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Executive Summary

The potential impact of inlet flow distortion on the stability and performance of aircraft

engines remains a key concern for engine-airframe integration. Current and future con-

figurations, such as Unmanned Combat Air Vehicles (UCAVs), and possible civil aircraft

with large rear-mounted engines, feature closely-coupled intake and airframe aerodynam-

ics. Such configurations are susceptible to the ingestion of streamwise vorticity generated

upstream on the aircraft. There is a dearth of understanding of this ingestion process

which, crucially, determines the nature of the flow distortion presented to the turboma-

chinery. To assess the risk of engine stability and performance deterioration, it is therefore

necessary to understand and model the vortex ingestion process.

This research provides a novel application of Stereoscopic Particle Image Velocimetry

(Stereo PIV) to obtain quantitative measurements of a streamwise vortex inside a con-

tracting intake capture streamtube. The experiments were conducted in the 8′ × 6′ low-

speed wind tunnel using a 1/30th scale intake model. Vortex generators were employed to

create a streamwise vortex in the flow upstream of the intake. The streamtube contraction

levels, vortex generator type, and vortex generator configuration were varied to establish

fundamental understanding on the flow physics of vortex ingestion.

The vortex experiences notable levels of intensification as it passes through the contracting

streamtube. The evolution of the vortex is strongly dependent on the streamtube contrac-

tion levels, the initial characteristics of the vortex prior to ingestion, and the trajectory

that the vortex follows inside the capture streamtube.

In addition, detailed studies have been performed using Computational Fluid Dynamics

(CFD) to establish an approach to simulate vortex ingestion flows. A number of guidelines

have been developed using experimental measurements to ensure that the flow physics of

vortex ingestion are captured. This approach permits vortex ingestion simulations to be

performed to evaluate the inlet flow distortion characteristics in full-scale intake flows.
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Chapter 1

Introduction

1.1 Overview

The potential impact of inlet flow distortion on the stability and performance of aircraft

engines remains a key concern for engine-airframe integration. Inlet flow distortion has

been the subject of continued study over the past 60 years, due to the associated risk

of intake and engine performance degradation. The severity of the inlet flow distortion,

and the subsequent response of the engine, depends on a number of factors, such as

the aircraft operating condition, features of the intake design, and the tolerance of the

engine to distortion [2]. One possible scenario which results in inlet flow distortion is the

case where an externally-generated distortion is ingested by the intake. This has become

increasingly likely in recent years since airframe manufacturers continue to explore highly

unconventional engine airframe configurations for both civil and military aircraft.

Many proposed civil aircraft architectures feature rear-mounted ultra-high bypass ratio

turbofan engines or open rotor engines, such as those depicted in Figure 1.1(a). De-

pending on the airframe arrangement and flight condition, these new engine installation

arrangements may feature an increased risk of the ingestion of streamwise vortices gener-

ated on the upstream airframe. Examples of such vortices include those generated at the

wing-tip of a canard, wing-junction vortices, and body or fuselage vortices. Furthermore,

Blended Wing-Body (BWB) platforms (Figure 1.1(b)) which feature podded or embed-

ded powerplants at the rear of the fuselage may also be at risk of streamwise vorticity

ingestion. Recent experiments conducted by Gatlin et al [5] on a sub-scale BWB con-

figuration highlighted that an intense streamwise vortex is generated at the leading edge

1



2 Chapter 1 Introduction

(a) (b)

(c)

Figure 1.1: Possible future civil aircraft engine airframe configurations, (a): Rear-
mounted open rotor engines [3], (b): Blended Wing Body (BWB) airframe configuration
with rear-mounted open rotor engines [3], (c): Example of an Unmanned Combat Air

Vehicle (UCAV) [4]

of the wing at high angles of attack. The trajectory of the vortex, indicated from sur-

face flow visualisation, suggests that the vortex will likely be ingested by a rear-mounted

powerplant.

Vortical inlet flow distortion is also a possibility on Unmanned Combat Air Vehicles

(UCAVs) (Figure 1.1(c)), which feature deeply embedded engines and complex intake de-

signs. Such configurations feature a strong aerodynamic coupling between the intake and

the airframe. Therefore, there is potential for vortical flow to be ingested by the intake

at key points in the flight envelope. In addition, it has been found that the streamwise

vortex generated by leading edge extensions on conventional combat aircraft can be in-

gested during dynamic manoeuvres with large changes in angle of attack and can result

in an increase in the total pressure distortion levels within the intake [6].

The inlet flow distortion which results from the ingestion of a vortex is known to induce a

loss in compressor surge margin and efficiency, and may cause the compressor to surge [7,

8, 9]. The distorted intake flow can also induce fan blade vibration and high-cycle fatigue
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[10]. The detrimental effects on the engine performance and operability are therefore

of ongoing concern. It has been recognised that the behaviour of the aircraft engine

which is subject to swirl distortion is not consistent with the results from conventional

methods which are used to predict the response of an engine to inlet flow distortion [8]. To

address this shortcoming, the S-16 Turbine Engine Inlet Flow Distortion Committee [11]

established inlet flow descriptor methods to permit the correlation of surge margin loss

for a range of inlet swirl distortions. However, work is currently underway to establish the

large datasets required to allow correlations to be developed. Furthermore, an emphasis

has recently been placed on the need to correctly simulate such vortical inlet flow distortion

using CFD [12]. It is clear, however, that there remains a lack of understanding of the

impact of vortical distortion on turbomachinery performance and operability.

1.2 Project rationale

This research is concerned with the possible scenario where a streamwise vortex which has

been generated on the airframe upstream of the aircraft engine location is subsequently

ingested into the intake. This scenario is distinguished from the case of ground vortex

ingestion, which results from an aerodynamic coupling between the intake aerodynam-

ics and nearby boundary layer vorticity. This may occur due to the close proximity of

the atmospheric boundary layer [7, 13] or on other surfaces such as the fuselage [14]. A

schematic a possible vortex ingestion scenario which is of interest in this research is shown

in Figure 1.2. In general, the scenario can be considered to be composed of three distinct

vortex flow phases, namely, vortex generation, vortex convection, and vortex ingestion.

The vortex generation process is concerned with the initial creation of the vortical flow,

and the subsequent formation of a discrete vortex whose axis is approximately parallel to

the streamwise direction. In the vortex convection phase, the vortex moves and evolves

with the surrounding flow. If the vortex is contained within the capture streamtube of an

engine intake, then the vortex will undergo an ingestion process. Importantly, the vortex

generation and vortex convection processes have received considerable attention in the

literature. However, there have been no prior studies on the behaviour of a streamwise

vortex as it passes through the intake capture streamtube. As a consequence, there is a

dearth of understanding on the likely characteristics of the vortex once it is inside the

intake. This lack of understanding has direct implications for engine integration studies.

Firstly, there is currently little information to allow an assessment of the possible inlet

flow distortion levels which result from the ingestion of a vortex. Thus, it is not possible to
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Figure 1.2: Schematic of streamwise vortex ingestion by an aircraft intake, illustrating
the key flow phases experienced by an externally-generated streamwise vortex during

ingestion

evaluate the likely impact that the vortex may have on the engine performance. Further-

more, there are no details to elucidate the influence that a change in vortex characteristics

or intake conditions have on the details of the vortex ingestion process.

In summary, there are new challenges from the engine-airframe integration perspective

which must be addressed to ensure compatibility between the engine and the airframe

across the entire flight envelope. There is surprisingly little knowledge or understanding

of the evolution of a streamwise vortex inside an intake capture streamtube, and no

prior measurements. Without understanding of the fundamental fluid dynamics of vortex

ingestion, or without the capability provided by an engineering model, the risk of engine

performance degradation on novel engine airframe configurations cannot be assessed.

1.3 Aims and objectives

The purpose of this research is to establish fundamental understanding of the behaviour

of a streamwise vortex inside the contracting capture streamtube of an aircraft intake. A

wide range of vortex ingestion configurations, comprising different intake flow conditions

and vortex characteristics, are investigated. The research has the following objectives:

- Establish Stereoscopic Particle Image Velocimetry as a measurement method for

vortex ingestion experiments.
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- Obtain quantitative measurements of streamwise vortex ingestion on a sub-scale

intake model.

- Identify the fundamental flow physics which govern the behaviour of a streamwise

vortex inside an intake capture streamtube.

- Assess the influence of the streamtube contraction levels, intake operating condi-

tion, initial vortex characteristics, and ingestion trajectory, on the vortex ingestion

process.

- Develop a model of vortex ingestion which can be used to aid preliminary design

calculations for engine-airframe integration studies.

- Establish and validate CFD methods and procedures to successfully perform simu-

lations of vortex ingestion.





Chapter 2

Literature review

The purpose of this chapter is to provide a review of the most pertinent prior research

on streamwise vortices, their behaviour when subjected to a streamwise contraction, and

their effect on turbomachinery performance. It is first necessary to elucidate the most

fundamental aspects of aircraft engine intake aerodynamics, which will establish the most

important characteristics of the intake flow to which the ingested vortex will be subjected.

In addition, the characteristics and the perturbation field attributed to vortices which are

likely to be ingested are identified. Such characteristics play a central role in the definition

of vortical distortions, along with the analysis of their behaviour during ingestion. The

review then focusses on the current understanding of the behaviour of streamwise vortices

in contracting flows, and the impact of streamwise vortices on inlet flow distortion char-

acteristics and aircraft engine performance. The final section of the review highlights the

challenges associated with the simulation of vortices using Computational Fluid Dynam-

ics (CFD). This chapter is concluded with a summary of the current state-of-the-art, and

identifies the deficiencies in knowledge which are addressed in this research.

2.1 Intake aerodynamics

The qualitative nature of the intake capture streamtube flow associated with a typical

aircraft intake is illustrated in Figure 2.1. The extent of the intake capture streamtube

is defined by the streamline which lies on the boundary between the flow which enters

the intake and that which remains external to the intake. The mass flow through the

capture streamtube is constant, and is equal to the mass flow requirement of the engine,

7
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Figure 2.1: Schematic of a typical aircraft intake with key geometric parameters and
flow properties

ṁi. Therefore, the characteristics of the flow inside the capture streamtube can be es-

timated with use of the continuity equation, Eq. 2.1, where ρ is the density, W is the

average streamwise velocity and A is the capture streamtube cross-sectional area. Note

that subscript ∞ refers to the conditions far upstream of the intake where the intake

perturbation field is negligible, and subscript i refers to the conditions inside the intake.

ρ∞W∞A∞ = ρiWiAi (2.1)

In this research, it is assumed that the there are no surfaces, such as the aircraft fuselage

or the wing, in close proximity to the aircraft intake. It is thus appropriate to assume that

the capture streamtube is axisymmetric, such that Eq. 2.1 can be expressed in terms of

the radius of the capture streamtube in the freestream (r∞) and the intake inner radius,

ri, Eq. 2.2.

(
r∞
ri

)2

=
ρi
ρ∞

Wi

W∞
(2.2)

Under the assumption of incompressible flow, the dimensions of the capture streamtube

are related directly to the intake velocity ratio V R = Wi/W∞, Eq. 2.3.

(
r∞
ri

)2

=
Wi

W∞
= V R (2.3)
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Table 2.1: Typical high bypass ratio civil aircraft engine dimensions and operating
conditions at take-off

Mi 0.44
Di (m) 2.61

ṁi (kgs−1) 870
Wi (ms−1) 145

When the intake velocity ratio is greater than 1.0, the capture streamtube is larger than

the intake inner diameter (Di = 2ri), and the flow inside the capture streamtube experi-

ences a streamwise contraction. Similarly, when the intake velocity ratio is less than 1.0,

the flow experiences a streamwise diffusion. It is of interest to ascertain the nature of the

intake velocity ratio V R at key points in the aircraft flight envelope. For example, con-

sider a large civil airliner equipped with modern high bypass ratio engines. Representative

values of the engine dimensions and operating conditions at take-off are provided in Table

2.1. As the aircraft accelerates from stationary, there is an increase in the freestream ve-

locity, W∞. During the take-off phase, the intake flow velocity Wi remains approximately

constant, so there is a corresponding reduction in the intake velocity ratio (Figure 2.2(a)).

In addition, the intake capture streamtube radius reduces, Figure 2.2(b).

(a) (b)

Figure 2.2: Evolution of intake capture streamtube characteristics for a typical civil
airliner (Table 2.1) assuming incompressible flow, (a) Intake velocity ratio as a function
of flight speed, (b), Intake capture streamtube radius as a function of freestream velocity

A typical twin-engined civil airliner will rotate and lift off the runway at approximately

80ms−1. At this freestream velocity, the intake velocity ratio (V R) and intake capture
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streamtube radius (r∞/ri) will be 1.8 and 1.3, respectively. Therefore, during the take-

off and initial climb-out phases of flight, the intake capture streamtube is larger than

the intake diameter, and the flow inside the streamtube characterised by a streamwise

contraction. As the aircraft continues on to the climb and cruise flight phases, the flight

speed increases, and the engine mass flow will decrease. Therefore, there is a further

reduction in the intake velocity ratio and capture streamtube diameter, such that the

intake velocity ratio is close to, or less than, a value of 1.0. During approach and landing,

the aircraft velocity will be similar to that during the initial climb-out flight phase. It

is therefore possible that the capture streamtube will be greater than 1.0. For example,

if the aircraft must perform a go-around manoeuvre, the engine mass flow will increase,

which will cause a corresponding rise in the intake velocity ratio.

Based on the preceding discussion, it is possible to make some qualitative observations

about the likeliness of vortex ingestion at different phases of a typical flight envelope. A

diffusing capture streamtube will typically occur during the high speed and low engine

mass flow conditions experienced during climb, cruise and descent. Streamwise vortex

ingestion is unlikely during these conditions for a number of reasons. Firstly, since the

intake capture streamtube has a diameter close to that of the engine, it is unlikely that a

source of streamwise vorticity will be located inside the intake capture streamtube. Sec-

ondly, during the climb, cruise and descent phases of flight, the aircraft airframe angles

of attack are small. Therefore, it is unlikely that vortices will be generated on the air-

frame. However, during the take-off and climb-out phases of flight, the intake capture

streamtube is likely to be contracting, since the flight speeds are low and the engine mass

flow is large. The risk of vortex ingestion is high because the capture streamtube size

in the upstream region is larger than the intake diameter, and thus there is a greater

possibility that a streamwise vortex will be contained in the intake capture streamtube.

Furthermore, during off-design and low-speed flight, the aerodynamic angle of attack on

various components on the aircraft is increased, the lift coefficients are usually higher and

there is a greater possibility that vortices will be generated.

To summarise, the likeliness of vortex ingestion is greatest during conditions which corre-

spond to a contracting intake capture streamtube. As a result, there is a need to develop

understanding of the behaviour of streamwise vortices in a streamwise contraction.
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2.2 An overview of vortex characteristics

Before considering the behaviour of vortical flow during ingestion, it is first necessary to

establish the characteristics of the streamwise vortices which are likely to occur upstream

of the intake. Fortunately, the characteristics of such vortices are generally well under-

stood. In general, it is possible to classify the vortical flow which is generated by an

aircraft in terms of four separate phases [15], Figure 2.3.

Figure 2.3: Definition of vortex wake regions downstream of a typical civil airliner [15],
where U∞ is the freestream velocity, b is the wing span, x is the distance downstream of

the wing-tip trailing edge, and lµ is the mean aerodynamic chord

The first phase is termed the near field, which extends from the vortex generation point to

a distance which typically corresponds to half a wing span. In this region, the flow in the

near field downstream of a civil airliner normally contains a number of discrete vortices

from the wing-tip, the flap edges, and the junction between the wing and the fuselage,

Figure 2.4.

Figure 2.4: Contours of streamwise vorticity in the near field downstream of a sub-scale
civil airliner model [15]
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The second phase, termed the extended near field, is defined as the region extending from

the near field to approximately 10 wing span lengths downstream of the aircraft. In this

phase, the wake generated by the wing and the fuselage rolls up into the discrete vortices,

and the flow gradually evolves to form two counter-rotating vortices. In the latter phases,

termed the mid-field, far-field and dispersion region, there is an interaction between the

two counter-rotating vortices which gradually leads to their destruction. Based on the

preceding classification, the vorticity which may be ingested by an engine located at the

rear of the fuselage is likely to be in the near field or the extended near field.

2.2.1 Velocity and pressure field

To characterise the perturbation field associated with typical vortices as observed in the

flowfield of an aircraft, it is constructive to consider wing-tip vortices, for which there is

a large amount of measurements and simulations in the literature. Wing-tip vortices are

relevant for this research since it is possible that such vortices may be generated by wing

surfaces, such as canards, placed upstream of an engine intake. A streamwise vortex is

typically formed at the wing-tip of a lifting wing as a result of the differing pressure levels

on the upper and lower levels of the wing [16]. More than one vortex may initially be

formed, depending on the details of the wing geometry. For example, Lee and Pereira

[17] obtained three-component (3C) velocity measurements along the wing-tip of a NACA

0012 rectangular semi-span wing. The wing was mounted inside a low-speed wind tunnel

at an angle of attack of 10o and at conditions which correspond to a Reynolds number

based on the wing chord, (Rec = W∞c/ν), of 3.1× 105. The measurements were acquired

using a 7-hole pressure probe on planes which are perpendicular to the freestream flow at

streamwise locations between x/c = −0.5 and x/c = 4, where x is the streamwise distance

from the wing-tip trailing edge, and c is the wing chord. The streamwise vorticity contours

which have been obtained from the in-plane velocity measurements at x/c = −0.5, Figure

2.5(a), indicate the presence of two vortices, denoted as the ”main vortex” (MV) and a

”secondary vortex” (SV). The peak streamwise vorticity levels are notably larger for the

main vortex. These vortices quickly merge to form a single vortex at the wing trailing

edge, Figure 2.5(b), and the vortex approaches an axisymmetric shape after a few chord

lengths downstream of the trailing edge of the wing 2.5(d).

The streamwise vorticity profile exhibits a dominant peak at the vortex centre, and most

of the vorticity is contained inside the vortex core (Figure 2.6(a)). An important char-

acteristic which defines a streamwise vortex is the circulation Γ. This is defined as the
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(a) (b)

(c) (d)

Figure 2.5: Measurements of streamwise vorticity on planes perpendicular to the
freestream direction downstream of a sub-scale semispan wing [17] (a): x/c = −0.5,
(b): x/c = 0.05, (c): x/c = 0.5, (d): x/c = −4, where x is the distance downstream of

the wing trailing edge, and c is the wing chord

(a) (b)

Figure 2.6: Wing-tip vortex measurements at a distance of x/c = 4 downstream of the
wing trailing edge, [17], (a): Profile of normalised streamwise vorticity (denoted as ζ in
the figure) through the vortex centre, (b): Typical circulation distribution as a function

of distance from the vortex centre
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area integral of the streamwise vorticity ωz or, through Stokes Theorem [18], as the line

integral of the velocity field around a contour in which the vortex is contained.

Γ =

∫ ∫
S
ωzdS = −

∮
C

~V · d~s (2.4)

The circulation can be calculated using the measured vortex velocity field as a function of

distance from the vortex centre, Figure 2.6(b). The vortex circulation increases from zero

at the vortex centre, and approaches a constant value known as the total circulation Γ0 at

a large distance from the vortex centre. It is possible to characterise the strength of the

vortex using the vortex Reynolds number, Eq. 2.5, where ν is the kinematic viscosity. Note

that it is also possible to define the vortex Reynolds number in terms of the circulation

measured at the vortex core radius (Γc). Note that an increase in the vortex Reynolds

number also signifies a rise in the vortex size and the vortex tangential velocities, since

Γc = 2πrcVθ for approximately axisymmetric vortices such as the ones of interest in this

research. Therefore, when the vortex Reynolds number increases, so does the importance

of the inertial terms relative to the viscous terms. As detailed in section 2.3, the vortex

Reynolds number has an important influence on the evolution of the vortex.

Rev =
Γ0

ν
(2.5)

The total circulation of the vortex is closely related to the wing characteristics and oper-

ating conditions. From lifting line theory, the wing-tip vortex total strength is equal to

the maximum wing circulation. Thus, from the Kutta-Joukowski theorem [18], the vortex

total strength (Γ0) can be determined from the total lift of the wing, Eq. 2.6, where Sp

is the wing planform area, and CL is the wing lift coefficient.

ρW∞Γ0b =
1

2
ρW 2
∞SpCL (2.6)

As a result of Eq. 2.6, the vortex total circulation increases in proportion to the freestream

velocity, wing chord length, and the wing lift coefficient, Eq. 2.7.

Γ0 =
1

2
W∞cCL (2.7)

An important feature of the circulation distribution in Figure 2.6(b) is that the circulation

continues to rise, in an asymptotic manner, beyond the core radius of the vortex. This
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behaviour is a result of the presence of additional vorticity in the flow which surrounds

the vortex core. Based on fundamental lifting line theory and Helmholtz vortex theory,

it can be demonstrated that a sheet of streamwise vorticity is produced along the entire

trailing edge of the wing, in which the vorticity is concentrated at the wing-tip in the

form of the wing-tip vortex [16]. As the wing-tip vortex and the sheet of vorticity move

downstream, the vortex sheet rolls up into a spiral and is gradually entrained into the

wing-tip vortex. This behaviour can have a notable influence on the wing-tip vortex

circulation measurements. Measurements from a number of wing-tip vortex measurements

from a variety of wing planforms, cross-sectional geometries and wing-tip shapes have

demonstrated that this roll-up process is typically complete after two or three chord

lengths downstream of the wing trailing edge [16]. However, if a notable portion of the

vortex sheet remains outside of the vortex core, then the circulation profile will continue to

increase slowly with distance from the vortex centre, as observed in Figure 2.6(b). Similar

trends have been reported throughout the literature. For example, Devenport et al. [1]

used a miniature four sensor hot wire to obtain three-component velocity measurements

of the wing-tip vortex flow which was generated by a NACA 0012 rectangular semi-span

wing. The wing had a chord of 0.20m and a semispan of 0.88m, and was mounted in a

low-speed tunnel at an angle of attack of 5o for a chord Reynolds number of 5.3 × 105.

It was found that the streamwise vorticity and turbulent kinetic energy measurements

showed the presence of the vorticity sheet as a spiral surrounding the vortex core after 29

chord lengths downstream of the wing trailing edge. The circulation inside the vortex core

corresponded to between 25% and 29% of the total circulation as expected from lifting

line theory. The circulation profile continued to increase steadily beyond the vortex core

radius, and a maximum of 70% of the theoretical value of Γ0 was measured at the edge

of the measurement region which corresponded to approximately 15rc from the vortex

centre. Consequently, the degree to which the vortex roll-up process is complete is of

interest for wing-tip vortex measurements. Spreiter and Sacks [19] performed a theoretical

analysis on the motion of the vortex sheet in two dimensional, unsteady and incompressible

flow. Under the assumption of an elliptic lift distribution, it was demonstrated that the

streamwise distance from the trailing edge of the wing to the point where the vortex is

considered fully rolled up (e/c) is proportional to the aspect ratio of the wing, and is

inversely proportional to the lift coefficient of the wing. In particular, it is noted that the

rate of the vortex roll-up process is closely linked to the lift distribution along the wing

span. Consequently, for a given wing chord, the distance required for the wing-tip vortex

to roll up will increase for wings is governed by the wing span and, as the wing span is

increased, the roll-up process will be complete at a greater distance downstream of the

wing.
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Figure 2.7: Illustration of typical vortex flow in-plane velocity vectors on a plane
perpendicular to the vortex axis

Consider a streamwise vortex which is superimposed on a uniform freestream flow with a

velocity of W∞, Figure 2.7. The in-plane velocity vectors on a plane which is perpendicular

to the vortex axis will typically indicate a flow which is rotating around the centre of the

vortex. This flow is considered to consist of a central vortical region which is dominated

by the effects of diffusion, surrounded by a flow which behaves almost as a potential flow

[20].

The perturbation field with respect to the flow in which the vortex is contained can be

considered to consist of tangential, axial and radial velocities, defined in a polar coordi-

nate system located at the vortex centre, V=(Vr, Vθ, Vz). Measurements of the typical

velocity field which is associated with a wing-tip vortex were obtained Dosanjh et al.

[21]. A 5-hole pressure probe was employed to measure the three-component velocity field

downstream of a NACA 0009 semispan wing with a chord of 0.28m and a semispan of

0.51m. The wing was mounted in a low-speed wind tunnel at an angle of attack of 8o

and at freestream conditions which correspond to a chord Reynolds number of 1 × 104.

The tangential velocity (Figure 2.8(a)) reaches a maximum value at a certain distance

from the vortex centre, known as the core radius, rc. The velocity distribution in the core

region is proportional to r in a manner which is similar to that of a solid body rotation.

Beyond the vortex core, the tangential velocity distribution decreases as a function of the

inverse of the radius. The peak tangential velocity and vortex core radius are a function

of a number of factors, including the wing angle of attack αvg, the wing-tip shape, and

the distance downstream of the wing trailing edge [16]. For example, Lee and Pereira

[17] measured a peak tangential velocity and core radius of approximately 0.70W∞ and



Chapter 2 Literature review 17

(a) (b)

(c)

Figure 2.8: Normalised wing-tip vortex velocity profiles at measurement planes between
z/c = 1 and z/c = 6 downstream of a sub-scale wing, data extracted from Dosanjh et
al. [21], (a): Tangential velocity (Vθ/Vθ,max), (b): Streamwise velocity (Vz/Vz,max), (c):

Radial velocity (Vr/Vr,max)

0.06c respectively at a measurement plane 5 chord lengths downstream of a NACA 0012

unswept semispan wing at the maximum lift coefficient. A streamwise velocity pertur-

bation relative to the freestream flow (Figure 2.8(b)) is often measured inside the core

of wing-tip vortices. The streamwise velocity perturbation is defined as the difference

between the streamwise velocity at the vortex centre and that in the freestream, that is,

(Vz −W∞). Experimental measurements have demonstrated that the streamwise velocity

perturbation can be positive or negative, referred to as a streamwise velocity excess or

deficit, respectively. For example, Chow et al. [22] and [23] employed a 7-hole pressure

probe to measure the velocity field close to the wing-tip of a NACA 0012 semispan wing

which featured a semispan of 0.91m and a chord of 1.22m. The measurements were ac-

quired for an angle of attack of 12o and a Reynolds number based on the wing chord of
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4.6× 106. measured a streamwise velocity excess corresponding to 0.77W∞. In contrast,

in the measurements of Devenport et al. [1], a streamwise velocity deficit of 0.15W∞ was

measured at a distance of 4c downstream of the NACA 0012 semispan wing.

