
AD Tools and Prospects forOptimal AD in CFD FluxJacobian CalculationsMohamed Tadjouddine, Shaun A. Forth, andJohn D. PryceABSTRACT We consider the problem of linearising the short (approxi-mately 100 lines of) code that de�nes the numerical uxes of mass, energyand momentum across a cell face in a �nite volume compressible ow cal-culation. Typical of such formulations is the numerical ux due to Roe,widely used in the numerical approximation of ow �elds containing mod-erate to strong shocks. Roe's ux takes as input 10 variables describingthe ow either side of a cell face and returns as output the 5 variables forthe numerical ux. We present results concerning the e�ciency of deriva-tive calculations for Roe's ux using several currently available AD tools.We also present preliminary work on deriving near optimal di�erentiatedcode using the node elimination approach. We show that such techniques,within a source transformation approach, will yield substantial gains forapplication code such as the Roe ux.1 Di�erentiation of Roe's Numerical FluxIn previous work [For98] we have reported on the application of our ownoperator overloaded, forward AD library to calculate the linearisation ofRoe's numerical ux [Roe81]. We validated the linearisation by showingthat a �nite di�erence evaluation converged to the AD linearisation asthe �nite di�erence step size was reduced. Here we linearise the ux usingcurrently available AD software (ADIFOR [BCH+98], TAMC [Gie97] andADO1 [PR98]). Results are presented in Table 1 where time(rF) denotesthe CPU time for a Jacobian (and function) evaluation, time(rF)time(F) denotesthe ratio of the Jacobian evaluation to the function evaluation in CPUtime, and the �nal column gives the maximum absolute di�erence in theJacobian (assuming that the ADIFOR results are correct). Note that theADIFOR results are for all arrays and loops of �xed length 10 and withthe Performance exception handling option.We see that all the AD methods produced the same results to withinmachine relative precision whereas, as expected, the �nite di�erence resultsare in error by around the square root of machine precision. The sourcetransformation methods (ADIFOR and TAMC) are substantially fasterthan the library AD01 using operator overloading. The forward methods

li2106
Text Box
In: Automatic Differentiation of Algorithms. Springer, New York, NYDOI: 10.1007/978-1-4613-0075-5_30; ISBN: 978-1-4612-6543-6

li2106
Text Box
Published by Springer. This is the Author Accepted Manuscript.The final published version (version of record) is available online at DOI:10.1007/978-1-4613-0075-5_30. Please refer to any applicable publisher terms of use.

2 Mohamed Tadjouddine, Shaun A. Forth, and John D. PryceMethod time(rF) time(rF)time(F) Deviationfrom ADIFORFinite Di�erences (1-sided) 0.12 10.64 4.34E-07ADIFOR 0.15 13.37 |TAMC (Forward) 0.13 11.94 4.66E-15TAMC (Reverse) 0.11 10.28 5.77E-15AD01 (Forward) 1.55 134.68 7.99E-15AD01 (Reverse) 0.95 82.90 4.88E-15TABLE 1.1. CPU timings (in seconds) on SGI IRIX64 IP27ADIFOR and TAMC (forward) are comparable in execution time and onlyslightly slower than the �nite di�erences while giving exact results. Thereverse modes of TAMC and AD01 have performed better than the forwardones with this SGI machine. However TAMC reverse performed worse withan older COMPAQ Alpha AXP 250-330 workstation. We attribute this tocache misses during the reverse pass on this smaller cache machine.In the rest of this paper we consider AD techniques applied to a re-stricted class of Fortran codes important in CFD applications: subroutineswith typically 5 to 30 inputs xi and outputs yi and some hundreds vi ofintermediate values, with no loops but allowing branches. The aim is toe�ciently compute the Jacobians associated with such subroutines.2 Elimination TechniquesAn alternative to the conventional forward and reverse modes of AD is theelimination approach [GR91, Nau99, Gri00]. To illustrate this technique,
21

63 45c51 c42c32c31c53
c64c65 c43 C = 26666664 �1 �1c31 c32 �1c42 c43 �1c51 c53 �1c64 c65 �1

37777775FIGURE 1. An example of CG (left) and its matrix representation (right)consider the graph sketched in Figure 1, which shows a ComputationalGraph (CG) for derivative calculation and its (sparse) matrix representa-

