners and 498,000 new pilots by 2032 [1.23]. Major growth spurts are also expected 

with the democratization of personal aviation and commercial unmanned flight. 
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1.2 RESEARCH IN ATM 

Research in most aspects of air transport is vibrant and highly mature, particularly 

in respect of vehicle design, propulsion and avionics. These are fields with a solid 

scientific basis, which makes setting and reaching targets, a very structured affair. 

However, the same cannot yet be said of ATM, where the research community seems 

somewhat fragmented with numerous newcomers providing a plethora of disconnected, 

often contradictory, contributions from many adjacent fields. ATM still lacks a unifying 

theoretical framework, which researchers can use to make sense of the bigger picture 

[1.28]. This indicates that the ATM research community is still lagging behind current 

needs, with the bulk of the work surrounding an ATC paradigm that has not changed 

substantially since the 1920s [1.1]: That of human controllers on the ground issuing 

voice instructions to pilots in the air, or on the runway, to maintain orderly flow and 

separation of traffic. This is not meant to belittle the immense progress and increases in 

capacity over the decades, but the improvements were incremental, and for good 

reasons. However, alterative paradigms were never explored in earnest, and hence, all 

improvements remained largely peripheral to the entrenched main activity of the ATCo. 

However, this leaves us with a system that has some fundamental shortcomings. 

As congestion increases, the ability to recover from disruption seems to decrease [1.3] 

and the rate of human ATCo error increases [1.29]. Given the world economy‘s 

dependence on air transport, this is disconcerting, particularly after witnessing the 

vulnerability of the sector to a single volcanic event, which shaved off up to 29% of 

global traffic for the best part of a week, leaving 10 million passengers stranded and €4 

billion in economic losses [1.30]. 

Recent high profile aviation incidents and accidents have also highlighted the 

helplessness that the currently centralised ATM system faces. A computer disk failure at 

the NATS Swanwick ATC Centre in December 2013 caused severe disruption in the 

UK airspace with 300 cancelled flights and hundreds more delayed [1.31]. A rather 

similar incident at the same centre in December 2014 caused another global ripple effect 

after just 35 minutes of downtime [1.32]. 

 When the relatively weak communication and surveillance links between ATC 

and aircraft are severed, bad things have happened. In both the 2009 Air France 

Flight 447 [1.33] and the 2014 Malaysian Airlines Flight 370 [1.34], loss of radar 

contact, ADS-B, ACARS, and pilot communication left ATC clueless for weeks on the 

fate and final trajectory of the aircraft. In such reasonably rare cases, any potential 

rescue response is sterilised, fatalities often reach 100%, and the authorities may spend 

years piecing together the puzzle of what could have happened – and only if the flight 

recorders are finally retrieved. It still surprises many that this continues to happen 

despite 21
st
 century communications technology. The fact is, we can practically 

eliminate this information vacuum, if inter-aircraft networked communication is 

established and cooperation is enhanced. 

A major overhaul of ATM will eventually be needed, but it would appear that the 

long term goal of ATM research rests undefined and there is still a general lack of 
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direction in the community's research efforts. This may be exemplified by research 

programmes on the Air Separation Assurance System (ASAS) for en-route self 

separation [1.35][1.36], which partly contradicts rigid 4D Contracts proposed in IFATS 

[1.37], or the more flexible 3½D Contract of Objectives (CoO) (also Target Windows) 

of Eurocontrol‘s CATS project [1.38] which is in turn incompatible with the tube-based 

traffic control considered by NASA [1.39] and many other variations, leading to a 

proliferation of inconsistent separation concepts. The same can be said about the free-

flight proposals [1.14][1.15], which run counter to automated airspace concepts 

[1.40][1.41]. Integrating military aircraft, general aviation, unmanned (UAV) and 

personal (PAV) air vehicles, into the airspace is also problematic if each party abides by 

a different rule set, thus necessitating further segregation. Interoperability demands 

coherence in the air traffic system and yet there is wide incongruence on basic 

principles, and then there is the increasingly vestigial role of the pilot, in an age where 

an aircraft equipped with 4D-FMS is technically capable, or contractually required to 

follow a pre-planned 4D business trajectory with high accuracy.  

1.2.1 SESAR and NextGen 

The practising Air Navigation Service Provider (ANSP) community is a long-

established and rather traditional community, which has nonetheless been living in the 

shadow of an overhaul for some time. The last decade has witnessed the emergence of 

two large multi-billion-dollar research and deployment initiatives, one on each side of 

the Atlantic: NextGen (USA) [1.42] and SESAR (EU) [1.43]. These programmes enjoy 

the political backing necessary to challenge the status-quo and aim to collaboratively 

bring the benefits of increased automation and modern information technology to the 

aging ATC infrastructure [1.44]. The stated goals of both SESAR and NextGen do not 

differ by much, mostly as a result of the strong political and practical effort to 

harmonize the developments on both sides of the Atlantic, [1.44]. In essence, both aim 

to reduce (but not remove) the need for human tactical intervention by emphasizing on 

strategic de-confliction. 

Underlying these projects is the notion of aircraft explicitly sharing their intent 

with ANSPs in the form of detailed 4D business trajectories (4D-BT), as opposed to the 

current model of merely extrapolating future motion of aircraft from past radar trails. 

This necessitates a new breed of communication infrastructure that is built around net-

centric principles using peer-to-peer data-links and a System Wide Information 

Management (SWIM) system [1.45]. The timely distribution of weather information 

also takes a very central role in these projects, because an accurate and coherent 

continental weather-picture goes a long way in reducing system uncertainty. 

Despite the fairly long timescales of these programmes (10-15 years), their 

conservative nature is evident. They begin the research effort with the pre-condition of 

keeping the human in the inner control loop – with ultimate responsibility for separation 

assurance. The natural consequence of this decision is the introduction of a number of 

tools to facilitate the human‘s cumbersome role in the system and add to the ever 

expanding list of installed or proposed decision support tools, situational awareness 

aids, or safety net functions (see Table 1.6.1) Some re-partitioning of the tasks 
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traditionally associated with the controller and pilot is envisaged. Thus, neither 

NextGen nor SESAR are poised to undertake a complete overhaul. 

However, the rate of change, was catalysed. Digital communications is leveraged 

with the SWIM system and will carry flight data, weather information and airspace 

restriction updates. Automatic dependant surveillance-broadcast (ADS-B) provides 

regular updates to and from surrounding traffic about GPS position, and other flight 

status. A number of different separation modes are introduced depending on context. 

One of these is the 4D-BT, that ―contractually‖ binds each flight [1.38] to traverse 

specific way points at pre-determined times. Self separation through ASAS [1.36] is 

also contemplated in some circumstances. 

If we join the dots, starting with the earliest emergence of fundamental concepts 

such as free-flight and distributed control, through to collision detection and resolution 

(CD&R) schemes, and following by the increased reliance on automation proposed by 

SESAR and NextGen such as fast-time air traffic simulation, flow/capacity management 

and trajectory based operations, it all seems to pave the way towards a consolidation of 

approach towards the ATM problem. This can be seen as the emergence of a new 

unifying ATC paradigm immersed in automation, and perhaps autonomy. 

1.2.2 Full Autonomy? 

This chapter attempts to rationalise the recent developments by putting them in 

the context of the overarching direction that the field has been taking. Many researchers 

and their contributions have been tacitly assuming that full automation of air transport is 

the way forward [1.46]-[1.49]. However, few in the current operational environment are 

willing to accept this kind of future, and are even less willing to present a clear 

roadmap. We therefore undertake the task of charting the basis of this new ATM 

paradigm. We call it "Computational Air Traffic Management" (CATM) to emphasize 

our expectation that numerical processing and computational emulation will grow to 

underpin all decision-making in these gradually emerging ATC systems [1.50]. Higher 

fidelity on-line modelling of traffic patterns, weather, aircraft and airports, provide the 

opportunity to generate quasi-deterministic, fuel-efficient and conflict-free trajectories 

for entire fleets. So a question that seems worth answering is: What will succeed 

SESAR and NextGen?  

1.3 THE NATURE OF THE ATM-ATC PROBLEM 

In order to analyse the complexities of ATM we begin by having a look at the role 

of two of its main subsystems, and the type of problem they seek to address. 

Oftentimes, ATM and ATC tend to be used interchangeably in the literature. However, 

as per ICAO definitions, ATM is a generalisation of the concept that includes both Air 

Traffic Control (ATC) and Air Traffic Flow and Capacity Management (ATFCM), 

among several other ancillary systems. 

Air traffic is subject to a very wide variety of random influences and has to be 

able to deal with contingencies. Inclement weather, late boarding, industrial action, 
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malfunction, pilot error, accidents, or the occasional volcanic eruption, all tend to make 

the system highly non-deterministic. Some of these disruptions are limited in scope and 

impact. Others tend to propagate through schedules and multiply their effect, and if 

unchecked, may result in far more widespread disruption. The system is the result of 

several highly coupled and poorly modelled sub-systems and, from a complexity 

perspective, it means that the ensuing problem has all the markings of an intractable 

logistical quandary.  

Yet, (so far), the established ATFCM/ATC mechanism still seems to be working 

remarkably well and the level of safety is admirable. So what is the underlying reason 

for its apparent success? How can this be possible, given the problematic nature of the 

task? There are indeed five underlying characteristics, which have rendered the problem 

of coordinating air traffic tractable in practice, and any future evolution or drive towards 

further automation, would be well advised to carry over some of these properties: 

 Inbuilt Slack  

 A Diurnal System-Resetting Cycle 

 Pre-flight Planning (ATFCM) 

 Slack Redistribution (also ATFCM) 

 Hierarchical Authority Devolution 

Since the system is so intrinsically chaotic, it depends on the presence of 

sufficient room to manoeuvre, or ‗slack‘, in order for it to be able to reorder and readjust 

around contingencies. This effectively translates into a measure of flexibility and 

therefore, robustness [1.51]. Slack is present in every aspect of operation, such as vacant 

take-off/landing runway slots, generous air-separation minima, non-minimum-length 

trajectories and lax scheduling. Perhaps the greatest contribution comes in the form of 

the widespread traffic curfews that are imposed every night at many airports [1.52]. 

These have the effect of resetting the air traffic system daily, which in turn reduces the 

risk of carrying over disruption from one day to the next. However, slack also equates to 

inefficiency by reducing the utilisation factor of some very expensive infrastructure. As 

the environmental and noise footprint of modern aircraft decreases, economic forces 

will push to erase such curfews. So, while critical to the reliability of the system, slack 

cannot be inserted indiscriminately and the pressure is mounting to use it more 

judiciously. 

Currently, pre-flight planning is performed by the Air Traffic Flow and Capacity 

Management function. This, as opposed to ATC, is a primarily strategic and pro-active 

activity that tries to pre-empt conflict and congestion through forecasting and planning 

[1.53]. Using a centralised ATFCM unit (such as the CFMU in Europe), it gathers 

information from a number of sources such as ANSP capacity, flight schedules, weather 

forecasts and other NOTAMs to optimise airline flight plans as much as possible right 

up to the moment of flight. So the role of ATFCM is to facilitate the subsequent ATC 

problem by eliminating most of the uncertainty. 
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On the other hand, ATC is the tactical arm of the ATM system and deals with the 

day to day variability, which inevitably remains within the system. ATFCM ensures that 

ATC will only have to deal with the occasional flight interaction that comes about 

because of the said variability. When inclement weather reduces the capacity in any part 

of the system, ATFCM takes Traffic Management Initiatives (TMI) to redistribute 

traffic and delay new departures. ATFCM attempts to maximise capacity by 

dynamically rebalancing the equilibrium. Most of the potential conflicts are removed by 

ATFCM at the planning phase in order to ensure that the ATC system, (which includes 

the pilot) is never overwhelmed. In fact, if the system were perfectly deterministic, 

tactical traffic coordination could be rendered unnecessary. Aircraft would simply 

follow their own pre-computed, conflict-free trajectories and ATC would therefore 

become redundant. 

At present, the slack redistribution function is an accidental consequence of ATC. 

By adopting a reactive approach over a restricted space/time horizon, ATC deals with 

potential conflicts, a few minutes before they turn into dangerous losses of separation. 

When conflicts are detected, aircraft trajectories are reordered in a way that resolves the 

original problem. Slack is consumed or redistributed during this process. However, the 

process is rather crude and is wasteful of this valuable resource. Some pioneering work 

has been reported to better manage the slack in airline schedules [1.54], [1.55] but little 

has been done to optimally manage the slack present in the actual aircraft trajectories 

and across multiple airlines. 

Finally, the ATC problem is considerably simplified by the devolved nature that 

ATC has embraced over the decades. Due to historical limitations in communication 

infrastructure, ATC had no choice but to evolve into a hierarchically-flat system, 

whereby decision-making occurs in a decentralised fashion with limited lateral 

interaction. It consists of a self-organising collection of agents operating independently 

across a large number of air traffic control centres. Some degree of centralisation 

commenced many years later, with ATFCM, but it still did not fundamentally change 

the way ATC operates. 

ATC is a living example of Swarm Intelligence. No individual decision-maker 

needs to do very much, or even appreciate the full extents of the problem, yet 

collectively, they address the ATC problem in a remarkably effective way [1.56]. The 

rules of ATC are such that overall, each air traffic controller (ATCo) contributes to the 

global ATM problem by taking responsibility of a small sector of airspace. The 

collective, but independent, action of all ATCos solves the ATM problem. This 

behaviour is ultimately responsible for the relatively high capacity of the system. 
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1.4 CHARACTERISTICS OF AN IDEAL ATM SYSTEM 

The requirements definition of an ideal ATM system is quite subjective. However, 

the ICAO defines 11 key performance areas (KPAs) for ATM together with their 

respective Key Performance Indicators (KPIs) and these have been formally adopted by 

SESAR (and more loosely in NextGen) as basic guiding principles [1.57]: 

 Capacity ► Maximum Airspace Throughout per Hour 

 Efficiency ► Average Percentage Flight Elongation/Delay 

 Safety ► Incidents/Accidents per million Flights 

 Flexibility ► Time to Adapt/Respond to New Circumstances 

 Predictability ► Variations from Flight Plans / Schedules 

 Security ► Security Breaches per million Flights 

 Access and Equity ► Number of Effectively Excluded Operators 

 Cost Effectiveness ► ATCo Productivity (Flights per ATCo.hour) 

 Global Interoperability ► Number of Incompatibilities  

 Participation ► Level of participation by Airlines/States 

 Environmental Sustainability ► CO2 Emissions per passenger.km 

   

These KPAs cluster naturally into groups, which bind themselves to the layered 

systems approach (Figure 1.4.1) often described in the community [1.58]. These layers 

interact by setting performance demands in one direction and imposing constraints in 

reverse. Notwithstanding their importance, one finds that the ICAO KPAs are fairly 

generic and stack up too high in the top two layers. This makes these KPAs hard to 

translate into specific algorithms, making them less useful to the engineer tasked with 

designing bottom Layer-5 technologies.  

 

Figure 1.4.1:  Layering of Performance Concepts [1.58] 

For this reason, a number of additional KPAs are hereby proposed for the lower 

two layers, which effectively translate the ICAO KPAs into a language that is closer to 

what is useful for practical algorithm design and development. This section is organised 

such that each KPA is first described together with the respective KPI and then 

reference is made to how the current ATM paradigm performs in each case.  

● Scalability, with the number of aircraft – This implies that ATC capacity can 

indefinitely increase in lockstep with traffic density and demand, without seizing up or 

generating delays. In practice this can be measured by the increase of  ATC resources 

required with respect to an increase in traffic. A logarithmic (log n), linear (n), or at 

worst, a polynomial (n
c
) relationship, implies feasibility.  ► Currently this is certainly 
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not a strong point of the today‘s ATC system. As mentioned earlier, as the traffic 

density increases, the airspace is being broken down into ever smaller sectors and more 

controllers have to be brought in [1.3]. This adds costs and creates an undue workload 

on the pilot who needs to hand-over too frequently between sectors. It also occupies and 

clutters the limited radio bandwidth available. Given the eventual integration of UAVs 

into the airspace, the complexity of mixed fleets operating at high multiples of today‘s 

traffic densities will ultimately make the human coordination of ATC unsustainable or 

prohibitively expensive for businesses and the travelling public. 

● Robustness, with no single point of failure – The physical architecture of ATC 

should be such that no failure of any single piece of equipment or any damage to a finite 

region can bring the entire system down. Robustness of any system is readily measured 

by its failure rate. The solution can be partly achieved by using distributed multiple 

redundancy and a good way of achieving this is to make it airborne.   ► Currently, 

ATC is only modestly distributed. Although the ATC problem is divided between tens 

of thousands of ATCos, most decision making is still centralized inside a handful of 

locations (ATCTs, TRACons and ARTCCs) sharing a limited amount of hardware. The 

recent NATS system failure of 12
th

 December 2014 caused mayhem in the UK airspace 

with a global ripple effect after just 35 minutes of downtime [1.32]. Such central nodes 

become critical single points of failure, that in-turn make the system vulnerable to 

malfunction or terrorist attack. ATFCM is by its very nature even more centralised. The 

problem is that pilots become quite helpless in very dense traffic if regional ATC 

services shut down suddenly, jeopardising system safety and security. 

● Multi-Objective Optimality – ATM should be subject to optimisation; however, 

there are numerous parameters and environmental interactions to take into account. 

Optimising with respect to one cost-function generally implies sub-optimal performance 

with respect to others. However, multi-objective ATM optimisation tackles this problem 

by optimising the system at various trade-off positions, thereby generating a Pareto-

front [1.59]. By optimising across several variables at once it presents information that 

can be used to make an informed choice between the various conflicting requirements. 

A weighted metric can then be used to assess performance. ► ATC attempts to do this 

in a poorly structured and ad-hoc fashion. Much more automation would be required for 

it to be able to tackle this aspect rigorously and methodologically and reach its goal of 

efficiency and cost effectiveness. 

● Collective Optimality in terms of cumulative environmental impact – From an 

environmental perspective it is pointless optimising one aircraft trajectory to reduce 

emissions at the expense of the efficiency of other trajectories. What matters is the 

collective environmental impact of all airspace users which is a readily quantifiable 

KPI. The goal of reaching a minimum carbon footprint can only be achieved by treating 

it as a worldwide (or continental) optimisation problem.  ► Unfortunately, environment 

protection takes a low priority in conventional ATC. The focus on safety can easily 

swamp an ATCo‘s motivation to mitigate fuel burn or environmental impact. In 

addition, human ATCos lack the depth of visibility to predict 2
nd

, 3
rd

 or n
th

 order 

repercussions of each of their decisions. 
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● Stateful Control – During the execution of any flight, a good ATM system 

should keep track of the state of each flight in real-time. It should be aware of the 

optimal trajectory and should issue the fewest and smallest deviations from this 

prototype trajectory. This is a measurable KPI. As far as possible, any variation should 

take into account all previous and future interventions on that trajectory in order to treat 

it equitably.  ► At the moment, ATC intervention and traffic deviations occur as 

necessary with little consideration for their cumulative effect on a flight. ATCo 

decisions are based on the instantaneous traffic conditions per sector, with no regard to 

a flight‘s history or future. There is no concerted effort between individual ATCos along 

any flight to holistically optimise its trajectory. 

● Load Balancing across multiple resources – Ideally ATM should have an 

inbuilt load balancing mechanism that spreads demand for runway/airspace capacity 

over time to ensure that each resource is well utilised at all times of day, averaging out 

peaks with troughs in demand. The variance between resource utilisation factors is the 

relevant KPI in this context. This is another way of saying that slack needs to be evenly 

distributed in a controlled fashion.  ► Contemporary ATC does a fairly good job at 

many of the major airports. For instance, London Heathrow‘s two runways are utilised 

at near full capacity, but only during daytime. Additionally, the load balancing process 

is still quite crude and only works in nominal situations.  

● Continuous Adaptability in relation to new circumstances – Air traffic 

scenarios are highly dependent on uncontrollable factors such as the weather, accidents, 

boarding delays, or industrial action. In any of these scenarios, a rigid ATM system is 

highly suboptimal. Most contingencies develop gradually. An ideal ATM system should 

be able to utilise all available information to adapt to such contingencies, just as 

gradually as they evolve. Such a system would therefore avoid the creation of traffic 

conflicts at the outset, rather than reacting to them when discovered.  The time it takes 

to re-achieve high efficiency is an appropriate KPI ► Today, the update rate in the 

ATC system is excessively low and bottlenecked by slow voice-based communications. 

Information flow is asymmetric and processing is hampered by human limitations. This 

limits the speed at which ATC can react to dynamic scenarios, which in turn limits the 

maximum number of aircraft that can be handled by any single ANSP at a given time. 

(This is reminiscent of the Icelandic ash cloud saga). Predictability is also negatively 

affected. 

● Resilience, in relation to disruption, delay or perturbation – This ties with the 

previous point in that an ideal ATM system must be capable of rapidly re-organising 

itself in terms of structure and priorities. The system must quickly reach a new 

collective optimum after any change in operational conditions or constraints. The peak 

level of disruption in response to a given disturbance is a good figure of merit. ► ATC, 

as it stands, is unable to utilize real-time information effectively, which limits its 

flexibility. This is arguably one of the underlying causes behind the European meltdown 

of the air traffic system in the wake of the April 2010 Icelandic Eyjafjallajökull volcanic 

eruption. The ash cloud dispersion mechanism was quite inhomogeneous and many 

windows of opportunity existed for safe flight. However, even with detailed real-time 
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ash concentration information becoming available, the ATM system failed to 

reconverge fast enough to a new viable air traffic pattern that exploited the many 

windows of opportunity effectively. The crude solution adopted by the industry was to 

raise the maximum permissible volcanic ash concentration. 

● Prioritisation depending on service agreements and emergencies – Some air 

traffic is more important than other traffic. This means that airlines should be able to 

request (possibly against payment) different priority levels over the use of limited 

airspace. Emergency traffic should have a means of being granted top priority at short 

notice. In this case the relevant KPI would have to be the degree of satisfaction of 

requests in relation to their priority.  ► ATC already performs a certain degree of traffic 

ordering and regulations ensure that it will prioritise any traffic in distress. However, 

this is not done very gracefully and tends to disrupt excessively the harmonious flow of 

surrounding traffic. 

● Penalty Dispersion for unforeseen events – Disruptions to the ATM operational 

equilibrium must be handled in an equitable manner such that no party is 

disproportionately penalised. The overheads introduced by unexpected scenarios should 

be shared by all members of the airspace such that the effect is diluted and everybody is 

given equal access to the airspace. This also improves network resilience to further 

disruption. The inefficiency suffered by the worst hit flight is a good KPI. ► ATCos 

lack a comprehensive picture of the complete traffic scenario. This makes it impossible 

for them to take coordinated decisions on large numbers of aircraft. At present the 

sharing of disruption overhead is more accidental than premeditated. 

● Interoperability with numerous geographical information systems (GISs) such 

as meteorological data sources, noise-sensitivity of urban areas, population density, 

airspace restrictions, ecologically sensitive areas, volcanic ash distribution and other 

such dynamic databases – An ideal ATM system should lend itself to be easily 

interconnected with GISs such that the latest relevant information is available to the 

optimisation engine. This can be measured by the number and range of systems that can 

be integrated within a given ATM paradigm. ► Although ATC is fairly tightly coupled 

to meteorological data sources, too much detail risks serving the ATCo with an 

information overload. Hence, despite the availability of countless other sources of 

useful information, limited ATCo processing capacity precludes the possibility of 

digesting it in a timely fashion. In contrast, Global Interoperability in the ICAO sense, 

is a political matter rather than a technical one and only widespread adoption of the 

same guiding principles would guarantee any degree of international harmonisation. 

● Predictive Ability – An ideal ATM system should be able to forecast the (short 

term) future air traffic status in order to avoid any build-up of traffic congestion. This 

also improves contingency planning. The ideal KPI in the case would measure the 

deviations of actual flights from the latest plans available to the ATM system ► 

ATFCM currently does a fairly good job of this, by extrapolating flight plans. However, 

there exists no technological measure to guarantee that pilots will execute such plans to 

the letter or that they will inform ATC of new plans before they depart from their agreed 

plans. ATC is overly-reliant on mutual pilot/ATCo trust. 
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1.5 THE SCIENCE OF ATM 
Before the community can consider re-engineering the entire ATM system, the 

underlying science of systems needs to be clarified and well understood [1.28]. This is 

recognised in both NextGen and particularly SESAR through its Work-Package-E 

(WPE) programme. Among the most concerted efforts to define what could be called a 

theoretical basis of ATM, were a series of public funded projects conducted in Europe 

between 2001 and 2013. Starting with HYBRIDGE [1.60], iFly [1.61] and finally 

MoVes [1.62], these projects have undertook the development of the basic science that 

governs complex systems such ATM and power networks, and were influenced from 

seminal work conducted on the other side of the Atlantic, namely at UC Berkeley and 

Stanford University [1.63]. 

It started amidst the realization that the behaviour of many ordinary systems such 

as road vehicles, aircraft, washing machines or ATM cannot be suitably modelled, 

analysed, simulated, optimised or reliably controlled using either classical discrete time 

or continuous time techniques. These systems exhibit an interaction between a number 

of continuous processes which are closely interlinked through an overarching system 

with discrete states. This can in fact be modelled hierarchically as a finite state machine, 

whose state changes are partly governed by continuous variables, which may in turn 

dynamically change in accordance to analogue differential equations (describing the 

physical world) and the system‘s discrete state. 

These cross-domain Hybrid Dynamical Systems or Hybrid Automata, as they are 

now called, have been successfully used to model various aspects of the ATM problem. 

Stochastic hybrid models of systems give new insight of how to characterise the 

behaviour of complex systems by making allowances for unmodelled, or poorly 

modelled dynamics, noise, random failures or external nondeterministic influences, 

(such as weather) while simultaneously considering the numerous interactions between 

continuous and discrete states in the system [1.64]-[1.66]. Initially, significant emphasis 

was placed on conflict resolution between multi-agent hybrid systems [1.67] with a 

clear reference to a reactive type of ATM. This kind of modelling allowed certain kinds 

of conflict resolution manoeuvres of aircraft to be formally verified with respect to 

safety by using the notion of reachable sets of hybrid systems. Important results related 

to reachability and verification were published by Lygeros, Tomlin, Prandini, Sastry 

and others [1.65]-[1.70]. However, the principles of hybrid automata are well suited to 

characterise other aspects of ATM. By studying the synergies with other fields such as 

game theory, interesting approaches for optimal controller design for multi-agent 

systems have been proposed [1.71][1.72]. 

After the creation of a scientific language that faithfully models ATM, 

optimisation science, operations research, and optimal control can form the theoretical 

pillars for solving the resulting numerical problem. It seems therefore, that the future 

lies in the ability to combine these fields either at the engineering level or through the 

discovery of even more fundamental science and mathematics that encompasses them 

all. Some may be tempted to point at Dynamic Programming (DP) for this purpose, and 

indeed DP is general enough to handle all aspects of ATM in one conceptually simple 
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framework. Neat as it may sound, the problem with this approach is of course the sheer 

size of the computational problem it generates, but it does change the perspective on 

ATM. So, one must never forget that ATM is not a problem without a known 

mathematical solution. ATM is only a problem with yet- unknown efficient 

computational solutions. Therefore we view Computational Air Traffic Management as 

a discipline, which focuses on establishing ways of mathematically posing the ATM 

problem, that subsequently leads to computationally tractable solutions that can form 

the basis for an ideal ATM system. 

 

 

 

 

 

 

 

Figure 1.5.1: High update rate leads to much better prediction of the operational environment 

In our opinion, one other key tenet of CATM is that if sufficient computational, 

communication and surveillance resources are provisioned, the system update rate can 

be increased to the point, where over the short duration of each system time-step, the 

traffic scenario would advance by a negligibly small amount – and this is a powerful 

enabler in dynamic systems like ATM with a diverging uncertainty envelope, because 

over the short term the uncertainty is very limited as is described in Figure 1.5.1. 

At these time scales, the distinction between ATFCM and ATC blurs. The 

difference between the purely tactical and strategic phases degenerates. Given accurate 

knowledge of the present state, most phenomena that can affect the air traffic scenario, 

could be predicted with confidence over short horizons. In the near term, the uncertainty 

surrounding system states collapses in ways reminiscent of receding horizon control 

(Fig 1.5.1) [1.73]. So in a sense, the tactical is absorbed into a single pseudo-strategic 

planning process, which has a continuous span of influence that ranges from a short 

term horizon of a few seconds, to a much longer horizon lasting many months. Thus, by 

raising the system update rate, CATM encompasses the roles of both ATFCM and ATC. 

1.6 JOINING THE DOTS… THE EMERGENCE OF CATM 

In this project, we propose Computational Air Traffic Management to provide an 

efficient solution that merges both ATFCM and ATC into a common framework that no 

longer needs to distinguish between the two. The best features of the current 

abstractions are retained and combined with a variety of novel concepts that enhance 

capacity, performance and reliability.  

The first major effort to shift the current ATC modus-operandi traces back to the 

mid 1980‘s when the ICAO set up the Future Air Navigation System (FANS) 



 
 

 

24      INTRODUCTION 

committee [1.74] - but change in ATM is exceedingly slow and laborious, and despite 

profuse publication, implementation does not keep the same pace. This has got to do 

with the partly justified apprehension of ―meddling with a working system.‖ After three 

decades of consideration, FANS is still far from universally adopted. The same fate 

seems to have met the Distributed Air/Ground Traffic Management (DAG-TM) system 

[1.75], that was the product of NASA‘s Advanced Air Transportation Technologies 

(AATT) project and was supposed to be an embodiment of free-flight (described later).  

TOOL CONTROLLER OR PILOT SUPPORT FUNCTION 

C
O

N
T

R
O

L
L

E
R

 

STCA 
A short term collision alerting system that keeps controllers vigilant by visually 

highlighting pairs of flights on an imminent (2 min) collision course. 

MTCD 
A medium term collision detection system that also takes into account flight plans 

to predict medium term conflicts, 30 minutes in advance. 

MONA Monitoring aids to enhance situational awareness and provide reminders. 

SYSCO System supported coordination between displays during sector handover. 

CRDA A converging runway display aid for handling intersecting approaches. 

URET A user request evaluation tool to replace paper strips to account for sector traffic   

pFAST A passive final approach spacing tool for decision support near the terminal area 

EDA
1
 An en-route descent advisor for accurate plane delivery to arrival metering fixes 

EDA
2
 An efficient descent advisor to minimise fuel burn during decent. 

TMA A traffic management advisor to limit traffic into any TRACON. 

MSAW Minimum safe altitude warning in case one aircraft gets too close to the ground. 

ASAS 

A separation assurance workload reduction tool that reduces the need for frequent 

pilot-controller communication and intervention to maintain separation from 

preceding aircraft flying in the same direction, airway and altitude.  

CPDLC 
A data link system to supplant existing bandwidth-inefficient voice 

communications between pilot and controller. 

SMAN 
A surface manager to assist controllers with computing taxi routes and taxi times, 

taking into account platform constraints, surrounding traffic, and start-up delays. 

AMAN 

An arrival manager offloads the controller from the complex task of optimizing 

the sequence and buildup of the arrival queue, by taking into account wake vortex 

category spacing to maximize (but not overload) landing runway throughput. 

DMAN 

A departure manager, that maximizes the use of the runway by assisting the 

controller to meet the takeoff schedule by optimizing the sequencing of taxi 

operations in preparation for departure. 

P
IL

O
T

 

GPWS 
A ground proximity warning system designed to alert pilots if their aircraft is in 

the immediate danger of flying into the ground or another fixed obstacle. 

FMS 
Flight management system that automates editing and execution of flight plans, 

stores navigation databases of SIDs, STARs and instrument approaches etc… 

AWDAP 
An airborne wind-shear detection and avoidance program that detects and alerts 

the pilot, visually and aurally of a potentially hazardous wind shear condition. 

TOPM A take-off performance monitoring tool to alert pilot of insufficient acceleration. 

RCAF 
A runway collision avoidance function designed to alert or advise pilots in the 

case of an immediate danger of a runway incursion during take-off or landing. 

TCAS 

A traffic alerting tool and collision avoidance system that advises the pilot about 

potential breaches of separation and gives resolution advisories in case of 

imminent collision with traffic that the pilot or controller might have missed. 

Table 1.6.1.  Just a few of the tools developed to assist human pilots and controllers 
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There have since been many other attempts to re-think the ATM problem even 

deeper, and with the benefit of 30 years of hindsight, one may attempt to extrapolate a 

trend in the general direction of development. The many Communication, Navigation 

and Surveillance (CNS) initiatives seem to be coalescing into ever larger projects. When 

NextGen and more particularly SESAR came along, they had a mandate to make sense 

of, and absorb, the results of the myriad smaller projects that preceded them. There were 

indeed many such projects, which had emerged reactively to produce tools, which deal 

with specific problems – such as those listed in Table 1.6.1. 

Yet the proliferation of too many tools is probably not a good thing. It is the 

limitations of the human ATCo‘s (or pilot‘s) reaction time and situational awareness 

that set off the development of new tools to fill-in the gaps. Figure 1.6.1 attempts to 

rationalise this observation graphically on flattened triple axis chart. ATM was 

progressively broken down into numerous sub problems that were addressed with an 

accumulation of specific tools. The cumulative number of interacting systems will peak 

sometime around the middle of this decade.  

This fragmentation of the 

ATM concept (measured by the 

number of tools in use) and the 

associated rise in complexity is 

detrimental to the system‘s 

performance and stability. It is 

probably amidst this realization 

that large programmes like 

SESAR and NextGen gained 

political traction. A new 

observable trend is the gradual 

reduction in the number of components that make up the system in favour of a simpler, 

over-arching, unifying paradigm that is applicable to a wider portion of the ATM 

problem. SWIM for instance, attempts to subsume efforts from: CDMnet, TMAnet, 

URETnet, VHF, VDLM2, ACARS, FANS, AFN, CPDLC, ADSB etc. with a single 

versatile communications network [1.76]. Broader, automation seems to be the 

coagulating agent, and as the human is gradually, but surely, driven out of the inner 

loop, ATM is likely to witness a drastic simplification. This convergence is likely to 

give rise to a CATM-driven system.  

1.6.1 Free flight 

The motivating idea for CATM is the devolution of control to the cockpits (but 

not necessarily the pilots) and this traces its roots to a concept championed by Capt. R. 

M. Baiada in the mid-1990‘s [1.12]. This early impetus for a paradigm shift in ATM 

became known as free-flight [1.77][1.78], and places the onus of traffic separation on 

the pilot as opposed to the ATCo. The concept is remarkably simple but it met some 

stiff scepticism because it predated much of the infrastructure and safety-net functions 

that would make it work [1.79][1.80]. Reliance on ATCos to passively monitor traffic 

for the occasional conflicts was not going to work either for reasons described in the 

Figure 1.6.1: An Underlying Convergence?  
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next section. Free-flight generally relies on enroute traffic sparsity to allow pilots to 

safely fly direct routes with minimal probability of interacting with surrounding traffic 

[1.81][1.13]. This was validated through human-in-the-loop simulation in sparse regions 

through projects such as ―Mediterranean Free-flight‖ [1.35].  

When compared to the capacity/safety ratio of current methodologies, the concept 

is initially hard to refute [1.79] and has seen the likes of NASA [1.83], the NLR [1.79] 

and IATA [1.80] taking it quite seriously, with the RTCA going as far as recommending 

a transition strategy [1.78]. Sparsity is further maximised by allowing traffic to break-

free from the classic rigid airway structure [1.82]. Aircraft are instead allowed to spread 

out and fill the airspace, thereby diluting the traffic density and enhancing capacity. 

Low traffic density results in rather infrequent interactions, and for those rare occasions, 

pilots would be assisted with a wealth of cockpit-based, conflict detection (CD) 

technology to highlight potential conflicts. Such technology may even generate and 

suggest conflict resolution manoeuvres to the pilot (CD&R).  

However, at high traffic densities, such as those encountered in terminal areas 

(TMAs) and other traffic hotspots, pilots are unlikely to cope with the full extent of 

free-flight. The sheer combinatorial explosion of possible manoeuvres and associated 

outcomes makes it impossible for humans to cope safely in completely unstructured 

airspace. The mere devolution of responsibility to the pilots does not help in such 

scenarios. Moreover, reactive CD&R tools caused more problems than they solved in 

high density traffic [1.17]-[1.18], resulting in the domino effect we mentioned earlier, 

where resolving one traffic conflict creates new conflicts further down the line. In this 

form, free-flight is precluded from anywhere close to busy terminal areas or in central 

Europe (for example), where ironically, the problem of congestion needs most attention. 

The requirement is for a traffic system that makes cockpit-based airborne separation, 

tractable, making the next step towards CATM inevitable. 

1.6.2 The Role of the Human ATCo 

For a while, free-flight was the source of much apprehension among the ATCo 

community [1.80]. For many it meant that the ATCo would be left with a vestigial role, 

or possibly, no role at all, pushing ANSPs into the process of redefining themselves 

[1.84]. If the cockpit assumes the main task of airborne self-separation, ANSPs could 

possibly take the role of system watchdogs. However, extensive studies by Parasuraman 

et al., have shown that a largely passive, monitoring role is considered detrimental from 

a human-factor‘s perspective [1.85] because humans are notoriously ineffective at 

monitoring systems with low event rates. Despite best intentions, humans will gradually 

lose their state of vigilance as their perceived likelihood of an event diminishes [1.86]. 

Hence, because of this vigilance decrement, sparse traffic and very low workload may 

be ironically linked to various types of accidents.  

One of the failure modes of ATC stems from the over-reliance on the human-in-

the-loop, and pilots in free-flight are unlikely to fare any better. So the mere delegation 

of separation to human pilots does little to improve matters in this regard. In most forms 

of transport, human hypovigilance is a major source of accidents. Over the past 5 
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decades, human pilots and controllers collectively account for over half of all the fatal 

hull-loss accidents in aviation [1.2][1.88][1.87]. 

Even though ANSPs represent less than 4% of total air transport employment, 

they still exert a tremendous influence on the general development of the entire 

industry, SESAR and NextGen. For these reasons it is likely that for the interim, human 

ATCos will continue to hold a very active ―inner-loop‖ role. Therefore, it is 

unsurprising that in both SESAR and NextGen, the human controller is given 

prominence and this will fundamentally influence what can or cannot be achieved in 

these projects. 

1.6.3 ASAS and Workload Sharing  

One of the touted solutions for sharing the ATC workload with the pilot, while 

avoiding the difficulty of operating free-flight within high density traffic, is called the 

Airborne Separation Assistance System (ASAS) [1.36]. In simple terms, ASAS reduces 

the level of ATC intervention needed to guide aircraft along certain routes. This is done 

by issuing instructions to an aircraft to select the aircraft ahead of it, as a target and to 

merge behind it while passing over a specified waypoint. A further instruction is then 

issued to delegate (to the cockpit) the task of maintaining adequate separation between 

the two aircraft. Repeating this process, creates a chain of aircraft that safely follow one 

another all the way down to the runway with much reduced ATCo involvement [1.89]. 

1.6.4 Distributed Control 

Some say, that the lack of clarity on who should bear the ultimate responsibility 

for separation in the airspace raises doubts on whether delegating ATC to thousands of 

cockpits would be a sensible or safe thing to do [1.14]. The lack of a clear authority 

structure leaves the ANSP community unimpressed.  

However, as per the free-flight school of thought, it is precisely the distributed 

nature of the current system that makes it relatively safe [1.90]. So in the interest of 

safety (in view of increased capacity) it would be best if ATC functions were distributed 

still further [1.15]. This removes centralised single points of potential failure and dilutes 

the workload by ensuring that surveillance capacity far exceeds demand. Additionally, 

by empowering the pilots to become their own air traffic controllers, the system‘s ATC 

capacity would increase in proportion to the demand. 

However, distributed control, per se, does not result in the desired outcome. The 

distributed system needs to be carefully crafted to ensure that the separate actions of 

each individual in the system uniformly contribute to the higher goal of assuring 

optimal separation at higher traffic densities. Instead of human decision makers, 

practical free-flight needs a well-designed, distributed optimisation and control 

algorithm based on established, well-understood science. CATM needs to be based on 

such solid theoretical foundations, if it is to offer any verifiable performance guarantees 

and win widespread confidence.  
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1.7 THE EXPECTED EVOLUTION OF ATC AUTOMATION 

Air transport has reached a point where incremental improvements scarcely affect 

the overall level of service to the traveller. Many air transport sub-problems, impinge on 

the effectiveness of the air traffic management system and the high complexity of the 

cross-interaction between the different parts of the broader air transport problem, make 

it exceedingly difficult for humans to take advantage from any synergistic behaviour 

[1.91]. In a fast paced operational environment, humans struggle to fully appreciate the 

high degree of interconnectedness.  

On the other hand, ATC automation frees the human ATCo from a very mundane, 

repetitive task to dedicate his valuable time and creativity to more strategic system 

design activities [1.40]. If we are to significantly improve air transport, progression 

towards autonomy seems inevitable and will evolve to reflect the ever-increasing degree 

of integration that is happening all around us. This is a slow process, which moves in 

lockstep with technological advances, the emergence of appropriate algorithms and the 

maturation of the relevant information systems. Serendipitously, there are many such 

techniques, which are converging to deal with such high-dimensionality, non-convex, 

dynamic optimisation problems, with influence from fields as diverse as Robotics, 

Systems Theory, Big-data, Telecommunications and Computational Intelligence. 

The last two decades have seen a boom in the research and development of 

applicable algorithms and information systems and a number of these developments are 

being classified hereunder in relation to their degree of generality and ability to handle 

the problem from a holistic perspective. The evolution of CATM is best described in 

terms of these algorithms and the way they seem to stack into three distinct layers 

(Fig 1.7.1). 

 

 

 

 

 

 

The layers form an ordered set {A, B, C} where each new layer advances the 

level of autonomy. Each set is also a superset of the one before, and they effectively 

depend on the existence of each other in a sequential fashion as shown. 

 

1.7.1.1 LAYER A: Reactive Local Approaches 

The baseline requirement for an autonomous and distributed CATM-A system is 

the ability for an individual aircraft to detect and subsequently avert potential conflicts 

with other aircraft. Free-flight fits neatly in this layer. In Morrel‘s words [1.92]: 
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Figure 1.7.1: The Staged Evolution of CATM 
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There are three aspects of collision avoidance in the air, which require 

mathematical investigation: 

(a) discovery and evaluation of the risk; 

(b) the remedial manoeuvre; 

(c) the probabilities associated with (a) and (b). 

Conflict detection and resolution (CD&R) is the term given to a binary class of 

methods that attempt to guarantee conflict-free flight in a two-step process. They are by 

their very nature reactive and employ a Conflict Detection (CD) phase followed by a 

Conflict Resolution (CR) phase. They invariably employ some simplified model of the 

airspace combined with a wide variety of probabilistic, dynamic, logic-based (or 

combination) approaches to attempt to extrapolate the short-to-medium term evolution 

of the airspace situation. To pick one example, a CD technique based on Intent 

Inference [1.93] has been proposed. This attempts to estimate future pilot behaviour 

based on current position and motion, ADS-B intent broadcast, and detailed knowledge 

of the regional problem domain. However, in common with most CD techniques, the 

result is only a best effort attempt, which offers no guarantees of accuracy. 

Similarly, CR strategies are also often unable to guarantee a solution to all 

possible types of conflict, even if empirical attempts to compare and demonstrate such 

best-effort approaches have been conducted using fast time simulation [1.94]. This 

approach may not inspire much confidence in a safety critical system such as ATM 

[1.95], but in reality neither does the present ATM system offer any guarantees, so it 

usually boils down to probability.  

Some of the simpler algorithms (e.g. KB3D/KB2D) are amenable to absolute 

formal verification [1.96] under tightly controlled conditions, and stochastic hybrid 

systems theory goes a long way with approximate model checking [1.66] for more 

sophisticated ones, but when there are hundreds of interacting systems, and there are 

humans involved, even the construction of suitable models has proved elusive. An 

excellent and widely regarded taxonomy of both CD&R sub-phases may be found in 

[1.97].  

In military language, one can say that due to their reactive, tactical nature, such 

CD&R methods are necessarily coupled with an underlying mission controller. The 

airline defines the mission, the pilot executes it, and CD&R and other ATC apparatus is 

there to give them peace of mind. The temptation is there to turn CD&R into a direct 

plug-in replacement of the current ATC paradigm, save for its human-centred ground-

based nature. However, this is not entirely possible without jeopardising some safety. It 

was amply demonstrated that at higher traffic densities, any simplistic conflict 

resolution scheme is likely to cause a chain reaction, leading to an increased number of 

conflicts for all aircraft involved [1.18]. Thus, for full ATM automation, a higher level 

of sophistication is apparently required, rather than a merely reactive CD&R approach. 

Some form of forward looking system that can evaluate the long term consequences of 

any resolution advisory, seems indicated. Unfortunately, the mathematics of complex 

systems disagrees with the last statement. Complex chaotic systems, especially those 
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with such a high level of stochastic perturbation, are nigh impossible to predict too far 

out into the future [1.98]. The best that has been done in this context is to attempt to 

disperse localised complexity. After all, this is what ATFCM is about. 

1.7.1.2 LAYER B: Pro-Active Global Approaches 

A second, more advanced class of algorithms pre-empts conflicts by generating 

and maintaining a system certified set of 4D aircraft trajectories at the outset, rather 

than detecting near-term conflicts when they occur, to then resolve them on the fly.  

A candidate CATM-B algorithm must be capable of handling the ATM of the 

entire body of flying objects from take off, to landing. Notable work has been 

performed for the enroute phase [1.16] but the scope of such algorithms must be 

widened further over all flight phases and to globally handle the entire airspace. 

Layer A is retained as an emergency safety net. 

Safety is enhanced by further extending the reach of the algorithm into the pre-

flight planning stage, so that when no feasible trajectory can be calculated for an 

aircraft, a flight can be aborted or rescheduled before it ever leaves the runway or before 

it enters a high density portion of the airspace. Contentious situations are thus avoided 

by design rather than by reacting to them when it could already be too late. This process 

shifts the greater part of separation responsibility to an off-line strategic phase of ATM 

and there are sound engineering reasons for doing this; Much greater computational 

(and/or human) resources can be dedicated to an off-line trajectory planner, and the 

choice of alternatives available to the trajectory synthesiser, is far greater than what can 

be devised in a few minutes before an imminent conflict.  

SESAR seems to be moving in this direction with one of its more ambitious 

objectives being the introduction of the Business Trajectory. Coupled with SWIM, this 

will attempt to change the language of the ATM world, from sectors and segments to 

full 4D Trajectories. A universally accepted, efficient method of describing trajectories 

will also have to be devised before it can become the standard currency of exchange 

between aircraft, airlines and ANSPs. 

At the core of the prototypical CATM-B system lies a generic algorithm that uses 

a robust global multi-objective dynamic optimiser to build a trajectory generator. There 

are few distinct optimisers that are completely appropriate and combinations of 

techniques are probably the best way forward.  

Classical analytical techniques and most optimal control are based on variational 

calculus, which has been around for at least a century. They are built on Pontryagin's 

Minimum Principle (PMP). However, analytical methods are very limited in their utility 

to practical scenarios. Their numerical variant, Non-Linear Programming (NLP), has 

been shown to be far more generally applicable in both its Indirect, but more 

particularly in its Direct transcription forms [1.99]. A well known survey may be found 

in [1.100]. However, this class of solvers, though fast, is in any case susceptible to 

getting trapped in local optima and CATM is bound to be highly non-convex 
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However, a CATM-B solver needs to do more than this. Obviously, no amount of 

ATFCM-style pre-planning will ever completely remove the remnant uncertainty in the 

system and this is where the challenge lies. It needs to handle the fact that ATM is a 

dynamic optimisation problem. Besides providing air-traffic with a workable plan, it 

must maintain it in dynamic equilibrium with the constraints. It must seamlessly 

subsume an on-line branch to retain the means to dynamically adapt to an ever changing 

scenario, because the constraints (eg: weather) could realistically morph to the extent 

that the prepared plan is no longer optimal. In addition, besides tracking the optimum, it 

must determine whether the presumed optimum is indeed still the global optimum. A 

dynamic global optimiser is needed to also monitor the big picture and search for 

opportunities as they arise. It must gracefully react to external perturbation and this can 

only be done by employing a very long look-ahead horizon and then by continually 

making adjustments in order to satisfy some minimum measure of trajectory separation.  

Although the last decade has brought with it some notable advances in 

optimisation techniques, achieving guaranteed global optimality in non-convex search 

spaces remains elusive to both theoreticians and practitioners. Yet a number of 

approximate techniques, based on AI or metaheuristics such as biomimetics have been 

applied in advanced robotics and look promising. Global optimisers are typically 

probabilistic and offer no guarantees of finding the best solution, but they are highly 

parallelizable and the greater the allocated resources, the higher the likelihood of getting 

good results. Given the computational capacity of current hardware, and modern 

computational intelligence, this is no longer a distant, intractable proposition, 

particularly if the combined effort of many aircraft are combined, and in a real-time 

environment, more than acceptable problem coverage can still be achieved. In the end, 

ATM was, and will always remain, a best effort attempt to find an efficient solution, 

even if not necessarily the best. 

For instance, continental air traffic patterns are very reminiscent of insect swarms; 

the collective (including ANSPs) also behaves like a swarm of agents. In all likelihood, 

such a system should also be modelled and managed like the swarm it appears to be 

[1.101] to deal with its high dimensionality. This is based on the science of Emergent 

Behaviour, which has its roots in 19
th

 century economic theory and 20
th

 century game 

theory. It has received substantial attention over the past couple of decades for its role in 

cybernetics. In such systems, order is not achieved through explicit design. It emerges 

spontaneously as a result of the interaction between a plurality of agents. This is the 

basic tenet behind Swarm Intelligence [1.102] and various algorithms for ATM 

automation, based on these principles, are being devised and investigated as part of this 

work. These include Particle Swarm Optimisation (PSO) [1.103], Ant Colony 

Optimisation [1.104], and many other variants. These algorithms also fit nicely with 

evolutionary optimisation techniques and the results achieved so far are quite 

encouraging. It is expected that a combination of these ideas will form the basis for a 

practical multi-agent distributed solution to the ATM problem. 

To pick another example, one approach in the quest for an over-arching ATM 

automation algorithm, is derived from Potential Field Theory. This concept traces its 

origins to a 1980 Ph.D. dissertation [1.105], and a 1985 seminal paper on obstacle 
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avoidance for mobile robotics [1.106] by Khatib and started gaining traction in the 

ATM domain after it was popularised by Martin Eby [1.46], and several others [1.47] in 

the mid 90‘s. 

However, there are many other algorithms that deserve deeper investigation for 

the CATM problem. The incomplete list includes: memetic algorithms, swarm 

intelligence, genetic algorithms, simulated annealing, iterative dynamic programming, 

shooting methods, collocation, pseudo-spectral optimization methods and many more. 

But in summary, the most appropriate body of algorithms that are applicable to CATM-

B are those amenable to high dimensionality, non-convex numerical multi-trajectory 

optimisation and the focus of research over the next decade or so needs to be geared on 

devising ways of combining techniques to efficiently and collaboratively generate 

trajectories for large numbers of interacting aircraft flying in a cluttered time-variant 

environment – in real-time and on standard hardware platforms. 