To explain the behaviour of the streamwise velocity inside a wing-tip vortex, it is instruc-

tive to consider the nature of the static pressure field inside the vortex. As an illustrative

example, consider a vortex with a tangential velocity distribution which corresponds to

the Rankine vortex model inside the vortex core, which consists of a solid body rotation

velocity profile, Eq. 2.8, where Ω is the angular velocity.

Vθ =
Γr

2πr2
c

(2.8)

It can be shown [16] that the static pressure field in the core of a Rankine vortex is a

function of the vortex size and strength, Eq. 2.9, where pc is the static pressure at the

vortex centre.

p− p(r) =
ρΓ2

4π2r2
c

(
1− r2

2r2
c

)
(2.9)

Thus, as a result of the tangential velocity, the static pressure inside the vortex core is

lower than that surrounding the vortex. Insight into the importance of the static pressure

field was provided by the theoretical analysis of Batchelor [24] for steady, axisymmetric,

incompressible, inviscid flow. Furthermore, gradients of velocity in the streamwise direc-

tion, and the radial velocity components, are assumed to be small in comparison to the

streamwise and tangential velocity components. It was subsequently shown that the ra-

dial momentum equation reduces to Eq. 2.10, where p∞ is the freestream static pressure,

at a location far from the vortex, p is the static pressure, ρ is the density, and r is the

distance from the vortex centre.

p∞ − p
ρ

=

∫ ∞
r

V 2
θ

r
dr (2.10)

It is assumed that the streamlines in the flow originate from a steady, uniform freestream

flow with a streamwise velocity of W∞. The Bernoulli function, Eq. 2.11, can then be

employed for any streamline in the flow. To account for the possibility that some of the

streamlines may have passed through the wing boundary layer, or inside a region of the
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flow where dissipation takes place, a loss in total head (∆H) has been incorporated into

Eq. 2.11.

p

ρ
+

1

2

(
V 2
z + V 2

r + V 2
θ

)
=
p∞
ρ

+
1

2
W 2
∞ −∆H (2.11)

It is then possible to substitute Eq. 2.10 into the Bernoulli function (Eq. 2.11). Through

the use of C = rVθ, which represents (1/2π) times the circulation evaluated at a radius

of r from the centre of the vortex, and assuming that Vr is small, the streamwise velocity

along a streamline in the flow is given by Eq. 2.12.

V 2
z = W 2

∞ +

∫ ∞
r

1

r2

∂C2

∂r
dr − 2∆H (2.12)

The second term on the right hand side of Eq. 2.12 represents the contribution to the

streamwise velocity perturbation from the static pressure field which is generated by the

rotational motion of the flow inside the vortex. In wing-tip vortex measurements, such as

that demonstrated in Figure 2.6(b), the circulation distribution typically increases mono-

tonically with distance from the vortex centre. Therefore, the second term in Eq. 2.12

will result in a positive contribution to the streamwise velocity relative to the freestream

velocity. The value of the streamwise velocity, however, depends on the magnitude of

the dissipation effects relative to the contribution from the circulation distribution. This

behaviour has been demonstrated in the measurements of Chow et al. [23]. The static

pressure at the vortex centre was found to be lower than the surrounding flow, Figure

2.9(a), and reduced during the vortex roll-up process to approximately three times the

dynamic pressure of the freestream flow.

As a consequence, a favourable streamwise pressure gradient was generated inside the

vortex core, and the vortex core flow accelerated to a maximum streamwise velocity of

approximately 77% of the freestream velocity (Figure 2.9(b)). The total pressure coef-

ficient reduced progressively during the vortex roll-up process, and reached a minimum

value of −0.76, which corresponds to approximately 1.2% of the freestream total pressure.

This is an important result, since it indicates that a wing-tip vortex consists of relatively

low levels of total pressure loss.

Importantly, Eq. 2.12 and demonstrates that if the effects of dissipation remain constant,

then the streamwise velocity at the vortex centre will increase with the strength of the

vortex. This was investigated experimentally by Anderson and Lawton [25] using a NACA
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(a) (b)

Figure 2.9: Measurements at the centre of a wing-tip vortex (data extracted from Chow
et al. [23], and is corresponding to that reported in Chow et al. [22]), (a): Static and total
pressure coefficients at vortex centre (Cp = (p − p∞)/q∞) and CP,0 = (P0 − P0,∞)/q∞)
respectively), (b): Streamwise velocity at vortex centre normalised by freestream velocity

(wc/W∞),

0015 semispan wing which featured an unswept, rectangular planform, with a chord and

semispan of 0.76m and 0.61m respectively. Chord Reynolds numbers of between 7.5×105

and 1.25×106 were investigated using a low-speed wind tunnel for angles of attack ranging

from 4 − 10o. The three-component velocity field was measured at a distance of 1c and

2c downstream of the wing trailing edge using a triple-wire hot wire probe. At the lowest

angle of attack investigated, the vortex consisted of a streamwise velocity deficit at the

vortex centre. As the angle of attack was increased, there was a rise in the vortex strength

and the streamwise velocity at the vortex centre. The streamwise velocity perturbation

transitioned from a deficit into an excess at approximately α = 8o. Lee and Pereira [17]

demonstrated that this transition occurs at the angle of attack which corresponds to the

maximum lift to drag ratio of the wing. It has also been found that the nature of the

streamwise velocity perturbation is dependent on the details of the wing-tip geometry,

and the distance downstream of the wing [16].

Finally, a radial velocity is often measured close to the vortex, Figure 2.8(c). The radial

velocity perturbation is small in comparison to the tangential and streamwise velocities

[21] and is often neglected [16]. The sign of the radial velocity is linked to the streamwise

velocity perturbation. In the case of a streamwise velocity deficit, the radial velocity is

negative [21], which denotes flow inward towards the vortex centre. Conversely, a positive

radial velocity will exist in the case of a streamwise velocity excess. In general, it has been
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found that the vortex velocity profiles are self-similar with distance downstream of the

wing when normalised by the peak tangential velocity and the core radius. This is evident

in Figures 2.8(a) to 2.8(c), which consists of measurements at different planes between 1

and 6 chord lengths downstream of the trailing edge of a wing.

In summary, a streamwise vortex consists of notable deviations in velocity and pressure

from the uniform freestream flow. After the generation and roll-up phases, the profiles

of the tangential, radial and streamwise velocities generally become self-similar when

normalised by the vortex core radius, along with the maximum values of each respective

velocity component. However, the vortex characteristics show a strong dependence on the

freestream conditions, the angle of attack, and the details of the geometry which created

the vortex.

2.2.2 Vortex wandering

It is often acknowledged that the measurement of intense vortices such as wing-tip vortices

is challenging [16]. A notable source of measurement uncertainty arises due to a charac-

teristic known as meandering or wandering, whereby the vortex core position fluctuates

randomly in time. It is believed that vortex wandering is a result of turbulent flow in the

vortex, which results in an intermittent transfer of fluid from the vortex core to the sur-

rounding flow [26, 16] and a subsequent displacement of the vortex position. This presents

a significant problem for point-based measurement methods where the time-averaged vor-

tex velocity, vorticity and core radius measurements erroneously indicate a larger and

weaker vortex than that which truly arises. For example, Devenport et al. [1] used a

statistical-based approach to correct hot-wire measurements of a wing-tip vortex. The

results suggested that the core radius was over-estimated by 12%, and that the peak tan-

gential velocity and streamwise velocity perturbation were under-predicted by 15% and

11%, respectively.

Zhou et al. [27] employed Particle Image Velocimetry (PIV) to measure the wing-tip vor-

tex which was generated by an unswept, rectangular, NACA 0012 semispan wing at angles

of attack of 8o and 16o and chord Reynolds numbers of between 3.4× 104 and 2.7× 105.

The in-plane velocity measurements at x/c = 3 showed that the peak streamwise vortic-

ity, without correction for wandering, was 33% lower than the corrected measurement.

In addition, due to the large velocity gradients close to the vortex centre, the change

in instantaneous vortex position produces an apparent velocity fluctuation, which intro-

duces a large uncertainty in unsteadiness measurements [1]. Wandering is typically small
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within 1 chord length of the trailing edge [16] and at low angles of attack, and increases

as a function of downstream distance [1]. The effects of wandering must be mitigated or

corrected to ensure that the vortex characteristics can be correctly measured. A number

of conditional-sampling approaches have been employed for fixed probe measurements

[28, 29, 30]. In addition, some statistical-based techniques have also been shown to be

helpful [31, 1, 32]. To conclude, it is apparent that vortex wandering has the potential to

introduce large measurement uncertainties in streamwise vortex measurements. Global

measurement methods, such as PIV, offer distinct advantages since it is possible to track

the position of the vortex on each instantaneous measurement. Therefore, the detrimental

effects of wandering on vortex measurements can be avoided.

2.2.3 Vortex turbulence

Existing literature suggests that sub-scale wing-tip vortices contain turbulent flow. For

example, the wing-tip vortex measurements of Chow et al. [22] demonstrated in-plane

and streamwise RMS velocity fluctuations of more than 20% of the freestream velocity

inside the vortex core during the vortex generation process, and fluctuations close to 10%

at 0.7c following generation.

Tung et al. [28] employed a single hot wire probe to measure the in-plane velocity field

of the wing-tip vortex generated by a two-bladed helicopter rotor at a chord Reynolds

number of approximately 6.9 × 105. The rotor blades were of a rectangular, untapered

planform, with a radius and a chord of 0.105m and chord of 0.076m, respectively. The

measured circulation profile inside the vortex was employed to demonstrate that the wing-

tip vortex consisted of four distinct regions:

- A viscous core, where viscous diffusion is dominant and the velocity distribution is

akin to a solid-body rotation.

- A turbulent mixing region, which contains the peak tangential velocity, and where

turbulent diffusion is large.

- A transition region, where the flow transitions from the turbulent region to the outer

potential flow. There are discontinuous jumps in the circulation distribution due to

the remaining spirals of the vorticity sheet which are yet to be rolled up into the

vortex core.

- An irrotational region, where circulation is constant with radius.
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Figure 2.10: Visualisation of flow inside a wing-tip vortex showing vortex structure
[30]

Such a transitional structure is in agreement with the flow visualisations performed by

Martin et al. [33] and Ramasamy and Leishman [34] on a single-blade helicopter rotor

in hover. The rotor blade was of an untwisted, rectangular planform with a NACA

2415 section, a chord of 0.043m and a radius of 0.406m. The chord Reynolds number

corresponded to 2.5×105. Three regions were identified by Ramasamy and Leishman [34]

(Figure 2.10) which correspond to the first three identified by Tung et al. [28]. In the first

region, interactions between layers of fluid in the vortex core at different radii are small,

and the flow appears to be laminar. In the second region, the flow contains turbulent

structures with a range of sizes, which marks a form of transition from the stratified flow

at the centre of the vortex to the final turbulent region surrounding the vortex.

It is unsurprising that laminar-like flow has been observed in the vortex core, since tur-

bulent flows may undergo relaminarisation where the rotation rate is high. An example

of this is given by Narasimha [35], who report that turbulent flow contained in a pipe

was found to undergo relaminarisation when the angular velocity of the flow was in-

creased. Such relaminarisation effects have also been observed in wing-tip vortex flows.

Bandyopadhyay [26] employed a 7-hole pressure probe, single wire hot wire, and flow

visualisation, to investigate the turbulence characteristics of the wing-tip vortex which is

generated at the junction between two oppositely-loaded NACA 0012 rectangular wings.

The measurements were acquired for a chord Reynolds number of 1×105 and for an angle

of attack of 8o. It was found that there was an intermittent transfer of fluid between the

vortex core and the surrounding flow, and that turbulent portions of fluid which entered

the vortex core were relaminarised by the large rotational velocities. The possibility of

relaminarisation in a vortex can be indicated by the Richardson number, Eq. 2.13, as

given by Holzapfel et al. [36].
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Ri =

[
2Vθ
r2

∂ (Vθr)

∂r

]
/

[
r
∂ (Vθ/r)

∂r

]2

(2.13)

Note that Eq. 2.13 has been modified from the original formulation introduced by Brad-

shaw [37] to capture the impact of streamline curvature or flow rotation on turbulent

flow. Holzapfel [36] reported that the original formulation is incorrectly expressed in a

combination of inertial and fixed reference frames and thus, in Eq. 2.13, the numerator

and denominator are both expressed in the same inertial frame. The Richardson number

corresponds to the ratio of the potential to kinetic energy in the flow [38]. Therefore,

for a known tangential velocity distribution, it is possible to determine the value of Ri

as a function of radius from the vortex centre. Cotel and Breidenthal [38] and Cotel

[39] showed that, for a typical vortex tangential velocity profile, the Richardson number

increases exponentially as the distance from the vortex centre is reduced. Therefore, it

was concluded that turbulence could not penetrate to smaller radii when the Richardson

number rises above Re0.25
v and, under such conditions, turbulence could not be sustained.

Ramasamy and Leishman [40] analysed the rotor wing-tip vortex results reported in [34]

and found that the Richardson number exceeded the maximum threshold for sustaining

turbulence at approximately r/rc = 0.5 (Figure 2.11). It was argued that the variation in

turbulence characteristics from the vortex centre to the flow surrounding the vortex has

an influence on the vortex velocity distribution. A model for the tangential velocity and

circulation profiles which accounts for the stratification effects was then developed and

compared with the experimental measurements, Figures 2.12(a) and 2.12(b). In addition,

the model results were compared profiles given by the Lamb-Oseen [41] and Iversen [42]

vortex models, which assume fully laminar and fully turbulent flow, respectively. It was

Figure 2.11: Variation of Richardson number through a wing-tip vortex [40]
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(a) (b)

Figure 2.12: A comparison of wing-tip vortex measurements with the laminar Lamb-
Oseen vortex model, the turbulent Iversen model, and the transitional R-L vortex model

[40], (a): Tangential velocity profile, (b): Circulation distribution

found that the profile was in very good agreement with the experimental measurements,

although it should be noted that empirical factors contained in the model had to be de-

termined using existing measurements. It is also of importance to note in Figure 2.12(a)

the differences between the experimental measurements and the Lamb-Oseen and Iversen

vortex models. In the vortex core, the experimental measurements are in close agree-

ment with the laminar Lamb-Oseen model, which validates somewhat the observations of

laminar flow in the flow visualisation (Figure 2.10). This is also in agreement with the

findings of Devenport et al. [1], who provided evidence which supported the assertion

of laminar flow in the vortex core. The turbulent Iversen vortex model over-predicts the

slope of the tangential velocity distribution inside the vortex core, which suggests that

turbulent core flow experiences greater levels of strain between fluid elements in the vortex

core. However, beyond the vortex core, the experimental measurements deviate from the

laminar model and approach the profile given by the turbulent vortex model. It should

be noted that the circulation distribution in Figure 2.12(b) continues to increase beyond

the vortex core radius, and slowly approaches Γ/Γ0 of 1.0. This demonstrates that a

notable amount of streamwise vorticity remains in the flow surrounding the vortex core.

It was emphasised in section 2.2.1 that such behaviour indicates that the vortex roll-up

process is not complete for the measurements shown in Figure 2.12(b). As a consequence,

the circulation profile continues to rise at radii beyond the vortex core radius due to the

streamwise vorticity which is contained in the vortex sheet of the wing.

However, a considerable number of measurements suggest the presence of turbulent flow

throughout the vortex. For example, Han et al. [43] obtained three-component velocity
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and turbulent stress measurements in the wing-tip vortex of a helicopter rotor in hover us-

ing Laser Doppler Velocimetry. The rotor consisted of a single, rectangular and untwisted

blade, with a chord and radius of 0.0445m and 0.406m, respectively. The measurements

were acquired from 2.8c to 17c downstream of the rotor trailing edge for a chord Reynolds

number of 2.5× 105. It was found that there were notable turbulence levels at the vortex

centre, with a peak close to the edge of the vortex core. Further downstream, the peak

values reduced, and the peak moved inwards to the vortex centre. Chow et al. [22] found

that, during the roll-up process, the peak turbulence levels were located close to the core

radius. After less than one chord downstream, the turbulence peak was located at the vor-

tex centre. This rapid change of characteristics was attributed to the turbulence damping

associated with the large rotational velocities. Similar trends were also reported by Singh

and Uberoi [44], who employed a four wire hot wire to measure the flowfield associated

with the wing-tip vortex which was generated using a NACA 643 − 618 semispan wing

with a chord of 0.127m and a semispan of 0.458m. The wing angle of attack was 13o, and

the measurements were acquired at positions between 0.8c and 80c downstream of the

wing trailing edge.

The measurements of Chow et al. [23] also identified some important characteristics of the

normal stresses in the wing-tip vortex flow. The streamwise velocity fluctuations (Figure

2.13(a)) where smaller than the corresponding in-plane fluctuations (Figures 2.13(b) and

2.13(c)). Interestingly, the in-plane turbulence contours, when observed in a Cartesian

reference frame, were elliptic in shape. This result indicates that the radial fluctuations

are larger than those in the circumferential direction [23], which has also been observed

in the sub-scale rotor measurements of Han et al. [43] and Ramasamy et al. [30].

In addition to the strong turbulence damping effects, some mechanisms exist which can

lead to turbulence production in the vortex. Han et al. [43] demonstrated that the

in-plane turbulence production could be expressed in polar coordinates as Eq. 2.14.

Pk = −
[

¯V ′θV
′
r

∂Vθ
∂r

+ ¯V ′θV
′
r

Vθ
r
− 2V̄ ′r

2Vθ
r

+ ¯V ′θV
′
z

∂Vz
∂r

]
(2.14)

The first three terms of Eq. 2.14 are related to the tangential velocity profile, and were

found to be dominant in the near field. The latter term was found to be an order of mag-

nitude smaller than in the near field. Importantly, Figure 2.14 indicates that the greatest

levels of turbulence production occur inside the vortex core radius, which is a result of

the large in-plane Reynolds stresses and the tangential velocity profile gradient. In addi-

tion, the last term of Eq. 2.14 suggests that a gradient in the streamwise velocity profile,
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(a) (b)

(c)

Figure 2.13: Wing-tip vortex turbulence measurements in the near field [23], (a):
Streamwise RMS velocity, (b): Vertical RMS velocity, (c): Lateral RMS velocity

which will exist in the presence of a streamwise velocity perturbation, can also contribute

to turbulence production. Phillips and Graham [45] used a two wire hot wire to obtain

measurements of the three-component velocity and turbulent stress fields associated with

the wing-tip vortex which was created by two oppositely-loaded wings. A nacelle was

located between the two wing-tips with the purpose of modifying the streamwise velocity

inside the vortex core. The measurements were acquired in a low-speed wind tunnel, at

a chord Reynolds number of 7.4 × 104 and a wing angle of attack of 9o. It was found

that, in the presence of a large streamwise velocity perturbation, high levels of turbulence

were sustained for considerable distances downstream of the wing. Furthermore, Chow

et al. [22] suggested that the streamwise velocity perturbation was the primary source
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Figure 2.14: Turbulent kinetic energy production levels inside a wing-tip vortex in the
near field, evaluated using Eq. 2.14 [43]

of turbulence production inside the vortex core. Bandyopadhyay et al. [26] employed

the Rossby number, Eq. 2.15, to characterise the relative magnitudes of the streamwise

velocity perturbation and the peak tangential velocity. It was found that the turbulence

levels inside the vortex strongly correlated with the Rossby number, Eq. 2.15, rather than

the vortex Reynolds number. In addition, it was suggested that a lower value of Rossby

number, corresponding to a smaller streamwise velocity perturbation, will promote relam-

inarisation. Ragab and Sreedhar [46] performed LES simulations of an isolated streamwise

vortex in a uniform flow which corresponded to a Mach number of 0.2. The vortex was

prescribed at the inlet boundary using the tangential and streamwise velocity profiles

which were generated using the q-vortex model (see [47] for details). It was found that a

large streamwise velocity perturbation forces the generation of turbulence in the vortex

core. This turbulent fluid causes a redistribution of momentum, which reduces the size of

the streamwise velocity perturbation. After this transient process, the core flow returns

to a laminar state as a result of relaminarisation.

Ro =
W∞ − wc
Vθ,max

(2.15)

To summarise, wing-tip vortices may contain notable velocity fluctuations as a result

of turbulence, although the details of the turbulence characteristics are dependent on

a number of factors, including the location of the measurement point relative to the

wing-tip trailing edge. The literature suggests that the turbulence inside the vortex core
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can influence the characteristics of the mean velocity field. There is a balance between

turbulence production, as a result of the in-plane and out-of-plane mean velocity field,

and turbulence damping due to the large tangential velocities. Therefore, the turbulent

structure inside the vortex is likely to depend on the precise details of the vortex generation

process and the mean velocity field.

2.3 Streamwise vortex evolution in a uniform flow

Following creation, the vortex will convect with the surrounding flow and may persist for

a notable period of time. The manner in which the vortex evolves during convection is

of considerable interest for vortex ingestion flows. Firstly, the vortex may be generated

some distance upstream of the intake, and so the vortex characteristics at the beginning

of the streamtube contraction may be notably different from those observed at a position

close to the vortex generation position. Secondly, the way in which the vortex evolves

over time may help to elucidate some of the important flow physics which could influence

the vortex ingestion process.

For a purely laminar flow, a streamwise vortex will experience vorticity diffusion as a

result of molecular viscosity. This effect can be demonstrated by the Lamb-Oseen vortex

model [41], which is an exact solution of the axisymmetric Navier-Stokes Equations for

two-dimensional flow. The model is time dependent, such that the flow at t = 0 consists

of vorticity concentrated on an infinitesimal line surrounded by irrotational flow. The

streamwise vorticity and tangential velocity distributions are given by Eq. 2.16 and 2.17.

The evolution of the streamwise vorticity and tangential velocity are shown in Figure

2.15(a) and 2.15(b) respectively.

ωz(r, t) =
Γ0

4πνt
exp

(
− r2

4νt

)
(2.16)

Vθ(r, t) =
Γ0

2πr

(
1− exp

(
− r2

4νt

))
(2.17)

For t > 0, peak vorticity is dramatically reduced, and there is a radial diffusion of vor-

ticity to the flow surrounding the vortex axis. (Figure 2.16(c)) The tangential velocity

distribution (Figure 2.16(b)) quickly develops into the characteristic tangential velocity

distribution which is typically observed in wing-tip vortices (Figure 2.8(a)), and the radial

location of the peak gradually moves outward from the vortex centre. This evolution of
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(a) (b)

Figure 2.15: Lamb-Oseen vortex model profiles as a function of distance from the vortex
centre (r) for a vortex total circulation of Γ0 = 0.5m2s−1, (a): Streamwise vorticity (ωz),

(b): Tangential velocity (Vθ)

the tangential velocity profile illustrates that the effect of viscous diffusion is to drive the

core flow towards a solid body rotation. From the tangential velocity distribution, Eq.

2.17, it is possible to determine an expression for the vortex core radius as a function of

time, Eq. 2.18, where αlo is equal to 1.25643.

rc =
√

4αloνt (2.18)

Vθ,max =
Γ0

2πrc
(1− exp (−αlo)) (2.19)

ωz,max =
Γ0

4πνt
(2.20)

The evolution of the core radius, peak tangential velocity and peak streamwise vorticity

as a function of time and vortex total strength (Γ0) are shown in Figure 2.16(a), Figure

2.16(b) and Figure 2.16(c). The vortex diffusion process results in an increasing core radius

with a corresponding reduction in peak tangential velocity and peak streamwise vorticity.

This behaviour is consistent with wing-tip vortex measurements following the roll-up

process (for example, [21, 31, 27]). The core radius growth is independent of the vortex

strength, which appears to be valid when the vortex Reynolds number is less than 105

[48, 39]. However, the reduction in peak tangential velocity and peak streamwise vorticity

as a function of time are greater when the vortex strength is increased. This demonstrates

that the effects of diffusion become more pronounced as the velocity gradients inside the
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(a) (b)

(c)

Figure 2.16: Temporal evolution of vortex characteristics defined by Lamb-Oseen vor-
tex model as a function of vortex total circulation, (a): Vortex core radius (rc), Eq. 2.18,
(b): Peak tangential velocity (Vθ,max), Eq. 2.19, (c): Peak streamwise vorticity (ωz,max),

Eq. 2.20

core are increased. Alternatively, it can be stated that as the core vorticity levels increase,

so does the rate at which viscosity diffuses the vorticity.

It has been found that experimentally-measured vortex growth rates in the near field are

often larger than those given by the Lamb-Oseen vortex model, Eqs. 2.18 to 2.20. Squire

[49] hypothesised that this is a result of accelerated vorticity diffusion due to turbulence in

the vortex flow, which could be modelled using an apparent eddy viscosity νt = δν, where

δ is the apparent viscosity coefficient. It was hypothesised that the apparent eddy viscosity

is proportional to the vortex strength, such that the apparent viscosity coefficient can be

defined as a function of the vortex Reynolds number, Eq. 2.21, [50], where a1 = 6.5×10−5

is an empirically-derived constant [51].

