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Abstract

The in-house code FLAMENCO is developed to simulate the mixing process in
a Dry Low NOx GTU Combustor. The physical approach is defined to model
3D-unsteady, compressible, multi-species flows where turbulence plays a major role.
For this purpose, Large Eddy-Simulation is applied in conjunction with high-order
schemes and stable formulation of volume fraction advection. Regarding the numerical
structure, FLAMENCO is a Finite-Volume Godunov-type algorithm equipped with
5th and 2nd Order non-oscillatory reconstruction in space and 2nd Order, 4-Stages
Explicit Runge-Kutta scheme for integration in time. From a mathematical point
of view, the multi-species approach is governed by the 5-Equation Transport Model
and is thermodynamically defined by iso-baric and perfect gas considerations, which
prevent pressure oscillations. Finally, an HLLC approximate Riemann solver computes
convective fluxes and 2nd Order centred differences accounts for dissipation terms.

Previous research with an old version of FLAMENCO failed due to low dissipation in the
jet injector tube. This issue stems from local energy being uncontrollably introduced in
this small region, leading to unphysical pressure values. It was found that the combination
of reflecting inflow, small cells and high gradients is responsible for acoustic wave
reflection and amplification. To overcome this problem, a number of modifications
including boundary conditions (Partially Non-reflecting, Non-reflecting and Nozzle-type
subsonic inflows and outflows), an Adaptive Reconstruction Scheme, a more dissipative
reconstruction scheme (5th Order WENO) and grid changes (only in jet injector) have
been introduced. As a result, local energy generation and evacuation become balanced
within physical boundaries, providing stable conditions in the whole domain.

Initially, extensive validation of the new numerical approach is conducted through
contrasted test cases such as Stationary and Moving Contact Wave, Shock Tube Problem,
Kelvin-Helmholtz Instability and 2D-3D Explosion Problems. In the same way, strategies
intended to overcome the low dissipation problem are analysed in a representative
configuration. After the validation process, several simulations involving coarse and
fine grids and different reconstruction schemes are run in the Dry Low NOx GTU
Combustor. Finally, results are compared with experimental data, showing really good
accuracy for 5th Order schemes, which is specially surprising in the coarse grid. In
this way, highly turbulent, heterogeneous structures such as Vortex Breakdown, Central
Recirculation Zone, Precessing Vortex Core and Secondary Vortices are very well
captured, demonstrating the suitability of the mixing model to deal with highly turbulent
flows where critical shear layers and high mixing ratios coexist in confined domains.
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Chapter 1

Introduction

1.1 Dry Low NOx Gas Turbine Unit Combustor as future
technology

One of the main challenges faced by today’s society is sustainable development. In a
changing globalised world where competition reaches unimaginable levels and industrial
companies fight to clear their way towards a better position in the market, a responsible
development is crucial to ensure durability of society and a future with sustainable
consumption of finite resources. In their attempt to manage the situation, governments
are introducing restrictive laws that constrain the conception of new technologies within
many fields of development. Obviously, the energy sector is directly affected by such
regulations, which are inducing a change of mentality at very basic levels. As a
consequence, new designs are no longer devised under a few criteria of power and
strength, but they must fulfil several requirements with a “mandatory” status. In this way,
focusing on devices involving chemical-to-mechanical energy transformation, factors
such as efficiency, pollutant emissions, cost, reliability, robustness, durability or weight
have become essential whenever a new product is projected.

The energy sector has been deeply affected by this change in mentality and in the way
engineering has to be understood. The fact that traditional energy sources such as oil
and gas are running low is forcing on the one hand the development of cleaner and more
efficient methodologies to deal with them and on the other hand the consideration of new
unlimited renewable energies. Any contribution within these fields that helps improving
the state-of-the-art of such technologies is therefore of high utility.

The extraction of chemical energy and its transformation to mechanical power are
processes occurring everywhere nowadays. For instance, cars, ships, planes and
electricity generation are elements that rely on such mechanisms to operate. As a
consequence, the improvement of their performance is subjected to correct understanding
of energy transference processes. Although great progress has been done in the matter,
there are still many issues to be addressed in order to have broader control and to reach
sustainable levels of energy production.
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Devising modern tools for chemical energy extraction and its conversion to mechanical
(or kinetic) power must take into account not only the above mentioned requirements of
certain levels of efficiency, robustness, cost, etc., but also strict restrictions in pollutant
emissions. Therefore, novel cutting-edge designs must be produced in order to be
successful. Among such designs, the Dry Low NOx Gas Turbine Unit Combustor (see
Figure 1.1 for typical configurations) emerges as an efficient element where combustion is
produced in a clean way and where the usage of unnecessary raw materials is minimised.

(a) CAD Model (b) Combustor plus nozzle. Reproduced from [1]

Figure 1.1: Typical Dry Low NOx Combustor design

Modern Dry Low NOx GTU combustors make use of innovative technologies to generate
large amounts of mechanical power (usually employed for electric energy production)
from relatively small quantities of gas or liquid fuel. As stated in Davis et al. [1]
and Washam [2], in addition to high efficiency and reliability, these machines yield
very low pollutant emissions in general and NOx in particular, as seen in Figure 1.2
(as a reference point, consider that typical Gas Turbines emit between 100 to 600
ppm of NOx). The major advantage of this type of gas turbines is that they decrease
dramatically the employment of traditional cleaning mechanisms (water and steam
injection) associated with NOx reduction by using lean premixed components under
certain working conditions. As a consequence, the negative effects derived from the
utilisation of such traditional methods (efficiency losses, water induced pollutants, etc.)
are avoided without sacrificing performance. Finally, another important advantage of Dry
Low NOx GTU combustors is their ability to deal with many different fuels, ranging from
oil and gas to biofuels (see Siemens SGT-100 [3])

2



1.2 Mixing Processes

Figure 1.2: Pollutant emissions of different Dry Low NOx GTU Combustors. Reproduced from
[1]

1.2 Mixing Processes

Energy transformation within the Dry Low NOx GTU combustor is divided, as occurs
in non-premixed engines, into three well-differentiated stages: Injection, Mixing and
Combustion. Although the exact boundaries of these stages are not strictly defined and
may vary depending on who is performing the analysis, it is commonly accepted that the
Injection stage includes all phenomena occurring within the injector and in the near region
of the injector exit, the Mixing stage involves relatively unconfined flows which interact
through a complex mass, momentum and heat exchange mechanism delivering a suitable
fluid mixture of reactants ready to burn, and the Combustion stage considers all processes
transforming such mixture into burned products. The present study focuses on the Mixing
stage, addressing all the relevant phenomena that characterise the evolution of the flow at
this point.

There are endless mixing processes taking place in nature, and so are the features that
appear in them. For instance, from an engineering point of view, the injection and
subsequent mixing in Diesel Engines, Petrol Engines, Jet Engines, Gas Turbines, Rocket
Engines, domestic combustion, etc., differ significantly from one to another (see Figure
1.3), indicating that different approaches must be used when addressing any of such
processes. In the case under consideration, two non-premixed flows are coaxially injected
inside the combustion chamber where mixing takes place. Whereas the inner jet is set only
with axial velocity, the outer flow is delivered with both axial and rotational velocities
(see Figure 1.4 for a typical flow field derived from this configuration), inducing adverse

3
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(a) Diesel and HCCI Engines (b) Gas Turbine Combustor

(c) Rocket Engine (d) Space Shuttle injector

Figure 1.3: Devices where different Injection and Mixing processes occur

pressure gradients that allow proper species recirculation and mixing. This concept of
coaxially injected axial and swirl flows is really advantageous in constant pressure burning
devices such as Gas Turbines or Jet engines, since it allows matching flame and flow
speeds leading to quick and efficient mixing. In internal combustion engines, its usage is
not as generalised, but as demonstrated in Miles [4] adaptations of the idea are currently
being assessed in order to take the advantages while minimising the disadvantages (swirl
flows in internal combustion engines bring additional problems due to higher restrictions
in space, pressure, time, etc.). As for the specific physical phenomena occurring inside
the Dry Low NOx GTU combustor, details are commented in Section 2.1.

Figure 1.4: Typical flow field derived from coaxially injected Swirl-axial flows. Reproduced
from [5]

4



1.3 Approach with FLAMENCO

1.3 Approach with FLAMENCO

The mixing process addressed in the present study has a well-defined configuration. Since
real operating conditions range from gas to liquid fuels and oxidisers at many different
injection speeds, it is difficult to generate a global model whose applicability is justified
in any case. Therefore, analyses have to be particularised, using physical assumptions,
mathematical models and numerical methods according to the case under consideration.
In this study, experimental data obtained by Midgley et al. [6] using water for both the jet
(inner stream) and swirling flow (outer stream) in the rig shown in Figure 1.5 have been
utilised as the reference basis to compare with numerical results. In order to represent
accurately real Gas Turbine combustion processes using liquid fuels and oxidisers, such
experimental information was generated under typical operating conditions.

Figure 1.5: Experimental Rig used in [6]

Although ideally an incompressible code would provide the best results, this research
addresses the problem from a compressible perspective using FLAMENCO, a numerical
algorithm built to deal with compressible fluids. Obviously, the code notices that the speed
of sound is much higher than the characteristic velocities and acts in consequence by
applying the corresponding adjustments (see Low Mach Correction in Thornber [7]). In
the same way, the characteristic non-dimensional parameters of the problem are specified
carefully to make results consistent and comparable.

The present case has been approached before in Aguado [8] using a primary version
of FLAMENCO. In that work, large discrepancies between numerical and experimental
data were found, especially from a quantitative point of view. Indeed, despite the most
important flow features were captured, their intensity and precise location within the
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combustion chamber were significantly wrong. Therefore, the present study has been
partially dedicated to understand and correct the factors that triggered such inaccuracies.

After deep analysis, it was found that the reason behind the erroneous predictions in [8]
was the extremely low dissipation generated in this particular case by the first version
of FLAMENCO. The effects of such low dissipation were masked in almost the whole
domain, where large characteristic longitudes and relatively low velocities allow energy
evacuation and equilibrium. However, inside the jet injector tube (bounded by the
subsonic inflow and the exit to the combustion chamber), a dramatic combination of small
cells, large characteristic velocities and numerical energy production led to unbalanced
energy creation. As a consequence, small amounts of this quantity were systematically
added to the existing values, provoking non-physical and uncontrolled increments in
pressure which ultimately triggered a non-physical rotational flow inside this inner duct.
These effects had an evident impact on subsequent flow features within the combustion
chamber.

The detailed mechanism by which low dissipation is not able to balance energy production
is as follows:

1. The low pressure region located near the small vertical wall between the jet
and swirl injectors introduces expansion waves inside the inner tube, decreasing
pressure near the walls of the jet injector (as seen in Figure 1.6). This phenomenon
is produced throughout the whole simulation, affecting the total energy in a
continuous way.

Figure 1.6: Regions where low pressure is initially developed

2. These expansion waves propagate near the walls of the duct, reflecting on them and
increasing their intensity as energy is introduced from the inflow (incoming pressure
waves) and the outflow. This leads to a complex aeroacoustic configuration where
low pressure regions move, attached to the walls, describing a characteristic helical
motion. These low pressure “bags” increase their absolute magnitude and induce a
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non-physical transversal flow inside the jet injector which eventually creates high
pressure areas opposed to the lower ones. It is important to mention that the point
of minimum (or maximum) pressure is always located approximately at the middle
of the tube, which is probably due to the fact that this is the region where local
acoustic wave are less damped since it is more independent from the conditions
imposed both at the inflow and the end of the duct. Figures 1.7 and 1.8 evidence the
sequence described, where it is easily visible how the minimum value of pressure
is produced approximately at the middle of the duct, increasing its magnitude and
describing a helical motion.

(a) Pressure bags attached to the
walls. Transversal view

(b) Isometric view showing the
helical layout

(c) Transversal view at the middle
of the duct representing pressure

contours and velocity vectors. Note
that velocity depicted here was

induced by pressure gradients in
previous time steps

Figure 1.7: Pressure contours and velocity vectors within the jet injector

3. At this point, numerical dissipation is unable to transform local energy associated
with acoustic waves. Two are the main reasons for this, namely the small cells
defined in the region, where the Jacobian is extremely small, and the subsonic
inflow which is not only unable to evacuate enough energy but may also introduce
more. Since the local dissipation rate is lower than the creation rate, the maximum
and minimum values of pressure increase.

4. As the pressure jump within the inner injector increases, so does dissipation,
reaching a state where both maximum and minimum values find a boundary. At
this point, local dissipation balances the creation of energy associated with pressure
waves. In a standard simulation, values of approximately 287000 Pa for the
maximum and 50000 Pa for the minimum were found.

This study has been largely dedicated to devise ways of overcoming this limiting issue.
The techniques considered can be grouped into three different categories:

• Geometrical: Consists of modifying the grid either to increase dissipation within
the inner injector or to decrease the creation of energy produced in this region. The
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Figure 1.8: Pressure Iso-surfaces within the jet injector at different output times (increasing time
from left to right and up to bottom). Two Iso-surfaces are represented, one at constant pressure

91000 Pa and the other at the maximum (in magnitude) in each case

addition of large cells at the beginning of the tube or the use of smaller inner ducts
have been considered.

• Acting over the Boundary Conditions: This technique is based on implementing
different inflow conditions so the excess of energy can be evacuated while keeping
the necessary information that this boundary has to introduce. In this way,
Non-Reflecting Subsonic Inflow, Partially Non-reflecting Subsonic Inflow and
Stagnated Subsonic Inflow have been tested. Additionally, in order to damp
acoustic waves bouncing on the walls, additional numerical dissipation has been
introduced at the walls of the jet injector through an Adaptive Scheme. Details of
this are given in Section 4.2.3.

• Numerical: Refers to alternative high-order high-resolution reconstruction
schemes to those proposed in [8]. In this case, a 5th Order WENO scheme has
been developed to simulate the whole problem.

After several tests, it was found that best results were not obtained with one of the above
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strategies, but with a calibrated combination of geometrical modifications, redefinition of
boundary conditions and implementation of adaptive reconstruction schemes.

1.4 Motivation

As the requirements concerning combustion systems in general and Gas Turbines in
particular become more and more restrictive, the necessity of new cutting-edge design
technologies increases. Current market and governmental specifications are forcing
the definition of efficient, robust, reliable and cheap devices with very low pollutant
emissions, leading to a scenario where the tools and methodologies employed play a vital
role. Since this trend is not only expected to continue in the future, but become more
intense, it is clear that more emphasis must be placed in such stages of the development
process.

The definition and development of the optimum configuration is only achievable if one
possesses the adequate tools. In particular, accurate numerical algorithms are essential in
order to provide fast, reliable and economically viable results. The present work arises as a
natural consequence of this issue, proposing a numerical model for the simulation of flow
within typical Gas Turbine combustors. Although the study of the Dry Low NOx GTU
combustor was initially considered, the interest of an algorithm not only limited to Gas
Turbine applications, but also suitable for more general problems (boundary layer-shock
wave interactions, highly mixed flows, etc.) motivated the development of FLAMENCO
as an LES three-dimensional, compressible, multispecies code.

For the sake of completion, during the development of the code additional features were
added to the baseline algorithm. In this way, conventional and specifically-developed
models were introduced regarding the reconstruction method of the convective fluxes,
thermodynamic and mixing laws, time integration and boundary conditions. This way
of proceeding not only allows comparison with typical models in the literature within
the same numerical environment, but also provides a global tool with the capacity to be
particularised for each problem under consideration.

Finally, the growing industrial usage of natural gas in Gas Turbines to plug the “energy
gap” in electricity generation motivated a comprehensive study of the flow dynamics
within the Dry Low NOx GTU combustor, a common architecture employed in such
devices. Although nowadays it is mainly restricted to this sort of applications, the use of
natural gas in Gas Turbines is spreading to other systems. Additionally, its suitability for
jet engines is being assessed, potentially increasing the interest in this technology. As a
consequence, the idea of a better understanding of the physics in this type of problems
encourages the research.
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1.5 Objectives

The main objective of this research is to produce a suitable tool for the simulation of
3D compressible, turbulent, multispecies flows where mixing processes play a major
role. As a particular application, the performance of a Dry Low NOx GTU combustor
is exhaustively studied under typical operating conditions. The overall goal is subdivided
into sub-objectives which ensure adequate progression when developing the algorithm.
These are outlined as:

• Description of suitable physical models, mathematical formulations and numerical
methods for the simulation of turbulent compressible flows with critical mixing.

• Integration of additional features into FLAMENCO to prevent instabilities
generated under certain conditions (i.e. low dissipation in highly-discretised
confined regions).

• Definition and validation of FLAMENCO. Combination of typical (i.e. 5th

WENO reconstruction, 2nd Order Runge-Kutta in time) and novel (5th Order
TVD reconstruction, 2nd Order Stable Runge-Kutta in time) methods to make the
code accurate, robust, efficient and comparable to results available in literature.
Extensive validation through contrasted test cases.

• Analysis of the computational efficiency of different methods and set-ups.

• Application to the Dry Low NOx GTU combustor. In-depth study of the
characteristic physical structures arising. Assessment of the numerical accuracy
obtained with different models through comparison with experimental data.

• Post-process of mean and turbulent profiles to determine the relationship between
the characteristic parameters and flow behaviour.

• Provide accurate results to be contrasted with data obtained in the same combustor
by researchers from Perm University.

• Optimisation of FLAMENCO to make it suitable for expensive simulations.

1.6 Structure of the thesis

This thesis is structured following the logical order described in the previous section.
In Chapter 2, the physical and mathematical models considered are described. Firstly,
the expected phenomena taking place within the Dry Low NOx GTU combustor are
presented, assessing the suitability of the physical models employed to represent them.
Special attention is paid to the three main vortical structures, namely the Central
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Recirculation Zone, the Precessing Vortex Core and Secondary Vortices. Secondly,
the 5-Equation Transport model for compressible fluids is derived and posed, analysing
different closure assumptions.

Chapter 3 describes in detail all numerical methods considered in this work. Finite
Volume Godunov-Type algorithms combined with High-Order High-Resolution schemes
are defined in conjunction with different thermodynamic closures. Here, time integration,
reconstruction of convective fluxes and discretisation of diffusive terms, thermodynamic
treatment of the mixture and closure laws are addressed.

Chapter 4 is fully dedicated to the analysis and validation of the final version of
FLAMENCO. Special attention is paid to the strategies followed to balance low
dissipation, including modifications in boundary conditions and reconstruction schemes.
The implementation and performance of three reconstruction schemes, namely 2nd Order
Minmod, 5th Order MLP Total Variation Diminishing and 5th Order WENO, are deeply
investigated, presenting from accuracy tests to computational efficiency plots.

Finally, results generated by FLAMENCO on the Dry Low NOx GTU combustor are
shown in Chapter 5. All stages regarding the set-up process are clearly indicated,
while also highlighting possible sources of error. Then, deep analysis is performed,
post-processing statistically steady and intrinsically unsteady phenomena. Chapter 6
concludes the thesis with several ideas and recommendations for future research.
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Chapter 2

Physical and Mathematical models

2.1 Mixing Processes inside a Dry Low NOx GTU
Combustor

The Dry Low NOx GTU Combustor is an advanced system devised to generate
high-mixing rates at relatively high speeds in confined regions. For this purpose, an
external swirling air flow is injected to break an internal high-velocity fuel flow, aiming
to create the proper conditions within the combustion chamber so the fluid downstream
the injector recirculates. As a consequence, a low-speed region where reactions may
occur is developed, producing a stable flame which remains attached without being
blown-off or quenched. Consequently, the events taking place within the Dry Low
NOx GTU combustion chamber hold a great complexity. Indeed, the combination
of turbulent compressible flows developing inside such a confined domain, high-shear
regions appearing close to the fuel injector exit, highly-unsteady macroscopic vortices
moving along the chamber and adverse pressure gradients, makes the analysis very
complicated.

Although there are infinite processes taking place, many authors in the literature (see for
example Fu et al. [9], Ahmed [10], Syred et al. [11], Valera-Medina et al. [12, 13])
agree in defining three main vortical structures whose properties characterise fairly well
the whole system: Central Recirculation Zone (CRZ), Precessing Vortex Core (PVC)
and Secondary Vortices. Furthermore, these authors assert in their research works that a
proper description of such structures suggests accurate understanding of the mechanism.
Therefore, any attempt of modeling the physics must pay special attention to them.

The CRZ is a toroidal structure developed approximately in the middle of the combustion
chamber as a consequence of the adverse pressure gradients induced by the swirling
flow, which due to centrifugal forces is pushed against the outer wall creating a low
pressure region near the axis of rotation close to the swirl injector exit. It is responsible
not only for creating low velocities that enable stable flames, but it also recycles heat
and active chemical species necessary for a clean and efficient combustion. The nature
of this statistically steady structure has been deeply analysed in the literature. For
instance, Perisetty et al. [14] studied the formation of the CRZ in a simple unconfined
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geometry with coaxially injected swirl and axial flows. In their work, they showed that
size and position of the CRZ are directly related, on the one hand, to the magnitude
of the tangential momentum of the swirling flow relative to its axial momentum (swirl
number), and on the other hand, to the magnitude of the swirl relative to the non-swirling
flow axial momentum. These authors concluded that there is a critical Swirl number
which determines the existence of the CRZ. Whereas below this critical value the adverse
pressure gradient is not large enough to decelerate and induce reversed velocity in the
inner flow, above it the CRZ appears, defining an aerodynamic field whose size and
location is fully coupled with the magnitude of the Swirl. Figure 2.1 depicts the mesh
used by [14] and subcritical and supercritical cases.

(a) Computational domain

(b) Subcritical Swirl number case. CRZ does not
appear

(c) Supercritical Swirl number case. CRZ appears

Figure 2.1: Coaxially injected Swirl and axial flows. Subcritical and Supercritical cases.
Reproduced from [14]

The PVC is a complex three-dimensional intrinsically unsteady coherent structure located
at the edge of the CRZ, extending from the swirl injector exit to the rear wall of the
combustion chamber, where is broken in smaller irregular eddies. Its size and frequency
increase with the flow rate and depend on the Swirl number and geometry. The PVC wraps
the CRZ in a characteristic helical motion (see Figure 2.2), inducing visible perturbations
in tangential velocity profiles. It is created at the lower wall of the swirl injector due to
the thermodynamic fluctuations induced by the non-centred CRZ and vortex breakdown,
where low pressure creates an upstream fluid motion to the interior of the duct, and
contributes to increase turbulence in the high shear regions at the edge of the CRZ where
high rates of mixing are found. As asserted by Syred et al. [15] and Valera-Medina et al.
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[13], both CRZ and PVC structures interact in an extremely complex process (see Figure
2.3 for a schematic representation), increasing the turbulence of the whole system and
creating smaller vortical structures. The potential unwanted effects of the PVC include
instability enhancement and flow distortion.

Figure 2.2: PVC helical structure originated at the swirler exit. Reproduced from Rouxa et al.
[16]

The last main three-dimensional flow feature, Secondary Vortices, refers to small
intrinsically unsteady structures generated right downstream the swirl injector. These
eddies are mainly produced in the separation region at the edge of the swirl duct, where the
swirling flow is pushed outwards due to centrifugal effects. Again, the size, distribution,
frequency and intensity of these structures are highly dependent on the geometry, Swirl
number and flow rate. The formation and behaviour of Secondary Vortices is a major
concern in the state-of-the-art of swirl injectors, since few data are available due to their
overlapped effects. Indeed, it is really difficult to isolate the perturbations they provoke,
especially when they scatter around the root of the PVC. As for the moment, it is believed
(see Al-Abdeli et al. [17]) that apart from affecting the behaviour of the CRZ, they also
act on the formation of the PVC and the intensity of the shear layer.

Figure 2.3: Schematic representation of the PVC-CRZ interaction. CRZ is shown in red and
PVC in turquoise. Reproduced from Valera-Medina et al. [13]

There are many other phenomena taking place within the combustor, like macroscopic
vortices close to the walls, the recirculation region attached to the upper corner of the
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chamber, acoustic waves or heat evacuation. However, since all of them contribute to
the formation of the structures above mentioned, the final configuration of these will
characterise the whole problem.