1.7.1.3 LAYER C: Holistic Systemic Approaches 

CATM-C takes the level of integration of the many subsystems to a whole new 

level, and depends on the existence of a satisfactory CATM-B algorithm. The higher 

level of integration required, results from the fact that ATM is a global conglomerate of 

various complex interacting systems. The high degree of coupling between systems 

raises the complexity but also provides avenues for improving efficiency. 

Baggage handling systems, pricing of airline tickets, volcanic activity, airport 

capacity, regional politics and aircraft performance are all related in the end. The 

effectiveness and orderly interaction between these systems is what will ultimately filter 

through to the quality of service provided to the travelling customer. This is a rather 

scantily researched area and although the body of knowledge describing complex 

systems is rapidly growing, a comprehensive theoretical framework that is mature 

enough to offer useful engineering guidance to the CATM designer, is not even on the 

horizon. 

 For instance, airline scheduling has evolved into a refined art in the realm of 

operations research with many important results. So there is little point in addressing the 

trajectory synthesis problem in isolation. Any change in schedules will instantly 

invalidate the entire set of supposedly conflict-free trajectories. Hence, in the real world, 

an algorithm that encompasses the two aspects needs to be devised. In reality it needs to 

be broadened even further. So CATM-C must symbiotically combine trajectory 

synthesis with flight scheduling, ground operations, commuter demand, price 

structuring and other naturally-adjoined systems. 

An excellent attempt to begin to make sense of the internal hierarchy inherent to 

all intelligent autonomous systems, can be found in the recent review paper by Veres et 

al. [1.107]. An autonomous system is viewed as a collection of interacting agents. 

Agent interaction and their method of interconnection is the key element for higher 

forms of CATM. The flow of information between agents, the establishment of 

egalitarian stable equilibria between conflicting requirements of separate agents, and the 
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dovetailing of the many interfaces, are other poorly addressed areas, worthy of much 

research. 

Game theory classically provides the framework of choice when dealing with 

such multi-agent coordination problems. The PhD work by Waslander [1.108] explores 

the multi-vehicle collision avoidance sub-problem in the air traffic flow problem and 

addresses it using a decentralized, cooperative algorithm, which builds on results drawn 

from Economic/Game Theory. The work looks at the market mechanism as a radiant 

example of the emergent order and self organisation, which results from the competition 

between interacting agents (humans).   

1.8 THE IMPLEMENTATION OF COMPUTATIONAL ATM 

Drawing from the arguments made in previous sections, the shift from airspace-

oriented to trajectory-oriented operations is necessarily built on trajectory optimisation, 

rather than airspace allocation. The major technical threshold will be the advent of 

real-time, continuous, system-wide and grid connected trajectory optimisation. 

  

 

 

 

 

 

 

 

 

 

 

 

One certainty is that the system will need to have an iterative nature in order to 

actively readapt to the constantly changing scenario (Fig 1.8.1). Since the input 

variables to the system are impossible to model exactly, due to their complex, 

apparently-random or chaotic nature, predictions of future inputs will only be valid for 

the short term – if at all. Stochastic models will have to be used to describe the rest. 

However, dynamic optimisation implies continuous re-convergence and is a hallmark 

feature of the underlying trajectory synthesis engine to keep track of the global optimum 

as the problem constraints drift. 

Instead of synthesising and deploying a set of nominally conflict-free 4D 

trajectories, and then reacting to the unforeseen using (CD&R) tactical tools as 

proposed in SESAR or NEXTGEN, CATM uses an online optimiser to continually re-

Figure 1.8.1: Top Level Architecture of CATM 
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adjust to the evolving scenario. This method keeps 4D trajectories well apart at all times 

and there will seldom be a conflict scenario to react-to tactically.  

In line with the spirit of free flight, the computational burden of the online CATM 

system is borne by the cockpits on dedicated redundant hardware. This implies the 

creation of fast communication network between all aircraft such that they can keep 

each other updated with the latest events affecting the system as well as combine their 

computational effort additively in a way that solves the dynamic optimisation problem 

collaboratively. 

1.9 THE TRANSITION TO CATM SYSTEMS 

A final aspect that must not be overlooked is the transition between contemporary 

ATM to CATM. It is obvious that no such switch can happen overnight. The roll-out of 

CATM must be a planned affair spanning decades. There are many complexities that 

must be analysed and catered for but the following presents a general way how to go 

about it: 

Step 1: 

Mandate CATM-compliant equipment in new aircraft while gradually retrofitting older 

aircraft. This computational equipment can be generic enough for it to be useful in the 

interim to house the software systems that manage SESAR and NextGen functions as 

well as CATM-A functionality that can be run synergistically.  

Step 2: 
Initially CD&R would be introduced as a passive safety-net function, providing 

advisories (like TCAS II) [1.109] later as an ATC tool (like STCA/MTCD), and finally 

as a workload-reduction function with semi-automated conflict resolution.  

Step 3: 
Extensive simulations, model checking, stochastic verification, followed by live flight 

trials would be conducted by the authorities in collaboration with the airlines to perfect 

the CATM-B software, before any commercial use. 

Step 4: 

When significant aircraft is equipped, certain portions of the airspace can be segregated 

for exclusive use by CATM-B-compliant aircraft in the same way we classify airspace 

today: {VFR; IFR; CATM}. The CATM-B net-centric communications infrastructure 

and algorithms can be further tested and hardened during this period.  

Step 5: 

The first unpiloted CATM-B flights would take place using cargo aircraft between 

dedicated hubs over segregated flight levels. This gives time for the general public and 

regulatory bodies to build confidence in the system. It might take years and massive 

information campaigns to build such confidence.  

Step 6: 
ATC is given access to all the detailed CATM-B flight plans and other aircraft will have 

to remain under ATC authority, which treats all CATM-B flights as fixed and 

uncooperative and keeps regular flights away from them. 

Step 7: 

CATM-B Cockpits for public transport are initially reconfigured for single pilot 

operations and for a number of years one pilot, retrained as a flight engineer, is retained 

per cockpit. He will be responsible for executing emergency protocols to land the 

aircraft safely in the rare cases of unrecoverable system malfunction. Additional fall-

back redundancy is achieved through the use of Remotely Piloted Aircraft Systems 

(RPAS). Teams of RPAS pilots are retained on the ground in the air traffic control 

centres,  to remotely assist with non-nominal situations. 

Step 8: 

After certification is rolled out for CATM-B public transport, the segregated airspace 

dedicated for CATM is gradually expanded over many years in relation to the 

percentage of equipped aircraft. ATCo numbers are reduced in proportion with the 

unequipped aircraft. Many will be retrained as CATM systems engineers. 
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Step 9: 

This period is also used to gradually phase out a proportion of the remaining pilot and 

ATCo workforce through early retirement schemes, and non-replacement of retirees. 

Eventually as the system matures, CATM-B aircraft will begin to fly pilotless. However, 

RPAS teams on the ground will be retained indefinitely. 

Step 10: 

When the majority of the fleet is CATM-B compliant, the segregation is eliminated and 

the roles reverse whereby any remaining unequipped flights are now treated as 

uncooperative by the CATM-B system that uses all the surveillance tools at its disposal 

to track and avoid unequipped aircraft. Alternatively, the CATM network can provide an 

emulated Electronic ATC (e-ATC) service to unequipped aircraft, thereby taking control 

of all the flights in the system.  

Step 11: 
Human piloted VFR flights will remain segregated indefinitely and a skeleton ATC 

service will be provided to this category only. 

Step 12: 
The move to CATM-C can also be gradual, however this is not safety critical and can be 

rolled out in a piecemeal fashion as more ground and airline systems are interfaced with 

the CATM network, thereby increasing efficiency. 

Step 13: 

Any modifications and updates to the CATM Software platform would be fully tested 

and re-certified in a simulated environment and can be rolled-out electronically over the 

CATM network. However, these would only be activated regionally, first to cargo 

aircraft, then the rest, but only when the aircraft is on the ground. This minimizes the 

risk associated with the unlikely event of a catastrophic malfunction. 

1.10 THE OUTLOOK 

The current SESAR and NextGen initiatives are undoubtedly necessary steps 

towards the modernisation of the ATC System. However, this is certainly not the end 

game. These are by no means going to provide us with the system we will need, to 

handle 2100 or even 2050 traffic. Small incremental changes and improvements to the 

current ATM system are justifiably rooted in good engineering practice, but they can 

only take us so far. In the meantime, a new autonomous ATM paradigm needs to be 

researched, devised and gradually phased in. But before any of this can happen, an in-

depth understanding of the underlying science and engineering relevant to producing 

such systems is essential. This field is clearly still in its infancy and the more exciting 

times have yet to come. 

Computational Air Traffic Management is envisaged to allow a large fleet of 

aircraft to self-organise for conflict-free flight, while taking into account external 

influences, disruption and internal variability as it occurs. In contrast to conventional 

ATC, CATM is a self-reliant synthetic automaton.  

This unorthodox operational concept is part based on an extrapolation of the 

progress, which has occurred over the past three decades and builds on top of a number 

of fundamental requirements based on customer expectations rather than human 

controller limitations, or mere continuity with the past. A clean sheet approach has then 

been adopted in order to break free from the legacy that continues to confine the ATC 

community‘s imagination. This paves the way for a theoretical foundation for CATM to 

be developed. Further research in this direction needs to be pursued. 
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Chapter 2 
Computational Air Traffic Management 

This chapter provides the big picture. We will start by describing the conceptual 

components of an airborne, decentralized, fault-tolerant paradigm for a continental (and 

eventually global) ATM system that readily scales up to accommodate projected future 

aircraft densities, involving military, commercial, (autonomous or piloted), airborne 

systems. Parts of the discussion at this stage might seem speculative, however, it will be 

substantiated in later chapters in much more detail. The system is broadly consistent 

with the proposed objectives of both NextGen (Next Generation Air Transportation 

System) and SESAR (Single European Sky ATM Research). Several subsystems are 

classified, and discussed in the context of emerging computational and communications 

hardware. The case is then made for a new breed of grid-oriented avionics hardware that 

will enable aircraft to take CATM to the skies by leveraging on the many benefits 

brought by pervasive inter-aircraft ad-hoc communication networks and heterogeneous 

grid-computing. 

The overarching concept described hereunder is in itself one of the main 

contributions of this work and this chapter lays down the context in which specific 

technical contributions are described in the subsequent chapters. 

2.1 A NEW CONCEPT FOR ATM 

Computational Air Traffic Management has been presented as the disciple that 

studies the emergent mathematical order which results from the collective behaviour of 

a number of interacting systems that make up a hypothetical future air transport system. 

It focuses on addressing several major problems related to the current aviation 

paradigm. Open problems such as rising congestion, delays, lost aircraft, pilot error, 

hijacking, volcanic ash susceptibility, high ATC cost, mid-air collisions, environmental 

impact and some kinds of hardware failure can be mitigated or solved with a neat over-

arching solution that leverages best-in-class technology. 

The CATM name derives from the fact that computational intelligence can (and 

probably must) be used to take on the centre role in solving this well known,  

 Large 

 dynamic, 

 variable size,  

 infinite horizon,  

 multi-parameter,  

 highly constrained, 

 nonlinear, 

 non-causal, 

 multi-modal, 

 multi-objective,  

 high-dimensionality,  

 continuous-and-combinatorial, optimization problem. 
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The indications are that whatever the formulation, the CATM problem is non-

deterministic in polynomial time (NP-Hard) on Deterministic Turing Machines (DTMs) 

[2.1], [2.2]. Although, one of the hardest problems known, we still believe that it can be 

made tractable using a multi-disciplinary approach that finds good approximate 

solutions based on certain simplifications and a careful use of meta-heuristics, so that 

fast convergence can be achieved using currently available computing technology.  

The principles of swarm intelligence are the foundations of what we are about to 

discuss. The concept is the result of a clean sheet approach that began with a rethink of 

what really matters in an ideal air transport system [2.3].This contrasts sharply with the 

methodology that the ATM R&D community usually adopts. However, laying down the 

principles of a coherent concept, helps define an ideal scenario that could well serve to 

guide future incremental development. 

CATM is envisaged to spawn a practical, comprehensive and self-consistent set of 

ATM (and ancillary) algorithms that can be used to allow a large fleet of aircraft to 

self-organise for conflict-free flight, while taking into account external influences, 

disruption and internal variability as it occurs. In contrast to conventional ATC, a 

CATM-based system is a self-reliant synthetic automaton. 

The shift from airspace-oriented to trajectory-oriented ATM operations paves the 

way for computational techniques that are based on trajectory optimisation, rather than 

airspace allocation. The major technical threshold will be the advent of real-time, 

continuous, and system-wide trajectory optimisation. CATM can provide an integrated 

solution that merges both strategic phases (ATFCM) and tactical phases (ATC) into a 

common framework that no longer needs to distinguish between the two. The best 

features of the current air traffic system are retained and combined with a variety of 

novel concepts that enhance capacity, performance and reliability.  

A basic tenet of CATM is that through the provision of sufficient computational, 

communication and surveillance resources, the system update rate can be realistically 

increased to the point, where over the short duration of each system time-step, the 

traffic scenario advances by a negligibly small amount – and this changes many things. 

At these time scales, the distinction between ATFCM and ATC blurs. The 

difference between the purely tactical and strategic phases degenerates. Most 

phenomena that can affect the air traffic scenario, can now be predicted with sufficiently 

high certainty over an appreciable number of time-steps. So in a sense, the tactical 

aspect is absorbed into a single pseudo-strategic planning process which has a 

continuous span of influence that ranges from a short term horizon of a few seconds, to 

a much longer term horizon lasting many months. Therefore by raising the system 

update rate, CATM encompasses the roles of both ATM and ATC. 

The following sections explore the consequences of CATM adoption on the 

logical and physical architecture of a future grid connected avionics system. 
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2.1.1 Computational Complexity Considerations 

Casting a highly non-convex problem such as CATM as an NLP problem faces us 

with another difficulty. Directed searches will typically get trapped in the first local 

optimum they encounter. Systematically subdividing the search space for subsequent 

local searches quickly runs into a wall. Complexity theory [2.4] tells us that as the 

number of managed aircraft increase, the exponential combinatorial expansion of the 

highly non-convex search space, makes systematic deterministic approaches to reach 

the global optimum, unfeasible on Deterministic Turing Machines. 

In structured airspace, even the multi-airport, multi-sector, air traffic flow and 

capacity management (ATFCM) sub-problem, has been shown to be NP-hard and 

equivalent to job-shop scheduling in terms of complexity [2.5]. It is actually an NP-

Complete combinatorial optimisation problem [2.6]. In a free-flight scenario, the 

problem formulation changes somewhat and several important observations can be 

made: 

 With sectorisation removed, it shifts part of the problem to the continuous 

domain, vastly increasing the search space. However, this also increases the 

“good solution” space. 

 Optimizing airport utilization remains firmly discrete and combinatorial in 

nature and remains NP-hard, and so is assigning airspace to trajectories. 

 The combination of continuous and discrete optimisation makes this a 

hybrid system with all the associated complexities [2.7]. 

 Optimizing a single isolated trajectory in uniform airspace between two 

fixed points is convex, but nonlinear for virtually all aircraft types.  

 Adding trajectories, increases the problem dimensionality linearly, but the 

search space increases exponentially. 

 When taking into account realistic fixed-wing aircraft performance and 

airline objectives, it also becomes multi-objective and multi-parameter. 

 The nonlinearity and problem size worsens dramatically if the search space 

is shifted to the aircraft control input side, but this can be avoided if 

dynamic inversion can be used. 

 Aircraft performance constraints add another level of complexity with some 

applicable to the vehicle output space and some in the control input space. 

 When obstacles such as restricted airspace are introduced, the search space 

becomes not only non-convex but also disconnected, with feasible islands 

surrounded with unfeasible search spaces. 

 When the obstacles are moving (eg bad weather), or when new flights are 

added or removed, the problem becomes also dynamic. This means that the 

global optimum is likely to move or lose its status altogether over time and 

needs to be tracked continuously and revaluated periodically with respect to 

other local optima. 
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2.1.2 Relaxing Optimality Requirement to Address Complexity 

Non-deterministic Turing Machines (NTMs) are theoretically efficient at solving 

NP-Hard problems in polynomial time. Although such machines can be inefficiently 

emulated on DTMs (at great computational cost), no such machine has ever been 

constructed and nor is it likely to [2.8]. One feasible alternative is to consider the 

computation of non-deterministic optimisation algorithms directly on deterministic 

machines. Metaheuristics and memetic algorithms fall under this category [2.9]. These 

approaches use a stochastic process to broaden the search and rely on heuristics to 

negotiate the search space efficiently, but bear the limitation that no guarantees of 

reaching a global optimum can be given. With the addition of a stochastic element, the 

probability of reaching one of the lesser (but acceptable) solutions can be made 

arbitrarily high by dedicating the right amount, of the right kind, of computational 

resources. Any one of these solutions would still represent a major improvement over 

what is achievable today with human brain power alone.  

2.1.3 Nested Optimisation 

Gradient-based directed optimization is fast and reliable when dealing with smooth 

search spaces due to its good use of the information contained in the search landscape. It 

is however confined to searching local optima. Stochastic and metaheuristic optimisation 

are on the other hand much more exploratory and better suited at identifying regions 

containing global optima in non-convex problems. They are fairly quick at identifying 

these regions however they are notoriously slow to converge thereafter. Most time is 

spent refining local optima, where they become inefficient due to their poor use of local 

gradient information.  

 

 

 

 

 

 

 

 

 

 

Local and global optimisation techniques have complementary strengths and 

therefore, one approach to this conundrum is to combine the techniques [2.10] 

(Figure 2.1.1), with an outer global optimizer robustly scouting the landscape, and 

nested inner local optimizers for accurately and rapidly evaluating the global potential of 

local optima as they are found. Such nested optimisation has been used to solve very 

large problems in aerospace engineering applications [2.11]. 

Figure 2.1.1: Nested Optimization - Best of both worlds 
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2.1.4 The benefits of Dynamic Re-Convergence 

Most global optimisers assume a static search space and substantial computational 

effort is expended to reach a global optimum. However, when the problem changes, the 

search effort has to be restarted from the beginning, which is computationally 

inefficient. The ATM problem is constantly changing and therefore the converged state 

of the optimiser must be in a dynamic equilibrium with the problem constraints. What is 

needed is a Continuous Dynamic Re-convergence. This is the hallmark feature of 

CATM‟s underlying trajectory synthesis engine (Figure 2.1.2), which must keep track 

of the changing inputs and dynamic aspect of the problem. 

 Since the input variables to 

the system are impossible to model 

exactly, due to their complex and 

apparently-random or chaotic nature, 

predictions of future inputs will only 

be valid for the short term – if at all. 

Stochastic techniques will have to be 

used to describe what can‟t be 

predicted with any certainly.  

Instead of synthesizing and 

deploying a set of nominally 

conflict-free 4 Dimensional (4D) 

trajectories, and then reacting to the 

unforeseen using conflict detection 

and resolution (CD&R) tactical tools, CATM uses an online optimiser to continually re-

adjust to the evolving scenario. This method keeps 4D trajectories well apart at all times 

and there will seldom be a conflict scenario which needs to be addressed tactically.  

Given the nature of most numerical optimisers, there are also sound mathematical 

reasons for going about it this way. Most numerical optimisers are able to re-converge 

much faster and much more reliably, once provided with a good seed solution. The only 

sure way to guarantee that the next iteration re-converges rapidly to the same local 

optimum is to seed it with the previous solution. If the iteration time step is short 

enough, the problem domain would have evolved by a very limited amount in the 

interim. Hence, the solution to the next iterand is bounded to a region fairly adjacent to 

the solution of the previous iterand. A high update rate keeps the inner algorithm of the 

trajectory synthesiser operating efficiently in a locally-convex domain thereby tracking 

local optima. A sequential quadratic programming (SQP) local optimizer, for instance, 

would reconverge within one or two Newton steps. 

However, in a dynamic optimization problem, the gradually evolving scenario 

might push a local optimiser to erroneously track a local optimum that may no longer 

coincide with the global optimum – assuming it was a global optimum to begin with.  

Consider this scenario: A large weather cell may be causing most traffic to detour 

around its north side. As the cell gradually moves north, the trajectories will get 

Figure 2.1.2: The Continuous Nature of CATM 
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deflected further around it, and perhaps become unreasonably extended, until a situation 

develops where it becomes more economical to deviate around the cell, on its southern 

side. ATM Automation must be able to deal with such pathological cases. Actively 

tracking the motion of local convexity, allows optimizers to deal with real-time non-

convex dynamic optimization problems [2.12], but this alone is insufficient.  

To mitigate this risk, iteration is needed at both levels of the nested hybrid 

optimiser. The global optimiser also needs to periodically reassess the evolving 

scenario, to monitor the big picture and search for opportunities as they arise, albeit at 

lower update rates. 

2.1.5 Constraint modelling in CATM 

While simple geometry shows that the shortest trajectory for any aircraft 

travelling over a spherical earth would be to follow a simple great-arc route, real world 

effects means this is not possible in practice. Many effects, both external and internal, 

pose constraints that reduce the feasible solution space dramatically. The CATM 

optimiser makes use of a number of models to predict the constraints of the dynamic 

problem into the future. Some of these models are fixed while others change over time.  

2.1.5.1 Aircraft models  

A core component of the optimization process is the aircraft model itself. It guides 

the optimizer to generate flyable trajectories that conform to the dynamic constraints 

unique to each aircraft. The Base of Aircraft Data (BADA) is a database maintained by 

Eurocontrol [2.13]. In its latest form, it uses a parameterized total energy model to 

describe the performance and flight envelope of 405 aircraft or 90% of all aircraft in use 

in European airspace. A newer version with much better accuracy is currently in 

development. 

2.1.5.2 Atmospheric models 

Aircraft modelling goes hand in hand with atmospheric modelling as it bears on 

aircraft performance in a major way. The International Standard Atmosphere (ISA) 

[2.14] is an empirical model developed by the International Civil Aviation Organization 

and is considered appropriate for ATM purposes. This generally means that fast, fuel-

efficient cruising must take place at high altitude where the air is rarefied. 

2.1.5.3 Airspace models 

Every national airspace is characterized by a number of imposed geographical, 

altitude and operational restrictions. (Instrument and visual flying rule zones, special 

notifications, military training ranges, no fly zones over nuclear reactors and 

penitentiaries etc…). These spatial constraints need to be assembled in a database in a 

format which is computationally efficient for the optimizer to access. 

2.1.5.4 Weather models 

Weather is one of the major sources of uncertainty is the system. The presence of 

wind, for instance, determines whether the shortest distance path will also be the most 

fuel efficient. An accurate weather model that can extrapolate current conditions by a 

few days is critically essential for the optimizer to generate trajectories with sufficient 

confidence. The accuracy of such predictions worsens as the prediction is extended 

further into the future, however this is compatible with the requirements of CATM. 
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2.1.5.5 Airport delay models 

The greatest source of uncertainty in a flight is arguably its departure time. Such 

delays are hard to model in a deterministic way and can only be partially predicted in 

the immediate run up to a flight. If a delay has been caused by a late incoming aircraft, 

the system might be in a position to factor that in, otherwise stochastic models can be 

used. 

2.1.6 Decentralised CATM 

Everything in CATM revolves about the need for substantially higher system 

update rates. This can, in turn, only be accommodated by pooling the computational 

resources across many aircraft to form a high performance computing grid that 

collaborates to generate a decentralised communal solution. This provides an excellent 

opportunity to combine the situational, environmental and atmospheric data gathered by 

all the aircraft in the pool.  

Much has been published about the merits and demerits of distributed or 

decentralised control and the reader is invited to view [2.17] - [2.27] for an in depth 

treatment. Although related, distributed control must not be confused with the notion of 

swarm theory. Distributed processing of an algorithm does not imply swarm 

intelligence, even though the converse is always true. 

Decentralisation brings with it the resilience, capacity, performance and 

scalability it takes to get CATM off the ground, but it also introduces a new level of 

complexity, in that the optimiser algorithms must now be designed such that their 

throughput scales linearly with the addition of computational resources. Algorithms 

designed to run on a single threaded, von-Neuman processor are often inadequate or 

inefficient in the multiprocessor domain. This creates a new avenue for research into 

distributed but collaborative trajectory optimisation [2.20]. A number of research 

threads are being investigated as part of this work.  

Luckily, one important feature of stochastic and heuristic optimisation approaches 

is that they are often easily parallelizable. A variety of non-Von Neumann parallel 

architectures are available to massively increase the computational capacity of avionics 

hardware today. 

2.1.7 Offline vs. Online CATM 

In CATM, airlines and all other airspace users are required to submit Initial 

Shared Business Trajectories (ISBTs) to the network well in advance of the actual 

flights. The network shoulders all responsibility for generating sets of conflict free 

trajectories that deviate as little as possible from the ISBTs. 

It stands to reason that late ISBT requests will cost significantly more than those 

made much earlier. This incentivises early planning by airlines and lends itself for a 

better coordinated, more predictable, and efficient use of the Airspace. Most ISBTs 

would be expected months or years in advance as in the case of scheduled flights. A 

market mechanism can then be used to raise costs for submitting ISBTs for busy periods 

[2.21]. This effectively distributes traffic and minimised congestion. The CATM 

algorithm must then operate in two very distinct phases: 
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The Offline Phase: This is the strategic part of the system that deals with the long 

term pre-planning associated with processing ISBT requests in advance of the actual 

flights. It is involved in the issuance of business trajectories that have been scrutinised, 

and adjusted as necessary to take into account forecasted traffic, weather and runway 

availability using best effort statistical models for each. The offline phase is not a time 

critical system and can therefore operate as iterative batch jobs using as many resources 

as necessary on land based supercomputers. Flights approaching departure are 

progressively dedicated higher resources to take into account detailed weather forecasts 

and higher frequency traffic updates. 

The Online Phase: This is the tactical part of the system and deals with the short 

term requirements and immediate constraints faced by each flight during execution. 

This part of the system must be lightweight and fast since it must be able to operate in 

real time and is therefore always online. The statistical models are replaced with real-

time data and accurate predictive models. 

Both phases adopt the same iterative approach however the distinction arises from 

the different levels of reliability of the constraint models they use to guide the optimiser 

2.1.8 Airborne CATM 

It should be clear by now that by “decentralised” we also mean taking CATM 

airborne (Figure 2.1.3). Aircraft will be essentially autonomous, and although traffic 

separation is delegated to the cockpit, this will not be the pilot‟s role. The pilot‟s role, 

(if still relevant), would be radically different from today. This is a big paradigm shift in 

air transport, but in reality there is no other practical way of achieving CATM. For 

reasons of efficiency and safety, it is essential that every aircraft is directly responsible 

of generating its own optimal conflict-free trajectory in real-time – in collaboration with 

all the rest. This ensures that no flight is left in the predicament of not being able to 

update its own flight plan in response to emergencies during a communications failure. 

 

 Figure 2.1.3: Distributed Processing = Grid-Avionics 
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This is also where the CATM concept starts departing from the early ideas of 

free-flight. Whereas in the latter case, ATM is largely dispensed-with and replaced with 

pilots‟ discretion and tactical CD&R, in CATM very tight strategic control of all aircraft 

behaviour needs to be maintained at all times.  

2.1.9 CATM and the Role of the Pilot in an Autonomous system 

In recent times, the task of flying aircraft has been largely delegated to the 

autopilot under the direction of the onboard flight management system (FMS). Pilots 

have been left with a predominantly managerial, communications, monitoring and 

coordination role. Pilots control the aircraft indirectly, through FMS reconfiguration. 

Pilots, however, retain the key role of ensuring the safety of the aircraft and are 

hence tasked with the all important job of handling any off-nominal situations. Yet, with 

today‟s high reliability aircraft, 99.9% of all flights are uneventful [2.22]. Pilots are 

losing skills as they become increasingly complacent and reliant on the automation. The 

additional layers of automation introduce new system states, new failure modes, and 

new avenues for complicating and misreading unfamiliar situations. Thus, under these 

conditions, the ability of humans to react correctly under sudden intense stress, 

diminishes [2.23]. The 2009 Air France AF447 accident is a sobering example of how a 

simple temporary failure (iced pitot tubes) caused three pilots to misconstrue 

circumstances to the point of forcing their aircraft into a stubborn stall with tragic 

consequences [2.24].  

Irrespective of the level of autonomy, a safety-net of last resort is required and it 

is generally accepted that it must involve some human decision making. Yet within the 

context of fully autonomous CATM, pilots would invariably be left with a highly 

vestigial role in the cockpit. Under these conditions it is questionable whether they 

would be able to retain their performance to deal with exceptional circumstances. 

Regular simulator training is meant to compensate for such de-skilling, however it is 

doubtful whether this alone can be sufficient. The role of the pilot will have to change. 

One solution to this predicament is being envisioned as follows: A ground-based 

organisation of elite pilots would be specialised in handling the occasional off-nominal 

situations using a civilian version of RPAS (remotely piloted aircraft systems). RPAS 

centres would cover the national airspace of each country, thereby gathering exceptional 

experience with handling emergencies. This will of course rely on highly reliable 

bidirectional communication links, but this is discussed in detail further down. 

2.1.10 High Performance Grid-Avionics and CATM 

We envision that CATM will spur a new generation of grid-connected avionics 

hardware. For the first time in aviation history, the cockpits of passenger aircraft would 

be carrying numerical processors with performance which significantly exceeds those 

found in most desktop computers. For the cockpit, such processors would need to be 

formally verified, radiation hardened, multiplex redundant, and 100% tested, and they 

would of course be expensive, but their added cost would be quickly amortised, given 

the long term savings over what ATM costs the travelling public today. The world of 
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high performance computing has progressed to an impressive degree while ATM was 

looking the other way, and it is high time that it catches up to explore the possibilities.  

A CATM node would reside alongside existing avionics hardware in the cockpit, 

sharing standard backplane busses. It would consist of a dedicated high capacity 

computing platform with a heterogeneous-computing architecture. The fault tolerant 

IMA design should have modest power consumption (< 2kW), with inbuilt fine grained 

redundancy and over-capacity with special provisions for graceful degradation or soft 

failure. The CATM system would appear as an additional layer on top of existing 

systems. It logically sits between the FMS and the communication/navigation 

subsystems. It therefore does not replace the FMS, but rather serves as its input, 

eliminating the need for manual FMS input. As flight plans are updated by the CATM 

network, these are downloaded into the FMS for immediate execution by the autopilot. 

More aircraft in the air implies higher system complexity, but it also means more 

computational resources to dedicate to the problem. Whether the combinatorial increase 

in complexity would outstrip the linearly increasing computing capacity is a key 

research question that is being looked into. The global air traffic system consists of 

around 26,600 airliners, 100,000 military aircraft and over 300,000 active general-

aviation aircraft. If we only consider airliners, one can safely assume that half of them 

are airborne at any point in time. Now, if each one holds a modern high performance 

avionics-grade CATM-compliant computer on board, this represents a massive amount 

of aggregate processing power which is deployed right where it is needed.  

Given current levels of computing power density of CPUs [2.28] and GPUs 

[2.29], the average cockpit should be able to comfortably host between 10 and 50 

Teraflops of radiation-hardened and reliable computing hardware. The aggregate across 

the airborne fleet can reach the Exaflop range, and that still does not take into account 

the additional capacity that can be made available at ground stations, bearing no 

constraints on space, power and weight. Moreover, CPU performance has historically 

grown exponentially. Figure 2.1.4 shows a 21% annual trend that has been established 

in recent years. So if the first CATM-compliant aircraft take 20 years to roll out, the 

computational capacity of a cockpit, would conservatively top 1 Petaflop by then. 

 

Figure 2.1.4: The Historical Exponential Growth in Computing Performance (source: PCLabs) 
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2.1.11 Heterogeneous Computing and Fault Tolerance 

In recent years, the inability to extract higher performance from a single computer 

processor pushed the quest for higher processing power towards higher parallelization. 

This has resulted in a split in the industry, with one camp advocating in favor of small 

arrays of complex and powerful processors cores (Central Processing Units or CPUs) 

[2.28], and the other camp going for massive parallelization of relatively simple 

processors (Graphics Processing Units or GPUs) [2.29]. Both have unique advantages. 

The former is capable of executing software of impressive complexity and a practically 

unlimited number of variables. The latter is much better streamlined for high bandwidth 

computing, with 10x to 1000x advantage depending on optimizations [2.30], but can 

only efficiently deal with identical parallel instances of relatively simple routines.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

For a further 100x increase in performance, dedicated trajectory optimization can 

be achieved using embedded application specific integrated circuits (ASICs) [2.31]. 

Such hardware is designed to match the algorithm rather than the other way around. For 

a high value application such as avionics, this approach is very appropriate and can 

actually reduce overall costs. Another class of computing hardware called Field 

Programmable Gate Arrays (FPGAs) offers near ASIC speeds but with the possibility of 

on-the-fly reconfiguration. 

Needless to say, the way forward seems like a combination of all three paradigms 

and triple-rank heterogeneous computing attempts to achieve this (Figure 2.1.5). In a 

typical optimisation algorithm involving numerous agents, there is an even mix of all 

kinds of tasks. Program flow often consists of highly branched routines that make use of 

many variables per thread, which can only be accommodated on CPU-like architectures. 

However, this is often interspersed with large batches of relatively small operations 

which need to be performed identically on large arrays of data elements. The CPU can 

hand over these portions to GPUs, which are much better suited for these kind of 

operations, particularly when they do not involve many transfers to main memory. For 

intensely demanding but highly uniform calculations the FPGA/ASIC model excels and 

can take over these parts. Therefore, there is a growing need for algorithm design to 

closely follow the strengths and weaknesses of the underlying hardware, while 

apportioning the relevant parts to the appropriate hardware [2.32]. 
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Figure 2.1.5: Triple Rank Heterogeneous Computing. 
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In a safety critical application such as ATC, fault tolerance is an imperative. This 

is traditionally achieved with triplex redundancy, built on a deep understanding of 

subsystem interactions. Total reliance on CATM makes the reliability of the computing 

platform ever more important. Luckily this is compatible with modern computing 

architecture. The massively parallel processing can be configured for graceful 

degradation, if any portion of the hardware fails. Failover techniques have been in 

development for decades in the server market and the technology is very well 

understood.  

Massive redundancy is also a powerful tool to enhance radiation tolerance. 

Besides radiation hardening at the silicon level, data corruption can be detected and 

corrected on the fly by comparing the results from multiple threads. Moreover, 

probabilistic optimisers such as genetic algorithms and swarm intelligence are naturally 

immune to such disruption and take it in their stride as part of their mutation operators. 

Other optimisation algorithms can be designed to recover rapidly. 

2.1.12 Clustering and Information Flow in CATM 

An alternative way of looking at the N-Way CATM problem is to break it up into 

smaller overlapping clusters of M aircraft. This would reduce the computational demand 

in a major way by breaking up the combinatorial expansion into manageable portions. 

Communications is also set to benefit. It would be unreasonable to assume that an 

aircraft flying across eastern Canada needs to know any of the details about a flight 

between Rome and Moscow. At the same time, it is true that they may be indirectly 

related, and that they may affect each other through another flight that interacts with 

both. This is why the global air traffic system will have to form a network that 

contributes towards a single distributed processing grid on which CATM is hosted.  

The only reasonable way of adhering to the principle of (network) locality [2.33], 

is to make CATM a network-centric solution, divided into clusters, and entirely 

airborne. Locality then implies that the influence that one side of the world‟s traffic 

exerts on the rest, need not be communicated directly. The effect is largely localised, 

and the further away one flies from flight XYZ123, the less it matters, but the effect still 

ripples through. Practical algorithms are required to take advantage of this fact. 

 

 

 

 

 

 

 

 

 

 

Figure 2.1.6:  Overlapping  

 Clusters in CATM 
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The relationship between flights may be defined in terms of their interactions. 

Two flights interact when the point of closest proximity between the pair of trajectories 

drops below some prescribed radius, δ. Closer proximity increases the likelihood that 

these trajectories would need to take into account each other in order to maintain 

adequate separation. Another kind of interaction arises when two flights are sequentially 

connected as a result of reusing the same aircraft.  

Assume N total flights in the airspace, over a span of time. Over the course of a 

typical flight ai, an aircraft might interact with Mi –1 other flights (Figure 2.1.6), the set 

of which (including ai) will be collectively referred to as the cluster Ci where flight ai is the 

„head node‟ of the cluster Ci. However, each of the Mi  flights in cluster Ci, is also made the 

head node of its own cluster Cj, hence, there are as many clusters as there are flights. 

All flights in a cluster share planning information and periodically collaborate to 

generate and maintain conflict free and efficient trajectories for the entire cluster. Each 

flight is potentially also a member of several other clusters, creating a network of highly 

overlapping clusters that include all N flights. These overlaps ensure that logically 

adjacent clusters generate compatible trajectories by virtue of those flights that straddle 

more than one cluster. Thus, most aircraft have interests in a number of adjacent clusters 

and ensure that their interests are adequately represented in each. 

However, at any single point in time, only a small subset of the aircraft in cluster 

Ci is within a radius δ of each other. These aircraft are within range for direct 

communication. The rest of the members of the cluster could be thousands of nautical 

miles away, and have to rely on the network of aircraft to communicate with their peers 

via proxy. 

2.1.13 Communication Infrastructure 

A resilient, inter-aircraft, high-bandwidth communication network infrastructure 

that interconnects all aircraft to each other and the various ground stations is required. 

Both inter-aircraft and air-ground data bandwidths need to increase by many orders of 

magnitude (100MB/s~1000MB/s) with respect to what is planned for Controller-Pilot 

Data Link Communications (CPDLC), Automatic Dependent Surveillance-Broadcast 

(ADS-B) or even System Wide Information Management (SWIM).  

The broadcast-oriented philosophy that underlies all popular airborne 

communication links is a major bottleneck because it hinders frequency-band reuse. 

Before CATM can become possible, the industry must depart from this model to favour 

directional, beam-steered, high power, point-to-point, tracking data-links that are able to 

pre-compensate or accommodate the significant Doppler shifts that are inherently 

present when there is fast relative motion between the end points. Certain microwave 

bands (in the Ku band) are suitable, but tracking free space optical (FSO) links are also 

attracting much attention due to their vastly increased bandwidth and the very low-

divergence afforded by lasers, which implies high power efficiency, better security, 

immunity to jamming, and greatly improved electromagnetic interference 

characteristics. In 2002, Lawrence Livermore Laboratory demonstrated a 2.5Gbit link 

over a distance of 28km [2.34] and a 1.37 terabit link was reported in 2012 over four 
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polarisation-multiplexed, 16-QAM (quadrature amplitude modulated) beams using 

orbital angular momentum (OAM) multiplexing [2.36]. 

Multi-gigabit free-space optical laser links [2.35] between mobile platforms have 

also been investigated with some success for inter satellite, space-ground and high 

altitude inter-aircraft applications and these can complement additional microwave 

links. NASA has also been developing its own FSO, in the form of the Lunar Laser 

Communications Demonstrator (LLCD) to communicate between lunar orbit and a 

ground station over 380,000 kilometres including the terrestrial atmosphere [2.37]. The 

asymmetric link was successfully demonstrated in October 2013 with an error-free 

uplink rate of 20 Mbps and a 622Mbps downlink using a 500mW optical source, 16-ary 

pulse position modulation (PPM) and a 1/2-rate serially-concatenated turbo code [2.38]. 

Rising warm air and clear-air turbulence still present major challenges in the form 

of optical refraction, causing deep fades particularly in cases involving high relative 

velocity. Fog and cloud are also very problematic. However, these are not considered 

insurmountable [2.39]. High diversity multi-aperture transceivers, interleavers, forward 

error control and carefully designed protocol stacks, are a promising way forward. 

In recent years, substantial work has been undertaken to ruggedize FSO links 

using Multiple-Input-Multiple-Output (MIMO) techniques [2.40]-[2.45]. These systems 

enhance diversity by combining numerous parallel channels with carefully designed 

error control codes (ECC) and modulation schemes to reduce the susceptibility of fading 

and temporary outages. Parallel Relay Assisted FSO (PRAFSO) is another powerful 

technique that is particularly suited to CATM (Figure 2.1.7a). Since fading and 

atmospheric attenuation is distance and direction dependant, PRAFSO makes use of 

multiple hops along intermediate nodes to circumvent the problem [2.46]. Relaying 

Protocols are being developed to maximise throughput and link availability [2.47].  
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Figure 2.1.7: The Optically and Radio Networked Airspace, and absorption spectrum 
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In dense traffic, clear-air FSO links of a few km would be short enough such that 

link power should not be an issue. In sparser traffic, additional solar powered drones or 

blimps can be deployed to serve as communication hubs (Figure 2.1.7a). FSO linked 

satellites can feasibly be used to create a fast network backbone, while in cloud and fog, 

other windows in the optical/radio spectrum (Figure 2.1.7b) would have to temporarily 

take over [2.48]. Communications technology has come a long way, overcoming 

remarkable challenges in the past. By combining multiple communication modalities 

and leveraging the net-centric communications model being suggested for CATM - 

using satellite backbones, ground stations and other intermediate floating nodes - it 

should be possible to create a fast and high availability communications infrastructure. 

Comprehensive information gathering and fast and reliable data links are the 

corner stone of good situational awareness. This cannot be over-stated, because with 

them, little can happen that can be truly unexpected. Most phenomena involving 

aircraft, evolve slowly and the system is given ample time to adapt gradually. In 

addition, with the ability of staying vigilant for all external influences on the system, the 

limited amount of slack in the system can be carefully rationed in a way that introduces 

extra room for recovery, should off-nominal situations arise. 

Besides the operational advantages there is an argument for safety. Very few 

accidents are both sudden and catastrophic. With the debatable exception of malicious 

attacks, most incidents involve a detectable, quantifiable, gradually-evolving run-up 

scenario. By design, it takes an improbable confluence of events to convert incidents 

into accidents and timely distribution of information is the pre-condition which makes 

them preventable. The recent German Wings co-pilot sabotage event (flight 4U9525) 

that has shocked the industry could have been prevented had there been the 

communications infrastructure to assess, and then take control of the aircraft remotely. 

The evolution of the Internet amply demonstrates the kind of network topologies 

that scale up efficiently [2.48]. Multiply-interconnected, decentralised, ad-hoc peer-to-

peer (P2P) networks can offer some of the highest levels of network scalability, 

resilience, capacity, and availability known. Classic client-server architectures are not 

suited for the most part. A net-centric approach is better indicated, given the way data 

needs to flow in the proposed CATM system. CATM can be accommodated onto an ad-

hoc network infrastructure conformant to standard layered OSI principles. Long range 

communications can then rely on multiple hops along the net-centric architecture rather 

than direct long distance links. Standardisation of the CATM language of interchange is 

part of the game. A universally accepted descriptor for the Business Trajectory is 

required before a CATM data packet structure can be defined. 

It is not expected that CATM will require voluminous data transfers between 

network peers, but exchanges will occur at high frequency. They are largely limited to 

intermediate optimisation results, essentially consisting of compressed trajectory 

bundles, for consideration by the rest of the cluster. A multicast forwarding model is 

therefore suitable. However, network latency is likely to pose problems and therefore 

CATM data packet transfers need to be completed rapidly in order to allow quick 

system re-convergence to the prevailing problem domain.  
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Finally it must be said that although CATM depends entirely on efficient 

communications, there is much room for optimisation of the CATM communications 

protocol. Using clever data reduction and compression techniques, CATM would 

possibly be able to function with rather modest bandwidth requirements which would 

reduce the strain on radio communications. This will become a hot area of research.  

2.1.14 Sensor Networks 

A key element that ensures that air transport functions safely with as few surprises 

as possible is information gathering and distribution. Whether it involves knowing the 

locations of other aircraft and obstacles, evolving weather conditions or the 

mechanical/electronic health of each airframe, the timely and exhaustive information 

gathering is what separates recoverable situations from inexplicable disasters. The 

recent Malaysian Airlines MH370 case is one such example where lack of information 

allowed a relatively minor incident to grow into one of the most expensive aviation 

disasters in history. Current information technology greatly exceeds the data capacity 

requirements associated with ATM, the basic science is well understood and it is now a 

matter of bringing it all together.  

2.1.15 CATM & Flight Data Recorders 

The CATM communications infrastructure also presents an excellent opportunity 

to revamp the half-century-old flight data recorder (FDR) concept. The continuous, high 

update rate, status transmissions effected by each and every aircraft can easily be 

recorded in encrypted format by all peers in a cluster as well as ground stations. 

Commercially sensitive information would only be decryptable by the respective 

airlines. This multiple redundancy reduces the dependency on retrieving these FDRs 

from remote locations, hence insuring against the loss of such data in the event of an 

accident. Additionally, from a communications perspective, such distributed recording 

is more technically feasible than direct data streaming to distant ground stations, as was 

recently proposed [2.49], [2.50] following the southern Atlantic Air France Flight 447 

accident where the flight recorder was lost in the deep ocean, and was only recovered 

two years at great cost [2.24]. The Malaysian MH370 lost in the Indian Ocean served to 

further embarrass the industry in this regard, but will hopefully spur some change. 

2.1.16 CATM Trajectory Descriptors 

In CATM, trajectories are defined as 4D curves that aircraft are contractually 

obliged to follow closely. They specify the exact location (and hence velocity) of each 

aircraft at any point in time, from take-off to landing. Such trajectories are pre-

calculated before take-off, but are continually updated to take into account evolving 

conditions, with mutual agreement of all members in a cluster. Since trajectory 

synthesis and optimisation ultimately needs to be computed in real-time, some form of 

trajectory parameterisation is required to reduce the search space to reasonable levels. 

CATM also requires a versatile, compact and deterministic method for describing 4D 

trajectories. Thus, ensuring a single standard method of parameterisation allows for 
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efficient storage, processing and exchange of large numbers of trajectory contracts and 

intermediate partial solutions across the distributed CATM processing grid. 

A promising approach was 

explored by Flores and Milam at 

Northrop Grumman for UAV 

applications [2.51]. The concept is 

to employ well behaved 

interpolators to describe 

trajectories using relatively few 

4D knots or nodes along the 

curves, while retaining a very rich 

repertoire of possible trajectory 

shapes (Figure 2.1.8). Several other parameterisation techniques are possible and a few 

are being listed hereunder: 

 Splines 

 Bezier Curves 

 B-Splines  

 NURBS  

 Spectral Methods  

Some curves, such as NURBs also exhibit the very useful property that guarantees 

that the interpolated trajectory is fully enclosed within the convex hull produced by the 

knots defining the curve. If the hulls can be shown not to intersect, then the resulting 

trajectories are mathematically guaranteed to be conflict free. This can greatly simplify 

formal verification at a later stage.  

2.1.17 Security and Collaborative CATM 

The collaborative element of CATM goes hand in hand with its decentralised 

nature and ensures that the trajectory solutions found for every aircraft are equitably 

balanced among the interests of every airline and aircraft. The CATM numerical 

computational tasks are also collaboratively shared among all aircraft. Information is 

requested and mutually shared as necessary by every aircraft running the CATM 

algorithm. Since certification guarantees that all aircraft operating in a particular 

airspace must be conformant to the same set of specifications, the risk of having one 

aircraft departing from a prescribed set of egalitarian CATM rules to take advantage of 

its peers, should be negligible.  

One technique that can be adopted to further guarantee acceptable behaviour, 

involves online-certification. Once a common set of formally verified CATM rules of 

engagement is established and deployed, adherence is mandated and can be digitally 

enforced. The aircraft‟s active firmware can be digitally signed using internationally 

recognised certificates and electronic watchdogs can be put in place to ensure that the 

correct version is being executed before being granted access to the CATM network. 

Standardisation is key here and it has to be centrally managed, and adherence to the 

polytopes obstacles 

trajectories 

Figure 2.1.8: NURBS and polytopes negotiating obstacles 
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standard can be verified by the network. The degree of variation allowed between 

different aircraft types and airlines would also need to be defined and standardised.  

Public-key cryptography should be used in a CATM system. Once a set of 

conflict-free trajectories has been generated by a cluster, it is broadcast as a block to the 

entire system for verification and approval by consensus. In order to protect against data 

corruption or malicious manipulation by intermediate nodes in the network, each 

transmitted block is signed by the cluster‟s head node using its private key. This makes 

it computationally infeasible to modify the content of a block or forge the signature 

without discovery and rejection by other nodes.  

New blocks are issued periodically with trajectory updates. One interesting 

possibility for achieving consensus over the CATM network is by using Nakamoto 

block chains [2.52] (not unlike the ones used for crypto-currency like bitcoin), which 

link each block to previous versions using hash chains and converge on a single version 

using a proof of work system. Each node in the network effectively casts a vote to select 

a particular evolutionary path of a block of trajectories. The longest surviving chain is 

the one that the network effectively adopts to build upon. 

In the case of equipment failure where one aircraft may become unresponsive to 

the requests sent by the others, CATM defaults to a surveillance mode, where all aircraft 

in the vicinity of the damaged peer use their on-board radar to locate, track and take into 

account all its motion. Its intent is inferred in real-time and all the information gathered 

is shared on the CATM network to generate a set of trajectories avoiding the errant peer. 

The same applies for aircraft that for any reason is regarded non-conformant or non-

collaborative by the rest of the community. 

2.1.18 The Way Forward 

In this chapter the main conceptual elements behind Computational Air Traffic 

Management have been outlined. Several of the practical aspects of the CATM 

paradigm were considered. Although CATM creates a demand for specific technologies 

to be developed or adapted, there appears to be no major show stopper in terms of 

infrastructure. After having previously described the back drop which underpins CATM 

[2.3] as a possible successor for SESAR and NextGen, we have now shed more light on 

how it can be brought to fruition using some well understood ideas.  

However, the current description leaves many open research questions related to 

the optimisation algorithms that will be addressed in the next chapters. Developments 

related to distributed computational intelligence and decentralised robust control from 

homologous fields must be taken on board. Subsequent chapters will provide further 

detail about the system‟s overall structure as well as exploring a few promising 

algorithms, and organisational paradigms in some detail. We then shift our focus on the 

description, simulation and testing of some candidate decentralized CATM algorithms.  
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Chapter 3 
Modelling CATM 

This chapter begins to detail a coherent conceptual framework that makes up an 

idealised Autonomous ATM system. It starts off with a very general agent-based formal 

mathematical description of the ATM system, and goes on to demonstrate how high 

fidelity fast-time simulation can help online optimisation to solve the Autonomous 

ATM problem. An advanced communications infrastructure is assumed to interconnect 

all aircraft in a peer to peer network. Each aircraft is assumed to be uniquely 

addressable and able to reliably transfer substantial quantities of information with very 

low latency to any other aircraft. 

The CATM concept depends on the ability to model the behaviour of all 

influencing systems in order to predict or describe their behaviour some time into the 

future. The accuracy of these models varies depending on the nature of the underlying 

process. Aircraft models can be made quite accurate while weather and airport delays 

are significantly more challenging due to their stochastic chaotic nature. The final 

sections will provide some insight into the kind of models that can be used to simulate 

the CATM problem for experimental evaluation, as well as running CATM itself in a 

real world scenario. 