δ = 1 + a1

(
Γ0

ν

)
(2.21)
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In addition, Squire [49] proposed an effective off-set such that a finite core radius rc,0

could be defined at the wing trailing edge. Therefore, Eq. 2.18 can be rewritten, Eq.

2.22.

rc =
√
r2
c,0 + 4αloδνt (2.22)

Bhagwat and Leishman [50] calculated the value of δ for a wide range of experimental

measurements which consisted of vortex Reynolds numbers of between 103 and 107, Figure

2.17. The results suggest that for vortex Reynolds numbers of greater than 104, the

vortex growth rate rises with the vortex Reynolds number in a manner consistent with

the Squire model (Eq. 2.21). This provides strong evidence that the effects of turbulent

diffusion increase in proportion to the vortex strength. Similar results were obtained by

Iversen [42], who calculated δ using the peak tangential velocity measurements from a

range of wing-tip vortex measurements for vortex Reynolds numbers between 104 and

107. There is some scatter in the data presented in Figure 2.17, which can be attributed

to a number of factors. Firstly, it is possible that some of the data has been affected

somewhat by vortex wandering [50], which would tend to indicate larger growth rates

than that which truly exists and would therefore produce an over-estimate of the apparent

viscosity. In addition, it is apparent that turbulent diffusion may influence only a portion

of the vortex downstream evolution. It was emphasised in section 2.2.3 that the details of

the vortex turbulence structure are strongly dependent on the vortex generation process,

and the vortex core may indeed contain turbulent flow which may be relaminarised further

downstream. Therefore, it is possible that the evolution of the vortex may be characterised

by a combination of large growth rates close to the generation point, followed by reduced

growth rates some distance downstream. This may provide at least a partial explanation

as to why the growth rates measured by Devenport et al [1] were close to laminar (δ = 1),

whereas Bhagwat and Leishman [50] at similar vortex Reynolds numbers reported growth

rates consistent with δ = 10. Laminar-like vortex growth rates were also observed in the

measurements of Jacob et al. [52], who employed PIV to measure the in-plane velocity of a

wing-tip vortex which was generated using a rectangular, unswept, semispan NACA 0012

wing. The measurements were acquired in a low-speed towing tank at a chord Reynolds

number between 2 and 6×104 and a vortex Reynolds number of between 0.42 to 3.74×104.

These conditions are similar to those investigated by Devenport et al. [1] and Bhagwat

and Leishman [50]. Nevertheless, the results obtained in Figure 2.17 strongly suggest that

turbulent diffusion plays a role in the vortex evolution at Reynolds numbers of interest at

both sub-scale and full-scale conditions. Furthermore, the results suggest that turbulence
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Figure 2.17: Apparent viscosity coefficient (δ) calculated for a wide range of wing-tip
vortex measurements as a function of vortex Reynolds number (Rev) [50]

diffusion increases with the vortex Reynolds number. It is clear that both laminar and

turbulent diffusion may influence the characteristics of a vortex as it passes through the

intake capture streamtube and, therefore, may have a notable impact on the nature of

the distortion which results inside the intake.

2.4 Vortex intensification

An important feature of vortical flow is the link between the flow velocity and vorticity,

as demonstrated by the unsteady vorticity equation, Eq. 2.23, assuming incompressible

flow and conservative body forces [53].

D~ω

Dt
= (~ω · ∇) ~V + ν∇2~ω (2.23)

The first term on the right hand side of Eq. 2.23 represents the rate of change of vorticity as

a result the stretching and tilting of the vortex lines. Thus, an increase in velocity which is

aligned with the local vorticity vector will produce an increase in vorticity, and conversely

for a reduction in velocity. The second term refers to the diffusion of vorticity under the

action of laminar viscosity. Streamwise vortices feature a similar sensitivity to changes

in the surrounding flow [54], and can experience a change in vorticity in the presence

of velocity gradients [55]. Therefore, it is anticipated that the evolution of a vortex

undergoing ingestion will be dependent on the details of the capture streamtube flow.
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Figure 2.18: Illustration of a vortex line and vortex tube [55], where C refers to a closed
curve around the vortex tube, S refers to the bounding surfaces of the vortex tube, and

V refers to the volume of fluid contained inside the vortex tube

This section will focus first on the fundamental and theoretical lessons which establish the

laws of vortex motion. Thereafter, the findings of a range of experimental measurements

will be provided.

2.4.1 Theoretical models

To better understand vortex intensification, it is first necessary to consider the funda-

mental laws which govern the motion of vortical flow. Such flows can be considered to be

composed of vortex lines, which are defined as lines parallel to the local vorticity vector

~ω, and represent the local axis of rotation of the fluid particles at that location [56]. The

definition of a vortex line is analogous to that of a streamline, which is parallel to the

local velocity vector. A collection of vortex lines passing through a surface in space is

termed a vortex tube, as illustrated in Figure 2.18, which features bounding surfaces S1,

S2 and S3. By definition, the vorticity normal to a vortex tube is zero.

The first Helmholtz law of vortex motion states that, for a fixed time, the integrated

vorticity flux through the vortex tube is constant, Eq. 2.24 [55]. Equivalently, this states

that the circulation of a vortex tube is constant, Eq. 2.25.

∫∫
S1

ω1 · n1dS =

∫∫
S2

ω2 · n2dS (2.24)

∮
C1

~V · d~s =

∮
C,2

~V · d~s (2.25)
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(a)

(b)

Figure 2.19: The qualitative behaviour of a vortex filament, (a): Prior to vortex inten-
sification, (b): After vortex intensification

Further important laws are derived based on the temporal evolution of vortical flow. If

it is assumed that the flow is barotropic and inviscid, and that body forces are conserva-

tive, then the circulation along any material loop is constant and the flow is circulation-

preserving. This is Kelvin’s circulation theorem. The second and third Helmholtz laws

state that a material vortex tube moves with the fluid, and that the strength of a vortex

tube is constant in time [55]. The Helmholtz vortex laws provide an explanation for the

existence of the vortex intensification term in the vorticity equation (Eq. 2.23). Consider

a streamwise vortex tube contained in an incompressible circulation-preserving flow. If

the vortex tube experiences a flow contraction which is aligned with the tube axis, then

continuity dictates that the tube will experience a reduction in cross-sectional area which

is proportional to the increase in velocity. Since the strength of the vortex tube remains

constant, the tube vorticity will increase in proportion to the reduction in the tube cross-

sectional area. This is easily appreciated from Eq. 2.24, and is illustrated qualitatively

in Figure 2.19(a) and Figure 2.19(b). Physically, vortex intensification causes a reduction

in the moment of inertia of the fluid elements, and so their angular velocity increases

to satisfy conservation of angular momentum [53]. In a similar manner, a vortex will

experience a reduction in vorticity when a streamwise diffusion takes place.

The behaviour of vortical flow inside a flow contraction can be elucidated using the concept
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of a vortex filament, which is defined as a vortex tube of infinitesimal size surrounded

by irrotational fluid [57]. As a result of the Helmholtz vortex laws, a vortex filament

will experience vorticity intensification when it passes through a streamwise contraction.

This concept was employed by Prandtl [58] in the study of the evolution of freestream

turbulence in a wind tunnel contraction, and has subsequently formed the basis of a

range of studies of contracted freestream turbulence [59, 60, 61]. It was assumed that the

turbulent eddies contained in the freestream flow consisted of discrete vortex filaments,

such that in-plane velocity fluctuations are attributed to vortex filaments whose axes

were oriented parallel to that of the wind tunnel. Similarly, the out-of-plane velocity

fluctuations were assumed to be a result of vortex filaments oriented perpendicular to the

tunnel axis. Consider a position inside a streamwise contraction which is characterised by

a velocity ratio of w/W∞, where w is the average local streamwise velocity, and W∞ is the

average streamwise velocity prior to entering the contraction. The cross-sectional area of

the vortex filament is inversely proportional to the velocity ratio, and so the radius of the

vortex filament, rf , is inversely proportional to the square root of the velocity ratio, Eq.

2.26, where rf,0 refers to the filament radius in the unperturbed flow.

rf
rf,0

=

√
W∞
w

(2.26)

The streamwise-oriented vortex filament will then experience an increase in average stream-

wise vorticity which is equal to w/W∞, Eq.2.27, where ωz,av,0 is the average streamwise

vorticity prior to the flow contraction.

ωz,av
ωz,av,0

=
w

W∞
(2.27)

It was then assumed that the tangential velocity associated with the vortex filament could

be considered as equal to the product of the average vorticity and the vortex filament

radius (Vθ = ωz,avrf ). Therefore, the tangential velocity increased in proportion to the

square root of the velocity ratio, Eq. 2.28.

Vθ
Vθ,0

=

√
w

W∞
(2.28)

The preceding vortex filament theory assumes incompressible, inviscid flow where circula-

tion is preserved. Furthermore, it is assumed that the vortex filament is of an infinitesimal

size, and that the streamwise velocity w inside the vortex filament is precisely equal to that
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Figure 2.20: Schematic of the Batchelor model [62] for a confined flow inside an ax-
isymmetric contraction

associated with the mean flow. However, Batchelor [62] demonstrated that for vortices

with a finite cross-section, there is a coupling between the in-plane and out-of-plane ve-

locity distributions which can have a notable impact on the vortex intensification process.

Consider a steady, inviscid, incompressible, axisymmetric flow inside a duct, consisting

of a uniform streamwise velocity W with a solid body rotation (Vθ = Ωr) around the

streamwise axis, Figure 2.20, where Ω is the average vorticity of the vortex. Note that

this model is for a bounded flow only, and that the boundary layers on the duct walls are

neglected. Under such conditions, the governing equation of motion can be expressed as

Eq. 2.29, ψ is the stream function, Eq. 2.30.

∂2ψ

∂z2
+
∂2ψ

∂r2
− 1

r

∂ψ

∂r
=

2Ω2

W
r2 − 4Ω2

W 2
ψ (2.29)

Vz =
1

r

∂ψ

∂r
, Vr = −1

r

∂ψ

∂z
(2.30)

It is possible to obtain analytical solutions [62] of the governing equation (Eq. 2.29) by

defining a stream function in terms of the change in flow conditions from the initial state

prior to intensification, Eq. 2.31. Note that F is the departure of the stream function

from the initial condition prior to the flow contraction [62].

ψ(z, r) =
1

2
Wr2 + rF (z, r) (2.31)
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As a result, it is possible to re-write the governing equation as Eq. 2.32, where k = 2Ω/W .

d2F

dz2
+
d2F

dr2
+

1

r

dF

dr
+

(
k2 − 1

r2

)
F = 0 (2.32)

It is then supposed that the flow experiences an axisymmetric transition in the stream-

wise direction, such that the diameter of the duct changes. For example, the flow may

experience a contraction, such that the diameter of the duct is reduced. If we consider

only the conditions far downstream of the transition, then the streamwise gradients are

negligible, and the governing equation reduces to Eq. 2.33.

d2F

dz2
+
d2F

dr2
+

1

r

dF

dr
+

(
k2 − 1

r2

)
F = 0 (2.33)

The general solution of Eq. 2.33 is given as a function of Bessel functions, Eq. 2.34, where

J1 and Y1 are Bessel functions of the first and second kind. The constants A and B can

be determined based on the boundary conditions of the flow under consideration, along

with the initial and final radii of the duct [62].

F = AJ1(kr) +BY1(kr) (2.34)

The model given in Eq. 2.33 has been solved for a range of swirling flows inside a con-

fined contraction or a diffusion [63, 64, 65, 66]. However, the results from the confined

swirling flow studies are of limited applicability to the flow contraction experienced in an

unconfined intake capture streamtube. Leclaire et al. [65] employed a cross-wire hot wire

to measure the effect of a contraction on the three-component velocity and turbulence

characteristics of a rotating flow inside a duct. A rotating honeycomb arrangement was

employed to impart a solid body rotation to an initially uniform low-speed flow in a duct.

The flow subsequently entered a confined contraction with contraction ratios (R1/R0)2 of

4 and 9, where R is the duct radius and the subscripts ”0” and ”1” refer to the conditions

prior to, and downstream of, the contraction. The measurements demonstrated that flow

separation occurred in the duct boundary layers just upstream of the contraction, and can

thus have an influence on the swirling flow characteristics. In addition Rusak and Meder

[64] and Rusak et al. [66] performed numerical studies on the effect of flow contraction on

a swirling flow inside a duct. Asymptotic solutions were obtained for inviscid, incompress-

ible, axisymmetric flow inside a pipe, where the initial flow condition comprised a uniform

streamwise flow in conjunction with a q-vortex tangential velocity profile. Similarly to
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the experimental measurements of Leclaire et al. [65], flow separation was observed on

the walls of the duct inside the contraction. Of course, such a flow features will not occur

inside an intake capture streamtube. In fact, very little attention has been given to the

case of an unbounded swirling flow, and only Batchelor [62] has provided a theoretical

analysis based on Eq. 2.33. It was assumed that an isolated vortex tube of initial radius

rc,1 is contained in an irrotational flow with a uniform streamwise velocity W1. The tan-

gential velocity profile consisted of a solid body rotation inside the vortex tube, and a

potential vortex velocity distribution in the surrounding irrotational region, Eq. 2.35.

Vθ(r) =

{
Ωr if r ≤ rc,1

Ωr2c,1
r if r ≥ rc,1

(2.35)

It was then assumed that the flow just outside the vortex undergoes a transition in stream-

wise velocity from W1 to W2, and that the radius of the vortex tube experiences a change

from rc,1 to rc,2. After the transition, it was assumed that the conditions given in Eq.

2.36 prevail.

Vz = W2 at r = rc,2

ψ = 1
2W1r

2
c,1

(2.36)

The radius of the vortex tube, rc,2, can be calculated using Eq. 2.37, where k = 2Ω/W1.

Note that J0 and J1 are the Bessel functions of the first kind, of orders 0 and 1, respectively,

Eqs. 2.38 and 2.39 [67].

W2

W1
= 1 +

(
r2
c,1

r2
c,2

− 1

)
1
2krc,2J0(krc,2)

J1(krc,2)
(2.37)

J0(krc,2) =

∞∑
m=0

(−1)m(krc,2)2m

22m(m!)2
(2.38)

J1(krc,2) =

∞∑
m=0

(−1)m(krc,2)2m+1

22m+1m!(m+ 1)!
(2.39)

It is assumed that the streamwise velocity is equal to W2 at the edge of the vortex tube.

Following calculation of the radius of the vortex tube, it is then possible to calculate the
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(a) (b)

Figure 2.21: Sample data generated using Batchelor model for Ω = 2000s−1, rc,1 =
0.01m and W1 = 30ms−1 (a) Tangential velocity profile as a function of r (Eq. 2.41), (b)

Streamwise velocity profile as a function of r (Eq. 2.40)

streamwise and tangential velocity profiles, Eq. 2.40 and Eq. 2.41, respectively, which

have been derived from the solution of Eq. 2.33, [62].

Vz
W2

= 1 +

(
r2
c,1

r2
c,2

− 1

)
1
2krc,2Jo(kr)

J1(krc,2)
(2.40)

Vθ
Ωr

= 1 +

(
r2
c,1

r2
c,2

− 1

)
rc,2J1(kr)

J1(krc,2)
(2.41)

Sample tangential and streamwise velocity distributions (Figure 2.21(a) and 2.21(b)) have

been generated for a range of final streamwise velocities W2, given a vortex of initial core

radius rc,1 equal to 0.01m, an angular velocity Ω of 2000s−1 and an initial streamwise

velocity W1 of 30ms−1.

The model suggests that a streamwise velocity excess is generated inside the vortex core

during the intensification process. This excess reaches a value of approximately 10% for

the example provided in Figure 2.21(b) when the final streamwise velocity is four times

that of the initial streamwise velocity. This effect can be attributed to the change in the

vortex static pressure field when the vortex is intensified [62], and is similar to that which

occurs during the vortex generation process (section 2.2.1). Prior to intensification, the

pressure at the vortex centre is lower than that in the surrounding flow. When the vortex
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Figure 2.22: Influence of the initial vortex characteristics (krc,1) on the evolution
of the vortex in a streamwise contraction corresponding to W2/W1 = 2.0, [62], where
(Vz,c,2/W2) is the ratio of the vortex centreline streamwise velocity to the surrounding
freestream velocity, and (rc,2/rc,2,V F ) is the ratio of the Batchelor model vortex core

radius to the vortex core radius as given by vortex filament theory

undergoes intensification, the vortex peak tangential velocity increases, and the core static

pressure is reduced as a result of radial equilibrium. This reduction in static pressure

is even greater than the static pressure drop experienced in the flow surrounding the

vortex due to the flow contraction. Therefore, the favourable streamwise static pressure

gradient inside the vortex during intensification is greater than the static pressure gradient

associated with the flow contraction, and a streamwise velocity excess is produced as a

result.

This coupling between the tangential and streamwise velocities is dependent on the initial

characteristics of the vortex, as well as the intensity of the streamwise contraction. For

a given streamwise contraction, the size of the streamwise velocity excess, expressed as

the ratio of the vortex centreline streamwise velocity and the streamwise velocity beyond

the vortex core (Vz,c,2/W2), increases as a function of krc,1, Figure 2.22. Therefore, the

size of the streamwise velocity excess increases with the initial vortex strength and core

radius. Note that wing-tip vortices may be characterised by values of krc,1 close to 1

[62]. An additional effect of the vortex intensification process is also highlighted in Figure

2.22. When the vortex features an infinitesimal initial core radius, that is, rc,1 → 0, then

the change in core radius (rc,2/rc,1) approaches the value given by vortex filament theory

(Eq. 2.26) [62]. The vortex core radius becomes smaller than that given by the vortex

filament model (rc,2,V F ) when the value of krc,1 is increased (Figure 2.22). This is due to
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(a) (b)

Figure 2.23: Illustration of the flowfield associated with the steady Rott vortex model
[68] for an inflow gradient of a = 1s−1, (a) Streamlines in the r− z plane, (b) Tangential

velocity profile as a function of distance from the vortex centre (r/rc)

the additional intensification which is brought about by the generation of a streamwise

velocity excess.

An important question which arises from the preceding theory is to what extent viscous

and turbulent diffusion affect the intensification process. The inviscid model developed by

Batchelor features a discontinuity in the tangential and streamwise velocity profiles, which

is not consistent with experimental measurements of wing-tip vortices (section 2.2.1). An

exact solution of the Navier-Stokes equations for axisymmetric, incompressible, laminar

viscous flow was investigated by Rott [68]. The model assumes that the flow experiences

an increasing uniform streamwise velocity, Eq. 2.42, in addition to a negative radial

velocity profile, Eq. 2.43, where a = −∂Vr/∂r. The streamlines which correspond to this

flow are shown in Figure 2.23(a).

Vz = 2az (2.42)

Vr = −ar (2.43)

Under such conditions, the flow can be expressed as a linear second-order differential

equation, Eq. 2.44, where σ is a transformed variable. If it is assumed that the inflow

gradient a is constant in time, then it is then possible to obtain a solution for the tangential

velocity profile, Eq. 2.45.
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∂Γ

∂t
− ar∂Γ

∂r
= ν

[
∂2Γ

∂r2
− 1

r

∂Γ

∂r

]
(2.44)

Vθ =
Γ0

2πr

[
1− exp

(
−ar2

2ν

)]
(2.45)

The solution given in Eq. 2.45, Figure 2.23(b) represents the tangential velocity distribu-

tion for t→ ∞, and is equivalent to the Burger’s vortex [55]. The vortex flow is steady,

such that the flux of vorticity convected from the surrounding flow by the negative radial

velocity is balanced by the viscous diffusion [55]. An exact solution for the unsteady case

with a constant inflow gradient can also be obtained. The governing equation is re-written

in terms of a transformed variable σ, such that Γ = Γ(σ), Eq. 2.46, where σ = rF (t).

Rott demonstrated that Eq. 2.46 can be solved analytically for F (t) when the governing

equation is expressed as Eq. 2.47. As a result, the tangential velocity distribution for a

constant inflow gradient is given by Eq. 2.48, where β is an integration constant [68]

(
∂F

∂t
− aF

)
σ
dΓ

dt
= νF 3

[
d2Γ

dσ2
− 1

σ

dΓ

dσ

]
(2.46)

F ′ − aF = −cF 3 (2.47)

Vθ =
Γ0

2πr

[
1− exp

(
−ar

2

2ν

1

1 + βexp(−2at)

)]
(2.48)

It is also possible to obtain solutions for the case where the inflow gradient is a function of

time (a(t)). However, an exact analytical solution is not possible and, instead, numerical

solutions to Eq. 2.47 must be obtained. The tangential velocity distribution is represen-

tative of a typical wing-tip vortex flow. However, the radial velocity is of the same order

of magnitude as the tangential and radial velocities, and increases linearly as a function of

distance from the vortex centre. This behaviour is not representative of wing-tip vortex

flows, in which the radial velocity is typically an order of magnitude smaller than the

streamwise and tangential velocities (section 2.2.1). Furthermore, wing-tip vortex flows

feature a radial velocity perturbation close to the vortex only. Consequently, this model
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is not suitable for capturing the flow physics of a wing-tip vortex inside a streamtube

contraction.

The review of vortex intensification theory has demonstrated that, for an inviscid, incom-

pressible flow, a vortex will experience a reduction in core radius, coupled with an increase

in tangential velocity and vorticity, in response to an increase in velocity in the direction

of the vortex axis. The change in streamwise velocity is a principal parameter in the

definition of the vortex characteristics. A streamwise velocity excess relative to the sur-

rounding flow may be generated during the intensification process as a result of the static

pressure gradient generated by the change in tangential velocity. The magnitude of this

excess, however, is dependent on the magnitudes of the streamwise contraction, the vortex

strength and the vortex size. The Rott vortex model [68] accounts for viscosity during

the vortex intensification process. However, the velocity field assumed by the model is

not representative of wing-tip vortex flows. Furthermore, it has been demonstrated that

the presence of turbulence has a notable effect on the evolution of a vortex in a uniform

flow (section 2.3). It is currently not known to what extent turbulent diffusion affects the

vortex intensification process.

2.4.2 Experimental measurements

A small number of experimental measurements have been focussed on streamwise vortex

intensification for the vortex Reynolds numbers of interest for vortex ingestion.

Ananthan and Leishman [69] and Ramasamy and Leishman [34] studied the evolution

of a wing-tip vortex produced by a hovering sub-scale helicopter rotor located close to

a ground surface. The wing-tip vortex was generated by a single bladed rotor with a

rectangular planform and a NACA 2415 section. The vortex Reynolds number and chord

Reynolds number were approximately 4× 104 and 2.72× 105. Three component velocity

measurements were acquired using Laser Doppler Velocimetry. It was found that the core

radius of the vortex increased downstream of the rotor in a manner consistent with vortex

growth (Figure 2.24(a)). However, after a certain time following generation, the core

radius ceased to grow and subsequently reduced. This was attributed to an interaction

between the rotor flowfield and the ground surface, such that the wing-tip vortex was

stretched along its axis (Figure 2.24(b)). The effects of the strain were incorporated into

the Squire vortex model for application in a free-vortex model. It was assumed that the

wing-tip vortex could be considered as a vortex filament, for which the Helmholtz vortex

theorems apply (section 2.4.1). Consider a section of the vortex filament, of initial length
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(a) (b)

Figure 2.24: Rotor wing-tip vortex filament stretching [69], (a) Measurements of vortex
core radius evolution as a function of wake age, with Squire vortex model (Eq. 2.22)
and combined growth and strain model (Eq. 2.50), (b) Wake expansion as a result of

interaction with the ground surface

l. When the filament is subjected to a strain along its axis, the length of the vortex

filament will increase to l + ∆l. It is thus possible to define the strain on the filament as

ε = ∆l/l. It can thus be shown, under the assumption of conservation of mass, that the

change in the vortex core radius can be determined with Eq. 2.49, [69, 34].

∆rc = rc

[
1− 1√

1 + ε

]
(2.49)

This was implemented into the Squire vortex model as given in Eq. 2.50. It was found that

the vortex model results were in good agreement with the growth model for a constant

turbulent viscosity coefficient (δ), (Figure 2.24(a)).

rc =

√
r2
c,0 +

4αloδν

Ω

∫ ζ

ζ0
(1 + ε)−1dζ (2.50)

Garbeff et al. [70] conducted measurements of a wing-tip vortex with a vortex Reynolds

number of approximately 2× 104 in a mild wind tunnel contraction. A sub-scale NACA

0015 semi-span wing with a rectangular planform was mounted upstream of a mild con-

traction which featured a velocity ratio of approximately 1.4. Measurements of the three

component velocity field were acquired using a hot wire probe. It was found that the

peak tangential velocity increased in a manner consistent with vortex intensification (sec-

tion 2.4.1), but the vortex core radius remained approximately constant. Results obtained
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(a) (b)

Figure 2.25: Measurements of a wing-tip vortex in a wind tunnel contraction, tangential
velocity compared with Rott vortex model profile [70], (a) Upstream of the wind tunnel

contraction, (b) Downstream of the wind tunnel contraction

from the Rott vortex model for an unsteady inflow gradient (section 2.4.1) were compared

with the measurements using a curve fit of the tangential velocity profile just upstream of

the contraction as an initial condition for the vortex model, Figure 2.25(a). It was found

that the increase in tangential velocity given by the vortex model was in good agreement

with the measurements. However, the model results indicated a decrease in core radius

which was not observed in the measurements. It was concluded that vortex wandering

may have contaminated the measurements and resulted in an artificially large core radius.

A limited number of measurements of vortex intensification have been conducted at vor-

tex Reynolds numbers of interest for sub-scale vortex ingestion studies. The experimental

measurements suggest that a streamwise vortex will experience a reduction in vortex core

radius and an increase in peak tangential velocity, in a manner consistent with vortex

theory (section 2.4.1). However, the existing measurements provide only limited informa-

tion on the details of the fundamental behaviour of a vortex during intensification. Based

on the existing knowledge from experimental measurements of vortex intensification and

wing-tip vortex flows, it is possible to identify a number of important aspects which guide

the selection of an appropriate approach in this research to measure vortex intensification.