In light of the above stated aerodynamic mechanisms, it remains justified that a
three-dimensional, unsteady, multispecies, turbulent physical model is necessary in order
to represent the problem consistently. Furthermore, the flow mixing nature of the process,
where highly-stressed shear layers appear, forces the definition of a mixture model
with heat and momentum dissipation. In the present study, in addition to all these
considerations, compressibility is applied in order to be able to capture acoustic-related
phenomena.

2.2 5-Equation Transport Model for compressible flows

A general multispecies model is required in order to perform the analysis. Although in
the non-reactive mixing case under consideration only two species (air and methane as
fuel coexist, a general model for N species is easily defined by setting mass, momentum
and energy conservation equations for each one of them. In the Dry Low NOx GTU
Combustor, non-premixed air and fuel are injected separately through coaxial ducts.
Hence, the layout is effectively the same as two gas phases initially separated, with the
difference that once they enter in contact, the mixture formation must be calculated. As
shown later, fuel here is mathematically treated as a different species than air, but both are
set with the same thermodynamic properties as air (considered as a non-reactive perfect
gas). This is simply done in order to make results comparable to experiments where water
was employed as both components.

The multispecies model employed here is a variation of a multifluid model with a mixture
region defined. The basis of the formulation is the well known 7-Equation Multifluid
Model, proposed by Baer and Nunziato [18] and tested by Saurel et al. [19] for two
phases, obtained through volume fraction-averaging of the conservation equations. The
extension for N species of this model is straightforward and can be expressed as

• Mass Conservation

∂ (zkρk)

∂ t
+∇ · (zkρkvk) = 0 k = 1, ...,N (2.1)

• Momentum Conservation

∂ (zkρkvk)

∂ t
+∇ · (zkρkvkvk)+∇(zk pk) = pI

k∇zk +
M

∑
m=1

λmk (vk− vm) (2.2)

k = 1, ...,N ; m extended to M species in contact with species k
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pI
k ≡ Pressure o f species k at the inter f ace

λmk ≡Velocity Relaxation Coe f f icient relative to species m and k

• Energy Conservation

∂ (zkρkEk)

∂ t
+∇ · (zkρkEkvk)+∇(zk pkvk) = pI

kvI
k∇zk +

M

∑
m=1

λmkvI
k · (vk− vm)

+
M

∑
m=1

µmk pI
k (pk− pm) (2.3)

k = 1, ...,N ; m extended to M species in contact with species k

vI
k ≡Velocity o f species k at the inter f ace

µmk ≡ Pressure Relaxation Coe f f icient relative to species m and k

• Volume Fraction Advection

∂ zk

∂ t
+ vI

k∇zk =
M

∑
m=1

µmk (pk− pm) (2.4)

k = 1, ...,N−1 ; m extended to M species in contact with species k
N

∑
k=1

zk = 1

Where E is the total energy, z is the volume fraction and µmk is the Pressure Relaxation
Coefficient relative to species m and k, also called Compaction Viscosity. Note that
without any loss of generality, diffusion and source terms are not considered in the
formulation. It must be said that pressure and velocity at the interface may be different
from those values far from it if the phases in contact are not in instantaneous equilibrium.

The 7-Equation model as posed above is the more general form of the system that
deals with multifluid environments. Therefore, it is suitable for situations where the
fast perturbations altering the equilibrium at the interface are rather important. The
non-equilibrium at the interface of two phases is mainly evidenced, for instance, in
problems where highly perturbing phenomena propagate in two phases with different
inertia. Indeed, following Baer and Nunziato [18] experiments with granular explosives,
when gas and solid particles (treated as fluid with negligible compressibility) are put
together and subjected to intense pressure waves, the difference in the propagation
velocity creates areas where pressure (and velocity) are not in equilibrium (see the
sketch in Figure 2.4). Although this situation is of course transient, with the system
evolving towards equilibrium conditions, the effects of such relaxation process on the
thermodynamic properties are not negligible at all, making the consideration of all terms
in system (2.1)-(2.4) necessary for an accurate modelisation.
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Figure 2.4: Non-equilibrium condition at t=t*. PS
eq and PL

eq are the pressure of the solid and liquid
in equilibrium respectively. PS

perturb and PL
perturb are the pressure of the solid and liquid after the
perturbation

For problems where the intensity of the transient perturbations or the disparity in the
inertia associated with the fluids is not critically large, an assumption of quasi-equilibrium
is completely reasonable. As mentioned, the velocity relaxation coefficient, λ , and
the pressure relaxation coefficient or compaction viscosity, µ , are two parameters that
measure how strongly the system opposes to be perturbed. In this way, high values of λ

and µ represent a stiff system where equilibrium in velocity and pressure respectively is
rapidly achieved, ε → 0 (ε relaxation time). In the limit λ → ∞, µ → ∞, equilibrium at
the interface is instantaneously recovered, vk1 = vk2 , pk1 = pk2 at the interface, cancelling
out the last terms in equations (2.2), (2.3) and (2.4). It should be said that making λ → ∞

implies, among other effects, the inability of taking into account drag forces, so it is only
suitable for problems where both phases move with the same velocities at the contact
surface (i.e. gas bubbles embedded in a liquid medium, etc.).

Since the present work and related tools are intended to deal with problems falling within
the limits defined by the quasi-equilibrium condition, it seems reasonable to adopt such
simplification. After some algebraic manipulations, the 7-Equation Multifluid Model
is transformed into the 5-Equation Reduced Model, as presented by Murrone et al.
[20]. From this system, Allaire et al. [21] obtained the 5-Equation Transport Model
straightforwardly for initially separated multiphase flows, as

• Mass Conservation

∂ (zkρk)

∂ t
+∇ · (zkρkvk) = 0 k = 1, ...,N (2.5)
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• Momentum Conservation

∂ (ρv)
∂ t

+∇ · (ρvv)+∇p = 0 (2.6)

• Energy Conservation

∂ (ρE)
∂ t

+∇ · (ρEv)+∇(pv) = 0 (2.7)

• Volume Fraction Advection

∂ zk

∂ t
+ v ·∇zk = 0 ; k = 1, ...,N−1 (2.8)

N

∑
k=1

zk = 1 (2.9)

where E, ρ , v and p are Total Energy, density, velocity and pressure at each point of the
fluid domain, respectively. Note that these values may refer either to a pure fluid or to
the mixture. This 5-Equation Transport Model for Compressible Flows represents the
underlying mathematical method of the present work. For all derivations regarding this
model, the reader is referred to Appendix A.

2.3 Mixture model

According to results shown in Appendix A, the transference from the 7-Equation
Multifluid Model to the 5-Equation Transport Model has an essential consequence: the
capacity to deal with mixtures is suppressed. Indeed, as mentioned above, a necessary
assumption to derive the 5-Equation Transport Model is to consider only one fluid at
a given point in time and space. Mathematically speaking, this issue would of course
limit the applicability of the model to immiscible fluids. However, numerically, the result
is completely different. When the transport equation (2.8) is solved numerically without
any interface sharpening or interface reconstruction method (which are actually necessary
if physically immiscible fluids are addressed), numerical diffusion appears, introducing
a similar effect to that produced by physical diffusion. As a consequence, small regions
where different phases coexist at a given point in space and time develop, leading to a
multispecies-like behaviour. As an example, let consider the numerical discretisation of
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(2.8) in 1D using a simple Explicit Euler scheme in time, first order downwind in space

zn+1
k

∣∣
i− zn

k

∣∣
i

∆t
+ vn

i
zn

k

∣∣
i− zn

k

∣∣
i−1

∆x
= o(∆t)+o(∆x)︸ ︷︷ ︸

Numerical Error
=

Numerical Di f f usion

(2.10)

Now considered a 1D interface moving at speed v and

t = 0
{

zk = 0 x > 0
zk = 1 x≤ 0

→ z0
k

∣∣
i = 0 i > 0

z0
k

∣∣
i = 1 i≤ 0

; x0 = 0 (2.11)

If, for example, the interface moves one grid point per time step, the exact mathematical
result is

z1
k

∣∣
i = 0 i > 1

z1
k

∣∣
i = 1 i≤ 1

; z1
k
∣∣
1 = 1 (2.12)

but the numerical result is

z1
k
∣∣
i = z0

k

∣∣
i−

∆t
∆x

v0
i

(
z0

k

∣∣
i− z0

k

∣∣
i−1

)
→ z1

k
∣∣
1 = z0

k

∣∣
1−

∆t
∆x

v0
1
(

z0
k

∣∣
1− z0

k

∣∣
0

)
=

∆t
∆x

v0
1 < 1 (2.13)

Since

z1
k
∣∣Physical
1 = 1 = z1

k
∣∣Numerical
1 +o(∆t)+o(∆x) =

∆t
∆x

v0
1 +o(∆t)+o(∆x) (2.14)

In light of this result, it is clear that at t = ∆t the interface has been smeared at x1, since
this position, which was supposed to be fully occupied by one phase (z1

k

∣∣Physical
1 = 1), is

actually filled with two or more phases (z1
k

∣∣Numerical
1 = ∆t

∆xv0
1 ; ∑ z1

m 6=k

∣∣∣Numerical

1
= 1− ∆t

∆xv0
1).

To deal with this situation, a mixture model must be defined to represent mathematically
those regions where several species are present.

The mathematical definition of the mixture model used in the present work is that
proposed by Allaire et al. [21]. In their study, they define the mixture as a weighted
composition where the weights are volume fractions, as shown in system (2.15). Note
that following results given by Allaire et al. [21] and validated in Aguado [8], the isobaric
closure (all partial pressures are equal between them and equal to the mixture pressure)
is employed here to produce results free of spurious oscillations. Indeed, since it is
the volume fraction averaging of either partial pressures, temperatures or densities to
compose a mixture value which creates overshoots, and provided that the isobaric closure
does not require this sort of averaging, the problem is mathematically and numerically
overcome (it can easily be seen that if the isothermal closure is utilised instead, Dalton’s
Law for pressure is necessary, forcing the volume averaging of this quantity). Finally, it
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must be mentioned that since the relevant thermodynamic variables are those representing
the mixture, this mathematical artifice does not have different physical implications from
those yielded by the isothermal closure.

zk =
Vk

Vmixt.
Yk =

zkρk
ρmixt.

ρmix. =
Nspecies

∑
k=1

zkρk

ρmix.εmix. =
Nspecies

∑
k=1

zkρkεk ρmix.hmix. =
Nspecies

∑
k=1

zkρkhk

εk = EOS(pk,ρk) εk = cvk (Tk)Tk

Rmix. =
Nspecies

∑
k=1

RkYk

γmix. = 1+ 1
∑

N.Spcs
k=1

zi
γk−1

γk = 1+ Rk
Cvk

pmix. = pk

Tmix. =
εmix.

Cvmix,
Cvmix, =

Rmix.
γmix.−1

(2.15)

In terms of a closed mathematical problem, it is clear that system (2.5)-(2.9) together with
equations (2.15) define a well-posed formulation. In this way, variables zkρk and zk for
all species, ρmix.v and ρmix.E from (2.5)-(2.9) can be used to compute first the mixture
density, then the internal energy as

ρmix.εmix. = ρmix.E−
1
2
(ρmix.v ·ρmix.v)

ρmix.
(2.16)

and finally pmix., Rmix., γmix. and Tmix.. From now onwards, the subscript “mix.” is
suppressed for simplicity, writing the variable alone when referring to the mixture and
with the appropriate subscript when referring to a given species.
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Chapter 3

Numerical Methods

3.1 Unsplit Finite Volume Godunov-Type Methods

The mathematical model proposed in the previous chapter must be resolved with a
suitable numerical algorithm. For compressible flows where acoustic phenomena may
have relevant influence on the unsteady development of physical structures, Finite-Volume
formulations have shown to perform really well, preserving the characteristic conserved
variables, holding pressure waves throughout the domain and facilitating the imposition
of boundary conditions. As for the numerical scheme, although Unsplit Godunov-Type
methods in curvilinear grids are documented in the literature as very accurate, structured
algorithms for unsteady flows (see for example Brown [22], Kreiss [23]), their numerical
definition is rather complex. However, by using suitable curvilinear transformations,
as is the case in the present work, the formulation can be simplified to generate
a model numerically affordable (see Thomas and Lombard [24] and Aguado [8]
for the transformation applied in FLAMENCO). Therefore, in this study an Unsplit
Finite-Volume Godunov method is employed as the baseline scheme.

For simplicity, a detailed analysis of the properties and behaviour of this approach is
omitted here. However, exhaustive rationales are undertaken in Toro [25], Godunov
[26], Zabrodine [27] or LeVeque [28]. The exact underlying formulation implemented in
FLAMENCO is described in [8] extensively, so here only final discretisations are written.

The Unsplit Finite Volume Godunov-Type scheme with curvilinear transformations
implemented in FLAMENCO reads

Un+1
i, j,k =Un

i, j,k+
∆t
∆ξ

(Fn
i− 1

2 , j,k
−Fn

i+ 1
2 , j,k

)+
∆t
∆η

(Gn
i, j− 1

2 ,k
−Gn

i, j+ 1
2 ,k
)+

∆t
∆ζ

(Hn
i, j,k− 1

2
−Hn

i, j,k+ 1
2
) (3.1)

where F , G and H are the 3D fluxes in each independent direction and U is the vector of
conserved variables. Note that here ξ , η and ζ are transformed variables in the Cartesian
space (curvilinear x, y, z → Cartesian ξ , η , ζ ). This is the most basic form of the
discretisation, and is the base for more sophisticated integrations in time. Finally, it must
be said that turbulence, which is an essential feature of the Dry Low NOx GTU combustor
problem, is accounted using Implicit Large-Eddie Simulation. Again, complete definition
of this approach is presented in [8].
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3D fluxes F , G and H account for inviscid, viscous and heat fluxes through cell faces
associated with ξ , η and ζ directions respectively,

F = F Inviscid
+FViscous

+FHeat

G = GInviscid
+GViscous

+GHeat

H = HInviscid
+HViscous

+HHeat
(3.2)

which must be obtained using different methods. The explicit advection used in
FLAMENCO allows decoupling the operators in equation (3.2), basing the calculation
of each flux in the available solution vector obtained in the previous time step. This way
of proceeding has been extensively tested in Shimada et al. [29] and Thornber et al. [30]
yielding precise results.

3.1.1 Convective Fluxes

The finite volume discretisation selected requires numerical fluxes at cell interfaces. In
order to obtain these fluxes, additional hypothesis must be incorporated regarding the way
physical properties distribute along the flow field. Since finite volume methods discretise
the physical domain into a finite number of cells, storing numerical values at each cell
centre, it is necessary to have suitable models in order to reconstruct the whole flow field
in a continuous fashion. For this purpose, the existence of discontinuities in the fluid may
or may not be presumed, leading to different perspectives in the treatment of the problem.
If no discontinuities are considered, viscous terms balance the convective ones in regions
subjected to high gradients, enabling the thermodynamic state reconstruction at any point
of the domain from simple (or complex) averaging of the neighbouring cells. Within
this framework, which is broadly used for incompressible fluids, the accuracy of the
reconstruction will of course depend on the order of the numerical scheme. On the other
hand, if discontinuities are allowed, it is implicitly assumed that they appear because the
viscous terms are not able to balance the convective ones in regions where high gradients
develop. In this case the reconstruction is more complex because it must be assumed that
discontinuities may exist at any point, forcing the resolution of a discontinuous problem
at every point in space, namely a Local Riemann Problem (see [25]). From a physical
point of view, this approach is suitable for highly compressible flows, especially when
shock waves are dominant flow phenomena.

Inside the Dry Low NOx GTU combustor the characteristic velocities are below the
speed of sound (M∼0.2) and thus no relevant discontinuities are expected. However, as
mentioned in Section 2.1, the coupling between turbulence and acoustic perturbations,
although weak, is not negligible at all. Therefore, in order not only to predict such
interactions, but also to be able to define coarse grids in the thin viscous layers where
thermodynamic properties change in a continuous way, a compressible model is chosen
for FLAMENCO.
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The general form of the inviscid fluxes can be expressed as

F Inviscid
i+ 1

2 , j,k
= F Inviscid

i+ 1
2 , j,k

(
U i+ 1

2 , j,k

)
GInviscid

i+ 1
2 , j,k

= GInviscid
i+ 1

2 , j,k

(
U i+ 1

2 , j,k

)
HInviscid

i+ 1
2 , j,k

= HInviscid
i+ 1

2 , j,k

(
U i+ 1

2 , j,k

) (3.3)

for the interface i+ 1
2 , j,k. Firstly, the vector of conserved variables must be obtained at

the cell interface as a function of the reconstructed left and right states UL, UR by solving
the Local Riemann Problem posed at the cell interface

U i+ 1
2 , j,k

= Local Riemann Problem
(
UL,UR

)
(3.4)

where UL, UR depend on the reconstruction scheme (see Section 3.2). In the Local
Riemann Problem sketched in Figure 3.1 five characteristic speeds (eigenvalues of the
system) appear, namely λ1 = u−a, λ2 = λ3 = λ4 = u, λ5 = u+a, with u the flow velocity
and a the speed of sound. As a consequence, three waves with different characteristic
velocities (left, contact and right waves) propagate from the cell interface.

Figure 3.1: Local Riemann Problem. Reproduced from [25].

Assuming that the unitary normal vector to the cell interface is of the form −→n =(
nξ ,nη ,nζ

)
and that Hugoniot formula (3.5) holds true through discontinuities

F
(
U2
)
−F

(
U1
)
= S

(
U2−U1

)
(3.5)

with states 2 and 1 referring to “after” and “before” the jump and S the velocity of the
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discontinuity, the state U i+ 1
2 , j,k

at the interface can be expressed, for multispecies, as

U i+ 1
2 , j,k

=


UL i f SL > 0
U∗L i f SL 6 0 < S∗
U∗R i f S∗ 6 0 < SR

UR i f SR < 0

(3.6)

where SL, S∗ and SR are the speeds of the left, contact and right waves respectively.and

U p =



(z1ρ1)p
...

(zNρN)p
(ρu)p
(ρv)p
(ρw)p

ep


; U∗p =



(z1ρ1)
∗
p

...
(zNρN)

∗
p

(ρu)∗p
(ρv)∗p
(ρw)∗p

e∗k


=

1
Sp−S∗


ρk
(
Sp−V⊥p

)
ρup

(
Sp−V⊥p

)
+(p∗− pp)nξ

ρvp
(
Sp−V⊥p

)
+(p∗− pp)nη

ρwp
(
Sp−V⊥p

)
+(p∗− pp)nζ

ep
(
Sp−V⊥p

)
+ p∗Sp− ppV⊥p



p = L,R (3.7)

are the states at the interface for subsonic flows. Note that in eq. (3.7) the velocity
perpendicular to the interface is

V⊥p = vp ·−→n = upnξ + vpnη +wpnζ ; p = L,R (3.8)

and the values of SL, SR are given in Einfeldt [31, 32]. As for the velocity at the interface,
it can be written as

S∗ =
ρRV⊥R

(
SR−V⊥R

)
−ρLV⊥L

(
SL−V⊥L

)
+ pL− pR

ρR
(
SR−V⊥R

)
−ρL

(
SL−V⊥L

) (3.9)

as defined in Batten et al. [33], and pressure at the interface

p∗ = ρL

(
V⊥L −SL

)(
V⊥L −S∗

)
+ pL = ρR

(
V⊥R −SR

)(
V⊥R −S∗

)
+ pR (3.10)

For a Step-by-Step derivation of above formulas the reader is referred to Drikakis [34]. In
the present work, the HLLC approximate flux from Toro [25] is employed. Without any
loss of generality, such flux can be described as

F̄HLLC
i+ 1

2 , j,k
=


FL i f SL > 0
F∗L i f SL 6 0 < S∗
F∗R i f S∗ 6 0 < SR

FR i f SR < 0

(3.11)
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with

F p =



(z1ρ1)pV⊥p
...

(zNρN)pV⊥p
(ρu)pV⊥p + ppnξ

(ρv)pV⊥p + ppnη

(ρw)pV⊥p + ppnζ

(ep + pp)V⊥p


; F∗p =



(z1ρ1)
∗
p S∗

...
(zNρN)

∗
p S∗

(ρu)∗p S∗+ p∗nξ

(ρv)∗p S∗+ p∗nη

(ρw)∗p S∗+ p∗nζ(
ρ∗p + p∗

)
S∗


p = L,R (3.12)

Finally, the flux must be rescaled according to the curvilinear transformation in the form

F Inviscid
i+ 1

2 , j,k
= F̄HLLC

i+ 1
2 , j,k

βi+ 1
2 , j,k

(3.13)

where βi+ 1
2 , j,k

is the Face Jacobian of the cell interface i+ 1
2 , j,k yielded by

βi+ 1
2 , j,k

=

√√√√( ∂y
∂η

∂ z
∂ζ

∣∣∣∣
i+ 1

2 , j,k
− ∂y

∂ζ

∂ z
∂η

∣∣∣∣
i+ 1

2 , j,k

)2

+

(
∂x
∂ζ

∂ z
∂η

∣∣∣∣
i+ 1

2 , j,k
− ∂x

∂η

∂ z
∂ζ

∣∣∣∣
i+ 1

2 , j,k

)2

+

(
∂x
∂η

∂y
∂ζ

∣∣∣∣
i+ 1

2 , j,k
− ∂x

∂ζ

∂y
∂η

∣∣∣∣
i+ 1

2 , j,k

)2

(3.14)

Note that interface normal vector components are

nξ

∣∣
i+ 1

2 , j,k
=

∂y
∂η

∂ z
∂ζ

∣∣∣
i+ 1

2 , j,k
− ∂y

∂ζ

∂ z
∂η

∣∣∣
i+ 1

2 , j,k

βi+ 1
2 , j,k

nη |i+ 1
2 , j,k

=

∂x
∂ζ

∂ z
∂η

∣∣∣
i+ 1

2 , j,k
− ∂x

∂η

∂ z
∂ζ

∣∣∣
i+ 1

2 , j,k

βi+ 1
2 , j,k

nζ

∣∣
i+ 1

2 , j,k
=

∂x
∂η

∂y
∂ζ

∣∣∣
i+ 1

2 , j,k
− ∂x

∂ζ

∂y
∂η

∣∣∣
i+ 1

2 , j,k

βi+ 1
2 , j,k

(3.15)

3.1.2 Diffusion Terms

The calculation of diffusion terms in FLAMENCO is decoupled from the computation of
inviscid fluxes, basing their values on the last available state. The general expression for
these fluxes is

FDi f f usion
= FViscous

+FHeat

GDi f f usion
= GViscous

+GHeat

HDi f f usion
= HViscous

+HHeat
(3.16)
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Focusing on the diffusive flux in the first independent direction, FDi f f usion, the viscous
flux at cell interface i+ 1

2 , j,k is defined as

FViscous
i+ 1

2 , j,k
= βi+ 1

2 , j,k



N


0
0
...
0

nξ τ11 +nητ12 +nζ τ13

nξ τ21 +nητ22 +nζ τ23

nξ τ31 +nητ32 +nζ τ33

nξ (u·τ)
∣∣
1 +nη (u·τ)

∣∣
2 +nζ (u·τ)

∣∣
3


i+ 1

2 , j,k

(3.17)

where βi+ 1
2 , j,k

is shown in (3.14) and τ is the viscous stress tensor given by

τ =

 τ11 τ12 τ13

τ21 τ22 τ23

τ31 τ32 τ33

=

= µ


−2

3

(
∂v
∂y +

∂w
∂ z

)
+ 4

3
∂u
∂x

∂u
∂y +

∂v
∂x

∂u
∂ z +

∂w
∂x

∂u
∂y +

∂v
∂x −2

3

(
∂u
∂x +

∂w
∂ z

)
+ 4

3
∂v
∂y

∂v
∂ z +

∂w
∂y

∂u
∂ z +

∂w
∂x

∂v
∂ z +

∂w
∂y −2

3

(
∂u
∂x +

∂v
∂y

)
+ 4

3
∂w
∂ z

 (3.18)

Velocity derivatives in the curvilinear space x, y , z are transformed into the Cartesian
domain using

∂u
∂x

∂u
∂y

∂u
∂ z

∂v
∂x

∂v
∂y

∂v
∂ z

∂w
∂x

∂w
∂y

∂w
∂ z

=


∂u
∂ξ

∂u
∂η

∂u
∂ζ

∂v
∂ξ

∂v
∂η

∂v
∂ζ

∂w
∂ξ

∂w
∂η

∂w
∂ζ

J
−1

(3.19)

J
−1

=


∂y
∂η

∂ z
∂ζ
− ∂y

∂ζ

∂ z
∂η

−
(

∂x
∂η

∂ z
∂ζ
− ∂x

∂ζ

∂ z
∂η

)
∂x
∂η

∂y
∂ζ
− ∂x

∂ζ

∂y
∂η

−
(

∂y
∂ξ

∂ z
∂ζ
− ∂y

∂ζ

∂ z
∂ξ

)
∂x
∂ξ

∂ z
∂ζ
− ∂x

∂ζ

∂ z
∂ξ

−
(

∂x
∂ξ

∂y
∂ζ
− ∂x

∂ζ

∂y
∂ξ

)
∂y
∂ξ

∂ z
∂η
− ∂y

∂η

∂ z
∂ξ

−
(

∂x
∂ξ

∂ z
∂η
− ∂x

∂η

∂ z
∂ξ

)
∂x
∂ξ

∂y
∂η
− ∂x

∂η

∂y
∂ξ


Jac−1 (3.20)

with the Jacobian at the cell face

Jac=
1

Jac−1 =
∂x
∂ξ

(
∂y
∂η

∂ z
∂ζ
− ∂y

∂ζ

∂ z
∂η

)
+

∂x
∂η

(
∂y
∂ζ

∂ z
∂ξ
− ∂y

∂ξ

∂ z
∂ζ

)
+

∂x
∂ζ

(
∂y
∂ξ

∂ z
∂η
− ∂y

∂η

∂ z
∂ξ

)
(3.21)

The discretisation scheme used in FLAMENCO is a 2nd Order Central Differences,
broadly used in the industry and reported to be very accurate and stable. In this way,
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a general variable φ can be discretised at cell interface i+ 1
2 , j,k as

∂φ

∂ξ

∣∣∣∣
i+ 1

2 , j,k
=

φi+1, j,k−φi, j,k

∆ξ

∂φ

∂η

∣∣∣∣
i+ 1

2 , j,k
=

(φi+1, j+1,k +φi, j+1,k)
2 − (φi+1, j−1,k +φi, j−1,k)

2
2∆η

∂φ

∂ζ

∣∣∣∣
i+ 1

2 , j,k
=

(φi+1, j,k+1 +φi, j,k+1)
2 − (φi+1, j,k−1 +φi, j,k−1)

2
2∆ζ

(3.22)

Finally, viscous heat dissipation is obtained through

(u·τ)
∣∣
1 = uτ11 + vτ12 +wτ13

(u·τ)
∣∣
2 = uτ21 + vτ22 +wτ23

(u·τ)
∣∣
3 = uτ31 + vτ32 +wτ33

(3.23)

Heat diffusivity follows the same structure as viscous fluxes. In this case, it can be
expressed as

FHeat
i+ 1

2 , j,k
= βi+ 1

2 , j,k



N


0
0
...
0

Momentum


0
0
0

nξ q1 +nηq2 +nζ q3


i+ 1

2 , j,k

(3.24)

q1 = K·∂T
∂x

q2 = K·∂T
∂y

q3 = K·∂T
∂ z

(3.25)

with ∂T
∂x , ∂T

∂y , ∂T
∂ z obtained through substitution, for example, of T for u in (3.19).