1. Optimal AD in CFD Flux Jacobian Calculations 3tion. The nodes 1 and 2 represent the inputs x1 and x2; nodes 3, 4, and5 the intermediates; and node 6 the output y. The matrix represents theequations C _v = �(_x1; _x2; 0; : : : ; 0)T , that is:_v1 = _x1 _v4 = c42 � _v2 + c43 � _v3_v2 = _x2 _v5 = c51 � _v1 + c53 � _v3_v3 = c31 � _v1 + c32 � _v2 _v6 = y = c64 � _v4 + c65 � _v5The coe�cients ci;j ; 1 � i; j � 6 represent partial derivatives @vi@vj . The Ja-cobian @y@(x1;x2) is determined by eliminating intermediate nodes or edgesfrom the graph until it becomes bipartite. In terms of the matrix represen-tation, node elimination is equivalent to successively choosing a diagonalpivot element from rows 3 to 5, eliminating all the coe�cients under thatpivot and leaving the Jacobian as elements c61 and c62. Adopting the no-tations � and �� of [Gri00], we de�ne the Markowitz and VLR costs at anintermediate node vj respectively as follows:mark(vj) = jfi : i � jgjjfk : j � kgj (1.1)VLR(vj) = mark(vj)� jfi : i �� jgjjfk : j �� kgj: (1.2)Ordering the elimination process using heuristics based on choosing thenode with minimum Markowitz or VLR cost generally gives a further im-provement [Nau99].2.1 Application of node elimination methods to Roe uxWe have written and used a Fortran 90 AD module using operator over-loading to build up the CG of the Roe ux code. The graph consists of221 nodes and 342 edges. Then, we applied the standard node eliminationmethods (Forward, Reverse, Markowitz, VLR). We also employed whatwe term reverse bias variants of Markowitz and VLR which use the lastnode with the minimum Markowitz/VLR cost as opposed to the �rst inthe conventional implementations.Figure 2 shows the elimination sequences taken by these 6 methods andTable 1.2 the required number of multiplications. Classical forward ADrequires 3420 multiplications and reverse 1710. Hence the elimination tech-niques use up to some 40% fewer multiplications than reverse AD and 70%fewer than forward AD for this problem. We observe that Markowitz hasForward Reverse Mark. VLR Mark.(rev. bias) VLR (rev.bias)1959 1335 1031 1075 998 1073TABLE 1.2. Number of multiplication of the di�erent strategiestaken fewer operations than the other methods and incorporating the re-verse bias has improved Markowitz more than it did VLR. Furthermore the

4 Mohamed Tadjouddine, Shaun A. Forth, and John D. Pryce
0 50 100 150 200 250

0

50

100

150

200

250

Elimination Step

N
od

e
E

lim
in

at
ed

Markowitz

0 50 100 150 200 250
0

50

100

150

200

250

Elimination Step

N
od

e
E

lim
in

at
ed

VLR

0 50 100 150 200 250
0

50

100

150

200

250

Elimination Step

N
od

e
E

lim
in

at
ed

Markowitz(reverse bias)

0 50 100 150 200 250
0

50

100

150

200

250

Elimination Step
N

od
e

E
lim

in
at

ed

VLR(reverse bias)

FIGURE 2. Elimination sequence for di�erent strategies applied to the Roe Fluxtest case (forward/reverse given by solid/dashed line in each graph)behaviour of the Markowitz (reverse bias) looks like a hybrid of forwardand reverse eliminations.Interestingly we see that VLR and VLR (reverse bias) perform no elim-ination at the top and bottom of the CG for approximately the �rst thirdof their elimination sequences. We explain this as follows. The VLR cost(see equation 1.2) involves a �xed value for each node which is given by theproduct of the number of input/output nodes it is eventually connected to.If we assume that a node vj in the centre will be connected to all inputs andoutputs, then in our case (10 inputs and 5 outputs) it will have a constantcost of mark(vj)�5�10. Nodes close to the outputs will only be connectedto a few (e.g. 2) outputs but to all the 10 inputs and have a higher (e.g.mark(vj)�2�10) constant cost. Similarly nodes close to inputs will have ahigher constant cost again (e.g. mark(vj)�2�5). Thus when selecting thenode with minimum cost for elimination, VLR is heavily biased for manysteps towards the nodes in the centre of the CG.3 Development of Source a Transformation ToolWe are developing an AD tool to e�ciently compute Jacobians of a re-stricted class of functions via source transformation. The input code isparsed to get the Abstract Syntax Tree (AST) using the freeware ANTLRtranslator [Pa00]. Two passes through the AST allow us to build an Ab-stract Computational Graph (ACG) of the program from which we computethe Jacobian via an elimination approach.

1. Optimal AD in CFD Flux Jacobian Calculations 53.1 Building the abstract computational graph
 supernode

truefalseif (t>x2) thent = x1**2+1y1 = abs(x1)elsey1 = (t+x2)/x2endif
if (t>x2)y1=(t+x2)/x2 y1=abs(x1)
t=x1**2+1
y=ln(y1)y = ln(y1)FIGURE 3. Fortran code (left) and Control Flow Graph (right)

x2 x111 1x2
t

y1y1 t > x2
v1� v1x22

false true
sign(1; x1)FIGURE 4. The subgraph related tothe IF block (supernode)

Unlike the CG that represents oneexecution of the program, the ACGtakes into account all execution paths.For the class of codes above with sin-gle assignment, the derived ACG is aDAG describing the chain of operationsfrom the data inputs to the outputs.The ACG is viewed as a owchart i.e. acontrol ow graph in which each basicblock is expanded to a computationalgraph (see Figures 3, and 4). It is builtby using the AST to rewrite the in-put code as a code list [Gri00]. Thenwe analyse the code to top-down prop-agate the active variables and computethe local partial derivatives.3.2 Dealing with IF blocksA novel feature of our work is that we intend to deal with IF blocks.They are viewed as supernodes, which we term branching nodes whoseinputs and outputs are determined using a read/write analysis. The inputsare the union of variables imported (read and not written) into the IFblock. The outputs are the union of variables written in the IF block andexported to (read from) another region of the program. This may be seen asan extension of Bischof and Haghighat's hierarchical AD [BH96] from the