The first aspect concerns the choice of measurement method. The flowfield associated with

a general vortex ingestion scenario is likely to feature notable perturbations in the in-plane

and streamwise velocity components due to the vortex (section 2.2.1), in conjunction with

the streamwise velocity which is attributed to the capture streamtube flow. Thus, it is

necessary to employ a measurement method which can capture the three-component (3C)

velocity field inside the capture streamtube. In addition, it was emphasised in section 2.2.2
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that wing-tip vortices such as those of interest in this research can demonstrate random

fluctuations of the in-plane location of the vortex centre. This presents a notable difficulty

for fixed-position measurement methods, such as pressure probes or hot wire probes, since

it is not possible to determine the true location of the vortex core. Consequently, a mea-

surement method which captures an instantaneous measurement of the entire 3C flowfield

is advantageous, since it is possible to identify the true location of the vortex centre, and

thus mitigate the effects of wandering on the measurements. A final consideration for

the measurement method is that wing-tip vortices may be sensitive to the presence of

measurement probes in the flow (section 2.2.2). Therefore, a non-intrusive measurement

method, which avoids the placement of probes in the flow, is desirable. Based on the

preceding requirements, Stereoscopic Particle Image Velocimetry (Stereo PIV) has been

selected for use in this research.

The second aspect concerns the influence of the vortex characteristics on the vortex in-

tensification process. Experimental and theoretical studies of streamwise vortices in a

uniform streamwise flow have demonstrated that the influence of vorticity diffusion, and

so the evolution of the vortex, is closely related to the vortex Reynolds number (section

2.3). There is currently no knowledge of the role the vortex Reynolds number during

vortex intensification. As highlighted in section 2.2.1, the strength of a wing-tip vortex

is proportional to the lift coefficient of the generating wing and the freestream velocity.

Consequently, these parameters have been selected in this research to vary the vortex

Reynolds number of the wing-tip vortex prior to intensification.

Finally, existing measurements in the literature have been acquired for fixed flow contrac-

tion levels. The characteristics of an intake capture streamtube can be defined by the

intake velocity ratio (V R = Wi/W∞), given by relative magnitudes of the freestream flow

and the flow inside the intake (section 2.1). As highlighted in the preceding paragraph,

the freestream velocity can be employed to control the vortex Reynolds number of the

wing-tip vortex which is produced by a vortex generator at a fixed lift coefficient. Conse-

quently, a requirement for the present research is to perform controlled parametric studies

for a range of intake and freestream velocities, and for a range of subsequent streamtube

contraction levels.

2.5 Impact of vortex ingestion on aircraft engines

Although there has been no detailed survey to date of streamwise vortex ingestion, there

have been a small number of experimental and CFD studies which are focussed on the
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impact of a streamwise vortex on the intake flow quality and the turbomachinery response.

This section provides a summary of the most important conclusions and consequences.

2.5.1 Intake flow characteristics

The purpose of the intake is to deliver an undistorted, uniform airflow to the engine

throughout the operating range of both the engine and the airframe. However, it is

possible that the inlet flow may be adversely affected once an engine is installed on an

airframe. There have been a number of instances where engine-airframe compatibility

has been found to be poor under certain flight conditions, and the engine performance

and operability have been significantly reduced [2]. In general, inlet flow distortion may

be characterised by nonuniformities of pressure, temperature, and any deviation in flow

direction from that parallel to the intake axis [2]. As outlined in section 2.2.1, a streamwise

vortex generally consists of perturbations of static and total pressure, in-plane velocity

and out-of-plane velocity, relative to the freestream flow. Therefore, when ingested by

an intake, a vortex is anticipated to produce a distortion inside the intake flow. The

purpose of this section is to review the current understanding of the impact of an ingested

streamwise vortex on the quality of the intake flow.

The total pressure distortion which results from the ingestion of vortical flow was inves-

tigated experimentally by Talwar [71] using a 1/30th scale civil aircraft intake model at

intake velocity ratios of 1.2 and 4.0. Streamwise vorticity was generated upstream of the

intake and close to the intake centreline using a semi-span delta wing. At an intake veloc-

ity ratio of 1.2, the total pressure measurements inside the intake revealed extensive total

pressure distortion across the entire intake flow, Figure 2.26(a). The intake flow consisted

of three distinct peaks of total pressure loss. The first two peaks, located at circumfer-

ential positions of 30o and 120o, corresponded to the two streamwise vortices which were

generated by the semi-span wing. The third peak at 240o resulted from the support bar

which was used to mount the delta wing in the tunnel. Despite the presence of the vortex,

there were no separations on the inlet boundary layers. Although the extent of the total

pressure distortion was large, the total pressure loss values attributed to the distortion

were low. The maximum total pressure loss attributed to the delta wing vortices was no

more than 0.01% of the freestream total pressure. By comparison, the total pressure loss

associated with ground vortices can reach as much as 30% of the freestream total pressure

[72].

The total pressure distortion can be characterised by the DC60 distortion descriptor, Eq.

2.51, where Pf is the fan face area-weighted average total pressure, P60 is the mean total
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(a) (b)

(c) (d)

Figure 2.26: Sub-scale measurements of total pressure coefficient inside intake ((P0,∞−
P0)/P0,∞) following ingestion of a streamwise vortex close to the intake centreline, (a):
Delta wing vortex, VR=1.2[71], (b): Delta wing vortex, VR=4.0[71], (c): Rectangular

wing, VR=1.2[73], (d): Rectangular wing, VR=3.8[73]

pressure in the 60o sector where the mean total pressure is lowest, and qf is the mean

dynamic pressure at the fan face.

DC60 =
Pf − P60

qf
(2.51)

The DC60 value for centreline ingestion was found to be 0.035, which indicates low levels

of total pressure distortion. For example, DC60 values of between 0.05 and 0.10 are often

considered as being an appropriate limit to ensure compatibility between the intake and

the engine [74, 75], and values of the order 0.4-0.6 may induce engine surge [76]. The
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DC60 parameter increased in response to the change vortex ingestion position, Figure

2.27. This was attributed to an interaction between the vortex and the intake inner

surface boundary layer fluid. However, the interactions did not produce a notable increase

in the total pressure distortion levels. The distortion levels were found to decrease by

an order of magnitude when the intake velocity ratio was increased from 1.2 to 4.0.

This is a result of two effects indicated by a comparison between Figures 2.26(a) and

2.26(b). Firstly, when the intake velocity ratio is increased, the distortion associated

with the vortex is distributed over a smaller area of the intake flow. This is consistent

with the vortex filament theory outlined in section 2.4.1, which suggests that streamwise

vortices will experience a reduction in core area which is inversely proportional to the

streamtube contraction levels. Therefore, the total pressure loss contained inside the

vortex cores will be distributed over a reduced area of the intake flow when the intake

velocity ratio is increased. Secondly, the total pressure loss inside the vortex was found

to be approximately constant for a change in intake velocity ratio. As a result, the

denominator in Eq. 2.51 increases in proportion to the square of the intake velocity, and

the DC60 value is reduced. The intensity of the total pressure distortion observed close

to 240o increased when the intake velocity ratio was increased. It was suggested that a

boundary layer separation may have been induced by the interaction between the vortex

and the low-momentum boundary layer fluid on the intake inner lip surface. The intensity

of the boundary layer separation was, however, small, and the total pressure distortion

levels remained low.

Similar distortion levels were measured by Hodjatzadeh [73], who measured the intake flow

distortion which results from the ingestion of a wing-tip vortex generated by an unswept,

high aspect ratio wing. For an intake velocity ratio of 1.2, the peak value of total pressure

loss was approximately 3 times greater than that associated with the delta wing, 2.26(c).

However the rectangular wing distortion is distributed across a far smaller region of the

intake flow. This was attributed to the fact that, unlike the delta wing, the distortion field

produced by the rectangular wing consisted of only one discrete wing-tip vortex. As a

result, the DC60 values measured by Hodjatzadeh were close to those measured by Talwar

(Figure 2.27). Similar conclusions could be drawn from the distortion measurements at

an intake velocity ratio of 3.8, Figure 2.26(d).

Measurements of flow angularity were also acquired by Hodjatzadeh [73]. The intake flow

consisted of large flow angles, Figure 2.28(a), which ranged between +22◦ and −19◦ in

the region close to the vortex centre. These notable levels of flow angularity are a result of

the vortex tangential velocity field superimposed on the intake flow. The maximum swirl

angles were reduced to between +9◦ and −6◦ when the intake velocity ratio was increased
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Figure 2.27: DC60 values calculated from total pressure distortion of intake flow as a
function of distance from the intake centreline (y/Di) (data extracted from [71])

(a) (b)

Figure 2.28: Sub-scale measurements of intake flow swirl angle following ingestion of
a wing-tip vortex close to the intake centreline [73], (a): Intake velocity ratio = 1.2, (b):

Intake velocity ratio = 3.8
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from 1.2 to 3.8, Figure 2.28(b). This can be explained with reference to the vortex filament

theory outlined in section 2.4.1. For an inviscid flow, the vortex filament radius will reach

a value which is proportional to the square root of the increase in intake velocity ratio.

As a result of conservation of angular momentum, the filament tangential velocity will

increase in proportion to the square root of the intake velocity ratio. Therefore, inside

the intake, the ratio of the peak tangential velocity to the streamwise velocity will reduce

when the intake velocity ratio increases, which will produce a corresponding reduction in

the peak flow angularity. This result demonstrates a link between the peak flow angularity

and the intake velocity ratio for a given freestream condition, and suggests that vortex

ingestion during low intake velocity ratio conditions will produce the greatest levels of

swirl distortion. However, the vortex characteristics upstream of the intake were not

obtained, so it was not possible to assess the change in peak flow angularity as a result

of the ingestion process.

The preceding results have indicated the impact of a vortex on the flow distortion inside

a conventional aircraft intake. However, as outlined in the introduction, vortex ingestion

may also be a scenario where complex s-shaped intake designs have been employed, such as

those installed on military aircraft. Even in the absence of an ingested vortex, such flows

are typically characterised by notable levels of total pressure and swirl distortion which

are induced as a result of the change of direction experienced by the flow inside the intake.

An important aspect which must be addressed is whether an ingested vortex will have

an influence on the distortion characteristics. Anderson [77] conducted simulations of the

behaviour of a streamwise vortex inside a military aircraft s-duct geometry. The intake

geometry featured flow control vortex generators on the intake surface to mitigate flow

separation on part of the intake surface. The ingested vortex imparted notable levels of

swirl to the intake flow. When a counter-clockwise rotating vortex was ingested, the flow

control vortex generators were rendered ineffective. This result suggests that the ingestion

of a streamwise vortex has the potential to cause a deterioration of the flow quality inside

the intake. For example, if flow control vortex generators are employed to reduce the

intensity of the distortion inside the intake, an ingested vortex may remove the effect of

the vortex generators, and the flow distortion intensity may increase. Interestingly, this

effect was not observed for a clockwise rotating vortex, which suggests that the effect

of the vortex on the flow close to the vortex generators is important. It has also been

found that the ingested vortex may interact with the flow distortion inside the s-duct.

This was investigated experimentally by Wendt and Reichert [78]. Flow control vortex

generators were used upstream of the s-duct to alleviate the flow distortion levels. The

intake flow without the presence of the ingested vortex consisted of notable levels of swirl
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(a) (b)

(c)

Figure 2.29: Measurements of in-plane velocity and total pressure downstream of an
s-shaped intake [78], (a): No vortex at inlet to intake, (b): Streamwise vortex ingested
at centreline, (c): Streamwise vortex ingested close to surface where induced distortion

originates

and total pressure distortion, 2.29(a). When a streamwise vortex was ingested at the

intake centreline, there was an increase in the intensity of the swirl distortion and a small

improvement in the total pressure distortion 2.29(b). This effect was even stronger when

the vortex was ingested close to the surface where the self-generated distortion originates

2.29(c). It was concluded that the streamwise vortex had increased the effectiveness of

the flow control vortex generators. Although the total pressure distortion was reduced,

the swirl distortion intensity and complexity was increased. It should also be noted that,

in light of the findings of Anderson [77] discussed above, the effect may be dependent on

the rotation direction of the vortex.

In summary, sub-scale measurements on a conventional aircraft intake have indicated that

the inlet flow distortion which results from streamwise vortex ingestion is characterised

by low levels of total pressure distortion but notable levels of flow angularity. The total

pressure distortion is greatest at low intake velocity ratios, and increases when the vortex

was ingested at positions further from the intake centreline as a result of interactions

between the vortex flowfield and the intake inner surface boundary layers. Based on prior

experience of the response of aircraft engines to total pressure distortion, it is concluded
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that the distortion levels measured in the sub-scale tests would be unlikely to provoke

engine instability. In a manner similar to the total pressure distortion, the peak flow

angularity is greatest during low intake velocity ratio conditions. The available measure-

ments suggest that the peak flow angles reduce when the intake velocity ratio is increased,

in a manner which is consistent with inviscid vortex filament theory. However, there is no

understanding of the change in flow angularity when the vortex is ingested through the

streamtube contraction. Vortex ingestion has also been found to impact the distortion

characteristics of complex s-shaped intakes. For a given configuration, there may be a

reduction the total pressure distortion levels, with a corresponding increase in the swirl

distortion intensity [78].

2.5.2 Response of turbomachinery to streamwise vortices

The preceding section has highlighted that the ingestion of a streamwise vortex can in-

troduce both total pressure and swirl distortion to the intake flow. In this section, the

response of the aircraft engine to such distorted intake flow conditions will be reviewed.

The response of a full-scale turbojet engine to the ingestion of a wing-tip vortex was

investigated by Mitchell [8]. A streamwise vortex was generated using a tapered wing

mounted upstream of the engine, and was ingested through a moveable supersonic intake

geometry. The measurements, conducted for intake velocity ratios of between 0.6 and

0.8, demonstrated that the ingestion of the streamwise vortex caused a large reduction

in the compressor stability margin, which refers to the proximity of the operating point

of the compressor relative to the surge line. The loss in the compressor stability margin

was defined in terms of the Loss in Stability Pressure Ratio (LSPR), Eq. 2.52, where

Pav is the average total pressure, and subsripts ”2” and ”3” refer to measurements at

the compressor face and the compressor exit, respectively. In addition, subscript ”V”

refers to measurements when the vortex was ingested, and ”U” refers to the undistorted

intake flow conditions. Note that the parameter LSPR has been computed along a line of

constant corrected rotational speed, and represents the change in the compressor pressure

ratio at which compressor surge is encountered.

LSPR = 1−
(Pav,3/Pav,2)V
(Pav,3/Pav,2)U

(2.52)

The measurements demonstrated that loss in stability margin is dependent on both the

vortex centre location at the fan face and the vortex rotation direction relative to the
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Figure 2.30: Loss of stability pressure ratio (LSPR) due to the ingestion of a wing-tip
vortex, where h/H indicates the approximate location of the vortex centre relative to the

intake lower lip, located at h/H = 0 [8]

compressor. The greatest loss in stability occurred when a vortex, rotating in a direction

opposite to that of the compressor, was located close to the hub at the compressor face.

During such an event, the compressor stall pressure ratio was 33% closer to the nominal

operating line when compared to the undistorted surge line [79]. This demonstrates that

there is a high risk that an aircraft engine will surge as a result of the ingestion of a

streamwise vortex. The intake flow total pressure measured just upstream of the fan

face indicated that there was a total pressure loss of approximately 5% of the freestream

total pressure confined to the region close to the vortex. Importantly, the loss in stall

compressor pressure ratio was up to 28% above the anticipated loss as calculated using the

measured total pressure distortion at the engine face, Figure 2.30. The disparity between

the measured and estimated loss in stability margin was attributed to the swirl distortion

associated with the vortex. This suggests that conventional total pressure distortion

descriptors may not be applicable for vortex distortions. As a result, engine sensitivity to

swirl distortions may be dramatically underestimated if only the total pressure distortion

is used as a measure of the intake flow distortion characteristics. This result also suggests

that the swirl distortion plays a more important role than the total pressure distortion in

influencing the stability of the compressor.

Similar behaviour has been observed by Meyer et al. [9], who conducted experiments

using a low bypass ratio turbojet engine. A delta wing with a variable angle of attack was

placed inside the intake duct upstream of the fan location. This produced a twin swirl

pattern at the fan face, Figure 2.31(a) and a total pressure distortion pattern which is



56 Chapter 2 Literature review

similar to that measured in the s-duct configuration of Wendt [78]. The swirl distortion

levels were characterised by the fan face average absolute swirl angle τ̄ . The total pressure

loss inside the vortex cores was approximately 5% of the freestream total pressure, which

corresponds to a DC60 level of 0.15. Therefore, based on the total pressure distortion,

the compressor response was anticipated to be small. However, the measurements found

that the ingestion of the vortices caused a notable reduction in mass flow, total pressure

ratio, efficiency, and surge margin. The deterioration in compressor stability margin was

greater when the average swirl angle τ̄ was increased, and for higher engine mass flows,

Figure 2.31(b).

(a) (b)

Figure 2.31: Measurements of the impact of counter-rotating streamwise vortices cre-
ated by a delta wing vortex generator [9], (a): In-plane velocity vectors upstream of
engine face, (b): Loss of surge margin as a function of mean absolute swirl angle and

engine mass flow

At the highest level of swirl distortion investigated, the average swirl angle at the fan

face was 13o, and the corresponding peak flow angle was approximately 17o [80]. Under

such conditions, it was found that there was a 26% reduction in surge margin, which is

a similar value to that measured by Mitchell [8]. In addition, there was a 5% reduction

in mass flow, a 4% reduction in compressor total pressure ratio, and a 7% reduction in

compressor efficiency. This demonstrates that vortex ingestion not only increases the risk

of compressor surge, but it also causes a deterioration in the overall performance of the

engine. Importantly, it was found that the compressor surge margin did not have a tol-

erance to the swirl distortion, and a loss in surge margin was measured even when the

average swirl angles were small. The measurements highlight that the turbomachinery

response depends on the flow angularity of the intake flow. In the case of a streamwise

vortex, the flow angularity is strongly dependent on the size and strength of the vortex,
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and is likely to depend on the details of the ingestion process and the initial vortex char-

acteristics prior to ingestion. However, at present, this information cannot be determined

for the ingestion of a streamwise vortex, since the details of the ingestion process are not

fully understood.

To summarise, it has been found that a streamwise vortex has the potential to notably

reduce the performance and operability civil aircraft engines. In particular, losses in surge

margin of up to 33% have been measured, with corresponding losses in efficiency, mass

flow, and pressure ratio. The turbomachinery response is larger than that anticipated from

the measured total pressure distortion, which indicates that the swirl distortion associated

with the vortex plays a significant role. The available results suggest that the loss in

engine performance is proportional to the flow angularity levels inside the intake flow.

Therefore, it is imperative that details of the vortex characteristics following ingestion

are known in order to assess the potential impact on the stability and performance of the

turbomachinery.

2.5.3 CFD modelling requirements for vortical flows

It has been found in the literature that the simulation of vortical flows using Compu-

tational Fluid Dynamics (CFD) is somewhat challenging. For example, in the steady

RANS simulations of Egolf et al [81], it was reported that after only two chord lengths

downstream of the wing trailing edge, the CFD simulations predicted a vortex peak tan-

gential velocity which was only 40% of the experimental value. This was attributed to the

numerical diffusion which was generated in the CFD simulations. For vortical flows, the

result is an elevated core radius growth, along with reduced peak tangential velocities and

vorticity. A review of the literature has shown that the order of accuracy of the spatial

discretisation method, the grid resolution, and the turbulence model, have a significant

influence on the level of numerical diffusion.

An important source of numerical diffusion is the numerical discretisation approach.

Dacles-Mariani et al.[82] performed RANS simulations of a vortex convecting in a uni-

form streamwise flow using a 5th order numerical scheme. It was found that between 15

and 20 uniformly-spaced mesh elements were required across the vortex core to obtain a

grid independent solution. It was also advised that a streamwise grid spacing of twice

that of the in-plane grid resolution should be employed. Similar conclusions were reached

by Egolf et al. [81], who concluded that 14 points should define the vortex core when

using a 5th order numerical scheme for inviscid simulations of a convecting vortex in a
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uniform flow. In addition, it was reported that the mesh resolution requirements could

be relaxed if the order of accuracy of the numerical scheme was increased. For example,

on a mesh with 7 points in the vortex core, a 9th order numerical scheme produced a

peak tangential velocity which was within 5% of the experimental measurements after a

convection distance of two wing chord lengths. By comparison, the results using a 3rd

order scheme indicated a peak tangential velocity which was 50% of the measured value.

However, Spall [83] performed inviscid computations of the convection of a vortex profile

using a grid with 15 points in the core, and found that the decay in tangential velocity

due to numerical diffusion caused an error of only 10% over two chord lengths. Therefore,

it can be concluded that a balance between the mesh quality and the order of accuracy

of the numerical scheme is imperative.

It has been found that the turbulence model can produce numerical diffusion which

is dominant even when a suitable mesh and numerical scheme is employed. This has

been particularly apparent in simulations which use eddy viscosity models. For example,

Dacles-Mariani at al [82] found that after less than one chord length from the trailing

edge, the magnitude of the velocity at the vortex core radius was only 65% of the experi-

mental value for both 3rd order and 5th order numerical schemes, even with a sufficiently

fine mesh in the core region (Figure 2.32(a)). It was noted that the formulation of the

turbulence model lead to the generation of large levels of turbulence inside the core [82].

This is in contrast to the experimental measurements, which demonstrated turbulence

suppression as a result of the large tangential velocities. This is a common trend for eddy

viscosity models, which typically use vorticity in the production terms. To address this

issue, an empirical correction function, often referred to as curvature correction [84, 85],

was used to mimic the tendency of turbulence suppression in vortex cores. In particular,

the production term was modified to include a comparison between the mean strain rate

and the vorticity. In this way, the turbulence production levels were minimised in regions

where the vorticity is high and the strain rate is low, which is a feature of vortex cores [82].

The correction term successfully suppressed the turbulence in the core, and resulted in

considerable improvements in the agreement with the experimental measurements (Fig-

ure 2.32(a) and 2.32(b)). The difference between the predicted and measured velocity

magnitude in the vortex was reduced to less than 10%.

However, as identified by Dacles-Mariani et al. [82] it may not be possible to correctly

capture the flow physics of vortex flows using eddy viscosity models. Experimental data,

such as that obtained by Chow et al. [22] and Ramasamy et al. [30], show that the mean

strain rate and Reynolds stress tensors are not aligned (Figure 2.33(a) and 2.33(b). The

Reynolds stress tensor is rotated by approximately 45o relative to the mean strain rate
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(a) (b)

Figure 2.32: Comparison between measured and simulated wing-tip vortex velocity
characteristics [82], (a): Velocity magnitude at vortex centre as a function of distance
downstream of wing-tip trailing edge, (b): Profile of velocity magnitude through vortex
centre at x/c = 1.24. 3rd-order and 5th-order refer to the order of accuracy of the numer-
ical scheme, unmodified and modified BB model refer to the Baldwin-Barth turbulence

model without and with curvature correction, respectively

(a) (b)

Figure 2.33: Measurements of wing-tip vortex flowfield, (a) Mean in-plane strain rate,
(b) Mean in-plane Reynolds stress

tensor. This poses a problem for eddy viscosity models, which employ the Boussinesq

assumption to relate the mean strain to the effects of turbulence. The Boussinesq as-

sumption states that the turbulent stress tensor is linearly related to the mean strain rate

tensor through a scalar constant known as the eddy viscosity. Therefore, the inherent

assumption in all eddy viscosity models is that the turbulent stress tensor is aligned with

the mean strain rate tensor. The measurements illustrated in Figures 2.33(a) and 2.33(b)

indicate that this is not a valid assumption for vortex flows. As a consequence, the flow
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physics of vortex flow cannot be correctly modelled using eddy viscosity models. An al-

ternative is to employ a Reynolds Stress Model (RSM). Wells et al. [84] simulated the

wing-tip vortex generation process and near-field behaviour for the case corresponding to

Devenport et al. [1]. It was demonstrated that the RSM results were in close agreement

with the experimental measurements (Figure 2.34). The eddy viscosity model predicted

excessive turbulence levels in the vortex core, which lead to an under-prediction of the

peak tangential velocity and an over-prediction of the vortex core radius. It was also

found that the use of a curvature-correction model improved the agreement between the

simulations and the measurements. However, the curvature-correction results remained

inferior to those obtained using an RSM approach.

Figure 2.34: Comparison between measured and simulated wing-tip vortex tangential
velocity profile at x/c = 4 downstream of wing trailing edge [84], where FRSM refers
to Full Reynolds Stress Model, SA refers to the Spalart-Allmaras turbulence model,

”w/correction” refers to simulations which employ the curvature-corrected SA model

To summarise, the literature has highlighted that the results obtained from RANS CFD

simulations of vortex flows are very sensitive to modelling approach. Numerical diffusion

from the spatial discretisation and the turbulence model typically result in a simulated

vortex which features an underpredicted velocity field and an overpredicted size. This

may have important implications for vortex ingestion simulations, since the intensity of

the inlet flow distortion which results from vortex ingestion may be underestimated. To

mitigate the effects of numerical diffusion, it is necessary to maintain a high mesh res-

olution inside the vortex core to ensure that the velocity gradients are well resolved. It

has been found that eddy viscosity simulations are in reasonable agreement with experi-

mental measurements if curvature correction methods are used. However, the particular

behaviour of the stress and strain field in the vortex invalidates the assumptions used in

the formulation of eddy viscosity models. As a result, higher order turbulence models,
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such as Reynolds Stress Models or Large Eddy Simulations, are advocated to capture the

vortex flow physics.