3.1.3 Volume Fraction Advection

The last equation in system (2.5)-(2.8), volume fraction advection, cannot be expressed
in conservative form. However, following suggestions from [21], it is possible to rewrite
(2.8) as

∂ zk

∂ t
+ v ·∇zk =

∂ zk

∂ t
+∇ · (zkv)− zk∇ · v = 0 ; k = 1, ...,N−1 (3.26)
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Now, equation (3.26) admits segregation into a convective term ∇ · (zkv) and a dissipation
term zk∇ · v. On the one hand, the convective term can be calculated by means of a
Local Riemann Problem similarly to convective fluxes in (3.13). On the other hand, the
dissipation term zk∇ · v can be averaged and computed taking into account velocities
derived from the Local Riemann Problem. Following these guidelines, the Volume
Fraction equation integrated in time as

zk|n+1
i, j,k = T I

(
F
(

zk|ni, j,k
))

(3.27)

can be expressed without any loss of generality, for the first independent direction, ξ , as

F
(

zk|ni, j,k
)
=
(

zk|ni+ 1
2 , j,k
− zk|ni, j,k

)
S∗|ni+ 1

2 , j,k
β |i+ 1

2 , j,k
−
(

zk|ni− 1
2 , j,k
− zk|ni, j,k

)
S∗|ni− 1

2 , j,k
β |i− 1

2 , j,k

(3.28)

where TI stands for the time integration scheme, S∗ is the velocity normal to the wall
given in (3.9) and β |i+ 1

2 , j,k
is the interface Jacobian provided by (3.14). Note that this

scheme is of the order of the reconstruction method employed. As it will be discussed
subsequently, the main drawback of this mathematical and numerical description is the
restrictive stability in time.

3.1.4 Integration in time

The time integration stage is crucial not only because of the accuracy, but also because
of the stability of the numerics. Although misbehaviour of unstable schemes is often
easily detected (computation crashes, sporadic peaks in numerical variables, unphysical
phenomena, etc.), it is not always like that. In this way, situations where uncontrolled
but bounded (or masked) instabilities arise are a major concern in CFD. The only way of
producing reliable results is to select a time integration scheme that ensures an accurate
and fully stable performance. Following this idea, FLAMENCO is equipped with Explicit
2nd Order Runge-Kutta and Explicit 2nd Order 4-Stages Runge-Kutta schemes.

The general form of both explicit time integration schemes is

U
∣∣n+1
i, j,k = T I

(
U
∣∣n
i, j,k

)
(3.29)

The T I operator for the 2nd Order Runge-Kutta algorithm is given by

T I2RK

(
U
∣∣n
i, j,k

)
→


Un+ 1

2
i, j,k =Un

i, j,k− ∆t
Ji, j,k

FTotal
i, j,k

(
Un

i, j,k
)

T I2RK

(
U
∣∣n
i, j,k

)
=Un+1

i, j,k =
1
2

(
Un+ 1

2
i, j,k +Un

i, j,k− ∆t
Ji, j,k

FTotal
i, j,k

(
Un+ 1

2
i, j,k

))
(3.30)
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and for the 2nd Order 4-Stages Runge-Kutta

T I2RK4S

(
U
∣∣n
i, j,k

)
→



Un+ 1
4

i, j,k =Un
i, j,k− 1

3
∆t

Ji, j,k
FTotal

i, j,k
(
Un

i, j,k
)

Un+ 2
4

i, j,k =Un+ 1
4

i, j,k −
1
3

∆t
Ji, j,k

FTotal
i, j,k

(
Un+ 1

4
i, j,k

)
Un+ 3

4
i, j,k =Un+ 2

4
i, j,k −

1
3

∆t
Ji, j,k

FTotal
i, j,k

(
Un+ 2

4
i, j,k

)
T I2RK4S

(
U
∣∣n
i, j,k

)
=Un+1

i, j,k =
1
4Un+ 2

4
i, j,k + 3

4Un+ 3
4

i, j,k −
1
4

∆t
Ji, j,k

FTotal
i, j,k

(
Un+ 3

4
i, j,k

)
(3.31)

From above expressions, Ji, j,k is the Jacobian of the curvilinear transformation defined as

Ji, j,k =

∣∣∣∣∣∣∣
∂x
∂ξ

∂x
∂η

∂x
∂ζ

∂y
∂ξ

∂y
∂η

∂y
∂ζ

∂ z
∂ξ

∂ z
∂η

∂ z
∂ζ

∣∣∣∣∣∣∣ (3.32)

The theoretical stability condition for both schemes is, for single species fluids,

CFL≤ 1 −→ 2nd Order RK

CFL≤ 3 −→ 2nd Order 4−Stages RK

However, as explained below, for multispecies problems such condition is sensitively
restricted.

Enhanced Explicit Runge-Kutta for Multispecies Flows

For Multispecies problems, affordable computations in FLAMENCO are only feasible if
essential modifications are introduced in the conceptual formulation of the Runge-Kutta
scheme above. This issue is a direct consequence of the numerical discretisation of
the Volume Fraction Equation (2.8) using expression (3.28) in Section 3.1.3 above.
Indeed, several computational tests were conducted using Runge-Kutta algorithms (3.30)
and (3.31) to find out that the actual maximum CFL numbers ensuring stability are
CFL ≈ 0.01 and CFL ≈ 0.04 respectively. These low values are completely determined
by the explicit advection of the volume fraction, whose characteristic time step is much
lower than that of other phenomena. Consequently, a modified algorithm is proposed
here, aiming to increase the effective time step in both situations.

If the CFL number is slightly above those restricted values mentioned, instabilities are
initially seeded by small negative values (∼ −10−15) of volume fraction provided by
equation (3.28). If these perturbations occur in other thermodynamic or kinetic properties
such as pressure, density, energy or velocity, their effects are quickly absorbed by the
numerical error, damping and ultimately suppressing any negative effect other than

31



Numerical Methods

negligible inaccuracies. However, if they occur in any volume fraction, which of course is
only defined in the interval [0,1], the consequences are rather catastrophic. To overcome
this problem, a mathematically supported control of volume fraction advection seems to
be the best solution, enabling larger and stable time steps without impacting sensitively
on the overall accuracy. Hence, variables zk are tracked, ensuring that their values always
fall within physical limits. In terms of the implementation in FLAMENCO, a threshold is
established, forcing the algorithm to readapt itself if forbidden values are generated (and
recomputing the dependent variable zN to make alterations consistent).

Solving
Flow
Time
step n

y

Variable
reconstruction

y

UL,UR

I f zk|L
{

< T hresholdb

> T hresholda
=⇒ zk|L =

{
0
1

k = 1, ...,N−1

I f zk|R
{

< T hresholdb

> T hresholda
=⇒ zk|R =

{
0
1

k = 1, ...,N−1

zN |L = 1−
N−1

∑
k=1

zk|L

zN |R = 1−
N−1

∑
k=1

zk|Ry
•
•
•

Time
Integration

y

U
∣∣n+1
i, j,k = T I

(
U
∣∣n
i, j,k

)
I f zk|n+1

i, j,k

{
< T hresholdb

> T hresholda
=⇒ zk|n+1

i, j,k =

{
0
1

k = 1, ...,N−1

zN |n+1
i, j,k = 1−

N−1

∑
k=1

zk|n+1
i, j,k

(3.33)

As seen, the control loop analyses the values of zk at the reconstruction and time
integration stages, resetting unphysical values to corrected ones. Although it could
be initially thought that this artifice alters the natural development of the algorithm, a
simple mathematical analysis reveals that all inaccuracies derived from this process are
loaded into the volume fraction associated with species N, but do not affect the set of
thermodynamic properties at all. This correction is similar to that forced in the Robin
Hood algorithm proposed by Amsdem et al. [35] for the KIVA-II code, with the difference
that errors here only penalise the cell under consideration rather than all the surrounding
ones. Indeed, whereas KIVA-II deals with negative partial density of a given species
in a computational volume by transferring mass from the neighbouring cells with an
excess of that species (in an artificial-diffusion like mechanism), here one species is rather
“transformed” into the other. As in KIVA-II, this process is strictly mass-conservative, so
the Finite-Volume approach retains this advantage. From a physical point of view, this
operation can be seen as a species transformation that forces volume fractions to lie within
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[0,1] by introducing an error. Since the error is non-accumulative (at the end of each time
step it is spread to other thermodynamic variables whose field of definition will not be
violated) and the values for T hresholdb, T hresholda are calibrated in this study as -10−15

and 1+10−15 respectively, the method provides a consistent way of increasing stability. In
particular, it was found that the maximum stable CFL number rises up to 0.4 for the 2nd

Order Runge-Kutta and to 1.0 for the 2nd Order 4-Stages Runge-Kutta with an associated
relative error smaller than 10−10. CFL numbers used in final computations are, however,
smaller since errors induced by these corrections decrease rapidly with time step size.
Finally, another important feature of this procedure is the reconstruction independence
provided in terms of stability. In this way, high-order reconstruction schemes which
are not completely monotone are made compatible with the model, as demonstrated in
Section 4.3.

3.2 High-Order High Resolution Schemes

The main objective of this research is to develop a computationally efficient and
accurate tool capable of simulating complex physical problems. Although the expression
“computationally efficient” encompasses a broad range of qualities, here it refers to the
possibility of predicting the main flow features of a given problem by minimising the
grid resolution. To achieve this, one of the most important issues to take into account
is the reconstruction methodology employed for the convective terms. Bearing in mind
this binomial Coarse discretisation-Very good resolution, it seems clear that High-Order
High-Resolution schemes need to be considered.

There are many studies in the literature about High-Order High-Resolution methods,
showing the benefits of their implementation and mentioning some issues to bear
in mind when dealing with them. For example, van Leer [36, 37, 38, 39, 40]
produced some in-depth studies on stability of High-Order methods. In his work, the
oscillatory behaviour of high-order schemes near discontinuities, as expected according
to Godunov’s Theorem [26], was analysed, developing novel limiting functions that
suppress such oscillatory behaviour by reducing the reconstruction order locally, but
without decreasing the general order of the problem. These functions fall within the
framework of Total Variation Diminishing schemes (TVD), which ensures that a given
variable has a monotonic behaviour regardless of the proximity to discontinuities, thus
avoiding spurious numerical oscillations. In this field of application, Harten [41], Sweby
[42] and Roe [43, 44] have deeply contributed to the understanding of the fundamentals
that cause this unwanted behaviour. In addition, other authors like Osher [45] present
numerical and thermodynamic analogies to rationally explain solution architecture.

Another well known and broadly extended series of methods for high-order
high-resolution reconstruction is the Essentially Non-Oscillatory (ENO) family.
Regarding their evolution in particular, the Weighted Essentially Non-Oscillatory
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(WENO) schemes are comparable in terms of accuracy, efficiency, computational cost
and stability to the most novel TVD models developed up to date. Contrary to
what happens in ENO reconstruction, where the locally smoothest “candidate” from a
series of polynomials is used to interpolate near discontinuities (see Casper [46] and
Harten [47]), in WENO methods all local “candidates” are rather considered, weighting
their contribution to the final interpolation in such a way that in smooth regions the
scheme has maximum order of accuracy, while near discontinuities the contribution of
the polynomials assigned to the stencils containing discontinuities is minimised. As
a consequence, an adaptive scheme able to take advantage of the full potential of
polynomial reconstruction is built.

Many authors have investigated the numerical properties and performance of WENO
methods, digging into the mathematical definition that makes them suitable for
compressible gases. For instance, Grasso et al. [48] developed in their work a
non-staggered two-dimensional WENO scheme for aeroacoustic problems. Additional
revisions, improvements and generalisations of existing WENO schemes were performed
by Johnsen et al. [49] and Burger et al. [50] by developing both variants of typical WENO
schemes to deal with multispecies flows in a stable manner. For its part, Hu et al. [51]
derived a novel methodology to apply WENO reconstruction to Unstructured triangular
grids, overcoming some of the main problems associated with these typical meshes. As
for the optimisation of advanced WENO methods, Jiang et al. [52] analysed, tested,
modified and improved typical WENO implementations. They proposed a novel way of
measuring the smoothness of the solution, deriving a model with enhanced resolution
at larger regions than conventional WENO algorithms. Finally, comparison between
TVD and ENO/WENO family has been extensively done, encompassing from the level
of accuracy achieved to the stability of the model. The reader is referred to works from
Shu [53] and Mikhailovet al. [54] for TVD vs ENO/WENO performance and to Shu [55]
for a more recent comparison between TVD, WENO and Galerkin methods.

3.2.1 Weighted Essentially Non-Oscillatory schemes

The 3D dimension-by-dimension WENO scheme for multispecies compressible flows
from Titarev et al. [56] has been implemented in FLAMENCO in order to have a
well known model with contrasted accuracy and validity to compare with. Following
guidelines written in Shi et al. [57] and [56], the reconstruction of any thermodynamic
property in the three-dimensional space can be performed by partial reconstructions on
each independent direction. In this way, given the property φ = φ (ξ ,η ,ζ ) physically
defined in the whole domain but numerically available only at cell centres so that at cell
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i, j,k is

φi, j,k =
1

∆ξ

1
∆η

1
∆ζ

ˆ
ξi+1

2 , j,k

ξi−1
2 , j,k

ˆ
ηi, j+1

2 ,k

ηi, j+1
2 ,k

ˆ
ζi, j,k+1

2

ζi, j,k−1
2

φ (ξ ,η ,ζ )dξ dηdζ (3.34)

is satisfied, the three-dimensional reconstruction at cell interface i− 1
2 , j,k for independent

Cartesian directions (ξ ,η ,ζ ) can be split into three stages

Step 1 : Reconstruction in ξ


φ L

j,k
= 1

∆η

1
∆ζ

ˆ
η

i, j+ 1
2 ,k

η
i, j+ 1

2 ,k

ˆ
ζ

i, j,k+ 1
2

ζ
i, j,k− 1

2

φ

(
ξ L

i− 1
2 , j,k

,η ,ζ
)

dηdζ

φ R
j,k
= 1

∆η

1
∆ζ

ˆ
η

i, j+ 1
2 ,k

η
i, j+ 1

2 ,k

ˆ
ζ

i, j,k+ 1
2

ζ
i, j,k− 1

2

φ

(
ξ R

i− 1
2 , j,k

,η ,ζ
)

dηdζ

Step 2 : Reconstruction in η


φ L

k
= 1

∆ζ

ˆ
ζ

i, j,k+ 1
2

ζ
i, j,k− 1

2

φ

(
ξ L

i− 1
2 , j,k

,ηα ,ζ
)

dζ

φ R
k
= 1

∆ζ

ˆ
ζ

i, j,k+ 1
2

ζ
i, j,k− 1

2

φ

(
ξ R

i− 1
2 , j,k

,ηα ,ζ
)

dζ

Step 3 : Reconstruction in ζ

 φ L = φ

(
ξ L

i− 1
2 , j,k

,ηα ,ζβ

)
φ R = φ

(
ξ R

i− 1
2 , j,k

,ηα ,ζβ

)
(3.35)

giving the final reconstructed values at the cell interface

φ L = φ

(
ξ L

i− 1
2 , j,k

,ηα ,ζβ

)
φ R = φ

(
ξ R

i− 1
2 , j,k

,ηα ,ζβ

) (3.36)

Parameters ηα and ζβ depend on the Gaussian Integration Points used to approximate
the general integral

ˆ Si+1
2

Si−1
2

φ (ε)dε (3.37)

In this study, the optimum approximation for two Gaussian Integration Points suggested
by [56] is employed, so
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ˆ S
i+ 1

2

S
i− 1

2

φ (ε)dε =
∆ε

2


φ

(
Si−

∆ε

2
√

3

)
︸ ︷︷ ︸
1st Gaussian

Int. Point

+φ

(
Si +

∆ε

2
√

3

)
︸ ︷︷ ︸
2nd Gaussian

Int. Point


(3.38)

and therefore

φ
p
(

ξ
p
i− 1

2 , j,k
,ηα ,ζ

)
=

1
2

(
φ

(
ξ

p
i− 1

2 , j,k
,ηi− 1

2 , j,k
− ∆η

2
√

3
,ζ

)
+φ

(
ξ

p
i− 1

2 , j,k
,ηi− 1

2 , j,k
+

∆η

2
√

3
,ζ

))

φ
p
(

ξ
p
i− 1

2 , j,k
,ηα ,ζβ

)
=

φ

(
ξ

p
i− 1

2 , j,k
,ηi− 1

2 , j,k
− ∆η

2
√

3
,ζi− 1

2 , j,k
− ∆ζ

2
√

3

)
+φ

(
ξ

p
i− 1

2 , j,k
,ηi− 1

2 , j,k
− ∆η

2
√

3
,ζi− 1

2 , j,k
+ ∆ζ

2
√

3

)
4

+

φ

(
ξ

p
i− 1

2 , j,k
,ηi− 1

2 , j,k
+ ∆η

2
√

3
,ζi− 1

2 , j,k
− ∆ζ

2
√

3

)
+φ

(
ξ

p
i− 1

2 , j,k
,ηi− 1

2 , j,k
+ ∆η

2
√

3
,ζi− 1

2 , j,k
+ ∆ζ

2
√

3

)
4

(3.39)

with p = L, R. For 5th Order reconstruction, left and right states at the interface i− 1
2 , j,k

(note that for cell interface i+ 1
2 , j,k the derivation is analogous) require a 6-point stencil

(5 points for each state with only 4-overlapped values) in ξ and 5-point stencils in both η

and ζ . A representation of the stencils is presented in Figure 3.2.

Finally after some algebra (see Appendix B) and taking ∆ξ = 1, ∆η = 1, ∆ζ = 1, it is
possible to write the convective fluxes as

F3D WENO
i− 1

2 , j,k
=

β |i− 1
2 , j,k

4

(
F
{

UL (Iα1β1

)
,UR (Iα1β1

)}
+F

{
UL (Iα1β2

)
,UR (Iα1β2

)}

+F
{

UL (Iα2β1

)
,UR (Iα2β1

)}
+F

{
UL (Iα2β2

)
,UR (Iα2β2

)})
(3.40)

Iα1β1 =
(

ξi− 1
2 , j,k

,ηi− 1
2 , j,k
− 1

2
√

3
,ζi− 1

2 , j,k
− 1

2
√

3

)
Iα1β2 =

(
ξi− 1

2 , j,k
,ηi− 1

2 , j,k
− 1

2
√

3
,ζi− 1

2 , j,k
+ 1

2
√

3

)
Iα2β1 =

(
ξi− 1

2 , j,k
,ηi− 1

2 , j,k
+ 1

2
√

3
,ζi− 1

2 , j,k
− 1

2
√

3

)
Iα2β2 =

(
ξi− 1

2 , j,k
,ηi− 1

2 , j,k
+ 1

2
√

3
,ζi− 1

2 , j,k
+ 1

2
√

3

) (3.41)

The exact definition of one-dimensional WENO reconstruction that allows obtaining
UL

,UR at all Integration Points is also shown in Appendix B.
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(a) 3D stencil for WENO reconstruction

(b) Definition of the 4 integration points

Figure 3.2: Stencil for WENO scheme and reconstruction points

37



Numerical Methods

Simplified WENO for efficient computations

As will be shown later in Section 4.3.3, the computational cost of the implementation
(3.40)-(3.41) in FLAMENCO is too high to allow its application to large domains with
many computational cells (>100000 cells). Hence, a simplified version of the WENO
algorithm is used to simulate the Dry Low NOx GTU Combustor. This simplification
consists of lowering the order of accuracy when integrating at the cell interface, equation
(3.35). In this way, the integral is no longer approximated with expression (3.38) but with

ˆ Si+1
2

Si−1
2

φ (ε)dε =
(

Si+ 1
2
−Si− 1

2

)
φ

(
Si+ 1

2
+Si− 1

2

2

)
(3.42)

and equation (3.40) becomes

F3D WENO
i− 1

2 , j,k
= β |i− 1

2 , j,k
FHLLC

i− 1
2 , j,k

(
UL

WENO 1D,U
R
WENO 1D

)
(3.43)

where UL
WENO 1D,U

R
WENO 1D are obtained using reconstructed variables according to

φ
p
i− 1

2 , j,k
= φi−1 +ω0pv0p +ω1pv1p +ω2pv2p p = L,R (3.44)

with

ω0p =
α0p

α0p+αpL+α2p

ω1p =
α1p

α0p+αpL+α2p

ω2p =
α2p

α0p+αpL+α2p

α0p =
0.3

(ε+β0p)
2

α1p =
0.6

(ε+β1p)
2

α2p =
0.1

(ε+β2p)
2

p = L,R (3.45)

β0L =
13
12 (φi−1−2φi +φi+1)

2 + 1
4 (3φi−1−4φi +φi+1)

2

β1L =
13
12 (φi−2−2φi−1 +φi)

2 + 1
4 (φi−2−φi)

2

β2L =
13
12 (φi−3−2φi−2 +φi−1)

2 + 1
4 (φi−3−4φi−2 +3φi−1)

2

β0R = 13
12 (φi−2φi−1 +φi−2)

2 + 1
4 (3φi−4φi−1 +φi−2)

2

β1R = 13
12 (φi+1−2φi +φi−1)

2 + 1
4 (φi+1−φi−1)

2

β2R = 13
12 (φi+2−2φi+1 +φi)

2 + 1
4 (φi+2−4φi+1 +3φi)

2

(3.46)

and

v0L =
1
6 (−4φi−1 +5φi−φi+1)

v1L =
1
6 (−φi−2−φi−1 +2φi)

v2L =
1
6 (−2φi−3−7φi−2 +5φi−1)

v0R = 1
6 (−4φi +5φi−1−φi−2)

v1R = 1
6 (−φi+1−φi +2φi−1)

v2R = 1
6 (−2φi+2−7φi+1 +5φi)

(3.47)

where φ stands for a generic physical variable. The residual coefficient ε can be taken
ε = 10−15 for a double precision machine, since its only purpose is to avoid zero values
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in the denominator from (3.45). Although less accurate, this way of proceeding allows
expensive simulations (>100000 cells) in FLAMENCO, which otherwise would not have
been possible with the resources available.