3.1 CONTEMPORARY ATC 

Before delving further into how the proposed ATS should work, it is worth having 

a systems-theoretic look at how the current ATC system is put together, and how the 

various variables in the system are related to one another, before we proceed to redefine 

several ICAO ATM and ATC functions. Like most vehicles, we can model aircraft 

using n
th

 order non-linear ordinary differential equations (ODEs), where some terms, 

such as pilot controls are interpreted as an m-sized vector of inputs      and some other 

terms such as the motion of the aircraft are interpreted as an r-sized vector of 

outputs     . An additional input,      represents the additive external wind 

disturbances. A state space model is then defined by two non-linear, vector-valued 

functions          and          (Eq 3.1.1), where      and       respectively represent the 

current state and state derivative of the system. 

 
                           

                     (3.1.1) 

 The pilot together with his aircraft form a closed-loop, multiple-input multiple-

output (MIMO) feedback control system. The human pilot acts as flight controller and 

regularly receives (often verbal) instructions         from ATC in the form of small 

localized modifications to the reference flight plan, which affect the remaining portion 

of the journey,       . The pilot then adjusts the controls to the aircraft in order to 

ensure that its motion is conducive to executing the given/agreed flight plan.  
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The aircraft‟s motion is affected by other factors, besides the pilot controls in the 

form of external disturbances, such as wind, and internal errors, due to unmodelled 

dynamics, tracking error and system noise. The aircraft‟s motion results in a cumulative 

(integral) effect on the aircraft‟s position. Navigation equipment tracks the exact real-

time location of the aircraft in 3D space and provides feedback to both the pilot in the 

cockpit and ATC via ADS-B. 

ATC maintains a much broader view of the situation by tracking the motion 

       
    and location        

    of all M other airborne aircraft. Radar is the primary 

feedback tool and provides a bird‟s eye picture of all aircraft within radar range using a 

variety of techniques. Active radar systems request a response from interrogated 

aircraft, while passive radar systems rely on the electromagnetic reflection. This is 

complemented by regular ADS-B position and status broadcasts by most aircraft. 

Besides issuing verbal instructions, ATC also collects information by having 

conversations with the pilots over VHF radio. In recent years, some of this 

communication is increasingly being taken over by data links such as CPDLC. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

ATC is primarily responsible for aircraft separation from other aircraft and 

airspace restrictions (eg NOTAMs). It draws together information from many sources to 

instructions consistent with its role. So strictly speaking Figure 3.1.1 does not reflect 

the division of workload as it is handled in practice. This is because some top-level 

ATC-like functions are in effect handled by the pilot himself. So in essence, 

Figure 3.1.1: Model of the Current Air Traffic System  
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Figure 3.1.1 is intended to depict the conceptual relationship between logical functions 

rather than the actual workload distribution. The pilot for instance is free to modify 

flight plans in the interest of safety. Weather cell avoidance is also largely a pilot 

responsibility due to the much better situational awareness available in the cockpit. The 

aircraft may also fly through large swaths of airspace (eg over oceans and deserts) with 

no ATC services within communications range and must be able to act independently 

during these periods. Pilots are also able to track nearby traffic using both ADS-B-in 

and Radar. This provides an additional layer of surveillance and in fact pilots are 

ultimately responsible for taking emergency manoeuvres if they reach the assessment 

that the traffic or weather situation is becoming dangerous. 

Finally, ATFM collates all flight plans in advance and ensures that at no point is 

airspace or runway capacity exceeded. ATFM liaises with the airlines, and the pilots by 

vetting nominal flight plans before take-off. It also delays flights from taking-off if 

congestion in detected downstream. So ATFM is a system-wide monitoring and 

management function. 

3.2 THE PROPOSED AIR TRAFFIC SYSTEM MODEL 

In the proposed Air Traffic System (ATS), the human-centred ATC is essentially 

eliminated. Instead, the airspace is populated by a number of distributed interacting 

entities. The goal is to ensure that this interaction is stable and reliably results in the 

emergent behaviour that one would expect from a well-functioning, optimal air 

transport system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1: The CATM System Conveyor Belt Executing Flights Over Their Life Cycle 
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3.2.1 The Agent Model of CATM 

Agents can be viewed as a generalisation of the well known state machine. They 

collect information about their surroundings through a variety of sensors and 

communication interfaces. They posses numerous states: some discrete some 

continuous. This information may then be stored, processed, and possibly combined 

with other stored information in order to define a future set of actions. This plan of 

action is then executed by means of a variety of actuators that the agent may be 

equipped with. This definition is totally independent of the mode of implementation and 

may involve either physical or virtual sensors/actuators. Human beings, animals, 

aircraft, flights or logic state machines clearly fit as subsets of this very general 

definition of automatons. CATM represents each flight as an independent autonomous 

agent, or automaton. These agents form the elemental building blocks of the proposed 

CATM system. They are logical ephemeral entities to which hardware resources are 

assigned as needed. 

3.2.2 The Flight Agent Lifecycle 

Flight agents undergo a life cycle from inception, to planning, to flying and finally 

retirement. They are usually spawned as dormant entities that are devoid of any 

resources other than their basic mission definitions and data structures. Over the course 

of their lifecycle flight agents graduate along a sequence of 4 sets          and   . 

Scheduled flights are usually first placed in    and are assigned ground-based 

computational resources for offline long-term flight planning. During this time, the 

flight agent will generate tentatively optimal trajectories based on all the information it 

can get hold of.  

As the time for a flight‟s departure nears, each flight agent is uniquely assigned to 

a physical aircraft which endows the flight with dedicated computational resources as 

well as the means to execute the flight. The agent is now in set    and remains there 

until it reaches time of departure. During this period the flight agent actively 

collaborates with other queued flights as well as other airborne flights in order to update 

its optimal trajectory.  

After take-off, the flight agent enters set   , and remains in it until landing at its 

final destination. During this time the agent actively communicates with all other 

flights, gathering information about the weather and traffic and sharing it with all the 

agents that lie within communications range. Information is relayed between agents 

such that all flights that lie outside the range are also furnished with updates. Each flight 

agent holds a database (the Almanac) of all other flights, which it updates regularly as 

new information is received. A small group of flights is shortlisted based on their 

expected proximity at any point during the journey. These flight agents constitute a 

„cluster‟ which is associated with each flight. The members of a cluster collaborate to 

generate optimal conflict free trajectories.  

When the flight reaches its destination and lands, it joins the set of completed 

flights    . It thereby leaves the network and all flight information is archived in a 

central CATM repository for subsequent analysis and research purposes. The aircraft is 

released and is prepared for its next assignment. Figure 3.2.1 shows all flights on an 

endless conveyor belt as they move between the four time variant sets         , and   .  
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3.2.3 ATS Top Structure 

The proposed CATM system requires a combination of airborne and land based 

infrastructure. The airborne infrastructure consists of aircraft and their onboard 

computing platforms. The ground based infrastructure includes, aerodromes and all their 

ancillary hardware, idle aircraft that is being queued for imminent flights and a number 

of strategically located CATM Super-Computing Centres (CSCCs) that assist the 

CATM grid with the computational load of longer term upcoming flights. The CSCC is 

also responsible for collecting all the weather data from the airborne grid and to then 

generate detailed long terms weather forecasts. The scheduling arm of the CATM 

system assigns new flights to recently landed aircraft as they become available. The 

reuse of aircraft makes flights interdependent as a result of the availability of previously 

landed aircraft. This gives rise to a combinatorial optimisation problem that deserves 

separate attention. 

By describing any arbitrary system using a rigorous language, in terms of agents, 

it may be possible to utilise some of the various formal verification tools that have been 

developed, as an extension of mathematics. Although outside the scope of this 

dissertation, an agent model would allow the system to be analysed, verified and hence 

certified in terms of performance, robustness, correctness or utility of any subsystem 

with respect to a given specification. This is especially relevant in the context of critical 

systems such as ATM, where increased automation further accentuates the need for 

formal verification.  

We shall begin by laying down some notational definitions to give the system 

some structure before proceeding to describe the modelling in the next sections and 

algorithms in the next chapter. A number of simplifications are being made for the sake 

of clarity. However, this does not prejudice the addition of further detail to the model. 

Definition 1:  [ATS] Let S represent the global air traffic system as a quad consisting of a set of 

flights (F), set of airspace equipment (E), the set of airspace obstacles (O) and an 

associated relationship between the members of the said sets (R), that is:  

              (3.2.1) 

where:                  (3.2.2) 

            (3.2.3) 

          (3.2.4) 

               (3.2.5) 

and:    represents the set of unassigned long term scheduled flights 

   represents the set of assigned short term scheduled flights 

   represents the set of active flights 

   represents the set of completed flights 

  represents the set of operational passenger aircraft 

  represents the set of decision makers in the system 

  represents the set of all recognised aerodromes 

  represents the set of non-traversable weather objects 

  represents the set of non-traversable airspace restrictions 

   represents the ground based offline CATM Problem (Strategic Aspect) 

   represents the ground part of the online CATM Problem (Tactical Aspect) 

   represents the airborne part of online CATM Problem (Operational Aspect) 
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Definition 2:   [FLIGHTS] Let             represent the sets of long-term scheduled, short-term 

scheduled, active and completed flights respectively. Over time a unique flight    

graduates from one set to the next in this order with the help of transitioning processes: 

   ,    and    

 

                 
                       

                       

                       

(3.2.6) 

such 

that 
            (3.2.7) 

where            (3.2.8) 

            (3.2.9) 

            (3.2.10) 

and let                  be the number of unassigned long term scheduled flights 

                 be the number of short term scheduled flights 

                 be the number of active flights 

           be the number of completed flights 

      be the number of incomplete flights 

 

and thus                   Transitioning flight) (3.2.11) 

 

Definition 3:   [PLANS] Let fi denote the i
th

 flight, which consists of the 8-tuple: 

                            
   (3.2.11) 

where      is a specific aircraft, 

     is an aircraft type, 

     is the current 4D location of the aircraft 

     is the departure airport,    overlaps    for a flight queued for departure 

     is the arrival airport,    overlaps    for a recently completed flight 

      is the scheduled UTC departure time/date, expressed in seconds, 

      is the scheduled UTC arrival time/date, expressed in seconds, 

  
      is the optimal 4D Business Trajectory assigned to i

th
 flight 

 

 

Definition 4:  [AIRCRAFT] Let   represent the set of all uniquely-identifiable operational passenger 

aircraft, of any type, which may be scheduled to fly at any given moment. 

                  (3.2.12) 

 

Definition 5:  [AIRCRAFT TYPES] Let   represent the set of all certified passenger aircraft types, each 

with their own performance models, passenger capacity and operational envelopes,  

                  (3.2.13) 

where    is the number of certified passenger aircraft types  

 

Definition 6:  [AIRPORTS] Let   represent the set of all recognised aerodromes possessing an ICAO 

4-letter designation: 

                   (3.2.14) 

where    is the number of recognised aerodromes  
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Definition 7:   [RUNWAYS] Also let every      denote the pair: 

          (3.2.15) 

where:      is the airport 3D location, 

      is the assigned runway (and hence take-off/landing direction) 
 

 

Definition 8:  [AIRSPACE] Let   represent the 4 dimensional (4D) infinite set of all flyable spatio-

temporal points on the 20,000 meter airspace manifold surrounding planet Earth, such 

that every element     consists of the 4-tuple: 

                  (3.2.16) 

thus:      (3.2.17) 

where:     
 

 
  

 

 
 , is the Latitude in radians 

         , is the Longitude in radians 

    , is the Altitude above means sea level in meters 

    , is the UTC time in seconds 

 

 

Definition 9:  [TRAJECTORIES] Let    represent the infinite set of feasible 4D Business Trajectories for 

the     flight in question,     between its current location    to the destination airport 

  , taking into account the set of all airspace obstacles O and all other aircraft. 

 
      

 
         ,   

     (3.2.18) 

where   
 

    is the j
th

 feasible Business Trajectory for flight,    

  
     is the optimal Business Trajectory for flight,    

 

 

Definition 10: [TRAJECTORY NODES] Let every   
 

    represent a time ordered vector of trajectory 

nodes (ie: timed waypoints) that uniquely define the 4D Business Trajectory taken by a 

flight    : 

   
 

             ],       (3.2.19) 

         (3.2.20) 

where:       denotes the number of nodes (ie: waypoints) in trajectory   
 
  

 

Definition 11: [TRAJECTORY INTERPOLATION] Also let   denote the vector-valued deterministic 

mapping that uniquely generates a high resolution trajectory vector from the smaller 

vector of trajectory nodes in   
 
  : 

 
            

(3.1.21) 

where:      is the upsampling rate for a standardised interpolating function such as a 

Non-Uniform Rational B-Spline (NURB). 
 

 

Definition 12: [TRAJECTORIES] Let    
  represent the finite optimal set of 4D Business Trajectories 

individually assigned to all the active flights in set                    

     
     

            (3.2.22) 

similarly:     
     

            for completed flights (3.2.23) 

similarly:     
     

            for long term scheduled flights (3.2.24) 

similarly:     
     

            for short term scheduled flights (3.2.25) 
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Definition 13: [TRAJECTORY COST] Let   denote the deterministic scalar-valued mapping that uniquely 

generates an arbitrary positive cost metric as a function of any interpolated trajectory 

vector. Also let      
 
  denote this cost metric for the trajectory j of flight   . 

           (3.2.26) 

thus    
  =       

 
   (3.2.27) 

and    
  =       

    (3.2.28) 

 

Definition 14: [SYSTEM COST] Let    denote the systemic (overall) excess % cost incurred by the 

optimised global air traffic system   to accommodate all the flights in the union of set 

      

then             (3.2.29) 

thus 
   

   

   

  
   

 

   
 

   

   

   

 
   

   

  
   

 

   
 

   

   

   

 (3.2.30) 

also 
     

   

   

  
   

 

   
 

   

   

   

 (3.2.31) 

where     is the future excess % cost that system   will incur to accommodate all the flights   
 
 in    

    is the future excess % cost that system   will incur to accommodate all the flights   
 
 in    

    is the remaining excess % cost incurred by system   to accommodate all the flights   
 
in    

   
  is the cost of flying   

  which is the optimal trajectory for any flight    taken in isolation 

 

Definition 15: [AIRCRAFT IN SERVICE] Also let    be the set of all actively flying passenger aircraft, 

and    be the set of all idle passenger aircraft on the ground while they are queued for 

flights. 

                    (3.2.32) 

                    (3.2.33) 

where                   (3.2.34) 

and                   (3.2.35) 

therefore        is the number of airborne aircraft  

therefore        is the number of queued aircraft  

 

Definition 16: [CATM PROCESSING NODES] Let   represent the set of ground CATM processing nodes 

and let all aircraft in set   also be CATM processing nodes. 

                  (3.2.36) 

such 

that 

        
(3.2.37) 

where       is the number of ground based CATM nodes 

              is the number of aircraft based CATM nodes 

 

 

Definition 17: [CATM Network] Let   represent the set of all CATM processing nodes in the system: 

       (3.2.38) 

 

Definition 18: [PROXIMITY] Let     denote the distance between points of closest proximity of the 

latest-available optimal trajectories of a flight     and a flight   .  

such that     = min       
        

      (3.2.39) 



 

 

 

MODELLING CATM 70 

 

Definition 19: [CLUSTERS] Let   denote the set of clusters of all flights in    and   . Each flight is the 

head-node of a unique cluster, which it then consults to generate its trajectories. There 

are as many clusters as there are flights. 

                  (3.2.40) 

such that:                          (3.2.41) 

therefore:            (3.2.42) 

and let:    
      (3.2.43) 

where       is the cluster corresponding to flight    which acts as its head node.  

       is the number of clusters  

    
    is the number of flights joining flight    in a cluster    (including   )  

 

Definition 20: [MEMBERSHIP IN CLUSTER] Let      denote the distance threshold to flight    that 

defines which flight    can join a cluster   . 

                            iff                (3.2.44) 

 

Definition 21: [WEATHER] Let   represent the weather system by the pair: 

         (3.2.45) 

where:        is a velocity vector field describing wind flow patterns over time 

  is the time-variant set of non traversable weather objects.  
 

 

Definition 22: [WEATHER CELLS] Let    be the time variant set of non-traversable weather objects: 

 
C                (3.2.46) 

where    is the number of non traversable weather objects  

 

Definition 23: Let the k
th

 weather object,   , denote the 4-tuple: 

                  (3.2.47) 

where:      
 

 
  

 

 
 , is the time-variant Latitude in radians 

          , is the time-variant Longitude in radians 

     , is the time-variant Altitude above mean sea level in meters 

     , is the time-variant Radius of the weather object in meters 

 

 

 

Definition 24: [RESTRICTIONS] Let   represent the set of non-traversable airspace restrictions: 

                  (3.2.48) 

 

Definition 25: Let k
th

 restricted zone,    , denote the 4-tuple: 

                          (3.2.49) 

where          s the set of vertices defining the restricted zone 

        is the top of restricted zone expressed as a flight level 

        is the bottom of restricted zone expressed as a flight level 

        is the time schedule during which the restriction is in force. 
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Definition 26: Let relationship R be defined as the union of three sub relationships    ,    and     

              (3.2.50) 

such 

that 

    
 

 

 

 

      , ground based decision makers,   collaborate and take into 

account long term future predictions about the set of obstacles   to 

assemble the optimal set of long term future trajectories,    
  by choosing 

  
  from each set    s.t.     is minimised when calculated over    

 . This 

process is iterative and takes into account changing conditions. It ends 

when flight    is assigned a mature trajectory   
  and thus    transitions from 

   to     

 

(3.2.51) 

and     
 

 

 

 

      , the set of both idle and airborne decision makers   collaborate 

and take into account current conditions and near term future predictions 

about the set of obstacles   to assemble the optimal set of near term 

trajectories,    
  by choosing   

  from each set    s.t.     is minimised 

when calculated over     
     

 . This process is iterative and takes into 

account changing conditions. It ends when flight    reaches time for 

departure and thus    transitions from    to     

 

(3.2.52) 

and     
 

 

 

 

      , the set of  both idle and airborne decision makers   collaborate 

and take into account current conditions and near term future predictions 

about the set of obstacles   to assemble the optimal set of active 

trajectories,    
  by choosing   

  from each set    s.t.     is minimised 

when calculated over     
     

 . This process is iterative and takes into 

account changing conditions. It ends when flight    reaches time for 

landing at its destination and thus    transitions from    to     

 

(3.2.53) 

then    
  is the solution of the offline CATM problem. 

   
  is the solution of the offline CATM problem as it transitions to become online. 

   
  is the solution of the online CATM problem. 

(3.2.54) 

 

 

Having described the air traffic system in symbolic terms we shall now describe in some 

detail the connection between the three sub-relationships of R. The details of the 

algorithms that can be used to generate optimised conflict-free flight trajectories will be 

the topic of chapter four. 
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3.3 FLIGHT GENESIS – THE 4D BUSINESS TRAJECTORY 

Flights are defined by airlines, often many months in advance. The CATM system 

proposed is subsequently tasked with shouldering all responsibility for generating sets 

of conflict free trajectories that deviate as little as possible from the ideal Initial Shared 

Business Trajectories (ISBTs) as requested by the airlines. This is a continuous process 

and encompasses all phases of flight and pre-flight planning. The entire concept 

revolves about the fundamental notion of a 4D Business Trajectory (4DBT) [3.1]. The 

4DBT is one of the hallmarks of the Single European Sky (SES) initiative [3.2] that 

eventually led to the introduction of the SESAR Research Programme [3.3]. A business 

trajectory is the least common denominator in the system and is essentially the 

bargaining unit in SES. This departs from the previous emphasis that was placed on 

sectors and airways. Aircraft will no longer be required to vie for a slot in a structured 

airspace. They will rather be allowed to negotiate for their own ideal trajectory in free 

space, while respecting airspace regulations, minimum flight separation, airspace 

restrictions and danger zones. They might also have to purchase their right for a 

business trajectory at market (auction) prices. 

The business trajectory is therefore no more than a 4D trajectory which has been 

balanced against the requirements of all other concurrent users of the airspace, while 

trying to minimise flying-time, fuel consumption and environmental impact. It can be 

assumed that airlines will strive for trajectories that minimise their own cost. CATM 

therefore rebalances an airline‟s requirements for profit against social and 

environmental obligations. Each airspace user places a request for an Initial Shared 

Business Trajectory (ISBT) from the ATM system and this is met as closely as the 

constraints allow. CATM makes a distinction between scheduled flights and non 

scheduled flights as follows: 

 Scheduled flight: “A flight for which an Initial Shared Business Trajectory 

exists at least 1 week before the day of operation” 

 Non-scheduled flight: “A flight for which the Initial Shared Business 

Trajectory is made available on or shortly before the day of operation itself” 

It stands to reason that late ISBT requests will have to cost significantly more than 

those made much earlier. This incentivises early planning by airlines and lends itself for 

a better coordinated, more predictable and more efficient use of the airspace. Most 

ISBTs would be expected to be filed by the airlines, months or years in advance. The 

CATM algorithm must then operate in two very distinct phases: 

 Strategic Phase Optimisation (SPO): This is the proactive part of the system and 

deals with the long term pre-planning associated with processing ISBT requests in 

advance of the actual flights. It is involved in the issuance of business trajectories 

that have been scrutinised, adjusted as necessary and accepted. The strategic phase is 

not a time critical system and can therefore operate offline, using as many resources 

as necessary. Supercomputers are ideal for such a task. In our model it is represented 

by the relationship   . 
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 Tactical Phase Optimisation (TPO): This is the reactive part of the system and 

deals with the short term requirements and constraints faced by each flight during 

(and just before) execution. This part of the system must be lightweight and fast 

since it must be able to operate in real-time and is therefore always online. This 

phase is again split into two parts to distinguish between imminently queued flights 

and currently airborne flights. These two sub phases must be coordinated to allow 

real-time airspace capacity control, and a smooth transition between phases after 

take-off. The TPO corresponds to the role shouldered today by human air-traffic 

controllers. In our model it is represented by the seamless combination of    and   . 

3.3.1 The Strategic Offline Phase 

In CATM, the strategic phase of the algorithm solves the offline optimisation 

problem to minimise a cost function, which favours, among other things, the lowest fuel 

consumption, lowest environmental impact and the shortest final time for each journey 

of each aircraft, subject to simulated and modelled expected future constraints. 

3.3.1.1 Some Definitions 

For the sake of consistency, the following definitions pertaining to the temporal 

boundaries employed in all flights, will apply. Several of the time quantities are 

absolute and are ordinarily expressed in terms of the Coordinated Universal Time 

(UTC), which is the reference taken with respect to the 0° Prime Meridian at the Royal 

Observatory in Greenwich, United Kingdom. 

[  
 ]  = This is the UTC instant at which flight    commences its take-off run. 

 = This is equivalent to the Expected Time of Departure (ETD) 

[  
 ]  = This is the UTC instant at which flight    touches down at its destination. 

 = This is equivalent to the Expected Time of Arrival (ETA) 

[    
 ]  = This is the take-off instant of flight    relative to itself. It is always = 0. 

[    
 ]  = This is the touch-down instant of flight    relative to itself. 

 = This is equivalent to the duration of flight   . 

[ ]  = This is simply the current UTC time. 

3.3.1.2 Long Term Scheduling (Flow Management) 

Flying schedules are established based on the load-factor at each airport and 

traffic density at each point in space. This part of the algorithm takes over contemporary 

ATFM functions and is run offline on a daily basis using a centralised Strategic-Phase 

Optimiser (SPO). This would be executed on a large, fault-tolerant, distributed cluster 

of ground-based supercomputers designed specifically for the purpose of running this 

algorithm.  

The SPO attempts to strike a balance between all entities which have expressed an 

interest in using some part of the airspace on a particular day and time. Each airline 

submits an Initial Shared Business Trajectory (ISBT). Each of these business 

trajectories is subjectively optimal and is used as a seed for the SPO algorithm. These 

ISBTs would have already been optimised for fuel consumption, environmental impact 

and other aspects by each aircraft operator, in isolation. However, the operator lacks the 
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visibility to take into account any traffic or weather constraints. This role is relegated to 

the centralised SPO. 

Initially, the SPO executes without ETA boundary constraints, to allow the best 

possible trajectories to be generated, while alternating with a combinatorial optimiser to 

solve sequencing and scheduling issues. As the process continues, new business 

trajectories are generated for each aircraft and are communicated back to the owners. 

Airlines may in-turn choose to accept the changes or submit modified requests. If the 

outcome is deemed unsatisfactory to the airline, they may also elect to cancel the flight 

altogether. In order to deal with these changes in a timely manner, the process must start 

early, and up to a year in advance [  
   + 365days] in order to make sure that airspace 

and airport schedules are reasonably mature by the time these need to be advertised to 

customers. After about six months into this process, the trajectories are deemed to be 

reasonably converged. At this point, each ISBT
i
 which reaches [  

   + 180days] is 

upgraded to a new status called a Mature Shared Business Trajectory (MSBTs) and is 

published. This permits airlines to issue provisional time-tables and hence start 

accepting ticket reservations from their clients. 

3.3.1.3 Near Term Queuing 

The optimisation process needs to continue running regularly right up to [  
 ]. 

However, it changes in objective to solve a fixed-time boundary problem to guarantee 

the now-agreed ETA schedules. The frequency of these optimisation-cycles gradually 

increases as the time of execution approaches. On the last day before execution, starting 

at [  
  + 24h], substantial processing power is dedicated to refine all those MSBTs that 

are about to commence within the next 24 hours, taking into account weather forecasts. 

Optimisation-cycles for these MSBTs, can run every few minutes. During the last few 

hours, say starting at [  
  + 180m], MSBTs are assigned to specific aircraft. The problem 

is handed over to the Tactical Phase Optimiser (TPO), where on-board computation 

takes over MSBT optimisation. The optimisation cycles are now run in real-time in 

conjunction with all queued and airborne aircraft. This increase in cycle frequency is 

crucially important to allow the system to rapidly take into account the latest updates in 

weather and traffic conditions. This information is continuously collected by all 

airborne aircraft as they execute the tactical phase of the algorithm. By generating the 

most up-to-date trajectories, the system ensures that no aircraft departs before there is a 

sufficiently high confidence that its MSBT can be accurately completed without 

modification. This helps to ensure that each aircraft has a sporting chance to accurately 

meet all its 4D Target Window (TW) contractual obligations, the ETA, and ultimately, 

its landing slot at the destination airport. Target windows are a low number of fixed 4D 

points in space-time that the flight is expected to traverse. They give the system some 

measure of determinism. 

As each business trajectory    reaches its respective [  
 ], and just before the 

aircraft commences its take-off run, the business trajectory together with all TWs and 

the ETA are frozen. It is now called a Reference Business Trajectory (RBT). This 

information is permanently recorded, uploaded to the aircraft‟s 4D-FMS and broadcast 

to all other aircraft as well as the destination airport. The RBT
i
 represents the intention 
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of the aircraft for the duration of that flight   . If any further modifications to the RBT 

are required in response to unforeseen changes in circumstances during the flight, this is 

now the sole responsibility of the onboard TPO. However, unless major disruption 

occurs, the degrees of freedom for changes to the RBT are limited to minor 

modification in the inter-TW portions of the RBT. 

A measure of flexibility must be retained in the system in the form of scheduled 

slack. In the event of an Aircraft missing its take-off slot, the flight is automatically 

deferred. Ground operations will advise the SPO whether the flight is likely to be 

delayed or cancelled. If the flight is cancelled (such as due to aircraft malfunction) the 

MSBT is withdrawn and all resources are returned to the CATM pool and will be shared 

by the other MSBTs in the queue. As a result, take-off slots might be shifted forward to 

relocate the newly freed slack. If the flight is merely delayed (such as due to late 

boarding of passengers), a new estimate for the desired [  
 ], is issued by the airline and 

new landing slots assigned. This estimate is compared with all remaining MSBTs in the 

queue on the basis of a priority factor which would be purchased by all airlines. It 

stands to reason that higher priority factors cost more money. If the RBT had already 

been issued, as in the case of an aborted take-off, an RBT recall request is issued to all 

other aircraft and the destination airport. The flight is removed from the pool and 

resources re-assigned as slack. A new near term request is then submitted just like any 

other unscheduled flight.  

3.3.1.4 Unscheduled flights 

When a flight request is issued at short notice it cannot not undergo the long term 

scheduling by the SPO and is therefore open to substantial variation depending on 

available traffic and runway slack. Similarly, aborted take-offs and delayed flights have 

to be treated like other unscheduled flights. Such flights are taken into account by 

CATM as they become available. However, precedence and “right of way” must be 

given to the long term prescheduled flights as these are contractually required to abide 

by their agreed tight schedules. Any changes here would have an undesirable ripple 

effect on any ongoing connections. In such cases CATM functions in a unilateral 

fashion. The optimisation algorithms still follow the same logic. However, the 

incumbent traffic is assumed to be immutable and the newly added flights are tasked 

with finding optimal trajectories among the existing traffic. These flights are only 

guaranteed a best effort approach. 

3.3.2 Long-Term Sequential Coupling of Constraints  

The SPO process is complicated by the fact that, in-reality, ATM is a continuous 

perpetual-time problem, that temporally, spans forward to infinity. In principle, one 

could say that the repercussions of today‟s inclement weather or an airport workers‟ 

strike would continue to bear some influence on the future global ATM problem for a 

very long time, albeit gradually decaying to an infinitesimally small degree. This is to 

say that all flights are (to some extent) constrained by the all previous conditions and 

actions taken by the preceding flights. The present (and past) is fixed and immutable, 

while the future must accommodate present constraints as they unfold. This 
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conceptually creates a receding time-horizon problem where constraints can only be 

imposed forward in time. This principle has to be employed throughout the SPO process 

such that freshly-optimised future MSBTs pertaining to [  
   + α] serve as constraints to 

MSBTs at time [  
   + α + δT] further into the future, all the way to [  

   + 365 days]. 

Two kinds of dependencies arise. The first is quite obvious and relates to the fact 

that aircraft need to be reused to service return or interconnecting flights. This may 

cause delays to propagate through flight schedules, which disrupts flight sequencing and 

upsets any combinatorial optimality of the schedule. The second kind of dependency is 

due to the interaction between concurrent trajectories of airborne flights. A flight might 

need to be lengthened to avoid conflict with another and this can generate a delay, 

which in turn affects other flights interacting with other parts of the trajectory, and 

ultimately the very same schedule. Figure 3.3.1 illustrates graphically these two kinds 

of dependency. 

 

 

 

 

 

 

 

 

 

 

Currently, the ATM system avoids propagating these long-term effects by 

effectively “resetting” itself every 24 hours. This decouples one day‟s traffic problem 

from the next. However, this is only possible because most airport activity shuts down 

for several hours every night. This lull in airport activity provides enough “slack” in the 

diurnal traffic cycle to allow absorbing the cumulative delays generated over each day, 

without them spilling over into the next day‟s schedule. Even the effects of large 

disruptions, such as a major accident at an airport, are practically completely recovered 

over a few days.  

However, this method of operation is exceedingly wasteful of resources by always 

operating significantly below capacity. As airport day-time congestion increases, this 

practice cannot be expected to continue indefinitely. Traffic will continue to spill further 

into the night and market forces will eventually ensure that airport activity becomes a 

perpetual continuum with an ever decreasing variation between the rise and ebb in 

traffic. Newer, quieter, cleaner aircraft will gradually soften the current public 

opposition of continuous airport operations. As this new equilibrium settles in, the 

effects of long term constraint coupling will begin to bite. 

Figure 3.3.1: Concurrent and Sequential Flight Dependencies  
Time Line/Duration 

Flight Duration 

Aircraft 
Reuse 

6 14 16 20 17 14 8 Concurrent flights 
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That said, diurnal cycles of air traffic density will probably remain to some extent 

and this needs to be interpreted in the context of a global problem, which spans all time 

zones of the planet. The peak and trough in traffic spins like a wave with respect to the 

planet and in a way, one can view constraint propagation in this manner. A single SPO 

optimisation iteration sweeps 365 times round the planet and is a colossal computational 

task (Fig 3.3.2). 

 

 

[GMT = 12:00]   [GMT = 14:00]   [GMT = 16:00] 

 

 

[GMT = 18:00]   [GMT = 03:00]   [GMT = 07:00] 

 

 

In the offline portion of CATM the phenomenon of propagation is accommodated 

by ensuring that all RBTs of flights commencing at any UTC time [T] are optimised 

against all prior traffic commencing at [T – x], where x is any interval shorter than the 

duration of each flight. This forms a temporal chain of dependencies, which must be 

solved by the SPO in the form of a receding time-horizon, which sweeps through the 

problem over successive iterations until it converges. In practice this takes place by 

using the latest system state information as the initial state for future projections. Flights 

are optimised in chronological order, and the many overlaps and sequence constraints 

ripple through in time. It stands to reason that the flights furthest into the future are 

subject to the greatest uncertainty. 

Figure 3.3.2: Diurnal Cycle in Traffic Density and Constraint Propagation  
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3.3.3 The Tactical Online Phase 

The Tactical Phase Optimiser (TPO) must deal with the unforeseen and 

unexpected. One would imagine weather to be one of the principle randomisers in the 

ATM problem. Think again! Humans prove to be even less predictable. Late passenger 

boarding, passengers falling ill, airport closures, runway accidents, volcanic eruptions, 

traffic diversions, security alerts, terrorist activity, industrial strike-action... are much 

harder to model and forecast. Some may share some interdependency or causal link to 

an underlying process, but others are purely zero-knowledge stochastic phenomena. The 

list goes on and on, and this might appear to unravel all that careful, planning performed 

over an entire year by the SPO.  

3.3.3.1 Response to Gradual Environmental deviations   

Practically all deviations in the expected weather conditions – however large they 

may be – evolve gradually over time. The same applies to the trajectories of all 

surrounding traffic. Surrounding aircraft may – for whatever reason – be uncooperative, 

unequipped or choose to violate its published RBT and take on an unforeseen twist in its 

trajectory. Yet, even in this case, the offending aircraft is still limited by relatively slow 

dynamics. Positions and velocities can only vary gradually and high frequency 

surveillance provides the CATM system with a real time picture of events.  

The TPO is ideally suited to gradually re-optimise traffic for these kinds of 

gradual changes. By enforcing frequent optimisation sweeps, the last known optimal 

solution can only be slightly suboptimal with respect to the current theoretical best. The 

previous solution is therefore always used to seed the next solution. Now by always 

starting off from a good approximation of the optimal solution, very rapid re-

convergence is essentially guaranteed. This makes the TPO very efficient to track 

(local) optima.  

However, ensuring that the local optimum being tracked by the TPO is also 

globally optimal is not as trivial. (Global optima are special cases of local optima.)  The 

CATM problem is fundamentally dynamically-non-convex and global optima might, 

over time, morph into globally suboptimal local optima. Thus a new global optimum 

might emerge in some other part of the search space that is not being tracked. The TPO 

addresses this by running global and local optimisation algorithms in tandem to ensure 

good problem-space coverage at all times. 

3.3.3.2 Response to Sudden Catastrophic Events 

Even with sudden major disruption, very often all is not lost. The work done by 

the SPO pays-off most of the time, since the vast majority of flights are usually 

unaffected by these occasional regional hiccups. Even when problems do occur, very 

often, they are highly localised in space and time (such as late passenger boarding, 

runway accidents, and security alerts) and the system only needs to perform some slight 

adjustments in order to accommodate the emerging contingencies. The near-optimal 

solution provided by the SPO must contain just enough slack to be able to accommodate 

a few new constraints. The task of the TPO is precisely this. It performs these fine 

adjustments and bends the global traffic solution ever so slightly to take into account the 
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new conditions. The pain is distributed such that no part of the system bears the full 

brunt of the additional cost. This scheme must take care of the overwhelming majority 

of contingencies and ensures that there is insignificant future propagation of the effects. 

There will of-course remain the possibility of having some large sudden 

disruption that causes a wide systemic ripple effect. For this reason, the TPO must be 

fully equipped to re-optimise the trajectories from scratch. It is worth noting that the 

size of problem that the TPO needs to solve, albeit large, is limited to the airborne and 

queued flights at any moment, and is therefore much smaller than the formidable 

365day problem that the ground based SPO faces. The combined processing power on 

board airborne aircraft must be sized to ensure sufficiently fast reconvergence of active 

trajectories, from any random seed, to generate new optimal trajectories between the 

current position and the final destination. 

3.3.3.3 Feedback To The Strategic Phase Optimizer 

All RBT changes that result from the TPO real-time adjustments are continuously 

relayed back to the SPO. This feedback ensures that all the MSBTs in current 

incubation at the SPO are kept up to date with the latest traffic and weather constraints.  

Airborne aircraft is uniquely well positioned to gather detailed real-time 

information about atmospheric conditions and weather phenomena. The distributed 

network created by flying aircraft with their onboard weather radars and sensors, creates 

a formidable telemetry capability that if tapped would greatly assist weather simulators 

on the ground to keep track of unfolding conditions. Weather is a chaotic system, which 

makes it highly sensitive to initial conditions and external stimuli. This imposes a 

fundamental limitation to how far out into the future forecasts can remain reliable. Thus 

accurate real time knowledge of the current weather situation, collected at numerous 

points round the globe has the potential for significantly enhancing the accuracy of 

forecasts, and as a result, SPO solutions. 
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3.4 MODELLING FOR CATM SIMULATION 

In CATM, simulation of the air traffic system takes on three distinct roles with 

highly divergent requirements. Thus there is a clear case for substantial research and 

development effort in all three directions. A number of separately validated models of 

varying precision must be brought together to mimic the behaviour of the key sub-

systems in the ATS. 

CONCEPTUAL VALIDATION: During development, the basic ideas behind CATM 

must be empirically tested for stability, feasibility and algorithm convergence. Such 

basic research can only take place in a small-scale simulated environment. For this 

reason, computationally-lightweight models are highly desirable to allow adequate 

exploration of numerous ideas in finite time. Hence, models used at this stage need not 

be very accurate. However, they must be sufficiently representative of the typical 

behaviour of the sub-systems making-up the simulated ATS. 

OPERATIONAL VALIDATION: Due to the life critical nature of air transport, the 

validation of the entire CATM system from a reliability perspective, cannot take place 

on a live system. Detailed empirical evaluation must be performed in a high fidelity 

simulated environment, requiring substantial modelling and computational effort. A 

cost-benefit trade-off must be established between the accuracy of simulation and the 

computational complexity incurred. This is also the stage where operational-grade 

algorithms are developed, verified and finally certified by air transport authorities.  

CATM OPERATION; The forward-looking and predictive nature of CATM 

requires a significant degree of fast time simulation in order to extrapolate (and take into 

account) future traffic patterns, weather and aircraft behaviour. Indeed, the SPO (and to 

a lesser extent, the TPO) is highly dependent on this. Accurate models designed for 

efficient computation on avionics-grade CATM hardware must be developed for this 

purpose. The key to high performance is to design dedicated hardware in tandem with 

the algorithms. 

In the foregoing sections we shall describe a number of place-holder sub-system 

models that are suitable for conceptual CATM simulation. A number of these models 

were implemented and tested to gain better insight into their utility as place-holder 

models in an eventual CATM simulator. Where there was a conflict, emphasis was 

placed on simplicity rather than high accuracy. Matlab was used for the most part and 

the models were qualitatively or quantitatively validated. We will discuss the following 

models:  

ATMOSPHERIC MODELS:  The International Standard Atmosphere (ISA) 

AIRCRAFT MODELS:  A BADA-based 3-DOF Point Mass Model 

TRAFFIC MODELS:  A Probabilistic Traffic Model 

WEATHER MODELS:  A Wind Pattern Model 

 A Cloud and Weather cells Model 

ENVIRONMENTAL IMPACT MODELS:  Aircraft Emission Models (CO2, NOX, Soot, HC) 

 A Noise impact Model 

 A Water Vapour and Contrails Model 

AIRPORT MODELS:  A Probabilistic delay and disruption model 

 An Aircraft Scheduling Model 
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3.5 ATMOSPHERIC MODELLING FOR ATM 

Meaningful ATM simulation requires a representative atmospheric model in order 

to generate trajectories, which are aerodynamically feasible, let alone optimal. The 

atmospheric models need to be simple enough for fast inner-loop calculations, yet 

complete enough to provide a realistic macroscopic picture of the atmosphere.  

There are various popular standards that define the atmosphere. The International 

Standard Atmosphere (1975), divides the atmosphere into a number of layers up to a 

geopotential height of 50km. The ICAO Standard Atmosphere (1993) overlaps ISA for 

the first 50km but extends the model to 80 km. The US Standard Atmosphere (1976) 

overlaps both, but extends the model further to 1000 km. Above about 86 km, 

atmospheric conditions vary widely depending on solar activity and its interaction with 

the geomagnetic field. This results in large variations in the temperature and density of 

the atmosphere, making any model unreliable at these altitudes. Luckily, aircraft is 

typically confined to the lowest two layers and the models are fairly representative at 

these altitudes. Because of the overlap only the International Standard Atmosphere will 

be discussed and this forms the basis for the rest of the project [3.4]. 

3.5.1 The International Standard Atmosphere 

The International Standard Atmosphere (ISA) is the most widely used model and 

is based on an empirical model built around a dataset, which was standardised in 1975. 

It is available at a charge from the International Standards Organisation (ISO) as 

document ISO 2533:1975 [3.5]. The model is available as a large set of look-up tables. 

However, it may be condensed to a relatively simple, closed-form, algebraic abstraction. 

Better models take into account the significant variations with latitude as well as 

geographic variations, but for ATM simulation confined to the northern hemisphere 

European airspace, such detail is not required. The ISA model is considered valid for 

most mid-latitudes of the northern hemisphere. For the sake of standardisation, the ISA 

model fixes a number of atmospheric and geophysical variables, which will be treated 

as constants in this thesis. These variables constitute the standard ISA conditions: 

 

 T0  is the mean-sea-level temperature;    288.15 K (15°C)  

 Ttrop  is the tropopause transition temperature;   216.65 K (-56.5°C)  

 Htrop  is the tropopause transition height  @ T0 = 15°C;   11,000 m  

 ρtrop  is the tropopause transition density  @ T0 = 15°C;   0.36392 Kg/m
3
 

 ρ0  is the mean-sea-level air density  @ T0 = 15°C;   1.225 Kg/m
3
  

 a0   is the mean-sea-level speed of sound  @ T0 = 15°C;   340.294 m/s 

 p0   is the mean-sea-level air pressure ;    101325 N/m
2
 

 KT  is the temperature gradient with altitude;  – 0.0065 K/m  

 R  is the real gas constant for air;   287.05287 m
2
/Ks

2
 

 g   is the mean-sea-level acceleration due to gravity;   9.80665 m/s
2
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The Earth‟s atmosphere self-stratifies into distinct bands, which are in constant 

thermodynamic equilibrium. They exhibit clearly distinct temperature/altitude gradients 

and in fact the ISA model defines the layers in these terms. These are affected by 

surface temperatures, which vary widely between the poles and the equator. In order to 

partly accommodate some of these variations, the ISA model provides a means for 

extending itself in relation to the mean terrestrial temperature. This also allows the 

model to take into account seasonal changes in mean temperature. Table 3.5.1 describes 

these layers and their boundaries at standard ISA conditions taken at the 45
th

 north 

parallel. However, the information pertaining to the Thermosphere, Thermopause and 

Exosphere is taken from the US Standard Atmosphere (1976) and represents a very 

approximate mean. 

# Layer Name GeoPotential 

Height (m) 

Geometric 

Height (m) 

Temp. 

Grad (°C) 

Temp. 

Base (°C) 

Gravity 

(m/s
2
) 

Pressure 

Base (pa) 

AirDensity 

(Kg/m
3
) 

0 Troposphere 0 0 − 6.5 +15.0 9.8066 101,325 1.2250E−0 

1 Tropopause 11,000 11,019 0.0 −56.5 9.7727 22,632 3.6392E−1 

2 Stratosphere 1 20,000 20,063 +1.0 −56.5 9.7450 5,474.90 8.8035E−2 

3 Stratosphere 2 32,000 32,162 +2.8 −44.5 9.7082 868.02 1.3225E−2 

4 Stratopause 47,000 47,350 0.0 −2.5 9.6622 110.91 1.4275E−3 

5 Mesosphere 1 51,000 51,413 −2.8 −2.5 9.6499 66.939 8.6160E−4 

6 Mesosphere 2 71,000 71,802 −2.0 −58.5 9.5888 3.9564 6.4211E−5 

7 Mesopause 84,852 86,000 0.0 −86.2 9.5466 0.3734 6.9580E−6 

8 Thermosphere 89,716 91,000 +4.0 −86.2 9.5318 0.1538 2.8600E−6 

9 Thermopause 286,480 300,000 +0.04 +702 8.9427 8.770E−6 1.792E−11 

10 Exosphere 864,071 1,000,000 − − +726 7.3218 7.514E−9 3.561E-15 

         

 

3.5.1.1 The Troposphere 

The troposphere is the lowest atmospheric layer to which weather is largely 

confined. Temperature drops steadily with altitude at a rate of -6.5°C per km until it 

reaches an iso-thermal layer at the base of the stratosphere. The tropopause is defined as 

a boundary between the troposphere and the stratosphere and, at standard ISA 

conditions, is taken to lie at an altitude of 11,000m. However, this is only true at mid-

latitudes and the exact location of the tropopause is latitude and temperature dependant 

and may lie anywhere between 20km, at the equator, down to 8km, at the poles.  

To date, most commercial aviation, cruises within the lower two layers, namely 

the upper-troposphere and the lower-stratosphere. This allows jet-aircraft to take 

advantage of the very low air temperatures, which significantly improves engine 

thermodynamic performance.  Moreover, the low air-density reduces drag, which in turn 

allows higher velocities to be achieved. Figure 3.5.1 shows these layers graphically. For 

these reasons just mentioned and also to reduce the noise footprint on urban 

communities below, typically airliner jet-aircraft attempts to minimise the time spent in 

the troposphere [3.8]. 

Table 3.5.1: Atmospheric Layers as defined by temperature gradients [3.5] 
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3.5.1.2 The Stratosphere 

The stratosphere begins above the tropopause and extends all the way up to the 

stratopause, at about 47km above mean sea level. The stratosphere is itself stratified into 

a further three sub layers. The lowest of these, presents very little change in temperature 

with altitude and is therefore termed iso-thermal. The other two layers exhibit a modest 

but positive temperature gradient and are hence called inversion layers.  

Due to the very low temperature of the lower stratosphere, water vapour is nearly 

absent and this precludes most cloud formation. This essentially eliminates most 

weather effects from the stratosphere and is another good reason why aircraft tend to fly 

at these altitudes. Although, the iso-thermal layer extends to 20km, the higher altitudes 

are not used by commercial air transport. One reason is that cosmic radiation increases 

dramatically with altitude due to lessened atmospheric shielding. Routine exposure to 

such high radiation levels poses a significant health risk for frequent travellers and 

particularly for the crew. Heavy radiation shielding is not economically feasible. 

 

 

  

Fig 3.5.1: The International Standard Atmosphere (ISA) [3.8] 



 

 

 

MODELLING CATM 84 

 

3.6 AIRCRAFT MODELLING FOR ATM 

In ATM, mathematical models for aircraft are necessary for extrapolating future 

motion of aircraft and hence predict the short-term evolution of traffic scenarios. This 

forward-looking aspect of ATM is essential to identify future potential conflicts as early 

as possible. Moreover, the use of aircraft models (together with atmospheric models) 

allows the ATM system to establish an appropriate flight envelope of all aircraft and 

ensures that realistic radar-vectoring instructions are issued in relation to the aircraft 

type. Aircraft modelling can be taken to very high levels of fidelity, however, this 

comes at a substantial computational cost. In ATM, where simulations may 

concurrently involve hundreds or thousands of aircraft, a compromise favouring 

simplicity is struck. 

3.6.1 Coordinate-System and Other Definitions 

The Aerospace sciences abound with different coordinate systems, however, for 

the purposes of ATM, an appropriate coordinate system should be referred to the Earth 

frame of reference. This simplifies representation of aircraft in real geographical space. 

Hence, for all subsequent models an absolute, right-handed, North-East-UP (NEU), 

Earth-referred coordinate system is employed, where: 

x-axis  points north, parallel to the Earth‟s surface, along a longitude curve. [m] 

y-axis  points east parallel to the Earth‟s surface, along a latitude curve.  [m] 

h-axis  points upward, towards the sky, orthogonal to the surface. [m] 

φ  is the bank angle that the wing-axis makes with Earth‟s surface [°] 

γ   is the flight path angle the body axis makes with the Earth‟s surface [°] 

σ  is the heading angle the body axis makes with the x-axis (North) [°] 
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Fig 3.6.1: An aircraft shown flying northwards with [φ = 0; γ = 0; σ = 0] Earth-referenced attitude 
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and: φ  =  0 for level flight, +ve banks an aircraft to the right 

 γ  =  0 for level flight, +ve flight path angle points an aircraft‟s nose skywards 

 σ  =  0 for north facing flight, +ve heading turns an aircraft eastwards 

 

The illustration of Figure 3.6.1 defines the NEU spatial and angular coordinates with 

respect to a fixed-wing aircraft that happens to be travelling north along a level 

trajectory. Other important parameters worth defining are listed below: 

 

 α   is the angle of attack that the airflow makes with the wings  [°] 

 m   is the total mass of the aircraft (including fuel)  [Kg] 

 η   is the thrust specific rate of fuel-burn  [Kg/kNs] 

 ρ   is the air density as a function of temperature  [Kg/m
3
] 

 T   is the air temperature as a function of altitude  [Kelvin] 

 Γ   is the total instantaneous thrust from all engines  [kN] 

 g   is the acceleration due to gravity [m/s
2
] 

 w  is the [wx, wy, wh] wind velocity vector in NEU coordinates  [m/s] 

 t   is the elapsed time of flight since take-off [s] 

 CL   is the coefficient of lift [unit-less] 

 CD  is the coefficient of drag [unit-less] 

 PE is the Potential Energy of an aircraft [J] 

 KE is the Kinetic Energy of an aircraft [J] 

 NE is the New Energy gained by an aircraft [J] 

 LE is the Lost Energy by an aircraft [J] 

 RCP is the Reduced Climb Power engine derating coefficient [unit-less] 

 µ is an energy share factor to partition energy into PE or KE [unit-less] 

 L  is the force of lift [kN] 

 D is the force of drag [kN] 

 W is the force of weight [kN] 

 S is the total surface area of the wings [m
2
] 

 V   is the true airspeed (TAS) of the aircraft along the body axis [m/s] 

 

3.6.2 The EUROCONTROL Base of Aircraft DAta, (BADA) 

The aerodynamic coefficients CL and CD and other detailed performance data for 

each aircraft type can be derived from specialised databases such as EuroControl‟s 

BADA (Base of Aircraft DAta) [3.6]. BADA was developed to be a simplified semi-

empirical model of aircraft performance that is sufficiently accurate for ATC 

applications [3.7] but omits detailed aerodynamic models, which have very little bearing 

from an ATM perspective. BADA includes information about a number of popular 

aircraft types, but also includes convenient “synonym” tables, which map the many 

different aircraft variants in use, to a core subset of aircraft types.  
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3.6.3 A Non-Holonomic, Kinematic Model for a Fixed-Wing Aircraft 

For the purposes of ATM, all aircraft can be conveniently described by a 3-degree 

of freedom (3-DoF), 3-dimentional (3D), kinematic model for a rigid body. The large 

differences in scales between the large distances covered by an aircraft and the small 

effects caused by higher-order dynamics of the said aircraft, imply that this is an 

acceptable simplification for most scenarios. Aspects such as mass, moments-of-inertia 

and the various aerodynamic forces are of little consequence at the ATM scale, which 

often spans thousands of kilometres. Indeed, many commercial ATM simulators (such 

as Micronav BEST) may even avoid the 3-DoF model altogether, relying instead on 

purely rule-based kinematic models based on constant-radius arcs and straight lines. 