2.6 Summary

2.6.1 Existing knowledge pertinent to vortex ingestion

- The risk of ingestion of an externally-generated streamwise vortex is likely to be

greatest where the intake capture streamtube is contracting. This occurs during

low speed flight and high engine mass flow conditions, where the lift coefficients of

various airframe components are likely to be largest, and the aircraft is not operating

at the design condition.

- Fundamental theory indicates that a streamwise vortex will undergo intensification

in response to a streamwise flow contraction. As a result, the vortex will experience

a reduction in core radius, coupled with an increase in peak tangential velocity and

streamwise vorticity.

- A small number of experimental studies have addressed the behaviour of stream-

wise vortices undergoing intensification. Ananthan and Leishman [69] demonstrated

that the vortex core radius reduces in response to the strain field imposed by the

interaction between the rotor wake and the ground. The evolution of the vortex

core radius was successfully modelled using the Squire vortex model coupled with a

simple correction based on continuity. Garbeff et al. [70] measured the behaviour

of a wing-tip vortex in a mild wind tunnel contraction and found that the vortex

peak tangential velocity increased, which is consistent with vortex intensification.

However, the core radius did not reduce, as would be expected during vortex inten-

sification. This was attributed to vortex wandering, which often limits the accuracy

of point-based measurement methods.

- The ingestion of a streamwise vortex can considerably reduce the engine surge mar-

gin. In addition, loss of efficiency, mass flow, which suggests that, even if engine

doesn’t surge, there is potential for a notable loss of performance, which may occur

at critical points in the flight.

- Streamwise vortices consist of very low levels of total pressure distortion, as con-

firmed by both sub-scale [71, 73] and full-scale measurements [9, 8]. The typical

total pressure distortion values are below the levels considered to be an issue for

engine stability and performance.
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- Engine response is worse than that anticipated from assessments which are based on

the total pressure distortion characteristics, which suggests that the swirl distortion

is the primary effector. In addition, it has been found that the engine response

worsens as the flow angularity inside the intake flow is increased. Measurements

of all three velocity components during the vortex ingestion process are therefore

required to characterise the flow angularity levels which are attributed to the vortex.

- An ingested streamwise vortex interacts with the induced distortion which is pro-

duced inside complex s-shaped intakes. The vortex has the potential to render flow

control vortex generators ineffective, which may cause a dramatic increase in the

self-generated distortion intensity.

- Care must be taken when simulating vortex flows using RANS CFD simulations. A

number of studies, primarily focussed on wing-tip vortex generation and near-field

behaviour, have suggested that increased mesh resolution is required inside the vor-

tex core, in conjunction with a high-order numerical scheme. In addition, it has

been found that conventional turbulence models used for most engineering studies

result in an unrealistic vortex growth rate. This is a symptom an over-prediction

of turbulence inside the vortex. Importantly, this may cause an underprediction of

the distortion intensity which results from vortex ingestion. Although some cor-

rection methods have been used to mitigate the vortex core turbulence levels, the

assumptions which are used in the formulation of eddy-viscosity models are not valid

in vortex flows. Therefore, simulations using RSMs or LES must be performed to

correctly capture the vortex flow physics.

2.6.2 Current deficiencies in knowledge

- There has been no detailed survey of the evolution of the velocity perturbation

field or the characteristics of a streamwise vortex in a contracting intake capture

streamtube. Thus, there is little knowledge of the characteristics of a vortex once it

has been ingested by an intake.

- There is little fundamental understanding of the effect of laminar or turbulent dif-

fusion on the vortex intensification process. However, it is known from wing-tip

vortex convection studies that diffusion may have a notable impact on the vortex

evolution.

- Prior experimental measurements have considered only a very limited number of

cases of vortex intensification. Therefore, there has been no controlled assessment
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of the impact of the vortex characteristics or the contraction characteristics on the

vortex intensification process.

- Experimental measurements of the impact of streamwise vortices on aircraft engine

performance and operability have suggested a strong dependence on the flow angu-

larity levels of the intake flow. Since there is little understanding of the evolution

of a streamwise vortex through the intake capture streamtube, it is not possible to

estimate the likely vortex characteristics after ingestion. Therefore, an assessment

of the likely inlet flow distortion levels is not possible. In addition, it is currently

not known which vortex ingestion scenario is likely to produce the highest levels of

inlet flow distortion, and so the ”worst-case scenario”’ has not been identified.

- The behaviour of a streamwise vortex in a uniform flow suggests that full-scale

vortices may experience higher levels of diffusion than those at sub-scale. Therefore,

the potential scale effects on the vortex ingestion process and the subsequent inlet

flow distortion characteristics must be identified.





Chapter 3

Experimental methods

This Chapter provides details of the experimental methods used to obtain quantitative

measurements of the behaviour of a streamwise vortex during ingestion. This includes

a description of the experimental apparatus, measurement systems and the test matrix.

Thereafter, the approach used to post-process the experimental data and to extract the

vortex characteristics is described. Finally, an assessment of the experimental uncertain-

ties is provided.

3.1 Sub-scale intake model

A 1/30th scale axisymmetric aircraft intake model was employed to generate an intake

capture streamtube which is representative of a typical civil aircraft engine, Figure 3.1(a).

This intake model has been used in previous studies at on ground vortex ingestion [13] and

initial studies on the flow distortion which is caused by the ingestion of streamwise vortices

[71, 73]. The intake model consists of an axisymmetric duct with an inner diameter of

Di = 0.1m, and an outer diameter of 0.14m. The intake lip geometry is defined by an

ellipse with a major to minor axis ratio of 2 : 1.

Boundary layer transition trips consisting of serrated aluminium tape were attached on

the inner and outer surfaces of the intake lip. This approach was selected based on

prior experimental investigations on the intake geometry which suggested that laminar

separation bubbles may occur on the intake lip at the Reynolds numbers of interest in this

experimental programme [71]. To facilitate measurements of the flow inside the intake,

65
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(a)

(b)

Figure 3.1: Sub-scale intake model, (a): Photograph of intake model, (b): Schematic
of intake model with key dimensions (Table 3.1)

Table 3.1: Intake model dimensions (Figure 3.1(b))

Property Value
D (m) 0.14
DL (m) 0.12
Di (m) 0.10
Li (m) 0.254
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Figure 3.2: NACA 0012 semi-span wing and splitter plate

thirty-six equi-spaced static pressure ports are installed on the inner surface at 0.65Di

downstream of the highlight plane.

3.2 Vortex generators

An objective in this research is to perform a controlled assessment of the effect of the

initial vortex characteristics on the vortex ingestion process. To this end, two different

vortex generators were employed to create streamwise vortices of a range of characteristics.

This section provides a description of the vortex generators.

The first vortex generator employed in this research was a NACA 0012 semi-span wing,

which features a chord of 0.15m and a span of 0.45m, Figure 3.2. A boundary layer

transition trip strip was attached at approximately 7% chord on the suction and pressure

surfaces to promote a turbulent boundary layer and thus to prevent the formation of

laminar separation bubbles. The wing root section was connected to a circular splitter

plate with a diameter of 0.45m to maximise the strength of the wing-tip vortex and to

avoid flow contamination from the support mechanisms. The wing and the splitter plate

were connected to a telescopic bar. The connection allowed the wing and the splitter

plate to rotate about the spanwise axis of the wing. Therefore, it was possible to control

the angle of attack of the wing independently of the telescopic support system.
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(a) (b)

Figure 3.3: Semi-span delta wing, (a): Schematic showing dimensions, (b): Photograph
of delta wing installed with splitter plate

In addition, a semi-span delta wing was designed for the experimental programme. The

vortex generator featured a chord length of 0.20m, a span of 0.105m, a sweep-back angle

of 60o, and a maximum thickness of 0.006m, Figure 3.3(a). The leading and trailing

edges of the delta wing were sharp, and were defined with a chamfer half-angle of 8o. A

splitter plate with a diameter of 0.45m was attached to the root of the semi-span delta

wing to ensure that a single streamwise vortex was generated. The delta wing and splitter

plate were designed as a modular attachment to the wing-tip of the NACA 0012 vortex

generator, Figure 3.3(b). The angle of attack of the delta wing could be set independently

of the NACA 0012 vortex generator. In this way, the NACA 0012 vortex generator could

be used as a streamlined strut when the delta wing was in use.

3.3 Wind tunnel configuration

The experimental work was conducted in the 2.4m× 1.8m closed-return low-speed wind

tunnel at Cranfield University. The maximum working section velocity is 40ms−1, and

the freestream flow has a typical freestream turbulence level of less than 0.1%.

The intake model was mounted in the centre of the working section (Figure 3.4) and

was connected to a 60m3 vacuum tank located outside of the wind tunnel using ducting

with a 4′′ inner diameter. The streamwise position of the intake highlight plane could

be modified using different lengths of ducting. Using this suction system, it was possible

to establish a steady flow inside the intake for approximately 20s at a maximum Mach

number and mass flow of 0.53 and 1.48kgs−1, respectively. A slide valve was installed in

the 4′′ diameter ducting approximately 10Di downstream of the intake model to facilitate

control of the intake mass flow. The vortex generator was mounted upstream of the intake
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Figure 3.4: Photograph of wind tunnel configuration

Figure 3.5: Schematic showing side-view of wind tunnel configuration. Note that the
distance between the intake highlight plane and the laser light sheet was varied during

the experiments (see section 3.5 for details)

model such that the trailing edge of the NACA 0012 vortex generator was approximately

11Di upstream of the intake highlight plane. The vortex generator and splitter plate were

connected to a telescopic support system and mounting frame (Figure 3.5) which enabled

the vortex generator to be translated in the lateral (x) and vertical (y) directions relative

to the tunnel centreline axis.
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3.4 Measurement systems

The purpose of this research was to measure the evolution of the vortex as it moves

through the intake capture streamtube. Previous measurements of convecting streamwise

vortices have emphasised that measurements obtained from point-based methods may

be contaminated due to wandering [1, 27, 86]. In addition, it has been suggested that

streamwise vortices may be sensitive to the presence of probes [16]. Thus, it is apparent

that a global, non-intrusive measurement method would be highly suited to measure the

vortex ingestion process. In this research, Stereoscopic Particle Image Velocimetry (Stereo

PIV) has been employed to obtain quantitative measurements of the 3-component velocity

field at various measurement planes inside the intake capture streamtube. As a result, it

is possible to quantify the evolution of the vortex inside the intake capture streamtube.

It is necessary to employ Stereo PIV to investigate vortex ingestion flows since all three

Cartesian velocity components are likely to be large. Consequently, a conventional mono

PIV approach would be subject to notable perspective errors which cannot be corrected

[87]. In addition, it is desirable to measure the flow angularity which is associated with the

vortex to provide an assessment of the likely impact on turbomachinery performance. This

section provides details of the Stereo PIV system, as well as the pressure instrumentation

which has been employed to establish the experiment conditions.

3.4.1 Stereoscopic Particle Image Velocimetry

Particle Image Velocimetry (PIV) is a global, non-intrusive measurement method which

has been successfully employed to obtain quantitative velocity field measurements in a

wide range of studies. A digital PIV measurement system consists of a number of com-

ponents. Firstly, it is necessary to introduce seeding particles into the working section

which faithfully follow the motion of the airflow. A high-power laser is then used to illumi-

nate the seeding particles at a particular region of interest. The illuminated particles are

then imaged using a bespoke digital camera. To obtain a velocity measurement, the laser

illumination and imaging are synchronised in such a way that the two separate images

are acquired in very quick succession. Image processing techniques are then employed to

determine the displacement of the particles between the two images. With knowledge of

the time between the images, it is then possible to evaluate the velocity of the particles.

Under the assumption that the particles follow the airflow faithfully, then the particle

velocity corresponds to that of the airflow.
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It is necessary to use two digital cameras to measure the three-component velocity field

at the region of interest. This approach has been employed in this research due to the

large in-plane and out-of-plane velocities which are likely to occur in the intake capture

streamtube during streamwise vortex ingestion. The characteristics which are often used

to define streamwise vortices, such as the core radius and streamwise vorticity, are typically

measured on a plane perpendicular to the vortex axis. Therefore, the region of interest

was selected to be perpendicular to the streamwise direction.

The laser light sheet was generated using a 200mJ Litron Nano-L dual-pulsed Nd:YAG

laser with a wavelength of 532nm and a maximum repetition frequency of 15Hz. The

laser beam was transformed into a thin light sheet using a cylindrical plano-concave lens

with a focal length −0.04m, followed by a cylindrical plano-convex lens with a focal

length of 0.1m. The laser and light sheet optics were installed on an optical breadboard

and traverse below the working section with a standoff distance between the optics and

the centreline of the working section of approximately 2.3m. A 0.05m diameter mirror

was then employed to direct the light sheet into the working section through a Perspex

window on the working section floor, which can be observed in Figure 3.4. The light

sheet was positioned 0.9m downstream of the wing trailing edge and perpendicular to the

freestream flow direction (Figure 3.5). This equates to 6 chord lengths downstream of the

NACA 0012 wing trailing edge, and 4.5 root chord lengths downstream of the delta wing.

At the centre of the working section, the light sheet had a thickness 1.5 × 10−3m and

a width of approximately 0.2m. The seeding fluid consisted of Di-Ethyl-Hexyl-Sebacat

(DEHS), which has been identified as a suitable seeding fluid for air measurements [87].

Two PIVTEC PivPart30 seeding generators with Laskin nozzles were used in conjunction

with a seeding rake to introduce seeding with a mean particle diameter of 1µm into the

flow upstream of the working section. Two TSI PowerView cameras with a resolution

of 4 Mega-pixels were employed, each equipped with 0.105mm focal length Micro-Nikkor

lenses. The cameras were mounted in side-scatter mode relative to the light sheet, on

opposite sides of the working section and upstream of the intake model. The cameras

were at an angle of 45o from the working section centreline axis, and were focussed on

a region of interest which was approximately 0.16m in width and 0.1m in height. The

image plane of each camera sensor was tilted relative to the object plane to satisfy the

Scheimpflug condition on both cameras. Stereoscopic calibration was facilitated with use

of a TSI dual-plane calibration plate. TSI Insight 3G v9.1 was used in conjunction with

a TSI LaserPulse 610035 synchronisation unit to control the synchronisation of the laser

and the cameras, and to facilitate the image acquisition. The time delay between the

first and second PIV frames was selected to ensure that seeding particles translated by no
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more than 25% of the light sheet thickness in the streamwise direction. In addition, it was

required that the in-plane particle displacements did not exceed 25% of the interrogation

window size. In general, it was found that the out-of-plane time delay constraint was more

stringent than the in-plane requirements. Prior wing-tip vortex measurements at similar

conditions to the current research indicated that a minimum of 100 PIV measurements

are required to ensure that the mean vortex characteristics are correctly determined [88].

In this research, a total of 300 PIV measurements for each configuration were acquired to

comfortably surpass this requirement. Details of the PIV processing approach, and the

subsequent data post-processing techniques, are provided in section 3.6.

3.4.2 Pressure measurements

To characterise the freestream and intake operating conditions, a number of pressure

measurements were acquired. The freestream velocity was determined using a Pitot-

static probe was installed in the working section. The static and total pressures which

were obtained with the Pitot-static probe were measured using a Furness Controls FC-044

differential pressure transducer, which featured a range of 2.5kPa. The flow inside the

intake was determined using the pneumatic average of four static pressure ports located at

a distance of 0.65Di downstream of the intake highlight plane. The pressure was measured

using an Omega PX139-005D4V differential pressure transducer which has a measurement

range of 34.4kPa. The total temperature T0,∞ was measured inside the settling chamber of

the wind tunnel. Under the assumption of isentropic flow, the intake static pressure pi was

used in conjunction with the freestream total pressure P0,∞ and the total temperature to

calculate the mass flow ṁi, the Mach number Mi, and the flow velocity inside the intake

Wi. Therefore, it was possible to determine the intake velocity ratio (V R = Wi/W∞)

which characterises the streamtube contraction levels. Details of the approach which has

been employed to calculate the flow conditions are given in appendix C. All transducer

data was acquired over a sampling period of 5 seconds and at a frequency of 600Hz using

LabView with a National Instruments PCI-6255 16-bit DAQ card. Further details of the

pressure measurement approach are provided in appendix C

3.5 Test matrix

The experimental part of this research has two main aims. The first is to establish

fundamental understanding of the evolution of a streamwise vortex inside a contracting

intake capture streamtube. The second aim is to determine how this process changes as
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Figure 3.6: Vortex ingestion test space showing experimental conditions investigated
as a function of vortex Reynolds number (Rev) and intake velocity ratio (Wi/W∞)

a function of the intake operating conditions, the initial vortex characteristics prior to in-

gestion, and the trajectory that the vortex follows through the intake capture streamtube.

To this end, vortex ingestion was investigated for a range of intake operating conditions

and vortex generator conditions, Figure 3.6. A complete description of the experimental

conditions is provided in Table A.1.

To provide a controlled parametric study, the vortices were first ingested into the intake

along the intake centreline. In general, the vortex position and trajectory downstream of

a wing depends on a number of factors, including the lift coefficient and the freestream

velocity [89]. Therefore, it was necessary to adjust the vertical and horizontal position of

the wing-tip relative to the intake centreline for each of the vortex generator conditions.

This was achieved by inspection of the vortex centre location obtained from initial PIV

measurements during the vortex ingestion experiments. Although this procedure was

somewhat iterative, the vortex centre position was typically established at a position

which is within 0.05Di of the intake centreline.

The first parameter considered in this research was the impact of the intake operating

conditions, characterised by the intake velocity ratio V R = Wi/W∞. A number of intake

mass flow conditions were investigated for fixed freestream and vortex generator condi-

tions. In this way, the effect of a change in streamtube contraction levels could be assessed

for a given unperturbed streamwise vortex. Intake velocity ratios of between 2.0 and 16.3

were investigated. The corresponding ranges of freestream velocity and intake mass flow

were 11.0ms−1 to 35.4ms−1, and 0.32kgs−1 to 1.49kgs−1 respectively.

The second parameter of interest is the vortex Reynolds number, Rev = Γc/ν, where Γc

is the vortex core circulation and ν is the kinematic viscosity. As discussed in section 2.3,
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the rate of vorticity diffusion attributed to turbulence increases with the vortex Reynolds

number. Therefore, it is of interest to determine if the vortex ingestion process exhibits

a similar dependence on Rev. The circulation of the wing-tip vortex produced by a wing

is strongly linked to the freestream velocity. This can be demonstrated using Kutta-

Joukowski theorem (section 2.2.1), such that the vortex total circulation is given by Eq.

3.1.

Γ0 =
1

2
W∞cCL (3.1)

For a given vortex generator at a fixed angle of attack, the vortex strength, and thus

the vortex Reynolds number, can be increased by means of the freestream velocity. Two

approaches have been employed in this research to provide a controlled assessment of the

influence of the vortex Reynolds number. Firstly, the NACA 0012 vortex generator was

investigated at a fixed angle of attack of αvg = 12o for freestream velocities of 11.0ms−1,

17.2ms−1 and 35.4ms−1. This produced streamwise vortices with vortex Reynolds num-

bers of between 2.4×104 and 7.4×104 (Table A.1). According to Bhagwat and Leishman

[50], and as illustrated in Figure 2.17, these vortex Reynolds numbers are in a flow regime

where turbulent diffusion is expected to influence the vortex evolution. This range of

freestream velocities corresponds to wing chord Reynolds numbers which are between

1.1× 105 and 3.6× 105, and the wing lift coefficient was estimated to be 0.95 using finite

wing theory [18]. The intake mass flow for each of the three freestream velocities was

controlled in such a way as to maintain an intake velocity ratio of approximately 5.0.

Therefore, the streamwise vortices of differing vortex Reynolds numbers will experience

the same streamtube contraction characteristics. The second approach used to control

the vortex Reynolds number was to reduce the vortex generator lift coefficient, which was

facilitated by a reduction in angle of attack from 12o to 6o at a fixed freestream velocity

of 35.4ms−1. This corresponded to a lift coefficient reduction from 0.95 to 0.47. Note,

therefore, that the change in vortex Reynolds number in this case was independent of the

wing chord Reynolds number.

The impact of a change in the vortex generator type was investigated using the delta

wing at angles of attack of 12o and 6o. This was performed at a freestream velocity of

35.4ms−1 and an intake velocity ratio of 4.9, Table 1. As such, it is then possible to

compare the vortex ingestion process with the conditions investigated with the NACA

0012 vortex generator. The lift coefficients for the delta wing were estimated to be 0.61

and 0.28 for each of the angles of attack, as estimated using the method of Polhamus [90].
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Finally, it was unknown if the evolution of a vortex inside the capture streamtube is

dependent on the trajectory which the vortex follows. Therefore, the vortex generator

was translated laterally by x/Di = −0.70 relative to the vortex generator position required

for the centreline ingestion measurements. This off-axis condition was investigated for a

subset of the centreline test matrix, Table A.1.

To minimise the complexity of the experimental arrangement, the position of the PIV

measurement plane in the working section was fixed and the intake model was translated

in the streamwise direction. Using this approach, the measurement plane was located at

different streamwise positions inside the capture streamtube. It should be noted that the

intake and the capture streamtube were therefore translated relative to the vortex gener-

ator. An assumption which is inherent in this experimental approach is that the vortex

characteristics undergo little change over the distance translated by the intake model. To

assess the validity of this assumption, the Squire model (section 2.3) was used to provide

an estimate of the change in unperturbed vortex characteristics over the distance which

was translated by the intake. It was found that the wing tip vortex core radius will in-

crease by no more than 2.4%, which is within the measurement uncertainty of the PIV

system, and is small in comparison to the change in core radius typically measured during

the vortex ingestion process. Furthermore, by using the vortex core radius as an input

into the Lamb-Oseen vortex model (Eq. 2.22), the peak tangential velocity and peak

streamwise vorticity were estimated to decrease by no more than 2.4% and 4.7% respec-

tively. These values are within the measurement uncertainty of the PIV system (section

3.7), so it can be concluded that translating the intake relative to the PIV measurement

plane is likely to have a negligible effect on the vortex ingestion measurements.

The evolution of the vortex within the capture streamtube was measured at PIV planes

located at a distance of z/Di equal to 2.25, 0.80, 0.60, 0.38 and 0.20 upstream of the

intake highlight plane. The PIV measurement plane was located at a distance which

corresponded to 6 chord lengths downstream of the NACA 0012 trailing edge, and 4.5

chord lengths downstream of the delta wing. Inspection of the PIV measurements for each

of the vortex generator conditions indicated that the vorticity contours were axisymmetric

and that there were no indications of the wing wake (section 4.1). It was therefore

concluded that the vortex roll-up process was complete at the position of the PIV plane.

This has been supported using the method of Spreiter and Sacks [19], which estimates

that the vortex roll-up process should be complete at approximately 5 chord lengths from

the vortex generator trailing edge.



76 Chapter 3 Experimental methods

3.6 Stereo PIV data reduction

It is crucial that care is taken to determine a suitable processing and post-processing

approach to transform the PIV images into accurate velocity field information. This

is particularly true for vortical flows, which feature a number of unique characteristics

which may compromise the quality of the PIV measurements. This section provides a

description of the processing method which has been employed. Thereafter, details will

be given of the approach used to extract the characteristics of the streamwise vortices

from the measurements.

3.6.1 PIV processing method

A number of aspects of vortex flows must be considered to maximise the suitability of the

PIV processing approach. The vortex flowfield exhibits strong in-plane velocity gradients,

and there may be a reduction in seeding density inside the vortex core due to centrifugal

action [87]. Both effects can reduce the strength of the PIV correlation peak, increase

the measurement uncertainty, and can lead to invalid vectors. It is possible to mitigate

the effects of strong in-plane velocity gradients with the use of recursive deformation

grid algorithms [91] which have been used successfully in a number of wing-tip vortex

measurement studies [88, 92, 30]. The PIV correlation process was performed in Insight

4G using a linear deformation grid method [93] in conjunction with a Gaussian peak

engine fit the correlation peak to sub-pixel accuracy. The interrogation windows featured

a 50% overlap, an initial window size of 64 pixels (px), and a final window size of 32px.

This processing approach produced a vector resolution of approximately 0.01Di or 0.007c.

This compares favourably with existing probe-based measurements of wing-tip vortices,

which often feature a probe resolution of between 0.002c and 0.03c [17]. The global vector

validation strategy consisted of a 16px maximum displacement in the x and y-directions.

Furthermore, local vector validation was completed using the universal median test [94]

with a non-dimensional tolerance of 3 on a stencil size of 3x3 vectors. In general, the

number of invalid vectors was found to be between 1% and 2% for all configurations

which have been investigated. Vectors which failed the validation process were replaced

with a local mean of 3x3 vectors to ensure the velocity gradients close to the vortex flow

were not artificially smoothed. The processing is carried out in an automated fashion to

produce the 3-component vector field for each instantaneous measurement.
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3.6.2 Calculation of vortex characteristics

A notable feature of wing-tip vortex flows is that the vortex position fluctuates in a random

manner [16, 1, 27, 86]. This presents a difficulty for point-based measurements, since the

correct position of the vortex centre cannot be determined. The wandering effect causes

point-based measurements to over-estimate the vortex core radius [1], and underestimates

the peak tangential velocity [1] and streamwise vorticity levels [27]. Therefore, it is nec-

essary to account for the changes in vortex position. This can be achieved using global

measurement methods such as PIV, since the vortex position in each instantaneous mea-

surement can be identified before the vortex characteristics are calculated. This approach

has been employed in this research,

The 3-component velocity vector fields generated by the PIV processing approach were

loaded into Tecplot 360 2010 for post-processing. The Vorticity Disk Method (VDM)

[95] has been used to establish the vortex characteristics on each instantaneous PIV mea-

surement. Firstly, the streamwise vorticity field is calculated using the in-plane velocity

measurements and a second order differencing scheme. The vortex centre on each instan-

taneous image is then identified as the location of peak streamwise vorticity. A circular

grid with a radius of rmax is subsequently placed at the vortex centre, and the flow field

is interpolated on to the circular grid using a linear interpolation method. This process

is performed for each instantaneous PIV measurement. The data files corresponding to

each of the individual circular grids are then loaded into MATLAB. On each instanta-

neous measurement, the streamwise vorticity is integrated on annuli of increasing radius

to generate the circumferentially-averaged circulation profile, Γ(r). It is then possible to

calculate the circumferentially-averaged tangential velocity profile Vθ(r) using the expres-

sion in Eq. 3.2. Finally, the vortex core radius can be determined from the tangential

velocity profile.