3.2.2 Total Variation Diminishing schemes

Total Variation Diminishing methods are represented in this work by the 2nd Order
Minmod Limited and 5th Order MLP (Multi-dimensional Limiting Process) schemes. As
seen, whereas the first one is really stable but the accuracy is totally insufficient for the
Dry Low NOx GTU combustor simulation, the latter is both highly stable and accurate,
making of it a perfect candidate to be used in FLAMENCO

2nd Order Minmod

This 2nd Order scheme limited with the Minmod algorithm (see Harten et al. [58] and
Kurganov et al. [59]) can be formulated as

F2nd Minmod
i− 1

2 , j,k
= β |i− 1

2 , j,k
FHLLC

i− 1
2 , j,k

(
UL

2nd Minmod,U
R
2nd Minmod

)
(3.48)

with the vector of conserved variables at left and right states composed by reconstructed
magnitudes as

φ L
2nd Minmod = φi−1 +

1
2 (φi−1−φi−2)max

(
0,min

(
1, (φi−φi−1)

(φi−1−φi−2)

))
φ R

2nd Minmod = φi− 1
2 (φi+1−φi)max

(
0,min

(
1, (φi−φi−1)

(φi+1−φi)

)) (3.49)

5th Order MLP scheme

The relatively new 5th Order MLP scheme introduced by Kim et al. [60, 61] represents
an accurate and very stable way of reconstructing physical variables at interfaces.
Additionally, its simple formulation and good behaviour in three-dimensional problems
provides a robust numerical structure to be introduced in FLAMENCO. The definition of
this approach is exactly the same as in equation (3.48), but now the reconstruction stage
reads

φ L
MLP = φi−1 +

1
2 (φi−1−φi−2) ·max

(
0,min

(
2,2
(

φi−φi−1
φi−1−φi−2

)
ψL

))
φ R

MLP = φi− 1
2 (φi+1−φi) ·max

(
0,min

(
2,2
(

φi−φi−1
φi+1−φi

)
ψR

)) (3.50)
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with limiting functions

ψL =
(
−2
(

φi−2−φi−3
φi−1−φi−2

)
+11+ 1

30

(
φi−φi−1

φi−1−φi−2

)(
24− 3(φi+1−φi)

φi−φi−1

))
ψR =

(
−2
(

φi+2−φi+1
φi+1−φi

)
+11+ 1

30

(
φi−φi−1
φi+1−φi

)(
24− 3(φi−1−φi−2)

φi−φi−1

)) (3.51)

3.3 Thermodynamic Closures

Once all physical and mathematical models are posed and numerical methods are selected,
the problem must be thermodynamically closed. At this point two closures are possible,
the isothermal and isobaric closures. As mentioned before, although isothermal closure
is more “physically” accurate, since it considers only one temperature at each point of
the domain, its applicability in conjunction with high-order schemes may cause spurious
oscillations near discontinuities (see Karni [62] and Abgrall [63]). To overcome this issue,
Allaire et al. [21] proposed the isobaric closure, asserting that if the same pressure at each
point of the domain is considered instead of the same temperature, spurious oscillations
are completely removed. Furthermore, since the mixture is defined at every point of the
domain where more than one species exists, from a macroscopic perspective there is only
one temperature per spatial point, so the “physical” consistency of the model remains
unaltered.

3.3.1 Equation Of State

The mathematical problem requires an equation of the type

ε = EOS(p,ρ) (3.52)

to relate the thermodynamic variables and keep consistent the flow field. Although
FLAMENCO has three models (EOS for perfect gas, ideal gas with variable specific
heat capacity ratio and van der Waals gas), the relevant choice for the problem under
consideration here is the EOS for perfect gas, which can be summarised as

ε =
1

γ−1
p
ρ

ε =CvT Cv ≡Const.
γ =

Cp
Cv

Cp ≡Const.

(3.53)
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3.3.2 Iso-Baric Closure

The isobaric closure is a numerical artefact that, without impacting on the general
consistency of the physical model, allows avoiding spurious numerical oscillations in
multispecies flows near discontinuities. Using this approach, the mixture is defined as

1 =
Nspecies

∑
k=1

zk

ρ =
Nspecies

∑
k=1

zkρk

ρε =
Nspecies

∑
k=1

zkρkεk

ρε =
Nspecies

∑
k=1

zk

γk−1
pk = p

Nspecies

∑
k=1

zk

γk−1
−→ p =

ρε

Nspecies

∑
k=1

zk
γk−1

R =
Nspecies

∑
k=1

Rk
zkρk

ρ

T =
p

ρR

γ = 1+
1

Nspecies

∑
k=1

zi

γk−1

(3.54)

System above yields all necessary variables as a function of the conserved variables
obtained from the numerical scheme. Thus, this closure procedure is performed after
numerical integration of the conserved variables, and is sufficient to update the flow field
to continue with the next time step.
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Chapter 4

Analysis of the model and validation

4.1 Main features of the numerical approach with
FLAMENCO

As mentioned in the introduction, FLAMENCO is a numerical algorithm devised to deal
with and derived according to the following elements

• Compressible→Solution of the Local Riemann Problem at each cell interface

• Turbulent→Modelisation using Implicit Large-Eddie Simulation

• 3D → Unsplit fluxes with 3D reconstruction and 1D-by-1D reconstruction.
Curvilinear grids considered and transformed into Cartesian coordinates.

• Unsteady → 2nd Order Explicit Runge-Kutta and 2nd Order Explicit 4-Stages
Runge-Kutta for stable computations. Enhanced time integration scheme for
multispecies models.

• Multispecies→ 5-Equation Transport Model with iso-baric closure for the mixture
region

• High-Order, High-Resolution → 5th Order WENO and MLP reconstruction
schemes

• Viscous→ 2nd Order Central differences for viscous discretisation

• Perfect gas→ Perfect gas Equation of State

This algorithm performs well in many situations, even when some of them set with critical
conditions (geometrically and physically speaking). In particular, when applied to the Dry
Low NOx GTU Combustor, the combination of small cells, low numerical dissipation due
to the high-order scheme and energy production at boundaries creates, within the jet duct,
bounded numerical instabilities. Although limited, such instabilities induce unphysical
values of pressure, which ends up corrupting the final solution of the problem. This error
has already been pointed out by Pulliam [64] for High-Order schemes with extremely
low or zero viscosity. As mentioned in Chapter 1, several strategies have been followed
in order to overcome this particular problem, resulting in the implementation of several
features.
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Firstly, a number of boundary conditions following different principles (Non-reflecting,
Partially Non-Reflecting and Nozzle-type subsonic inflows) were used. Secondly, locally
high-dissipative schemes were employed at certain regions of the domain. Thirdly, instead
of reconstruction from conserved variables, reconstruction from primitive variables
(including volume fraction) was employed to minimise numerical oscillations. Finally,
small grid modifications were introduced, making sure that the effect of such deviation
from the actual problem was not relevant at all. More on this last point in Section 5.2.

4.2 Strategies to balance low dissipation

4.2.1 Boundary Conditions

The main objective of the subsonic inflows introduced is to evacuate as much energy
as possible from the interior of the jet injector while keeping the expected specifications
(Reynolds and Swirl numbers). In the same way, the outflow has been defined to minimise
wave reflections inside the combustion chamber. Finally, changes have been made at
the walls of the jet injector, in order to damp as much as possible the propagation of
transversally-bouncing acoustic waves.

Non-reflecting Subsonic Inflow and Outflow

This subsonic boundary condition is based on enabling free transit of characteristic waves.
Hence, the subsonic inflow evacuates one outcoming wave with no reflection at all,
introducing 4+N incoming waves, and the subsonic outflow evacuates 4+N outcoming
waves with no reflection, introducing one incoming wave into the computational
domain (N stands for number of species). Considering the one-dimensional system of
conservation laws as

∂U(t,x)
∂ t

+
∂F(U(t,x))

∂x
= 0 → ∂U(t,x)

∂ t
+

∂F(U(t,x))
∂U(t,x)

∂U(t,x)
∂x

= 0 (4.1)

where

U =



z1ρ1

z2ρ2
...

zNρN

ρu
ρv
ρw
E


, F =



z1ρ1u
z2ρ2u

...
zNρNu

ρu2 + p
ρuv
ρuw

u(E + p)


(4.2)
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the eigenvalues of the system∣∣∣∣∂F(U(t,x))
∂U(t,x)

−λ I
∣∣∣∣= 0 (4.3)

are λ1 = u−a , λ2 = λ3 = ...= λM−1 = u , λM = u+a , where a is the speed of sound. In
the domain illustrated in Figure 4.1, the configuration of incoming and outcoming waves
at each boundary is depicted for a single species problem.

Figure 4.1: Incoming and outcoming waves at the boundary. Reproduced from [65]

According to Blazek [66], this configuration can be mathematically expressed as

Subsonic Inflow



pb =
1
2
[pa + pd−ρ0a0 (nx (ua−ud)+ny (va− vd)+nz (wa−wd))]

ρb = ρa +
(pb− pa)

a2
0

ub = ua−
nx (pa− pb)

ρ0a0

vb = va−
ny (pa− pb)

ρ0a0

wb = wa−
nz (pa− pb)

ρ0a0

Subsonic Outflow



pb = pa

ρb = ρd +
(pb− pd)

a2
0

ub = ud−
nx (pd− pb)

ρ0a0

vb = vd−
ny (pd− pb)

ρ0a0

wb = wd−
nz (pd− pb)

ρ0a0

(4.4)
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where nx, ny, nz are the components of the unitary vector normal to the boundary, a refers
to the target value, b to the real value at the boundary and d to the first cell within the
domain next to the boundary. Note that reference values ρ0, a0 are typically taken as
close as possible to the boundary (in the present work, ρ0 = ρd ; a0 = ad). Numerically
speaking, equations in (4.4) are simply a relaxation process where the conditions at the
interface, “target conditions”, are smoothly achieved in time. In the same way, once the
specified magnitudes are achieved, any deviation from them is not instantaneously killed,
but is “redirected” towards the proper value by introducing opposite perturbations in the
fluid.

Partially Non-reflecting Subsonic Inflow

This method is based on the idea of relaxing the conditions at the inflow so the reflection
of each outgoing wave can be damped at the expense of the information introduced.
A relaxation factor is included and adapted to achieve proper equilibrium between the
conditions imposed and the intensity of the wave reflected. The formulation in this case
is a variation of the model proposed by [67] according to suggestions made by Thomson
[68] and can be expressed as

L5 = σρa2Uz−U∞
z

L
(4.5)

L2 =
γ−1

2
(L1 +L5)+

ρa2

T
∂T
∂ t

(4.6)

∂Uz

∂ t
=

L1−L5

2ρa
(4.7)

where σ is the relaxation factor, U∞
z is the target velocity normal to the boundary, Uz is

the actual velocity normal to the boundary and L is the characteristic longitude of the jet
injector tube. Note that ρ is obtained by solving as many continuity equations as species
are in the problem, and the wave temporal amplitude of the first wave L1 is computed
from inside the domain as

L1 = (Uz−a)
(

∂ p
∂ z
−ρa

∂Uz

∂ z

)
(4.8)

Having computed L1 and L5, the wave temporal amplitude L2 can be obtained from (4.6)
and used to compute temperature, pressure, etc., at the boundary. Then, equation (4.7)
provides the normal velocity to the boundary (note that the gradient is at the boundary).
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4.2 Strategies to balance low dissipation

Nozzle-type Inflow

The nozzle type subsonic inflow consists of setting constant total pressure and
temperature, extrapolating Mach number from the interior of the domain. Magnitudes
such as volume fractions or volume fraction times partial densities are imposed at the
boundaries. Using equations (4.9) and (4.10), density can be computed using the equation
of state of the fluid, which in this case is perfect gas. Then, the normal velocity is easily
calculated through (4.11). Note that this inflow was developed for only one non-zero
velocity component, as it is the case under consideration (normal to the boundary). The
outcome of this boundary condition is practically the same as the Non-reflecting one in
equation (4.4). However, this method is asymptotically slower than the other one, so not
only it takes more time to reach the operating conditions, but is also less stiff, which
implies slower responses to eventual deviations from the target values.

P = P0

(
1+

γ−1
2

M2
)− γ

γ−1

(4.9)

T = T0

(
1+

γ−1
2

M2
)

(4.10)

U = M2 γP
ρ

(4.11)

4.2.2 Reconstruction from Primitive Variables

Reconstruction from primitive variables instead of conserved variables is a broadly
extended procedure to calculate convective fluxes. Here, it is not only advisable
but necessary if controllable dissipation is desired. Furthermore, reconstruction from
primitive variables in high-order schemes avoids spreading non-linear errors derived from
conserved variable reconstruction (where the product of two variables, i.e., momentum,
is reconstructed). Table 4.1 shows both reconstruction methodologies for a two species
flow, indicating which variables are reconstructed and which are computed from them.

Primitive variable reconstruction followed in FLAMENCO is presented in system (4.12).
As seen, a sequential methodology allows calculating all variables in a consistent way
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Reconstruction Methodology
Conserved Variables Primitive Variables

ρ1z1 Reconstructed Reconstructed
ρ2z2 Reconstructed Reconstructed
z1 Reconstructed Reconstructed
z2 Computed Computed
u Computed Reconstructed
v Computed Reconstructed
w Computed Reconstructed
ρu Reconstructed Computed
ρv Reconstructed Computed
ρw Reconstructed Computed
ρE Reconstructed Computed
ρε Computed Computed
p Computed Reconstructed
T Computed Computed
ρ Computed Computed

Table 4.1: Reconstruction methodologies

FLAMENCO
SOLV ER

y

ρ|Comp. = ρ1z1|Recnst.+ ρ2z2|Recnst.

z2|Comp. = 1− z1|Recnst.

ρu|Comp. = ρ|Comp. u|Recnst.
ρv|Comp. = ρ|Comp. v|Recnst.
ρw|Comp. = ρ|Comp. w|Recnst.

ρE|Comp. =
z1|Recnst.+ z2|Comp.

γComp.−1
p|Recnst.

+ 1
2 ρ|Comp.

(
u|2Recnst.+ v|2Recnst.+ w|2Recnst.

)
T |Comp. =

p|Recnst.
R ρ|Recnst.

(4.12)

4.2.3 Reconstruction Schemes

The final strategy is the Adaptive Reconstruction Scheme. As mentioned in the Chapter
1, the evolution of acoustic waves within the jet injector leads to a complex configuration
with transversal pressure waves bouncing on the walls while increasing their intensity.
In particular, their interaction with expansion waves coming from the outlet of the duct
produces large confined packages of energy close to the walls. In an attempt to decrease
the intensity of this phenomenon, a dissipative Adaptive Reconstruction Scheme acting
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4.3 TVD vs WENO reconstruction

on the last three cells of the domain is employed only at the walls. There are three main
reasons leading to this way of proceeding. Firstly, dissipation can be incremented in a
natural way by decreasing the reconstruction order. Secondly, lowering the order implies
using less halo cells, so the error associated with fictitious grid points is minimised.
Thirdly, the impact on the boundary layer must be minimised not only by involving as
few cells as possible, but also by implementing changes in a smooth fashion. At this
point, is important to remark that this method is specific for this problem and is restricted
to a very small region of the computational domain. Its utilisation in other cases must
be explored carefully, paying special attention to the accuracy required for the boundary
layer.

The idea behind the Adaptive Reconstruction Scheme is basically to switch gradually
from the 5th Order reconstruction to a 1st Order scheme passing through a 2nd Order
method, as explained in system (4.13). This strategy satisfies the above mentioned criteria,
yielding small errors if the first three cells are defined sufficiently close to the wall.

Adaptive Reconstruction Scheme

Distance
to

Wall

y

1st Cell 1st Order Reconstruction

{
UL

i− 1
2
=U i−1

UR
i− 1

2
=U i

2nd Cell 2nd Order Minmod

3rd Cell 5th Order Reconstruction (WENO/MLP)

(4.13)

4.3 TVD vs WENO reconstruction

4.3.1 Reconstruction features

This section is dedicated, on the one hand, to demonstrate the contribution of the Adaptive
Reconstruction Scheme to enhance acoustic wave dissipation at the walls, and on the other
hand, to show the effect of the Enhanced Explicit Runge-Kutta scheme when applied in
conjunction with the reconstruction method.

In order to show the performance and impact of the Adaptive Reconstruction Scheme, let
consider the jet injector tube of the Dry Low NOx GTU combustor defined between X =
-0.0258 m and X = 0 m with a radius equal to 0.0027 m. When this approach is applied at
the walls, an additional error is introduced, acting as a source of dissipation. In this way,
the energy associated with the transversal bouncing waves is not completely transferred to
reflected waves, but rather partially dissipated. To illustrate this idea, Figure 4.2 shows a
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small portion of the tube close to the wall where the difference between radial convective
fluxes obtained with and without the Adaptive Scheme are depicted. In particular, the
magnitude considered in both cases to compute the difference is the radial convective
flux through cell interfaces parallel to the wall. Since this magnitude is representative
of the intensity of bouncing acoustic waves (it includes both momentum and pressure),
and high values are associated with high values of pressure, the Adaptive Scheme should
decrease such intensity. Indeed, as seen in Figure 4.2, the transported flux is significantly
reduced by using the Adaptive Scheme (note that a net difference of 10−5 in this case
is approximately 5% of the absolute transported flux), supporting the idea that the new
approach works as expected.

Figure 4.2: Difference between radial convective flux through cell interfaces parallel to the wall
computed with and without Adaptive Reconstruction Scheme

As could not be otherwise, the fact that 5th Order reconstruction is not always employed
if the Adaptive Scheme is used has implications on the accuracy close to the wall,
particularly in the boundary layer. According to Figure 4.3, where axial velocity profiles
obtained with and without the Adaptive Scheme are shown close to the upper wall, there
is a significant difference in accuracy when capturing the boundary layer, mainly in cells
where the reconstruction scheme differs. As expected, the Adaptive Scheme case where
1st , 2nd , and 5th Order are employed produces more dissipation, leading to a greater
effective viscosity. To associate this idea with what is represented in Figure 4.3, just
consider the incompressible 2D mass and momentum equations close to the wall

∂u
∂x

+
∂v
∂ z

= 0 (4.14)

u
∂u
∂x

+ v
∂u
∂ z
≈− 1

ρ

∂ p
∂x

+
µ

ρ

∂ 2u
∂ z2 (4.15)
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At very small distances, in can be approximate

∂u
∂x

+
∂v
∂ z

= 0−→ ∆u
∆x
∼ ∆v

∆z
−→ ∆v∼ ∆z

∆x
∆u (4.16)

u
∆u
∆x
∼ u

∆v
∆z
−→ u

∂u
∂x
∼ v

∂u
∂ z

(4.17)

and both terms in the left hand side of equation (4.15) are of the same order of
magnitude. Now, bearing in mind that the Adaptive Reconstruction Scheme only affects
the reconstruction in the z coordinate, the second term of the LHS of (4.15) can be
approximate by 1st Order reconstruction as

v
∂u
∂ z

∣∣∣∣
z−∆z
≈ v
(

∂u
∂ z

∣∣∣∣
z
− ∂ 2u

∂ z2

∣∣∣∣
z
∆z+o

(
∆z2)) (4.18)

Introducing this last expression in a discretised form of (4.15)

u
∂u
∂x

∣∣∣∣
z
+ v

∂u
∂ z

∣∣∣∣
z
≈− 1

ρ

∂ p
∂x

∣∣∣∣
z
+

(
µ

ρ
+ v∆z

)
∂ 2u
∂ z2

∣∣∣∣
z
+o
(
∆z2) (4.19)

and therefore viscosity is effectively incremented, yielding a lower peak velocity with the
distribution shown in Figure 4.3. It should be noted that this analysis is valid only for
laminar flows, but gives a rough idea of the causes behind such behaviour. Obviously, for
finer meshes the algorithm will see accuracy increased.

Figure 4.3: Axial velocity profiles at the wall for computations set with and without the Adaptive
Reconstruction Scheme. Cells 1 to 5 are indicated in red

The Adaptive Reconstruction Scheme has a collateral benefit that, while not relevant
for the Dry Low NOx GTU combustor case where viscosity is accounted, is extremely
important in problems where only convective flows are considered. Indeed, if
reconstruction at an inviscid wall is performed using any of the 5th Order schemes alone,
a non-zero velocity normal to the interface appears, introducing non-zero mass fluxes.
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However, if the Adaptive Reconstruction Scheme is employed instead, such velocity
is 0 and so are the fluxes, yielding a physically consistent algorithm. To proof this
assertion, first consider WENO and MLP formulations from systems (3.43)-(3.47) and
(3.50)-(3.51) respectively. If above schemes are applied to a cylindrical geometry like
the one represented in Figure 4.4 with inviscid walls, an unphysical reconstruction is
produced. Let considered the values shown in Table 4.2 for the involved variables. Note
that Rev. indicates that the component is reversed from the associated one inside the
domain, Param. that it is taken as variable parameter and nx, ny and nz are the components
of the unitary normal to the wall.

Figure 4.4: Cylindrical tube. Walls are “inviscid” (only normal component of velocity is
reversed)

Cell 1 Cell 2 Cell 3 Halo 1 Halo 2 Halo 3
u 70 m/s 70 m/s 70 m/s 70 m/s 70 m/s 70 m/s nx 0

v Param. Param. 0.2 m/s Rev. Cell 1 Rev. Cell 2 Rev. Cell 3 ny
1√
2

w 0 0 0 Rev. Cell 1 Rev. Cell 2 Rev. Cell 3 nz
1√
2

Table 4.2: Characteristic values for reconstruction near the inviscid wall

To get zero mass fluxes through the wall, both Left and Right reconstructed velocity
values normal to it must have the same absolute value with opposite sign, as deduced
from the solution of the Local Riemann Problem (to get zero mass flux we need zero
normal velocity at the wall, which can only be achieved if Left and Right values are equal
in magnitude but opposite in sign). For the values above, Left and Right reconstructed
normal velocities in the TVD-MLP and WENO cases are plot in Figure 4.5 (note that
the Right state is represented with changed sign). As seen, for small variations of the
perpendicular velocity (between 0.1 and 0.5 m/s), Left and Right values not only are
different, but the disparity is of the order of the velocity itself.
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In the case of having axial velocity only (v = 0, w = 0) the reconstruction provides the
correct values. However, as soon as external perturbations introduce transversal velocity
components (i.e. numerical diffusion, conditions at the tube exit, etc.), the reconstruction
method will effectively produce non-zero fluxes. This is corrected with the Adaptive
Reconstruction Scheme expressed in (4.13), and therefore its use remains justified.