However, as the demand for accuracy increases, and given the capacity of today‟s 

computational hardware, such crude modelling may soon become outmoded. 

Fixed wing aircraft (which account for the vast majority of air traffic) have 

several restrictions on the permissible manoeuvres they can perform. Such vehicles are 

termed non-holonomic since they have a number of degrees of freedom, which are not 

directly controllable. Non-holonomic motion is governed by strict relationships between 

the various degrees of freedom, meaning that final system state is path-dependent. The 

purpose of the kinematic model is to capture these relationships and pose them in terms 

of set of control variables. Moreover, further magnitude constraints have to be imposed 

on the controllable degrees of freedom. Parameters such as maximum bank-angle, 

velocity and service ceiling have to be taken into account in relation to the particular 

type of aircraft, passenger comfort considerations and the relevant regulations. The 

latter constraints define the flight envelope of an aircraft. If an ATM simulator is to 

produce flyable aircraft trajectories, it must employ an aircraft kinematic model, which 

embodies this flight envelope and non-holonomy.  

The set of first-order, non-linear, time-invariant, differential equations (3.6.1) 

define the basic kinematic rules for defining the motion of a fixed wing aircraft in an 

NEU coordinate system. The wind vector,                    , as calculated from 

a weather model, is additively combined to the aircraft component velocities [3.9]. 

 

                     

                     

               

(3.6.1) 

Since for pure kinematics the aircraft is deemed mass-less, this model is unable to 

capture the relationship between attitude and airspeed. The airspeed and attitude 

derivatives            are therefore considered as independent inputs. The final model is 

therefore: 
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3.6.4 3D Point Mass Model for a Fixed Wing Aircraft 

For accurate path planning, a purely kinematic model is often considered 

insufficient. A 3-DoF, point mass model (PMM) is usually preferred. This augments the 

kinematic model to include the mass of the aircraft, which is itself a variable due to the 

significant rate of change in fuel-mass associated with most aircraft as per equation 

(3.6.3) 

        (3.6.3) 

The basic forces acting on the point-mass aircraft are thrust, drag, lift and weight and 

during steady level flight these forces are in equilibrium. Figure 3.6.2 depicts this 

scenario. 

 

 

 

 

 

 

 

 

 

 

Since the engines are not being modelled, the thrust   is taken as an independent input. 

This assumes that ideal engines are able to deliver as much thrust as required, whenever 

required. The task for ensuring this, is usually relegated to the Full Authority Digital 

Engine Control System (FADEC), which micro-manages the engine for peak 

performance. However, in this model we ignore realities such as spool-up delay time 

and assume that the engine control system is doing its job perfectly.   

Weight is, of course, mass dependant as per equation (3.6.4): 

      (3.6.4) 

3.6.4.1 AERODYNAMIC FORCES 

Lift and drag are highly correlated forces, which depend heavily on the aircraft‟s 

aerodynamics and configuration such as the extension of flaps or slats. The equations 

for lift and drag are given below in eq. (3.6.5) and (3.6.6) respectively. 

   
    

 
   (3.6.5) 

   
    

 
   (3.6.6) 

Fig 3.6.2: Aircraft forces during steady level flight  
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The coefficients of lift CL and drag CD are functions of the angle of attack α and are 

defined in terms of their nominal values by the empirical equations (3.6.7) and (3.6.8) 

               (3.6.7) 

                 
    (3.6.8) 

The parameters c, b1 and b2 are empirically determined curve-fitting coefficients. 

However, in the usual case of airliners flying level at trimmed conditions the angle of 

attack is either small or nearly zero (α ≈ 0) and will be in any case nearly constant. This 

means that the aerodynamic coefficients CL and CD reduce to their nominal values         

most of the time. This simplification will be assumed throughout the model.  

3.6.4.2 AERODYNAMIC FORCES – ALTERNATIVE EVALUATION 

An alternative (BADA compatible) way for determining the lift L of an aircraft is by 

considering the balance of forces during steady-state flight, where an aircraft necessarily 

needs to balance its weight due to gravity with the force of lift so that: 

 

    

      (3.6.9) 

However, when an aircraft banks, this balance must be maintained throughout the turn 

for the aircraft not to change its vertical velocity. The lift must therefore increase, such 

that its vertical component remains sufficient to match the weight of the aircraft as 

indicated in Figure 3.6.3. Accordingly, equation (3.6.10) shows the expression for lift 

including a correction cosine term for the non-zero bank angle  .  

 

 

 

 

 

 

 

 
 

 

 

 

 

     

            

            
 (3.6.10) 

 

 

Fig 3.6.3: The balance of forces during a turn  
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A similar situation arises when the aircraft pitches upwards or downwards such that the 

flight path angle     is no longer zero. In this scenario, as depicted in Figure 3.6.4, the 

lift must also increase to compensate. The equation (3.6.11) for lift in this case includes 

a correction cosine term for the non-zero flight path angle. 

 

     

            

            
 (3.6.11) 

Naturally, the two effects can be combined such that both flight path angle and bank 

angle are non-zero. In this case, the net effect can be adequately modelled by equation 

(3.6.12) 

                       (3.6.12) 

 

 

 

 

 

 

 

 

 

 

 

 

 

By treating the flight path angle as an independent input to the system, all aircraft 

dynamics in the vertical plane are essentially bypassed. Vertical motion becomes 

independent of the inertia of aircraft and can therefore be modelled through the purely 

kinematic relationships of equation (3.6.2). This is a fairly valid assumption since it 

turns out that an aircraft performs very little, if any, acceleration or deceleration in the 

vertical direction whose outcome does not comply with these simple kinematics.  This 

means that for all intents and purposes, the steady-state flight model can be applied 

across all flight phases. Therefore, equation (3.6.12) can be safely used throughout the 

entire flight. 

Once that an accurate estimate for the lift is available, the lift coefficient CL can be 

calculated using a re-arranged version of equation (3.6.5) as follows: 

 
   

  

    
 

   

                
  (3.6.13) 
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Fig 3.6.4: The balance of forces during ascent  
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The drag CD can then be calculated from the coefficient CL by the following relation: 

               
 
  (3.6.14) 

Where        and    are aircraft-specific BADA coefficients that additionally depend 

on the aircraft configuration in accordance to the definition given in Table 3.6.1 

# Flight Phase Slats Flaps Gear Spoiler

s 

d1 d2 d3 

0 Take-off 15° 0° Down None CD0,TO CD0,ΔLDG CD2,TO 

1 Initial Climb 15° 0° Up None CD0,IC 0 CD2,IC 

2 Cruise 0° 0° Up None CD0,CR 0 CD2,CR 

3 Approach 15° 15° Up None CD0,AP 0 CD2,AP 

4 Landing 30° 40° Down None CD0,LD CD0,SP + CD0,ΔLDG CD2,LD 
         

 

The model is further augmented to include first order atmospheric effects in accordance 

to the International Standard Atmosphere (ISA). In the equations (3.6.5), (3.6.6) and 

(3.6.13) the air density ρ is a function of temperature, which is in turn a function of 

altitude by the following equations (3.6.15), (3.6.16) when below the tropopause. 

 
     

 

  
 
 

 
   

  

       
 

   
              (3.6.15) 

         ,             (3.6.16) 

When flying above the tropopause, the density is calculated as in equation (3.6.17). For 

standard ISA conditions,      , is a constant. However for non ISA conditions,      , 

should be calculated using equation (3.6.15) in order to maintain model continuity.   

         
  

 
       

           
  (3.6.17) 

Finally, we assume that only coordinated turns can be performed. This is an important 

consideration, which is generally observed by all airliners, in the interest of passenger 

comfort. This means that during the turn, any change in bank angle will only result in a 

gradual change in yaw, with no side-slip and no change in vertical velocity. No other 

quantities are affected and passengers only experience a nearly imperceptible increase 

in weight. Figure 3.6.3 shows the balance of forces during a turn. When an aircraft 

banks, the lift vector L may be resolved into two components:  

 A deflection force, B, which acts on the Aircraft‟s mass to change its heading, and  

 An upward force U, which should oppose the aircraft‟s weight W due to gravity. 

When the aircraft operates the ailerons to achieve the desired angle of bank, it 

creates a relative difference in lift between the wings. With no further action, this would 

result in the aircraft slipping towards the lower wing. Moreover, during the bank only 

part of the lift is available to counteract gravity.  To ensure that the aircraft does not 

change its altitude, the net lift, L must increase commensurately by a slight increase in 

the angle of attack. Hence, the elevator needs to be adjusted slightly upwards.  

Table 3.6.1: BADA Drag Coefficient Definitions for Airbus A300-B4-622 
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When the aircraft operates the ailerons to achieve the desired angle of bank, it also 

creates a relative difference in drag between the wings. More precisely: the rising wing 

ends up slowing down with respect to the dropping wing. This causes undesirable 

adverse-yaw which may, in-turn, be counteracted by adjusting the rudder angle slightly 

to force the fuselage to “turn into” the turn and hence realign with the air flow vector.  

It is therefore clear that aileron, rudder and elevator must be operated in a 

coordinated fashion for the aircraft to achieve a coordinated turn. Luckily, modern 

avionic automation or good pilots ensure that this is always the case. Therefore, 

coordinated turns can be safely assumed and this considerably simplifies the de-facto 

kinematics of an airliner. 

For zero vertical-change turns, the relationship for the course-deflection force B 

may be derived simply as shown in equation block (3.6.18): 

 

           

                            

                   
 (3.6.18) 

3.6.4.3 NEWTONIAN DYNAMICS 

The PMM can now take into account basic Newtonian dynamics and from the 

second law of motion we get the acceleration of the aircraft along the body axis as per 

equation (3.6.19). The forces acting along this axis are thrust  , drag  , and a 

component of the weight mg, which appears whenever the flight path angle   is non-

zero. 

 

       

                        

        
    

 
                 

       
    

  
            

 (3.6.19) 

If an aircraft flies with a velocity, V and experiences a constant course deflection 

force, B, which is always orthogonal to the direction of motion, the aircraft transcribes a 

circular path with radius   at an angular velocity ω.  

From elementary Newtonian mechanics the following relationship holds: 

 

  

               

          (3.6.20) 

In addition, using equation (3.6.20) twice, the angular velocity ω may be 

expressed in terms of the linear velocity, V and the course deflection force, B as follows: 

 

             

         

      

             

          

 (3.6.21) 
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Finally, after recognizing that the rate of change of heading,      the final 

relations may be derived using eq.(3.6.21) and (3.6.18) and (3.6.5): 

 

          

                            

   
        

        
 

 (3.6.22) 

3.6.4.4 COMPLETE 3D DYNAMIC MODEL 

The equations (3.6.3), (3.6.19) and (3.6.22) can now be used to extend kinematic 

model of equation (3.6.2) to produce a complete, but simplified, dynamic model for a 

fixed-wing aircraft. The inputs to this model are the bank angle  , the flight path angle, 

  and the thrust,   in addition to the wind vector,   The full dynamic model is therefore 

captured in (3.6.23) and may be solved by iteratively integrating the state vector    over 

each time step. 

 

   

 
 
 
 
 
 
  
  

  

  

  
   

 
 
 
 
 

 

 
 
 
 
 
 
 

              

              

        

                     

                 
    

 
 
 
 
 
 

 

 
 
 
 
 
 
  

  

  

 
 
  

 
 
 
 
 

  
(3.6.23) 

This point mass model (PMM) approximation essentially implies that the aircraft‟s 

moments of inertia about any axis are ignored and therefore the input attitude [ ,  ] of 

the aircraft can be changed instantaneously. In reality there are dedicated nested control 

systems, whose job is to hide these higher dynamics by rotating the aircraft as quickly 

as possible in response to the desired reference bank or flight-path angle, as requested 

by the FMS. This makes the PMM assumptions very acceptable in the ATM world since 

the time it takes an aircraft to adjust its attitude is negligible compared to the duration of 

the journey. Of course, this approximation results in a small positional (track) error after 

each manoeuvre, but this is minimal and can be easily dismissed as an external 

disturbance to be corrected-for by the FMS outer control loop [3.10]. 

 

3.6.4.5 ENERGY SHARE FACTOR (ESF) 

It turns out that the flight path angle is an unfeasible way for controlling an 

aircraft. This is because there is no apparent link between the flight path angle and the 

actual engine power that is required to achieve that flight path angle. This allows the 

model to be forced to unrealistic flight path angles that are unattainable in practice. In 

order to calculate realistic flight path angles, the total power that the engines impart to 

an aircraft needs to be appropriately partitioned between the gains in potential energy 

(PE) (gains in altitude) and the gains in kinetic energy (KE) (gains in velocity).  
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Thus an energy partitioning factor, µ, is defined as the ratio between potential 

energy (PE) gains and total energy (PE+KE) gains [3.11]. 

 
  

   

       
 

   

       
  (3.6.24) 

For the following, we will ignore that the mass m is also varying with time. This is a 

reasonable assumption because any changes in m are insignificant compared to changes 

in h over the time frame of a typical aircraft manoeuvre. Hence, the rate of change in 

potential energy is determined as follows: 

     
     

  
 

      

  
   

  

  
       (3.6.25) 

However, from basic kinematics:            , and therefore: 

                 (3.6.26) 

The rate of change in kinetic energy is determined as follows: 

     
     

  
 

  
 

 
    

  
 

 

 
 

     

  
 

 

 
       =       (3.6.27) 

However, from Newton‟s second law          and the total force acting along the 

body axis is                   . Combining these with equation (3.6.27) 

yields: 

            
 

 
                    (3.6.28) 

From the definition (3.6.24), the energy share factor µ, can now be determined as 

follows: 

 
  

   

       
 

          

                            
 

         

     
  (3.6.29) 

Equation (3.6.29) can be rearranged to obtain an expression for       , as shown in 

(3.6.30)  

        
     

  
   (3.6.30) 

and using the well known trigonometric identity                      we also 

obtain  

 
           

     

  
  

 

      
             

  
  

 

   (3.6.31) 

where only positive values of the square-root need be considered. 
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Finally, the flight path angle γ can be eliminated from the state equation (3.6.23) 

which can now be re-expressed in terms of the energy share factor µ as follows: 

 

   

 
 
 
 
 
 
  
  

  

  

  
   

 
 
 
 
 

 

 
 
 
 
 
 
 

                

               

                   

                    

                   
    

 
 
 
 
 
 

 

 
 
 
 
 
 
  

  

  

 
 
  

 
 
 
 
 

 (3.6.32) 

3.6.4.6 INTERPRETATION OF THE ENERGY SHARE FACTOR 

The surplus engine power or “New Energy” (NE) is the excess power that is 

available to the aircraft after deducting the effects of drag. Similarly, the power deficit 

that results when the drag power exceeds the thrust power, is termed “Lost Energy” 

(LE). The ESF indicates the proportion of NE that goes into either increases in velocity 

or altitude. It can take any value, however, sensible values range from -200% to 200%. 

The BADA standard limits the ESF to between 30% and 170%. 

When the ESF is precisely 100%, the KE does not change. All the engine power 

output is used up as work against drag and gravity.  All the NE is transferred to an 

increase in PE, and therefore altitude h. Hence, the vertical velocity    increases in 

proportion to the  -term in the third row of equation (3.6.32) and the acceleration     
drops to zero because of the       term in the fourth row of equation (3.6.32). 

When the ESF is precisely 0%, the PE does not change. All the engine power 

output is now used up as work against drag and the aircraft‟s inertia. All the NE is 

transferred to KE, and therefore velocity V. Hence, the vertical velocity    drops to zero 

in relation to the  -term in the third row of equation (3.6.32) and the acceleration     
increases in tandem with the       term in the fourth row of equation (3.6.32). 

When the ESF lies between 0% and 100%, the NE is shared accordingly between 

PE and KE. When the ESF exceeds 100%, it implies that there is a net conversion from 

KE to PE. This occurs at high positive flight path angles which result in a gain in 

altitude at the expense of velocity. Likewise, a negative ESF (less than 0%), implies a 

net conversion from PE to KE. This is expected when the flight path angle points 

sharply downwards, resulting in an increase in velocity at the expense of altitude.  

The ESF is not a perfect representation of truth however. In this model, all 

exchanges between PE and KE are modulated by the power surplus (NE) or deficit 

(LE). This is not entirely true in practice, since an aircraft can still exchange PE for KE 

or vice versa when the thrust exactly matches the drag. However, catering for this 

eventuality poses the other difficulty of deciding on the rate of energy transfer. This 

should clearly be in the same ball park figure as the aircraft‟s power-train rating. Hence, 

this is the standard adopted by BADA and a summary of all the possible combinations 

of thrust and drag and ESF can be found in Table 3.6.2 below. 
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3.6.4.7 POWER DERATING COEFFICIENT  

Aircraft seldom use all the available power during take-off or climb, unless it is 

absolutely necessary. This is done to reduce the wear-and-tear on the engines and hence 

prolong their lifespan and reduce maintenance costs. This is usually done by assuming 

an ambient temperature that is higher than it actually is. This engine derating needs to 

be taken into account in the model by introducing a power derating coefficient RCP, 

which models this reduced climb power. The state equation (3.6.32) is again modified to 

include this coefficient as follows: 

 

   

 
 
 
 
 
 
  
  

  

  

  
   

 
 
 
 
 

 

 
 
 
 
 
 
 

                

               

                        

                    

                   

    
 
 
 
 
 
 

 

 
 
 
 
 
 
  

  

  

 
 
  

 
 
 
 
 

 (3.6.33) 

3.6.4.8 AIRCRAFT MASS, PAYLOAD AND FUEL 

An aircraft‟s maximum mass    consists of the empty mass   , the payload mass 

   and the fuel mass   . It is also fair to assume that the fuel mass required aboard a 

flight is proportional to the total mass of the aircraft and journey range  :       
       

Thus: 

             
                 (3.6.34) 

Using the catalogue range   , the constant kF for any aircraft may be estimated as 

follows: 

                       (3.6.35) 

The minimum fuel mass required to complete a flight of length RL may then be 

calculated: 

 

                      
          

            

                   
      

(3.6.36) 

                       

    

       

       

         

     

       

      

       

       

         

       

     

      

       

       

         

    
     

     

     

     

     

     

     

     

     

     

    

       

       

         

     

       

      

       

       

         

       

     

      

       

       

         

Tab 3.6.2: Interpretation of the BADA Energy share factor 
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3.6.5 4D Point Mass Model for a Fixed Wing Aircraft 

Path Planning is the process of finding an obstacle-free, feasible path through 

N dimensional space between any two points. Optimal path planning performs the same 

task but with the added objective of minimising some predefined objective function. 

Path planning defines no restrictions on the velocity or time taken for an agent to 

traverse the path. The non-linear state space model described by equation (3.6.23) is 

useful for 3 dimensional (3D) path planning in 3D space. However, the state vector   is 

an incomplete representation and cannot be used alone to determine whether two 

aircraft with states    and    will collide in an ATM problem. That two aircraft paths 

clearly intersect in 3D space is not a good-enough reason to assume that the aircraft will 

collide. 

Trajectory Synthesis, on the other hand, introduces the time element and hence 

augments the problem to an (N+1) dimensional space. Hence, for 3D space we get 

4D trajectories. Optimal trajectory synthesis again performs the same task but with the 

added objective of minimising some predefined value function, which may now involve 

time. A 4D trajectory defines the location of an agent in 3D space at any time instant t. 

The state vector is likewise augmented to include the time element and we may now 

rewrite equation (3.6.23) as shown below in equation (3.6.37). It now becomes a simple 

matter to determine whether two aircraft with states    and    are occupying the same 

point in space at the same instant in time. Since the derivative of time with respect to 

itself is always unity, the state equation is simply augmented with a constant “1”. 

 

   

 
 
 
 
 
 
 
   
   
   
   
   
   
    

 
 
 
 
 
 

 

 
 
 
 
 
 
 
  
  

  

  

  

  
   

 
 
 
 
 
 

 

 
 
 
 
 
 
 
 

               

               

                        

 
                    

                   
    

 
 
 
 
 
 
 

 

 
 
 
 
 
 
 
  

  

  

 
 
 
  

 
 
 
 
 
 

 (3.6.37) 

The element     is integrated with all the other state variables in    and as the integration 

proceeds the Element    in   becomes the running time parameter, which essentially 

time-stamps each spatial coordinate of the agent. Now by employing the vector 

mapping shown in equation (3.6.38), it may now be convenient converting equation 

(3.6.37) to the mathematical shorthand shown in equation (3.6.39) 

Let:    

  

  

  

   
 
 
 

        

 
 
 
 
 
 
 
  

  

  

  

  

  

   
 
 
 
 
 
 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
  

 
 
 
 
 
 

          

 
 
 
 
 
 
 
  

  

  

  

  

  

   
 
 
 
 
 
 

 

 
 
 
 
 
 
 
  

  

  

 
 
 
  

 
 
 
 
 
 

 (3.6.38) 

                         (3.6.39) 
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The input “vector”    is not a vector in the strict sense of the word. It is rather a 

collection of input variables. This is because the non-linear form of the system state 

vector function      precludes the possibility of isolating the input variables into a 

separate vector. Equation (3.6.39) should be interpreted as follows:  The vector function 

     depends on the current state vector    ; the current input vector    and the current 

wind (disturbance) vector      to produce the derivative state vector      which may in 

turn be integrated to generate a future state vector   . Note that all vectors are functions 

of time, but for the sake of brevity, this is often taken for granted and hence equation 

(3.6.39) is usually expressed in the form shown in equation (3.6.40):  

             (3.6.40) 

3.6.6 The Virtual Time Parameter (τ)  

For reasons that will become clearer later ([3.12],[3.13] and [3.14]), it is desirable 

to recast the 4D non-linear state space model described by equation (3.6.40), in terms of 

a normalised virtual time parameter „τ‟ which can only take values from the interval [0, 

1]. [3.12], [3.13], [3.14]. 

 

 

 

 

 

 

 

This parameter is defined by the following relation (3.6.41), where      is a monotonic 

increasing function as shown above in Figure 3.6.5. 

                  
     

  
                              (3.6.41) 

Now 

let: 
        

  

  
 (3.6.42) 

For the sake of clarity, the following shall adopt the convention that:    

   
  

  
                        

  

  
 

Hence: 

 

   
  

  
 

  

  
 
  

  
 

 

 
  

  

  
  

  

 
 

         

(3.6.43) 

 

 

Fig 3.6.5: A virtual time parameter „τ‟ 
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We may now reformulate the differential equation (3.6.40) in terms of the new virtual 

time parameter „τ‟ as follows in equation (3.6.44). This operation scales the time 

parameter from t to τ but preserves the numerical consistency of the differential 

equation by scaling it as necessary using the differential coefficient  . 

ie: 

      
     

 
 

 

 
                  

   
 

 
         

(3.6.44) 

By using equation (3.6.43), the chain rule and the multiplication-rule iteratively, it can 

be shown that the relationship between   and    extends to higher derivatives as will be 

shown next. The derivation (3.6.45) shows the method for producing the 2
nd

 derivative. 

ie: 

    
   

  
  

      

  
  

      

  
 

    
  

  
      

   

  
 

                

(3.6.45) 

The derivation (3.6.46) shows the method for producing the 3
rd

 derivative. This process 

may be continued indefinitely, each time resulting in a polynomial relationship between 

the derivatives of       and        

ie: 
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3.6.7 A Discrete Time Model 

The problem of continuous time trajectory optimisation can be tackled using 

optimal control techniques. The Pontryagin‟s Minimum Principle (PMP) is invoked, 

which states that a necessary (but insufficient) condition for optimality can be achieved 

by forming and minimising the Hamiltonian Function in a higher dimensional space. 

Analytical formation of the Hamiltonian is unfortunately only possible in relatively few 

special cases. A more general optimisation method is therefore preferred. 

A better solution is to employ discrete-time numerical techniques. These lend 

themselves to the use of a computer to rapidly scan the problem search space in an 

organised fashion. By discretizing the original problem, the non-linear optimal control 

problem is converted into a structured Non-Linear mathematical Programming (NLP) 

problem. This can then be tackled using one of several well-established NLP 

techniques. If a sufficiently fine discretization is used, the outcome of the NLP 

optimisation should then converge to the discretized version of the solution to the 

original continuous-time problem. To this end, the aircraft model needs to be discretized 

and this will be performed as follows.  

First the virtual time parameter   will be normalised and be defined in the closed 

interval      . The real time parameter is also restricted to the closed interval        . 

 

               and                 

                               
(3.6.47) 

Furthermore,   will be discretized into P equidistant virtual time stages of duration L 

where: 

 

such that: 

                 for             

  

 

   

                                             
(3.6.48) 

Additionally, the real time parameter   will also be discretized into P time stages of a 

variable duration      . The sequence           and is defined for             
and is subject to these further conditions: 

where: 

     

 

   

             

                                   
                  

   
   

   
        

(3.6.49) 
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It should therefore be clear that the (continuous) time ratio parameter λ(τ) is related to 

its discrete version      by the following relation: 

 
       

   

   
  

  

  
   

    
 

 
     (3.6.50) 

Finally, the discrete version of differential equation (3.6.44) can now be expressed in 

terms of      , P, and   . 

                                    (3.6.51) 

For the sake of brevity the virtual time sampling interval L is omitted so that the discrete 

time equation becomes: 

                                (3.6.52) 

The discrete-time, non-linear, time-invariant, differential equation now needs to be 

directly integrated over each virtual time sampling interval L in order to evaluate the 

next time-interval state-vector         from the current input      , the current 

disturbance       and the current state vector      . This may be performed as follows 

by drawing some parallels with quasi-linearization theory [3.15]: 

 

 

                      
      

  

   

                                         
      

  

   

                                         
      

  

   

(3.6.53) 

For small L equation (3.6.53) reduces to the difference equation (3.6.54), which can 

now be solved iteratively for all k, where          , which essentially covers the 

entire normalized time interval         and hence also              : 

 

 

                                                
                                     (3.6.54) 

 

The time sequence      can now be treated just like any another control input variable 

in equation (3.6.54). This control input needs to be determined when solving the optimal 

control problem, which results in the optimal state trajectory       . This provision 

introduces a new degree of freedom, which allows the trajectory optimizer to change the 

(real) time-step resolution along the state trajectory in order utilize all sample points in 

an efficient manner. 
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3.6.8 Discrete Aspects of a Fixed-Wing Aircraft Model 

The aircraft model is further enriched by the fact that the model parameters are 

not constant. They are rather functions of various modes that the aircraft can take during 

normal operation. An aircraft in take-off mode has significantly different aerodynamic 

and performance characteristics than the same aircraft in cruise mode or in descent. 

These changes can be captured by a state machine, which defines the permissible mode 

transitions and the associated model parameters. Figure 3.6.6 shows all the allowable 

state changes for a typical airliner.  

 

 

 

 

 

 

 

 

 

  

 

 

3.6.9 Model Validation 

The full model described in the forgoing was coded using Matlab. Tables of 

aircraft parameters, were extracted from the BADA manual in [3.6], and accompanying 

data files. For this case two aircraft were 

modelled: An Airbus A300-B4-622 with Pratt 

& Whitney PW4158 engines, and a Boeing 767-

300ER with Pratt & Whitney PW4060 engines. 

These include aircraft specification and 

performance parameters like mass, maximum 

payload, service ceiling, CL, CD, fuel 

consumption coefficients etc...  This data need 

not be entirely accurate, so long as it is in 

representative of typical aircraft performance. 

This was then qualitatively validated with a few 

test flights that demonstrate typical behaviour. 

Figure 3.6.7 shows the model‟s behaviour 

during take-off, initial climb and climb. The 

trajectory and ground track are shown. Other 

aircraft types can be easily modelled by swapping between BADA definition tables.  

Emergency/Training Circuit 
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Figure 3.6.6: Typical Airliner State Transition Diagram  

Figure 3.6.7: Take-off and Initial Climb  
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A further scenario is shown in 

Figure 3.6.8, where the aircraft takes off and 

climbs linearly and after reaching cruising 

altitude, proceeds linearly to the destination 

airport over, which it enters a holding pattern 

prior to descent. All such data was obtained in 

open loop, by simply providing the model 

with appropriate input control parameters.    

Figure 3.6.9 shows a similar scenario 

from another perspective for a 4 hour flight. 

The Airbus A300-B4-622 is being used here. 

This time, holding patterns were engaged both 

during ascent and just before descent. The 

corresponding flight data is shown in 

Figure 3.6.10 below. The horizontal axes of 

each chart are labelled in seconds while all 

other parameters are expressed in SI units. The 

data is clearly qualitatively valid and although 

it is hard to compare with real Airbus 300 

data, as this is hard to obtain due to 

commercial sensitivity, the data appears to be 

quantitatively valid. The aircraft also correctly 

transitions between states shown earlier in the 

state diagram of Figure 3.6.6, and the state 

changes are plotted in the AeroConfig chart 

(below).    

 

 

Figure 3.6.10: Flight Data:- Take-off, Initial Climb, Hold, Cruise, Hold, Descend, Approach, Land  

Figure 3.6.8: Take-off, Climb, and Cruise  

Figure 3.6.9: With Holding Patterns  
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3.7 AIRSPACE MODELLING FOR CATM 

In the hands of man, airspace is not one continuum. It is in fact divided into a 

number of zones, restrictions and classifications. One of the major limitations for 

travelling direct shortest-path routes relates to the presence of such classified and 

restricted airspaces. These need to be accurately modelled to be taken into account by 

trajectory optimisers. Some of these classifications may well be rendered obsolete as 

modern avionics and ATM paradigms begin to take hold of the system. Others will 

persist due to safety concerns.  

3.7.1 Classified Airspace 

The ICAO classifies airspace into seven categories: Class-A though to Class-G 

[3.16]. These define the flying rules (VFR or IFR) and the minimum level of service 

that will be provided by the relevant Air Navigation Service Providers (ANSPs) and Air 

Traffic Service Providers (ATSPs). Table 3.7.1 provides a summary of these 

definitions. Very often these airspaces are bracketed between specific flight levels, 

however, the precise definitions tend to vary from one country to the next. 

For instance, in the UK [3.17], save for some exceptions, Class A extends 

between FL55 through to FL245 and is considered controlled airspace. It is limited to 

IFR only and ATC takes on the full responsibility of separating aircraft flying in this 

volume. At the other end of the scale, Class G is considered uncontrolled airspace. In 

the UK it extends from FL660, upwards and flights in this space are entirely 

unregulated. In between, there are varying degrees of restriction and service which vary 

geographically, particularly in the vicinity of the Terminal Areas (TMA) surrounding 

major airports. 

Class Flight 

Rules 

Separation Service Provided Speed Limit Comms. 

Required 

ATC 

Clearance 

A IFR only All Aircraft ATC Not applicable 2-way Yes 

B 
IFR All Aircraft ATC Not applicable 2-way Yes 

VFR All Aircraft ATC Not applicable 2-way Yes 

C 
IFR 

IFR from IFR 

IFR from VFR 
ATC 250 kts < 10kft 2-way Yes 

VFR VFR from IFR ATC, Traffic Info. 250 kts < 10kft 2-way Yes 

D 

IFR IFR from IFR ATC, VFR Traffic Info. 250 kts < 10kft 2-way Yes 

VFR nil 
IFR/VFR and VFR/VFR 

Traffic Information 
250 kts < 10kft 2-way Yes 

E 
IFR IFR from IFR 

ATC, VFR Traffic Info. 

AFAP 
250 kts < 10kft 2-way Yes 

VFR nil Traffic Information AFAP 250 kts < 10kft No No 

F 
IFR 

IFR from IFR 

AFAP 
Air Traffic Advisory, FIS 250 kts < 10kft 2-way No 

VFR nil FIS 250 kts < 10kft None No 

G 
IFR nil FIS 250 kts < 10kft 2-way No 

VFR nil FIS 250 kts < 10kft None No 

FIS: Flight Information Service; AFAP: As Far As Practicable; IFR/VFR: Instrument/Visual Flying 

Rules 

Table 3.7.1: ICAO Classification of Airspace [3.17], [3.23] 
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3.7.2 Special Zone Constraints 

In additional to classification, the airspace is peppered with special zones and 

areas, which have been earmarked for specific uses. For example, in Europe there are 

thousands of restricted zones and they are independently defined by each country to 

safeguard sensitive military installations, or even state prisons or to protect aircraft from 

natural or military hazards (Fig. 3.7.1).  

Aerodrome traffic zones whether civilian (ATZ) or military (MATZ), are 

cylindrical exclusion zones designed protect any aircraft climbing and descending into 

these airfields from other crossing traffic. These are often surrounded by an “inverted 

wedding cake” TMA protection zone. Helicopters Main Routes (HMR) and Helicopters 

Protected Zones (HPZ) warn fixed-wing aircraft of the potential presence of helicopters 

performing erratic manoeuvres and are therefore no-go zones. Military training areas 

(MTA) are used only temporarily for intensive military training. Such areas may follow 

weekly time tables or may be reserved ad-hoc by issuing appropriate NOTAMs 

(Notification to Airmen). Air-to-Air Refuelling Areas (ARA) and other military flight 

combat training in relegated to Aerial Tactical Areas (ATA). These may also be 

activated by NOTAMs.  

 

Figure 3.7.1: Traffic Restrictions in European Airspace [Generated with SkyView v.2.5.1] 

Some areas may be reserved for airborne surveillance aircraft, which tend to 

follow specific holding patterns for extended periods. Danger Areas are not always 

active and they are often due to the presence of military firing ranges. These often have 

a characteristic wedge shape with the tip lying over the gunnery equipment. Active 

conflict zones were historically assumed to be safe for civil aviation travelling at 

cruising altitude. However, following the recent flight disaster over, East Ukraine, 

where a fully laden Malaysian Airlines flight M17 was shot down, these have also been 

added to the list of danger zones. Disaster relief and emergency operations may also 

warrant the creation of temporary danger areas. Still more areas may be permanently 

prohibited due to specific industrial installations, nuclear power stations, high security 

prisons, missile silo ranges, sky scrapers and anything that warrants protection from 
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potential accidental or malicious collisions. Unmanned Aerial Vehicles (UAVs) also 

warrant their own patch of segregated airspace to which they are confined until they can 

convince the regulators that they can guarantee a high level of safety and reliability.  

In the end, as far as the SPO is concerned these special airspaces are easily 

handled once their presence is included in a database. In the case of temporarily 

restricted airspaces that may be activated by NOTAMs, time-tables may be used to 

predict their pattern of availability. It is assumed that any changes in status cannot be 

enforced suddenly without an acceptable lead-time. However, in any case, the SPO will 

need to re-adapt to the new status if any chunk of airspace becomes unavailable. Given 

the large number of no-fly zones defined in any airspace, certain simplifications have to 

be applied in order to mitigate the performance impact imposed by such path 

constraints.  

3.7.3 Obstacle Modelling  

In order to produce meaningful CATM simulation results and flyable 

trajectories, these no-fly zone classifications need to be identified and modelled 

appropriately. For a simulator to function, every candidate trajectory waypoint needs to 

be evaluated by the optimiser in respect of these spatial restrictions, several of which 

may have very irregular shapes.  For this to be possible a well behaved search space 

needs to be constructed taking into account these zones, and without creating sharp 

discontinuities that can lead to numerical problems later.  
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where:          are the coordinates of the spatial trajectory point being evaluated 

  ,   ,     are the obstacle scaling coefficients in each dimension  

  ,   ,     are the obstacle positioning coefficients in each dimension 

         is the chosen iso-potential boundary of the object (used for 

drawing) 

(3.7.6) 
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The methodology adopted in this project was to model each obstacle as a smooth 

“electrostatic potential” function, with iso-potential contours that conservatively mimic 

the shape of the obstacle. A number of obstacle primitives were created by extending a 

simple and elegant method described by Cowling et al. [3.19]. The primitives allow 

substantial scaling and are quite adaptable to regular shapes such as spheres, ellipsoids, 

cubes, cuboids and tetrahedrons. A few examples are shown next to equations 3.7.1 to 

3.7.5.  However, in the case of irregular shapes these may be modelled using several 

partly overlapping primitives. The beauty of this method is that the potential field 

generated is additive and decays rapidly with distance from the object centre, and the 

net effect of all the obstacles is easily evaluated through simple superposition of the 

fields. 

This aggregate potential field serves three purposes: (1) It provides the optimiser 

with information regarding the degree of obstacle encroachment; (2) it provides 

directional information that indicates to the optimiser how trajectories must change in 

order to avoid encroachment; (3) it finally provides a measure of how close a trajectory 

is to breaching obstacle boundaries. When numerous objects are involved, the 

computational effort to evaluate each trajectory node becomes quite high, especially 

when transcendental functions are involved. The most likely solution would require a 

hardware-accelerated (eg: FPGA) implementation of the database, to provide rapid 

access, and a fast encroachment evaluator for the optimizer. During simulation, a 

parallelized GPGPU CUDA implementation worked very well to accelerate this step, 

often by factors in excess of a thousand. 

3.7.4 Aerodromes 

Airspace modelling would not be complete without including the location of 

FIRs and airports (Fig. 3.7.2), including orientation, capacity, altitude and number of 

runways. This data was painstakingly compiled from a number of databases to produce 

a reasonably accurate picture of the European airspace, shown in Figure 3.7.2 below.  

 

Figure 3.7.2: Location of Europe’s Operational Airports [Generated with SkyView v.2.5.1]  
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3.8 TRAFFIC MODELLING FOR ATM 

A realistic ATM simulation must start by recreating typical continental air-traffic 

patterns. This may then be extended to explore various scenarios of traffic growth, 

either by extrapolating current growth trends or by analysing the underlying 

demographic realities of developing nations. We focussed our analysis to the European 

continent.  

3.8.1 Intra-Continental 24-Hour Flight Data Samples 

A practical way of modelling European traffic is by studying current traffic 

behaviour using 24hour traffic samples to or from the European continent as collected 

by EuroControl. The dataset used in this study corresponded to 26
th

 June 2009 and 

represented a total of 31,444 flights of which 44 were aborted before take-off and 281 

were go-arounds. A full breakdown is given in Table 3.8.1. A further 462 flights were 

to-or-from unregistered locations and might have been classified military flights. After 

deducting these special cases, 30,657 

regular flights remain. 10,644 of these 

are light traffic less than 50 Tons, 

leaving 20,013 regular airliner flights 

which were further analysed. This traffic 

is beautifully visualised in the traffic 

superposition shown in Figure 3.8.1. 

Various high density zones are 

immediately visible over North Western 

Europe. 

 

Figure 3.8.1: Europe – 24 hours of flights above 30,000 feet [Source: EuroControl] 

 

Flight Category Qty 

Total Flights Recorded in Sample             31444 
Less the Aborted Takeoffs – 44 
Less the Indeterminate Flights* – 462 
Less the Go Around Traffic – 281 
All Regular Flights Recorded  30657 
Less Light Aircraft Traffic (<50T) – 10644 
Regular Airliner Flights Recorded  20013 

*Flights Starting or ending at Unknown Locations 

Table 3.8.1: Flights Breakdown in 24h Sample 
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The data describes flights as a series of waypoints traversed at given times, which 

means that fairly detailed trajectories can be constructed from this data. Software tools 

were written in Matlab to cross-section the data in several ways, thereby allowing 

important statistics to be extracted such as the activity by airport, by aircraft type and by 

route.  

 

Figure 3.8.2: Europe’s Busiest Airports: Circle areas indicate daily aircraft movements 

The graphic in Figure 3.8.2 shows the busiest from about 1,137 European airports 

analysed. Every green circle denotes one airport and the area of which indicates the 

number of aircraft movements recorded over 24 hours. As is expected, airports 

associated with the major capital cities carry the majority of European traffic. Heathrow 

(London), Paris (Charles de Gaulle), Amsterdam (Schipol), Rome (Fiumicino), Madrid 

(Adolfo Suárez), Istanbul (Atatürk), Frankfurt and the rest of the top 20 busiest airports 

carry more airliner traffic than all the remaining European airports combined. This is 

highly suggestive of the high air traffic 

congestion that is bound to arise in the vicinity 

of these important hubs. Table 3.8.2 overleaf, 

shows the interconnection magnitude between 

these 20 European hubs in matrix form and 

accounts for 61.2% of all European traffic or 

18,776 individual flights.  

The traffic sample also contains 

information on the kind of aircraft used for each 

flight as well as the Maximum takeoff weight 

(MTOW) and flight level. This allows further 

analysis and estimation of the fuel consumed by 

each flight category and is especially useful in 

calculating efficiencies environment impact. 

Eurocontrol‟s BADA model data includes 

Movements 

per day 
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Figure 3.8.3: Flight Distribution by  

Aircraft Type 
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substantial information on the rate of fuel burn for each aircraft type at different 

altitudes and configurations. Figure 3.8.3 shows the distribution of European flights by 

aircraft type. 

 

Table 3.8.2: Interconnection Matrix between Europe’s 20 Busiest Airports 

Figure 3.8.4 (a) shows the variation in traffic over the course of a single day. The 

traffic sample starts with a clean sheet, ignoring all airborne flights active at midnight, 

and begins to log all new flights entering European airspace during the subsequent 

24hours. The traffic log extends through a further 24 hours until all the flights that 

started late during the first day have landed. This means that to generate the periodic 

graphic shown, one must overlap and wrap around the tail of the traffic log with the 

leading traffic and this then gives the full picture of the cyclical traffic volumes at any 

hour of the day. 

  European domestic flights increase rapidly at the early hours of the morning, 

initially attributed to central European traffic, to be joined by the UK within an hour. 

Incoming and outgoing extra-European traffic is multimodal, peaking at 3am and 3pm, 

reflecting the different time zones of the main departure sites, across the Atlantic. The 

net effect of all three contributors is that traffic peaks to substantial levels around the 

middle of the day, with an average of 3000 airborne aircraft at any given hour between 

6am and 6pm. Central ATFM services try their best to spread this traffic load evenly 

over the day, and this would explain the relatively flat top of the graph.  
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The optimality of the trajectories were also analysed, leading to an interesting 

finding that flights over the European continent average 6.5% longer (1.63 Million NM) 

than they strictly need to be, based on direct great circle routes totalling 25 million NM. 

This figure worsens significantly if one had to restrict the statistic to European 

Domestic Flights, which are highly exposed to European capacity limitations. Table 

3.8.3 ignores all traffic shorter than 250km to restrict our view to the main transport 

market. As expected, transatlantic flights are the least affected in percentage terms due 

to the long distance direct routes travelled over the ocean. Thus, although these account 

for close to half the total km. Tons, in the system, the excess fuel burn pales in 

comparison to what is consumed in domestic European flights. The latter account for 

over half the fuel wastage and excess CO2. 

Moreover this inefficiency changes over the course of a day and seems related to 

traffic density. In fact there is a high diurnal correlation between flight elongation and 

total airborne traffic at any hour. This can be observed in Figure 3.8.4 (b). This is 

understandable because at high load, air traffic controllers will naturally require some 

flights to detour around areas of high traffic density, resulting in an associated increase 

in flying time. 

 
(a)                                                               (b) 

Figure 3.8.4: Diurnal Cycles in European Traffic, and associated Changes in Efficiency 
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(#) 

MTOW 
(Tons avg.) 

Total Transport 
(km.Tons) 

Elongation Excess Fuel 
(Tons) Mean 

(%) 
Max 
(%) 

Min 
(%) 

Domestic European 22000 66 1,619,072,748  9.15% 239% 0.00%  5,357  
Overpassing Europe 493 114 295,183,590  5.51% 95% 0.00%  569  
North American 1258 189 1,628,599,577  2.37% 14% 0.04%  1,484  
South American 120 197 214,370,510  1.71% 7% 0.25%  140  
African 1078 107  433,320,087  4.34% 62% 0.14%  634  
Middle Eastern 1156 121 506,272,383  5.61% 45% 0.45%  1,048  
Far Eastern 463 191  752,707,583  3.50% 23% 0.53%  1,009  
Russian Federation 992 86 182,226,438  5.30% 37% 0.52%  351  

        

All Regular Flights 30657 77 5,661,438,121 6.48% 3900% 0.00% 10,827 
All Flights > 250km 27559 80 5,631,745,914  6.30% 239% 0.00%  10,592  
All Airliners > 50T 19183 102 5,425,373,873  5.66% 239% 0.00%  9,815  

Table 3.8.3: Stratified Efficiency for All flights > 250km 
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In addition, the fast rise in new traffic 

in the morning between 4am and 7am, as 

shown in Figure 3.8.4 (a), leads to a very 

marked increase in inefficiency that seems to 

peak around an hour later at around 8am, as 

shown in Figure 3.8.4 (b). This could be 

attributed to the inability of the air traffic 

system to reactively adjust rapidly enough to 

the sudden onset of new load, leading to 

additional inefficiency. Although, this 

sample represents a single day, this effect is 

entirely expected and would be interesting to 

analyse its recurrence over several other 

traffic samples, and will be looked at in future studies.  

Furthermore, this has to be seen in the context of a whole year, where the June 

sample represents the worst case scenario from a seasonal perspective as shown in 

Figure 3.8.5. Although 6.5% is not an alarming loss, this daily inefficiency translates 

into about 18.2 million tonnes of excess CO2 per year and costs the industry more than 

€2.9billion in excess fuel costs at current prices. This further strengthens the case for the 

CATM project because there is a significant scope for fuel reduction through trajectory 

optimisation. 

3.8.2 A Probabilistic Traffic Model 

Aside from measuring the shortcomings of the current system, traffic analysis is 

important in order to establish the typical patterns of activity between the nodes of the 

air traffic system, which can then be used as an empirical basis for a stochastic traffic 

generator model for use in a verisimilar CATM simulator. A graph was generated that 

interlinks all airports in the system where each edge in the graph represents the 

probability of a flight arising between the two connected airports, as a function of time. 

Figure 3.8.6 encodes this graph by the thickness and colour of each edge. 

 
Figure 3.8.6: Most heavily used interconnections from Europe’s busiest airports (>7 flights per day) 

Figure 3.8.5: Seasonal Variation in European 

IFR Traffic (Source: Eurocontrol) 

Diagram 
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To mimic real traffic, a flight schedule needs to be constructed. The resolution of 

the schedule determines the peak traffic. For traffic that matches typical volumes, a 

schedule with 1 second intervals can be used to cover the duration of a day. This 

amounts to 86,400 possible time slots. A random number generator selects real numbers 

uniformly for every slot in the schedule, in the interval between 0.0 and 1.0. If uniform 

traffic of around 30,000 flights is required over the day, a simple threshold is set to 

0.65277 (= 30,000/86,400). If a random number αi exceeds the threshold, a flight is 

synthesised, if not, a new random number is selected for the next slot in the schedule. 

After 86,400 random trials are attempted we should be left with approximately 30,000 

flights at random intervals aligned to a 1 second grid. If time-varying traffic is required 

the threshold can be adjusted accordingly over the span of the schedule, hour by hour or 

as necessary.  

However, in order to generate traffic 

realistically, we also require an algorithm that 

generates flights between pairs of airports with 

probabilities that are proportional to the actual 

utilisation of each specific route. This can be 

achieved neatly using roulette selection (see: Figure 

3.8.7). Whenever a flight needs to be synthesised to 

fill any time slot in the schedule, another random 

number 0 < βj < 2π needs to be generated from 

another uniform source.  

This number is used to rotate a roulette by βj 

radians as shown in the figure. The roulette pointer 

determines the route selected. If the roulette consists 

of a pie chart depicting the percentage of measured 

traffic attributable to each route, then the probability of selecting any route by this 

procedure will be exactly proportional to the measured popularity of that route. 

Similarly, aircraft types can be selected using the pie chart of Figure 3.8.3. Traffic can 

thus be generated at any multiple or fraction of typical traffic volumes using the 

technique. 

3.8.3 Traffic Density 

In order to ground simulations to realistic scenarios, the regional worst case 

density of typical traffic had to be worked out. The data was split into one minute long 

time intervals and all the waypoints traversed at every specific time were grouped and 

counted according to their location on a 1x1 degree reticle on the WGS84 spheroid. 

This kind of grid is non linear, but for Greenwich, one latitudinal degree works out to 

110.6 kilometres, while a longitudinal degree is 69.19 kilometres. Therefore, if we take 

Greenwich to represent the approximate latitudinal average of the European continent 

between the Scandinavian Laplands and Sicily, each square in the reticle can be 

assumed to represent an average area of around 7700 km
2
. There are of course better but 

significantly more involving ways to map out the density. One improvement is to 

assume a trapezoidal grid and work-out the sides of each block, based on the exact 

latitude and longitude of the edges. The aircraft trajectories can also be interpolated with 

splines to yield more accurate estimates of aircraft location at any instant in time.  

Figure 3.8.7: Roulette Selection 

βj 

Figure 3.8.7: Roulette Selection 
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However, the forgoing gives a good indication of average density given the coarse 

sample data available. Figure 3.8.8 shows the colour coded density of traffic across the 

reticle at six different times along the day. 

 

  

Figure 3.8.8: European Traffic Density by location and time: {3:00, 6:00, 9:00, 12:00, 18:00, 24:00}  

Therefore, the highest traffic density reached on the hour, on the busiest day of 2009, 

was over Frankfurt, where 16 aircraft were flying in the same 7700 km
2 

cell at 18:00. 

This translates into a traffic density of around 2000 aircraft per million km
2
 (or 54.9 per 

10,000 NM
2
). Slightly higher traffic density is observed over London (Heathrow) where 

it peaks at 65.2 aircraft per 10,000 NM
2
 at 9:19am. On the other hand, when averaged of 

a larger area, by conducting the same exercise directly over a coarser reticle of 13 

degrees (Figure 3.8.9) (corresponding to 1 million km
2
), the peak density averages out 

at 255 aircraft per million km
2
 (or 8.7 per 10,000 NM

2
) over Germany and that takes 

place at 10:58am. Table 3.8.4 summarises these findings. When generating synthetic 

traffic schedules, or interpreting simulation results, it is important to ensure that the 

traffic density is contrasted with these figures in order to be able to draw meaningful 

comparisons.  