Vθ(r) =
Γ(r)

2πr
(3.2)

The circular zones had a radius of 0.25Di and an approximate radial spatial resolution

of 0.002Di or approximately 0.021rc for the NACA 0012 wing-tip vortex in the unper-

turbed flow. The resolution of the circular zone in the circumferential direction was such

that, at the edge of the circular zone (r = 0.25m), the resolution in the circumferential

direction was equal to the resolution in the radial direction. Note that the circular zone

maximum radius corresponded to approximately rmax/rc = 3 for the unperturbed vortex

measurements. The circular zone size and resolution were selected using a synthetic vortex
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velocity field (appendix B). In some cases, the unperturbed vortex core radius increased

notably. Therefore, the radius was increased to 0.35Di with a corresponding increase in

the circular zone grid resolution to maintain a spatial resolution of approximately 0.002Di.

The automated processing approach in this research determines the vortex and velocity

characteristics for each instantaneous measurement. The average vortex characteristics

and flowfield characteristics are subsequently computed. Using this approach, the detri-

mental effects of wandering have been avoided, since the coordinates of the circular grid

are corrected for the instantaneous vortex centre location. It should be emphasised that

wandering can have a notable effect on the measurements and, subsequently, the char-

acteristics of the vortex. For example, when the instantaneous vortex position is not

accounted for, the peak streamwise vorticity which is approximately 43% lower than the

result obtained using the conditional averaging approach (appendix B).

3.7 Measurement uncertainties

An estimate of the measurement uncertainties associated with the PIV processing ap-

proach can be determined from the analysis of Raffel et al. [87]. This permits an estimate

of the uncertainty contributions from the particle image displacement, particle image

diameter, seeding density, quantisation level, and background noise. Furthermore, the ex-

periments and analysis of Van Doorne et al [96] permit an estimation of the registration

error due to possible misalignment between the laser light sheet and the camera calibra-

tion plate. For a detailed description of the uncertainty calculations, see appendix C. In

this work, the overall uncertainty corresponds to 8% of the typical peak tangential veloc-

ity and 3% of the out-of-plane velocity. As a result, the uncertainty in peak vorticity is

estimated to be 15%, with a concomitant circulation uncertainty of 6%. The core radius

measurement uncertainty, dictated by the measurement spatial resolution, was found to

be 6%.

The typical uncertainties for the freestream and intake velocity were 1.0% and 3.2%

respectively, with a resultant intake velocity ratio uncertainty of 3.4%. The uncertainties

were determined using quadrature to combine the transducer measurement error, the

calibration error, and the resolution error.
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3.8 Summary

This chapter has provided details of the experimental methods employed in this research.

A description of the experimental apparatus and measurement techniques has been given.

In addition, the experimental variables have been introduced, and an explanation of the

approach used to perform controlled parametric studies was provided. Finally, details

have been given of the post-processing approach which has been tailored for the unique

features of vortical flow.





Chapter 4

Measurements of streamwise

vortices in unperturbed flow

It is first necessary to assess the characteristics of the streamwise vortex in the unper-

turbed freestream flow, prior to entering the intake capture streamtube contraction. To

do this, the intake model was removed from the wind tunnel working section to ensure

the vortex was contained in a nominally uniform streamwise flow. These measurements

provide a reference condition which can be used to quantify the influence of the stream-

tube contraction on the vortex. In addition, the unperturbed measurements also elucidate

certain features of the vortex flow which may subsequently have an influence on the vortex

ingestion process. In this chapter, a detailed analysis of the unperturbed vortex at a single

condition is performed. A number of configuration parameters have been utilised as part

of the vortex ingestion studies. Therefore, the final part of this chapter will establish the

influence of the key parameters on the characteristics of the streamwise vortex prior to

ingestion.

4.1 Mean vortex characteristics

The conditional-averaging post-processing approach employed in this research (section

3.6.2) collocates each instantaneous velocity field measurement on a common reference

frame. In this way, the potentially detrimental effects of wandering can be mitigated

(appendix B.1.2).

81
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It is constructive to first consider the results obtained at a single vortex generator con-

figuration. It will then be possible to evaluate how the vortex characteristics change as

a function of the key parameters, such as the freestream velocity (W∞), the vortex gen-

erator type, and vortex generator angle of attack (αvg). These parameters will affect the

characteristics of the wing-tip vortices, such as the vortex Reynolds number (Rev) and

the core radius (rc). The measurements acquired for the NACA 0012 vortex generator at

an angle of attack of αvg = 12o and a freestream velocity of 11.0ms−1 were taken as the

reference condition. Therefore, measurements from this configuration are assessed, before

the impact of the experimental parameters is elucidated. In the reference configuration,

the chord Reynolds number is 1.1×105, the vortex Reynolds number is 2.4×104, and the

PIV measurement plane was located at a distance of z/c = 5 downstream of the vortex

generator trailing edge (Figure 3.5).

The contours of streamwise vorticity (Figure 4.1(a)) are axisymmetric, and the majority

of the streamwise vorticity is contained inside the vortex core (Figure 4.1(b)). Note that

there is no evidence of the streamwise vorticity which is attributed to that produced

along the trailing edge of the wing (section 2.2.1). The vortex circulation profile (Figure

4.1(c)) rises quickly inside the vortex core, and reaches a non-dimensionalised circulation

(Γc/W∞c) of 0.21 at the vortex core radius. This value compares favourably with wing-tip

vortex measurements at similar conditions. For example, Lee and Pereira [17] measured

a non-dimensional core circulation of 0.24 using a NACA 0012 vortex generator at αvg =

12o and a chord Reynolds number of 3.1 × 105. The circulation profile increases slowly

beyond r/rc = 1.5, which indicates that some additional streamwise vorticity is contained

in the surrounding flow. Thus, it is clear that the roll-up of vorticity into the vortex

core is nearing completion at the streamwise station under investigation in this research.

This behaviour is consistent with most wing-tip vortex measurements. For example,

the results of Martin et al. [33] suggested that the measured circulation asymptotes

towards the total circulation at a radius of approximately 20rc from the vortex centre.

As a result, a large region of interest is required to successfully measure the vortex total

circulation. It was emphasised by Tung et al. [28] that measurements of the circulation

at large radii are increasingly sensitive to small changes in the velocity field, such as

those introduced by measurement noise, and it was therefore concluded that the total

circulation measurements can be susceptible to error at large radii. In the current research,

an increased spatial measurement resolution was favoured over a large region of interest

to maximise the number of velocity vectors inside the vortex core. Therefore, the total

circulation cannot be determined from the current measurements.
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(a)

(b) (c)

Figure 4.1: Unperturbed vortex velocity field measurements, NACA 0012 vortex gener-
ator, Rec = 1.1×105, Rev = 2.4×104, where xrel and yrel refer to the x and y coordinates
relative to the vortex centre, (a): Streamwise vorticity (ωzc/W∞), (b): Circumferentially-
averaged streamwise vorticity profile, (ωzc/W∞) (c): Circumferentially-averaged circula-

tion profile (Γ/W∞c)

The circumferentially-averaged tangential velocity profile (Figure 4.2(a)) is in the form of

the characteristic vortex tangential velocity profile (section 2.2.1). The tangential velocity

rises in proportion to the distance from the vortex centre and reaches a maximum non-

dimensional tangential velocity of Vθ/W∞ = 0.55 at the vortex core radius of rc/c = 0.061

or rc/Di = 0.092. Beyond the core radius, the tangential velocity profile merges into a

potential vortex type distribution, where the tangential velocity is closely proportional to

1/r. As discussed in section 2.2.1, there is a close coupling between the tangential and

streamwise velocities inside a vortex. As such, a streamwise velocity perturbation relative

to the freestream velocity is often measured. Experimental investigations using unswept

rectangular wings (such as Lee and Pereira [17]) have confirmed that, at large angles of
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(a) (b)

(c)

Figure 4.2: Unperturbed vortex velocity field measurements, NACA 0012 vortex gen-
erator, Rec = 1.1 × 105, Rev = 2.4 × 104, (a): Circumferentially-averaged tangential
velocity profile, (Vθ/W∞), (b): Circumferentially-averaged streamwise velocity profile

(Vz/W∞), (c): Flow angularity profile (α = tan−1(Vθ/Vz))

attack, a streamwise velocity excess will be measured. This is consistent with the stream-

wise velocity profile measured at the reference condition, Figure 4.2(b), which features a

streamwise velocity excess inside the vortex core of approximately 11% of the freestream

velocity. The tangential and streamwise velocity profiles can be used to determine the

flow angularity (α), which is defined in this research as α = tan−1(Vθ/Vz). This is an

important characteristic for inlet flow distortion studies, since it provides an indication

of the deviation of the flow relative to uniform freestream conditions. The combination

of the large tangential velocity (Figure 4.2(a)) with the streamwise velocity perturbation

(Figure 4.2(b)) produces a large variation of flow angularity across the vortex, Figure

4.2(c). Close to the core radius, the flow angularity reaches a maximum of 28o. Such

flow angles have the potential to produce notable levels of inlet flow swirl distortion if
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a wing-tip vortex is ingested by an intake (section 2.5.1). Another parameter which is

often used to characterise streamwise vortices is the swirl angle, αsw = tan−1(Vθ,max/wc),

where wc is the streamwise velocity at the vortex centre. This parameter is of interest

since streamwise vortices with a swirl angle of greater than 40o are susceptible to vortex

breakdown [97]. However, the greatest swirl angle measured in this research during un-

perturbed conditions is approximately 28o, and so vortex breakdown is not likely in the

conditions considered.

In summary, measurements of mean flowfield in the unperturbed flow downstream of the

NACA 0012 vortex generator are consistent with existing streamwise vortex measure-

ments in the literature. The vortex flow consists of notable perturbations of in-plane and

streamwise velocities relative to the uniform freestream flow, which combine to produce

high levels of flow angularity close to the vortex.

4.2 Unsteady vortex characteristics

To provide additional insight into the flow physics of the unperturbed streamwise vortices,

the unsteady aspects of the flow have also been investigated. Prior measurements in the

literature, such as [22] and [43], indicate the presence of turbulent flow in the vortex core.

In addition, wing-tip vortex measurements at the vortex Reynolds numbers of interest

in this research suggest that turbulent diffusion plays an important role in the evolution

of the vortex [50]. Therefore, it might be expected that both the velocity field and the

vortex characteristics measured in this research may feature unsteadiness. The instan-

taneous snapshots of the streamwise vortex characteristics for the reference unperturbed

configuration are given in Figures 4.3(a) to 4.3(e) as a function of the PIV measurement

number. As anticipated, the vortex size, peak tangential velocity and core circulation

(Figures 4.3(a), 4.3(b) and 4.3(c)) illustrate some degree of unsteadiness. However, it is

apparent that the fluctuations are small. For example, the RMS value of the vortex core

radius corresponds to 0.2% of the wing chord length, or 2.6% of the mean vortex core

radius. Similarly, the peak tangential velocity fluctuations are 0.7% of the freestream

velocity, and 1.2% of the mean peak tangential velocity. Finally, the x- and y-coordinates

of the vortex centre, Figures 4.3(d) and 4.3(e), show that the vortex experiences fluc-

tuations in position which can be as large as 5% of the wing chord, which corresponds

to approximately 82% of the mean vortex core radius. This underlines the importance

of employing a post-processing method which captures the instantaneous vortex position

before calculating the vortex characteristics.
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(a) (b)

(c)

(d) (e)

Figure 4.3: Instantaneous measurements of streamwise vortex characteristics, NACA
0012, Rec = 1.1 × 105, Rev = 2.4 × 104, (a): Core radius (rc/c) (b): Peak tangential
velocity, (Vθ,max/W∞), (c): Core circulation (Γc/W∞c), (d): Vortex core horizontal

location (xv/c), (e): Vortex core vertical location (yv/c)
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It is also possible to evaluate the unsteadiness of the entire vortex velocity field, since

the PIV measurements provide an instantaneous snapshot of the velocity field across the

region of interest. The unsteadiness of the velocity field has been computed on the vortex-

centred circular zones, so that the unsteadiness values do not contain contributions from

wandering. Note that the PIV system employed in this research acquires measurements

at a temporal frequency of 7.5Hz. Therefore, the PIV measurements can contain only

a limited, low-frequency portion of the complete turbulence spectrum. In addition, the

limited spatial resolution of the PIV measurements restricts the measurement of flowfield

variations at length scales smaller than the interrogation region dimensions. Nonetheless,

important features of fluctuating velocity field can be extracted and, as will be demon-

strated, the PIV measurements demonstrate good agreement with measurements using

conventional hot-wire measurement methods.

The measurements at the reference condition suggest that the vortex core is a region of

highly turbulent flow, where the turbulence intensity (Figure 4.4(a)) rises to a maximum

of approximately 7.9% of the freestream velocity at the vortex centre. This is in agreement

with a wide range of wing-tip vortex measurements obtained using hot-wire [45, 26, 22]

and LDV [43], which also indicate that the vortex core contains high levels of turbulence.

In addition, the current measurements feature a vortex Reynolds number of 2.4 × 104,

which is within the regime identified by Bhagwat and Leishman [50] and Ramasamy and

Leishman [34] where turbulent diffusion begins to influence the vortex growth rates. It

is therefore possible that the rate of vorticity diffusion inside the vortex core, and so

the vortex growth rate, will be far greater than if the flow were entirely laminar. Further

insight into the unsteady velocity structure can be obtained by considering the RMS of the

individual Cartesian velocity components, Figures 4.4(b), 4.4(c) and 4.4(d). The in-plane

velocity fluctuations, uRMS and vRMS , are elliptic in shape, with the major axes aligned

with the x- and y-coordinate axes, respectively. The current measurements suggest peak

values of uRMS and vRMS of 0.1 and 0.08, which is similar to the peak values of 0.15

and 0.16 measured by Chow et al. [23] on a similar wing-tip geometry at z/c = 0.7 and

Rec = 4.6×106. Clearly, the current measurements have been acquired at a station further

downstream of the wing (z/c = 6) and at a chord Reynolds number which is an order of

magnitude smaller (Rec = 1.1×105), which may explain the quantitative differences in the

RMS values. Nonetheless, the current measurements are in good qualitative agreement,

and the unsteadiness levels are of the same order of magnitude. In-plane normal stress

contours with an elliptic shape were also measured by Chow et al. [22] and Ramasamy

et al. [30], and were also observed in the simulations conducted by Zeman [48]. Such a

contour pattern indicates that the in-plane normal stresses are not isotropic [22].
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(a) (b)

(c) (d)

Figure 4.4: Conditionally-averaged velocity fluctuations, NACA 0012 vortex generator,
Rec = 1.1 × 105, Rev = 2.4 × 104, (a): Mean Turbulence Intensity (TI/W∞, TI =(√

1
3 (u′2 + v′2 + w′2)

)
) (b): Mean x-component velocity fluctuations (uRMS/W∞), (c):

Mean y-component velocity fluctuations (vrms/W∞), (d): Mean z-component velocity
fluctuations (wrms/W∞)

It was demonstrated by Chow et al. [23] that this stress anisotropy arises as a result of

an imbalance in the turbulence production inside the vortex core, such that the radial

normal stresses (Vr,RMS) become greater than the tangential normal stresses (Vθ,RMS).

This characteristic can also be observed in the current measurements, Figures 4.5(a) and

4.5(b), which demonstrate that the radial normal velocity fluctuations measured beyond

the vortex centre are larger than the tangential normal velocity fluctuations. Finally, the

streamwise velocity fluctuations (Figure 4.4(d)) are circular in shape with a maximum

located close to the vortex centre. This is also in agreement with previous wing-tip vortex

measurements [1, 23].
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(a) (b)

Figure 4.5: Conditionally-averaged velocity fluctuations, NACA 0012 vortex generator,
Rec = 1.1×105, Rev = 2.4×104, (a): Circumferential velocity fluctuations (Vθ,RMS/W∞)

(b): Radial velocity fluctuations (Vr,RMS/W∞)

In addition to the turbulent normal stresses, it is also possible to use the current mea-

surements to obtain information on the Reynolds stresses. The mean in-plane Reynolds

stresses (u′v′/W 2
∞), Figure 4.6(b)) are rotated by 45o relative to the mean in-plane strain

rate (Sx,yc/W∞), Figure 4.6(a)), in the direction opposite to the rotation direction of

the vortex. This characteristic has been observed in various experimental measurements

[23, 22] and vortex simulations [48], and is a consequence of the anisotropic normal stresses

[23].

A strong link between the in-plane and out-of-plane fluctuations is illustrated in the

u′w′/W 2
∞ and v′w′/W 2

∞ contours, Figures 4.6(c) and 4.6(d), respectively. The stress

levels are of a similar magnitude to the in-plane Reynolds stresses seen in Figure 4.6(b).

An analysis of the out-of-plane strain terms cannot be conducted, since the single-plane

Stereo PIV measurement technique used in this research cannot resolve the streamwise

gradients at a given measurement plane position. Nonetheless, it is possible to refer to

existing wing-tip vortex measurements to explain the u′w′ and v′w′ patterns which have

been observed in Figures 4.6(c) and 4.6(d). Chow et al. [22] found that the Cartesian

out-of-plane Reynolds stresses both featured a two-lobed structure, as observed in the

current measurements. The positive lobes of u′w′ is rotated by approximately 45o from

the negative y-axis, and the positive lobe of v′w′ is rotated by approximately 30o from

the positive x-axis. Chow et al. [23] suggested that this turbulent structure is a result of

the streamwise velocity perturbation, and indicates that turbulence is acting to diminish

the magnitude of the streamwise velocity excess. Thus, it is apparent that the out-of-

plane characteristics of the vortex flow may contribute an additional source of turbulent
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(a) (b)

(c) (d)

Figure 4.6: Conditionally-averaged velocity fluctuations, NACA 0012 vortex generator,
Rec = 1.1× 105, Rev = 2.4× 104, (a): Mean in-plane strain rate (Sxy/W∞c), (b): Mean
Reynolds stress (u′v′/W 2

∞), (c): Mean Reynolds stress (u′w′/W 2
∞), (d): Mean Reynolds

stress (v′w′/W 2
∞). N12 and N6 refer to the NACA 0012 vortex generator at αvg = 12o

and 6o, respectively. D12 and D6 refer to the delta wing vortex generator at αvg = 12o

and 6o, respectively

diffusion in the vortex flow. This has been investigated in this research by employing

different vortex generator configurations and vortex generator types (section 3.5).

The unsteadiness characteristics obtained from the current PIV measurements are in

good agreement with wing-tip vortex turbulence measurements which are available in

the literature, despite the limited spatial and temporal resolution of the measurements.

In particular, the measurements have successfully captured features of the normal and

Reynolds stresses which have been observed in other wing-tip vortex measurements. The

current PIV measurements can provide important insight into the turbulent characteristics

of the unperturbed vortex. It has been found that the reference streamwise vortex consists
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of highly turbulent flow inside the vortex core. As a result, the wing-tip vortex flow may

experience diffusion rates which are higher than those attributed to laminar viscosity

alone. An important objective of the vortex ingestion studies will be to determine if the

turbulent fluctuations have an effect on the evolution of the streamwise vortex during the

ingestion process.

4.3 Influence of vortex generator conditions

In the preceding section, a detailed analysis was presented for the wing-tip vortex charac-

teristics measured downstream of the NACA 0012 vortex generator at a chord Reynolds

number of 1.1× 105. A range of vortex generator conditions have been considered as part

of the vortex ingestion measurements (Tables 4.1 and A.1). The purpose of this section is

to elucidate the details of the vortex characteristics downstream of the vortex generators

as a function of the chord Reynolds number, the vortex generator type, and the vortex

generator angle of attack. In this way, it will be possible to identify the key features of

the vortex prior to entering the intake capture streamtube contraction.

Table 4.1: Vortex characteristics for unperturbed freestream flow

V G αvg Rec = W∞c
ν Rev = Γc

ν
rc
Di

Γc
W∞Di

ωz,maxDi
W∞

ωz,avDi
W∞

0012 12o 1.1× 105 2.4× 104 0.092 0.319 30.34 12.11
0012 12o 1.7× 105 3.7× 104 0.087 0.318 38.77 13.44
0012 12o 3.6× 105 7.4× 104 0.082 0.307 48.80 14.66
0012 6o 3.6× 105 3.4× 104 0.065 0.143 27.83 10.97
Delta 12o 4.7× 105 5.6× 104 0.111 0.236 22.24 6.05
Delta 6o 4.7× 105 2.3× 104 0.061 0.098 22.36 8.41

4.3.1 Chord Reynolds number

The impact of the vortex generator chord Reynolds number was investigated using the

NACA 0012 vortex generator at an angle of attack of 12o. freestream velocities of

11.0ms−1, 17.2ms−1, and 35.4ms−1 were investigated, Table A.1, which correspond to

chord Reynolds numbers of 1.1× 105, 1.7× 105 and 3.6× 105. This approach successfully

produced a controlled increase in the vortex Reynolds number from 2.4× 104 to 7.4× 104
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(a) (b)

(c) (d)

Figure 4.7: Unperturbed vortex velocity field measurements, (a): Circumferentially-
averaged tangential velocity profile, (Vθ/W∞), (b): Circumferentially-averaged stream-
wise velocity profile (Vz/W∞), (c): Circumferentially-averaged streamwise vortic-
ity profile (ωzc/W∞), (d): Circumferentially-averaged flow angularity profile (α =

tan−1(Vθ/Vz))

when the chord Reynolds number was increased from 1.1 × 105 to 3.6 × 105 (Table 4.1).

There is also an 8% increase in the peak tangential velocity normalised by the freestream

velocity, an 11% reduction in the vortex core radius, Figure 4.7(a), and a 61% increase in

the peak normalised streamwise vorticity, Figure 4.7(c). This Reynolds number depen-

dence may be explained from the observations of Zhou et al. [27], who suggested that

an increase in the chord Reynolds number causes a thinner wake to be produced by the

wing. As a consequence of the reduced wake thickness, the vortex roll-up process is of

a greater intensity, which results in the smaller vortex core radius, increased normalised

peak tangential velocity and increased peak streamwise vorticity as reported in Table 4.1.

The streamwise velocity, however, does not illustrate a strong dependence on the chord
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Reynolds number, and features a streamwise velocity excess of between 11% and 16%

across the range of chord Reynolds numbers tested (Figure 4.7(b)). The peak flow angle

indicates only a weak dependence on the chord Reynolds number, and increases from 28o

at Rec = 1.1 × 105 to 30o at Rec = 3.6 × 105 (Figure 4.7(d)). This is a result of a small

increase in the ratio (Vθ/Vz) which, in turn, is due to the small increase in Vθ,max (Figure

4.7(a)) coupled with little change in the normalised streamwise velocity profile, Figure

4.7(b).

The increase of chord Reynolds number at a constant angle of attack successfully pro-

duced a large increase in the vortex Reynolds number, with a corresponding rise in the

peak streamwise vorticity. However, when normalised by the freestream velocity, there

were only small changes in the normalised tangential and streamwise velocity profiles.

As a result, the peak flow angle remained close to 30o for all chord Reynolds numbers

considered.

4.3.2 Vortex generator type

A second approach which was used to vary the unperturbed vortex characteristics was to

employ a delta wing in place of the NACA 0012 vortex generator. This was investigated

at a freestream velocity of 35.4ms−1 and an angle of attack of 12o. For this configuration,

the chord Reynolds number was 4.7 × 105, and the measurement plane was located at a

distance of 4.5c downstream of the delta wing trailing edge. Note that the delta wing

was mounted at the same distance upstream of the intake as the NACA 0012 vortex

generator. However, because the delta wing features a larger chord than the NACA 0012

vortex generator, the non-dimensional distance z/c is reduced for the delta wing.

The delta wing vortex features a core vortex Reynolds number of 5.6× 104, which is 24%

lower than that of the NACA 0012 vortex generator Table 4.1. A number of reasons

contribute to this difference. Firstly, the lift generation mechanisms for delta wings and

rectangular wings differ, since delta wing aerodynamics are strongly influenced by the

leading edge vortices [18]. The lift coefficient of the delta wing is estimated to be 0.61,

compared to the lift coefficient of 0.95 for the NACA 0012 vortex generator (section 3.5).

In addition, the delta wing features a planform area which is 16% of the NACA 0012

vortex generator. The delta wing vortex features a 33% larger core radius, with a 45%

lower peak tangential velocity and a 55% lower peak streamwise vorticity (Figures 4.7(a)

and 4.7(c)). The streamwise velocity profile of the delta wing vortex consists of a deficit of

24% relative to the freestream velocity, Figure 4.7(b), which is notably different from the
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16% streamwise velocity excess measured on the NACA 0012 vortex. This qualitatively

agrees with the comparable delta wing measurements of Wang et al. [98], who measured

a streamwise velocity deficit of 20% at a distance of half a chord length downstream of the

wing trailing edge. It was suggested that the streamwise velocity deficit was caused when

low-momentum, high-turbulence fluid produced at the trailing edge of the wing which was

entrained into the vortex. The peak flow angularity associated with the delta wing vortex

reaches 22o, Figure 4.7(d), which is notably lower than the peak angle of 30o measured

for the NACA 0012 vortex at the same freestream condition.