In another issue, the Enhanced Explicit Runge-Kutta is necessary to prevent unphysical
values of volume fraction. This is clearly visible in Figures 4.6 - 4.10, where volume
fraction reconstruction has been represented for Left and Right states of both schemes
(MLP-Left, MLP-Right, WENO-Left, WENO-Right). Figure 4.6 shows volume fraction
at a discontinuity. The values are stored by cells ranging from i− 3 to i+ 2 , so the
reconstruction can be performed at interface i− 1

2 . As seen, both methods agree in
reconstructing Left and Right states (WENO scheme introduces a negligible deviation
from 0, showing that it is not completely “non-oscillatory”) and consistent physical
magnitudes are yielded.

(a) TVD-MLP Reconstruction (b) WENO Reconstruction

Figure 4.5: Reconstruction of velocity perpendicular to the wall. v_1 and v_2 refer to cell 1 and
cell 2 respectively

However, Figure 4.7 evidences the above mentioned idea that it is possible for both
schemes to take forbidden values of volume fraction. This figure was composed similarly
to the previous one, where a discontinuity is present at i− 1

2 (i.e. two fluids initially
separated, or a pure species moving towards another species). If a small perturbation,
say a numerical error, alters the distribution in the same fashion as shown in Figure 4.7
(not necessarily such values, but the one stored in cell i+ 1 needs to be lower than the
ones stored in cells i and i+ 2 to provide erroneous reconstruction), then Right WENO
and TVD-MLP states go slightly above 1, which is completely unphysical. At this
point, if volume fraction equal 1 is taken instead, which is exactly what the Enhanced
Explicit Runge-Kutta does, the process becomes physically and numerically consistent
without sensitively decreasing the order of accuracy. In the same way, Figures 4.8
and 4.9 show two situations where, either the TVD-MLP or WENO scheme produces
unphysical magnitudes of both Left and Right states at the same time, thus leading to
unaccepted actual values at the interface (note that if only one state is unphysical, the flux
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Figure 4.6: Initial volume fraction values at a discontinuity

at the interface may be based on valid magnitudes). As seen, whereas Figure 4.8 shows
that the TVD-MLP scheme has the capacity of providing wrong output even in smooth
regions, Figure 4.9 suggests that the WENO method may behave erroneously in areas
where discontinuities appear (this may be very dangerous, since even small perturbations
can be considered “discontinuities” for this matter). Finally, it should be remarked as
well that the situation where TVD-MLP or WENO produce wrong reconstructions may
be completely different. Indeed, Figure 4.10 represents a particular case where a small
perturbation affects the value stored at cell i− 2 by increasing it. Here, only the Left
WENO state is wrong, since it goes below 0. Since the same situation but with changed
agents may occur, it is indispensable to prevent such behaviour in a general way.
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Figure 4.7: Volume Fraction reconstruction showing forbidden values for small perturbations

Figure 4.8: Unphysical volume fraction values reconstructed by both Right and Left states of the
TVD-MLP scheme
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Figure 4.9: Unphysical volume fraction values reconstructed by both Right and Left states of the
WENO scheme

Figure 4.10: Case where only WENO Reconstruction provides wrong results

In all cases above, it is clear that the corrected reconstructions and subsequent time
integration control proposed by the Enhanced Explicit Runge-Kutta keep the problem
physically and numerically consistent without altering in any way the order of accuracy
of the whole model. Therefore, the use of this method is considered essential to produce
realistic simulations.
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4.3.2 Validation and accuracy

The validation of both reconstruction strategies working in conjunction with the Enhanced
Explicit Runge-Kutta scheme must be validated prior to further applications. From a
general point of view, the methodology employed to include viscous and source terms has
been deeply validated in Pulliam et al. [69] (and references therein). Hence, only inviscid
flows are considered for the validation in this research.

In order to cover a broad range of situations, six test cases have been taken for
comparison, namely the Stationary Contact Wave, Moving Contact Wave, Shock Tube,
Kelvin-Helmholtz Instability and 2D and 3D Explosion Problems. With this selection,
unsteady and steady features in all dimensions are tested. Additionally, theoretical
solutions are available for 5 out of the six cases. In the Kelvin-Helmholtz Instability
problem, contrasted numerical data is taken to compare with.

Stationary Contact Wave

The Stationary Contact Wave problem, as presented here for multispecies flows, consists
of two different fluids initially separated by a shared interface. These fluids, referred as
Left and Right flows, have different properties and are set with different thermodynamic
conditions in order to create a contact wave at the interface. Table 4.3 describes the initial
set up for this problem, the numerical conditions (i.e. grid resolution, type of grid, etc.)
and the output time. In this case, the expected behaviour is a stationary evolution, forcing
the contact wave to remain in the same position without any variation in time.

Features - 2nd Order Minmod, 5th Order WENO, 5th Order TVD-MLP
- 2nd Order 4-Stages Enhanced Explicit Runge-Kutta

Initial Set-up
Left pL = 101325 Pa ρL = 0.2 Kg/m3 γL = 1.4

uL = 0 m/s vL = 0 m/s wL = 0 m/s

Right pR = 101325 Pa ρR = 1.225 Kg/m3 γR = 1.2
uR = 0 m/s vR = 0 m/s wR = 0 m/s

Sim. Config. CFL
2nd Order Minmod 0.4
5th Order WENO 1.0

5th Order TVD-MLP 0.4

Grid Desc. - Prism geometry. All BC set as Inviscid Walls
Size 100x3x3 Cells

Output Time 5.937 ·10−3 s

Table 4.3: Stationary Contact Surface test case

This benchmark problem not only tests the ability of the reconstruction scheme to deal
with static discontinuities in the flow, but it also checks the behaviour of the HLLC
Approximate Riemann solver and its capacity to deal with contact waves. Additionally,
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the control of numerical diffusion is analysed, since the interfaces must not be smeared
in time, leaving a mixture region with constant thickness. Essentially, it can be fairly said
that the Stationary Contact Wave tests the behaviour of the convective and time integration
solvers and the capacity to minimise and bound numerical errors.

Figure 4.11 shows four characteristic variables at the output time indicated in Table 4.3
above, which is considered large enough to allow numerical perturbations if the model
was not well posed. In all plots, results generated with the 2nd Order Minmod, 5th

Order TVD-MLP and 5th Order WENO are compared with the theoretical solution. As
seen in Figure 4.11a, Pressure is kept perfectly constant through the discontinuity, which
evidences the effect of the isobaric closure. In the same way, velocity is also kept constant
supporting this idea. As for density and volume fraction 1, the ability of the HLLC
Approximate Riemann solver selected to capture contact discontinuities is clearly visible,
indicating proper implementation of the approach. Finally, all models perform well in this
case, since the interface is not smeared at all. This result was expected, since advection
(velocities) are null.

(a) Pressure (b) Density

(c) Velocity (d) Volume Fraction 1

Figure 4.11: Characteristic variables of the Stationary Contact Wave problem
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Moving Contact Wave

This case is quite similar to the previous one, with the difference that here both flows
are initially set with equal velocity. This problem is useful to test both convective and
diffusion terms, since the initial configuration must be advected but not smeared (note that
the small layer generated by numerical diffusion is treated as a mixture layer). Although
the HLLC solver is fully validated only if sonic and supersonic cases are performed, here
just the supersonic case is considered here for simplicity. However, it must be mentioned
that the subsonic case was also analysed during the developing process of FLAMENCO.
The initial set-up of the Moving Contact Wave problem is indicated in Table 4.4. As
seen, four output times have been selected in order to show the evolution of the contact
discontinuity and how it is capture by all schemes

Features - 2nd Order Minmod, 5th Order WENO, 5th Order TVD-MLP
- 2nd Order 4-Stages Enhanced Explicit Runge-Kutta

Initial Set-up
Left pL = 101325 Pa ρL = 0.2 Kg/m3 γL = 1.4

uL = 700 m/s vL = 0 m/s wL = 0 m/s

Right pR = 101325 Pa ρR = 1.225 Kg/m3 γR = 1.2
uR = 700 m/s vR = 0 m/s wR = 0 m/s

Sim. Config. CFL
2nd Order Minmod 0.4
5th Order WENO 1.0

5th Order TVD-MLP 0.4

Grid Desc. - Prism geometry. Supersonic Inlet and Outlet
Remaining BC set as Inviscid Walls

Size 100x3x3 Cells

Output Time

1.6211 ·10−4 s
3.2422 ·10−4 s
4.8633 ·10−4 s
6.4843 ·10−4 s

Table 4.4: Moving Contact Surface test case

Figure 4.12 depicts again pressure, density, velocity and volume fraction at the output
times indicated. Again, pressure and velocity are perfectly constant for all cases, denoting
accurate and non-oscillatory behaviour for non-zero convective fluxes. Regarding
density and volume fraction, here the performance of each scheme is well noted.
Firstly, it draws attention the great temporal accuracy achieved by all methods, which
highlights the potential of the 2nd Order 4-Stages Runge-Kutta approach. Secondly,
the outstanding precision shown during the whole evolution, where only the 2nd Order
Minmod reconstruction yields errors that increase slightly over time, suggests that both
5th Order methods are not only extremely accurate, but also very stable and extremely low
dissipative (in fact, this last feature is largely responsible for the Low Dissipation issue
addressed in this work). A close view of all reconstructions is plotted in Figure 4.13,
where the left and right sides of the discontinuity (boundaries of the mixture region) are
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zoomed. Comparing with the exact solution (it is not totally exact, since it was produced
using a 1st Order scheme in a very fine mesh), it can inferred that the best results are
provided by the 5th Order TVD-MLP method, followed closely by the WENO one and
quite far from those generated by the 2nd Order Minmod. In light of these results, it can be
fairly said that the TVD-MLP is the less dissipative scheme, reconstructing the flow field
with high level of fidelity. Finally, although not as accurate, the theoretical curve is also
well fitted by the WENO model, making of it a good candidate to be used in the Dry Low
NOx GTU combustor case (an advantage here is the higher dissipation produced within
the jet duct).

(a) Pressure (b) Density

(c) Velocity (d) Volume Fraction 1

Figure 4.12: Characteristic variables of the Moving Contact Wave problem at different output
times
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4.3 TVD vs WENO reconstruction

(a) Left side of the discontinuity (b) Right side of the discontinuity

Figure 4.13: Close view of the contact discontinuity

Shock Tube

This benchmark problem is an extremely valuable test case for numerical validation
of algorithms dealing with compressible flows. Its importance lies on the fact that all
information waves present in the Local Riemann Problem developed at each point of the
fluid domain (in the case of Finite Volume methods at each cell interface) are reproduced
and tracked. Hence, the Shock Tube problem is defined in such a way that shock,
rarefaction and contact waves depart from an initial unstable configuration. For this
purpose, Table 4.5 indicates the initial values used here for subsonic evolution as well
as some information about the set up.

Features - 2nd Order Minmod, 5th Order WENO, 5th Order TVD-MLP
- 2nd Order 4-Stages Enhanced Explicit Runge-Kutta

Initial Set-up
Left pL = 1.0 Pa ρL = 1.0 Kg/m3 γL = 1.2

uL = 0 m/s vL = 0 m/s wL = 0 m/s

Right pR = 0.1 Pa ρR = 0.1225 Kg/m3 γR = 1.4
uR = 0 m/s vR = 0 m/s wR = 0 m/s

Sim. Config. CFL
2nd Order Minmod 0.4
5th Order WENO 1.0

5th Order TVD-MLP 0.4

Grid Desc. - Prism geometry. All BC set as Inviscid Walls
Size 100x3x3 Cells

Output Time 0.1158 s
0.2317 s

Table 4.5: Shock Tube test case

Due to the great utility of this simple test case, where all features possibly developed in
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further applications are found, the Shock Tube problem has been extensively studied in
the literature. For the sake of comparison, results from [7] are reproduced and compared,
aiming to analyse the advantages and disadvantages of the models proposed. Although
several set ups can be studied (supersonic waves, great disparity in the heat capacity ratio,
etc.) the case selected here is general enough to be considered as representative of a real
situation.

First of all, Figure 4.14 illustrates the flow field at t = 0.1158 s. It is interesting to
see on the one hand how the left rarefaction wave, where the evolution is smooth, is
perfectly captured by all approaches and on the other hand how both contact and shock
waves are slightly smeared. In particular, the right shock wave is the one that seems to
be more smeared, again with the TVD-MLP performing the best. Looking at the left
end of the rarefaction wave, shown in detail in Figure 4.15a, both the TVD-MLP and
WENO schemes have similar accuracy, significantly better than the one associated with
the Minmod. It should be noted as well the high temporal accuracy achieved, consequence
of the 2nd Order time integration scheme.

(a) Pressure (b) Density

(c) Velocity (d) Volume Fraction 1

Figure 4.14: Characteristic variables of the Shock Tube problem at t = 0.1108 s
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4.3 TVD vs WENO reconstruction

It draws attention in Figure 4.14b, density plot, small oscillations in the WENO solution.
Indeed, as depicted in Figure 4.15b, an oscillatory behaviour is mainly exhibited in the
surroundings of the contact wave. This is a direct consequence of the mathematical
definition pointed out in Section 4.3.1, where the slightly oscillatory performance of the
WENO scheme was demonstrated. Although much less important, the TVD-MLP also
presents a small undershot at the right end of the contact discontinuity. This unwanted
behaviour is in both cases damped over time, as shown in Figure 4.16b and Figure 4.17.

(a) Left end of the rarefaction wave (b) Contact and shock wave in detail

Figure 4.15: Close view of the rarefaction, contact and shock wave in the Shock Tube test
problem at t = 0.1158 s

Same variables are plotted in Figure 4.16 at t = 0.2317 s. At this point, the oscillations
have been almost totally damped and the theoretical curve is well fitted at both
discontinuities and at the rarefaction wave. Here, same trend is followed, with the
TVD-MLP and WENO having similar accuracy and better than the Minmod scheme.
Again, the TVD-MLP is slightly better than the WENO, specially in the shock wave
vicinity. All these conclusions are visible in Figure 4.17, where a close view of both
density discontinuities is represented. As stated, here the oscillations are almost damped
and the solution is really accurate for such a coarse grid.
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(a) Pressure (b) Density

(c) Velocity (d) Volume Fraction 1

Figure 4.16: Characteristic variables of the Shock Tube problem at t = 0.2317 s

Figure 4.17: Close view of the contact and shock wave in the Shock Tube test problem at t =
0.2317 s
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4.3 TVD vs WENO reconstruction

Kelvin-Helmholtz Instability

This well-know problem is chosen for two main reasons. Firstly, besides testing the
convective fluxes again, it is very important to see the evolution of the mixture layer
over time, produced as a consequence of the numerical error. This allows checking the
performance in an extremely coarse grid of the mixture model implemented, which must
provide sensible values in order to generate an accurate and stable solution. The second
reason is related to the periodic conditions used, which has been included in FLAMENCO
as an additional feature.

The Kelvin-Helmholtz Instability problem, as considered here, consists of two inviscid
flows moving in opposite directions subjected to a central velocity perturbation (see Table
4.6 for the set up). As soon as the process begins, a central eddy is created, forcing the
mixture of both fluids. The range of this eddy is increased over time, ultimately reaching
the boundaries of the domain.

Features - 2nd Order Minmod, 5th Order WENO, 5th Order TVD-MLP
- 2nd Order 4-Stages Enhanced Explicit Runge-Kutta

Initial Set-up

Left
ML = 0.2 ρL = 1.0 Kg/m3 γL = 5

3
uL = Asin(K · y)exp(−K |x|) A = 0.1 K = 4π

vL =−U0−Acos(K · y)exp(−K |x|) U0 = 0.5

Right
MR = 0.2 ρR = 1.0 Kg/m3 γR = 5

3
uR = Asin(K · y)exp(−K |x|) A = 0.1 K = 4π

vR =U0 +Acos(K · y)exp(−K |x|) U0 = 0.5

Sim. Config. CFL
2nd Order Minmod 0.4
5th Order WENO 1.0

5th Order TVD-MLP 0.4

Grid Desc. - Square geometry. Upper and lower BC
periodic. Rest symmetry planes

Size 16x16x3 Cells
Output Time 3 s

Table 4.6: Kelvin-Helmholtz test case

This benchmark case lacks of theoretical results, since its mathematical formation has no
analytical solution. Thus, for the sake of comparison, results from [7] generated using a
5th Order standard MUSCL approach with Low Mach correction enabled are collected.
Figure 4.18 illustrates data provided by all methods at time t = 3 s. As expected, both 5th

Order reconstructions have larger range than the 2nd Order one. At this output time, the
former ones predict that both left and right flows have undergone stretching, folding over
themselves in the characteristic central eddy. As for the 2nd Order Minmod, the distortion
has commenced but it is completely inaccurate quantitatively speaking, as concluded in
light of the reference data presented in Figure 4.18a.
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(a) 5th Order MUSCL from [7] (b) 2nd Order Minmod

(c) 5th Order TVD-MLP (d) 5th Order WENO

Figure 4.18: Kelvin-Helmholtz Instability results for different reconstruction schemes at t = 3 s

The mixture layer generated over time due to numerical diffusion agrees very well with
previous validated data. This fact supports the idea that a well-posed mixture model with
volume fraction-based quantities and iso-baric closure is suitable for convection-diffusion
problems.

2D and 3D Explosion Problems

Although the 2D and 3D explosion test cases are formally similar to the Shock Tube, their
ability to test two-dimensional and three-dimensional implementations simultaneously
are too attractive to be ignored. In this way, an adequate performance in these problems,
particularly in the 3D Explosion problem, will validate from a general point of view the
implementation and methodology followed in FLAMENCO to solve convective terms.
For this purpose, Table 4.7 shows the set-up in both problems.

The validation of the Unsplit Finite-Volume method with curvilinear coordinates
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4.3 TVD vs WENO reconstruction

Features - 2nd Order Minmod, 5th Order WENO, 5th Order TVD-MLP
- 2nd Order 4-Stages Enhanced Explicit Runge-Kutta

Initial Set-up
r = x2 + y2

r ≤ 0.4
p = 1.0 Pa ρ = 1.0 Kg/m3 γ = 1.4
u = 0 m/s v = 0 m/s w = 0 m/s

r > 0.4
p = 0.1 Pa ρ = 0.125 Kg/m3 γ = 1.4
u = 0 m/s v = 0 m/s w = 0 m/s

Grid
Desc. 2D

Square geometry. Inviscid Walls
and Symmetry

3D
Cubic geometry. Inviscid Walls
and Symmetry

Size 2D 200x200 Cells
3D 200x200x200 Cells

Sim. Config. CFL
2nd Order Minmod 0.4
5th Order WENO 1.0

5th Order TVD-MLP 0.4
Output Time 0.2 s

Table 4.7: 2D and 3D test cases set-up

employed here is done through comparison with experimental data at t = 0.2 s. As
seen in Table 4.7, a fine resolution has been used here (200x200 cells), so results will
also be useful to determine the stability of the approach when dealing with high-order
high-resolution methods in small cells. In terms of the configuration for multispecies, it
must be said that the experimental data considered was obtained for a single-species fluid
in the 2D-Cylindrical Explosion problem, so no volume fraction information is available.
In the present analysis, however, both 2D and 3D cases were run considering an inner
species and an external one. Since the expected behaviour is well known (the interface
moves with the contact discontinuity), one has the capacity to evaluate the goodness of
the approach.

Figure 4.19 plots pressure and density one-dimensional profiles at t = 0.2 s for all
cases (data are taken uniformly throughout the radial direction X) in the 2D-Explosion
case. Again, results are pretty much as accurate as in the Shock Tube case, with the
TVD-MLP again being slightly better than the WENO and sensitively superior to the
Minmod. The WENO scheme, for its part, presents small long-wavelength oscillations
in the surroundings of the contact wave. Such oscillations are damped over time, as
occurred in the Shock Tube case. As for the shock wave, its end is very well captured
in time, yielding a small error towards the unperturbed flow. This error is of course
rapidly decreased with finer grids, and does not drive the leading error in more complex
computations.

Regarding the evolution of the inner species, Figure 4.20 displays, in a qualitative fashion,
two 3D views where the vertical axis measures density and pressure and the contours
indicate volume fraction. As seen in Figure 4.20a, the mixture layer remains strictly
restricted to the contact discontinuity, moving with it and therefore with the flow speed
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(a) Pressure

(b) Density

Figure 4.19: Pressure and density in the 2D Explosion problem at t = 0.2 s

after the shock wave. This fact is clearly visible in Figure 4.20b, where the smooth
variation of volume fraction is depicted with different rainbow colours. This transition
from inner pure fluid to outer pure fluid can be perfectly appreciate in this figure, noting
the importance of the continuous mixture layer defined to deal with numerical diffusion.

Finally, the 3D Explosion problem was run in a much computationally expensive mesh
(8 million cells) to evaluate the real performance of FLAMENCO in fully 3D problems
with all characteristic waves taking place. Although experimental data are not available in
this particular case, the expected solution is well known from a qualitatively point of view.
Figure 4.21 compares again, for all reconstruction schemes, pressure and density at t = 0.2
s. The effect of high resolution grids is evidenced, since little difference exists between
2nd and 5th Order methods and no difference at all is appreciable between TVD-MLP and
WENO (only close to the left end of the rarefaction wave small discrepancies arise). This
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(a) Pressure and VF contours (b) Density and VF contours

Figure 4.20: 3D representations of pressure and density in the 2D Explosion problem at t = 0.2 s.
Red contours indicate inner species volume fraction equal 1. Blue contours outer species volume

fraction equal 1

result highlights the importance and advantages of high-resolution methods when used in
coarse grids.

From a qualitatively point of view, the 3D-Explosion structure at t = 0.2 s can be
observed by means of pressure and density iso-surfaces (Figure 4.22). In both images,
the internal red core and external dark blue indicate unperturbed flow and the rainbow
set of iso-surfaces represents the smooth transition in the rarefaction wave. As for the
intermediate region in Figure 4.22b, it encompasses the contact wave and the near field.
Finally, the shock wave lies between the last and second-to-last layers in both cases.

(a) Pressure (b) Density

Figure 4.22: Pressure and density iso-surfaces in the 3D Explosion problem at t = 0.2 s
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(a) Pressure

(b) Density

Figure 4.21: Pressure and density in the 3D Explosion problem at t = 0.2 s

4.3.3 Computational cost

A big effort was made in order to optimise FLAMENCO. A quick analysis revealed that
more than 30% of the total computational time was spent in the reconstruction section
of the code, pointing to this stage as the most restrictive one in the algorithm. As could
not be otherwise, the 2nd Order Minmod method performs the fastest, followed closely
by the 5th Order TVD-MLP and quite far from the 5th Order WENO. This behaviour
is obviously predicted from the mathematical definition itself, where each sub-time step
requires four sub-iterations in the WENO case (and only one in the other schemes). As a
consequence, special attention was paid to reconstruction boosting, keeping only strictly
necessary calculations.

Figure 4.23 gives a good idea of the computational cost of test cases studied in
Section 4.3.2. All simulations but the 2D and 3D Explosions were performed in single
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processor with the 2nd Order 4-Stages Runge-Kutta time integration scheme enabled in
the Enhanced Explicit Runge-Kutta for Multispecies Flows framework. The 2D and 3D
Explosions, while using the same time integration technique, were run with 4 processors
in all cases but the WENO in the 3D Explosion, where 32 process were employed (and
therefore this case is not comparable, indicated with ? in Figure 4.23). As expected,
the 2nd Order Minmod is the fastest, followed closely by the 5th Order TVD-MLP and
way from the 5th Order WENO (note that computational time is expressed in logarithmic
scale).