6 Mohamed Tadjouddine, Shaun A. Forth, and John D. Prycesubroutine level to the basic block level. The branching node representsa DAG whose reduction gives rise to a bipartite graph that connects allpossible inputs to all possible outputs according to the value of the testcontrolling the IF block (see Figures 4 and 5). From Figure 4, we eliminatenodes at the lowest level, so that we get an augmented bipartite graph asin Figure 5 (right) with one of 2 sets of local derivatives used dependingon the branch taken.
false

true
truefalse 1x20� v1x22 + 1x2x2 t x1 x2 t x10y1� v1x22 + 1x2 1x2 0y1 y1sign(1; x1) sign(1; x1)

FIGURE 5. Elimination process to build up the bipartite graph from a supernode3.3 Jacobian accumulationGeneration of the source text that computes the Jacobian proceeds as fol-lows:1. Apply the node elimination process from the ACG to build up thebipartite graph. The innermost branching nodes will be treated �rst,providing local Jacobians whose entries will then be used to recur-sively complete the overall elimination.2. Generate derivative code consisting of the input code interspersedwith derivative calculations obtained from the node elimination pro-cess positioned so as to attempt to maximise cache performance.4 ConclusionsWe have applied several di�erent AD software systems ADIFOR, ADO1,and TAMC, to Roe's numerical ux. For such dense code with more in-puts than outputs, reverse mode has been shown to be more e�cient thanforward provided the machine cache is su�ciently large. Source transfor-mation is shown to be consistently superior to operator overloading. For arestricted class of codes, we have introduced the Abstract ComputationalGraph to implement the node elimination methods via source transfor-mation. Preliminary results using operator overloading indicate that usingelimination strategies such as Markowitz or VLR will give a substantialimprovement over the conventional forward and reverse modes.

1. Optimal AD in CFD Flux Jacobian Calculations 75 References[BCH+98] Christian H. Bischof, Alan Carle, Paul Hovland, PeyvandKhademi, and Andrew Mauer. ADIFOR 2.0 users' guide (revi-sion D). Technical Report ANL/MCS-P263-0991, Argonne Na-tional Laboratory, 9700 South Cass Avenue, Argonne, IL 60439USA, 1998. Available via http://www.mcs.anl.gov/adifor/.[BH96] Christian Bischof and Mohammad Haghighat. Hierarchical ap-proaches to automatic di�erentiation. Technical Report CRPC-TR96647, Center for Research on Parallel Computation, RiceUniversity, April 1996.[For98] S.A. Forth. Automatic di�erentiation for ux linearisation.AMORReport 98/1, Cran�eld University (RMCS Shrivenham),Swindon SN6 8LA, England, 1998. Poster Presentation at 16thInternational Conference on Numerical Methods in Fluid Dy-namics, July 6th-10th, 1998, Arcachon, France.[Gie97] Ralf Giering. Tamgent linear and adjoint model compiler. UsersManual Manual Version 1.2, TAMC Version 4.8, Center forGlobal Change Sciences, Department of earth, Atmospheric,and Planetary Science, MIT, Cambridge, MA 02139, USA, De-cember 1997.[GR91] A. Griewank and S. Reese. On the Calculation of Jacobian Ma-trices by the Markowitz rule for Vertex Elimination. G. Corlissand A. Griewank Ed., Automatic Di�erentiation: Theory, im-plementation, and applications, SIAM, pages 126{135, 1991.[Gri00] A. Griewank. Evaluating Derivatives: Principles and Tech-niques of Algorithmic Di�erentiation. SIAM, 2000.[Nau99] Uwe Naumann. E�cient Calculation of Jacobian Matricesby Optimized Application of the Chain Rule to ComputationalGraphs. PhD thesis, Technical University of Dresden, December1999.[Pa00] T. Parr and al. ANTLR Reference Manual. Technical report,MageLang Institute's jGuru.com, January 2000. Available viahttp://www.antlr.org/doc/index.html.[PR98] J.D. Pryce and J.K. Reid. ADO1, a Fortran 90 codefor automatic di�erentiation. Technical Report RAL-TR-1998-057, Rutherford Appleton Laboratory, Chilton,Didcot, Oxfordshire, OX11 OQX, England, 1998. Avail-able via ftp://matisa.cc.rl.ac.uk/pub/reports/prRAL98057.ps.gz.

8 Mohamed Tadjouddine, Shaun A. Forth, and John D. Pryce[Roe81] P.L. Roe. Approximate Riemann solvers, parameter vectors,and di�erence schemes. Journal of Computational Physics,43:357{372, 1981.