A comparison between the vortices produced by the delta wing and NACA 0012 vortex

generators at a fixed freestream condition confirm that the characteristics of the stream-

wise vortex are strongly dependent on the vortex generation source. In comparison to

the wing-tip vortex produced by the NACA 0012 vortex generator, the delta wing vortex

features a reduced vortex Reynolds number, peak tangential velocity, peak streamwise

vorticity, and peak flow angle. In addition, the delta wing vortex features a streamwise

velocity deficit, which is in contrast to the excess measured on the NACA 0012 wing-tip

vortex. Thus, it will be possible to assess the effect of the streamwise velocity perturbation

on the vortex ingestion process.

4.3.3 Angle of attack

Prior studies have shown that the vortex weakens when the angle of attack is reduced,

with a reduced peak tangential velocity, core radius, streamwise velocity perturbation

and streamwise vorticity [17, 1, 29, 99]. Therefore, the final approach used to vary the

characteristics of the unperturbed vortices was to reduce the vortex generator angle of

attack. The current measurements agree with the trends reported in the literature. When

the angle of attack of the NACA 0012 vortex generator is reduced from 12o to 6o, there

is a reduction of the peak tangential velocity and streamwise vorticity (Figures 4.7(a)

and 4.7(c)) of 40% and 43% respectively at a chord Reynolds number of 3.6 × 105. The

streamwise velocity perturbation reduces from an excess of approximately 0.16W∞ to a

small deficit of 0.05W∞ (Figure 4.7(b)). The measurements also indicate a 21% smaller

vortex core radius, and a swirl angle which reduces from 30o to 15o, Figure 4.7(d). In

addition, the vortex Reynolds number reduced from 7.4×104 to 3.4×104. This reduction

in Reynolds number is independent of the chord Reynolds number, which will permit

isolation of any important differences with the results obtained in the previous section,

where increases in the vortex Reynolds number were coupled with the chord Reynolds

number.
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Compared to the measurements at αvg = 12o, the vortex generated by the delta wing at

an angle of attack of 6o exhibits a 24% lower peak tangential velocity (Figure 4.7(a)), a

58% lower core circulation, and a 45% smaller core radius. Furthermore, the peak flow

angularity which reduces from 21o to 15o (Figure 4.7(d)). Interestingly, at this condition a

velocity deficit of 9% of the freestream velocity was measured, (Figure 4.7(b)). This agrees

with the near-field measurements of Wang et al. [98], who also found that the streamwise

velocity deficit associated with the delta wing vortex was reduced at lower angles of attack.

The peak streamwise vorticity (Figure 4.7(c) and Table 4.1) remains unchanged with the

reduction in angle of attack. This is unexpected, since the measurements of the NACA

0012 wing-tip vortex indicated that the peak streamwise vorticity reduced in proportion

to the angle of attack. One possible explanation is that, at higher angles of attack, the

wake generated at the trailing edge of the delta wing higher levels of turbulence. In such a

scenario, it is possible that the rate of vorticity diffusion inside the vortex core is increased.

Therefore, as the vortex convects from the wing to the PIV measurement plane, the peak

vorticity will reduce more rapidly than that experienced in the vortex at a lower angle of

attack.

It has been found that the primary effect of a reduction in the vortex generator angle

of attack is a corresponding reduction in the vortex Reynolds number. This is coupled

with a reduced vortex core radius, peak tangential velocity, peak streamwise vorticity,

and streamwise velocity perturbation. A degree of nonlinearity was observed in the case

of the delta wing vortex, which featured little change in the streamwise vorticity when the

angle of attack was reduced. It was suggested that the rate of vorticity diffusion inside

the vortex core may be substantially greater at higher angles of attack.

4.3.4 Unsteadiness of vortex characteristics and velocity field

In this section, the effect of the change in vortex generator conditions on the unsteadiness

of the vortex characteristics and the velocity field unsteadiness is discussed.

The unsteadiness of the vortex characteristics can be expressed in terms of the RMS value

of the fluctuations about the mean value, Table 4.2. The NACA 0012 vortex generator

results indicate that the unsteadiness levels of the core radius and core circulation are

independent of the chord Reynolds number, and remain less than 1% when normalised

using the freestream velocity and the intake inner diameter. The peak tangential velocity

unsteadiness increases by 45% between chord Reynolds numbers of 1.1× 105 to 3.6× 105.

In addition, the wandering levels, indicated by xv/c and yv/c, increase by approximately
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Table 4.2: RMS unsteadiness of unperturbed vortex characteristics

V G αvg Rec = W∞c
ν Rev = Γc

ν
rc,RMS

Di

Vθ,max,RMS

W∞

Γc,RMS

W∞Di

xv,RMS

Di

yv,RMS

Di

0012 12o 1.1× 105 2.4× 104 0.0024 0.0069 0.0081 0.019 0.020
0012 12o 1.7× 105 3.7× 104 0.0027 0.0077 0.0096 0.018 0.018
0012 12o 3.6× 105 7.4× 104 0.0023 0.010 0.0086 0.022 0.023
0012 6o 3.6× 105 3.4× 104 0.0026 0.0062 0.0058 0.022 0.026
Delta 12o 4.7× 105 5.6× 104 0.0186 0.017 0.033 0.031 0.028
Delta 6o 4.7× 105 2.3× 104 0.0113 0.015 0.016 0.037 0.034

15%. A reduction in the NACA 0012 angle of attack from 12o to 6o has little effect on

the unsteadiness associated with the vortex core radius or the vortex position. However,

there is a clear reduction in the peak tangential velocity and core circulation unsteadiness

of 38% and 33%, which suggests that the unsteadiness associated with these parameters

is strongly influenced by the details of the vortex generation process.

The delta wing vortex characteristics features notably higher levels of unsteadiness than

those measured for the NACA 0012 wing-tip vortex at both αvg = 12o and 6o. For

example, at an angle of attack of 12o and a freestream velocity of 35.4ms−1, the delta

wing vortex core radius, peak tangential velocity and core circulation unsteadiness are,

respectively, 5.8 times, 1.7 times and 3.8 times greater than those measured on the NACA

0012 wing-tip vortex at the same freestream velocity. There is a similar order of magnitude

increase in the RMS unsteadiness levels for an angle of attack of 6o. These results suggest

that the delta wing vortex generation process features greater levels of unsteadiness in

comparison to the NACA 0012 vortex generator. The wandering levels at both angles of

attack, however, are similar in magnitude for both vortex generators.

The contours of normalised turbulence intensity (TI/W∞), Figures 4.8(a) to 4.8(f), indi-

cate that the peak velocity unsteadiness levels occur at the vortex centre for all configura-

tions. The peak turbulence intensity almost doubles when the chord Reynolds number of

the NACA 0012 vortex generator is increased from 1.1× 105 to 3.6× 105 (Figures 4.8(a)

to 4.8(c)). This rise in velocity unsteadiness is consistent with the rise in peak tangential

velocity unsteadiness reported in Table 4.2. However, the increase in Rec has little effect

on the velocity unsteadiness beyond r/rc = 2, where TI/W∞ is approximately 0.02 for

all chord Reynolds numbers.
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(a) (b)

(c) (d)

(e) (f)

Figure 4.8: Unperturbed vortex measurements, Turbulence Intensity (TI/W∞), (a):
NACA 0012, αvg = 12o, Rec = 1.1× 105, (b): NACA 0012, αvg = 12o, Rec = 1.7× 105,
(c): NACA 0012, αvg = 12o, Rec = 3.6×105, (d): NACA 0012, αvg = 6o, Rec = 3.6×105,

(e): Delta, αvg = 12o, Rec = 4.7× 105, (f): Delta, αvg = 6o, Rec = 4.7× 105
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(a) (b)

Figure 4.9: Unperturbed vortex measurements, turbulence intensity at vortex centre
(TI/W∞), (a): As a function of Rec, (b): As a function of Rev

, where N and D refer to the NACA 0012 and delta wing vortex generators, and 6 and
12 refer to the vortex generator angle of attack.

Therefore, the effect of an increase in the chord Reynolds number is to increase the

intensity of the velocity fluctuations of the flow inside and immediately surrounding the

vortex core, which will cause an increase in the turbulent diffusion levels inside the vortex

core. When the angle of attack of the NACA 0012 vortex generator is reduced from

12o to 6oat a constant chord Reynolds number, there is a corresponding reduction in the

velocity unsteadiness levels inside the core, Figures 4.8(d). This result demonstrates that

the peak velocity unsteadiness levels are not simply a function of chord Reynolds number,

as observed in Figure 4.9(a). Instead, a closer correlation is obtained when the peak

turbulence intensity is plotted as a function of the vortex Reynolds number, Figure 4.9(b).

The peak levels of velocity unsteadiness measured in the delta wing vortices (Figures 4.8(e)

and 4.8(f)) are lower than the counterparts measured on the NACA 0012 vortex generator

(Figures 4.8(c) and 4.8(d)). For example, the peak turbulence intensity for the delta wing

at αvg = 12o is 37% lower than that measured with the NACA 0012 vortex generator at the

same condition. This is perhaps unexpected, since the unsteadiness associated with the

vortex characteristics, Table 4.2, is notably higher for the delta wing vortex. A possible

explanation is that the delta wing velocity unsteadiness (Figure 4.8(e)) is distributed

over a larger area when compared to the NACA 0012 results Figure 4.8(c). Therefore,

the velocity unsteadiness levels at the core radius are higher for the delta wing vortex,

which will cause comparatively larger fluctuations in the vortex characteristics which are

measured there, such as the core radius and peak tangential velocity. In a similar fashion

to the NACA 0012 measurements, the delta wing peak turbulence intensity values appear
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to show a stronger correlation with the vortex Reynolds number (Figure 4.9(b)) than

the chord Reynolds number (Figure 4.9(a)). This further supports the assertion that the

turbulence levels are influenced by a number of factors, including the chord Reynolds

number, and the details of the vortex generation process.

4.4 Summary

The purpose of this chapter was to establish the characteristics of the vortices measured

downstream of the vortex generators in the absence of the intake capture streamtube. It

was found that the unperturbed vortex is characterised by perturbations of in-plane and

out-of-plane velocities relative to the freestream flow. The in-plane velocity perturbation

produces large variations of flow angularity close to the vortex. Based on prior measure-

ments of the impact of a vortex on engine performance, the magnitude of the flow angles

in this research may have a detrimental effect on intake and fan performance. An assess-

ment of the unsteadiness of the unperturbed vortex has also been conducted. The vortex

characteristics, such as size and core circulation, feature small fluctuations. However, the

measurements indicate that the vortex has high levels of velocity unsteadiness inside the

core. A comparison between the current measurements and hot-wire measurements in

the literature has been performed. It was found that the velocity unsteadiness levels and

characteristics are in good qualitative agreement with measurements using conventional

hot-wire methods at similar vortex generation conditions. The vortices which have been

investigated in this section feature notable levels of velocity unsteadiness inside the vortex

core. This suggests that the evolution of the vortex may be characterised by rates of vor-

ticity diffusion which are higher than that attributed to laminar diffusion alone. Finally, a

controlled parametric study of the vortex generator configuration demonstrated that the

mean and unsteady characteristics of the generated vortex are influenced by the vortex

generator chord Reynolds number, angle of attack, and vortex generator type. Therefore,

using a range of vortex generator configurations, it will be possible to identify if the vortex

ingestion process is sensitive to the characteristics of the vortex prior to ingestion.





Chapter 5

Measurements of streamwise

vortex ingestion

The limited number of vortex ingestion measurements which are available in the literature

suggest that a streamwise vortex can cause notable levels of inlet flow distortion inside an

aircraft intake [8, 71, 73]. However, the characteristics of the vortex inside the intake, and

so its effect on the flow distortion levels, will be strongly dependent on the details of the

ingestion process. Therefore, it is necessary to establish fundamental understanding of

how the vortex evolves as it passes from the unperturbed upstream flow into the intake.

For the first time, a detailed parametric study of streamwise vortices in a streamtube

contraction has been conducted. The first part of this chapter analyses a datum vortex

ingestion configuration. The features of the capture streamtube velocity field are assessed,

and a detailed analysis of the vortex evolution is given. This focuses on both the mean

vortex characteristics and aspects of the flow unsteadiness. Thereafter, the results of

the controlled parametric study are presented. This focuses on the impact of a change

in the streamtube contraction levels and the impact of the initial characteristics of the

streamwise vortex in the unperturbed flow. Finally, the parametric study is concluded

with an assessment of the impact of the vortex ingestion trajectory.

5.1 Analysis of vortex ingestion flowfield

The purpose of this section is to characterise the flowfield associated with a vortex passing

through an intake capture streamtube. Firstly, the characteristics of the intake capture

101



102 Chapter 5 Measurements of streamwise vortex ingestion

streamtube are established as a function of the distance from the intake highlight plane.

This is followed by an analysis of the response of the streamwise vortex to the streamtube

contraction, in terms of the time-averaged vortex characteristics and velocity field. Finally,

the unsteady features of the vortex ingestion process are analysed to provide further insight

into the dominant flow physics.

In this section, the analysis will be performed of the measurements obtained for the NACA

0012 vortex generator at an angle of attack of αvg = 12o and a freestream velocity of

17.2ms−1. At this condition, the chord and vortex Reynolds numbers correspond to 1.7×
105 and 3.7× 104 respectively. The vortex was ingested along the centreline of an intake

capture streamtube with a velocity ratio of Wi/W∞ = 5.1. For this configuration, the

diameter of the capture streamtube far upstream of the intake corresponds to D∞/Di =

2.3.

5.1.1 Intake capture streamtube velocity field

It is first of interest to elucidate the details of the streamwise velocity field (w/W∞) intake

capture streamtube. The normalised streamwise velocity contours (w/W∞), Figure 5.1(a),

suggest that the perturbation associated with the intake is negligible at z/Di = 2.25

upstream of the highlight plane. This is further supported by inviscid CFD simulations

(appendix B.2) which confirm that the streamwise velocity at z/Di = 2.25 is equal to

1.043W∞ at this intake velocity ratio (VR=5.1).

(a) (b)

Figure 5.1: Contours of streamwise velocity component (w/W∞) at z/Di = 2.25,
0.80 and 0.20 upstream of the intake highlight plane, NACA 0012 vortex generator,

Rec = 1.7× 105, Rev = 3.7× 104
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Therefore, it is appropriate to consider the vortex at z/Di = 2.25 as the unperturbed

vortex condition. The effects of the streamtube contraction become apparent at z/Di =

0.80, after which the flow undergoes an intense acceleration to approximately three times

the freestream velocity at z/Di = 0.20. The flow reaches a velocity of w/W∞ = 3.2 at

z/Di = 0.20. Therefore, the flow velocity continues to increase downstream of z/Di =

0.20. The inviscid CFD simulations confirm that the contraction process is complete

inside the intake, at a position which is approximately 1.0Di downstream of the intake

highlight plane (appendix B.2).

An important feature which can be observed in the streamwise velocity contours is that

the streamwise velocity is not uniform across the streamtube cross-section. Instead, the

streamwise velocity reaches a maximum at the centre of the streamtube, and diminishes

with distance from the centreline axis. For example, at a given distance from the intake

highlight plane (z/Di), a fluid element at the streamtube centreline will experience greater

contraction levels than a fluid element located at some distance from the centreline. This

may have a notable influence on the vortex evolution inside the streamtube contraction,

and has been analysed in detail in section 5.2.4.

5.1.2 Vortex characteristics

An understanding of the behaviour of the vortex flow inside the streamtube contraction

can be obtained with reference to the circumferentially-averaged profiles of tangential

velocity (Vθ/W∞), streamwise velocity (Vz/W∞), streamwise vorticity (ωzDi/W∞) and

flow angularity (α = tan−1(Vθ/Vz)), Figures 5.2(a) to 5.3, where Di is the intake inner

diameter, and W∞ is the freestream velocity.

As the vortex approaches the intake highlight plane, there is a notable increase in the

peak tangential velocity, and a corresponding reduction in the vortex core radius, Figure

5.2(a). For example, between z/Di = 2.25 and z/Di = 0.20, the peak tangential velocity

increases by 52%, and the vortex core radius reduces by 35%. Note that these changes

are greater than the measurement uncertainties at these conditions, which correspond

to 5% and 6% for the change in peak tangential velocity and core radius, respectively.

There is also a large increase in streamwise velocity (Figure 5.2(b)), which has already

been observed in Figure 5.1(a). The observed behaviour of the vortex is consistent with

vortex intensification. Some important details can be identified in the streamwise velocity

profiles, Figure 5.2(b). Firstly, the initial streamwise velocity perturbation inside the

vortex core, which is approximately equal to 0.16W∞, is small in comparison to the overall
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(a) (b)

(c)

(d) (e)

Figure 5.2: Circumferentially-averaged profiles of vortex perturbation field, NACA 0012
vortex generator, Rec = 1.7×105, Rev = 3.7×104, (a): Tangential velocity (Vθ/W∞), (b):
Streamwise velocity (Vz/W∞) as a function of r/Di, (c): Streamwise velocity (Vz/W∞)
as a function of r/rc, (d): Streamwise vorticity (ωzDi/W∞) as a function of r/Di, (e):

Streamwise vorticity (ωzDi/W∞) as a function of r/rc
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Figure 5.3: Circumferentially-averaged profiles of vortex flow angle distribution (α =
tan−1(Vθ/Vz)), NACA 0012 vortex generator, Rec = 1.7× 105, Rev = 3.7× 104

increase in streamwise velocity of the surrounding capture streamtube flow. In addition,

the magnitude of the streamwise velocity perturbation remains small throughout the

contraction process. For example, at z/Di = 2.25, the ratio of the centreline streamwise

velocity to the streamwise velocity at the core radius is 7%. At z/Di = 0.20, this ratio

is unchanged. This is in contrast to the results from the Batchelor model in section

2.4.1 for a similar contraction and unperturbed vortex as the measurements in Figures

5.2(a) to 5.2(e). In particular, the Batchelor model indicated that the streamwise velocity

inside the vortex core should increase at a rate which is greater than that in the flow

which surrounds the vortex (Figures 2.21(b) and 2.22), and should result in a streamwise

velocity at the vortex centre which is approximately 10% greater than the surrounding

flow (Figure 2.21(b)). However, it should be noted that the Batchelor model assumes

that the streamwise velocity perturbation forms from an initially uniform streamwise

velocity distribution, which is not the case in the current measurements. Furthermore,

the Batchelor model assumes that the flow is inviscid, which may not be an appropriate

assumption. As the streamwise velocity perturbation inside the vortex core is increased,

there are additional out-of-plane velocity gradients, which are likely to be diffused under

the action of viscosity. A final observation is that the streamwise velocity perturbation is

largely confined to the vortex core (Figure 5.2(c)). Beyond the vortex core, the streamwise

velocity gradually reduces with distance from the vortex centre, which is a result of the

non-uniform streamtube streamwise velocity profile, as identified in Figure 5.1(a).

As anticipated, the streamwise vorticity (Figure 5.2(d)) also experiences a large increase

when the vortex moves through the streamtube contraction. For example, the peak

streamwise vorticity doubles between z/Di = 2.25 and z/Di = 0.20. The surrounding
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streamwise vorticity also convects inwards during the contraction due to the reduction in

the vortex core radius. When displayed as a function of r/rc (Figure 5.2(e)), it is clear

that the vorticity intensification takes place for all of the streamwise vorticity contained

in the flow.

The evolution of the flow angularity distribution during the contraction process is of

particular interest, since this parameter provides an indication of the swirl distortion levels

which may be experienced by the aircraft engine once inside the intake. An important

observation from the flow angle distributions (Figure 5.3) is that the peak flow angle

reduces while the vortex moves through the contraction. At z/Di = 2.25, the peak flow

angle corresponds to 28.2o, which reduces to 16.5o at z/Di = 0.20. This behaviour can be

explained with reference to the tangential and streamwise velocity profiles. The increase in

streamwise velocity during the contraction is greater than that observed in the tangential

velocity. As a result, the ratio Vθ/Vz becomes smaller, which causes a corresponding

reduction in the flow angularity (α = tan−1(Vθ/Vz)). This is a particularly important

result, since the effect of the streamtube contraction is to reduce the swirl distortion

levels attributed to the vortex. In the presence of a streamtube contraction, the peak flow

angles inside the intake will be notably lower than those measured upstream of the intake

and prior to ingestion.

5.1.3 Comparison with theory

The preceding results indicate that, as the streamwise vortex moves through the contract-

ing intake capture streamtube, the vortex experiences a large change in characteristics in

a manner consistent with vortex intensification. It is then of interest to compare the

measured vortex intensification levels with fundamental vortex theory. In this way, it

will be possible to identify important flow physics which impact the vortex intensifica-

tion process. Furthermore, the comparison will establish understanding of whether the

dynamics of a vortex inside a streamtube contraction can be modelled adequately using

fundamental theory.

In section 2.4.1, it was demonstrated that an approximate model for vortex intensifica-

tion could be derived from vortex filament theory, assuming that the flow is inviscid,

incompressible, and barotropic. The flow contraction was defined as a change in mean

streamwise velocity, for example, from the freestream velocity (W∞) to another stream-

wise velocity (w), where details of the transition in velocity are not considered. From

continuity, the radius of the vortex filament will change from rf,0 to rf , Eq. 5.1.
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rf
rf,0

=

√
W∞
w

(5.1)

From this expression, it is possible to determine relationships for the vortex peak tan-

gential velocity and peak streamwise vorticity (section 2.4.1). If the streamwise vortex is

considered as a vortex tube of initial core radius rc,0, then a change in streamwise velocity

from w to W∞ will result in a reduced core radius of rc, Eq. 5.2.

rc
rc,0

=

√
W∞
w

(5.2)

Batchelor [62] demonstrated that Eq. 5.2 is strictly valid only when the vortex has an

infinitesimal cross-sectional area. In the case of a vortex with a finite core radius, it

was shown that there is a coupling between the streamwise and tangential velocity fields.

This coupling causes an additional streamwise pressure gradient inside the vortex core,

which amplifies the effect of the flow contraction and causes an even greater change in

the vortex core radius compared to that given in Eq. 5.2. This effect is a function of

the flow contraction levels, and the initial core radius and average vorticity of the vortex.

Therefore, the validity of Eq. 5.2 for application in the current measurements depends

on the strength of the coupling effect, and can be assessed using the Batchelor model

(section 2.4.1). The numerical results obtained in section 2.4.1 illustrated that the vortex

core streamwise velocity (wc) is no more than 10% greater than the streamwise velocity

of the flow surrounding the vortex. Therefore, it can be concluded that the measured

value of wc/wc,0 is a close representation of the capture streamtube contraction levels

surrounding the vortex. In addition, it was found that the additional streamwise pressure

gradient inside the vortex core produced a core radius which is 2% smaller than that given

by vortex filament theory. Therefore, this effect is expected to be small for the measured

configuration. On this justification, vortex filament theory can be employed with the

vortex core streamwise velocity ratio (wc/wc,0) to estimate the theoretical change in the

vortex core radius (Eq. 5.3), average streamwise vorticity (Eq. 5.4), and peak tangential

velocity (Eq. 5.5).

rc
rc,0

=

√
wc,0
wc

(5.3)

ωz,av
ωz,av,0

=
wc
wc,0

(5.4)
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Vθ
Vθ,0

=

√
wc
wc,0

(5.5)

In addition, the peak streamwise vorticity can be estimated by considering the vortex

filament located at the vortex centre, and is given in Eq. 5.6.

ωz,max
ωz,max,0

=
wc
wc,0

(5.6)

Finally, the peak flow angularity can be estimated as given in Eq. 5.7.

tan(αmax)

tan(αmax,0)
=

√
wc,0
wc

(5.7)

The expressions given in Eqs. 5.3 to 5.7 can be utilised to evaluate the measured vortex

intensification levels. It will also be possible to assess of the suitability of vortex filament

theory to capture the flow physics of the vortex inside the streamtube contraction. The

comparison between the measurements and the vortex filament model has been conducted

using the vortex core radius (rc/rc,0), peak tangential velocity (Vθ,max/Vθ,max), peak

streamwise vorticity (ωz,max/ωz,max,0), core average streamwise vorticity (ωz,av/ωz,av,0),

and peak flow angularity (tan(αmax)/tan(αmax,0)).

In agreement with the trends observed in the streamwise velocity profiles (Figure 5.2(b)),

the streamwise velocity at the vortex centre (wc/wc,0) increases notably as the vortex

approaches the intake highlight plane, Figure 5.4(a). At z/Di = 0.20, the streamwise

velocity reaches a value of 2.7wc,0. Note that the maximum velocity magnitude measured

in this configuration is 56.1ms−1, which corresponds to a Mach number of 0.16. Therefore,

it can be concluded that the effects of compressibility are be negligible.

The change in the vortex core radius (rc/rc,0), Figure 5.4(b), is in good agreement with

the values which have been estimated from the vortex filament theory (Eq. 5.3), and

the differences between the model results and the measurements are smaller than the

experimental uncertainty. The change in peak tangential velocity (Vθ,max/Vθ,max,0) for

wc/wc,0 < 2.0 is close to the vortex intensification results from the vortex filament model

(Figure 5.4(c)). When the contraction levels are greater than 2.0, the measured peak

tangential velocity values begin to deviate from those estimated by the vortex filament

model. The change in peak streamwise vorticity (ωz,max/ωz,max,0) and core average vor-

ticity (ωz,av/ωz,av,0), however, are consistently lower than the results which have been



Chapter 5 Measurements of streamwise vortex ingestion 109

(a) (b)

(c) (d)

(e) (f)

Figure 5.4: Change in vortex characteristics during centreline ingestion, NACA 0012
vortex generator, Rec = 1.7 × 105, Rev = 3.7 × 104, VR=5.1, (a): Streamwise veloc-
ity at vortex centre (wc/wc,0), (b): Core radius (r/rc,0), (c): Peak tangential velocity
(Vθ,max/Vθ,max,0), (d): Peak streamwise vorticity (ωz,max/ωz,max,0), (e): Average core
streamwise vorticity (ωz,av/ωz,av,0), (f): Peak flow angle (α∗ = tan(αmax)/tan(αmax,0)).