Figure 3.8.9: Density at 10:58am 

Flight Category 
(> 250km) 

Peak 
Qty (#) 

Peak 
Time 

Sampling 
Area (km

2
) 

Density in 
(10,000NM

2
) 

Domestic Europe 1966 14:00 11,500,000 5.7 

Over Germany 255 10:58 1,000,000 8.7 

Over London 19 9:19 7,700 65.2 

Over Frankfurt 16 18:00 7,700 54.9 

     

Table 3.8.4: European traffic density over various areas 
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3.9 WEATHER MODELLING FOR ATM 

There is significant risk associated when planning ATM trajectories using an 

optimiser. This is because it can easily produce very tightly optimal solutions that are 

practically unable to re-adapt to the less-than-ideal real circumstances. An accurate 

statistical evaluation of the likelihood and distribution of weather cells is extremely 

important because it allows the SPO to insert just the right amount of slack to allow the 

system to re-adapt to unforeseen weather conditions, without major repercussions on 

future traffic schedules. 

This can be implemented by simulating a weather system over the entire 

optimisation horizon of 1 year. The weather model need not evolve accurately like a 

weather forecasting model would be required to do. However, it needs to behave in a 

stochastically equivalent manner. In addition, the weather simulator need not iterate 

within the SPO. It is simply seeded once with real weather data and is allowed to 

simulate a fictitious weather system forward into the future, in fast time. The ensuing 

weather data is stored in a database and is used as a reference weather constraint model 

throughout the entire optimisation horizon of the SPO. 

Allowances for inclement weather are made by SPO by judging on the average 

effects that this has on daily operations. This stochastic data is compiled by the Tactical 

Phase Optimiser (TPO) and serves to guide the weather simulator in building the 

reference weather database of probable weather conditions. Over time, this becomes 

increasingly representative of the average weather conditions expected day-by-day, 

hour-by-hour, over all continents, over an entire year. Weather is a stochastic chaotic 

process, making it hard to predict too much in advance with any accuracy. So an 

average weather expectation is the best that can be assumed by the SPO in the months 

and weeks leading to the moment of departure [  
 ] of each flight i. 

However, as [  
 ] comes close, say [  

  – 7days], fairly accurate weather 

predictions, as provided by the meteorological offices worldwide, become available. 

This data can of course be integrated into the SPO‟s solution. This way the SPO has 7 

days time to gradually converge to the real meteorological picture. This process nearly 

eliminates the unpredictability of the weather constraints. By the time of departure [  
 ], 

real and measured weather data can be incorporated into the solution and the depth of 

weather forecast required spans just a few hours – the duration of the flight.  

3.9.1 CFD Weather Simulation 

Weather simulation is a complex fluid mechanics problem involving the world‟s 

atmosphere with an unevenly distributed energy input, resulting in localised convection 

currents, evaporation, advection of water vapour, cloud formation and precipitation. It is 

a system seething with activity and in constant evolution, where the future very much 

depends on the previous state and current stimuli. Classical physics describes the 

idealised flow of viscous fluids with the well known Navier-Stokes differential 

equation, named after the 18
th

 and 19
th

 century physicists, Claude-Louis Navier and 

George Gabriel Stokes. This vector algebra equation assumes conservation of 

momentum, mass and energy in a Newtonian continuous fluid and can be stated as in 

equation 3.9.1: 
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                 (3.9.1) 

where:   represents the fluid‟s density 

  represents the fluid flow velocity vector 

  represents the fluid pressure 

  represents the (deviatoric) component of the total stress tensor 

  represents the forces acting on the fluid (per unit volume) 

  represents the vector differential operator 

 (3.9.2) 

The problem with applying the Navier-Stokes equation, is that with the exception 

of very simple and small scale examples, analytical solution of this equation is 

essentially impossible for large systems such as weather and had rendered progress in 

the area exceeding difficult until the advent of Computational Fluid Dynamics (CFD) 

which uses computers to evaluate these equations numerically.  

However, detailed CFD simulation can be highly computationally demanding and 

is inadequate for real-time simulation of fluid flow. This motivated a computer graphics 

researcher, in 1999, to develop a simplified stable numerical technique to simulate fluid 

like behaviour for application in computer games and such. The well regarded paper by 

Jos Stam, called “Stable Fluids” [3.20] lays down a 4 step method for generating life-

like fluid flow patterns. It simulates a viscous fluid entraining a secondary substance 

with variable density, such as smoke, dust or cloud. The underlying Navier-Stokes 

equation can be somewhat simplified, assuming unity density and incompressibility, 

and rearranged to solve for the fluid-flow velocity vector field – in our case: The wind-

flow field. (Eq. 3.9.3) 

Wind flow: 
  

  
                 (3.9.3) 

where:   represents the wind flow velocity vector at any point in the field 

  represents the air‟s kinematic viscosity 

  represents the forces acting on the air mass 

  represents the vector differential operator 

 (3.9.4) 

For wind-entrained cloud we can use the equation 3.9.5 describing advection: 

Advection: 
  

  
                (3.9.5) 

where:   represents the cloud density 

  represents a diffusion constant 

  represents the source of cloud 
 (3.9.6) 

By decomposing the vector field into the sum of a mass conserving field (with 

zero divergence) and a gradient field (of an underlying scalar density field), in his paper, 

Stam suggests a 4 step procedure to simulate the evolution of fluid flow and advection 

over time. 

Add Forces  Advection  Diffusion  Projection 
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3.9.2 Synthetic Wind Patterns    

The model simulates a synthetic weather system and can generate spatio-temporal 

weather data in real-time. Through iterative application of these four steps, the 

progression over time of the vector field can be simulated for a series of discrete time 

steps. This vector field is highly reminiscent of global wind patterns and can be used to 

provide a CATM simulator with the gradually evolving time-variant wind patterns 

typical of real weather systems. 

A wind simulator based on 

Stam‟s paper was written in C++ 

and interfaced to Matlab using Mex 

for analysis. The resulting wind 

vector field is exemplified in Figure 

3.9.1. A full treatise of the 

mathematical procedure is far 

beyond the scope of this work and 

interested readers are referred to 

Stam‟s excellent papers on the 

subject: [3.20], [3.21] and [3.22]. It 

will suffice to say that the 

simulation using Stam‟s procedure 

can be conducted in any number of 

dimensions greater or equal to 2 and 

periodic boundaries allow a closed 

weather system to be simulated by stitching opposing boundaries to form an N-

dimensional torus, where the boundaries wrap around indefinitely in all directions. This 

is not quite spherical like planet earth, but is still good enough in the sense that it is 

spatially periodic while temporally a-periodic. 

3.9.3 Generating Clouds and Weather cells    

Through the advection step, a scalar density field is also generated in the process 

and this can be used to mimic the formation and dissipation of cloud. Localised sources 

of cloud are carried along by the wind vector field and this results in a very compelling 

rendition of weather cell formation as can be seen in evolving in Figure 3.9.2. 

 

 

Figure 3.9.1: 2D Wind vector field generated with random 

distributed forces hidden in the margins.   

t = 100s,                                      t = 120s,                                      t = 140s 

Figure 3.9.2: Evolving Cloud Advection in the Weather Simulator  
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The cloud formation must be balanced with a degree of cloud dissipation to avoid 

saturating the airspace with cloud. Weather cells are merely assumed to be zones of 

high cloud density. All regions of the airspace exceeding some arbitrary degree of cloud 

density are deemed non-traversable and are therefore treated as moving obstacles in the 

airspace. In a CATM optimiser, these obstacles can be parametrically modelled using 

penalty functions or potential fields just like stationary restricted airspaces. Thus the 

regions of high density may be modelled using overlapping spheroids, which can in turn 

be used to generate a potential field. Alternatively, if detailed geographic data is 

available, the degree of penalty (or potential) may be determined directly by sampling 

the cloud density field. 

This methodology can be extended to volcanic ash cloud dispersion, and would 

have resulted in far less disruption if it were adopted during the Icelandic 

Eyjafjallajokull eruption of 2010. As can be seen in the infrared satellite photo of 

Figure 3.9.3, ash cloud dispersion also follows very gradual and predictable patterns 

that could have easily been modelled as a moving obstacle with changing shape. Thus 

rather than blanket grounding all western European flights, for days, this kind of online 

adaptation would have allowed the flights to navigate the ash cloud safely, much like is 

done today with weather cells. 

 

Figure 3.9.3: Icelandic Volcanic Dust Cloud Advection in April 2010 (Eumetsat) 

3.9.4 A Self-excited Circular Weather Domain 

The simulator requires an external stimulus or disturbance in order to trigger fluid 

flow. It also requires sources of cloud. This can be achieved by exerting localized forces 

on the fluid, which are taken into account in the first stage of Stam‟s procedure. 

Momentary forces result in chaotic fluid motion that persists for a while, until the 

viscosity of the fluid eventually dissipates all shearing motion and the swirls and 

vortices eventually die away.  

The creation of convincing weather patterns requires continuous application of 

such forces at various points to keep the system energised and dynamic. Cloud must 

also be added from time to time. The location, direction and intensity of such forces and 

associated cloud density must follow some stochastic process. However, these forces 

may create very high fluid velocities in the immediate vicinity of their application. This 

would be problematic if this were to occur in the middle of the airspace, as it would 

result in undesirable discontinuous behaviour in the vector (wind) field. Same applies to 

cloud. It would be unrealistic if cloud were added sporadically throughout the airspace. 

However, this problem can be circumvented by restricting these stimuli to the margins 

of the airspace, which are not traversed by any aircraft. The effects of the stimuli 

gradually diffuse into the active portion of the airspace.  
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3.10 ENVIRONMENTAL IMPACT MODELLING FOR ATM 

The environment is one of the principle areas that air transport impinges on. The 

volume of global air traffic has increased exponentially following World War 2 with no 

signs of abatement, and has reached levels that are now comparable with most other 

major industries. It is therefore one of the primary objectives when speaking of 

optimisation of air traffic management. However, environmental impact is an intensely 

studied technical subject and only a brief overview will be covered in the following 

sections. Numerous impact models are available in the literature and are subject to 

frequent updates as the underlying science is better understood. The interested reader is 

referred to the bibliographic references for detailed information. 

3.10.1 Carbon Footprint and CO2  

The carbon footprint of aviation is one of the most vigorously debated subjects in 

the area of environmental impact. This is because of the imminent danger posed by 

climate change. Carbon dioxide (CO2) is considered to be the primary greenhouse gas 

emitted, and accounts for over 80% of total anthropogenic greenhouse gas emissions. In 

1992, it was estimated that air transport accounted for about 2% of the world‟s total CO2 

emissions, or 13% of transport [3.24]. However, the seemingly unstoppable exponential 

rise in aviation is cause for concern. This CO2 contribution has since increased to about 

2.5% (650 megatons per year), meaning that aviation is exceeding the pace of growth of 

other sectors [3.25].  

 
Figure 3.10.1: Bridging the aviation CO2 emissions Gap [3.26] 

In the most optimistic of scenarios (Figure 3.10.1), it still appears that the 

increase in CO2 emissions will greatly exceed the 2005-10% limits proposed by the 

European Union at the 37
th

 ICAO General Assembly [3.26]. Carbon neutrality is an 

even more distant goal. 

Modelling the CO2 footprint of aviation is not difficult. This is obviously directly 

related to fuel consumption since practically all fuels in use today are carbon based. 

Therefore, when modelling for the CO2 footprint, one may simply link this effect to the 

fuel consumption model that is already accurately modelled by BADA [3.7]. Obviously, 

it is the cumulative effect that matters, and therefore optimising one flight the expense 

another is rather futile. Minimising gross emissions (fuel-burn) must be the objective of 

CATM. 
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3.10.2 Noise Mitigation 

When operating close to dense urban areas, noise abatement is an important 

consideration. This is an often politically sensitive matter that is taken very seriously by 

legislators and operators alike. The Integrated Noise Model (INM), currently at 

version 7.0d, has been developed by the FAA [3.27], as per the SAE AIR 1845 standard 

[3.28], and is provided as a tool for the community. It allows a noise profile to be 

created for each aircraft type, and with over 100 models to choose from, it can 

realistically estimate noise levels as perceived at several points, at ground level, given 

particular trajectories. Cumulative surface noise contours (Fig. 3.10.2) exceeding a 

certain sound pressure level (in dBA) are not allowed near urban areas exceeding a 

certain density and may have to follow alternate maths to the TMA. This can be 

realistically expected to affect rates of descent and the number of aircraft flying per unit 

time over certain areas. 

 

Figure 3.10.2: Sample INM noise contours generated with the FAA application [3.29] 

There has been much progress to reduce the noise profile of aircraft engines over 

the years. However, there is a limit and the noise impact remains clearly ATM related. 

A noise impact model is easily integrated into a trajectory optimiser by assigning a cost 

in relation to the integrated noise level at every urbanised area. No difficulties are 

foreseen to combine a fast, but simple INM-like model into the optimiser. This can be 

based on the same SAE AIR 1845 calculation procedure and is easily written in C++. 

Noise minimisation can either be included as an additional objective or posed as a 

region-dependant constraint. 

3.10.3 Other Pollutants and ATM 

Besides CO2 and noise, aircraft engines produce a whole array of other insidious 

pollutants that are either directly toxic to humans or cause adverse reactions or chain 

reactions in the wider ecosystem. The impact is, either way, still borne by humanity and 

wildlife. Most of these pollutants are functions of engine performance and as such 

depend on the careful design and maintenance of the said engines by their manufactures 

and operators. They include the following: 

 Sulphur Oxides (SOX), acids:  SO2, SO3, H2SO3, H2SO4 

 Nitrogen Oxides (NOX), acids:  NO, NO2, HNO2, HNO3  

 Particulates and Soot:  C 

 Unburnt Hydrocarbons:  CnHm  

 Water Vapour:  H2O 
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These pollutants follow complicated chemical and ecological pathways that 

ultimately result in environmental damage, as well as economic and social losses.  This 

is far too complicated to discuss in any detail here. However, a pictorial representation 

of how aviation emissions unleash their effects is given in Figure 3.10.3 with a detailed 

explanation given in [3.25].   

 

Figure 3.10.3: Aircraft Emissions and their effect on climate change [3.25] 

Some pollutants are due to contaminants present in the fuel (like sulphur) and are 

only mitigated by minimising the fuel consumed by the engines. However, a number of 

other pollutants are emitted during certain operating regimes of the engine. This means 

that it is possible to carefully plan thrust requirements (and hence trajectories) such that 

the generation of some of these pollutants is minimised. For example, nitrogen oxides 

are generated when nitrogen and oxygen in the air combine when they are exposed to 

the high temperatures inside the turbine. The temperature is obviously dependant on the 

level of thrust which is a parameter that CATM can control. CDAs are another ATM 

related method to reduce NOx [3.30]. 

And finally another subset of pollutants has most effect at certain altitudes, and in 

certain atmospheric conditions. Methane, for example, has a powerful ozone depleting 

potential that is maximised when it is emitted at high altitude. Ordinary harmless water 

vapour in aircraft exhaust, when emitted at high altitudes, may have a greenhouse effect. 

This happens when the temperatures are such that the water forms small ice crystals 

which are commonly visible as contrails. However, at certain flight levels the 

atmospheric conditions may be such that these ice crystals trigger further cloud 

formation by nucleating water vapour in the air. This is commonly visible as cirrus 

cloud and has a powerful heat retention and temperature forcing effect on the planet. 

Soot has a similar cloud generation effect at certain altitudes. On some days, the 

Atlantic is significantly covered with aviation generated cloud. This can obviously be 

mitigated by adjusting the aircraft trajectories such that these flight levels are avoided 

during cruise. CATM can exert a powerful role in the regard. With careful modelling by 

environmental scientists, these processes may be characterised such that the conditions 
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under which they prevail can be predicted. This information can then be used by an 

optimiser. Simplified linearised models for these pollutants are given in equations 

3.10.1 [3.30], however these ignore altitude effects. 

 

                    

                  

                  

                    

 (3.10.1) 

where:    represents the number of engines in an aircraft 

   represents the fuel flow to the engines in g/sec 

     represents the number of grams of CO2 emitted per unit time 

    represents the number of grams of CO emitted per unit time 

    represents the number of grams of HC emitted per unit time 

     represents the number of grams of NOX emitted per unit time 

      is an emission index as given in the ICAO engine emission database 

     is an emission index as given in the ICAO engine emission database 

     is an emission index as given in the ICAO engine emission database 

      is an emission index as given in the ICAO engine emission database 

 (3.10.2) 

 

3.11 AIRPORT -OPERATIONS MODELLING FOR ATM 

The effect of ground airport operations on ATM is very significant indeed. 

Unfortunately, the transition of any scheduled flight (from    ) to the airborne state 

(into      is subject to a high degree of uncertainty. Airline operations, security 

incidents and other miscellaneous random occurrences, represent a substantial majority 

of causes of delay that are encountered in the ATS as a whole, as was seen earlier in 

Figure 1.1.2 in chapter 1.     

The causes, magnitude, and frequency of these delays vary from airport to airport 

and from airline to airline and it is therefore hard to model properly. However, its effect 

is highly deleterious on the air traffic system performance and some form of random 

perturbation must be included in the overall system for realistic simulation.  

This perturbation model is mostly intended to measure the effectiveness in 

redistributing slack and hence test the resilience of the autonomous scheduling and 

trajectory optimisation engine. Unless there are individual statistics available, the best 

effort method to model these effects is to base the perturbation model on the overall 

statistics published by Eurocontrol on a regular basis.  
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Chapter 4 
Computational Intelligence in CATM 

It was suggested in previous chapters that both phases of the CATM problem 

involve searching a vast disconnected non-convex search space of feasible trajectories 

to single out the optimal solution. The solution consists of a set of optimal control 

policies for all aircraft that results in them flying minimum cost trajectories. Therefore 

this may be formulated as an optimal control problem. In this chapter we shall see how 

this can be accomplished. One may initially attempt to apply some of the very generic 

and powerful tools in the optimisation toolkit (like dynamic programming) that can 

theoretically handle CATM directly, elegantly and reliably to give globally optimal 

results. However, in-keeping with Bellman‘s ―curse of dimensionality,‖ [4.1] we will 

soon discover that all the computing time and memory in the universe would not suffice 

to produce any noticeable progress in solving the problem. 

A different approach is clearly required. Since a generic methodology clearly 

exists, in the form of dynamic programming (DP) to solve all optimal control problems, 

the issue is not whether a method exists, but whether an efficient method exists. This is 

because it appears that the principal difficulty is a computational one. Thus, the research 

focus seems best directed towards complexity reduction to render the problem tractable. 

This may take several forms and will be the recurring theme of what will be discussed 

in this chapter. It is important that when dealing with such large problems one does not 

lose the perspective of what is relevant. With this mindset several practical solutions for 

CATM can be devised. 

4.1 CATM PROBLEM FORMULATION 

Without much loss of generality, we can initially ignore the distinction between 

the phases of the CATM problem. We will begin by casting the entire CATM problem 

using classical notation [4.1] as a large collection of optimal control problems, one per 

flight, each of which undertakes to minimise (or maximise) some arbitrary cost 

functional   
 .  

4.1.1 Single Flight Problem 

For any flight  , this cost functional   
  may be expressed in terms of the end 

points (Mayer), the running cost (Lagrange) or the sum of both (Bolza). Thus in general, 

for any one flight this cost may be formulated as the Bolza problem shown in eq 4.1.1. 

Bolza 

Cost: 

  
       

     
    

 
 

    
 

 
        

    
    

  
 

 
 

  
 

 
    

      

      Mayer Cost              Lagrange Cost 

(4.1.1) 
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Thus if we consider just one aircraft at a time, the problem now entails finding 

the vector of controls   
  and trajectories   

  such that   
  is minimised to    

 , subject to 

some trajectory constraints, boundary conditions and dynamic constraints relating   
  to 

  
 . Thus for any flight    , the single flight problem can be stated as in eq. 4.1.2: 

Bolza 

Cost: 

  
 

     
       

  
  

   
       

      
     

    
 

 
    

 
 

        
    

    
  
 

 
 

  
 

 
                         

(4.1.2) 

Subject to: 

- First order dynamic constraints:    
      

    
     (4.1.3) 

- Trajectory constraints:         
       (4.1.4) 

- Boundary conditions:      
     

    
 

 
    

 
 

     (4.1.5) 

where:   is the number of flights 

   is the number of airspace objects that must be avoided 

           are dimensionalities of state, control input and object vectors respectively 

    
 

 
    

 
 

    are the current, initial, final times of flight n respectively 

  
    

         
     

       
       is the current state vector of each flight n  

  
    

         
     

       
       is the current control input vector of each flight n  

   
    

    
 

 
       is the initial state vector of the flight n at take-off 

   
    

    
 

 
       is the final state vector of the flight n at landing 

              is a positive scalar terminal-state weighting function 

                 is a positive scalar intermediate state and input weighting function 

                  maps the control input and current state vectors to the state derivative 

                      is a scalar intermediate state and input weighting function 

     
    

     
    is the set of all airspace object current locations, shapes and sizes 

     
    

     
   is the set of all other flight states 

           is a scalar terminal-state weighting function 

Pontryagin‘s minimum principle (PMP) provides the necessary (but insufficient) 

conditions to achieve optimality [4.2]. However, solving such optimal control problems 

analytically is an exceedingly difficult task that has eluded mathematicians for all but 

the simplest problems, for hundreds of years. 

So it is generally preferable to transcribe them as generic Non-Linear 

Programming (NLP) problems that can be approximated numerically on a digital 

computer. This is done by discretizing the state   
     and control inputs   

    , and 

representing them as vectors of points taken at distinct intervals along the time axis 

[4.3], with a uniform time step h such that      where the index          .  

 
  

    
           
           

     
               
              

 
  

  
    

           
           

     
              
              

 
  

(4.1.6) 

                            where:   is the number of distinct time intervals 

 making up the discretized state trajectory 
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Therefore, following the same logic, the single flight problem can be restated as an NLP 

(in Bolza form) as the minimization of the approximate cost   
 : 

Bolza 

Cost: 
  
 

     
         

  
     

         

     
 

    
 

        
 

    
 

    

   

   

  (4.1.7) 

Subject to: 

- State transition constraints:   
 

        
 

    
 

     (4.1.8) 

- Trajectory constraints:         
 

       (4.1.9) 

- Boundary conditions:     
 

    
 

     (4.1.10) 

where:   
 

    
 

      are the initial, final state vectors of the flight n respectively 

  
 

      is the state vectors, at step k, of each flight n respectively 

  
 

      is the control input vectors, at step k, of each flight n respectively 

          is a positive scalar terminal-state weighting function 

                 is a positive scalar intermediate state and input weighting function 

                          maps the control input and state vectors to the next state 

                      is a scalar intermediate state and input weighting function 

         is a scalar terminal-state weighting function 

In the discrete case, the Karush-Kuhn-Tucker (KKT) conditions provide the necessary 

(but insufficient) conditions to achieve optimality [4.4], and will in fact converge to the 

PMP, when the time step h is taken to the limit of 0 [4.5].  

4.1.2 Combined Multiple Flight Problem 

We have already discussed in previous chapters that it would be of little value if 

we were to optimise some trajectories at the expense of others. Flight trajectories can 

and do interact. However, an optimal solution in CATM is the set of feasible trajectories 

that results in the minimisation of some arbitrary cost functional that takes into account 

delays, fuel burn, emissions and any number of other objectives – across the whole 

collection of flights. Balanced collective optimality is the goal. One way of doing this, is 

to reorient the problem to express the overall system cost    as the sum of costs incurred 

by all flights, as shown below in eq 4.1.11: 

Thus:    
       

 
 

 

   

        
         

 
 

  

   

 (4.1.11) 

and    
     

         

      
 

    
 

  
  

  

   

       
 

    
 

    

  
   

   

  

   

  (4.1.12) 

where:         
 

  is the number of distinct time intervals making up flight n relative to itself. 

However, once we augment the problem to include each flight into one cost measure, 

another difficulty arises with separate flights having different terminal constraints. 

CATM in its entirety is an ongoing, never ending process. New flights are added and 

removed from the problem domain as time progresses with no specific start or end to 

the continuum. This turns it into a variable-size, infinite horizon problem, even though a 

small subset of the potential flights are actually flying at any one time. 
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CATM:   
     

         

      
 

    
 

  
 

 

   

       
 

    
 

    

  
 

   

      

 

   

  (4.1.13) 

                     where:    becomes a unique unbounded incremental index of every flight ever 

flown 

  
 

   is the absolute time index at which flight n commences 

  
 

   is the absolute time index at which flight n ends 

This problem, as expressed in eq 4.1.13, does not have a solution in causal time. It 

is in fact a non-causal problem, which is to say that current decisions and/or evaluations 

of the cost functional depend on future events and information which has yet to become 

available when new flight plans are registered by the airlines.  

4.1.3 Receding Horizon Problem 

In order to render the problem causal, a limitation must be imposed on the 

information required to solve the problem. A limited look-ahead time horizon is 

established. Thus a limited number of flights are considered at any one time starting 

with the one nearest to completion   , moving onto all     active flights, one transition 

flight,      queued flights and finally ending with     long term scheduled flights. 

Thus, the total horizon    represents the sum of flights that the system takes into 

account into the future. Note that    ,    ,     and    are all variable quantities 

which depend on many factors such a travel demand and aircraft availability. This 

makes the horizon depth variable.  

CATM:    

     
         

      
 

    
 

  
 

     

    

       
 

    
 

    

  
 

   

      

     

    

  (4.1.13) 

             where:     is index of the flight nearest to completion 

    is the total size of the horizon being considered by the solver.  

                    

As flights are progressively completed,    is incremented and the horizon recedes 

by one flight at a time, to ignore completed flights and to encompass new flights further 

into the future (Figure 4.1.1). This is reminiscent of Model Predictive Control and 

should result in a good approximation of the desired CATM solution if the chosen 

horizon is deep enough. 

 

 

 

 

 

 

 

 Figure 4.1.1: The CATM Receding Horizon of                    Flights 
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In Figure 4.1.2, the concept of receding horizon control is depicted for a single 

aircraft. With an aircraft model and an airspace model, we can use the known departure 

and destination points to generate an optimal trajectory and a set of aircraft controls that 

minimises some cost metric. The aircraft is then tasked with following this reference 

trajectory by executing the given controls. However, two things happen that cause some 

deviation over time. The aircraft is not perfectly represented by the model. Thus the 

actual motion of the vehicle will drift from the expected trajectory. Similarly, the 

airspace is also not perfectly represented by its model and airspace conditions will 

change to depart from predicted behaviour. Thus the optimal reference trajectory will be 

invalidated and will require renewal over time. Unless corrected, the net result is that 

the originally estimated aircraft controls will take the aircraft away from the true 

optimal trajectory.  

For the single aircraft scenario (Figure 4.1.2), these deviations from optimality 

are addressed at every time-step, one step at a time, by recalculating a new optimal 

trajectory starting from the current location while taking into account a limited look-

ahead horizon of time steps (in this case   ) over which the aircraft will be brought 

back on track with the most recently estimated optimal path. 

Thus at every time step, the receding horizon controller takes note of the current 

state, and using the given model and best available knowledge of current airspace 

conditions, drafts a new optimised trajectory between the current state and the desired 

state at   . The aircraft is then allowed to execute this updated plan over the next time 

step only, and the process is repeated thereafter for every subsequent time step. 

A similar situation arises in the multi-aircraft scenario shown for comparison in 

Figure 4.1.3. However, in this case the Air Traffic System state has no known departure 

or destination, because it consists of the superposition of many concurrent flights, which 

are being regenerated continuously. However, an optimal system state trajectory can 

still be generated between the known present state and some future desired state. The 

look-ahead horizon (in this case   ) is expressed in flights rather than in time steps. 

Every step in the horizontal axis of Figure 4.1.3 represents a flight transition, when one 

flight lands and another takes off reusing the same aircraft. 

Figure 4.1.2: Receding Horizon Control for a Single Flight, with Horizon =    

                  • • • • • •      
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In this simplified scenario we are assuming that there are 6 aircraft in the system 

executing a maximum of 6 concurrent flights at any point in time, and thus the 

collective ATS system state is being represented by the multiline curve shown above. 

The same ideas are readily extended to larger numbers and variable traffic. 

4.1.4 The CATM Architecture 

In Chapter 3 we discussed a sketch model architecture of the contemporary 

ATM system. It is now time to describe the corresponding architecture proposed for 

CATM. In Figure 4.1.4, we show how the CATM ATS can be modelled using system 

theoretic principles. The ATS is depicted as a hierarchical set of nested feedback control 

systems.  

We recall that equations 4.1.14 represent the general nonlinear time variant 

differential equation description of an aircraft, with flight controls      as inputs,      

as additive external wind disturbances and aircraft motion      as output. 

 
                           

                     
(4.1.14) 

Here we assume that an auto pilot is given the responsibility of maintaining the 

aircraft in level flight along a course set by the flight guidance computer. The autopilot 

performs accurate coordinated manoeuvres as necessary to minimise the error between 

the set and current course. The flight guidance computer forms an overarching control 

loop that ensures that the course taken matches the trajectory assigned to the aircraft by 

the CATM computer. On board navigation instruments provide the necessary feedback.  

 

 

Figure 4.1.3: Receding Horizon Control for entire ATS, with Horizon =    

                     • • • • • •      
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The receding horizon optimiser shown sitting in every aircraft in Figure 4.1.4 is 

the local representative of a much larger receding horizon optimisation system, which 

collectively has full situational awareness of the entire air traffic system. It collects 

information from the current aircraft and shares it with the rest. In the meantime it 

collects information for the rest of the aircraft, and on combining it with local data, is 

able to generate a new optimised trajectory that serves as the updated flight reference. 

This occurs at every time step as discussed earlier.  
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Figure 4.1.4: The CATM System Hierarchy within a Single Aircraft. 
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4.1.5 Searching the Control Space vs Output Space 

Optimal control, is driven by the desire to generate the sequence of input controls 

that will take the system through the required optimal trajectory. So it is not surprising 

that the search space includes all the input variables as well as the output variables, as is 

the case with equation 4.1.13. The dynamic constraints (Equations 4.1.3 and 4.1.8) 

ensure that the optimised inputs are consistent with the required optimal output. It is 

essential that this is enforced to guarantee that realistic controls are generated while 

observing all constraints.  

However, one might wonder whether this added complexity is at all necessary in 

cases of simple systems, where there is a known one to one mapping between input and 

output. In fact it transpires that for a certain class of systems this indeed results in 

unnecessary duplication of work, and only serves to inflate the search space to no real 

benefit. This would reduce the performance of the optimisation algorithms. 

So what if the optimiser were to search just the input space for an optimum set of 

controls? Given known initial conditions, this could then be applied to the system‘s 

dynamic model and the corresponding output would be generated trivially. However a 

problem immediately arises if there are any constraints that must be observed at the 

output. These would presumably have to be transformed into corresponding constraints 

at the input, and this might prove to be difficult in some cases involving complicated 

constraints. The cost might also depend on output behaviour. 

Such a scheme would also cause difficulties in ill-behaved non-linear systems. It 

is quite possible that non-linear dynamics would connect a relatively small input space 

to a significantly larger output space, making the output highly sensitive to small 

optimisation errors present at the input. So what if the reverse were attempted; that of 

namely searching the output space and then calculating the corresponding input using 

some form of inverse dynamics? 

4.1.6 Dynamic Inversion and Differential flatness 

Roughly speaking, dynamic inversion is when a system‘s inputs and state are 

expressed in terms of its outputs. This is only possible in so called differentially flat 

systems which were first described by Fliess at al. [4.6]. This property has been 

demonstrated in a number of systems such as Vertical Take-off Aircraft (VTOL) [4.7], 

certain rotary wing aircraft [4.8] and quadrotors [4.9]. However, except for single input 

systems, so far there seems to be no unifying theory that allows systems to be classified 

as differentially flat [4.10]. Each case has to be analyzed on its own merits.  

Unfortunately, typical civil aviation, fixed wing aircraft models are a notable 

exception. However, over a narrow flight-regime corresponding to coordinated flight 

conditions, simplified models suitable for ATM purposes have been demonstrated to be 

differentially flat [4.11]. Once this has been established, we may continue all our 

optimisation in the output domain with the peace of mind of being able to impose the 

dynamic constraints down the line using the appropriate models. 
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4.2 CATM: THE MATHEMATICAL NATURE OF THE SEARCH SPACE 

We will next be considering the topological nature of the CATM optimisation 

problem. This will serve as a guide to selecting the most appropriate algorithms down 

the line. From this point onwards we will also assume that all the optimisation is taking 

place at the output. Optimisation will therefore be conducted on the trajectories 

themselves and appropriate aircraft models will have to be used to allow this to be 

translated into the corresponding control inputs. 

4.2.1 The Global Optimisation Problem (Non-Convexity) 

In a non-convex optimisation problem, there are an unknown number of regional 

local optima, only one of which is the overall global optimum. The search space is said 

to be multimodal and by demonstrating the existence of more than one regional 

minimum, it is enough to establish this fact. Efficient optimisation with such a search 

space is in general an unresolved mathematical problem, for which non-deterministic 

stochastic searches apply. Frequently, these take the form of metaheuristics such as 

evolutionary algorithms or swarm intelligence [4.12]. Such nature-inspired algorithms 

have been successful in many 

domains [4.13]. 

Classical gradient 

optimisation techniques would 

get trapped in the first local 

optimum they encounter as they 

move from their initial seed 

solution. In the context of 

trajectory optimisation, trajectory 

search can be viewed as getting 

trapped between regions which 

evaluate to higher cost 

functionals. Figure 4.2.1 depicts 

this scenario in the simplified 

case of finding the shortest route 

through a 2D cost map. 

However, by Bellman‘s principle of optimality, any segment of a globally optimal 

sequence of events, is necessarily optimal too, and the overall cost is the summation of 

the sub-costs of each problem segment.  

Most local optima arise when parts of the optimal sequence are replaced with 

suboptimal segments, such as the various suboptimal ways of routing through an 

obstacle field. Figure 4.2.2 (a) highlights one particular scenario showing a few of the 

many possible 2D trajectories of reaching B from A, for a single trajectory through such 

a fixed obstacle field. In this simple context, optimality is defined as the shortest path 

that clears all obstacles with adequate separation, and proximity to an obstacle can be 

interpreted as raising the cost of a trajectory. Obstacles could in general also include 

other aircraft. However, this is ignored in this example for better clarity.  

Figure 4.2.1: Trajectories Trapped in Local Minima 
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Each binary decision to route above or below any obstacle creates an opportunity 

to lengthen or shorten the path. Here, T6 is the optimal path. So with reference to this 

global optimum, each deviation from this path results in a local minimum bounded by 

obstacles. 

 

 

 

 

 

 

 

Each possible trajectory finds itself in a well of local optimality (and indeed local 

feasibility). T5 deviates by one obstacle and is slightly longer than T6. However, there 

are many combinations of single obstacle deviations that will lead to a slight elongation. 

The set of solutions with two obstacle deviations is even larger and so forth. These are 

in general even less optimal because the effects of deviations from the optimum are 

always additive.  

Now in a large highly interconnected problem such as ATM, there are very many 

permutations in which deviations from the optimum can occur over the whole airspace, 

resulting in equally many local optima. However, from the point of view of optimality, 

by the law of large numbers, one would expect these local optima to follow some 

stochastic distribution that is fairly smooth as shown in Figure 4.2.2 (b). This means 

that it is likely that there exist a large number of local optima that approach the global 

optimum to a sufficient degree to make reaching the global optimum rather irrelevant. 

This is an advantageous property that can be exploited to increase the utility of a would-

be stochastic-search-based global optimiser. While there are no guarantees of actually 

striking the quasi-convex well containing the global optimum, the probability of 

reaching solutions that are fairly close in quality, can be made arbitrarily high. 

4.2.2 The Local Optimisation Problem (Local-Convexity) 

It was established in the previous section that in CATM, global convexity is 

generally not possible due to the numerous path constraints. It is however desirable to 

exploit any quasi-convexity at a local level. This would greatly improve convergence 

rates if we could utilise gradient information to point at the stationery points in the cost 

functional. With this in mind, cost functionals are best designed to be locally 

differentiable and well behaved. This is to say that in the immediate neighbourhood of 

any local (or global) optimal solution, evaluations of the cost functional must be 

continuous and smooth. Therefore small changes to the trajectories, result in 

proportionally small changes in cost metric. This is readily achievable in practice, as we 

will see, and with the right formulation, the local problem can lend itself for efficient 

processing using many free (eg: PSOPT [4.14]) or commercial (eg: SNOPT [4.15]) 

Non-Linear Programming (NLP) fast numerical solvers. 

Figure 4.2.2: Some possible locally optimal trajectories through a fixed obstacle field 
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In Figure 4.2.3 we depict 

the scenario of a multimodal cost 

function, Φ(x), evaluated along 

one dimension, x. The function 

has two local minima L1 and L2 

that occur within quasi-convex 

wells C1 and C2 respectively. 

Within the confines of each 

quasi-convex well, standard 

gradient- based numerical 

optimisation techniques, like 

Newton methods, can be applied to identify the minima very efficiently, by fully 

utilizing the substantial quantity of directional information contained in the shape of 

each well, which effectively points towards the local solutions. 

However, in order to guarantee local convergence, these algorithms require an 

approximate seed or starting point that lies within the confines of the quasi-convex well. 

Such information must be obtained using some other means. This suggests the 

requirement of an overarching search algorithm that scans the wider search space, to 

identify the approximate locations of quasi-convex wells. This could be used to generate 

approximate seed solutions that are then fed into a subsidiary gradient search algorithm, 

which in turn speeds up the ―last mile‖ of convergence, allowing the optimiser to 

accurately and rapidly compare the true depth of quasi-convex wells for their global 

optimality potential. Such a hierarchical exploratory approach to optimisation strikes an 

ideal combination of diversification with intensification. 

4.2.3 The Disconnected Feasible Search Space Problem 

Somewhat related to non-convexity is the mathematical notion of topological 

connectedness [4.16] of the search space. Connectedness is an important attribute when 

searching spaces. The presence of non-feasible areas in the middle of the search space 

creates a situation where regions of feasible solutions are separated by areas which are 

not. Discontinuities in feasibility create insurmountable barriers for algorithms that 

normally rely on gradual iterative 

improvement, such a gradient 

descent. It also causes problems with 

metaheuristic algorithms that rely on 

population-based candidate solution 

diversity to scan the search space. 

An exclusion of population members 

from these areas would result in a 

reduction of population diversity. 

Figure 4.2.4, shows a region   in 

2D Euclidean space   . The region 

  is non-simply connected due to the 

presence of three non traversable objects α, β and γ. This is to say that it is possible to 

draw a loop within region  , that would be unable to be gradually contracted to a point, 

without trapping non-feasible space.  

Figure 4.2.4: Disconnected Trajectory Search Spaces  
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Figure 4.2.3: Local Convexity assists convergence 
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However, from a trajectory synthesis perspective,   is actually a disconnected 

search space in   . This is because there exists no way in which the trajectory shown 

connecting A to B can ever be gradually transformed into the straight line (shown 

dashed) connecting A to B. In    and above it would again become non-simply 

connected, as long as α, β and γ are of a finite size smaller than  .  

Topologically, the air traffic system is confined to a thin spherical shell 

surrounding planet earth, physically constrained by the spherical ground below and 

performance constrained by the rarefied atmosphere at the top. Thus, it is entirely 

conceivable that large weather systems (like hurricanes), significant volcanic eruptions, 

conflict zones and other airspace restrictions might affect all the flight levels in at least 

some areas. This again re-creates a similar scenario to that shown in Figure 4.2.4. It is 

also possible that local optima might be surrounded by unfeasible space.  

4.2.4 The Dynamic Optimisation Problem  

If the shape of the feasible search space depends on the presence and location of 

moving weather cells, sporadic volcanic eruptions and the location of other flying 

aircraft (some of which might be CATM-unequipped and even unresponsive) then the 

topology of the said feasible airspace is time varying. This takes CATM to join a new 

class of Problems called Dynamic Optimisation that have become a hotly researched 

topic in recent years [4.17]. With reference to Figure 4.2.5, this can be characterised by 

a number of different behaviours including: 

1) Changes in Relative Regional Optimality (C1 vs C2) 

2) Spatial Shifting of Local Convexity (C2) 

3) Resizing, Obliteration and Creation of Local Convexity (C3) 

4) Changes in the Number of Variables, Constraints and Objectives 

5) Spatial Shifting of Feasibility 

6) Resizing, Obliteration and Creation of New Feasible Spaces 

Figure 4.2.5 shows three common scenarios in a dynamically changing search 

space as a function of time. In a minimisation problem, quasi-convex well C1 is getting 

increasingly less optimal and in fact cedes the status global optimality to C2 which is 

meanwhile shifting as well as deepening. Quasi-convex well C3, was initially non-

existent but developed over time. 

A trivial but clearly inefficient methodology to deal with such problems involves 

periodic restarts of the optimisation process every time a change is detected [4.18]. 

However, a far better approach would be to carry-over as much information as possible 

from previous iterations or generations to track the evolution of local and global optima, 

which are typically gradual in the ATM environment. A locally focussed algorithm 

would be well suited to efficiently track and revaluate changes in local optima, by using 

previous results to seed subsequent iterations. However, a global perspective must also 

be maintained to compare the changing relative optimality of local wells and in order to 

discover any newly formed quasi-convex wells. Changes in feasibility can be handled in 

similar ways.  
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Changes in problem size are also characteristic of ATM and the efficient optimiser must 

also be flexible enough to carry-over information across problem instances with 

increased or decreased dimensionality. Most global optimisers are not designed to 

handle this. 

4.2.5 The Time-Linked Dynamic Optimisation Problem  

Dynamic optimisation deals with systems whose optimality profile changes over 

time. Time-linked dynamic optimisation deals with systems where current decisions 

taken following previously found solutions, affect the system‘s future evolution of its 

optimality profile [4.17]. If weather were the only source of dynamic behaviour, then 

arguably CATM would not exhibit any time linkage. However, this is not so, because 

clearly any trajectories generated by the optimiser, and executed by the aircraft, are 

bound to alter the very constraints that characterise the future progression of the 

problem. 

This is an important consideration because it affects the choice of suitable 

algorithms. For offline optimisation to be possible, the system must simulate the effects 

of the optimisation-based decisions and sweep forward across the problem. In fact this 

is related to the receding horizon discussion that was made earlier. 

4.2.6 The Constrained Optimisation Problem 

In the case of local optimisation, constraints are usually expressed algebraically 

and reduce the size of the problem by limiting the feasible search space. There are 

efficient implementations of NLP solvers [4.15] that will perform very well, and indeed 

better, in the presence of numerous active constraints [4.19]. 

However, in the case of metaheuristic techniques, as often utilised for global 

search, the method of handling constraints is not very straight forward [4.20], especially 

in the case of population based methods such as swarm intelligence and genetic 

algorithms, which utilise pools or swarms of evolving candidate solutions to better 

explore the search space.  

Efficiency becomes a problem in these algorithms, which were originally devised 

for unconstrained optimisation [4.21]. The partly stochastic processes for generating 

new members for every subsequent population generation does not automatically 

Figure 4.2.5: Dynamic Changes to Local Quasi-Convexity 
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guarantee constraint-compliance. Therefore simple trial and error approaches (eg: 

Monte Carlo methods), would be computationally expensive, as they would imply 

testing every new member against the constraints. It is evident that if there are many 

constraints (as in CATM), performance would be adversely affected as it could take 

numerous attempts in order to generate a single feasible candidate, while discarding the 

rest. This simple technique is aptly called the death penalty method [4.22] and brings 

with it significant repercussions on population diversity. The convergence 

characteristics of the algorithm will suffer as a result of failing to capitalise on the fact 

that unfeasible candidate solutions can often contribute valuable information to the 

genetic pool or swarm. 

A number of alternative paradigms have been proposed in the literature over the 

years and a recent survey on the subject [4.23] classifies them in the following manner: 

1. Penalty Functions – These attempt to attribute a high cost to the unfeasible areas of 

the search space in a bid to dissuade searches in these areas. The penalty functions 

are often designed to provide a measure of transgression that gradually increases as 

the search moves further into unfeasible spaces. This ensures that the cost functional 

remains smooth and differentiable, while providing directional information away 

from the constraint boundaries. Many variants are possible such as static, dynamic 

and adaptive penalties, and the suitability of each is problem dependant. In practice, 

penalty functions are applicable to a wide variety of problem types and their results 

are either used to modulate the fitness function [4.24] or are simply added to the list 

of optimisation objectives [4.25][4.24]. 

2. Decoders – These attempt to remap an irregularly shaped feasible space to a regularly 

(typically rectangular) shaped version, which would then lend itself to being 

expressed as a set of simple inequalities [4.26]. Unfortunately, this is not always 

straight forward or even possible in many cases. 

3. Special Operators – These include a broad range of problem-specific operations 

conducted on unfeasible candidate solutions in order to recover their feasibility or to 

tease information from unfeasible members back into the realm of feasibility [4.27]. 

This is a very interesting approach however it seems limited to very specific cases. 

4. Separation of Objective Function and Constraints – These approaches split the 

optimisation procedure into consecutive phases. The first attempts to map out the 

feasible space by generating candidate solutions that merely meet the constraints. 

The second phase focuses on the optimality aspect. Alternatively a lexographic 

approach may be taken whereby: the better of two feasible solution is always chosen, 

a feasible solution is always chosen over an unfeasible one, and between two 

unfeasible solutions, the one with the lowest level of transgression is chosen [4.28]. 

However, although still popular, this technique has been shown to be detrimental on 

population diversity in evolutionary and swarm based techniques. 
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In the context of CATM, the following objective functions (eq: 4.2.1 – 4.2.3) 

show how constraints on obstacle and aircraft interaction or trajectory length can be 

expressed as soft-penalty cost functions. The associated caveat is that the reduction in 

constraint complexity is hereby transferred to multiple objective complexity. So the 

suitability of this approach depends on how effectively multiple objectives can be 

handled. 

Trajectory Length/Cost:   
 

      
 

      
 

  
 

   

   

 (4.2.1) 

Obstacle Interaction:   
 

       
 

    
  

 
   

   

  

   

 (4.2.2) 

Other Aircraft Interaction:   
 

       
 

    
 

   

   

   

 

   

 (4.2.3) 

where:   
 

    
 

    
 

  are the respective costs from the point of view of the n
th

 aircraft. 

       are the numbers of other aircraft, obstacles and trajectory segments respectively. 

  
 

    
  are the locations of n

th
 flight trajectory knots, and location of obstacles respectively. 

4.2.7 The Multi-objective Optimisation Problem 

The classic method used to deal with multiple-objective optimisation problems 

(MOOP) is to construct a Pareto front of non-dominated solutions, each of which is 

optimal in its own right [4.29]. Population based methods are particularly suited for 

MOOPs. In 2002 Deb et al. developed one of the best known multi-objective 

adaptations of GAs called NSGA-II [4.30]. This algorithm uses a non dominated raking 

scheme to assign fitness to population members and in doing so maps out the Pareto 

front. It has become the de facto benchmark for the field and continues to provide 

competitive results [4.31]. 

A convex Pareto front of a bi-objective minimisation problem is shown in 

Figure 4.2.6. Each solution on the front represents a unique, but optimal trade-off 

between the competing objectives. 

Solutions below this front would be 

desirable but unfeasible, given the 

constraints imposed on the system. In 

a continuously-variable problem there 

are infinitely many Pareto solutions 

and hence, human judgment is usually 

invoked to decide which trade-off suits 

this purpose or design criteria. 

Although convex fronts are common, 

it is worth noting that real world 

problems can have various other 

shapes, including disconnected ones 

and multimodal Pareto fronts. 
Figure 4.2.6: A Typical Bi-objective Pareto Front 
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Although ATM is a multi-objective problem, constructing Pareto fronts along the 

many potential objectives is not very helpful in CATM. The real time nature of the 

application means there is no time for human intervention to consider trade-offs 

between objectives in an operational environment. For this reason, the relative 

importance of each objective is pre-determined at the design stage and is then weighted 

relative to the rest with a vector, wi using one of various norms such as Equations 4.2.4 

to 4.2.6.  

Linear Norm: 

(Manhattan Norm) 
          

 

   

 

 

 

 

 

 

 

 

(4.2.4) 

Quadratic Norm:             
 

   

 

 

 

 

 

 

 

 

 

(4.2.5) 

Infinity Norm: 

(Maximum Norm) 

             
 

   

 

  

   

 

= max(              ) 

 

 

 

 

 

 

 

(4.2.6) 

where:       s the     objective of the problem 

This effectively allows the multi-objective problem to be scalarised and converted 

back into a single objective problem [4.29]. Geometrically, this is equivalent to the 

intersection of the Pareto front with a hypercurve, the shape of which depends on the 

scalarisation function used. The difficulty here lies in weighting these norms to assert 

relative importance as this seems to be a highly subjective exercise requiring expert 

input and much tweaking [4.32]. 

4.2.8 The System Wide Objective Function 

The CATM problem involves many agents, the behaviour of which can be 

individually optimised.  However, performance must be measured systemically if 

holistic performance benefits are to be obtained. This can be achieved by constructing a 

system-wide objective function. Excess distance travelled is by far the most indicative 

metric of inefficiency, with which both flying time and fuel consumption are directly 

related. With this in mind we adapt a well known ATM systemic efficiency metric 

suggested by Krozel at al [4.33] to give percentage systemic inefficiency (SI) as in 

equation 4.2.7: 

    
   

  
  

  
 

 

    
    

  

   

 (4.2.7) 

where:       for perfect direct trajectories for all flights.  
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4.2.9 The Non-Separable High Dimensionality Optimisation Problem 

A particularly challenging aspect of CATM is the sheer size of the search space, 

and this is the result of high dimensionality coupled with the large dynamic range of 

each variable. The size of the state vector of CATM is equivalent to the sum total of the 

number of states of all the agents in the system, and that includes all current and future 

flights in the optimisation horizon as given in equation 4.2.8. 

             
              (4.2.8) 

Given the laborious methods required to scan such non-convex search spaces, the 

high dimensionality results in excessively slow convergence rates for the optimisation 

process. Ordinary dynamic programming is an impractical proposition as already 

discussed, while stochastic algorithms (if applied naively) would inevitably sample the 

search space too thinly to reach any meaningful conclusions in reasonable time. 

4.2.9.1 Divide and Conquer Techniques 

One classic way of addressing high dimensionality problems is through a divide 

and conquer methodology [4.34]. When the problem allows, the simplest method 

involves using a number of separate optimisers to handle a few variables at a time, 

thereby avoiding the combinatorial explosion that results from the multiplication across 

all dimensions. Consider the N dimensional reference dynamic programming problem, 

whereby each dimension is discretized into a K-point grid. The aggregate size of this 

discrete search problem S1 is related exponentially to N as given by equation 4.2.9. 

However, if the problem can be divided into M sub-problems of N/M dimensions each, 

so the new total size of all M sub-problems is given by S2 in equation 4.2.10, the 

resulting effort is very substantially smaller than attempting to solve S1 directly. 