Figure 4.23: Computational times of each reconstruction scheme. Time is indicated in
logarithmic scale. ? symbol stands for unknown time. Time steps and CFL numbers are indicated

In light of figure above, it can assertively be stated that the 5th Order WENO scheme
must be reviewed and reformulated if expensive simulations (more than 100000 cells and
10000 time steps) are aimed in FLAMENCO. Since the coarsest mesh considered in the
modelisation of the Dry Low NOx GTU combustor has approximately 160000 cells and
at least one million explicit time steps are needed, such modification becomes mandatory.
The Simplified WENO for Efficient Computations scheme proposed in 3.2.1 emerges in
response to that requirement, sacrificing accuracy for speed. As it will be shown later, the
lost of accuracy is significant, but it still performs much better than the 2nd Order Minmod
reconstruction.
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4.4 Validation of low dissipation strategies

Prior to any final simulation in the combustor geometry, it is essential to validate and
assess Low Dissipation strategies implemented. For reliable results, and given that the
problem and subsequent algorithm changes are restricted to the jet injector tube, the real
inner tube geometry was employed. In particular, the validation grid consists of the actual
jet injector with a reduced combustion chamber and without swirl duct. Based on it, two
simulations were run up to 0.00223 s (approximately 10 characteristic times of 0.000215
s as corresponding to flow injected at 70 m/s in a channel 0.015 m long), which is more
than enough to allow pressure divergence and wave bouncing. Both simulations were
configured with the same general properties (i.e. viscous walls, 5th Order TVD-MPL
as general reconstruction scheme, nominal thermodynamic conditions, etc.) but with
different inflow and outflow and treatment at the jet injector wall. Whereas the first
computation was performed with typical subsonic inflow and outflow (i.e. extrapolation
and specification of pressure respectively) and no modelling at the wall, as applied in
previous versions of FLAMENCO, the second simulation was set up with Non-Reflecting
Subsonic Inflow and Outflow and Adaptive Reconstruction Scheme at the jet injector wall.

Figure 4.24 shows pressure contours in a diametrical cut for both cases. As seen,
important differences arise, not only within the jet injector duct, but also near the outflow.
Looking at the inner tube, the first thing that draws attention is pressure inhomogeneity
in Figure 4.24a compared to Figure 4.24b. Indeed, when Non-Reflecting Subsonic Inflow
and Adaptive Reconstruction Scheme are not applied, numerical perturbations increase
their magnitude due to continuous reflections and low dissipation. As a consequence,
slightly non-axisymmetric features trigger the distribution shown in Figure 4.24a, which
resembles the flow field within the jet injector depicted in the Introduction chapter (see
Section 1.3). Obviously, the intensity of low and high pressure “bags” here is much lower
than that generated when the whole problem is simulated (contour legend shows a range
of 2000 Pa approx.), since additional actors such as the swirling flow, responsible for
the creation of the the low pressure region at the injector’s exit plane, are not present
in this case. As for the outflow, reflected waves inside the domain induced by constant
pressure at the boundary are clearly visible. This keeps pumping energy into the flow
field, hampering global evacuation.

If Non-Reflecting Inflow and Outflow and Adaptive Reconstruction Scheme are used,
the flow field becomes much more relaxed, as seen in Figure 4.24b. At this point, the
expected smooth pressure distribution is achieved, yielding a maximum pressure range of
600 Pa. In the same way, development of transversal pressure waves is completely avoid,
delivering one-dimensional distributions. Regarding the outflow, the fact that neither
pressure nor density are fixed, but rather computed from incoming characteristic waves,
leads to a homogeneous distribution within the chamber with no appreciable reflections.
Hence, it remains demonstrated that the approach selected contributes to decreased the
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level of stored energy.

(a) Non-Reflecting BC and Adaptive Reconstruction NOT applied

(b) Non-Reflecting BC and Adaptive Reconstruction applied

Figure 4.24: Pressure contours for simulations run with and without Non-Reflecting Boundary
Conditions and Adaptive Reconstruction Scheme

Finally, for simplicity only results for Non-Reflecting Subsonic boundary conditions are
shown here, since only this configuration will be used in the global combustor. However,
it must be mentioned that all boundary conditions presented in Section 4.2.1 were tested,
finding that whereas the Nozzle-type Inflow yields quite similar results (although in a
much more computationally expensive process), the Partially Non-reflecting Subsonic
Inflow is extremely problem-dependent and complex to calibrate.
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Chapter 5

Results

5.1 Problem definition

The aim of this research project is to conduct an exhaustive analysis of the physics taking
place within the Low Dry NOx GTU Combustor. To serve this purpose, FLAMENCO was
configured so that the most accurate, reliable and stable potential results were acquired.
After deep analisys. a combination of already mentioned Low Dissipation strategies
was found to perform the best. In particular, the Non-Reflecting Subsonic Inflow and
Outflow in conjunction with the Explicit 2nd Order 4-Stages Runge-Kutta Enhanced for
Multispecies Flows and Adaptive Reconstruction Scheme together with a slightly shorter
jet duct yielded surprisingly good results even for extremely coarse grids.

Although there are many studies addressing Gas Turbine injection, mixing and
combustion, the Low Dry NOx GTU Combustor case in particular has received less
attention so far due to its newness as a cutting-edge method to meet increasingly restrictive
pollutant emission regulations. Consequently, it was difficult to find reliable data obtained
in realistic environments. There are, however, relevant experimental data produced using
water instead of gas as working fluid, keeping all dimensionless parameters consistent
with those defined in real operating conditions for self-similar results. Hence, the work
carried out in Loughborough University by K. Midgley et al. [6] was chosen as the main
source of information to compare with. Additionally, the numerical analysis performed
by L. Cheng et al. [70] in the same conditions was used, whenever relevant, to assess the
goodness of the approach proposed here. Last but not least, inaccurate results obtained
with former versions of FLAMENCO in [8] were also incorporated to highlight the
advantages of the new model proposed in the present study.

The conditions under which experimental data in [6] were obtained are somehow
particular. Firstly, it has already been mentioned that instead of swirling air and axial
methane flows, which are the working fluids in typical Dry Low NOx GTU combustors,
they used water as both fuel and oxidant. This was achieved by splitting a previously
pumped single water flow into two sub-flows, one for the inner jet injector duct and the
other derived to the swirl duct. Then, whereas the inner flow was delivered with desired
pressure and velocity conditions, the outer one fed a single radial swirler composed of
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12 angled 30 degree slots (see Figure 1.5 in Section 1.3 for the experimental rig). The
outcome of this configuration was nominal conditions shown in Table 5.1 at both the
swirler and jet injector inlets, provided that all perturbations introduced by the swirl
vanes were damped dowstream and way before the swirler inlet. In the same way,
large heat-transfer characteristic times compared to the time of residence yielded a quasi
iso-thermal problem.

Property Value Additional Info.

G
eo

m
et

ri
ca

l DJ 5.40 mm Jet Injector Diameter
DS 37.63 mm Swirler Outer Diameter
DS0 6.80 mm Swirler Inner Diameter
DC 140 mm Combustion chamber Diameter
DL 160 mm Combustion chamber Length

Ph
ys

ic
al

ReJ 2.63·104 Jet Injector Reynolds Number1

ReS 8.0·104 Swirler Reynolds Number2

S 0.74 Swirl Number3

VxJ 4.88 m
s Axial Jet flow Velocity

VxS 2.13 m
s Axial Swirl flow Velocity

VθS 2.30 m
s Tangential Swirl flow Velocity

p 101325 Pa Pressure
ρ 1000 kg

m3 Density
µ 1.003·10−3 kg

m·s Viscosity

Table 5.1: Experimental set-up employed in K. Midgley et al. [6]

As said before, in addition to experimental results and numerical data from [70], the most
accurate simulation run in [8] with the previous version of FLAMENCO is considered
for comparison. Such simulation, referred in that text as “5thLID”, corresponds to the 5th

Order TVD reconstruction case with Low Mach Correction enabled and jet injector with
full length.

In terms of data availability, authors in [6] provide a full set of averaged and fluctuating
magnitudes at several axial stations within the combustor. Furthermore, they give
information about the flow inside the swirl injector and turbulent mixing profiles. As
for the numerical study in [70], data are available only close to the swirler exit, where
special attention is paid to turbulence and power spectra. Finally, output from [8] covers
all results generated in [6], so enough information is accessible.

1Defined as ReJ =
ρDJVxJ

µ
at injector’s exit plane

2Defined as ReS =
ρDSVxS

µ
at injector’s exit plane

3Defined as S =

ˆ DS
2

DS0
2

ρVθ ,sVx,sr2dr

DS
2

ˆ DS
2

DS0
2

ρV 2
x,srdr

at injector’s exit plane
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5.2 Grid generation and Boundary Conditions

After deep analysis, it was found that the low dissipation problem affecting FLAMENCO
was better overcome if a suitable combination of Low Dissipation strategies was followed.
In this way, it must be said that none of these methods alone produced satisfactory
results, since energy evacuation did not balance energy production within the jet injector.
Thus, the issue was tackled from several fronts, including geometry modifications,
non-reflecting boundary conditions and dissipative schemes.

Regarding geometry modifications, the baseline geometry shown in Figure 5.1, used
by researchers from Perm University in their simulations of the Dry Low NOx GTU
combustor, was redefined by slightly reducing the jet injector duct. This small change
was only made after checking flow independence downstream at the jet injector exit. In
this way, several tests were conducted prior to any final simulation in order to ensure
that flow dynamics were not significantly perturbed by this duct shortening. In fact, from
the two actors potentially affected by the modification, namely turbulence and boundary
layer, only turbulence may induce appreciable errors, since the actual tube length used
was long enough to allow a quasi-developed boundary layer. This conclusion is only true
for the coarse grid used, since the fine grid required a shorter tube in order to balance low
numerical dissipation, leading to a partially-developed boundary layer at the jet injector
exit.

Figure 5.1: Baseline geometry of the Dry Low NOx GTU Combustor

Two grids based on the baseline geometry presented in Figure 5.1 were used to perform
all simulations, one coarse and one fine. In fact, due to the huge computational cost of
calculations in the fine grid, where the CFL number was sensitively decreased, and the
limited computational resources available, just one case was run in this mesh (see Section
5.3 below). Figure 5.2 shows planar views of both grids, highlighting the jet injector tube
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where different lengths were used. As seen, whereas approximately 75% of the baseline
tube (L = 0.01253 m) was used in the coarse mesh, only a 25% was employed in the
fine one. This modification was necessary to control energy generation and dissipation,
ensuring balanced contributions. As could not be otherwise, smaller cells in the fine grid
lead to lower numerical dissipation, which in turn forces a shorter tube length in order to
prevent pressure divergence. Table 5.2 shows characteristic parameters of both meshes.

(a) Coarse Grid.

(b) Fine Grid

Figure 5.2: Coarse and fine grids. Jet Injector and Swirler are shown in detail. Geometric
parameters are given in Table 5.1. The central zone in Figures a and b is filled with black due to

high number of cells and low printing resolution

Two properties of above grids must be pointed out. First, it has been a priority to define
higher resolution and smooth transitions at critical regions such as walls, shear layers,
separation and recirculation zones, etc. Thus, mesh refinement at the jet tube upper
wall, swirler lower wall, central region close to the rotation axis and surroundings of
the injector exit has been intensified, ensuring coherent cell lengths at every single point
of the domain. Second, according to LES criteria, boundary layers developed in both
ducts are only resolved in the fine grid. Indeed, as seen in Table 5.2, while 20 cells are
placed within the boundary layer in the fine grid, only 6 are used in the coarse one. This
certainly implies that all phenomena associated with turbulence in boundary layers (and
subsequent effects) are only taken into account in the fine mesh simulations.
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COARSE FINE
Total Number of cells 147,700 1,594,476

y+ Upper wall Swirler1 30.44 30.44
x+ Upper wall Swirler2 83.10 41.55
y+ Lower wall Swirler 4.96 1.02
x+ Lower wall Swirler 83.10 38.90

Cells in boundary layer δ
5 20

Lower Wall Swirler
y+ Jet Injector wall 13.47 3.94
x+ Jet Injector wall 355.77 81.40

Cells in boundary layer δ
5 20

Jet Injector wall
Characteristic interior cell size x+,3 204.04 73.15

Table 5.2: Characteristic parameters of both coarse and fine grids

From Table 5.2 above there are several features that must be kept in mind. First of all, it
should be noted that dimensionless wall distances are based on the characteristic Reynolds
number at each region. In this way, at the swirler walls ReS is taken and at the jet injector
walls ReJ is used instead (see Table 5.1 for definition of these variables). Within the
combustion chamber, however, a dimensionless length is provided based on ReJ , giving
a rough idea of the mean cell size used in the mixing and recirculation zones. As seen,
the fine grid presents three times more resolution here than the coarse one (x+=73.15 vs
x+=204.04). The second important aspect is the y+ distance defined at both jet and swirler,
which must be approximately 1 for accurate resolution. Although it is the fine mesh the
one that provides values closer to unity, this is not a potential source of significant errors
in the coarse definition, since y+ was taken small enough to capture mean turbulent scales
(y+=4.96 at the lower swirler wall and y+=13.47 at the jet injector wall). Finally, it should
be pointed out that large y+ values at the upper swirler wall were chosen for reasons of
computational efficiency, provided that high-shear regions, separation and sharp gradients
are likely to occur close to the lower swirler wall.

Regarding the boundary conditions specified, if was found after several tests that the
best performance in terms of acoustic reflections, computational efficiency and numerical
stability was delivered by the Non-Reflecting Subsonic Inflow at both jet injector and
swirler inlets and Non-Reflecting Subsonic Outflow at the combustor outlet. Figure
5.3 illustrates, in a 2D-cut containing the rotational axis, all boundaries and physical
magnitudes specified. It must be borne in mind that all variables at both inlets were
chosen in such a way that nominal conditions were achieved at the injector’s exit plane
indicated in Figure 5.3, which is the exact location where inflow conditions are indicated

1Defined as y+ =
y ·Uτ

ν
; Uτ = 0.19748

ν

ρ
Re

7
8 ; y≡First cell height normal to wall

2Defined as x+ =
x ·Uτ

ν
; Uτ = 0.19748

ν

ρ
Re

7
8 ; x≡First cell length parallel to wall

3Based on the Jet Injector Reynolds Number
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in the experimental analysis (see Table 5.1). The calibration procedure followed to obtain
these magnitudes was tedious, computationally expensive and somehow inaccurate, since
several “ad-hoc” simulations were undertaken in order to produce acceptable data. As
a consequence, the actual characteristic parameters employed were slightly deviated
from the nominal ones, introducing a source of errors that cannot be neglected in any
case. Finally, all walls were set as “Viscous walls”, reversing velocity components and
mirroring scalars.

Figure 5.3: Boundary Conditions

5.3 Problem set-up

In order to compare with data from [6], where experiments were conducted using only
water as working fluid, magnitudes must be specified consistently in the present problem,
knowing that FLAMENCO deals with compressible flows and only air is considered as
both swirling and jet flows. A dimensional analysis shows that, as long as all characteristic
dimensionless parameters are equal, comparable flow phenomena may occur. Hence,
variables here were set to yield same Reynolds numbers and Swirl number, which were
computed using bulk magnitudes at the injector’s exit plane. It must be said that although
consistent, there are important acoustic-related issues that induce significant perturbations
at this plane, making an accurate set up more difficult. Table 5.3 shows values at all
boundaries (illustrated in Figure 5.3) compared to the experimental ones used using water.
As for the initial conditions, the flow field within the whole geometry was filled with
stagnated air, zair=1, z f uel=0, at constant pressure 101325 Pa.

Several simulations were run, aiming to cover a broad range of numerical methods. In
particular, 2nd Order Minmod, 5th Order TVD-MLP and 5th Order WENO reconstructions
were applied separately in the coarse grid. As for the fine mesh, due to huge computational
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cost and limited resources only the 5th Order TVD-MLP algorithm was tested. Such
scheme was selected after noting that it performed the best in the coarse grid, expecting
to get the potentially most accurate results achievable with FLAMENCO.

Non-Reflecting Subsonic Inflow Non-Reflecting
Jet Injector Swirler Subsonic Outflow

Vx
(m

s

)
VJ ua=70.7673 in Eq. (4.4) 0 Extrapolated

Vy
(m

s

)
0 Vr 12.1501 Extrapolated

Vz
(m

s

)
0 Vθ 17.3252 Extrapolated

P (Pa) pa=101325 in Eq. (4.4) pa=101325 in Eq. (4.4) pa=101325 in Eq. (4.4)

ρ

(
kg
m3

)
ρa=1.225 in Eq. (4.4) ρa=1.225 in Eq. (4.4) ρa=1.225 in Eq. (4.4)

z f uel 1 0 Extrapolated
zair 0 1 Extrapolated

In
je

ct
or

’s

ex
it

pl
an

e

Num. Exp. Num. Exp.
Vx
(m

s

)
70.7673 4.88 30.8915 2.13

Vy
(m

s

)
0 0

Vθ =33.86 Vθ =2.30
Vz
(m

s

)
0 0

S - - 0.74 0.74
Re 2.63·104 2.63·104 8.0·104 8.0·104

Table 5.3: Boundary Conditions

In terms of general configuration, all simulations were run with the Adaptive
Reconstruction Scheme enabled only in the jet injector walls. This choice was made
to enhance transversal wave dumping just in the region where pressure divergence is
expected. Additionally, the 2nd Order 4-Stages Enhanced Explicit Runge-Kutta was
always used to ensure stable numerics, allowing larger time step sizes and thus bringing
the computational time to affordable values. Finally, molecular viscosity for the air was
computed using Sutherland’s law.

Table 5.4 displays all information commented before as well as computational times
for each simulation. As seen, two physical times are given, one associated with the
initialisation stage (period where the flow is taken to a “statistically steady state”) and
another related to the elapsed time between samples. The initialisation stage was assumed
to last approximately 10 characteristic times, understanding “characteristic time” as the
period during which an average fluid particle is travelling from any inflow to the outflow
of the chamber. Whereas in the coarse grid this requirement was almost satisfied (note
that, for characteristic length and velocity of 0.25 m and 50 m/s, the time of residence is
approximately 0.005 s which is roughly 1/9 of the initialisation time 0.043 s), only 6.5

1va in Eq. (4.4) is computed as va =−12.15 · y√
y2 + z2

−17.325 · z√
y2 + z2

; y,z coordinates

2wa in Eq. (4.4) is computed as wa =−12.15 · z√
y2 + z2

+17.325 · y√
y2 + z2

; y,z coordinates
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characteristic times were run in the fine grid, again due to computational cost. This fact
must be borne in mind when assessing the accuracy of both approaches.

Regarding the sampling stage, 100 samples every 8.86·10−4 s (20000 time steps) and 40
samples every 8.25·10−4 s (100000 time steps) were collected from simulations run in
the coarse and fine grids respectively. In this way, providing a homogeneous sampling
interval for all cases was prioritised over the number of samples. This of course will
have some repercussions on the accuracy of statistically steady and intrinsically unsteady
phenomena estimated in the fine mesh. Finally, looking at the computational cost of each
simulation, it seems clear that while running 100-150 hours in 32 CPU is affordable in a
small, shared HPC machine (∼1280 CPU), 600 hours in 128 CPU becomes much more
difficult. This is the main reasons why simulations had to be carefully chosen before
being launched.

Simulation 2ndCoarse 5thMLP_Coarse 5thWENO_Coarse 5thMLP_Fine

Grid Coarse Coarse Coarse Fine

Reconstruction 2nd Order
Minmod

5th Order
TVD-MLP

5th Order WENO
Enhanced Comp.

5th Order
TVD-MLP

CFL 0.4 0.4 0.4 0.4

Time Step ∼ 4.43 ·10−8 s ∼ 4.43 ·10−8 s ∼ 4.43 ·10−8 s ∼ 8.25 ·10−9 s

Phyisical Initialisation 0.043 s 0.043 s 0.043 s 0.033 s

Time Sampling 0.086 s 0.086 s 0.086 s 0.033 s

Sampling Frequency
(time between samples)

8.86 ·10−4 s 8.86 ·10−4 s 8.86 ·10−4 s 8.25 ·10−4 s

Computational Cost 108 h/32 CPU 120 h/32 CPU 144 h/32 CPU 600 h/128 CPU

Table 5.4: Simulation set-ups

5.4 Statistically steady phenomena: CRZ and Vortex
Breakdown

When addressing such a complex problem as the mixing process in the Dry Low NOx
GTU Combustor, it is convenient to separate the analysis of phenomena different in
nature. For this purpose, whereas statistically steady features, namely the CRZ and Vortex
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Breakdown, are studied through averaged profiles, intrinsically unsteady structures are
characterised using root mean square profiles.

Regarding statistically steady phenomena, all samples collected were averaged to create
mean axial and volume fraction profiles. This way of proceeding was chosen because
only these two magnitudes are enough to characterise both qualitatively and quantitatively
internal structures that maintain a repetitive behaviour over time. Firstly, the CRZ is
completely defined by axial mean velocity profiles along the combustion chamber, which
must shown the toroidal shape by means of negative axial velocity close to the axis of
rotation and high positive velocities neat the walls. This distribution must be relaxed
towards the rear wall of the chamber where axial velocity profiles are much flatter, and
must shift to positive values with little recirculation close to the injector’s exit plane.
As for the Vortex Breakdown, since this process takes place near the end of the swirler
(close to the lower wall), axial velocity profiles are extracted there in order to observe
separation and recirculation. Finally, it must be said that the axi-symmetrical behaviour
of all structures allows 1-D representation of profiles along the radial direction.

For a general overview of the statistically steady flow distribution, Figure 5.4 depicts
velocity vectors in a 2-D cut along the combustion chamber for all cases considered. It
can be seen that all approaches identify the main statistically steady structures to a greater
or lesser extent. As expected, the CRZ is always captured in the middle of the combustor,
extending approximately from X/Ds = 1.5 to X/Ds = 3 and from r/Ds = 0.2 to r/Ds =
1.5. This central eddy is obviously the two-dimensional cut of the main toroidal vortex
responsible for flow recirculation from the rear wall to the injection region. Comparing to
Figure 5.4a, where experimental velocity vectors are represented, it can be observed that
5thMLP_Fine, 5thMLP_Coarse and 5thMLP_WENO yield a similar layout. As for the
2ndCoarse, the field predicted is quite chaotic and imprecise, showing small unphysical
eddies within the CRZ.

Regarding separation near the lower wall of the swirler, it was reported in [6] that an angle
of approximately 60 deg. is described by the detached flow. From vector plots in Figure
5.4, it is appreciable that only 5th Order reconstruction is able to capture this feature
properly. Although both 5thLID and 2ndCoarse cases predict separation reasonably well
from a qualitative point of view, they fail to give an accurate opening angle (note that
2ndCoarse separation is only partially defined due to unphysical eddies scattered near the
lower wall).
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(a) Experimental (b) 5thLID (c) 2ndCoarse

(d) 5thMLP_Coarse (e) 5thWENO_Coarse (f) 5thMLP_Fine

Figure 5.4: Overall flow structure. All cases under study are represented.

The final important structure to be mentioned is the recirculation zone developed in the
upper-corner. This is also a toroidal structure, whose influence in the recirculation process
is residual (note that only gases from the outer edge of the CRZ are transported towards
the outer wall, brought to the upper corner and introduced again at the beginning of the
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CRZ at very low velocity). All models capture this vortex, although in the 2ndCoarse one
is not well defined, in the 5thLID case is estimated too far from the upper corner and in
the 5thWENO_Coarse is excessively large.

Above observations are supported by streamtraces in the same 2D plane. For simplicity,
Figure 5.5 only compares experimental data to 5thMLP_Coarse and 5thMLP_Fine cases,
arguably the most accurate models in Figure 5.4. Here, the CRZ, recirculation vortex
in the upper corner and separation in the swirler are well appreciated. Although quite
accurate, the opening angle at the injector exit is still a little bit smaller than expected
in both numerical models. This is additionally supported by axial velocity contours
non-dimensionalised with Vs (actually Vx at the injector’s exit plane of the Swirler in
Table 5.3), also represented in Figure 5.5.

(a) Experimental from [70].

(b) 5thMLP_Coarse

(c) 5thMLP_Fine

Figure 5.5: Streamtraces and dimensionless axial velocity contours.
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Moving towards a quantitative analysis, axial mean velocity and mean volume fraction
profiles are shown in Figure 5.7 and Figure 5.8 at six representative positions along the
combustion chamber. Focusing on Figure 5.7, data from all simulations run are added to
5thLID results in order to be compared with experimental profiles at the injector’s exit
plane (X/Ds = 0), immediately after the injector exit (X/Ds = 0.02), at the front end (X/Ds
=0.27), middle (X/Ds = 0.53) and rear end (X/Ds = 1.06) of the CRZ, and at 2/3 of the
combustion chamber length (X/Ds = 2.65) where CRZ effects are small and the flow field
becomes more relaxed. Figure 5.6 clarifies the exact location where data extraction was
performed.