         (4.2.9) 

         
 

   (4.2.10) 

where:        

However, such a technique is only possible when the dimensions do not interact 

and can thus be considered separable. Unfortunately, this is seldom the case and CATM 

is almost certainly not among this class of problems. However, not all is lost because 

there are varying degrees of interaction between the variables defining the airspace. On 

closer inspection, it can be observed that some of the dimensions in the CATM search 

space are less likely to interact than others. Interaction seems to naturally cluster the 

search variables into limited groups. It should be obvious that consecutive waypoints of 

one aircraft are far more intertwined than those between different aircraft, and the 

interaction becomes far less important when considering flights over distant continents 

or flights that are months apart. Flight clustering was already discussed in the context of 

locality and network communications in previous chapters. However, it must also be 

seen as a means of partitioning the problem into manageable, limited dimensional 

portions involving a small number of highly interacting flights. Receding horizon 

optimisation can also be viewed as a means of limiting dimensionality. 
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In the context of metaheuristic algorithms, multi-population techniques have been 

proposed as one way of partitioning large problems [4.35]. One of the earliest attempts 

was described by Potter and De Jong, using a cooperative co-evolutionary genetic 

algorithm (CCGA-1) [4.36]. Here they use a genetic algorithm (GA) having a separate 

sub-population for each variable resulting in marked speciation and far less processing 

overhead than a standard GA. Cooperation between species was enforced by evaluating 

members of each population in conjunction with the best members from every other. 

Thus they concatenated their genetic material before undergoing fitness evaluation, 

giving equal credit to all components. As expected, the algorithm (CCGA-1) performed 

very well on problems with separable variables such as Rastrigin and Schwefel 

functions. However, it performed much worse than a standard GA on the well known 

Rosenbrock function that happens to exhibit high interaction between variables. This 

was improved somewhat in (CCGA-2) by altering the credit assignment aspect, by 

including vectors with randomised concatenation. 

The principles of cooperation and co-evolution have also been extended to 

Particle Swarm Optimisation (PSO) [4.37], [4.38], which is a popular swarm 

intelligence optimisation technique [4.39]. It was observed that blind decomposition of 

interacting variables could result in the spurious creation of pseudo-minima [4.37]. 

Alternative means of high dimensionality decomposition were thus proposed, using 

random groupings [4.35] and adaptive weights [4.38] and both combined, in cases 

where a-priori knowledge of interaction was unavailable. However, when such 

knowledge is available, conventional wisdom suggests grouping correlated variables 

into the same swarm [4.37]. 

All this seems to suggest that clustering in CATM should be the method of choice 

for decomposing the CATM problem into manageable portions. By assigning all 

members of one cluster to one swarm, and different swarms to different clusters, 

variable dependencies can be tackled effectively, while allowing for very significant 

complexity reduction. Demonstrating the efficacy of clustering in CATM will be one of 

the central themes of this thesis. 

4.2.9.2 Multi-Resolution Programming 

Another technique for tackling non-separable high dimensionality is through what 

is best termed as multi-resolution programming (MRP). This involves searching the 

problem space very sparsely with just a few ―sample grid points‖ per dimension. When 

the most promising region is established, a denser grid is cast in just this neighbourhood 

along all dimensions, in the hope of finding a better result. Thus the second iteration 

involves no more variables than the first but a higher spatial resolution is achieved by 

instead concentrating the search on where the global optimum seems most likely. This 

process is repeated iteratively, progressively reducing the volume of the N dimensional 

space searched at each stage. The algorithm terminates when the degree of improvement 

per iteration levels off. Such an intensification strategy can be applied to all global 

search techniques, including genetic algorithms and swarm intelligence but is best 

exemplified by iterative dynamic programming (IDP) [4.41]. 
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IDP was proposed in 1990 by Rein Luus [4.42] for application in the industrial 

chemistry sector, motivated by the fact that DP is so broadly applicable, but equally 

disappointingly impractical. In IDP, each of the N state dimensions of an aircraft is 

sampled with a uniform, but finite, discrete grid of resolution G, resulting in an array of 

N.G possible states at each time step p. This takes place for all P time stages that make 

up one trajectory, with the exception of the initial and final states, which are represented 

by just one immutable grid point as dictated by the required take-off and landing 

boundary conditions. Standard DP is used to select the optimum grid point at every 

stage which minimises the cost of the whole P stage trajectory. During subsequent 

iterations, the range of grid points is contracted by a constant factor γ, centred about the 

previously found trajectory. In [4.42], sampling the input control space rather than the 

output space, was suggested as a means to ensure feasibility of the output grid. 

However, in other cases problem reformulation was suggested as a way of avoiding 

having constraints at both input and output [4.43]. This could be interpreted as a form of 

dynamic inversion. 

The reduction of computational cost with IDP is substantial and has allowed 

problems with as many as 300 dimensions to be solved on 2001 computing hardware 

[4.44]. It is easy to see why. Equation 4.2.11 enumerates the total number of states   

that a typical ATM system can take at any time stage, if it consists of A aircraft, N states 

per aircraft and R is the desired resolution of grid points per state dimension. 

          (4.2.11) 

Then a naive brute force tree-search of the resulting ATM problem spanning P 

time stages, would result in       objective function evaluations,       comparisons 

between each result, and       additions between stages as shown in Equation 4.2.12 

                        (4.2.12) 

thus           =          (4.2.13) 

For the typical DP formulation, the decision-tree structure is stopped from 

expanding exponentially with respect to P by exploiting the overlapping substructure of 

the problem along the time axis. The number of mathematical operations is reduced as 

per Eq. 4.2.14.  

          =        (4.2.14) 

Also let the resolution R be expressed as a product        of a coarser grid G, 

and a contraction factor γ exponentiated by an integer constant I as per Equation 4.2.15. 

                   (4.2.15) 

For the IDP algorithm the number of operations is reduced further as per Eq. 

4.2.16, where I can be interpreted as the number of iterations required to reach the 

equivalent resolution of the original DP formulation,        . 

                 (4.2.16) 

An additional reduction in complexity can be had if the interaction between 

aircraft can be ignored and somehow modelled in the objective function. See equation 

4.2.17. 

                   (4.2.17) 

Thus finally:                       (4.2.18) 
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However, the mechanism of IDP and other MRPs also imply important caveats: 

The coarse initial grid, as well as subsequent iterations, risk missing many local optima 

altogether, in highly multimodal problems. Pathological cases involving narrow quasi-

convex wells might escape initial sampling, and cause the optimizer to converge 

incorrectly if one of these wells happens to contain the global optimum. IDP, in its 

original form, seems incapable of dynamic optimisation, since convergence is 

unidirectional due to grid collapse. The ability to reconverge when changes are detected 

needs to be included somehow. 

4.2.9.3 Time Dimension Exclusion 

The way to handle the time dimension is a recurring issue in trajectory 

optimisation problems. While evaluating the objective function, one might be initially 

tempted to search directly for collisions by measuring 4D Euclidian distance between all 

knot combinations in 4D space, but this gives rise to a quadratic problem at the most 

critical point. This approach would entail           comparisons for N aircraft and 

P trajectory knots during each evaluation of the objective function, which would greatly 

hamper scalability of any multi-trajectory algorithm. 

However, time is a special dimension, in that temporal location is common to all 

and motion along it can only be forward and linear, which is to say that different aircraft 

cannot be at different points along the time axis. All aircraft traverse the time dimension 

in synchrony. While this might appear obvious at 

face value, the implications are quite significant. 

It means that the search space along the time axis 

collapses to a single point, and that the remaining 

dimensions form an ordered set. Time can be used 

as a free variable. Collisions in the remaining 

three dimensions can therefore be considered one 

step at a time resulting in 3        

comparisons. This means that computational 

complexity increases linearly (rather than 

quadratically) with the number of trajectory knots. 

In an operational environment, this also implies that all trajectories must be 

synchronised to a predetermined universal time grid. Each take-off, landing and knot in 

every trajectory must align to one global time standard of discrete intervals. However, 

this is not technologically hard to implement by equipping all aircraft with high 

reliability, low jitter atomic clocks. Low cost and compact Rubidium standard atomic 

time references are available off the shelf and have a design life of over 20 years [4.45] 

(Figure 4.2.7).  

These offer excellent short term time stability of the order of 1 part in 10
12

, over 

durations of typical flights. This translates into a 10ns uncertainty (equivalent to a 

spatial uncertainty of about 3μm) over a typical 3 hour flight travelling at 800km/h, 

which is insignificant by aerospace standards. Longer term stability can also be ensured 

by locking the onboard atomic clock to GPS reference signals that are anyway received 

by most modern aircraft. 

Figure 4.2.7: Rubidium Standard [4.45] 
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4.2.9.4 Parameterisation 

We have already discussed the topic of parameterisation in the context of 

reducing communication overhead between aircraft in chapters 1 and 2. However, it 

also serves as another important method for reducing dimensionality. The underlying 

concepts are simple.  

In CATM, output flight trajectories are defined as 4D curves that aircraft are 

contractually obliged to follow closely. They specify the exact location (and hence 

velocity) of each aircraft at any point in time, from take-off to landing. This implies the 

need for a high resolution representation for the trajectories. However, rather than 

numerically solving for a dense grid of sample points, it would be advantageous to solve 

for a much reduced number of variables defining a smooth parametric curve that can in 

turn closely interpolate the desired state trajectory. There are a number of ways how this 

can be accomplished and all use some form of parametric curves [4.46]. 

Splines can be used to define trajectories as a sequence of (usually) cubic 

polynomials attached end-to-end with additional constraints placed on the continuity of 

derivatives at the junctions. 

Bezier Curves, B(t) can define trajectories in terms of a free parameter, t, a set of 

control points, Pi, and a linear combination of Bernstein polynomials,        : 

                 

 

   

                     (4.2.19) 

           
 

 
           

 

   

                         (4.2.20) 

B-Splines (not to be confused with polybeziers) are an extension of Bezier curves, 

which allow greater flexibility and control of the resultant trajectories. Their order is 

independent of the number of control points and they offer compact support (control 

points only affect the curve locally). They are defined as a linear combination of basis 

splines, which are in turn defined recursively as per the Cox-deBoor algorithm [4.47] 

where t is the free parameter, p is the order of the B-Spline: 

          
                   

                        
                          (4.2.21) 
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NURBS (or non-uniform rational B-splines) are a further enhancement of B-

splines, offering the additional ability to model conical curves. They also define 

trajectories in terms of a free parameter, t, a set of n+1 control points, Pi, and weights 

Wi, and a combination of B-Spline Basis functions,        : 

      
              

     

            
     

                       (4.2.23) 

Spectral Methods approximate trajectories as a linear combination of continuous 

functions       that span the entire time interval tf – ti of the trajectory. These methods 

include the Fourier series, the Laguerre series and the Chebyshev series, depending on 

the choice of kernel function      . For some curves, accurate representation requires N 

= ∞, but more importantly, good approximations can often be achieved with much 

smaller N. 

              

 

   

                           (4.2.24) 

4.2.9.5 Convex Hull Property of Beziers, B-Splines and NURBS  

Some curves, such as NURBs also exhibit the very useful property that guarantees 

that the interpolated trajectory is fully enclosed within the convex hull produced by the 

knots defining the curve. If the hulls can be shown not to intersect, then the resulting 

trajectories are mathematically guaranteed to be conflict free. This can greatly simplify 

formal verification at a later stage. The significance of this in the ATM context is quite 

remarkable. 

The hulls are derived from a weighted combination of the vertices forming a 

tubular polytope that defines the feasible region joining the departing point to the 

destination. The finite number of vertices of the polytope defines the 4D NURBS 

trajectory contained within it, which can be uniquely generated at an arbitrarily high 

resolution, as necessary. By extension of the convex hull property, it can also be easily 

shown that non-intersecting polytopes also imply non-intersecting trajectories.  

4.2.10 Flight Interaction with Finite Resolution Trajectories 

The limited discretization resolution of trajectories can lead to certain 

pathological cases that must be avoided with the appropriate provisions. It is for 

example conceivable that two trajectories intersect in 4D space such that none of the 

sample points breaches minimum-separation criteria, while still colliding in each other‘s 

inter sample interval as shown in Figure 4.2.8. This problem does not arise if the 

sampling rate is increased, but this comes at the cost of higher dimensionality and the 

associated difficulties. Thus, the sampling rate must be increased no more than 

absolutely necessary.  
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The following analysis can therefore form 

the basis for deciding the minimum sample rate 

for such trajectories. Figure 4.2.9 shows the 

worst case scenario of two trajectories 

intersecting at the midpoint between their 

respective sample points. The worst case 

scenario arises when the angle of approach 

reaches 180° - a head on collision. The CATM 

optimiser algorithm is designed to penalise 

trajectory pairs only when the Euclidian 

distance between corresponding time samples 

differs by less than a            

If we assume that this condition is 

observed by the optimiser, then we must also 

ensure that no two flights can get closer than 

     in the inter-sample point gap. It is simple to 

see that if the distance between sample points is 

less than     , then this scenario will not arise. 

If two flights flying on a head-on collision course 

fail to breach this minimum before the collision 

point, they will certainly breach it at the 

subsequent sample point if the sampling 

resolution is better than     .  This will be thus 

be detected by the optimiser. 

However, this again assumes a spherical buffer zone and thus Euclidian distances 

are being used by the optimiser, but it turns out that the Euclidian norm (Eq 4.2.25) is 

computationally intensive (Eq. 4.2.26) and it is desirable to simplify such distance 

calculations as much as possible, given that they must be performed billion of times. 
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       (4.2.26) 

We can obtain a significant simplification by using octahedral buffer zones instead of 

spherical ones. This is shown in Figure 4.2.10 where it can be seen that if the aircraft 

lies at the centre of the octahedron, the closest points between its surface and the aircraft 

are in the middle of the octahedron‘s faces. This is taken into account using basic 

geometry in equation 4.2.27 where it can be seen that the octahedron buffer zone relies 

on simple arithmetic such as subtraction and modulus, that are much faster to compute 

than squares and square roots. Therefore, satisfying this inequality means that the 

aircraft are at least      apart. If not, a penalty will be applied to the two offending 

flights. 

             
 

  
   

   

  
    

 
 

  
  

 
   

  
     

 

  
   

   

  
      (4.2.27) 

 

Figure 4.2.8: Inter Sample-Point Conflict  

tk+1 

tk+1 

tk+2 

tk+2 

tk 

tk tk–2 tk–1 

tk–2 

tk–1 

Figure 4.2.9: Worst case scenario θ   180° 
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Using 5km separation limits implies that the trajectory discretization resolution 

must exceed 2000 points for a 10,000km journey. This is computationally unfeasible 

given the large number of flights involved. However, much of the flight consists of 

straight lines and a few smooth curves, mostly circular due to coordinated-flight 

requirements. Thus, interpolation using smooth functions such as NURBs is a practical 

alternative that should result in high accuracy results. A 20:1 up-sampling  ratio results 

in just 100 points per flight that need to be determined by the optimiser, while the 

NURB interpolator fills-in the rest. In order to ensure that the interpolated trajectory 

meets all the constraints, all fitness or cost evaluations are conducted on the interpolated 

version of each flight while the optimiser determines the knot values defining the 

NURB. 

4.2.10.1 Combination Techniques 

In summary, after having discussed the various ways of handling high 

dimensionality problems, it is worth noting that these are not mutually exclusive ideas. 

In fact a combination of techniques is a very promising way forward. MRP already has 

a lot in common with evolutionary algorithms as well as swarm intelligence. The latter 

methods start with large populations spanning the entire search space and with every 

iteration they converge to examine ever smaller search-space volumes. So it may be 

interesting to explore the idea of explicitly contracting population diversity over each 

iteration, in order to better control the intensification process. Conversely, it would also 

be interesting to explore the possibility of using DP as a mechanism of optimal 

crossover in genetic algorithms. Parameterisation would be desired in either case.  

Figure 4.2.10: Octahedral and Spherical Buffer Zones Surrounding Aircraft Positions  
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4.3 GLOBAL OPTIMISATION PHASE 

We shall now proceed to describe in some detail some of the algorithms that have 

been explored in this work. These have been implemented and adapted for the 

combination of characteristics that arise in CATM. 

4.3.1 Search Techniques 

With optimisation being one of the most heavily researched subjects ever, a full 

taxonomy of optimisation methods would be beyond the scope of this work. However, 

after substantial review, we lay our focus on two important classes; Deterministic single 

solution searches and meta-heuristic population-based searches. We further narrow our 

focus into three important sub-classes of global optimisation algorithms, as shown in 

Figure 4.3.1 

 

 

4.3.1.1 Deterministic Single Solution Searches 

A deterministic single-solution search constructs (or performs incremental 

improvements on) one candidate solution. If exhaustive, it is guaranteed to eventually 

find the optimal solution in any multimodal problem. Continuous search spaces, may be 

discretized as finely as necessary to convert them into a combinatorial optimisation 

problems. One can then transcribe all the possible choices, into a tree graph, and search 

it for the best outcome. However, for obvious reasons it is impractical to naively scan 

every branch, except for very small problems. Instead, one of a number of techniques 

(or heuristics) can help organise, and prioritise the search as efficiently as possible. 

Branch and bound, greedy search, A*, B* and D* are just some of the many 

possibilities.  

4.3.1.2 Meta-Heuristic Population-based Searches 

Meta-heuristics have witnessed a dramatic increase in popularity [4.48], and yet a 

unifying definition of this class of algorithms remains elusive. A recent definition was 

given by Sörensen and Glover: 

“A metaheuristic is a high-level problem-independent algorithmic framework that provides a set of 

guidelines or strategies to develop heuristic optimization algorithms.... Metaheuristics are therefore 

developed specifically to find a solution that is “good enough” in a computing time that is “small 

enough” [4.49] 

Population based methods, iteratively generate a large number of candidate solutions, 

part stochastically, part heuristically, to sample the search space as widely as possible. 

Global 
Optimisers

Deterministic
Search

Dynamic 
Programming

Iterative Dynamic 
Routing  (IDR)

Meta-Heuristic
Search

Evolutionary 
Algorithm

Real Coded Genetic 
Algorithm (RCGA)

Swarm 
Intelligence

Particle Swarm 
Optimisation (PSO)

Figure 4.3.1: Algorithms considered for CATM global search 



 

 

 

149         COMPUTATIONAL INTELLIGENCE IN CATM 

 

4.4 DYNAMIC PROGRAMMING 

An exhaustive search called dynamic programming (DP) was developed by 

Richard Bellman in 1953. This provides a comprehensive solution to multistage 

optimisation problems which can be transcribed into a number of sequential decisions in 

which the outcomes of those preceding, bear an effect on future ones [4.50]. This is 

particularly useful when a decision tree diagram can be folded into a trellis-shaped 

graph, in which case the problem can be termed as having an optimal substructure. In 

this case, DP reduces the number of operations, compared to a brute-force tree search, 

as we have seen earlier. 

4.4.1 Bellman’s Principle of Optimality 

 ―An optimal policy has the property that whatever the initial state 

and initial decision are, the remaining decisions must constitute an 

optimal policy with regard to the state resulting from the first 

decision.” [4.51] 

Thus restating the principle of optimality in mathematical terms, the Bellman 

equation is given recursively by 4.4.1 for combinatorial optimisation problems with 

optimal substructure. As commonly formulated, this is solved by backward induction, 

starting from the desired terminal state    and ending with the initial state   . However, 

by simple symmetry, we can also opt for the forward recursive version as in equation 

4.4.2 

Reverse:           
       

                     (4.4.1) 

Forward:             
       

                   (4.4.2) 

where:    is the system state vector at step k 

   is the action vector at step k (also called the control policy function) 

         is a discount factor to optionally modulate the cost of early controls 

      is the feasible space for choosing   , as a function of state    

       is the objective/value function, ie: the cost-to-go from    to     

       is the objective/value function, ie: the cost incurred from    to     

         is the utility cost of taking action    to change state         

(4.4.3) 

Similarly, the same ideas can be further extended to the continuous time domain 

as expressed in the reverse and forward versions of the Hamilton–Jacobi–Bellman 

(HJB) equation of 4.4.4 and 4.4.5 respectively. 

Forward HJB:             
       

              
    

 

                  (4.4.4) 

Forward HJB:                   
       

              
    

 

            (4.4.5) 

The Principle of Optimality and the Bellman equation are put into practice 

through dynamic programming. Using spatial path planning as an example, Figure 

4.4.1 shows how a weighted, directed, decision graph representing all the possible 
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trajectories towards a goal, can be traversed. In this routing problem, each node 

represents a spatial location and is associated with a cost. This cost is the minimum cost 

incurred to get to that location.  

 

 

 

 

 

 

 

 

The nodes are arranged in stages, which can either represent snapshots in time, or 

if time itself is among the searched dimensions, then each stage is some dimensionless 

ordered quantity. Each edge represents a feasible transition between two locations, and 

carries an associated transition cost. The initial state (or location), shown to the left 

carries a cost of zero. The DP algorithm proceeds to compare the incoming transitions at 

each node, by adding each transition cost to its source node cost, respectively. The 

minimum cost branch entering each node is thus selected and forms the basis of 

assigning cost to the current node. The process continues at each node until every node 

has been assigned a cost. In line with Bellman‘s principle, at any stage one need not 

consider what prior decisions have been taken at any prior stage. One is only concerned 

with minimising the incremental cost associated with the current stage. When the final 

stage is reached, the same process is repeated. The last decision taken between the 

incoming transitions, effectively determines which of all the incoming routes was 

globally optimal. 

4.4.2 Structured Dynamic Programming 

It is clear, from the forgoing that this broad-spectrum optimisation procedure, is 

exhaustive, and makes no assumptions of convexity. However, the single greatest 

limitation is related to the size 

of the state vector and the 

associated resolution of 

discretization. A coarse grid 

gives meaningless results, 

while a fine grid would make 

the problem intractable when 

the state vector is large. In 

order to reduce problem size 

somewhat, one may 

heuristically structure the grid (Figure 4.4.2) such that it loosely follows the expected 

―reasonable solution‖ space. This can greatly trim down the search space but may re-

introduce some bias, if not done carefully. This is in fact one way of applying path 

constraints to the problem. 

Figure 4.4.2: Structured Output Search Space with Obstacles 

Figure 4.4.1: Forward Induction Dynamic Programming 
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4.4.3 Iterative Dynamic Routing 

Iterative dynamic routing (IDR) is a multi resolution dynamic programming 

technique inspired by IDP, but specific to spatial, time-variant path planning problems. 

The same concept can be augmented to include the entire ATS system state vector 

coupled with time.  With the addition of aircraft models, multiple traffic and airspace 

restrictions, the edges of the graph can be assigned an appropriate cost, and these 

algorithms can be used for full 4D trajectory generation. However, for clarity we are 

hereby limiting diagrams and descriptions to a simple 2D or 3D spatial path planning.  

In IDR the search space is contracted gradually over several passes, while 

retaining the same number discretization levels per dimension. Each contraction is kept 

centred around the optimal result of the previous pass. This increases the effective 

spatial resolution of the grid, while avoiding problem growth, thus allowing for more 

refined searching in the vicinity of the expected global optimum. Figure 4.4.3 shows 

the result of a first pass through the structured search space, while Figure 4.4.4 shows 

the second pass after contraction. This goes on as long as necessary until some 

convergence criteria are met.  

 

 

 

 

 

 

 

 

 

This algorithm was tested in a number of scenarios and several observations can 

be made. Figure 4.4.5 shows a single aircraft negotiating a large obstacle in 2D space. 

The objective is finding the minimum distance path between the given terminals while 

clearing the obstacle. This problem is clearly non-convex with two obvious local 

minima. The aircraft may either fly above or below the obstacle. The feasibility 

constraints caused by the presence of the obstacle are handled using a hard penalty 

function        of the form:  

obstacle:                  
      

 

  

 
      

 

  

 

   

  (4.4.6) 

        where:       define the geometric centre of the object 

      define the relative width and height of the object 

    defines the degree of eccentricity of the object 

    creates an ellipsoid, while     creates a rounded rectangle  

       gives the penalty associated with spatial location       

    represents the magnitude of the penalty when       overlaps the object 

    defines the perimeter of the object 

(4.4.7) 

Figure 4.4.4: Second pass: Search Space Contracts by a constant factor γ 

Figure 4.4.3: First Pass of a structured ITR problem 
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In Figure 4.4.5 (a) one can observe the initial structured grid that explores the 

airspace in coarse manner. In this implementation, the grid spacing is cast randomly 

rather than uniformly as described earlier. This seems to improve exploration. As can be 

seen, on the very first iteration the algorithm determines which of the two possible 

minima seems most promising. All paths that terminate within the unfeasible space are 

not pursued further due the high cost incurred by the penalty function. The selected path 

in (a) forms the basis for casting the subsequent contracted grid in (b) and in (c) the 

collapsed grid is shown. 

 

 

 

4.4.4 Counteracting Collapse 

The defining feature of IDR also generates its major flaw: As described so far, it 

only works with static value functions. The gradual contraction of the search space on 

every iteration, restricts the algorithm from being able to adapt to any changes in the 

search space. If after initial convergence, in the global optimum shifts to a region 

beyond the volume of the currently searched space, as would happen in a dynamic 

problem, the algorithm will fail to re-converge to this new optimum. A mechanism is 

therefore required to allow the system to detect and track changes.  

A technique was developed and tested as part of this work to address this 

problem. It allows the search space contraction to be reversed and hence re-expanded 

when dynamic behaviour is detected. Taking a 3D problem as an example, it involves 

dividing the grid into three zones:  

 The inner contractile search grid surrounding each optimal node  

 Two concentric auxiliary ring grids also centred round the optimum 

o Ring A: Also contractile, however it uses a smaller contraction factor, γ 

o Ring B: Set at an absolute distance from the contractile grid perimeter 

 

Figure 4.4.6 demonstrates this arrangement graphically for one stage. These 

additional rings contribute towards the local discretization of the search space, and over 

each pass DP works as usual to determine the optima path through the grid. However, if 

the optimum is time invariant, then these rings are not likely to ever coincide with the 

optimum, since the direction of grid contraction between subsequent passes is always 

centred around the optimum. But this will change if the location of the optimum begins 

     (a)  1
st
 pass                                    (b) 10

th
 pass                                     (c) 20

th
 pass 

Figure 4.4.5: IDR Path Planning progress in 2D with static obstacle 
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to shift. In this scenario, the optimum might move closer towards Rings B or A. When 

this is detected, by DP, the contraction is reversed, on the assumption that the optimum 

may have moved beyond the current search space. The expansion continues for as long 

as the optimum appears to strike the rings.   

 

 

 

 

 

 

 

 

 

 

This arrangement has been empirically demonstrated to be effective to deal with 

dynamic problem where the global optimum shifts slowly with respect to the time it 

takes to compute a single IDR pass, as shown progressively in Figure 4.4.7 (a) and (b) 

  

 

 

However, another problem remains. Although the augmented algorithm is able to 

track optima, it is unable to determine whether the tracked regional optimum is still the 

global optimum. For this scenario as shown in Figure 4.4.7 (c) and (d), the result is that 

the optimiser remains trapped in the local minimum and there seems to be no better 

option other than to restart the IDR regularly, to discard previous assumptions, but this 

is computationally costly. 

 

 

 

     (a)                                      (b)                                     (c)                                      (d) 

Figure 4.4.7: IDR Path Planning, after initial convergence in 2D with a dynamic obstacle 

Figure 4.4.6: Countering Collapse in IDR 
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4.4.5 Multi Aircraft Approaches with IDR 

Handling multiple aircraft with IDR is not a straight forward issue. Naively 

concatenating the state vectors into a single all-encompassing problem leads to 

unacceptable search space growth. So there are three other possible ways worth 

exploring: 

1) One approach recognises the role of locality. Under this paradigm, trajectories are 

ordinarily solved independently. However, when it is established that any two or 

more trajectories are likely to intersect in 4D space, those trajectories are then solved 

collectively using IDR after concatenating their state vectors. This has the potential 

to greatly reduce the size of the problem by limiting combinatorial growth to isolated 

clusters involving flights with direct interaction, but there is one caveat: Trajectories 

can form chains of dependencies, through their interactions. This makes the size of 

the problem potentially unbounded within a cluster. 

2) Another approach involves the use of a polygrid. This is when then discretization 

grid changes dimensionality along the trajectories. For segments of flight with no 

interaction, flights are optimised in an isolated manner. However, when two or more 

flights interact, a portion of trajectory surrounding that interaction is solved by 

concatenating state vectors. This limits the interaction to just small sections of the 

trajectories, much like CD&R, and hence reduces the risk of unbounded cluster 

growth. However, some issues remain on how to handle the changeover between 

grids of differing dimensionality. 

3) A third approach is that of representing flight interactions using penalty functions. 

This simplifies the problem, by allowing each aircraft to essentially solve single 

flight problems in a fixed obstacle field. However, at every iteration, the remaining 

flights are treated as static obstacles that collectively generate an additive penalty-

field that can be used to calculate the cumulative penalty of taking any particular 

route. The objective of this Reduced Order IDR (ROIDR) is to find the path with 

minimum interaction through the field. The disadvantage however, is that, like all 

penalty functions, the outcome is highly dependent on the many parameters that 

would define such penalty functions. Figure 4.4.8, shows a simulation result of a 

typical pathological scenario. This involves three flights that would ordinarily 

intersect at a point as shown in (a). The ROIDR successfully finds a good solution 

(b). However, it is difficult to ascertain whether this is indeed optimal. It can be 

argued that the calculated manoeuvres are exaggerated. Hence, this would require 

substantial manual fine tuning to achieve optimal results. 

 

            (a)  1
st
 pass 3 flights                         (b) 50

th
 pass 3 flights                        (c) 50

th
 pass 5 flights 

Figure 4.4.8: ROIDR Path Planning progress with 3 or 5 interacting flights in 2D space 
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Although, a substantial improvement in convergence rate can be obtained with 

IDR, enough to optimise one or a few aircraft trajectories at a time, this is not quite 

sufficient to deal with the multi-aircraft problem holistically, particularly when this 

involves thousands of flights. Not only does it not scale too well, but the techniques 

used to simplify the problem, also defeat DP‘s resilience from getting trapped in local 

optima. This is clear in Figure 4.4.8 (c) when the number of aircraft was increased to 

five. The departure from the shortest path is quite stark and the level of sub optimality is 

uneven between aircraft. This can be attributed to insufficient exploration of the search 

space and premature convergence. A different approach is therefore required, that is 

better suited at exploration without the associated combinatorial dimensionality 

expansion. We now move to probabilistic metaheuristic techniques. 
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4.5 EVOLUTIONARY ALGORITHMS 

Evolutionary algorithms (EA) are metaheuristics inspired by the Darwinian theory 

of natural selection. They were first proposed by Alan Turing in the 1950s  in a 

philosophical article about computing machinery and intelligence [4.52], but they only 

gained popularity as a machine learning tool following the work by John Holland in the 

1970s [4.53].  

4.5.1 Genetic Algorithms  and Evolutionary Programming 

 The main concept of Evolutionary Programming (EP) revolves around 

maintaining a diverse simulated population of individuals whose genetic identity, is 

subject to mutation, and selection based on the suitability of each individual to survive 

in a given environment. Genetic Algorithms (GA) add the notion of mating and 

reproduction to the EP metaphor.  

In optimal control terms, an individual represents a candidate solution to the 

optimisation problem. Its genetic identity represents the associated control policy. 

Mutation is the introduction of random variations into each solution. Suitability is 

defined as the ability to score highly when evaluated by the objective function. Selection 

is the process of discriminating between the strongest (most suitable) and the weakest 

(least suitable) solutions from the population. Surviving relates to being favoured in 

terms of reproductive prospects. Mating is the process of randomly combining traits of 

different candidate solutions, and as a result of reproduction, new candidate solutions 

are generated with increased diversity. The environment represents the problem to be 

solved. The algorithm is run over several iterations called generations until some 

stopping condition is met. 

4.5.2 The Fitness Function         

The fitness function is a scalar mapping between the objective (cost) function to a 

real valued figure of merit that indicates the relative suitability of a solution with respect 

to other candidates. The mapping need not be linear, but it should be monotonic. Every 

individual is evaluated by this user-defined application-specific operator that assigns 

fitness to each member in the population. For multi-objective problems, several fitness 

functions are used; one for each objective. These functions are evaluated millions of 

times in the inner loop of the GA and thus execution speed is of the essence. Great care 

is expended in making these functions as lightweight and optimized as possible. 

4.5.3 Chromosome Encoding 

In a genetic algorithm, the chromosome is a digital schemata [4.56] or a multi-part 

blueprint that holds all the information related to any member in the evolving 

population. There are a number of ways of constructing such chromosomes and this 

depends on the underlying nature of the optimisation variables. Thus, chromosome 

construction is problem specific. In the early years of the field there was much debate 

over the coding methods for GAs, with one faction favouring optimisation at the 

genotype level and others directly at the phenotype. Many real world problems benefit 

from the latter paradigm because there is less risk of losing information in the 

translation from real-domain to representation-domain. 
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4.5.3.1 Binary Coded Genetic Algorithms (BCGA) 

For discrete domains, the chromosomes might consist in the concatenation of 

binary values representing a sequence of choices, where each bit represents a gene in 

the chromosome. This is called binary encoding and has been shown to represent the 

maximum size of schemata per bit of information [4.56]. This is useful for representing 

discrete combinatorial problems, and for many years this was the default 

implementation. 

4.5.3.2 Real Coded Genetic Algorithms (RCGA) 

For continuous variables (like waypoint coordinates) binary coding is not 

appropriate, since it would imply that some bit changes will have a much higher 

significance than other bits in the chromosome, causing Hamming cliff artefacts, 

particularly if the variables are represented as floating point numbers. This happens 

when a bit flip has a disproportionate effect on a variable, which is undesirable during 

the final intensification stages of the optimisation run. Efficiency is also impaired, 

because in the initial stages, the optimiser finds itself wasting far too much effort 

exploring the effect of bit flips of little significance. Thus, for a real-coded genetic 

algorithm (RCGA [4.56], [4.57]), the chromosomes typically consist of vectors of real 

numbers, where one gene is represented by one variable. In the case of trajectory 

optimisation these might be waypoint vectors, or aircraft control input vectors. This is 

called value encoding [4.58]. 

In this work, trajectory optimisation is being carried out in the output domain and 

therefore phenotype representation is used, where chromosomes simply consist of real-

valued vectors of genes that define the spatial 3D knots locations along the trajectories. 

However, in order to allow better compatibility during crossover, these vectors define 

the spatial knots indirectly. Each vector element defines the difference between knots in 

the trajectory rather than the absolute knot locations. Although the goal is to generate 

4D trajectories, time is not included in the search space, because this can be used as a 

free variable to synchronise all flight knots and simplify fitness functions considerably.  

These vectors are initialised quasi randomly with the observance of some basic 

constraints such as terminal constraints. Equations 4.5.1 describe the process. 

initialisation: 
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(4.5.1) 

chromosome:   
     

 
 
    

 
 
    

 
 
   (4.5.2) 

where: 

  is the numbers of knots (or genes) in a trajectory. 

        is a vector valued function that generates K random variables. 

  is the chromosome number. 

  
  represents the initialised chromosome for the n

th
 member in population 

  
 

 
    

 
 
    

 
 
  represent the initialisation value for each dimension 

  
 

 
    

 
 
    

 
 
  represent three vectors of random numbers 
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 elements of their respective vectors. 

  
 

    
 

    
 

  represent origin of each trajectory in 3D space 

  
 

    
 

    
 

   represent destination of each trajectory in 3D space 

(4.5.3) 
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4.5.4 Selection 
Selection is the process of favouring the fittest members in a population for 

survival and further dissemination of their genetic information. Selection also discards 

the weakest members, making way for offspring of the best parents. This process is 

inspired by natural selection whereby the fittest members of any species survive to 

procreate, thereby carrying over the genes that gave them the very advantage that 

allowed them to survive. In a GA, selection is enforced artificially using any one of 

various schemes. The key parameter here is called the selection probability and is 

computed as a function of fitness. 

4.5.4.1 Selection Pressure 
This selection pressure is what guides the GA optimizer, and without which GAs 

would be little more than glorified random searches. However, a balance must be struck. 

If too much selection pressure is applied (by weeding out too many of the weaklings) 

the GA will fail to suitably explore the search landscape by discarding potentially 

important information too early. This leads to premature convergence and is likely to 

get the GA trapped in the nearest local optimum. Population diversity is the principle 

resource that the GA draws upon to make progress. 

On the other hand, too little selection pressure will result in far too much 

exploration and far too little exploitation. Exploitation is the term used in this context to 

signify refinement of solutions. This exploration v.s. exploitation balance is central to 

the idea of evolutionary metaheuristics. The focus of the optimizer tends to shift over 

the time, in general it is desirable to perform as much exploration as possible in the 

initial stages to identify the most promising regions of the search space. The objective 

shifts somewhat towards the end of the run, where the focus is on establishing the exact 

optimum in the selected well.  

The main problem lies in the deception that some search spaces pose. What may 

initially seem to be a very promising region might turn out to be less optimal than others 

after exploitation is finished. Conversely, what may initially seem to be an uninteresting 

area to exploit may actually contain the global optimum. This highlights the needs to 

maintain sufficient diversity in the population, such that exploration never halts entirely.      

4.5.4.2 Selection Techniques 

Proportional Selection [4.53], is the classic method originally proposed by 

Holland. The selection is random. However, a selection probability is assigned in 

proportion to the fitness of the population members in relation to the rest as shown in 

Equation 4.5.5 below. After the probabilities have been assigned, a pie chart of all 

population members is constructed using their relative fitness value as the chart metric. 

Roulette Wheel Selection, (as seen before in Figure 3.8.7 in chapter 3) is used as many 

times as necessary to select parents for carryover or crossover.  

     
   

    
  

     
   

   

 where: 

     
    is the selection probability of Chromosome 

i 

    
    is the fitness of Chromosome i 

  
   is the Chromosome of population member 

n 

N  is the size of the population 

(4.5.4) 
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Rank Selection sorts all the members of the population by their fitness value. The 

probability of selection is then increased linearly according to the rank order in the list. 

Roulette Wheel Selection is then used as before. This method of selection favours 

weaker members by assigning them a probability disproportionately large compared to 

their raw fitness value. This method slows down convergence but allows greater 

exploration. However, selection pressure can be adjusted by truncating the ranked list as 

required. 

Tournament Selection [4.54], is a popular technique that uses very few 

comparisons (logarithmic) to select members from the population. A number of random 

members are paired and compared pairwise in terms of fitness. The winner of each pair 

is paired with the winner of another pair and the process repeats similar to a football 

tournament, until a winner is declared. The tournament is conducted as many times as 

there are parents. Selection pressure can be adjusted by changing the tournament size, 

with small tournaments favouring weaker members. 

Steady-State Selection, also called Parental Persistence, is the process of 

allowing the majority of the parents to survive to the next generation, with a few 

offspring generated from the best members replacing a few of the weakest members of 

the previous generation. This requires a technique to avoid wasting computational 

resources on revaluating the same members all over again. 

Elitism is the process of setting aside a few of the very best members of the 

population for repeated inclusion into the subsequent populations. This is a very 

effective technique that guarantees that the GA never loses good solutions once they are 

found.  

Idealism is an intuitive but very effective technique introduced by the author 

specifically for trajectory optimisation work. Genetic algorithms have been heavily 

criticised in the past for their inability to fully exploit the tremendous quantity of 

information present in the search landscape [4.55]. This makes them very inefficient 

compared to gradient methods for solving convex problems (albeit CATM being non-

convex, which rules out gradient methods anyway).  

However, in ATM, the ideal (but impractical) solution is typically known. It is 

obviously the straight line joining the departure to destination points. It so happens that 

this naive solution already contains most of the information needed to solve the 

problem. It simply needs to be adjusted to take into account realistic constraints. Even 

though it is clearly unfeasible, it can provide significant suggestive information on 

where the global solution might be located. By including the ideal solution into the 

population, the GA will occasionally crossover this ideal member with other members 

to generate offspring that are superior to both. Thus, the GA is immediately guided 

towards regions in proximity of the global optimum and this increases the rate of 

convergence. 

  



 

 

 

COMPUTATIONAL INTELLIGENCE IN CATM 160 

 

4.5.5 Crossover 

 Very often population members have complementary strengths and weaknesses. 

This is also true in the case of biological systems. Mating is the process of mingling 

genetic material from the parents in various ways to generate unique offspring with new 

genetic identities arising from different combinations of the parent‘s genetic heritage. 

The process of combining genetic blueprints is called crossover. Several offspring can 

thus be produced from a highly varied range of possible parental gene permutations. 

There are numerous ways of performing crossover and they are highly dependent 

on the type of encoding that is adopted by the chromosomes. The interested reader in 

referred to various surveys on the subject [4.57]. Several techniques that are applicable 

to value encoding were implemented and tested and are described in Table 4.5.1. 

The random confluence of genes from the parents results in some combinations 

that might be detrimental to the resulting offspring, particularly when unfavourable 

genes converge into the same chromosome. However, it is equally likely that enhanced 

offspring, that are better than either parent, are generated by combining the best 

characteristics of each. This makes crossover one of the most powerful operators in GAs 

and is particularly important in the case of trajectory optimisation. The process of 

Crossover Techniques Parents Offspring 

Single Point (Simple) Crossover [4.60]: uses a single crossover point 

at a random position along the parent chromosomes. These are then 

sliced at the same relative point and the two parts (called oligomers) 

are swapped and spliced to generate two new offspring 

  

Two Point Crossover: extends single point crossover with a second 

random crossover point. Each chromosome is split into three 

oligomers which are then alternately recombined into two 

complementary offspring. 

  

Multipoint Crossover: generalises two point crossover to multiple 

points and disperses parental contribution. It gives good results with 

trajectory optimisation. Two complementary offspring are generated 

as a result. 

  

Uniform (Discrete) Crossover [4.62]: consist of fine grained random 

swaps of genetic data between the parents to produce offspring with 

highly uniform contributions from both 

  

Flat Crossover [4.59]: is another fine grained method where the 

offspring receive randomly weighted sums of individual genes taken 

between the parents to produce offspring with highly uniform 

contributions from both.  

  

Arithmetic Crossover [4.60][4.61]: combines parents using a 

weighted average (or other math operator) and will produce a single 

offspring. However, more offspring can be produced by modifying the 

arithmetic operator or weighting parameters. 

  

Multi-parent Crossover [4.63]: extends several of the 

aforementioned techniques to more than two parents at once, resulting 

in a broader variety in the offspring produced. However, the advantage 

of having multiple parents depends on the context 

  

Table 4.5.1: Some Crossover Techniques Applicable to Real Coded Genetic Algorithms 
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crossover is governed by a factor called the crossover probability that determines the 

likelihood of crossover occurring between the parents. This is usually high (85% to 

95%) as failing to crossover would generate offspring that are essentially replicas of the 

parents. 

4.5.6 Mutation 

While crossover combines traits across individuals to trade diversity for fitness, 

mutation is the process of introducing new diversity into the population to partly 

counteract the loss of it. This can be achieved in ways related to the manner of 

encoding. In the case of binary encoding, a few bits are flipped randomly along the 

chromosomes of some individuals. In the case of value encoding, real valued noise 

replaces or is arithmetically added to some genes in the chromosomes.  

Mutation Technique Originals Mutants 

Random Uniform Mutation [4.60]: replaces a randomly selected gene 

in a chromosome and replaces it with a random real number taken from 

a uniform distribution restricted to the ranges imposed by the problem 

constraints. The number of chromosomes affected is governed by the 

mutation rate that is kept constant throughout the problem. 

  

Non-Uniform Mutation[4.60]: adds a random real number to a 

randomly selected gene in a chromosome. This number is taken from a 

uniform distribution restricted to ever decreasing ranges depending on 

the generation count of the algorithm. The number of chromosomes 

affected is governed by the mutation rate that is kept constant 

throughout the problem. 

  

Scheduled Mutation: adds a random real number to a randomly 

selected gene in a chromosome. This number is taken from a uniform 

distribution restricted to ever decreasing ranges depending on a 

schedule. The number of chromosomes affected is governed by the 

mutation rate that decreases from 50% to 1% by generation number 

according to a hand tuned schedule. 

  

Table 4.5.2: Some Mutation Techniques Applicable to Real Coded Genetic Algorithms 

The probability of mutation (or amplitude of noise) is usually kept very low, in 

the order of 0.5% to 2%. Low rates of mutation help the optimiser refine the final 

solution, reaching better outcomes over time. High mutation rates cause disruption and 

tend to damage good solutions, thereby hampering convergence. While a zero mutation 

rate would limit the optimiser‘s convergence asymptote 

by the diversity of the initial genetic pool.   There again 

are a number of ways in which mutation can be applied 

in GAs. Table 4.5.2 lists but a few. For a more detailed 

comparison see [4.57]. In this work, scheduled mutation 

was used because of its flexibility.   Table 4.5.3 shows a 

typical mutation schedule being used for trajectory 

optimisation problems. 

Gen. Rate Magnitude 

0+ 10% 0.95 

10+ 8% 0.96 

50+ 6% 0.97 

100+ 4% 0.98 

150+ 2% 0.98 

200+ 1% 0.99 
   

Table 4.5.3: Mutation Schedule 

GEN = 10 

GEN = 100 

GEN = 1000 

GEN = 10000 

GEN = 10 

GEN = 100 

GEN = 1000 

GEN = 10000 

GEN = 10 

GEN = 100 

GEN = 1000 

GEN = 10000 
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4.5.7 Speciation 

One of the ways of safeguarding against diversity collapse is to maintain separate 

populations. This results in speciation since genetic drift causes different genes to be 

lost or magnified when evolution goes down different paths in isolation. This is a well 

know effect in biological systems that is observed when organisms are marooned on 

separate islands. With fitness sharing [4.64], each species settles at a separate local 

optimum. This is analogous to organisms adapting to separate niches in an ecosystem.  

However, in a multi-objective problem, if selection pressure favours one objective 

over another, the subspecies evolves to optimise that objective.  For a large multi-

objective optimisation problem, this can be done with each objective in turn having a 

separate population biased towards each objective [4.65], thereby increasing overall 

diversity by virtue of isolation. Genetic material from each subpopulation can then be 

crossed over to generate new individuals with separately optimised traits. An alternative 

involves migration, where a few individuals from the subpopulations are swapped at 

random. 

A well known related technique (NSGA-II) proposed in 2002 by Deb et al. [4.30] 

uses non-dominated sorting to avoid diversity collapse for multi-objective problems. 

This type of sorting favours Pareto optimal solutions and ranks all other population 

members into concentric Pareto shells, thus removing all selection pressure between 

Pareto optimal solutions. It uses an elitist approach which preserves Pareto optimal 

members from one generation to the next. New members are generated by crossing over 

members lying on the Pareto front, which intrinsically guarantees complementary 

diversity of the parents.  

4.5.8 Coevolution 

In CATM, the problem arises on how to strike a balance between competing 

flights vying for the same airspace. Optimising one flight at the expense of another is 

not a good option. A global solution is desirable such that minimizes the cost (or 

maximises fitness) across the entire fleet. A logical way of attempting to reach such a 

solution is by concatenating the genetic material representing each flight into a single 

super-chromosome. This would conceptually automatically deal with minimising 

overall cost by evaluating fitness over the whole fleet. The problem with this approach 

is one of dimensionality. The resulting exponential growth of the search space dilutes 

the GA efforts to the point of zero progress. The GA will then fail to converge 

(sensibly) due to the lack of coverage. 

It turns out that a very effective technique to deal with high dimensionality can 

again be drawn from nature [4.66]. Different species in nature share the same 

environment and thus tend to affect each other‘s evolutionary path, particularly if there 

is a predator-prey relationship between them. A change in one species is soon reflected 

with a corresponding counter change in the neighbouring species, which may in turn re-

affect the first species and so on. This was recognised by Danny Hillis [4.67] of MIT in 

1990 who developed the first co-evolutionary algorithm for use on his 65,536 processor 

Connection Machine
®
 (CM1). The technique was successfully applied to the search of 

efficient sorting networks and was adapted by Husbands [4.68] for solving harder 

variants of job shop scheduling. 
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4.5.8.1 Cooperative Coevolution 

Cooperative co-evolution is an improved technique for dealing with high 

dimensionality [4.34],[4.36], [4.69], which again makes a strong case for speciation. 

Each species represents and optimises a different portion of the super-chromosome. 

This leads to good results on condition that highly interacting genes are co-located 

within the genome of the same species. When information about interaction is not 

known, or the problem is not easily separable, random gene grouping has been proposed 

with very good results (CCPSO-1,2 [4.70], [4.71]). This allows the GA to search for any 

interaction between genes.  

In ATM the boundaries between aircraft are fairly distinct, and the obvious 

starting point is to include all genes related to one aircraft into a single species, such that 

one aircraft is represented by one population. The effectiveness of this approach was 

demonstrated by Gao et al. [4.72], who used coevolution to efficiently resolve 

pathological multi-way air traffic conflicts. 

Each species can then be simulated separately in parallel on different processors 

with relatively little communication 

between the two, neatly lending itself 

to the agent model of the CATM 

paradigm. Typically, cooperation is 

achieved when the best member of 

each population is exchanged at 

every iteration. This representative of 

each sub-species is used as a 

reference against which other 

populations are evolved. Thus, as 

shown in Figure 4.5.1, each member of species ‗A‘ is evaluated by feeding it into a 

multi-species fitness function together with the current best members from every other 

species, (B and C). The fitness function is designed to give maximum credit to 

cooperation between members of the species that result in the most efficient, lowest-

conflict set of flights. This same is performed by every other species. 

4.5.9 Clustering 

With multi-species GAs using cooperative co-evolution, distributed computing 

requirements can be conveniently met by evolving each species on hardware located in 

the respective cockpit. However, when many aircraft are involved, the combinatorial 

interaction between species leads to a large quadratic problem. This may be alleviated 

by limiting the interaction by dividing grouping interacting flights into separate clusters 

clusters. This leads to good results except when strongly interacting flights end up in 

separate clusters, resulting in unresolved conflicts. 

 Very recently, Zhang et al. [4.73], proposed a coarsely grained scheme that 

dynamically detects conflicts as they appear at every iteration, and groups the conflicted 

flights into isolated subgroups [4.74]. The flight variables are concatenated into super-

chromosomes for optimisation with a simple GA. The unevenly coagulated airspace is 
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Figure 4.5.1: Cooperative Fitness Function 
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allowed to evolve. However, the separate groups will easily generate new conflicts with 

flights from other groups and this is where cooperative co-evolution is used to ward off 

these secondary conflicts. Neighbouring groups routinely share their best solutions 

which are then used as fixed constraints by their neighbours.  

Here we propose a different fine-grained technique that involves creating one 

group of species (flights) for every flight in the system. This results in as many clusters 

as there are flights and can therefore be used in a grid avionics CATM system where 

each aircraft is responsible for its trajectory. The highly overlapping clusters share 

information implicitly by virtue of their overlap. Static clustering is preferred to 

dynamic clustering as it gives very similar results using far less computational effort, 

and bears no risk of unstable oscillator behaviour. Interaction can be conveniently 

predicted to a high degree at the very start by calculating the distance of closest 

approach using the end points of each flight. By including the flights that are most likely 

to interact into each cluster, the quadratic problem that arises when searching for 

interaction, can be kept small. Dynamic clustering can then be used for ―finishing 

touches‖ to resolve the rare remaining case of undetected interaction. 

Cooperative coevolution with fine grained clustering draws many parallels with 

simulated annealing or the crystallisation of solids. These are reliable processes that are 

guaranteed to converge with mathematical proofs to this effect [4.75]. However, unlike 

simulated annealing, cooperative co-evolution can be applied in ways (discussed later) 

that reach a dynamic equilibrium. This allows the optimiser to rapidly adapt to changing 

conditions. A simple demonstration can be set up using a space filling algorithm. A 

number of agents placed in a confined space are tasked with filling all available space 

evenly by maximising the distance between nearest neighbours. Each agent only 

interacts and measures its distance from 10 or so nearest neighbours and the cluster 

overlap does the rest. 

 
       (a) Initial State             (b) Expansion             (c) Steady State        (d) Convergence Rate 

 
   (e) Sudden Change      (f) Accommodation     (g) Skewed Problem     (h) Boundary effects 

Figure 4.5.2: Simple Demonstration of Clustering Effectiveness with Dynamic Behaviour 
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The test problem is initialised by placing one hundred agents in random close 

proximity in the middle of a given 2D space as shown in Figure 4.5.2 (a). The 2D space 

is topologically toroidal and hence wraps around indefinitely without the need for 

explicit boundaries. Each agent assumes that its nearest neighbours‘ current position is 

fixed and adjust its own position using an electrostatic repulsion function that generates 

a force in a direction that will maximise separation from the neighbours. Each agent 

observes the same simple rules of engagement and while none of them is aware of the 

full picture, the swarm expands as in (b) to find the lowest energy state in the system as 

in (c). A convergence metric, proportional to the energy in the system, is plotted in (d).  

The system is now in dynamic equilibrium at its lowest energy state with the 

agents assuming a lattice-like positioning. The dynamic nature of the equilibrium is 

demonstrated by placing an additional batch of agents in the middle of the converged 

system as in (e). The system quickly reacts to the sudden change and proceeds to 

disperse the new energy impulse as in (f). In (g) and (h), the system is shown behaving 

correctly in the presence of boundary constraints and an asymmetric start. This kind of 

behaviour is highly desirable in an ATM system and will be our objective. 

4.5.10 Diversity and Dynamic Behaviour of GAs 

If the initial population constituting the species is sufficiently large and diverse, 

crossover is alone able to generate such a rich variety of individuals, that together with 

the selection operator, results in fairly rapid optimisation convergence. This places great 

emphasis on the entropy present in the original population. In the absence of better 

knowledge, populations are thus initialised randomly to maximise diversity and avoid 

skewing the process in ways that might be detrimental down the line.   

In biology, this is studied in the realms of population genetics, and is the 

mechanism that allows a species to rapidly adapt to new circumstances at the expense of 

some diversity. Over the course of just a few thousand generations, humans have 

exploited this technique to breed an impressive variety of dogs by decomposing the 

diversity naturally contained in the populations of wolves, coyotes and hyenas.  

The downside of this process is that the resulting sub species are significantly less 

diverse or resilient than the original populations and this means that they are much less 

able to adapt to new circumstances unless combined with other existing sub species 

containing complementary traits. If the diversity is lost, it becomes very difficult to 

generate new combinations by crossover, and the optimisation stalls. If the genetic pool 

becomes too restricted, the inbreeding merely swaps virtually identical genetic 

information which can hardly generate new individuals. This creates difficulties when 

optimising in highly non-convex search spaces, because premature diversity collapse 

limits the exploratory behaviour of the algorithm making it highly prone to get trapped 

inside local minima. Over-reliance on the mutation operator is misguided as low 

mutation rates are unable to generate sufficient diversity once this is lost. On the other 

hand, high mutation rates are highly disruptive and hamper convergence.        
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Diversity collapse is particularly relevant for dynamic optimisation in which the 

goal posts keep changing from time to time. Unless diversity is maintained, 

optimisation by crossover quickly stagnates and is then unable to track changing 

optima. Adding new random individuals to a converged population is not very effective 

either. The large differences in fitness quickly works to eliminate the new individual 

and any offspring it might create, making its contribution very short lived. Diversity 

management is a challenging problem in evolutionary algorithms and is one of the main 

reasons why GAs are typically assumed to be one-way optimisers.   

The trivial method of achieving dynamic optimisation is by frequently resetting 

the population and restarting the whole process. This essentially guarantees good 

dynamic behaviour. However, the down side of this approach is that no information is 

carried over between restarts making the process approach the inefficiency of a random 

search. This makes it prohibitively expensive.  

A second technique has already been mentioned and involves maintaining 

numerous small populations in several niches located in the non-convex search space. 

This is achieved using fitness sharing [4.64]. 

4.5.11 Crossover Scheme Effects 

Multi-parent multipoint crossover was considered for this work on the basis of 

some tests that indicate that two parents for crossover is not necessarily the best option. 

Table 4.5.4 shows a selection test results that highlight this finding.  

 

Figure 4.5.3: GA Optimisation of Pathological Non-Convex case with Obstacles 

A pathological multi trajectory test with obstacles was used as a reference 

problem exhibiting highly non-convex behaviour. This involves ‗aircraft‘ departing 

from all eight corners of a cube to intersect at the middle and reach the opposite corner. 

Six additional flights from the middle of opposing faces join the rest. Left to their own 

devices, this would result in a 14 way mid air collision at the centre of the cube. The 

objective is finding the shortest path across the cube while keeping adequate separation 

from all other flights. This is a particularly difficult problem since it is symmetric and 

also highly dynamically non-convex. Six cubes surrounding the intersection point, with 

circularly open faces, were added to further increase the complexity. The total of the 

distances travelled per aircraft serving as a metric for minimisation. The converged 

result is shown in Figure 4.5.3. Elitism (5 member) and idealism is being used in this 

example. 
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Gen. 
Population 

Size 

Trajectory 

Segments 

Crossover 

Points 
Sexes 

Time 

(s) 

Distance Minimisation 

Metric ± Stderr 

200 2000 200 11 3 269.36  1.96 ±4.83% 

200 200 2000 11 3 263.89  1.91 ±0.08% 

200 200 200 11 3 27.71  1.95 ±0.28% 

200 200 200 11 6 27.78  1.95 ±0.49% 

200 200 200 11 2 27.46  3.59 ±78.11% 

200 200 200 21 11 35.71  4.75 ±50.82% 

200 200 200 21 2 35.73  14.88 ±16.49% 

200 200 200 9 5 28.27  1.97 ±0.06% 

200 200 200 9 2 26.22  1.96  ±0.15% 

200 200 200 5 3 23.64  1.97 ±0.31% 

200 200 200 5 2 23.50  1.97 ±0.23% 

200 200 200 5 6 23.29  1.97 ±0.18% 

200 200 200 2 3 20.66  65.55 ±9.35% 

Table 4.5.4: Effect of Multipoint Crossover and multiple sexes 

Oligomers are short segments of chromosomes. Thus there is always one more 

oligomer than there are crossover points. When there are more oligomers than there are 

sexes, the contributions of the sexes are selected in a round robin fashion. The first two 

tests were used to establish the problem‘s convergence asymptotes: one with a very 

large population and another with a large number of segments. The tests were run 20 

times and the table shows the final result and time taken to complete 200 generations. 

The standard deviation (expressed as %) is given as a measure of repeatability.  

It is clear from these results that multiple crossover points are beneficial up to a 

point. Beyond 11 crossover points is detrimental to both outcome and iteration rate. The 

probable answer lies in building block theory [4.56], and is likely due to the short 

oligomers being unable to represent full schema. Too few crossover points is also 

detrimental probably due to insufficient diversity of parental contribution. The choice of 

the number of sexes is also not a foregone conclusion, as it has little effect in some 

cases and substantial effect in others. However, it appears that having more than two 

sexes is beneficial to the algorithm. 

4.5.12 Population Size Effects 

 

   

(a)  Final Result Metric                    (b) Time to Converge                   (c) Iterations to Converge 

Figure 4.5.4: The effect of Genetic Pool Size on convergence Time and Outcome 
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The size of the population (genetic pool) is one parameter that has substantial 

repercussions on the performance of the algorithm. A small parametric test was 

conducted for a well known NP-hard travelling salesman problem for a range of 

problem sizes (10 to 150 aircraft) and a range of population sizes (5 to 40) test. The 

number of nodes per trajectory was kept small (~10) to reduce computation time. 

Results are shown in Figure 4.5.4. Small populations require far less computation 

resources to maintain. This results in a fast iteration rate and will result in far more 

exploitation in any given execution time. However, the power of genetic algorithm, 

when solving non-convex problems, lies in having a large population that suitably 

samples the search landscape. The larger the population, the better the exploration, but 

the slower the iteration rate. This is counteracted by somewhat higher improvement per 

iteration. 

4.5.13 Elitism and Idealism effects 

Idealism and elitism have complementary effects on the convergence behaviour of 

the GA. Elitism has negligible effect on the initial convergence rate however it makes a 

big difference during the final exploitation phase of the algorithm. The ability to retain 

in memory a group of top performing solutions, ensures that the GA never lapses to 

lesser solutions, but continuously ratchets for better results. This is very apparent in 

Table 4.5.5, which shows very pronounced improvement in steady state behaviour as 

elitism is introduced. The effect seems to saturate and does not exhibit any improvement 

beyond having 15 elitist members.  

Idealism is implemented by always making the naive solution available for 

crossover, bypassing the fitness function and the normal selection process. It gives the 

GA a shortcut by making available a fairly good set of schemata for admixing with 

other parents, and indeed results in faster initial GA convergence by wasting less time 

exploring highly suboptimal solutions. This can be observed in Figure 4.5.5 which 

shows the convergence plots of all the trials in the table. The plots clearly cluster into 

two batches. However, idealism is, on the other hand, markedly detrimental to the final 

steady state solution, since the naive solution tends to distract the GA from progress 

beyond the ideal. However, this can be easily solved by turning it off after it completes 

its role during the initial stages. 

 
     Figure 4.5.5: The effect of idealism   

Gen. 
Time 

(s) 
Elitism Idealism 

Final Systemic 
Inefficiency (% ± Stderr) 

100 25.85 25 On 5.7% ±11.4%
2
 

100 25.99 25 Off 4.9% ±12.1%
2
 

100 26.46 15 On 5.4%   ±8.1%
2
 

100 26.51 15 Off 5.4% ±11.2%
2
 

100 26.50 5 On 9.4%   ±8.1%
2
 

100 26.57 5 Off 6.6%   ±8.7%
2
 

100 24.98 0 On 28.4%   ±8.7%
2
 

100 24.85 0 Off 17.6%   ±9.0%
2
 

Pool = 200; Segments = 21; Crssvr pts = 11; Sexes = 6, N = 42 

Table 4.5.5: Effects of Elitism and Idealism 

Idealism = on 

Idealism = off 
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4.6 SWARM INTELLIGENCE 

Swarm intelligence (SI) is another bio-inspired class of optimisation schemes 

[4.12]. They are similar to GAs in that they are population based. However, the update 

mechanism is markedly different from evolution and relies instead on mimicking the 

behavioural traits of social animals and insects. The intricate information processing 

network formed by a collection of like-minded creatures results in emergent behaviour 

that benefits the swarm in terms of survival. This survival advantage is of course an 

attribute that is itself the result of millions of years of evolution. Therefore, swarm 

intelligence can be seen as the result of nature‘s attempt at meta-optimisation, also 

called hyper-heuristics. Meta-optimisation is the process of using an upper-tier of 

optimisation to design and enhance the performance of another lower-tier optimiser 

[4.76]. If millions of years of natural selection converged on swarm intelligence as the 

instrument of choice for solving difficult problems, such a foraging for food or building 

adaptive immune systems, nature makes a strong case to mimic these algorithms to 

solve engineering problems – such as transport. Several studies indeed show that SI 

outperforms EAs in many non-convex problems [4.77].   

Swarm intelligence is oftentimes the unintended consequence of ultimately 

egocentric behaviour of the many members making up a society. It results in a decrease 

in entropy, where order emerges from disorder. This is a characteristic of many life 

forms including, ants, termites, bees and indeed humans! One of the best and most 

succinct descriptions of the underlying philosophy behind swarm intelligence is given 

by Engelbrecht in his book on the subject: 

"No individual has to accomplish much or understand the whole 

problem, but collectively they can perform incredible engineering 

feats." [4.21] 

The field of artificial swarm intelligence grew in popularity following seminal 

work by the Italian computer scientist, Marco Dorigo, who in 1992 completed his PhD 

thesis on Ant Colony Optimisation [4.78]. Dorigo drew his inspiration from work 

published by entomologist  Jean-Louis Deneubourg who described "the self-organizing 

exploratory pattern of the Argentine Ant‖ [4.79]. Using a very simple path planning 

experiment (Figure 4.6.1), Deneubourg 

showed that the ants were consistently 

capable of determining the shortest path 

towards food. The social insect colony 

behaved like a super-organism, which 

although lacking a central nervous system, or 

any intelligence on an individual basis, was 

capable of complex, collective behaviour. 

Dorigo emulated the behaviour and 

communications medium between the ants 

using digital pheromone trails and before 

long he was able to solve the well known (NP-complete) travelling salesman problem, 

using the Ant Colony Optimisation (ACO) algorithm. The algorithm and its variants had 

a number of other successes including applications in network packet routing. 

Figure 4.6.1: Argentine Ant Experiment [4.79] 
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Over the span of a few years, such was the interest kindled by swarm intelligence 

that several other bio-inspired meta-heuristics were proposed and successfully tested. 

Each metaphor presents unique strengths and weaknesses and different balance between 

exploration and exploitation, and matching the application to the algorithm remains an 

important consideration. The following are but a few of the more popular schemes: 

 Ant Colony Optimisation (ACO) [4.78] 

 Artificial Bee Colony (ABC) [4.80] 

 Artificial Immune Systems (AIS) [4.81] 

 Bat algorithm (BA) [4.82] 

 Firefly Algorithm (FA) [4.77] 

 Glow-worm Swarm Optimisation (GSO) [4.83] 

 Particle Swarm Optimisation (PSO) [4.84] 

 River Formation Dynamics (RFD) [4.85] 

Selecting an appropriate metaheuristic for CATM requires a focussed 

understanding of what is required to solve it. Essentially any metaheuristic solution of 

the CATM problem reduces to these main operations:  

OP-1) First, the problem needs to be discretized. This maps a continuous domain 

onto a discrete graph with enumerable nodes which can be searched 

algorithmically. 

OP-2) The second step involves evaluating each node and path in the graph to allow 

searching it in an informed manner. 

OP-3) The third step involves down-selecting the most promising search areas such 

that future search effort can be better directed.  

OP-4) The last step involves updating the graph to re-discretise the problem with 

better focus around these areas to gradually increase the resolving power of 

the search. 

OP-5) The process repeats in an iterative manner.  

With this in mind it is immediately apparent that algorithms like ACO are 

inappropriate because they have no inbuilt ability of updating the graph they are 

searching. Given the continuous real valued nature of trajectory optimisation, an 

algorithm that lends itself well to continuous variables is also required. Other algorithms 

like ABC, GSO or FA spread their resolving power too thinly to allow meaningful 

progress in a high dimensional problem. The CATM problem is also highly non-convex 

with many locally-convex local minima, therefore a particular balance is required 

between initial exploration to reliably seek the location of the global optimum and final 

exploitation to give a clean result that is well contained in the global optimum well. 

PSO seems particularly adept in this regard with good computational efficiency and 

guaranteed convergence characteristics. 

However, the candidate algorithm must also exhibit good dynamic behaviour in 

its converged state, in order to track and monitor the time-variant search landscape. 

ACO, ABC, GSO and FA have some strength in this regard. However, none of these 

algorithms are well suited in their standard form to deal with the real-time nature of this 

high dimensionality application. Some modification is required. 
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4.6.1 Particle Swarm Optimization  (PSO) 

PSO was developed by James Kennedy (a social psychologist), and Russell 

Eberhart (and electrical engineer) in 1995 as a method for simulating social behaviour 

but its ability for robust global optimization was soon recognized [4.86]. It uses a swarm 

of particles to loosely mimic herding/flocking/schooling behaviour of a number of 

organisms, but the similarities end there. In standard PSO [4.87], each particle is 

modelled as a moving point mass that dynamically scans the problem domain in   

dimensional space while sampling the objective function and recording the resulting 

cost history along its path.  

The particles are made to move in a damped oscillatory fashion towards updatable 

attractors that consist of the best solution found thus far. (See Figure 4.6.2) This 

performs very thorough scanning of the neighbourhood of good solutions which greatly 

improves the exploitation phase of the algorithm. At the same time, the quasi-random 

motion of the swarm provides good coverage of the entire search space, thereby 

efficiently identifying most if not all of the local 

minima. If designed properly the damped simple 

harmonic motion (SHM) of the particles will rapidly 

converge onto the global optimum with arbitrarily 

high probability, depending on the size of the swarm, 

among other things.  

For every dimension   and iteration  , the lowest cost point found thus far along 

the trajectory of each particle   at is called the personal best point or     
  

 . The lowest 

cost point found thus far by its two nearest neighbours is called the local best point or 

   
  

. Finally, the lowest cost point found thus far by all particles in the swarm is called 

the global best point or    
 . Every dimension is dealt with totally independently in PSO. 

The particles move about the search space according to a position and velocity 

update equation. However, there are two variants of PSO. Gbest PSO uses the velocity 

update equation 4.6.1 and offers fast convergence characteristics, while Lbest PSO uses 

the velocity update equation 4.6.2 and offers better exploratory behaviour at the expense 

of convergence rate. Both variants use the same position update equation 4.6.3.  

Gbest velocity:      
  

     
  

     
     

  
   

  
      

     
    

  
  (4.6.1) 

Lbest velocity:      
  

     
  

     
     

  
   

  
      

     
    

  
  (4.6.2) 

position:     
  

   
  

    
  

 (4.6.3) 

where:   is an inertia / mass parameter that modulates sensitivity to velocity updates 

      are constants with a value around 2.0 

  
    

  are independent random numbers separately generated at every update 

  
  

 is the position of particle   at time step   along dimension    

   
  

 is the velocity of particle   at time step   along dimension    

(4.6.4) 

Figure 4.6.2: Damped SHM in PSO 
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4.6.2 Stability and PSO Constriction 

Since particle motion in Standard PSO (SPSO) resembles a harmonic oscillator, 

stability is an important matter related to the damping factor or rate of energy loss. As 

per the previous equations, the particles gain velocity in relation to their distance from 

the attractors and this may result in very high velocities that can propel particles far out 

of the feasible zone. If coefficients      and    are chosen carelessly, the rate of energy 

loss might turn negative, resulting in explosive divergence rather than convergence. 

Early empirical observation had shown that reliable operation was associated with  

    and with an attraction coefficient                     , as discussed 

by Eberhart in [4.88]. 

The underlying particle dynamics were studied at some length by Clerc in 2002 

and using a linear state-space representation of a deterministic version of PSO, much 

better insight on stability was obtained [4.39]. It turns out that the attraction coefficient 

  is related to the Eigen values of the system as shown in equations 4.6.5: 

PSO Eigen 

values: 

 
 
 

 
 
     

 

 
 

      

 

     
 

 
 

      

 

  (4.6.5) 

Further analysis shows that when    , (when the Eigen values are complex), 

the particle motion tends to be periodic, and circular on the complex phase plane and 

spiral slowly towards the attractors, while when     , there is no periodic behaviour, 

Eigen values are real, and in fact convergence is fast and nearly linear, but if    , the 

rate of convergence deteriorates to the point of instability. Moreover, when    , there 

is very slow convergence, and when     exactly, there is no convergence 

whatsoever. In summary, Clerc defines a stability relationship in the form of 

constriction parameter   (4.6.6) which is used to modify the velocity update equations 

as shown in (4.6.7), (4.6.8) 

Constriction:   
 

            
          (4.6.6) 

Gbest velocity:      
  

        
  

     
     

  
   

  
      

     
    

  
   (4.6.7) 

Lbest velocity:      
  

        
  

     
     

  
   

  
      

     
    

  
   (4.6.8) 

where:   is now taken as 1.00 

    but not much larger for guaranteed fast convergence 

and typically           

(4.6.9) 

The position update equation remains unchanged and using this simple 

modification, much of the trial and error parameter tuning that is so typical of 

metaheuristics is obviated. Thus a good choice for       as this provides the best 

balance between exploration and fast reliable convergence. 
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4.6.3 Ideal Attractors (GPSO) 

Similar to the approach mentioned in Section 4.5.4.2 and 4.5.13 with respect to 

GAs and idealism, the same ideas can be transposed to PSO in the form of ideal naive 

attractors. This can be done by modifying the velocity update equation quite simply by 

introducing a new term that measures the distance between each particle position   
  

 

and the fixed ideal attractor   
  as shown in equations 4.6.10 or 4.6.11. The constriction 

term is now based on an updated attraction coefficient              which must 

still exceed 4. 

Gbest 

velocity: 
     

  
    

    
  

     
     

  
   

  
 

                  
     

    
  

 

                 
    

    
  

 

  (4.6.10) 

Lbest velocity:      
  

    

    
  

     
     

  
   

  
 

                 
     

    
  

 

                 
    

    
  

 

  (4.6.11) 

where: 
  

 

            
             (4.6.12) 

where: 
  is now taken as 1.00 

    but not much larger for guaranteed fast convergence 

                

and    can be quite small eg: 0.01 

(4.6.13) 

 Introducing fixed ideal solutions into the swarm has a much bigger positive effect 

in PSO than it has in GAs. This is because unlike in GAs, PSO particles are not being 

crossed over. There is no portion of the naive attractor that is overwriting portions of the 

particles in the swarm. Swarm particles retain their freedom to take into account any 

constraint penalty functions imposed by the problem (and ignored by the ideal 

attractor). Thus, even when highly converged, the ideal attractor continues to contribute 

positively and does not disrupt the best particles other than attracting them to the ideal 

point in the search space.  

 The attraction 

coefficient   , must be kept 

low enough to ensure that 

the exploratory behaviour of 

the swarm is not unduly 

hampered, but must still be 

high enough to create a gentle drift in the swarm towards the region surrounding the 

global optimum. We refer to this variation of particle swarm optimisation as Guided 

PSO (GPSO) and given the very substantial improvement it affords, this forms the basis 

of all subsequent work. Table 4.6.1 shows some of the coefficients that give good 

results with PSO and GPSO. 

Algorithm              

SPSO 0.9375 4.100 2.0500 2.0500 0 
SPSO 1.0000 4.117 2.0585 2.0585 0 
GPSO 1.0000 4.117 2.0000 2.0000 0.117 
GPSO 1.0000 4.117 2.0500 2.0500 0.017 

Table 4.6.1: Constricted PSO Attraction Coefficients 
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4.6.4 Particle Initialisation 

In order to focus on the performance and characteristics of the distributed PSO 

optimisation algorithm, the simplest possible 3-DOF dynamic model was adopted to 

avoid distracting the investigation with the computational penalty of observing 

nonlinear fixed-wing aircraft constraints. This is fair enough given that the methodology 

for including model dynamics is well established and need not be investigated further in 

this work.  

In addition, since optimisation is being anyway conducted in the output space, this 

choice has little impact. The chosen model is given as follows in equations 4.6.14, 

where      is the state vector,      is the input velocity vector,      is the output 

position vector and   is a constant of proportionality, typically chosen to be unity. 

 
              

           
(4.6.14) 

 
              

       
(4.6.15) 

In this simplified model, the linear one-to-one relationship between the output and 

input implies that there is little difference whether    or    are taken as optimisation 

variables. However, using   , allows the terminal constraints to be enforced by simply 

scaling the input in every dimension such that the sum of inputs matches the difference 

between the terminal constraints (like in eq. 4.5.1). The resulting    can then be mapped 

to the input domain of the fixed-wing model using the coordinated flight assumptions. 

4.6.5 Upgrading PSO for Dynamic Behaviour (GPSO-D) 

In GAs a ratcheting mechanism can be introduced with the use of elitism that 

ensures that the best fitness found is never lost, but rather becomes the benchmark for 

subsequent progress. This is highly beneficial to GAs as was shown in section 4.5.13. In 

SPSO the same technique is implicitly embodied by the Pbest, Gbest and Lbest position 

records that correspond to the best results found by the swarm.  

However, these techniques introduce a problem when faced with dynamic 

changes in the search space. Any change in the problem‘s goal posts invalidates the 

recorded fitness at Pbest, Gbest and Lbest, but these will only be replaced if better 

solutions are found. Yet in the meantime the algorithm continues to be attracted to these 

positions and in doing so is unlikely to find any better solutions than those associated 

with the expired attractors. This causes SPSO to stall and is unable to track changes in 

the search space.  

Luckily with PSO this is easily resolved by regularly re-evaluating the fitness of 

Pbest, Gbest and Lbest with respect to the most recent objective functions and 

constraints. This effectively doubles the computational effort per iteration since there 

are as many Pbest or Lbest values as there are particles in the swarm. However, this can 

be greatly mitigated by conditionally updating Pbest or Lbest depending on whether any 

decreases in Gbest are detected. This makes the computational implications of making 

PSO dynamic, nearly negligible since decreases in Gbest are fairly rare. In the 
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meantime, the ideal attractor need only be re-evaluated if there are any changes in the 

endpoints of any trajectory. These small modifications make PSO or GPSO capable of 

adapting to dynamic problems such as CATM. We thereby label this variant of PSO as 

GPSO-D. 

4.6.6 Upgrading PSO for High dimensionality (CCGPSO-D) 

In order to solve multi trajectory problems the dimensionality is multiplied by the 

number of aircraft, with the associated exponential rise in search volume. PSO is no 

better than GA or any other metaheuristic when it comes to dealing with large search 

spaces. It is a fundamental problem after all.  

However, like GAs, a divide and conquer approach may be employed to make the 

problem tractable. The search space may be divided into multiple swarms, one per 

group of dimensions. Dimensions are grouped by flight. The ideas of cooperative co-

evolution (CC) may be imported and applied to PSO [4.35], just as well as GAs [4.36]. 

Thus if each single flight employs a separate swarm of particles to optimise its 

trajectory, they can share their Gbest particles and use them as fixed trajectories in each 

other‘s sub-search spaces. Fitness or cost calculations in each of the sub-swarms take 

into account all of these fixed members.   This process works remarkably well and there 

are some very good results in other high dimensionality contexts in the literature. [4.38], 

[4.40]. 

4.6.7 Fine Grained Clustering (C-CCGPSO-D) 

The final addition to the modified PSO algorithm is clustering. Clustering of 

aircraft is essential for reducing the order of the problem on the local scale. This 

proceeds in a fashion that is very similar to that used with GAs. Aircraft are grouped 

according to their level of interaction. We call this final variant of PSO, Clustered 

Cooperatively Co-evolving Guided PSO with Dynamic behaviour or C-CCGPSO-D 

4.6.7.1 Defining Interaction 

Interaction is invariably based on the Euclidean distance between interacting 

aircraft. If the Euclidean distance, between two aircraft reduces below a certain 

threshold then those aircraft are automatically paired into a cluster. Other aircraft may 

join the same cluster in the case of multi-aircraft interactions. There are as many 

clusters as there are aircraft because each aircraft is necessarily at the centre of its own 

cluster.   

    The principle of clustering is central to solving the large scale problem. 

However, the real-link with the large scale problem comes through the intrinsic overlap 

that exists between clusters. There are several ways of defining interaction between 

trajectories; 

 Instantaneous Clustering: The first method involves segregating flights into 

clusters depending on their instantaneous position with respect to each other. This 

implies that aircraft enter and exit clusters frequently and membership in a cluster 

becomes time-dependent. This would result in tactical behaviour similar to Collision 

Detection and Resolution (CD&R). 
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 Dynamic Clustering: A second method of defining a cluster involves collecting 

aircraft that interact (in the Euclidean sense) at any point along their 4D trajectories. 

This will in all likelihood involve a much greater number of aircraft per cluster but 

membership would be more stable throughout a flight, allowing for holistic 

optimization. There is also a greater degree of overlap and this type of overlap is much 

more meaningful to the global problem. This stems from the fact that in this case the 

overlap can occur along the entire time axis-thereby linking parts of the problem that 

bear effect on each other over much greater time-scales. However, as optimisation 

progresses, the interaction changes as a result and this requires regular redefinition of 

the clusters which is computationally expensive. As a side effect, this could also result 

in oscillatory behaviour whereby interacting aircraft within a cluster are moved apart by 

the optimiser to the extent of them leaving each other‘s cluster, only to return to their 

initial positions that caused the interaction to begin with.  

 Static Clustering: A third method involves clustering on the basis of expected 

interaction based on the closest proximity of the idealised straight lines joining the 

endpoints of each 4D trajectory. This offers still higher stability apart from simplifying 

calculations with respect to method 2, because cluster membership is not affected by the 

outcome of optimizations. The associated caveat is that some interactions could be 

underestimated, because the optimiser might push some trajectories far out of their 

expected bounds. This can be tested by evaluating the elongation of all trajectories. 

Trajectories that are within a few percent of their minimum lengths are safely predicted.  

4.6.8 Multi-Swarms, Stagnation and Population Diversity Collapse 

When only one swarm is used, the diversity collapse that frequently accompanies 

convergence would result in just one optimum being tracked – hopefully the global 

optimum. However, to better improve dynamic behaviour, multiple swarms can be used 

to track more than one local minimum at a time. This avoids the undesirable behaviour 

shown in Figure 4.4.7 (d), where the global optimum gradually loses its status while it 

is being tracked. Multiple swarms are an excellent way to counteract stagnation by 

increasing diversity in a managed fashion. 

4.6.9 A Hybrid: Iterative Dynamic Evolutionary Programming 

Close observation of the way the particle swarm scans the search space reveals 

behaviour that is not too different form the multi resolution version of Dynamic 

Programming. The swarm gradually occupies smaller and smaller volumes, thereby 

increasing the resolution of sample points surrounding the global minimum. This 

appears to be a stochastic variant of IDR and one idea that is being mulled for future 

investigation is the combination of swarm intelligence with iterative dynamic 

programming. 

This approach would join ranks with the growing field of the so-called 

Matheuristics [4.89], whereby complementary strengths of metaheuristics and 

mathematical programming techniques are combined. 
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4.7 HIERARCHICAL OPTIMISATION FOR CATM 

Hierarchical optimisation is a technique that combines the strengths of local 

optimisers with those of global optimisers in a bid to reduce the computational effort 

and speed up to the time it takes for the duo to reach acceptable results. This was 

proposed number of times in the literature [4.90], [4.91] even in the aeronautics domain 

[4.92], [4.93], and is considered a gold standard approach.  

4.7.1 Meta-Heuristics: Exploration and Exploitation 

As was pointed out earlier, metaheuristics are always faced with the conflicting 

requirement of exploration v.s. exploitation [4.94]. Yet both activities are important to 

yield good results. The former searches of local minima (or maxima) while the latter 

measures their depth (or height). In order to negotiate the conflict, typically 

metaheuristics are designed to adaptively change focus during the optimisation run. 

However, this comes at a cost. As the optimiser restricts its view to smaller search 

spaces it is also increasingly less able to identify the emergence of new global optima 

outside its ―field of view‖. This damages its ability to adapt to dynamic scenarios.  

4.7.2 Cascaded Optimisation 

The classic approach to meet both requirements is to cascade a local optimiser 

after a global optimiser (Figure 4.7.1). This is also called High Level Relay Hybrids 

(HLH) [4.95]. The first run of the global optimiser locates the whereabouts of the global 

optimum and this approximate information is then passed-on to a local optimiser that 

refines the result by exploiting any gradient information present in the immediate 

vicinity of the approximate result. Clearly this assumes that the objective function is 

well behaved, smooth and differentiable in the neighbourhood of the global optimum. 

The global optimiser can therefore be spared the substantial time it takes for it to 

inefficiently search (in a probabilistic fashion) for the very best point in the global 

optimum neighbourhood. Local optimisers are much better suited for this task.  

 

  

 

 

 

Cascaded optimisation is usually unidirectional and as such any changes in the 

problem would not be accommodated once a solution is found. However, dynamic 

behaviour can be re-introduced by including a feedback path between the local 

optimiser and the global optimiser, such that global optimiser iteratively tracks and 

revaluates the state of the local optimiser and compares it to other freshly-found local 

optima.  

 

Figure 4.7.1: Cascaded Optimization 
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Global 
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Local 

Optimizer 
Problem 
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4.7.3 Nested Optimization 

Local optimisers use gradient information very efficiently to locate the minimum 

point within a locally convex neighbourhood, as long as they are seeded with an initial 

value that is well within the neighbourhood. This perfectly complements the strengths 

and weaknesses of the global optimiser that is typically good at finding approximate 

solutions but inefficient at exploiting them. Therefore, other very effective way of 

addressing this dilemma is to embed a local optimiser within the global optimiser as an 

―oracle‖ which it consults as shown in Figure 4.7.2 [4.96]. This kind of symbiotic 

relationship is often called Low-level Teamwork Hybrid (LTH) [4.95].  

 

 

 

 

 

 

 

If a local optimiser is included within the inner loop of the global optimiser, every 

exploratory sample point can be taken down to its limits to determine if the 

neighbourhood is worth exploring further. This can implemented by replacing one of 

the population replacement operators in the metaheuristic. For instance, in GAs, a local 

optimiser can be used to replace the mutation operator to give much better 

improvements than random perturbation. This means that far less time is spent chasing 

dead ends to instead dedicate more effort looking in other promising areas. Such 

techniques are sometimes also called memetic algorithms: 

Memetic algorithms are population-based metaheuristics composed of an 

evolutionary framework and a set of local search algorithms which are 

activated within the generation cycle of the external framework. [4.97] 

This is a very appealing approach that deserves further investigation for CATM, 

considering that some impressive results have been achieved in this context [4.96]. It 

however requires a very stable and fast implementation of a local optimiser that can be 

easily interfaced with the upper-level global optimizer metaheuristic. Placing the local 

optimiser in the inner loop, implies millions of executions, thus the implementation of 

local optimiser must be streamlined before such tight coupling can be attempted.  

4.7.4 Cooperative Local and Global Optimization 

One other commonly used technique involves several parallel efforts from local 

optimisers and global optimisers selected for complementary performance, which 

regularly share or pool information such as upper or lower bounds on the partial results. 

This kind of collaboration is sometimes called a High-level Teamwork Hybrid (HTH).  

Solution 

Local 

Optimizer 

 

Figure 4.7.2: Embedded Local Optimization 

Problem Global Optimizer 
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4.8 LOCAL OPTIMISATION PHASE 

Local optimisation of trajectories is a highly established subject based on 

discretized versions of variational calculus. Therefore the following will not expand on 

this subject beyond the few simple techniques that were employed as part of this work. 

For a detailed treatise on this subject the interested reader is referred to the surveys by 

Becerra [4.3] and Betts [4.5] and the book by Bryson et al. [4.1]. We will begin the 

section by defining a point mass model which will be used as a simple and clean place-

holder for trajectory optimisation using NLP solvers. Without loss of generality we shall 

assume 2D space for this example, to simplify the diagrams and matrices. 

4.8.1 A Simple Point Mass Model  

For a simple point mass particle travelling in 2D space   with a trajectory 

uniformly discretized in time as shown in Figure 4.8.1 with predefined terminal 

constraints at both ends of the 

trajectory, a discrete time model can 

be expressed as shown in eq: 4.8.1 

using a trapezoidal implicit 

difference equation. The terminal 

constraints are given in eq: 4.8.2 

where    is the position vector of the 

particle,     the velocity and     the 

acceleration vector.    is the force 

input, m is the mass, T is the time 

step and,     is the output which is 

taken equal to the position vector   . 

 

Point 

Mass:  

Model: 

 

 
 
 

 
          

 

 
   

                          

                        
          

  (4.8.1) 

Initial: 

Conditions: 
   

       

         
       

       

  
Final : 

Conditions: 
  

        

          
        

        

   (4.8.2) 

The particle is required to negotiate the given landscape  , by finding the lowest 

cost trajectory between A and B where the cost    is given as a function        of the 

position of the particle and the of all the obstacles  , as shown in eq. 4.8.3 

 
                 

           (4.8.3) 

    

  

  

  

Figure 4.8.1: Trajectory of a Newtonian Point Mass 
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4.8.2 Direct Collocation 

We can formulate the problem into a form suitable for feeding into an NLP solver 

by writing down a series of expressions as per a strict format that poses the system‘s 

dynamics a series of constraints enforcing the relationship between the particle‘s 

position and its derivatives. For the six node problem described above, using eq 4.8.1, 

we iteratively write the following equality conditions to enforce trajectory and velocity 

continuity at each node: 

                   

                   

                   

                   

                   

                     

                     

                     

                     

                     

(4.8.4) 

...and after rearranging and taking into account the input equation by replacing      with 

       we get: 

                    

                    

                    

                    

                    

                          

                          

                          

                          

                          

(4.8.5) 

...including the terminal constraints this may now be written in matrix form as follows:  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

  
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

  
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

  
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

  
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

  
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

  
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

  
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

   
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

   
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

   
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 

   
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

   
 
 
 
 
 
  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

    

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  
  

  
  

  

   
   
   
   
   
   
  

  
  

  
  

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

  

   
   
  

   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

...and in a more compact form:  

           (4.8.6) 

The pattern in the above matrix equation is a predictable one and may be 

algorithmically generated for any number of nodes in the trajectory, making this 

technique more versatile than it initially seems. In this case, terminal constraints have 

been imposed which removes the need to apply terminal costs. Therefore the above 

problem takes the Lagrange form shown in eq. 4.8.7. Upper and lower bounds need to 

be defined to impose path constraints. They can also be used to limit velocity and input 

thrust to realistically achievable values.  
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Lagrange Cost:      
        

 
      

         

   

   

  (4.8.7) 

Subject to: 

- State transition  constraints: 

- Boundary  conditions: 
          (4.8.8) 

- Inequality  constraints:           (4.8.9) 

- Trajectory  constraints:           (4.8.10) 

- Initial  approximate  guess:    (4.8.11) 

where:     is the lower bound vector for all variables in   

    is the upper bound vector for all variables in   

    is a matrix that defines the equality constraints 

    is a vector that defines the equality constraints  

      is a matrix that defines the inequality constraints (this is not used in this example) 

      is a vector that defines the inequality constraints (this is not used in this example) 

After the problem has been converted into the prescribed from this is then fed into 

any of a wide variety of NLP solvers such as PSOPT [4.14], SNOPT [4.15], NPSOL, 

COMSOL, FMINCON, IPOPT or many others that tend to use a very similar interface. 

An approximate guess (  ) is usually required and has a great bearing on the outcome of 

the solver. This is typically the interface between the global optimizer and the local 

optimizer. An example is given hereunder using FMINCON from Matlab: 

[  
,   

] = fmincon(@Cost,   ,      ,      ,    ,    ,    ,    ); 

The solver then returns the closest local optimum to the ―guess‖ provided, (and 

the associated cost), and if this was in the vicinity of the global optimum, the problem is 

solved. In Figure 4.8.2, three example results are provided, where (a) shows a 2D path 

clearly trapped in a local minimum, while (b) and (c) show a generalization of the same 

process in 3D , this time using potential fields surrounding cuboids obstacles. A NURB 

interpolator was included when evaluating the cost metric in this example, to ensure that 

the knots found correspond to the optimum interpolated trajectory. 

 
 

 

This method of collocation is one of the simpler ways for performing trajectory 

optimization with gradient methods. A much more accurate and generally more reliable 

way of performing trajectory optimization is with Pseudo-Spectral methods that use a 

superposition of functions that span the entire domain together with Gaussian 

quadrature for numerical integration instead of the simple trapezoidal rule. 

(a)                                                     (b)                                                     (c)  

Figure 4.8.2: Locally Optimized Trajectory of a Newtonian Point Mass 
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4.9 IN SUMMARY 

A broad comparison between a number of different global optimisation 

approaches for CATM was provided. Some detail was given in respect of three methods 

that were chosen and adapted during this study to address the particular combination of 

challenges presented by this formidable problem. CATM appears to be feasible with no 

fundamental obstacles, except for thousands of man-years of engineering effort. 

Table 4.9.1 summarises these findings and scores the algorithms in accordance to their 

suitability. 
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 Contractile Monte Carlo Search (CMCS)        C      6 

Simulated Annealing (SA)        C      4 
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 Real Coded Evolutionary Prog. (RCEP)        L C      4 

Binary Coded Genetic Algor. (BCGA)         C      3 

Real Coded Genetic Algorithm (RCGA)        C      3 

Cooperative Coevolutionary RCGA        C      7 

S
w

a
rm

 I
n

te
ll

ig
en

ce
 

Ant Colony Optimisation (ACO)        C      3 

Artificial Bee Colony (ABC)        C      4 

Firefly Algorithm (FA)        C      4 

Glow-worm Swarm Optimisation (GSO)        C      4 

Particle Swarm Optimisation (PSO)        C      3 

Cooperative Coevolution PSO (CCPSO)        C      3 

Dynamic Guided PSO (GPSO-D)        C      4 

Clustered CCGPSO-D        C      8 

C = Circular Pipeline, L= Local Reconvergence, Q/R = Quasi Random, D = Difficult 

Table 4.9.1: Comparison between some Global Search Techniques 
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Chapter 5 
Simulation, Results and Discussion  

In this chapter we will discuss the simulation paradigm, the testing methodology, 

the resources used, the simplifications adopted and a number of practical considerations 

that must respect the technical limitations of the underlying simulation platform. Results 

are discussed in the light of the techniques described and objectives set out in earlier 

chapters. 

5.1 THE SIMULATION PARADIGM 

Running CATM simulations of continental levels of traffic involved substantial 

computational resources that were not easily afforded on any single desktop machine. 

The CATM system described, simultaneously requires one independent computing 

element per flight agent. However, for practical purposes, during simulation this could 

not be accommodated using discrete hardware elements. Therefore, in order to preserve 

and test the distributed nature of the algorithms, an efficient, multi-node simulation 

environment had to be devised. See Figure 5.1.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.1.1: The CATM Simulation System Architecture 
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5.1.1 Scaling-up to the Continental CATM Problem 

In order to simulate CATM faithfully, the architecture employed for simulation 

had to be fully agent symmetric. This is to say that all agents in the system had to be 

identical with no preferential treatment. Processing resources had to also be allocated to 

each agent independently and the coupling between agents had to be as loose as 

practically possible, save for the essential trajectory transfer required for agent 

cooperation. The intra-cluster architecture is envisaged as shown in Figure 5.1.2, where 

within each cluster of M aircraft, one is a master and the rest are slaves. Keeping in 

mind that there are as many clusters as there are flights, symmetric operation was still 

achieved by replicating the same arrangement for every agent in the system. Thus every 

flight was a master of some cluster. 

 

 

 

 

 

 

 

 

 

 

 

The CATM master controller in each cluster receives the best known remaining 

trajectories   
        and current system states    

     from each of the slaves. The 

CATM master controller updates the optimal trajectory for its own aircraft, taking into 

account all the latest information gathered from the cluster and any weather and 

NOTAM obstacle database information. The process is repeated at every time-step and 

if the flights are airborne and being executed in real-time, a receding horizon 

methodology can be used to keep the master optimiser current with the unfolding state 

trajectory. 

5.1.2 Multi -Threaded Approach 

The agent approach proposed for CATM is best embodied using a multithreaded 

approach where each aircraft is represented with a single computing thread and each 

thread is interconnected over a high capacity network infrastructure. Therefore a 

number of threads were assigned to a simulation process which was run on a computing 

node consisting of a network-connected, high performance blade server. Gigabit 

Ethernet was selected to emulate the CATM network infrastructure due to its reliability, 

performance and simplicity. Figure 5.1.1 shows the data flow patterns in the 

architecture employed. 

Figure 5.1.2: The CATM System Hierarchy within a Single Flight Cluster 
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5.1.3 The Shared Almanac  

Each thread is essentially an independent PSO optimizer which is tasked with 

generating an optimal trajectory for the flight agent it is hosting. Nothing is shared 

among threads which operate on separate memory areas, except for the flight almanac. 

For memory efficiency purposes a single copy of the almanac is maintained per process 

and each thread has asynchronous access to this shared memory area. This saves 

substantial memory which is understandably limited in the simulator. 

Each thread interacts with a multitude of other threads residing anywhere over the 

network infrastructure by broadcasting self-contained packets of trajectory waypoint 

data. These are received at each node and used to update the local copies of the 

almanac. No direct communication between the threads is allowed, if not through the 

almanacs. This way, it was ensured that each thread has an identical and symmetric 

relationship to every other thread in the entire system, irrespective of where the threads 

were physically hosted. This is essential to maintain the validity of the distributed 

computing simulation. 

5.1.4 Transmission Filtering 

The network forms the backbone of the system and substantial thought was 

dedicated to maximising performance. Gigabit Ethernet provides a low cost method to 

interconnect high performance computing nodes. Even with 1530 byte packets, (the 

longest supported by standard Ethernet), latency is of the order of 50μs. Ethernet 

switches that can support billions of network transactions per second are also readily 

available. A 24 port switch from NetGear (GS724TS) was used with an internal 

switching bandwidth of 48GB/sec. To further improve throughput and minimise delays, 

two network interfaces were provided per node and these were aggregated for a total 

bandwidth of 2Gbits per node in each direction. 

However, with thousands of agents sending trajectory data over the network at 

every iteration, it is easy to overload the network infrastructure. As it happens, most of 

the time, especially after initial convergence, the threads have no new information to 

transmit other than repeating the same packets over and over. This is very wasteful of 

resources and tends to crowd-out important information on the network. One neat 

solution to the problem is to self-censor all the threads from transmission unless 

significant changes are detected. Since all aircraft have access to a local copy of the 

latest almanac this does not impact the algorithm‟s performance but significantly 

reduces network traffic. 

5.1.5 Software Architecture 

In order to run simulations smoothly, a Master-Slave-Monitor approach was used. 

The slaves contain all the processing threads and almanacs. The master issues network 

commands to start, stop, initialise and clear the slaves of simulation data, thereby setting 

up and coordinating simulation scenarios. The monitor passively listens on the network 

and records all traffic which is used to calculate performance statistics. The slaves are 

all uniquely identified by the MAC address of the respective machine‟s network 

interface, which simplifies any future addition of more nodes to increase simulation 

capacity. 
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5.2 CONSTRUCTION OF A CATM SIMULATION RIG 
The thousands of concurrent optimizer threads required some rather hefty 

computational hardware to accommodate. For this purpose, a dedicated 12 node 
computing blade server rig was constructed using dual processor motherboards from 
Supermicro® computer and Intel Xeon® Harpertown 8-core CPUs. The memory of the 
system was sized to accommodate several thousand threads per blade. Figure 5.2.1 
describes the setup.  

 

 

 
 
 
 
 
 
 
 
 

 
Special consideration was taken to ensure 

adequate cooling of the resulting multi kW 
system. Water cooling and high capacity vehicle 
radiators were used to dispose of the waste heat 
from all 24 CPUs, and forced air cooling was 
used for the memory and the rest of the system. 
The processors were also over-clocked to around 
130% to extract maximum performance, and their 
numerical reliability was exhaustively re-tested 
using Intel’s Linpack V11.1.1 benchmarking 
tools. The aggregate performance of the system 
reaches 1.0 Tflop and is capable of traversing 80k 
PSO epochs per second for a 12,288 flight air 
traffic system. The system is divided into a 
3.8GHz head node and 11 slaves. Figure 5.2.2 
shows a photograph of the assembled computing 
rig running some CATM tests, while Table 5.2.1 
shows a summary of the system’s configuration 
and performance, together with an HP Pavilion 
DV6 i7 laptop PC, also listed here for comparison. 

  
Figure 5.2.2: CATM Simulation Rig

 

Figure 5.2.1: CATM Simulation Rig Configuration  
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NODE 
(#) 

PROCESSOR 
(INTEL Xeon) 

ECC  
MEMORY 

(GB) 

OVERCLOCK 

SPEED 
(GHZ) 

CPU 
CORES 

(#) 

INTEL LINPACK
†
  

BENCHMARK 
(GFLOP) 

PEAK CCGPSO 

PERFORMANCE
‡
 

ITERATIONS/S 

PEAK CPU  
THERMAL 

POWER (W) 

PEAK INPUT 
POWER 

(W) 

0* i7-720QM 8 1.728 4 14.47 2834 45 91.6 

1 Dual X5460 32 3.8 4x2 102.42 7792 163x2 642 
2 Dual E5430 8 3.2 4x2 89.13 7158 142x2 399 
3 Dual E5430 8 3.2 4x2 89.13 7158 142x2 399 
4 Dual E5430 8 3.2 4x2 89.13 7158 142x2 399 
5 Dual E5430 8 3.2 4x2 89.13 7158 142x2 399 
6 Dual E5430 8 3.2 4x2 89.13 7158 142x2 399 
7 Dual E5430 8 3.2 4x2 89.13 7158 142x2 399 
8 Dual E5430 8 3.2 4x2 89.13 7158 142x2 399 
9 Dual 5405 8 2.4 4x2 68.04 5456 109x2 311 

10 Dual 5405 8 2.4 4x2 68.04 5456 109x2 311 
11 Dual 5405 8 2.4 4x2 68.04 5456 109x2 311 
12 Dual 5405 8 2.4 4x2 68.04 5456 109x2 311 

Rig Totals: 120 37.528 96 1012.96 82556 3276 4770.6 

*Laptop,   † INTEL LINPACK V11.1.1,   ‡ PSO Based on Flights No.=1024x12, Cluster Size=16, Swarm Size=16 

Table 5.2.1: CATM Simulation Rig Configuration 

The slave nodes are dedicated for numerical processing and centrally managed 

from the head node to which a user interface is connected. The head node also handles a 

centralised file system and this explains the higher specification. However, this node 

contributes to the processing effort like the rest. Four of the nodes are lower specified 

than the rest and these were used to conserve energy during the long development times. 

These can be upgraded later if necessary with a simple processor swap. 

 The motherboards were selected to accommodate future expansion of processing 

capacity in the form of GP-GPU co-processors. This will allow a hundred-fold further 

increase in processing power to accelerate selected portions of the optimizer algorithms, 

and complex objective functions when higher fidelity aircraft models are introduced. 

5.3 CATM: PSO C++ IMPLEMENTATION 

After having understood, implemented and compared the basic candidate 

algorithms in Matlab, PSO was eventually selected as the most promising technique for 

the global search portion of the CATM problem. The search mechanism seems 

particularly well adapted to non-convex optimisation of continuous-domain problems 

such as multi-trajectory optimisation. It has well understood convergence criteria and 

strikes a good balance between exploration and exploitation, and with the modifications 

made, can switch between the two modes relatively easily to provide the algorithm with 

a capability to cater for dynamic scenarios. Clustering was also relatively straight 

forward to implement.  

During development, Matlab served its purpose well as a rapid design tool for 

exploring and comparing the strengths and weaknesses of numerous algorithm variants 

and enhancements. Compiled Mex C++ inline functions were used to improve 

performance of critical sections of the code. However, despite writing very careful 

Matlab code and frequent profiling, even with Mex, performance, stability and 

scalability using this vector-based interpreted language is very limited. The decision 
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was ultimately made to port the enhanced PSO solver to C++ in order to enable scaling 

up the problem to practical sizes. 