Figure 5.6: Data extraction lines along the combustion chamber.

Initial axial mean velocity distribution at both jet injector and swirler can be observed
in Figure 5.7a (note that plots are only relevant up to r/Ds = 0.5, since further away the
extraction line overlaps with the front wall of the combustor). A couple of points must
be discussed regarding fuel and air injection. First of all, although Reynolds numbers
are the same, viscous effects in water and a fully-developed boundary layer at the jet
injector wall induce different experimental velocity distributions along the jet injector
exit from those computed with the numerical models. Indeed, whereas experimental data
in Figure 5.7a define a blunt velocity profile with the boundary layer extending almost
to the very centre of the jet, all numerical approaches identify a sharp distribution with a
thin boundary layer restricted to the near-wall region. This inaccuracy indicates that the
fuel jet is not fully developed, and may be a potential source of errors to be discussed
later. Regarding the swirler, the accuracy of 5thMLP_Coarse and 5thWENO_Coarse
when capturing flow separation and recirculation due to Vortex Breakdown at the lower
swirler wall is remarkable, even better than the one delivered by 5thMLP_Fine. This is
explained by the fact that calibration of boundary conditions was done in the coarse grid,
extrapolating the values to the fine mesh. As a consequence, small grid-dependencies lead
to slightly inaccurate profiles in the fine grid, as seen in Figure 5.7a. Finally, although
2ndCoarse results improves the 5thLID solution obtained with a previous version of
FLAMENCO, it fails notably in capturing axial velocity through the swirler.
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(a) X/Ds = 0 (b) X/Ds = 0.02

(c) X/Ds = 0.27 (d) X/Ds = 0.53

(e) X/Ds = 1.06 (f) X/Ds = 2.65

Figure 5.7: Axial mean velocity profiles in the x-r plane at five representative positions
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Paying attention to the CRZ Figures 5.7c-5.7d-5.7e plot the reverse-flow region near the
rotation axis, the “eye” of the structure characterised by stagnated conditions and the
fast flow in the outer edge of the CRZ where high shear layers develop. In term of
accuracy achieved, here 5thMLP_Fine stands as the best approach, followed closely by
5thMLP_Coarse and 5thWENO_Coarse. As for 2ndCoarse, it fails specially in the middle
of the CRZ and again, all new computations perform much better than 5thLID. From
Figure 5.7e the lack of accuracy obtained regarding the end of the CRZ must be pointed
out, provided that all models predict a forward, smaller CRZ than the actual one. This is
directly related to jet injector flow velocity, which is higher in numerical computations,
leading to flatter but more intense CRZ.

Fuel Volume Fraction in profiles wrapping the CRZ are depicted in Figure 5.8 (referred
as Volume Fraction 2). As seen, all methods mimic fairly well the experimental
curve, denoting suitable volume fraction advection (and thus its numerical discretisation
strategy). Again, and totally linked to what happened in the axial mean velocity profiles,
at the end of the CRZ there is less fuel than expected, suggesting fast mixing near the
injector and fuel transport towards the combustor wall.

(a) X/Ds = 0.27 (b) X/Ds = 0.53

(c) X/Ds = 1.06

Figure 5.8: Mean Volume Fraction profiles in the x-r plane at three representative positions
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5.5 Intrinsically unsteady structures: PVC and
Secondary Vortices

PVC and Secondary Vortices are intrinsically unsteady structures tightly linked to
turbulence and vortical perturbations derived from the chaotic flow developing in the
combustion chamber. Hence, in order to study these complex 3D structures further
analysis of turbulent kinetic energy is required. Bearing in mind that the inception of both
PVC and Secondary Vortices occurs near the swirler exit, mainly affecting the flow in the
first half of the chamber, the same procedure as the one employed in the previous section
was followed. In this way, turbulent-related profiles were extracted along the same radial
directions. Aiming to identify different features, turbulent kinetic energy and turbulent
scalar diffusion are decomposed in axial, radial and tangential rms velocity fluctuations
on one side and fuel volume fraction rms profiles on the other. In addition, turbulent axial
fluxes were computed as they were found to be extremely useful to analyse the ability of
each model to account for high-mixing in regions where turbulence plays a major role.

First of all, axial and radial rms velocity fluctuations are depicted in Figure 5.9 and Figure
5.10. Generally speaking, the good agreement evidenced indicates, on the one hand that
secondary vortices responsible for the fluctuations generated near the separation region
are well identified, and on the other hand that the mixing layer is well described both in
size and position. These facts are extremely important when considering the suitability of
the code for this type of problems where turbulence plays a vital role, supporting the idea
that LES performs very well in this case.

Axial and radial profiles are particularly relevant to characterise PVC and Secondary
Vortices developing near the injector exit (X/Ds = 0, X/Ds = 0.02, X/Ds = 0.27) and
outer edge of the CRZ approximately at X/Ds = 0.53. Additionally, they are also very
useful to identify the shear regions where high-mixing takes place. Focusing on turbulent
profiles near the injector’s exit plane, Figures 5.9a,b and Figures 5.10a,b show very good
performance of 5th Order methods, specially in the fine grid. This results are coherent with
the treatment of turbulence made by FLAMENCO, where low dissipation is needed to
model turbulence effects (5th Order WENO is more dissipative that 5th Order TVD-MLP,
and obviously the finer the mesh, the less dissipative the numerical approach will be).
Agreeing with this is the output of 2ndCoarse case, where 2nd Order reconstruction kills
all perturbations to a greater extent. It must be said, however, that turbulent velocities and
fuel volume fraction in the 2ndCoarse case are not exactly 0, but their low value (ranging
from 10−3 to 10−8 depending on the property) makes them indistinguishable from 0 in all
figures presented.
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(a) X/Ds = 0 (b) X/Ds = 0.02

(c) X/Ds = 0.27 (d) X/Ds = 0.53

(e) X/Ds = 1.06 (f) X/Ds = 2.65

Figure 5.9: Axial rms velocity profiles in the x-r plane at five representative positions
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(a) X/Ds = 0 (b) X/Ds = 0.02

(c) X/Ds = 0.27 (d) X/Ds = 0.53

(e) X/Ds = 1.06 (f) X/Ds = 2.65

Figure 5.10: Radial rms velocity profiles in the x-r plane at five representative positions
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There are two significant peaks in axial velocity profiles at X/Ds = 0 and X/Ds = 0.02
that suggest proper modelling of 3D vortical structures. The first one, associated with
the high-mixing region located near the short wall between the swirler and jet ducts, is
particularly well captured by 5th Order methods in the coarse grid (note that simulations
run in the fine grid with boundary conditions calibrated in the coarse one may be affected,
at this location, by substantial errors). The second peak, associated with Secondary
Vortices induced by Vortex Breakdown at the lower wall of the swirler, is best computed
by 5thMLP_Fine, followed by 5thMLP_Coarse and 5thWENO_Coarse. In fact, this trend
is also kept in radial velocity profiles, where generally the 5thMLP_Coarse case yields
slightly better results than the 5thWENO_Coarse one.

The great performance of 5th Order methods can be observed again in axial and radial rms
velocity profiles near the front edge and middle section of the CRZ (X/Ds = 0.27 and X/Ds
= 0.53). Here, all peaks associated with shear layers enhanced by Secondary Vortices and
PVC perturbations are very well captured, denoting proper modelling of such structures.
As a consequence, it can be fairly said that both 5th Order schemes proposed, particularly
the TVD-MLP one, are suitable for this problem in particular and for problems involving
similar physics from a general point of view.

The analysis of the PVC structure needs further support in order to be accurate and
reliable. In this way, Figure 5.11 depicts tangential rms velocity profiles, provided that this
magnitude is directly related to the position and behaviour of the PVC (see [6]). Indeed,
bearing in mind that the PVC extends from the lower swirler exit wall to the rear of
the combustion chamber, wrapping the CRZ in a characteristic helical motion, tangential
velocity experiences significant perturbations at the edge of the CRZ. Such perturbations
are mainly introduced by the PVC, so capturing them is a clear indicator that the PVC is
being tracked.

Results near the injector’s exit plane, at X/Ds = 0 and X/Ds = 0.02, are not very relevant
in the analysis of the PVC, since here rms values are not only affected by this structure,
but also by Vortex Breakdown and Secondary Vortices to a similar extent. Nevertheless,
the performance of all 5th Order methods (with the exception of 5thLID) is quite good,
with little difference between MLP-WENO and Coarse-Fine results. Focusing on stages
X/Ds = 0.27 and X/Ds = 0.53, the presence of the PVC is evidenced in Figures 5.11c,d,
in the form of smooth peaks at the edge of the CRZ. In this way, Midgley et al. [6] claim
that such peaks are mainly caused by the PVC, since perturbations due to the CRZ are
contained within the x-r plane (locally, the CRZ axis of rotation has tangential direction)
and no additional phenomena affect this region significantly. The physical meaning of
these overshoots is simple: the PVC near the edge of the CRZ enhances turbulence due to
its coherent periodic motion of precession, inducing a maximum in tangential rms velocity
near r/Ds = 0.5. Finally, the PVC is well approximated by 5th Order Reconstruction,
specially in the fine grid (overshoots near the axis are not caused by the PVC, but rather
by perturbations associated with flow recirculation towards the injector exit).
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(a) X/Ds = 0 (b) X/Ds = 0.02

(c) X/Ds = 0.27 (d) X/Ds = 0.53

(e) X/Ds = 1.06 (f) X/Ds = 2.65

Figure 5.11: Tangential rms velocity profiles in the x-r plane at five representative positions

93



Results

One of the main contributions of the present work to the numerical analysis of mixing
processes within Dry Low NOx GTU Combustors is the mixing model implemented.
As said before, injection conditions generate high-shear layers developing downstream
the combustor where enhanced mixing occurs. Therefore, whether the mixing model is
suitable or not can be inferred from Turbulent fuel volume fraction profiles at significant
locations. Accordingly, Figure 5.12 presents rms Fuel Volume Fraction at X/Ds = 0.27
and X/Ds = 0.53, two representative positions where mixing is enhanced by the CRZ, PVC
and inner Secondary Vortices. As seen, 5thMLP_Fine performs the best close to the axis
of rotation where higher quantities of fuel are transported. For further radial distances,
5thMLP_Coarse and 5thWENO_Coarse become, at least, as good as the former one. This
behaviour may be explained by lower numerical diffusion in the fine grid, which does not
damp mixing processes as much as it should.

(a) X/Ds = 0.27 (b) X/Ds = 0.53

Figure 5.12: Rms Volume Fraction profiles in the x-r plane at two representative positions.

As stated in [70], “the most direct measure of accuracy of modelling of scalar mixing
is to compare the predicted turbulent scalar fluxes against the current experimental
measurements for the same quantity”. Therefore, to conclude the analysis Figure 5.13
depicts axial and radial turbulent fuel volume fraction flux contours in the x-r plane. For
reasons of simplicity, only 5thMLP_Coarse case is compared with experimental data, but
it was found that all 5th Order approaches (except of 5thLID) yield quite similar results.
In light of these figures, it is striking how good the prediction of these magnitudes is,
particularly in the axial case where high mixing takes place in the small wall between
the injector and swirler exit planes. Both quantitatively and qualitatively, Figure 5.13
confirms that the mixing model and numerical approach considered in this research are
suitable for turbulent mixing process in compressible flows.
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(a) Axial turbulent flux. Experimental (b) Axial turbulent flux. 5htMLP_Coarse case

(c) Radial turbulent flux. Experimental (d) Radial turbulent flux. 5thMLP_Coarse case

Figure 5.13: Contours of axial and radial turbulent Volume Fraction 2 fluxes in XY plane

Finally, visual evidence of the PVC structure is shown in Figure 5.14, which illustrates
Reynolds decomposition of pressure iso-surfaces with contours of Fuel. As seen, after its
inception near the injector’s exit plane, it extends downstream the combustion chamber
describing a characteristic helical motion with increasing radius, defining the 60-degree
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conical surface mentioned in Chapter 1. For the sake of completion, the reader is referred
to Figure 2.2 in Section 2.1 to see the resemblance.

Figure 5.14: Iso-surfaces computed as the difference between averaged pressure and
instantaneous pressure at p = -250. Fuel Contours.

5.6 Discussion

The analysis of results strongly supports the idea that FLAMENCO, and thus all physical,
mathematical and numerical methods defined in it, is a powerful tool to model physical
problems involving turbulent, high-mixing processes. Its applicability to the Dry Low
NOx GTU Combustor confirms that FLAMENCO not only is capable of capturing
statistically steady structures such as the CRZ and Vortex Breakdown, but it also solves
extremely complex intrinsically unsteady structures such as the PVC and Secondary
Vortices. In this way, the ability to capture such unsteady phenomena is indicative of the
accuracy achieved by the algorithm, since their palpable effects, although very important,
are often overlapped by the CRZ.

In terms of the accuracy of each method, generally speaking 5th Order TVD-MLP
reconstruction in the fine grid is the best approach. Then, 5th Order TVD-MPL and 5th

Order WENO in the coarse grid yield quite similar results, albeit TVD-MLP is slightly
less dissipative and therefore a little bit more accurate as a general rule. Here, it is
very surprising that provided the low resolution of the coarse mesh (other numerical
studies have been conducted using grids with more than 6 million cells), simulations
are yet very accurate. Results obtained using 2nd Order Minmod reconstruction are
quite unphysical regarding statistically steady features and fails completely in modelling
intrinsically unsteady phenomena. Finally, results obtained with the new version of
FLAMENCO are undoubtedly better than those computed with old versions where low
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numerical dissipation was an issue. In this way, Non-Reflecting Subsonic Inflows and
Outflow, Adaptive Reconstruction Scheme at walls and Enhanced Explicit 2nd Order
4-Stages Runge-Kutta seem to succeed in overcoming the problem.

Although comparison with experimental data proves that the methodology chosen
is suitable for this kind of problems, some inaccuracies arise at different levels.
Obviously, there are plenty of reasons why discrepancies may occur, but only a few
are critical. The first one refers to the main physical hypothesis itself: incompressible
vs compressible. Indeed, whereas experiments were conducted using water as the
working fluid, all numerical computations treated the flow as compressible, concomitant
of FLAMENCO numerics. Although Reynolds and Swirl Numbers were matched in
order to get comparable results, relevant acoustic perturbations developed only in the
simulations. Such perturbations were quickly damped within the combustion chamber
where great characteristic lengths dominate, but introduced transient phenomena in
confined areas such as the jet injector tube or the small wall between injection ducts. As a
consequence, deviations from experimental data were directly induced through transient
wave reflections and indirectly induced through inaccuracies in boundary condition
calibration, interaction with other flow features, etc.

Another source of errors is the calibration of boundary conditions and initialisation of the
problem. First of all, calibration of boundary conditions is at some extent grid-dependent,
considering the extreme coarse resolution of the grid used for reasons of computational
cost. Since nominal conditions at the injector’s exit plane were initially matched with
numerical values in the coarse grid and then extrapolated to the fine mesh, small (but
not negligible) errors where introduced in the basis of the computation in this last grid.
This conclusion is evidenced in Figure 5.15, where tangential mean velocity profiles are
plotted for all models at X/Ds = 0.02. In light of this figure it is clear that, for instance,
the Swirl number derived from this magnitude is not the same in the fine grid as in the
coarse one.

Figure 5.15: Tangential mean velocity at X/Ds = 0.02.
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Regarding the general configuration of the problem, the boundary layer within the
jet injector is inaccurate in many ways. Due to the short length of the jet injector
in conjunction with excessive dissipation of the Adaptive Reconstruction Scheme, the
boundary layer is not fully developed, as commented in the previous section. This
problem is particularly important in the fine grid, where the jet injector tube only has
a 25% of the actual length. As a consequence, wrong velocity profiles at the jet injector
exit are computed, introducing additional unphysical phenomena.

Finally, the last (but not least) factor that may affect the accuracy of the approach is
related to physical initialisation time, sampling time and number of samples. Firstly, as
shown in Table 5.4, 9 characteristic times in the coarse grid and 6 in the fine one were
run prior to the sampling stage. In the first case this value is close to the 10 characteristic
times typically used in this kind of applications, but in the fine mesh it is almost half the
preferable time. As a consequence, larger errors are expected in the 5thMLP_Fine case.
In the same way, during the sampling time 100 samples were collected in the coarse grid
and 40 in the fine one. Although both are far from the 200 samples recommended in
problems of the same nature, in the case of the fine grid this difference is quite significant,
having sensitive repercussion on the accuracy of intrinsically unsteady phenomena.

In conclusion, FLAMENCO have shown to perform really well when using 5th Order
reconstruction schemes, but poorly when 2nd Order is selected. As for the accuracy of
each method, best results are provided by 5th Order TVD-MLP Reconstruction in the
fine grid, followed closely by 5th Order TVD-MLP Reconstruction and5th Order WENO
Reconstruction in the coarse mesh, which perform similarly (TVD-MLP slightly better).
Results are similar in any case and much better than those obtained with old versions
of FLAMENCO where low numerical dissipation was a major issue, but the potential
of the algorithm in the fine mesh is not fully developed due to additional sources of
errors. Finally, 2nd Order Minmod Reconstruction is definitely not suitable for this type
of problems.
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Chapter 6

Conclusions

6.1 Conclusions

The numerical compressible, multi-species, LES algorithm FLAMENCO has shown to
perform very well when it comes to simulate the mixing process within a Dry Low
NOx GTU combustor even in an extremely coarse grid. The main three-dimensional
structures that define the process, namely the Central Recirculation Zone (CRZ) located
in the middle of the chamber, the Precessing Vortex Core (PVC) wrapping the outer edge
of the CRZ wall and Secondary Vortical structures, are well captured both quantitatively
and qualitatively. This fact indicates the suitability of the algorithm to deal with complex
fluid-dynamic processes where turbulent mixing leads to highly unsteady, irregular and
heterogeneous structures.

Previous studies addressing the same problem with FLAMENCO fail in producing
accurate results due to low numerical dissipation in certain zones of the domain. Indeed,
the combination of reflecting subsonic inflows, small cells and adverse flow conditions
lead to pressure overshoots that trigger non-physical phenomena. As demonstrated, local
energy production is significantly higher than its evacuation, affecting the intensity of
trapped bouncing acoustic waves. The present work overcomes this issue by devising
different strategies. Firstly, different boundary conditions are implemented in order to
decrease the level of total energy reflected inside the domain. In this way, Non-Reflecting,
Partially Non-reflecting and Nozzle-type subsonic inflows and outflow are constructed
according to acoustic waves propagation. Additionally, an Adaptive Reconstruction
Scheme is used in the jet injector wall in order to increase damping of transversal waves.
Secondly, a new 5th Order WENO scheme with higher dissipation is also included in the
algorithm in order to keep the level of accuracy while damping the excess of local energy
associated with acoustic waves. Finally, aiming to decrease the energy accumulated inside
the jet injector tube, geometries with a shorter duct are chosen. As a result, an appropriate
combination of such strategies lead to a situation where the local energy generated is much
lower, being balanced by the global dissipation of the scheme. In the present work results
were obtained utilising a combination of Non-reflecting Subsonic Inflows and Outflows,
Adaptive Reconstruction Scheme and modified grids with 75% and 25% of the actual jet
injector length (in the coarse and fine grids respectively) .
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Prior to any simulation in the combustor, the new version of FLAMENCO has been
extensively validated through contrasted test cases such as Stationary Contact Wave,
Moving Contact Wave, Shock Tube, Kelvin-Helmholtz Instability, 2D Explosion and 3D
Explosion. Generally speaking, best performance is achieved with 5th Order TVD-MLP
Reconstruction, followed closely by 5th Order WENO Reconstruction and sensitively
better than 2nd Order Minmod scheme. In addition to being the most accurate, the
TVD-MLP method has another advantage over WENO, since it damps small oscillations
near discontinuities significantly faster. As for the computational time, TVD-MLP is
a little bit slower than Minmod, but way faster than WENO. Thus, in order to run
affordable computations in the combustor, a 1-D WENO scheme is employed instead,
sacrificing simplicity for accuracy. Finally, Low Numerical Dissipation strategies have
been validated using the actual jet injector duct discharging in a basic combustion
chamber with no swirl flow. This test shows that the flow field becomes much more
relaxed when such strategies are utilised, damping both longitudinal and transversal
acoustic perturbations and leading to a physically correct thermodynamic state after the
initial transient.

Regarding the application to the Dry Low NOx GTU Combustor, a broad range of
numerical results have been extracted and compared with contrasted experimental data.
Whereas the overall flow within the combustor was inaccurately predicted by previous
versions of FLAMENCO, the new version of the algorithm has proved to be really precise.
Accurate axial mean velocity profiles reveal the ability of FLAMENCO to compute
Vortex Breakdown, separation and CRZ very well. In the same way, mean Fuel Volume
Fraction profiles suggest proper treatment of multi-species mixing in high-shear regions.
Regarding intrinsically unsteady structures (PVC and Secondary Vortices), the good
agreement in axial, radial and tangential rms velocity profiles indicates accurate prediction
of them, even in the coarse grid under consideration, suggesting proper treatment of
turbulence and vortical structures. Finally, similarities with experimental axial and radial
scalar turbulent fluxes observed confirm even further that the mixing model employed is
suitable to compute highly turbulent flows with strong shear layers.

6.2 Contributions and Suggestions for future work

From a general point of view, this work contributes, to some extent, to the simulation
of mixing processes in highly compressible, turbulent environments. In particular, some
ideas are addressed

• Description, development and validation of an accurate algorithm based on
LES, 5-Equiation Transport Model with iso-baric closure devised to deal with
three-dimensional, compressible, turbulent, unsteady, multi-species flows.

• Definition of successful numerical strategies, including boundary conditions,
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adaptive reconstruction schemes and enhance time integration schemes, that
overcome Low Numerical Dissipation issues arising in old versions of the
algorithm.

• Introduction of different reconstruction schemes into the code in order to broaden
its numerical capacity.

• Application to the Dry Low NOx GTU Combustor, obtaining accurate results and
evidencing the potential of FLAMENCO.

• In-depth analysis and characterisation of complex physical processes taking place
within the Dry Low NOx GTU Combustor.