C++ brings with it several essential tools that facilitate low level networking 

(WinPcap), high speed graphics (OpenGL) and low level access to CPU SIMD 

instructions (SSE4). C++ also brings with it several challenges that were hidden when 

using Matlab. Vector algebra is no longer a single line affair but must be diligently 

programmed element by element. There are also very few safeguards from buffer 

overflows and memory leakages. This required a much more disciplined approach when 

dealing with processes involving countless arrays that can reach several Gigabytes of 

memory. However, this low level access brings with it the ability to optimise the code to 

take advantage of the system‟s architectural features and the ability to use certain 

computational/memory efficient techniques that require “promiscuous” access to 

memory. 

5.3.1 Fast Random Number Generators 

All probabilistic metaheuristics employ pseudo-random number generators 

(PRNG) to guide their stochastic behaviour. Such numbers are required during 

mutation, selection and crossover in GAs and while computing particle velocities in the 

PSO variants. The large quantity of random numbers required makes the performance of 

the PRNG particularly critical. This is one of the most frequently called functions in the 

system. Typically the PRNGs included with most C++ libraries are based on the 

MT19937 Mersenne Twister algorithm [5.1] and although they have an excellent 

statistical distribution and a period length of (2
19937

 – 1), they are far too slow for this 

kind of work. The MT19937 is still the algorithm of choice for the initialisation of the 

airspace and initial particle positions or initial chromosome definitions. However, when 

used for the inner loops such as particle velocity updates, a profile of the optimiser 

revealed that up to 30% of the computing effort was being spent on MT19937 PRNG 

calls alone.  

A simpler PRNG using much fast integer arithmetic was therefore implemented 

using the Multiply With Carry (MWC1616) algorithm proposed by George Marsaglia 

[5.2] as a generalisation of prior work [5.3], which concatenates two 16bit MWC results 

to produce a 32 bit integer result which can then be converted to a 32 bit float. The 

recursive equations are given in 4.7.1 and provide random number sequences with 

periods roughly 2
59

.  

The resulting sequence is not cryptographically perfect and shares many 

similarities with Linear Congruential Generators (LCG), which have some sequential 

correlation properties (as per Marsaglia's Theorem [5.4]) that make them unsuitable for 

Monte Carlo methods. 

 In fact if sequences of N LCG numbers are plotted in N-dimensional space the 

numbers would align on a series of hyper-planes. Therefore, in respect of the high 

dimensionality of the problems being addressed, it is important to minimise this risk by 

decoupling the correlation between sequential draws. The generators were thus reseeded 

using a Mersenne Twister at every iteration. Separately seeded MWC1616 had to be 

also used for each dimension. This provision gave perfectly adequate numbers for 

randomising PSO progress, which should itself be rather insensitive to correlation 
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anyway due to the intrinsically chaotic nature of its cumulative velocity and position 

integration equations. 

MWC1616: 

                      

                      

               
   

(4.7.1) 

where:    is 18000 chosen from a table  [18000 18030 18273 18513 18879 19074 19098] 

  is 30903 chosen from a table  [29379 29889 30135 30345 30459 30714 30903] 

   ,    must be seeded with unique numbers 

(4.7.2) 

C++ code: unsigned long X = seed1; unsigned long Y = seed2; 
         
float MWC16(void){ X = 18000 * (X & 0xffff) + (X >> 16); 
                   Y = 30903 * (Y & 0xffff) + (Y >> 16); 
                   return (float)((X << 16) + (Y & 0xffff))/4294967296.0f;} 

(4.7.3) 

5.3.1.1 Uncorrelated Seeding 

PRNGs generate numbers that are completely predictable if the seed is known. 

This is not usually a problem, however in large multi-threaded applications, like the one 

proposed, each thread needs to have a separate PRNG and these must not generate 

numbers that are correlated between them in order to ensure that no bias is introduced 

that would affect the validity of the test results. Therefore it is imperative that each 

thread is supplied with a unique seed. A single, randomly initialised, Mersenne Twister 

in the main thread can generate all the seeds for the other threads during spawning. 

Alternatively, Visual Studio provides a random_device class that guarantees 

uncorrelated random numbers from a non-deterministic source. This is slow, but would 

only be required once during start-up. 

5.3.2 Single Instruction Multiple Data (SIMD) Acceleration 

Modern Intel CPUs are equipped with Single Instruction Multiple Data (SIMD) 

instructions that greatly enhance the throughput of both the arithmetic and floating point 

unit by allowing groups of 2x or 4x single precision floats or 32-bit integers to be 

grouped, transferred and processed as a single entity. This is especially convenient when 

dealing with 4D coordinates and streamlines memory transfers over the 64-bit memory 

bus and improves cache utilisation. These instructions were chronologically added by 

Intel to the x86 instruction set  in the following sets: MMX, SSE2, SSE3 and SSE4 for 

multimedia acceleration. Maximum use of such commands was made to leverage these 

benefits for a 4 to 5 fold improvement in performance. The C++ code excerpt in Figure 

5.3.1 below shows how the PRNG code described in eq. 4.7.3 was implemented using 

the SSE4 extensions to generate 4 uncorrelated random numbers per function call. Each 

SSE4 function (shown in purple) corresponds to a single assembly 128 bit SIMD 

instruction. 

X = _mm_add_epi32(_mm_mullo_epi32((_mm_and_si128(X,  

_mm_set1_epi32(0xFFFF))), 

_mm_set1_epi32(18000)),  

_mm_srli_epi32(X, 0xF)); 

Figure 5.3.1: SSE4 Code excerpt showing the MWC1616 Algorithm 
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5.4 CATM: C-CCGPSO-D SIMULATION RESULTS 

We now move onto discussing some simulation results that have been achieved 

using the preferred metaheuristic algorithm, C-CCGPSO-D, which was devised by 

combining a number of ideas that appear suited to solving the CATM problem. We 

organise the test results as follows, to highlight the salient features of the algorithm: 

 

5.5 Qualitative Results 

 5.5.1 Cooperative Coevolution in Pathological Cases 

 5.5.2 Visualisation of Swarm Collapse 

 5.5.3 Visualisation of Convergence in Large Scale Traffic Scenarios 

 5.5.4 Visualisation of Convergence with Obstacle Constraints 

 5.5.5 Visualisation of Dynamic Optimisation 

 

5.6 Quantitative Results 

 5.6.1 Demonstrating Scalability 

 5.6.2 Communication Overheads 

 5.6.3 The Effect of Transmission filtering 

 5.6.4 Clustering Efficacy 

 5.6.5 Swarm Size Effects 

 5.6.6 Constriction Effects  

 5.6.7 Delay Distribution 

 

The following abbreviations will apply throughout the discussion. 

  

CCGPSO:  Cooperative Coevolution Guided Particle Swarm Optimisation 

C-CCGPSO:  Clustered Cooperative Coevolution Guided PSO  

C-CCPSO-D :  Clustered Cooperative Coevolution PSO with Dynamic behaviour 

C-CCGPSO-D:  Clustered Cooperative Coevolution Guided PSO for Dynamic problems 

 

The key technical achievements are: 

1) Demonstration of a linear relationship between problem size and computation 

required using the proposed C-CCGPSO-D CATM algorithm. 

2) Demonstration of dynamic optimisation with moving obstacles  

3) Demonstration of effective inter-aircraft collision avoidance while optimising 

trajectories with respect to length.  

4) Demonstration of effective obstacle avoidance, while still maintaining 

separation minima and optimising trajectories with respect to length. 

5) Demonstration of far higher achievable traffic densities (24-fold) with less delay 

than incurred today, while still maintaining acceptable flight separation. 

6) Demonstration of clustering as an effective means of dividing the problem space 

7) Demonstration of effects of swarm size, ideal attracts and optimal constriction 

8) Demonstration of modest communication requirements by today‟s standards.  
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5.5 QUALITATIVE RESULTS 

These qualitative results demonstrate the behaviour of the C-CCGPSO-D under 

specific demanding conditions that were especially designed to stress the dynamic 

solver with particularly difficult cases.    

5.5.1 Cooperative Coevolution in Pathological Cases 

In order to test the equitable self-organisational features of the algorithm, a 

perfectly symmetric pathological scenario was set-up involving 14 flights from all 

opposing corners and faces of a test cube, of sides 10 km. The flights travel in both 

directions, flying through a central choke point to the diametrically opposite position. 

No obstacles are involved. 

This kind of scenario involves difficult decision making that should ideally result 

in a perfectly balanced result, where all the flights contribute with comparable 

elongation and where no flight is unduly penalized, such that the overall system cost is 

minimised. System cost is measured in terms of total percentage elongation across all 14 

flights.  

The separation constraints of the aircraft are set such that the octahedral buffer 

zones around each aircraft have sides of 1000 meters. This should result in the aircraft 

settling at a minimum separation of                  apart. 

For this case, a swarm of 64 particles was used, trajectories were discretized with 

32 knots, and all clusters were sized to the whole fleet, which translates to CCGPSO-D. 

As can be seen in Figure 5.5.1, the system converged to the expected ideal solution, 

where each flight deviated by just the right amount to avoid colliding with any other 

flight. The process of convergence is shown in three steps, where (a) shows the result 

during early exploration, (b) already shows a very good approximation after just 1.25 

seconds and (c) shows the asymptotic converged state after 8,000 iterations that take 

about 20 seconds to complete on a 1.6GHz i7 Laptop. Figure 5.5.2 shows the 

progression of convergence. Systemic inefficiency dropped to just 0.5% as shown in 

(a), while the separation constraints were, met nearly exactly with a minimum final 

separation of 577.71m     

 
   (a)  250

th
 pass                                   (b) 500

th
 pass                                  (c) 8,000

th
 pass 

Figure 5.5.1: Convergence of CCGPSO with a 14-way choke-point scenario 
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        (a)  Systemic Inefficiency                                             (b) Separation distance  

Figure 5.5.2: Convergence Charts of CCGPSO with a 14-way choke-point scenario 

5.5.2 Visualisation of Swarm Collapse 

The process of convergence is best appreciated when the actual particle swarm is 

visualised at various points in the process. In this case, each “particle” is in effect a 

candidate trajectory joining the departure point to the destination. Therefore in 

Figure 5.5.3 (a) a swarm of particles can be seen sampling the relevant search space in 

all sorts of directions. By the 50
th

 pass (b), the swarm quickly begins to take shape 

around the regions containing the global optimum. By the 200
th

 pass (c), the swarm has 

identified the neighbourhood of the global optimum, but is still significantly in breach 

the separation constraints. By the 1000
th

 pass (d), the intensification process is well 

under way and the particles crowd very densely around the global-best particle as they 

seek the lowest cost set of trajectories. The optimum relative positioning of each 

trajectory has been determined and it is now a question of refinement. By the 4000
th

 

pass (e), the swarm has practically collapsed. The problem is essentially solved, 

although there is still some slight room for improvement.  

At this point the metaheuristic became very ineffective, and progress slowed 

down to a crawl. At this stage, the solution found was well within a locally convex 

domain so there was little point continuing with probabilistic techniques. The solution is 

ideally transferred to a local optimiser, that starting with this seed, can reliably improve 

the result to perfection, limited only by the numerical accuracy of computing platform 

being used. 

  
      (a) 10

th
 pass             (b) 50

th
 pass              (c) 200

th
 pass            (d) 1000

th
 pass           (e) 4000

th
 pass 

Figure 5.5.3: Visualization of Swarm collapse a 14-way choke-point scenario 
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5.5.3 Visualisation of Convergence in large scale traffic scenarios 

  
Figure 5.5.4 (a): After 2000 iterations: 232% Systemic Inefficiency, Closest Encounter = 2.05km 

  
Figure 5.5.4 (b): After 40,000 iterations: 42.4% Systemic Inefficiency, Closest Encounter = 4.98km 

  
Figure 5.5.4 (c): After 1,000,000 Iterations: 6.01% Systemic Inefficiency, Closest Encounter = 5.58km 
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The next stage of testing involved high density traffic between points lying on a 

plane. This is much more representative of real traffic and in order to keep the 

simulation unbiased and independent of specific circumstances, a random set of airport 

locations was generated at every run of the optimiser. This ensured that uncorrelated 

trials were used when running Monte-Carlo simulations, which is essential for the 

validity of the results. 

Airports were uniformly distributed in a square plane of 1000km x 1000km. 

However, a number of exclusion rules were enforced to avoid contentious or unrealistic 

scenarios that would unreasonably skew the results: 

1) No airports were placed closer than 10km apart.   

2) No airports were placed within restricted airspace. 

3) No flights between airports closer than 50km were generated. 

The visualisations shown in Figure 5.5.4 (a)-(c), depict the afore-mentioned scenario, 

with 512 random flights, with 16 knots per flight and 4 fold NURB interpolation. The 

flights are clustered in groups of 16, where each flight is optimised using a swarm of 16 

particles. No restricted airspace was defined in this case, but separation minima were set 

at 5km. Optimal constriction was used with ideal attractors, which translates to C-

CCGPSO-D. 

The first set of images in (a), shows the state of the best solution found after 

2000 iterations from three different viewpoints. It is clear that progress is much slower 

in this case than it was in the simpler 14 flight choke-point scenario. After 2000 

iterations the metaheuristic is still in exploratory phase, but this is hardly surprising 

given the hundreds of thousands of individual local minima that arise in such a large 

problem. The systemic inefficiency is still at 232% in relation to the ideal straight line 

trajectories, while the closest pair of trajectories are 2.05 km apart. The non-linear 

conflict penalty function, ensures that close encounters are associated with 

disproportionately high cost, thereby ensuring that breaches of separation are given high 

priority.  

After 40,000 iterations (b), the systemic inefficiency drops to 42.4%, and the 

closest encounter is at 4.98km, just 0.02km short of the 5km constraint. Further 

exploration is necessary to reorder the flights more optimally. At 1,000,000 iterations 

(c), the systemic inefficiency drops to 6.01%, at which point progress is very slow and 

the closest encounter is at 5.58km. This is probably not the global optimum but it is 

unlikely that much better results will be obtained from this point onwards since the 

swarm is now fully collapsed and the optimizer is trapped in some local minimum. 

However, this result is also probably quite close to the global optimum and any further 

improvement is probably not worth the effort. 

5.5.4 Visualisation of Convergence with obstacle constraints 

When obstacles were introduced to simulate the effect of restricted airspace the 

resulting systemic inefficiency increased. But this is totally understandable given the 

need for many detours. Five regular octahedral obstacles with sides of 150km were 

introduced into the middle of the previously described airspace as shown in Figure 

5.5.5. The same optimisation conditions and size of problem were retained as in the 

previous case. 
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Figure 5.5.5: After 5,000,000 Iterations: 17.8% Systemic Inefficiency, Closest Encounter = 4.30km 

The converged steady-state solution after 5 million iterations is shown in three 

different views in Figure 5.5.5. The obstacles caused flights to concentrate between 

them, and this resulted in higher regional density. In this case the metaheuristic, sought 

to balance meeting the separation constraints, the obstacle constraints and the systemic 

inefficiency through the cost weighting function. Since separation criteria were 

expressed as soft constraints using a non-linear function, some degree of flexibility was 

retained, and the optimizer traded off some inter-flight separation for lower systemic 

inefficiency and obstacle interaction.         

5.5.5 Visualisation of Dynamic Optimisation 

One of the key elements that make PSO attractive for this kind of work is the 

relative ease with which the basic algorithm can be adapted for dynamic behaviour. This 

was tested using a simple experiment consisting of a single tetrahedral object at one side 

of a dynamically converged set of trajectories as shown in Figure 5.5.6 (a). The object 

was plunged through the airspace, while the behaviour of the swarm was closely 

analysed.  This scenario represents the motion a non-traversable weather cell through 

the airspace, which would typically force many aircraft to re-route reactively. 

 
      (a)  Before                  (b) During                 (c) During                (d) During                  (e) After          

Figure 5.5.6: Effects of an object collision with a dynamically converged solution 

After the fleet of flights reached dynamic equilibrium with their constraints, the 

trajectories behaved like elastic bands stretched between their terminals. As the object 

collided with the fleet (b), the swarm re-expanded. The converged Gbest particle was 

suddenly no longer considered „best‟ in these circumstances in view of the high cost 

incurred due to the collision. The underlying swarm dispersed, in search for a new 

optimum that kept changing as the object moved through the fleet (c). This re-acquired 

diversity was what allowed the swarm to dynamically adjust to the infolding scenario.  



 

 

 

201       SIMULATION, RESULTS AND DISCUSSION 

 

One advantage of using octahedral buffer zones is that they do not usually create 

non-convexities in 3D space. The trajectories tended to slide off them quite easily due to 

the gradient (c). However, a few flights took longer to re-settle as they got stretched 

around the flat faces of the object (d). This is undesirable and is symptomatic of 

insufficient swarm diversity. If the swarm diversity were high, this local optimum 

would quickly be abandoned in favour of much better solutions. Regular resets would 

solve the problem trivially (e) but incur a high performance penalty as the metaheuristic 

loses all its memory to start afresh. A much better solution involved the continuous 

replacement of the most converged particles with new random particles, such that the 

swarm was continually regenerated.        

The effect of collisions during final convergence is beautifully depicted in the 

chart shown in Figure 5.5.7. Systemic inefficiency increased temporarily as the 

trajectories rerouted with longer paths round the moving object. However, this was 

temporary, because as soon as the object moved out of the centre of the airspace the 

swarm quickly reconverged to the optimal state and returned back from where it left off 

along the exponential convergence decay curve. The effect was repeated when the 

object retraced its path back to where it started.   

 

Figure 5.5.7: Transient caused by an object collision during convergence  

Also shown in the chart, is the tally of trajectory collisions, which suffered a brief 

transient, due to the initial compression, only to return back to zero very soon after. 

Collisions were defined as breaches of the 5km buffer zone. In reality, the trajectories 

remained a substantial distance apart throughout the event, and the probability of 

collision was still very small. Besides, this was a worst case scenario that unfolded over 

a matter of seconds, when in reality weather cells take days to form, and move about, 

and although the aircraft models would need to be much more sophisticated, a CATM 

system would have vastly more time and computing resources at its disposal than was 

afforded in this small simulator. In addition, trajectories would be calculated well in 
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advance of actual flying. This would ensure that it would have re-converged fast enough 

to avoid all breaches of separation at the outset. 

 

Figure 5.5.8: Transient due to a sudden object collision with a dynamically converged solution  

The chart in Figure 5.5.8 shows the effect of much harder scenarios. The 

obstacles were in this case introduced suddenly into the middle of the airspace after 

initial convergence of the swarm. This was performed twice in a row, removing the 

obstacle before re-introducing it and removing it again. It simulated the effects of 

catastrophic disruptions. As can be seen, there was again a brief transient in the number 

of trajectory collisions, but this was not repeated when the obstacles were removed.  

Systemic inefficiency also suffered a sharp transient as the swarm rapidly 

rerouted to accommodate the offending obstacle. It then went through a period of re-

optimization during which it attempted to find a new optimum taking into account the 

obstacle. On removal of the obstacles, the efficiency improved very rapidly.   

All the tests used to show dynamic behavior were conducted with 512 random 

flights, using 16 knots per flight and 4 fold NURB interpolation. The flights were 

clustered in groups of 16, where each flight was optimised using a swarm of 16 

particles. Optimal constriction                             was used with 

ideal attractors, which translates to C-CCGPSO-D. 
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5.6 QUANTITATIVE RESULTS 

A number of quantitative tests were performed to show the relative performance 

of the algorithm under different operating conditions and problem sizes. Although direct 

comparisons are hard to make when there are so many influences that need to be taken 

into account, the achieved results compare favourably with the traffic statistics extracted 

in Chapter 3. Higher fidelity simulations are obviously possible at the expense of far 

more engineering effort and computational load. In the absence of that, it was decided to 

standardise the tests in a way that can make performance comparisons between 

algorithms easier and statistically valid. 

5.6.1 Demonstrating Scalability 

One of the primary objectives of this project was to demonstrate scalability, which 

is to say that the algorithm must be able to operate and properly converge whatever the 

size of the problem. This would obviously require an appropriate increase in processing 

power. However, this must also scale linearly (or polynomially) with the problem size 

in order to prove practical in the real domain. 

Thus an experiment was devised, whereby the simulation was run a number of 

times with an exponentially increasing number of flights as shown in Table 5.6.1. This 

covered 8 octaves, starting with 32 flights all the way to 4096 flights. The flights were 

confined to a square of 1000 x 1000 km. However, the processing power was kept 

constant, by sharing the same 3.8GHz machine over the ever increasing number of 

threads. Therefore, if it can be shown that the time to converge increases linearly with 

the number of flights, then scalability is proved and assured. Any increase in complexity 

to the individual agents such as more sophisticated aircraft models will also contribute 

linearly to the problem. 

CONCURRENT  
FLIGHTS 

(#/106Km2) 

TRAFFIC 
DENSITY 
104NM2 

CONVERGENCE TIME 

TO 110% OF BEST  
(SECONDS) 

MEMORY 

FOOTPRINT 
(MB)† 

ITERATION  
RATE 

(ITER/S) 

BEST  
RESULT 

(%) 

FINAL MIN. 
SEPARATION 

(KM) 

FINAL AVE.  
SEPARATION 

(KM) 

32 1.1 4.1 25 3200 0.38 45.1 466 
64 2.2 13.7 29 6400 0.63 40.2 531 

128 4.4 13.3 35 11104 1.88 11.7 547 
256 8.8 84.3 49 11071 3.42 14.4 534 
512 17.6 203.3 78 10546 6.60 8.1 533 

1024 35.1 198.6 140 8457 8.50 4.7 543 
2048 70.2 355.3 291 5250 8.57 2.9 545 
4096 140.5 1289.9 652 2877 8.55 1.8 537 

Using Node at 3.8GHz: Trajectory Knots = 16, Clusters = 16, Swarm Size = 16, Constriction = E, †per Node 

Table 5.6.1: Scalability Tests Spaced over 8 octaves 

The linearity between problem size and execution time is best appreciated in graphical 

form as can be seen in the log-log chart given in Figure 5.6.1 (a). However, this 

convergence time assumes constant CPU capacity. If computing capacity were added to 

the system in proportion to the number of flights, by housing a complete CATM 

computing node within each aircraft, the execution time to convergence will be of the 

order of what it takes to run a single thread: ie: ~ 0.3 seconds in this case, using a single 

3.8GHz 8-core Xeon per flight. 
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The memory footprint also scales approximately linearly with the number of 

flights and as can be seen the memory requirements are not very taxing on modern 

computing hardware. In a typical application, the largest data structure would be the 

almanac, that must allocate space for as many flights as there are aircraft in the system. 

A local copy of the almanac would be required per flight. However, in this case one is 

used per node. The iteration rate is also charted, and as expected this also drops with 

large problem sizes. However, it is interesting to note that the iteration rate was in 

practice limited by the communications latency for the smallest problem sizes, where a 

peak iteration rate occurred when there were around 256 flights in the system. 

 
                      (a)  Optimization Rates                                                   (b) Separation distance 

Figure 5.6.1: Performance of C-CCGPSO-D with Variable Problem sizes 

The effect of problem size on the separation criteria can be observed in (b), 

where it can be seen that the C-CCGPSO-D algorithm was able to fully meet the 

separation constraints when the traffic density was less than 512 flights per 10
6 

km
2
. 

Below this density there were no breaches of separation. Although the number of 

breaches increased substantially beyond this threshold density, the separation metric 

decreased gradually. Note that this density is triple the peak density that is found over 

Europe. This takes place at 2:00pm on the busiest days of summer.  

Also note, that a breach of the 5km buffer zone does not imply a collision. It 

may in fact be desirable to reduce separation minima to increase capacity, so long as 

higher performance ATM algorithms can be found. We have thus shown that a 24-fold 

increase in traffic density over the European peak can still be accommodated safely 

with a comfortable separation distance of 1.8km between the closest pair trajectories, 

and this with a peak systemic inefficiency (of 8.55%). This is still far better than what is 

achievable today in Europe, where the 24-hour average systemic inefficiency for 

domestic European flights is at around 9.15%.  

 Reliability of convergence is another important criterion for a practical CATM 

algorithm. However, this can be amply observed from the very well behaved 

convergence charts shown in Figure 5.6.2. Based on empirical data, irrespective of 

problem size, C-CCGPSO-D appears to be unconditionally stable. The difference in 

convergence rates can be explained by the fact that a single machine‟s processing power 

was being shared among as many threads as there were aircraft. This should not be the 

case in practice. 
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Figure 5.6.2: Reliable Convergence with Variable Problem Sizes   

5.6.2 Communication Overheads 

One can get an indicative idea of the data rates involved during convergence by 

looking at Table 5.6.2. Here the packets transferred were counted throughout the 

optimisation run and given the fixed size of each packet (302 bytes for 16 knots) the 

total data transferred was calculated. The peak data rate was approximately equal across 

the tests, which makes sense given that identical processing power was allocated.  For 

the larger problems, which took much longer to converge, the difference in cumulative 

data transferred was quite substantial. 

CONCURRENT  
FLIGHTS 

(#) 

MEMORY 

FOOTPRINT 
(MB)† 

ITERATION  
RATE 

(ITER/S) 

BEST  
RESULT 

(%) 

PEAK DATA  
TRANSFER 

RATE  
(KB/S) 

TO 110% OF BEST RESULT 
CONVERGENCE 

TIME 
(SECONDS) 

FINAL DATA  
TRANSFER RATE  

(KB/S) 

CUMULATIVE 
DATA TRANSFER 

(MB) 

512 152 40,920 6.205 6,022 20.2 2,951 149,847 
1024 245 26,711 7.773 6,151 71.1 1,545 269,499 
2048 458 15,639 8.001 6,728 191.7 817 414,133 
4096 1,306 8,511 7.726 5,780 663.4 469 755,358 
8192 4,131 4,323 8.125 6,382 2,801.3 81 1,595,323 

16384 14,448 2,002 9.073 6,443 14,949.4 11 3,921,156 

Using 4 Nodes at 3.2GHz: Trajectory Knots = 16, Clusters = 16, Swarm Size = 16, †per System 

Table 5.6.2: Communication Overheads 
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5.6.3 The Effect of Transmission filtering 

Transmission filtering had an important role in limiting the total data transferred 

during the optimisation run. The effect can be seen by comparing the peak data transfer 

rate with the final data transfer rate. As the problem reached convergence, updates to 

trajectories became increasingly less frequent and small in magnitude. With 

transmission filtering, this resulted in the data rate falling to very low levels which is 

ideal.  

This shows that in order to preserve the dynamic equilibrium the sustained data 

rate need not be very high. Substantial data transfers are only needed when the system is 

actively adapting to changes in the constraints. Luckily since most of these changes are 

slow and gradual, such as weather changes, the associated data rate would still not be 

too high. It is true that the network must be sized for peak transfer rate, but this can be 

calculated on the basis of local disruption to leave enough capacity for relaying 

information across the network. There is clearly much more room for research in this 

area.      

5.6.4 Clustering Efficacy 

Clustering is another principal feature of the C-CCGPSO-D algorithm that needed 

to be thoroughly investigated. Two aspects deserved most attention, convergence rate 

and the quality of the final outcome. For this purpose, a series of tests involving varying 

cluster sizes were conducted. All tests were based on 512 random flights, using 16 knots 

per flight, 4-fold NURB interpolation and no obstacles. Each flight was optimised using 

a swarm of 64 particles. Optimal constriction                             

was used with ideal attractors. The tests started with the single flight cluster, (which 

meant no cooperative coevolution or clustering at all and corresponds to GPSO-D), and 

proceeded all the way to 512 aircraft per cluster, which meant all the flights were 

included into a single cluster, which corresponds to cooperative coevolution without 

clustering, or CCGPSO-D.  

 
                      (a)  Optimization Rates                                                   (b) Separation distance 

Figure 5.6.3: Performance of C-CCGPSO-D with Variable Cluster sizes 

The optimisation rate results are shown in Figure 5.6.3 (a). Convergence time 

was taken as the time it took for the cost metric to fall to within 10% of the asymptotic 

final result. This made it much less sensitive to random variations. In (a), it can be seen 

that the iteration rate drops approximately logarithmically with cluster size, while the 

y = 0.0015x2 + 1.2175x + 41.693
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convergence time is quadratically related. This must be interpreted with reference to the 

observance of separation criteria as shown in (b). It is immediately clear that with no 

cooperative coevolution, the minimum separation criteria were not adhered to, 

registering nearly 120 breaches of separation. This improved dramatically with clusters 

of just two flights until there were no more breaches with clusters larger than 32. When 

all flights were included into one cluster, very good results were obtained, but this came 

at a cost of convergence time. A good compromise was attained with clusters of about 

32 flights. 

 
Figure 5.6.4: Reliable Convergence with Variable Cluster sizes 

The convergence plots shown in Figure 5.6.4, empirically indicate that the 

C-CCGPSO-D metaheuristic remained unconditionally stable with respect to cluster 

size. However, it also shows that convergence reached a better result, quicker with 

smaller cluster sizes, making C-CCGPSO-D superior to CCGPSO-D and superior to 

GPSO-D with respect to separation. 

Therefore, in summary we can conclude that clustering is an effective means of 

limiting dimensionality growth, while still effective at relaying information throughout 

the system, such that separation criteria are observed. It appears that clusters of 16 

flights strike a good balance with some bias towards good/fast convergence, while using 

clusters of 32, sacrifices some performance to ensure lower probabilities of buffer zone 

incursions.  
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5.6.5 Swarm Size effects 

The size of the swarm is related to the searching power of any swarm intelligence 

metaheuristic. However, large swarms incur heavier memory usage with slower 

iteration rates. It was therefore interesting to test whether large or small swarm sizes 

should be used in these kinds of problems.  

For this, a series of experiments were run with variable swarm sizes ranging from 

one particle all the way to 512 particles. The following conditions applied: All tests 

were based on 512 random flights, using 16 knots per flight, 4-fold NURB interpolation 

and no obstacles. Flights were clustered in sets of 16 and optimal constriction    
                         was used with ideal attractors. In order to avoid 

getting distracted with the significant variability between individual results, each test 

was repeated 20 times, and the results were averaged. A measure of variance in the form 

of relative standard error was provided as a percentage of the quantities shown. Table 

5.6.3 shows a summary of the results obtained.  

SWARM 

SIZE 
(#) 

CONVERGENCE TIME 

TO 110% OF BEST  
(SECONDS) 

MEMORY 

FOOTPRINT 
(MB) 

ITERATION  
RATE 

(ITER/S) 

BEST  
RESULT† 

(%) 

FINAL MINIMUM 

SEPARATION 
(KM) 

FINAL AVERAGE  
SEPARATION 

(KM) 

1 80.6 (±4.0%) 222 18117 (±2.9%) 10.97 (±1.0%
2
) 3.30 (±9.9%) 545 (±0.4%) 

2 69.7 (±3.7%) 223 17320 (±3.0%) 9.72 (±1.3%
2
) 4.11 (±8.9%) 539 (±0.5%) 

4 70.8 (±4.2%) 225 15796 (±2.9%) 8.58 (±1.4%
2
) 4.75 (±8.2%) 539 (±0.5%) 

8 68.3 (±5.1%) 229 13109 (±3.0%) 7.80 (±1.8%
2
) 4.71 (±10.4%) 544 (±0.4%) 

16 81.6 (±6.5%) 238 9611 (±2.9%) 7.09 (±4.5%
2
) 5.33 (±7.7%) 540 (±0.5%) 

32 105.4 (±3.5%) 256 6330 (±3.1%) 6.57 (±2.1%
2
) 5.67 (±5.5%) 540 (±0.4%) 

64 126.1 (±4.4%) 290 3922 (±2.8%) 6.48 (±2.0%
2
) 5.66 (±8.5%) 544 (±0.4%) 

128 156.8 (±5.7%) 357 2132 (±3.1%) 6.03 (±2.2%
2
) 5.65 (±9.0%) 548 (±0.4%) 

256 211.9 (±4.3%) 495 1128 (±3.2%) 5.76 (±1.9%
2
) 5.95 (±7.2%) 541 (±0.5%) 

512 224.3 (±8.0%) 770 606 (±3.0%) 6.85 (±4.3%
2
) 6.71 (±6.5%) 547 (±0.5%) 

Tests run for 20 times, results expressed as mean Qty (± Std. err %), † Systemic Inefficiency 
Using  3.2GHz Nodes:    Flights = 512, Trajectory Knots = 16,  Clusters = 16, Constriction = E  

Table 5.6.3: The Effect of Swarm Size 

These results are better appreciated graphically as shown in Figure 5.6.5 (a), 

where a nearly linear relationship can be observed between convergence time and 

population size. This held true for much of the range and only broke down with very 

small population sizes, where the time consumed in overheads greatly exceeded the 

time spent processing the miniscule swarm at each iteration. The iteration rate fell 

quasi-logarithmically with increasing population size. At the same time, a quick look at 

Figure 5.6.6, reveals that larger swarms were conducive to better final results, with the 

lowest values of systemic inefficiency achieved using the 256 particle swarm. This was 

coupled with significantly better performance in terms of meeting separation 

constraints, where a trend was very clearly shown. The larger swarms lead to higher 

final separation distance and fewer breaches. This leads us to the conclusion that 

swarms somewhat larger than 32 particles result in the best compromise between the 

conflicting requirements of convergence time vs performance. 
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                     (a)  Optimization Rates                                                  (b) Separation distance 

Figure 5.6.5: Performance of C-CCGPSO-D with Variable Swarm sizes 

 

 The plots shown in Figure 5.6.6 are also the result of 20-fold averaging, such that the 

relative trends shown are truly representative of the likelihood of obtaining such a 

result. This was in effect equivalent to a small Monte-Carlo simulation, where each trial 

was attempted using a different random set of flights and airports. 

 

 

Figure 5.6.6: Reliable Convergence with Variable Swarm sizes 
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5.6.6 Constriction effects 

Constriction parameters control the convergence properties of PSO swarms in 

accordance to a well defined theoretical framework. However, there remains some 

degree of freedom in the choice of these parameters. The addition of ideal attractors, 

changed the standard PSO formula and a new parameter was added. In order to ensure 

that the best choice of parameters was selected, the following tests, as shown in 

Table 5.6.4, were conducted. 

# m c1 c2 c3 
CONVERGENCE TIME 

TO 110% OF BEST 
(SECONDS) 

BEST 
RESULT 

(%)† 

FINAL MINIMUM 

SEPARATION 
(KM) 

FINAL AVERAGE 
SEPARATION 

(KM) 

A 0.9375 2.0500 2.0500 0.000 181 (±4.4%) 9.52 (±2.2%
2
) 6.24 (±12.4%) 539 (±0.5%) 

B 1.0000 2.0585 2.0585 0.000 187 (±2.5%) 9.43 (±2.5%
2
) 6.02 (±13.1%) 544 (±0.5%) 

C 1.0000 2.0550 2.0550 0.007 189 (±3.0%) 7.79 (±1.9%
2
) 5.32 (±12.5%) 551 (±0.5%) 

D 1.0000 2.0500 2.0500 0.017 163 (±3.2%) 7.17 (±2.5%
2
) 8.32 (±5.4%) 544 (±0.5%) 

E 1.0000 2.0000 2.0000 0.117 125 (±3.7%) 7.19 (±2.6%
2
)  7.42 (±7.6%)  553 (±0.6%) 

F 1.0000 1.7500 1.7500 0.617 64 (±46.3%) 11.11 (±3.1%
2
) 6.71 (±11.4%) 551 (±0.5%) 

Tests run for 10 times, results expressed as mean Qty (± Std. err %), † Systemic Inefficiency 
Using all 3.2GHz Nodes:    Flights = 512, Trajectory Knots = 16,  Clusters = 32, Swarm Size = 64 

Table 5.6.4: Swarm Constriction Effects 

Six scenarios were devised. The first two {A, B}, pertained to standard PSO and 

included no ideal attractor term (which is therefore zero). The next 4 scenarios 

{C, D, E, F}, progressively increased the ideal attractor term, at the expense of the other 

terms, while ensuring that the total constriction parameter remained well above 2.00. 

From the table and Figure 5.6.7, it can be seen that the best performance is achieved 

with option E. 

 

Figure 5.6.7: Performance of C-CCGPSO-D with Variable Constriction 
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For this series of experiments, the swarm size was fixed to 64. All tests were 

based on 512 random flights, using 16 knots per flight, 4-fold NURB interpolation and 

no obstacles. Flights were clustered in sets of 32 and the type of constriction was varied. 

In order to avoid getting distracted with the significant variability between individual 

results, each test was repeated 10 times, where each trial was attempted using a different 

random set of flights and airports. 

Options {A, B}, offered no guidance to the swarm, thereby missing out on the 

opportunity to impart important information to the metaheuristic. Progress was slower 

than the other options and the swarm was ultimately trapped into a local minimum that 

was substantially less optimal than what could be achieved in practice. Table 5.6.4 

shows how marginally acceptable separation was achieved at a relatively high cost of 

nearly 10% average trajectory elongation. Options {C, D, E, F}, imparted a 

progressively stronger bias towards the ideal solution. However, too much bias lead to 

fast, but premature, convergence to a suboptimal local minimum, as can be seen in 

Figure 5.6.7. 

Option E, achieved the best balance between exploration and exploitation, by 

guiding the swarm towards a global best region, without unduly hampering it from 

searching for the best balance with the path constraints. 

5.6.7 Delay Distribution 

As a measure of equitability, delay or flight elongation histograms were used to 

measure the distribution of inefficiency in the system.   

With a swarm size of 64 particles, all tests were based on 512 random flights 

spread over 10
6
 km

2
, which corresponds to 3 times the current summer peak European 

density of traffic. This can be considered as representative of 2035 traffic density. 16 

knots per flight were used with 4-fold NURB interpolation and no obstacles. Flights 

were clustered in sets of 16 and constriction type E as used. At various points during the 

convergence, the best trajectories found for each aircraft in the fleet were binned in 

terms of their individual inefficiency, measured as the percentage elongation of each 

flight. Given, that aircraft tend to travel at quasi-constant cruising speed, this is a good 

measure of the delay incurred.  

 
Figure 5.6.8: Delay distribution of flights after 10,000 iterations.  
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Figure 5.6.9: Delay distribution of flights after 100,000 iterations.  

After the first 10,000 iterations, the flights were still influenced by their random 

initialisation and Figure 5.6.8, shows a roughly Gaussian distribution of flights in terms 

of elongation. This was expected from the central limit theorem that states that any 

summation of uncorrelated quantities drawn from a random source will tend towards 

Gaussian distributions, when the number of elements is large. In this case, each flight 

consisted of the concatenation of 16 random segments. 

As the optimisation proceeded, the distribution changed as flights were 

progressively shortened towards their optimum lengths.  Figure 5.6.9, shows the effect 

of optimization on the distribution after 100,000 iterations, where the spread of delay is 

greatly reduced and most flights are now experiencing less than 30% elongation. 

 
Figure 5.6.10: Delay distribution of flights after 1,000,000 iterations.  

Asymptotic convergence was almost achieved by 1,000,000 iterations, where the 

distribution of flight delay looked exponential, as can be seen in Figure 5.6.10. For a 

more representative sample, this test was repeated 20 times to 5,000,000 iterations, and 

the accumulated data was then statistically analyzed (see Figure 5.6.11). It was found 

that a Burr distribution (Type XII) fitted the data very closely, with the fit parameters 

given in Table 5.6.5. 
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# 26th Jun 2009 Traffic 5,000,000‡ ITERATIONS OF C-CCGPSO-D 

Fi
t 

  P
ar

am
e

te
rs

 Distribution Lognormal Distribution Burr Distribution (Type XII) 
Log Likelihood 34986.8 19443.4 

Mean 11.462% 6.4318% 
Variance 1.411% 5.9896% 

μ -2.5308  (±0.00514474) α 0.0736585   (±0.00565) 
σ  0.8540  (±0.00363798) k 1.0020100   (±0.01401) 
  c 2.1434300   (±0.11268) 

50
th

  percentile† 8.68%  3.19%  
25

th
  percentile† 4.91%  1.30%  

10
th

  percentile† 2.57%  0.47%  
  5

th
  percentile† 1.61%  0.21%  

Maximum Delay 239% 185% 
Minimum Delay 0% 0% 

Sample Size 27559 512x20 
   

‡Tests run for 20 times, † Systemic Inefficiency, Flights = 512, Knots = 16,  Clusters = 16, Swarm = 64 

Table 5.6.5: Comparison and fit of Delay Distributions 

 
Figure 5.6.11: Delay distribution of flights after 5,000,000 iterations, (20 trials) 

 
Figure 5.6.12: Delay distribution in the June 2009 flight sample analysed.  
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After 5 million iterations elapsed, the vast majority of flights (90%) were less 

than 0.5% delayed in relation to their optimum journey length. This, while fully 

complying with the separation minima of 5km, with no breaches at all, as given in the 

64 particle entry of Table 5.6.3. 

These results are best compared with actual statistics collected by Eurocontrol. 

In Figure 5.6.12, the distribution of flight delays shown, was extracted from the 

available ATM dataset, after removing all flights between airports closer than 250km, to 

eliminate most pleasure flights. The data fits almost precisely a lognormal distribution 

with the fit parameters shown in Table 5.6.5. The 50
th

, 25
th

, 10
th

 and 5
th

 percentiles are 

also given in both cases. In either case, a small proportion of flights were significantly 

delayed with respect to their shortest direct route. However a significant number of 

flights were able to fly direct routes with zero overhead. 

Finally it is worth recalling Eurocontrol‟s own 2035 delay projection compared 

to 2012 data. Eurocontrol predict a sustained 5% growth for the foreseeable future, and 

this takes us to triple the current level of traffic density by 2035. This is given in 

Figure 5.6.13, where the delay scenario is expected to substantially worsen if 

conventional ATM technology prevails. The simulation results given in Figure 5.6.11 

and Table 5.6.5, represent this 2035 level of traffic density and the delay profile 

achievable using CATM. 

 

 

 

Figure 5.6.13: Eurocontrol’s Current and Projected Delay Distribution [5.5] 
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5.2 CONSTRUCTION OF A CATM SIMULATION RIG 
The thousands of concurrent optimizer threads required some rather hefty 

computational hardware to accommodate. For this purpose, a dedicated 12 node 
computing blade server rig was constructed using dual processor motherboards from 
Supermicro® computer and Intel Xeon® Harpertown 8-core CPUs. The memory of the 
system was sized to accommodate several thousand threads per blade. Figure 5.2.1 
describes the setup.  

 

 

 
 
 
 
 
 
 
 
 

 
Special consideration was taken to ensure 

adequate cooling of the resulting multi kW 
system. Water cooling and high capacity vehicle 
radiators were used to dispose of the waste heat 
from all 24 CPUs, and forced air cooling was 
used for the memory and the rest of the system. 
The processors were also over-clocked to around 
130% to extract maximum performance, and their 
numerical reliability was exhaustively re-tested 
using Intel’s Linpack V11.1.1 benchmarking 
tools. The aggregate performance of the system 
reaches 1.0 Tflop and is capable of traversing 80k 
PSO epochs per second for a 12,288 flight air 
traffic system. The system is divided into a 
3.8GHz head node and 11 slaves. Figure 5.2.2 
shows a photograph of the assembled computing 
rig running some CATM tests, while Table 5.2.1 
shows a summary of the system’s configuration 
and performance, together with an HP Pavilion 
DV6 i7 laptop PC, also listed here for comparison. 

  
Figure 5.2.2: CATM Simulation Rig

 

Figure 5.2.1: CATM Simulation Rig Configuration  
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Chapter 6 
Conclusions and Future Work 

This dissertation is concluded with a summary of the motivating objectives and 

the work undertaken. After listing the principal contributions, a number of 

recommendations for further work are made. 

6.1 SUMMARY 

“Global demand for motor vehicles will not exceed one million, due to the limited 

availability of professional chauffeurs,” said Gottlieb Daimler, inventor of the 

automobile in 1900 and we all know how true that turned out to be. The democratization 

of personal aviation, with very light jets (VLJ), coupled with commercial unmanned 

flight have the potential to repeat in aviation, what has happened to road transport. 

World air transport has been on a steady exponential rise since the 1940’s and the 

trend has shown remarkable resilience to external shocks. The level of air traffic has 

greatly exceeded the wildest expectations of the air traffic management pioneers that 

originally defined the basic precepts of ATM that persist till today. This has stretched 

conventional ATM to a point where it is starting to show signs of ineffectiveness in the 

face of ever increasing congestion. Delays are on the rise, flights are being elongated 

unnecessarily, the system is becoming increasingly susceptible to disruption, and the 

high environmental impact of aviation is being compounded by the inability of air 

traffic controllers to optimise ATM operation in real-time. If these trends are not 

reversed, ATM could eventually face instability. The conservative, self-preserving 

outlook of the ATM community has confined progress to relatively minor tweaks of a 

tired human-centric paradigm. However, the diverging gap between ATM performance 

and fundamental requirements indicates the need for a step change.  

In this work, the traditionally incremental approach to ATM research was broken 

to favour a more exploratory mindset. As a result, a new discipline called 

Computational Air Traffic Management has been defined to address the unique set of 

challenges presented by the ATM problem, by taking a more objective scientific 

approach. 

A specific embodiment of a CATM system was designed, constructed, simulated 

and tested and shown to be a significant step towards demonstrating the feasibility of a 

fully autonomous multi-agent-based air transportation system based on optimisation 

principles. The system offers unique advantages in terms of resilience to disruption, 

efficiency and future scalability. The traffic density using such a system can be 

realistically increased many times higher than current levels while significantly 

improving on the current levels of safety, operating cost, environmental impact and 

flight delays. 
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6.2 CONCLUSIONS 

Equipped with the latest developments in science, mathematics, computing and 

engineering, the ATM problem was framed in mathematical terms and tackled in a 

structured fashion in relation to the key performance indicators. The overarching 

recommended solution to the ATM problem is given as follows: 

1) Computational Air Traffic Management is presented as a new engineering 

discipline focussed on holistically solving the global air traffic management 

problem in an efficient and autonomous, cost-effective fashion. It replaces 

today’s fragmented partial automation with unified overarching autonomy by 

drawing on the latest results from the science of systems and complexity, 

optimal control, communications, and computational intelligence. 

2) ATM was expressed as a large, decentralized, dynamic, variable size, infinite 

horizon, multi-parameter, constrained, nonlinear, non-causal, non-convex, 

multi-objective, high-dimensionality, hybrid (continuous-and-combinatorial), 

optimal control problem. 

3) Grid Avionics was suggested as the preferred CATM embodiment, that relies 

on a self-organising distributed architecture that seeks to create a parallel-

computing grid by internetworking all aircraft through using high speed links. 

4) Swarm Intelligence, biomimetics, and other related metaheuristics are 

proposed as the underlying cooperative, but distributed, real-time optimisation 

algorithms that can be integrated into a receding horizon controller.  

5) Multipath Free Space Optical Links between aircraft and static hubs are 

recommended as an appropriate medium to form a suitable CATM network 

that is both fast and resilient. 

6) NURBS are proposed as an appropriate parameterisation for describing 

trajectories as well as universal language of interchange.  

7) Hierarchical optimisation is suggested as the means of handling the non-

convexity of ATM, by matching the intertwined local and global optimisation 

aspects of the problem to the complementary strengths of probabilistic and 

deterministic gradient driven optimisers. 

8) Dynamic optimisation is suggested as the technique to make optimisers 

adaptive to the inevitable variability in the problem’s constraints. 

9) Continuous optimisation is used to capitalise on past optimisation effort to 

increase the system update rate, and reduce the effects of uncertainty.  

10) Static clustering is recommended as a viable and stable method to mitigate 

problem growth when thousands of aircraft are involved. 

11) Ideal attractors are recommended to accelerate optimisation, by directing 

probabilistic searches towards the best solutions, thereby conserving 

computational resources. 
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6.2.1 Key Contributions 

There are a number of novel contributions of various magnitudes that are 

described in this dissertation. The most important of these are highly conceptual. 

However, in addition to the primary to the ATM domain (which is of a conceptual 

nature), a number of other secondary contributions are offered as supporting evidence in 

favour of the central concepts. The following specific contributions to the fields of 

distributed computational intelligence, optimisation science and ATM were made: 

1) The ATM problem was given a fundamental rethink, starting from basic 

requirements. Continuity with the past was a subordinate objective and therefore 

no constraints were carried over including the highly onerous constraint of 

keeping the human decision maker in the loop. Full autonomy was thereby given 

serious thought, together with the implications that it brings.   

2) Through a fully symmetric divide-and-conquer technique called clustering, an 

effective multi-trajectory optimisation technique based on Particle Swarm 

Optimisation, and Cooperative Coevolution was presented as a practical means 

of equitably distributing computational intelligence over all the aircraft in the 

ATM system such that a unique solution to the global ATM problem is found in 

real-time by capitalizing on the aggregate computational resources made 

available by all participating agents.  

3) Several candidate automation algorithms from the wide spectrum of optimisation 

techniques were investigated and their unique strengths and weaknesses were 

compared. A number of novel problem simplifications and dimensionality 

mitigating enhancements were suggested and implemented to make the 

algorithms fast enough for practical applications. 

4) A linear relationship between problem size and the computational resources 

required for a given level of performance was demonstrated empirically. This 

settles the debate on whether a CATM system would be scalable to deal with the 

global scale ATM problem. A CATM-based system is technically possible. 

5) The convergence properties of the preferred algorithm were tested with respect 

to a number of parameters such as swarm size, cluster size and constriction 

configuration and parameters that strike a good compromise between exploration 

and exploitation were identified. The algorithms were shown to be 

unconditionally convergent irrespective of the parameters chosen (so long as 

fundamental constriction condition are observed). 

6) Important preliminary insights about the communication requirements of these 

kind of algorithms were given to help select suitable communication links for 

CATM. 

7) Developed a CATM simulator that can be further extended in a modular fashion 

using object oriented techniques in C++. An associated, extendable computing 

hardware platform was also devised to match the unique requirements of CATM 

multi-agent simulation. 
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6.3 FUTURE WORK 

 

The following recommendations can be made for future investigations: 

 

1) A Model Predictive version of the system needs to be simulated to show the 

system working in an ongoing fashion with new flights generated, executed 

and completed in real-time, while the optimiser tracks any disturbances to 

which the system is subjected.  

2) Realistic aircraft and atmospheric models and the associated inverse-dynamics 

constraints need to be integrated into the inner loop penalty function 

evaluation. This means that the BADA, ISA and other environmental impact 

models need to be cut down to the bare minimum computational footprint that 

still allows good fidelity. These models have to be rewritten in CUDA to 

allow GPGPU acceleration of the inner loop of the optimiser. The computing 

hardware platform needs to be upgraded accordingly. 

3) The European traffic models need to be integrated into simulator in order to 

generate directly comparable results with the measured performance figures of 

current ATM system. This is not difficult but requires some additional 

programming effort. 

4) The simulations then need to be scaled to even larger sizes, until a truly global 

self contained solution can be evaluated an compared to real world data. This 

needs to be enhanced with the WGS84 coordinate system to take into account 

geodetic effects. 

5) Various multi-swarm configurations of the algorithms need to be tested with 

respect to their ability to enhance the dynamic behaviour of the optimiser.  

6) A Pseudospectral local optimiser needs to be integrated with the global 

optimiser such that a more reliable hierarchical optimisation hybrid is created. 

This will require some thought on how to re-space the knots to match the 

Gauss-Lobatto or Gauss-Chebychev collocation points. 

 