There are many fields in the present approach subjected to further research. Firstly,
although the Adaptive Reconstruction Scheme performs its task fairly well, its definition
is somehow basic and “ad hoc”. In order to make it more consistent physically and
mathematically speaking, alternative (or formalised) ways must be introduced, leading
to a well-posed model from all points of view. Secondly, the initial set up and boundary
condition calibration must be analysed in depth to produce accurate boundary layers in
the jet injector and nominal Swirl and Reynolds Numbers at the Swirler exit. In this
way, variable specification at boundaries must be either provided for each configuration
separately or introduced somehow in the plane of interest. Also, alternative jet injector
geometries must be investigated to allow full boundary layer development while keeping
confined energy at physical levels. Finally, another issue to be reviewed in future
studies is related to computational efficiency. For given resources, the initialisation time
and number of samples can only be increased if some methods are rearranged within
FLAMENCO. Although it is a difficult task, improvement is completely feasible provided
that primary analysis shown an overall computational efficiency of 60%. As for enhancing
techniques, redefinition of FLAMENCO to work with GPUs in a parallel environment is
something that should be borne in mind for future developments.
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APPENDIX A

The 5-Equation Transport Model can be easily derived from the 7-Equation Multifluid
Model of Nunziato [18] for relaxation times approaching asymptotically to 0. The
demonstration is presented here, without any loss of generality, for two phases and one
dimension. First, let the 7-Equation Multifluid Model be represented as

∂ (z1ρ1)

∂ t
+

∂ (z1ρ1u1)

∂x
= 0 (A.1)

∂ (z1ρ1u1)

∂ t
+

∂ (z1ρ1u1u1)

∂x
+

∂ (z1 p1)

∂x
= pI ∂ z1

∂x
+λ (u2−u1) (A.2)

∂ (z1ρ1E1)

∂ t
+

∂ [(z1ρ1E1 + z1 p1)u1]

∂x
= pIuI ∂ z1

∂x
+µ pI (p2− p1)+λuI (u2−u1) (A.3)

∂ (z2ρ2)

∂ t
+

∂ (z2ρ2u2)

∂x
= 0 (A.4)

∂ (z2ρ2u2)

∂ t
+

∂ (z2ρ2u2u2)

∂x
+

∂ (z2 p2)

∂x
= pI ∂ z2

∂x
−λ (u2−u1) (A.5)

∂ (z2ρ2E2)

∂ t
+

∂ [(z2ρ2E2 + z2 p2)u2]

∂x
= pIuI ∂ z2

∂x
−µ pI (p2− p1)−λuI (u2−u1) (A.6)

∂ z2

∂ t
+uI ∂ z2

∂x
= µ (p2− p1) (A.7)

where it has been assumed that pI
1 = pI

2 = pI , uI
1 = uI

2 = uI , E is the Total Energy and the
Volume Fraction satisfies the condition

z1 + z2 = 1 (A.8)

Conservative system (A.1)-(A.6) can be recast and rearranged in primitive variables as

z1

(
∂ρ1

∂ t
+u1

∂ρ1

∂x

)
︸ ︷︷ ︸

D1ρ1
Dt

= ρ1
(
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∂x
−ρ1z1
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∂x
+ρ1µ (p2− p1) (A.9)
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−ρ2µ (p2− p1) (A.10)
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=−∂ (z1 p1)
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D2u2
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=−∂ (z2 p2)
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−λ (u2−u1) (A.12)
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z1
D1 p1

Dt
+ z1ρ1a2

1
∂u1

∂x
= ρ1a2
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χp1ρ1
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∂ t
+uI ∂ z2
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DI z2

Dt

= µ (p2− p1) (A.15)

z1 + z2 = 1 (A.16)

where

a2
k =

(
pk
ρ2

k
−χρk

)
χpk

; a2
kI
=

(
pI
ρ2

k
−χρk

)
χpk

k = 1,2 (A.17)

χpk =

(
∂εk

∂ pk

)
ρk=const.

; χρk =

(
∂εk

∂ρk

)
pk=const.

k = 1,2 ; ε ≡ Internal energy (A.18)

After a transient perturbation, the system develops to restore equilibrium in a
characteristic time ε determined by the relaxation coefficients λ and µ . In the limit λ →
∞ ; µ → ∞, the relationship between the relaxation time and the relaxation coefficients
can be written as

ε =
λ ∗

λ
; ε =

µ∗

µ
(A.19)

where parameters λ ∗, µ∗ are coefficients introduced for dimensional consistency. Using
the Theory of Perturbations, in the mentioned limit ε→ 0 velocities and pressures can be
expressed as

p1 = p− 1
2 ε p0 ; u1 = u− 1

2 εu0

p2 = p+ 1
2 ε p0 ; u2 = u− 1

2 εu0

}
→ p2− p1 = ε p0

u2−u1 = εu0
(A.20)

Note that if ε has dimension of time, the reference values p0and u0 have dimension
of pressure and velocity divided by time, respectively. Introducing (A.19) and (A.20)
in system (A.9)-(A.16) and bearing in mind that it is a1 = a1I ; a2 = a2I , the resulting
expression reads

z1
D1ρ1

Dt
=−ρ1z1

∂u1
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+ρ1
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2
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DIz2

Dt
= p0µ

∗ (A.27)

Now, making (A.23)+(A.24), (A.25)+(A.26) and (A.25)-(A.26), neglecting terms ∝
1
λ

; ∝
1
µ

(when λ → ∞ ; µ → ∞), and taking u2 = u1 = u ; p2 = p1 = p
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From (A.28), (A.33) =⇒ ∂ (z1ρ1)

∂ t
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Introducing equation (A.37) in (A.31)

Dp
Dt

+

z1ρ1a2
1 + z2ρ2a2

2−
(
ρ1a2

1−ρ2a2
2
)2

ρ2a2
2

z2
+

ρ1a2
1

z1


︸ ︷︷ ︸

=
ρ â2= 1

∑
2
k=1

zk
ρka2

k

∂u
∂x

=
Dp
Dt

+ρ â2 ∂u
∂x

= 0 (A.38)
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and from (A.33)

Dz2

Dt
=

ρ1a2
1−ρ2a2

2
ρ2a2

2
z2

+
ρ1a2

1
z1

 ∂u
∂x

(A.39)

Now, employing the relationships for the mixture

ρ =
2

∑
k=1

zkρk ;
2

∑
k=1

zk = 1 (A.40)

Equations(A.34)-(A.39) can be presented as the 5-Equation Reduced Model for
Compressible Flows

∂ (z1ρ1)

∂ t
+

∂ (z1ρ1u)
∂x

= 0 (A.41)

∂ (z2ρ2)

∂ t
+

∂ (z2ρ2u)
∂x

= 0 (A.42)

∂u
∂ t

+u
∂u
∂x

=− 1
ρ

∂ p
∂x

(A.43)

Dp
Dt

+ρ â2 ∂u
∂x

= 0 (A.44)

Dz2

Dt
=

ρ1a2
1−ρ2a2

2
ρ2a2

2
z2

+
ρ1a2

1
z1

 ∂u
∂x

(A.45)

Forcing system (A.41)-(A.45) to work only with immiscible phases, where relationship

z1z2 = 0 ; ∀x, t (A.46)

impliesρ1a2
1−ρ2a2

2
ρ2a2

2
z2

+
ρ1a2

1
z1

= z1z2︸︷︷︸
=
0

(
ρ1a2

1−ρ2a2
2

z1ρ2a2
2 + z2ρ1a2

1

)
︸ ︷︷ ︸

=
f inite

= 0→ ρ â2 = z1ρ1a2
1 + z2ρ2a2

2 = ρa2 (A.47)

it gets reduced to

∂ (z1ρ1)

∂ t
+

∂ (z1ρ1u)
∂x

= 0 (A.48)

∂ (z2ρ2)

∂ t
+

∂ (z2ρ2u)
∂x

= 0 (A.49)

Du
Dt

=− 1
ρ

∂ p
∂x

(A.50)

Dp
Dt

+ρa2 ∂u
∂x

= 0 (A.51)
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Dz2

Dt
= 0 (A.52)

Which can be rewritten in term of conserved variables in the form

∂ (z1ρ1)

∂ t
+

∂ (z1ρ1u)
∂x

= 0 (A.53)

∂ (z2ρ2)

∂ t
+

∂ (z2ρ2u)
∂x

= 0 (A.54)

∂ (ρu)
∂ t

+
∂ (ρuu+ p)

∂x
= 0 (A.55)

∂ (ρE)
Dt

+
∂ [(ρE + p)u]

∂x
= 0 (A.56)

Dz2

Dt
= 0 (A.57)

Which is the form of the 5-Equation Transport Model. Although the mathematical
derivation of the model requires both phases to be immiscible, the numerical diffusion
arising in (A.57) introduces miscibility in the problem, which is addressed with a suitable
mixture model. This of course does not affect in any case the mathematical definition of
the 5-Equation Transport Model.
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The computation of convective fluxes using a three-dimensional dimension-by-dimension
WENO reconstruction can be easily performed by reconstruction at certain integration
points. Assuming that the numerical field is such that all thermodynamic and kinetic
variables are known at cell centres, the convective flux at cell interface i− 1

2 , j,k

F Inviscid
i− 1

2 , j,k
=F3D WENO

i− 1
2 , j,k

=



(z1ρ1)
(
unξ + vnη +wnζ

)
...

(zNρN)
(
unξ + vnη +wnζ

)
(ρu)

(
unξ + vnη +wnζ

)
+ pnξ

(ρv)
(
unξ + vnη +wnζ

)
+ pnη

(ρw)
(
unξ + vnη +wnζ

)
+ pnζ

ρ (E + p)
(
unξ + vnη +wnζ

)


i− 1

2 , j,k

=F3D WENO
i− 1

2 , j,k

(
U3D WENO

i− 1
2 , j,k

(⋃
U si,s j ,sk

))

(B.1)

where notation
⋃

U si,s j,sk denotes the union of certain cell centre values. For instance, a
5th Order scheme reconstructing at i− 1

2 , j,k is

si = i−3, ..., i+2
s j = j−2, ..., j+2
sk = k−2, ...,k+2

→
⋃

U si,s j ,sk =U i−3, j−2,k−2,U i−2, j−2,k−2, ...,U i+2, j−2,k−2,U i−3, j−1,k−2, ...,U i+2, j+2,k+2︸ ︷︷ ︸
6×5×5 = 150 Elements

(B.2)

Therefore, the problem reduces to find the relationships

F3D WENO
i− 1

2 , j,k

(
U3D WENO

i− 1
2 , j,k

)
(B.3)

U3D WENO
i− 1

2 , j,k

(⋃
U si,s j,sk

)
(B.4)

First of all, we focus on expression (B.3) above. If one chooses the HLLC approximate
Riemann solver from Toro [25] to compute fluxes at the interface, the convective flux can
be written in the Cartesian space (ξ ,η ,ζ ) as

F3D WENO
i− 1

2 , j,k
=

ˆ
ζ

i, j,k+ 1
2

ζ
i, j,k− 1

2

ˆ
η

i, j+ 1
2 ,k

η
i, j+ 1

2 ,k

FHLLC
(

UL
(

ξi− 1
2 , j,k

,η ,ζ
)
,UR

(
ξi− 1

2 , j,k
,η ,ζ

))
dηdζ (B.5)

Integrals above are approximated via numerical integrations in the form

ˆ S
i+ 1

2

S
i− 1

2

φ (ε)dε =
T

∑
p=1

∆εpφ

(
Si− 1

2
+Si− 1

2

2
+ap∆εp

)
(B.6)
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In case of considering only two integration points in (B.6), T = 2, and following
indications made in Titarev et al. [56], the maximum accuracy is found if such integration
points are the so-called first and second Gaussian Integration Points

a1 =−
1

2
√

3
; a1 =+

1
2
√

3

Having selected the integration points, expression (B.5) can be integrated in η to obtain

F3D WENO
i− 1

2 , j,k
=

=
∆η

2

ˆ
ζ

i, j,k+ 1
2

ζ
i, j,k− 1

2

dζ

{
FHLLC

(
UL
(

ξi− 1
2 , j,k

,ηi− 1
2 , j,k
− ∆η

2
√

3
,ζ

)
,UR

(
ξi− 1

2 , j,k
,ηi− 1

2 , j,k
− ∆η

2
√

3
,ζ

))

+FHLLC
(

UL
(

ξi− 1
2 , j,k

,ηi− 1
2 , j,k

+
∆η

2
√

3
,ζ

)
,UR

(
ξi− 1

2 , j,k
,ηi− 1

2 , j,k
+

∆η

2
√

3
,ζ

))}

(B.7)

and subsequently integrated in ζ to recover the final form of the flux

F3D WENO
i− 1

2 , j,k
=

∆η∆ζ

4
·

{
FHLLC

(
UL
(

ξi− 1
2 , j,k

,ηi− 1
2 , j,k
− ∆η

2
√

3
,ζi− 1

2 , j,k
− ∆ζ

2
√

3

)
,UR

(
ξi− 1

2 , j,k
,ηi− 1

2 , j,k
− ∆η

2
√

3
,ζi− 1

2 , j,k
− ∆ζ

2
√

3

))
+FHLLC

(
UL
(

ξi− 1
2 , j,k

,ηi− 1
2 , j,k
− ∆η

2
√

3
,ζi− 1

2 , j,k
+

∆ζ

2
√

3

)
,UR

(
ξi− 1

2 , j,k
,ηi− 1

2 , j,k
− ∆η

2
√

3
,ζi− 1

2 , j,k
+

∆ζ

2
√

3

))
+FHLLC

(
UL
(

ξi− 1
2 , j,k

,ηi− 1
2 , j,k

+
∆η

2
√

3
,ζi− 1

2 , j,k
− ∆ζ

2
√

3

)
,UR

(
ξi− 1

2 , j,k
,ηi− 1

2 , j,k
+

∆η

2
√

3
,ζi− 1

2 , j,k
− ∆ζ

2
√

3

))
+FHLLC

(
UL
(

ξi− 1
2 , j,k

,ηi− 1
2 , j,k

+
∆η

2
√

3
,ζi− 1

2 , j,k
+

∆ζ

2
√

3

)
,UR

(
ξi− 1

2 , j,k
,ηi− 1

2 , j,k
+

∆η

2
√

3
,ζi− 1

2 , j,k
+

∆ζ

2
√

3

))}

(B.8)

So using the face Jacobian from (3.14) one can finally write

F Inviscid
= βi− 1

2 , j,k
F3D WENO (B.9)

Now, to close the calculation, relation (B.4) has to be defined. One-dimensional
reconstruction has to be performed in the 4 integration points of (B.8), providing a
function of the form

U3D WENO
i− 1

2 , j,k

(⋃
U si ,s j ,sk

)
=UHLLC

i− 1
2 , j,k


UL

WENO


⋃

si = i−3, ..., i+1
s j = j−2, ..., j+2
sk = k−2, ...,k+2

U si,s j ,sk


,UR

WENO


⋃

si = i−2, ..., i+2
s j = j−2, ..., j+2
sk = k−2, ...,k+2

U si,s j ,sk




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(B.10)

where the vector of conserved variables at the cell interface UHLLC
i− 1

2 , j,k
can be easily

computed from Left and Right states by solving the Local Riemann Problem as shown
in equation (3.6). The final step then is to generate Left and Right states from values at
cell centres. For a general variable φ , 5th Order one-dimensional WENO reconstruction
at cell interface i− 1

2 , j,k reads

φ L
i− 1

2 , j,k
= φi−1 +ω0Lv0L +ω1Lv1L +ω2Lv2L

φ R
i− 1

2 , j,k
= φi +ω0Rv0R +ω1Rv1R +ω2Rv2R

(B.11)

ω0L =
α0L

α0L+α1L+α2L

ω1L =
α1L

α0L+α1L+α2L

ω2L =
α2L

α0L+α1L+α2L

ω0R =
α0R

α0R+α1R+α2R

ω1R =
α1L

α0L+α1L+α2L

ω2R =
α2R

αRL+α1R+α2R

(B.12)

α0L =
d0

(ε+β0L)
2

α1L =
d1

(ε+β1L)
2

α2L =
d2

(ε+β2L)
2

α0R = d0

(ε+β0R)
2

α1R = d1

(ε+β1R)
2

α2R = d2

(ε+β2R)
2

(B.13)

with the so-called smoothness indicators β taken from [71]

β0L =
13
12 (φi−1−2φi +φi+1)

2 + 1
4 (3φi−1−4φi +φi+1)

2

β1L =
13
12 (φi−2−2φi−1 +φi)

2 + 1
4 (φi−2−φi)

2

β2L =
13
12 (φi−3−2φi−2 +φi−1)

2 + 1
4 (φi−3−4φi−2 +3φi−1)

2

β0R = 13
12 (φi−2φi−1 +φi−2)

2 + 1
4 (3φi−4φi−1 +φi−2)

2

β1R = 13
12 (φi+1−2φi +φi−1)

2 + 1
4 (φi+1−φi−1)

2

β2R = 13
12 (φi+2−2φi+1 +φi)

2 + 1
4 (φi+2−4φi+1 +3φi)

2

(B.14)

The residual parameter ε is introduced to prevent the denominator from being 0 and. A
typical suitable value for this magnitude is ε =10−15 for a machine working in double
precision. Finally, tables below shows the values of the optimum weights d0,d1,d2 and
interpolation stencils v0,v1,v2 for each one-dimensional reconstruction stage in (3.35) at
each integration point. It also sketches the solving procedure. Finally, Left and Right
primitive variables z1ρ1, ...,zNρN ,u,v,w, p,z1, ...,zN−1 can be reconstructed using this
procedure to build both vectors of conserved variables UL

WENO,U
R
WENO and the volume

fraction flux for (3.28).
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Stage 1. Reconstruction at interface ξ = ξi, j,k− ∆ξ

2 .



Input→
⋃

si = i−3, ..., i+2
s j = j−2, ..., j+2
sk = k−2, ...,k+2

φsi,s j ,sk

Out put→
φ L;ξ = φ L

(
ξi, j,k− ∆ξ

2 ,η ,ζ
)

φ R;ξ = φ R
(

ξi, j,k− ∆ξ

2 ,η ,ζ
) ,

d0 d1 d2 v0 v1 v2

Left
0.3 0.6 0.1

1
6 (−4φi−1 +5φi−φi+1)

1
6 (−φi−2−φi−1 +2φi)

1
6 (−2φi−3−7φi−2 +5φi−1)

Right 1
6 (−4φi +5φi−1−φi−2)

1
6 (−φi+1−φi +2φi−1)

1
6 (−2φi+2−7φi+1 +5φi)

Stage 2. Reconstruction at Lines L1 =
(

ξi, j,k− ∆ξ

2 ,ηi, j,k− ∆η

2
√

3
,ζ
)

L2 =
(

ξi, j,k− ∆ξ

2 ,ηi, j,k +
∆η

2
√

3
,ζ
)


Input→

φ L;ξ = φ L
(

ξi, j,k− ∆ξ

2 ,η ,ζ
)

φ R;ξ = φ R
(

ξi, j,k− ∆ξ

2 ,η ,ζ
)

Out put→
φ L;ξ ;1 = φ L

(
L1
)

;φ R;ξ ;1 = φ R
(
L1
)

φ L;ξ ;2 = φ L
(
L2
)

;φ R;ξ ;2 = φ R
(
L2
)

d0 d1 d2 v0 v1 v2

L1
Left

210−
√

3
1080

11
18

210+
√

3
1080

√
3

12

(
3φ

L;ξ
j −4φ

L;ξ
j+1 +φ

L;ξ
j+2

) √
3

12

(
φ

L;ξ
j−1−φ

L;ξ
j+1

) √
3

12

(
−3φ

L;ξ
j +4φ

L;ξ
j−1−φ

L;ξ
j−2

)
Right

√
3

12

(
3φ

R;ξ
j −4φ

R;ξ
j+1 +φ

R;ξ
j+2

) √
3

12

(
φ

R;ξ
j−1−φ

R;ξ
j+1

) √
3

12

(
−3φ

R;ξ
j +4φ

R;ξ
j−1−φ

R;ξ
j−2

)
L2

Left
210+

√
3

1080
11
18

210−
√

3
1080

√
3

12

(
−3φ

L;ξ
j +4φ

L;ξ
j+1−φ

L;ξ
j+2

) √
3

12

(
−φ

L;ξ
j−1 +φ

L;ξ
j+1

) √
3

12

(
3φ

L;ξ
j −4φ

L;ξ
j−1 +φ

L;ξ
j−2

)
Right

√
3

12

(
−3φ

R;ξ
j +4φ

R;ξ
j+1−φ

R;ξ
j+2

) √
3

12

(
−φ

R;ξ
j−1 +φ

R;ξ
j+1

) √
3

12

(
3φ

R;ξ
j −4φ

R;ξ
j−1 +φ

R;ξ
j−2

)
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Stage 3. Reconstruction at points

I1 =
(

ξi, j,k− ∆ξ

2 ,ηi, j,k− ∆η

2
√

3
,ζi, j,k− ∆ζ

2
√

3

)
I2 =

(
ξi, j,k− ∆ξ

2 ,ηi, j,k− ∆η

2
√

3
,ζi, j,k− ∆ζ

2
√

3

)
I3 =

(
ξi, j,k− ∆ξ

2 ,ηi, j,k +
∆η

2
√

3
,ζi, j,k− ∆ζ

2
√

3

)
I4 =

(
ξi, j,k− ∆ξ

2 ,ηi, j,k +
∆η

2
√

3
,ζi, j,k +

∆ζ

2
√

3

)



Input→

{
φ L;ξ ;1,φ R;ξ ;1

}
=
{

φ L
(
L1
)
,φ R

(
L1
)}{

φ L;ξ ;2,φ R;ξ ;2
}
=
{

φ L
(
L2
)
,φ R

(
L2
)}

Out.→

{
φ L;ξ ;1;1,φ R;ξ ;1;1

}
=
{

φ L
(
I1
)
,φ R

(
I1
)}{

φ L;ξ ;1;2,φ R;ξ ;1;2
}
=
{

φ L
(
I2
)
,φ R

(
I2
)}{

φ L;ξ ;2;1,φ R;ξ ;2;1
}
=
{

φ L
(
I3
)
,φ R

(
I3
)}{

φ L;ξ ;2;2,φ R;ξ ;2;2
}
=
{

φ L
(
I4
)
,φ R

(
I4
)}

d0 d1 d2 v0 v1 v2

I1
Left 210−

√
3

1080
11
18

210+
√

3
1080

√
3

12

(
3φ

L;ξ ;1
k −4φ

L;ξ ;1
k+1 +φ

L;ξ ;1
k+2

) √
3

12

(
φ

L;ξ ;1
k−1 −φ

L;ξ ;1
k+1

) √
3

12

(
−3φ

L;ξ ;1
k +4φ

L;ξ ;1
k−1 −φ

L;ξ ;1
k−2

)
Right

√
3

12

(
3φ

R;ξ ;1
k −4φ

R;ξ ;1
k+1 +φ

R;ξ ;1
k+2

) √
3

12

(
φ

R;ξ ;1
k−1 −φ

R;ξ ;1
k+1

) √
3

12

(
−3φ

R;ξ ;1
k +4φ

R;ξ ;1
k−1 −φ

R;ξ ;1
k−2

)
I2

Left 210+
√

3
1080

11
18

210−
√

3
1080

√
3

12

(
−3φ

L;ξ ;1
k +4φ

L;ξ ;1
k+1 −φ

L;ξ ;1
k+2

) √
3

12

(
−φ

L;ξ ;1
k−1 +φ

L;ξ ;1
k+1

) √
3

12

(
3φ

L;ξ ;1
k −4φ

L;ξ ;1
k−1 +φ

L;ξ ;1
k−2

)
Right

√
3

12

(
−3φ

R;ξ ;1
k +4φ

R;ξ ;1
k+1 −φ

R;ξ ;1
k+2

) √
3

12

(
−φ

R;ξ ;1
k−1 +φ

R;ξ ;1
k+1

) √
3

12

(
3φ

R;ξ ;1
k −4φ

R;ξ ;1
k−1 +φ

R;ξ ;1
k−2

)
I3

Left 210−
√

3
1080

11
18

210+
√

3
1080

√
3

12

(
3φ

L;ξ ;2
k −4φ

L;ξ ;2
k+1 +φ

L;ξ ;2
k+2

) √
3

12

(
φ

L;ξ ;2
k−1 −φ

L;ξ ;2
k+1

) √
3

12

(
−3φ

L;ξ ;2
k +4φ

L;ξ ;2
k−1 −φ

L;ξ ;2
k−2

)
Right

√
3

12

(
3φ

R;ξ ;2
k −4φ

R;ξ ;2
k+1 +φ

R;ξ ;2
k+2

) √
3

12

(
φ

R;ξ ;2
k−1 −φ

R;ξ ;2
k+1

) √
3

12

(
−3φ

R;ξ ;2
k +4φ

R;ξ ;2
k−1 −φ

R;ξ ;2
k−2

)
I4

Left 210+
√

3
1080

11
18

210−
√

3
1080

√
3

12

(
−3φ

L;ξ ;2
k +4φ

L;ξ ;2
k+1 −φ

L;ξ ;2
k+2

) √
3

12

(
−φ

L;ξ ;2
k−1 +φ

L;ξ ;2
k+1

) √
3

12

(
3φ

L;ξ ;2
k −4φ

L;ξ ;2
k−1 +φ

L;ξ ;2
k−2

)
Right

√
3

12

(
−3φ

R;ξ ;2
k +4φ

R;ξ ;2
k+1 −φ

R;ξ ;2
k+2

) √
3

12

(
−φ

R;ξ ;2
k−1 +φ

R;ξ ;2
k+1

) √
3

12

(
3φ

R;ξ ;2
k −4φ

R;ξ ;2
k−1 +φ

R;ξ ;2
k−2

)
Table 6.1: Optimum weights and interpolation stencils for each integration stage and integration point.
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