Note that V F corresponds to vortex filament theory (Eqs. 5.3 to 5.7)



110 Chapter 5 Measurements of streamwise vortex ingestion

obtained from the vortex filament model (Figures 5.4(d) and 5.4(e)). Finally, in a manner

similar to the core radius and peak tangential velocity measurements, the peak flow angles

(Figure 5.4(f)) are in good agreement with the vortex filament theory for (wc/wc,0) of less

than 2.0. At higher contraction levels, the measured peak flow angles are somewhat lower

than theory. This is a consequence of the aforementioned peak tangential velocity levels,

which are lower than anticipated from vortex filament theory.

Further insight into the behaviour of the vortex characteristics in Figures 5.4(b) to 5.4(e)

can be provided with reference to the change in the vortex core circulation (Γc/Γc,0), Fig-

ure 5.5. In particular, the vortex core circulation remains constant during the intensifica-

tion process, to within experimental uncertainty. Therefore, the destruction, or dissipa-

tion, of vorticity inside the vortex core is negligible. The Lamb-Oseen model demonstrates

the behaviour of a vortex where the core circulation is constant, but vorticity diffusion

takes place as a result of viscosity. It was shown in section 2.3 that the diffusion is char-

acterised by an increase in the vortex core radius, coupled with reductions in the peak

tangential velocity and peak streamwise vorticity. Importantly, the change in vorticity

is notably larger than the changes in the core radius and peak tangential velocity, since

the diffusion effects are greatest in the regions where the velocity gradients are largest

[16]. This knowledge can be used to aid the interpretation of the evolution of the vortex

characteristics which has been observed in Figures 5.4(b) to 5.4(e). The peak streamwise

vorticity does not increase to the levels which are anticipated from vortex filament theory.

Thus, vorticity at the vortex centre is subject to notable diffusion levels, which act in op-

position to the vortex intensification process. This effect of viscosity is consistent with the

vorticity equation (Eq. 2.23), which indicates that the diffusion caused by viscosity acts

in opposition to the vorticity intensification process. The average vorticity in the vortex

core (Figure 5.4(e)) also illustrates behaviour which is consistent with vorticity diffusion,

although the effects are less pronounced than that observed at the vortex centre. There-

fore, it can be concluded that the effects of vorticity diffusion are not uniform throughout

the vortex core. Instead, the impact of diffusion is greatest at the vortex centre, and has

a reduced influence at greater radii inside the vortex. This also explains why the change

in vortex core radius and peak tangential velocity (Figures 5.4(b) and 5.4(c)) are in good

agreement with the inviscid model. It should be reminded that the measurements of the

streamwise vortex prior to the streamtube contraction (sections 4.3.4 and 4.3.4) found

that there are notable levels of velocity unsteadiness inside the vortex core. Turbulent

diffusion is known to accelerate the diffusion of vorticity inside vortex cores [50], so it

can be concluded that turbulent diffusion may also contribute to the differences between

the measurements and the vortex filament model. These turbulent diffusion levels are
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Figure 5.5: Change in vortex core circulation (Γc/Γc,0) as a function of change in
streamwise velocity at vortex centre (wc/wc,0), NACA 0012 vortex generator, Rec =

1.7× 105, Rev = 3.7× 104

known to be a function of the vortex Reynolds number [50, 51]. Furthermore, the de-

tails of the streamwise velocity perturbation have an influence on the turbulence levels

inside the vortex [46, 23]. Consequently, it is anticipated that the differences between the

vortex filament model and the measured vortex characteristics will depend on the initial

characteristics of the vortex, prior to the streamtube contraction.

5.1.4 Unsteadiness measurements

Previous wing-tip vortex measurements have demonstrated that the turbulent diffusion

can dramatically increase the growth rates experienced by a vortex in a uniform stream-

wise flow [21, 54, 50]. The wing-tip vortices investigated in this research feature notable

levels of turbulent fluctuations inside the vortex core (sections 4.2 and 4.3.4). There-

fore, it is of interest to identify the unsteady nature of the vortex characteristics and the

velocity field during the vortex intensification process. Note that the unsteadiness char-

acteristics have been obtained using the conditional-averaging approach (section 3.6.2).

Therefore, the effects of wandering have been removed, and the measurements contain

the unsteadiness in the velocity field for a reference frame whose origin is located at the

vortex centre.

During vortex intensification, the unsteadiness associated with the vortex core radius (Fig-

ure 5.6(a)) and the vortex location (Figures 5.6(d) and 5.6(e)) is damped. This is a direct

result of the flow contraction, which appears to have a stabilising effect on the unsteadi-

ness of the in-plane spatial characteristics. However, the unsteadiness associated with
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(a) (b)

(c)

(d) (e)

Figure 5.6: Unsteadiness of vortex characteristics during centreline ingestion as a
function of contraction levels wc/wc,0, NACA 0012 vortex generator, Rec = 1.7 × 105,
Rev = 3.7×104, VR=5.1, (a): Core radius (rc,RMS/rc,RMS,0), (b): Peak tangential veloc-
ity (Vθ,RMS/Vθ,RMS,0), (c): Core circulation (Γc,RMS/Γc,RMS,0), (d): Vortex core hori-
zontal location (xv,RMS/xv,RMS,0), (e): Vortex core vertical location (yv,RMS/yv,RMS,0)
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(a) (b)

(c) (d)

(e)

Figure 5.7: Turbulence intensity contours (TI/W∞), NACA 0012 vortex generator,
Rec = 1.7 × 105, Rev = 3.7 × 104, VR=5.1, as a function of distance from the intake
highlight plane, (a): z/Di = 2.25, (b): z/Di = 0.80, (c): z/Di = 0.60, (d): z/Di = 0.38,

(e): z/Di = 0.20
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Figure 5.8: Turbulence intensity at vortex centre (TI/W∞) and (TI/wc) as a function
of local streamtube contraction levels, NACA 0012 vortex generator, Rec = 1.7 × 105,

Rev = 3.7× 104, VR=5.1

the peak tangential velocity (Figure 5.6(b)) and the core circulation (Figure 5.6(c)) grows

during the intensification process. The fact that the peak tangential velocity unsteadiness

increases is an indication that the unsteadiness associated with the vortex velocity field

also rises. This is confirmed in the contours of turbulence intensity (TI/W∞), Figures

5.7(a) to 5.7(e). The peak turbulence intensity is located at the vortex centre throughout

the intensification process, and increases steadily from a value of 0.09W∞ at z/Di = 2.25

to 0.17W∞ at z/Di = 0.20 (Figure 5.8). This result demonstrates that, like the mean

velocities, the mean unsteadiness of the flow also rises during intensification. When nor-

malised by the local streamwise velocity at the vortex centre, it is apparent that the

velocity fluctuations are damped relative to the surrounding flow (Figure 5.8). However,

the unsteadiness levels clearly suggest that the vortex core remains a highly turbulent

region during intensification, and thus it is likely that turbulent diffusion may play an

important role in defining the evolution of the vortex characteristics.

5.1.5 Summary

The measurements at a single vortex ingestion configuration have highlighted a number of

important features pertaining to the intake capture streamtube flow and the vortex evolu-

tion. The intake capture streamtube is characterised by an intense streamwise contraction,

which takes place over a distance of approximately one intake diameter upstream of the

highlight plane. Further upstream of the intake, the effect of the streamtube contraction

is negligible.
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Measurements of a streamwise vortex which was ingested along the intake centreline have

demonstrated that the vortex experiences notable levels of vortex intensification due to

the streamtube contraction. The intensification process results in a reduction of the

vortex core radius, with a corresponding rise in the vortex peak tangential velocity, peak

streamwise vorticity, and core average vorticity. As anticipated from fundamental theory

(section 5.1.3), the peak flow angularity is damped during the contraction process. This is

a promising result with regards to the inlet flow distortion levels which result from vortex

ingestion.

Vortex filament theory was employed to obtain an estimate of the theoretical vortex

intensification levels for the measured streamtube contraction levels. It was found that,

at low contraction levels, the measured vortex intensification levels were in good agreement

with the inviscid, incompressible vortex filament theory. When the streamtube contraction

levels increase, however, the vortex characteristics deviate from those anticipated from

theory. In particular, the measured vortex has a greater core radius, with comparatively

lower peak tangential velocity, peak streamwise vorticity, core streamwise vorticity, and

peak flow angles. It has been suggested that viscous and turbulent diffusion may play

an important role during vortex intensification, and may be the source of the differences

between fundamental theory and the measurements. The likeliness of turbulent diffusion

is supported by the notable levels of velocity fluctuations measured inside the vortex core

prior to, and during, vortex intensification.

5.2 Effect of principal parameters

The analysis of a single vortex ingestion configuration has identified a number of key

research questions which must be addressed. Firstly, it has been found that the vortex

intensification levels observed in the experimental data are in good agreement with fun-

damental filament theory for low contraction levels. It is hypothesised that the effects

of laminar and turbulent diffusion may become increasingly apparent when the contrac-

tion levels are further increased. Therefore, it is of interest to evaluate the impact of a

change in the streamtube contraction levels. This aspect is investigated in section 5.2.1.

Secondly, the results indicate that the vortex core is a turbulent region and, as such, tur-

bulent diffusion may be of importance. Wing-tip vortex studies have suggested that the

turbulent diffusion levels increase with the vortex Reynolds number [42, 50]. Therefore, it

is necessary to identify if a change in the vortex Reynolds number has an impact the vor-

tex intensification process. In a similar light, it is possible that the vortex intensification
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process is dependent on other details of the unperturbed vortex. This will investigated

using the measurements with the delta wing vortex. Finally, the current measurements

have shown that the contraction levels at a given streamwise plane are not uniform across

the streamtube cross-section. This may have an influence on the evolution of the vortex

as it passes through the streamtube contraction, and has been investigated in the final

part of this section.

5.2.1 Streamtube contraction levels

To determine the impact of the streamtube contraction levels on the evolution of the vortex

inside the intake capture streamtube, the intake velocity ratio (VR) has been varied using

the intake mass flow at a constant freestream velocity (section 3.5). Three intake velocity

ratios (VR=2.0, 5.1 and 10.3) have been considered for a freestream velocity of 17.2ms−1.

The NACA 0012 vortex generator was employed at an angle of attack of 12o to create a

streamwise vortex which was positioned at the intake centreline. At these conditions, the

chord Reynolds number was 1.7 × 105, and the vortex Reynolds number was 3.7 × 104

(Table A.1). Note that the unperturbed streamwise vortex characteristics were therefore

fixed during these measurements, since only the intake flow conditions were varied to

produce the change in streamtube contraction levels.

As expected, the streamwise velocity ratio at the vortex centre (wc/wc,0) is strongly

dependent on the intake velocity ratio, Figure 5.9(a). At a given distance upstream of the

intake highlight plane (z/Di), the value of wc/wc,0 increases in proportion to the intake

velocity ratio. This is simply a result of the increased contraction levels inside the capture

streamtube. For an intake velocity ratio of 10.3, the streamwise velocity ratio at z/Di =

0.20 reaches a value of 4.1. The velocity magnitude at this measurement plane reaches

approximately 93ms−1. This corresponds to a Mach number of 0.27, which indicates that

the effect of compressibility is likely to be small for the conditions considered.

The measured vortex characteristics (Figures 5.9(b) to 5.9(f)) suggest that the vortex

experiences notable levels of vortex intensification in response to the flow contraction.

This is consistent with the results presented in the preceding section. It is interesting to

note that the vortex characteristics in Figures 5.9(b) to 5.9(f), which have been measured

for streamtube contractions of VR=2.0, 5.1 and 10.3, follow a single curve as a function

of (wc/wc,0). This result is perhaps not anticipated, since the strain rates at a particular

value of z/Di depend on the intake velocity ratio. For example, in Figure 5.9(a), the strain

rate ∆wc/∆z is notably larger for VR=10.3 when compared to VR=2.0. Therefore, for a
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(a) (b)

(c) (d)

(e) (f)

Figure 5.9: Vortex characteristics during centreline ingestion, NACA 0012 vortex gen-
erator, Rec = 1.7 × 105, Rev = 3.7 × 104, as a function of intake velocity ratio (VR),
(a): Streamwise velocity at vortex centre (wc/wc,0), (b): Core radius (r/rc,0), (c): Peak
tangential velocity (Vθ,max/Vθ,max,0), (d): Peak streamwise vorticity (ωz,max/ωz,max,0),
(e): Average core streamwise vorticity (ωz,av/ωz,av,0), (f): Peak flow angle (α∗ =
tan(αmax)/tan(αmax,0)). Note that V F corresponds to vortex filament theory (Eqs.

5.3 to 5.7)
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given unperturbed vortex ingested along the intake centreline, it appears that the vortex

intensification levels are strongly dependent on the total streamwise strain (wc/wc,0),

rather than the particular details of the streamwise strain rate distribution.

The peak flow angles (Figure 5.9(f)) are inversely proportional to the local streamtube

contraction levels for a wide range of intake velocity ratios. This is an important result

in terms of the potential inlet flow distortion levels which result from the ingestion of a

vortex. In particular, this result demonstrates that the peak flow angles inside an intake

are likely to be smallest during high velocity ratio conditions, since wc/wc,0 will also be

large. If the intake velocity ratio is reduced, then the peak flow angles will increase.

Therefore, for a given unperturbed vortex, the risk of a loss of engine performance due to

the ingestion of a vortex is likely to be greatest where the intake velocity ratio is low. An

example of such a condition is during the rotation and climb-out phases of flight.

The vortex measurements for an intake velocity ratio of 5.0 (section 5.1) indicated that

the measured levels of vortex intensification were in good agreement with vortex filament

theory where wc/wc,0 was less than 2.0. At higher contraction levels, the measurements

began to deviate from theory, and suggested that the vortex had undergone lower levels

of intensification than was anticipated from theory. This trend is also observed across

the range of intake velocity ratios investigated in Figures 5.9(b) to 5.9(f). For example,

at wc/wc,0 = 2.0, the changes in the vortex core radius and peak tangential velocity are

3% higher and 4% lower than anticipated from vortex filament theory. In addition, the

increase in peak streamwise vorticity obtained from the measurements is 12% smaller

than the vortex filament result. Such differences are small, and close to measurement

uncertainty. When the contraction levels further increase, there is a corresponding rise in

the differences between the measurements and vortex filament theory. These differences

are of a similar magnitude for the vortex core radius, peak tangential velocity, and peak

flow angularity (Figures 5.9(b), 5.9(c) and 5.9(f)). It is interesting to note that the

average streamwise vorticity (Figure 5.9(e)) is in closer agreement with the theory than the

peak streamwise vorticity (Figure 5.9(d)), which demonstrates that the levels of vorticity

intensification at the vortex centre are lower than that which has been experienced on

average throughout the vortex core. This is a result of the effects of vorticity diffusion. At

the vortex centre, the vorticity levels and velocity gradients are at the maximum in the

vortex flowfield, and so the intensity of vorticity diffusion is expected to be large. At the

core radius, the vorticity levels are notably lower (for example, as demonstrated in Figure

5.2(e)), so the diffusion of vorticity is less intense. Consequently, it can be concluded that

the intensity of vorticity diffusion is a function of radius, and is strongest at the vortex

centreline axis. On average across the vortex core, however, diffusion has a smaller effect
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on the intensification process, and so parameters which have been calculated at the vortex

core radius are in good agreement with the inviscid vortex filament theory.

The vortex measurements at a range of intake velocity ratios have shown that vortex

ingestion along the intake centreline is characterised by inviscid, incompressible vortex

intensification where the local streamwise contraction levels are less than 2.0. At greater

contraction levels, the measured levels of vortex intensification are lower than the levels

anticipated from vortex filament theory. The behaviour is consistent with the effects of

laminar and turbulent diffusion (section 2.3). In addition, there is a clear dependence on

the total streamwise strain experienced by the vortex, since the difference between theory

and the measurements increases monotonically with wc/wc,0. The measurements indicate

that the peak flow angles are damped by the streamtube contraction, with an additional

damping due to diffusion. Therefore, for a given unperturbed vortex, the peak flow

angularity is inversely proportional to the intake velocity ratio. An important conclusion

from this result is that the impact of a streamwise vortex on an aircraft engine is likely

to be greatest if vortex ingestion occurs during low intake velocity ratio conditions, such

as those experienced at the end-of-runway phase of flight.

5.2.2 Vortex Reynolds number

The literature review has highlighted that the vortex Reynolds number (Rev = Γc/ν) has

a marked influence on the evolution of wing-tip vortices in uniform streamwise flows 2.3.

In particular, measurements have demonstrated that an increase in the vortex Reynolds

number produces a corresponding rise in the rate at which vorticity is diffused inside

the vortex core. There have been no prior studies of the impact of the vortex Reynolds

number on vortex intensification. This lack of understanding will be addressed in this

section by means of a controlled parametric study on the vortex Reynolds number of the

vortex prior to entering the streamtube contraction.

The study on the influence of the vortex Reynolds number was conducted at an intake

velocity ratio of approximately 5.0 for all conditions. As detailed in section 3.5, the vortex

Reynolds number was controlled using the freestream velocity and the angle of attack of

the vortex generator. Using the NACA 0012 vortex generator, vortex Reynolds numbers

of between 2.4 × 104 and 7.4 × 104 were obtained for an angle of attack of 12o (Table

4.1). To better illustrate the change in unperturbed vortex characteristics, a reference

vortex Reynolds number of Rev,0 = 2.4 × 104 has been chosen. Therefore, the vortex

Reynolds numbers which have been investigated can be expressed as Rev,0, 1.6Rev,0 and
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3.1Rev,0, respectively. The second approach which was employed was to reduce the vortex

generator angle of attack from 12o to 6o at a constant freestream velocity of 35.3ms−1.

This produced a wing-tip vortex with a vortex Reynolds number of 3.4×104, or 1.4Rev,0.

Importantly, using this approach, it is possible to determine the role of the vortex Reynolds

number for a fixed chord Reynolds number.

The change in the streamwise velocity at the vortex centre (Figure 5.10(a)) shows only a

weak dependence on the vortex Reynolds number, such that the value of wc/wc,0 increases

by 14% when Rev is reduced from 3.1Rev,0 to Rev,0. The evolution of the vortex core

radius and the peak flow angularity (Figures 5.10(b) and 5.10(f)) are unaffected by the

change in vortex Reynolds number, meanwhile the peak tangential velocity and average

core vorticity (Figures 5.10(c) and 5.10(e)) show only a small increase at a given wc/wc,0

when Rev is reduced from 3.1Rev,0 to Rev,0. However, in contrast, the peak streamwise

vorticity reduces monotonically as the value of Rev is increased (Figure 5.10(d)). In a

manner similar to the trends reported in the preceding section, the measured values of

omegaz,av/ωz,av,0 are in good agreement with vortex filament theory, whereas the peak

vorticity values are notably lower than theory. In addition, the agreement between the

measured and theoretical values of ωz,max/ωz,max,0 worsens as the vortex Reynolds number

increases. This behaviour indicates that the rate of vorticity diffusion increases with Rev,

which reduces the measured value of (ωz,max/ωz,max,0) for a given wc/wc,0. There are two

likely factors which contribute to this behaviour. Firstly, the unperturbed measurements

indicated that the intensity of the velocity fluctuations inside the vortex core, prior to

entering the streamtube contraction, increase with the vortex Reynolds number (section

4.3.4). Therefore, the rise in turbulent momentum transfer accelerates the rate of vorticity

diffusion inside the vortex core, and the subsequent vortex intensification levels are lower

than anticipated from inviscid theory. A second factor which must be considered is that

the change in vortex Reynolds number also affects the value of the vortex core radius and

peak streamwise vorticity prior to intensification. For example, for the case corresponding

to Rev,0, the vortex core radius is rc/Di = 0.092, and the peak streamwise vorticity

is ωzDi/W∞ = 30.3 (Table 4.1). When the vortex Reynolds number is increased to

3.1Rev,0, the vortex core radius reduces to rc/Di = 0.082, and the peak streamwise

vorticity increases to ωzDi/W∞ = 48.8, indicating that the vorticity levels are higher

and are concentrated over a smaller region. This is reflected in a rise of the vortex core

average vorticity (ωz,av) from 3.8 to 10.9. Therefore, as the vortex Reynolds number is

increased, the intensity of vorticity diffusion inside the vortex core and prior to the flow

contraction is elevated. As a result, during intensification, the strength of the diffusion

process relative to the intensification process is greater, which will undoubtedly increase
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(a) (b)

(c) (d)

(e) (f)

Figure 5.10: Vortex characteristics during centreline ingestion, NACA 0012 vortex
generator, as a function of vortex Reynolds number (Rev), where Rev,0 = 2.4 × 104

(a): Streamwise velocity at vortex centre (wc/wc,0), (b): Core radius (r/rc,0), (c): Peak
tangential velocity (Vθ,max/Vθ,max,0), (d): Peak streamwise vorticity (ωz,max/ωz,max,0),
(e): Average core streamwise vorticity (ωz,av/ωz,av,0), (f): Peak flow angle (α∗ =
tan(αmax)/tan(αmax,0)). Note that V F corresponds to vortex filament theory (Eqs.

5.3 to 5.7)
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the differences between the measured vortex intensification levels and the inviscid model.

Importantly, the effect of these elevated diffusion levels is most apparent at the vortex

centre, and is less evident for parameters which have been measured at the core radius.

It can be concluded that, over the range of conditions investigated, the vortex Reynolds

number does not have a notable effect on the evolution of the vortex core radius, peak

tangential velocity or peak flow angle during intensification, and all three parameters are

in close agreement with vortex filament theory. However, the results indicate that the

vorticity inside the vortex core is subject to increased diffusion rates when the vortex

Reynolds number is increased. This is thought to be a result of a rise in the vortex

flow turbulence levels prior to the contraction, as well as an increase in the average core

vorticity.

5.2.3 Vortex type

In the preceding sections, the intensification process was investigated for wing-tip vortices

generated by the NACA 0012 vortex generator. As outlined in section 4.3, the streamwise

vortex created by the delta wing vortex generator has notably different features from the

NACA 0012 wing-tip vortices. The purpose of this section is to determine if these features

have an impact on the vortex intensification process.

There is a notable variation in the streamwise velocity at the vortex centre (Figure 5.11(a))

between the different vortex types. For example, at an angle of attack of 12o and a

freestream velocity of 35.4ms−1, the NACA 0012 wing-tip vortex attains a value of wc/wc,0

of 2.46 at z/Di = 0.20. In comparison, the delta wing vortex core flow reaches a streamwise

velocity wc/wc,0 of 3.23. This is unexpected, since the streamtube contraction levels are

identical for both cases. The reason for the differences lies in the dynamics of the vortex

core flow. From the Batchelor model (section 2.4.1), the sensitivity of the flow inside

the vortex core to the streamtube contraction is proportional to krc (Figure 2.22), where

k = 2ωav/wc. Using the unperturbed vortex characteristics, the values of krc for the

NACA 0012 and delta wing vortex generators at αvg = 12o are estimated to be 2.4 and

1.34 respectively. Thus, based on the Batchelor model, the delta wing vortex is expected

develop a smaller streamwise velocity perturbation than the NACA 0012 wing-tip vortex.

Instead, the reason for the differences can be explained by considering the one-dimensional

Euler equation for a streamline along the vortex centre, Eq. 5.8, where ρ is the density,

p is the static pressure, and z is the streamwise ordinate.



Chapter 5 Measurements of streamwise vortex ingestion 123

(a) (b)

(c) (d)

(e) (f)

Figure 5.11: Vortex characteristics during centreline ingestion, NACA 0012 and delta
wing vortex generators, VR=4.9, (a): Streamwise velocity at vortex centre (wc/wc,0), (b):
Core radius (r/rc,0), (c): Peak tangential velocity (Vθ,max/Vθ,max,0), (d): Peak stream-
wise vorticity (ωz,max/ωz,max,0), (e): Average core streamwise vorticity (ωz,av/ωz,av,0),
(f): Peak flow angle (α∗ = tan(αmax)/tan(αmax,0)). Note that V F corresponds to vortex
filament theory (Eqs. 5.3 to 5.7). N12 and N6 refer to the NACA 0012 vortex generator
at αvg = 12o and 6o, respectively. D12 and D6 refer to the delta wing vortex generator

at αvg = 12o and 6o, respectively
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(a) (b)

Figure 5.12: Circumferentially-averaged streamwise velocity profiles (Vz/W∞) (a):
NACA 0012 wing-tip vortex, Rec = 3.6× 105, Rev = 7.4× 104, (b): Delta wing vortex,

Rec = 4.7× 105, Rev = 5.6× 104

dwc
dz

= − 1

ρwc

dp

dz
(5.8)

It is assumed that the flow is incompressible, and that the vortex centre is at the centre of

the intake capture streamtube. At a given streamwise position z, the fluid will experience

a favourable pressure gradient dp/dz due to the streamtube contraction. An important

difference between the NACA 0012 and delta wing vortices is the nature of the streamwise

velocity perturbation prior to the streamtube contraction (Figures 5.12(a) and 5.12(b)).

The NACA 0012 wing-tip vortex features a streamwise velocity of 1.16W∞, whereas the

delta wing vortex features a streamwise velocity perturbation of 0.75W∞. Therefore, when

compared to the NACA 0012 wing-tip vortex, the value of the right hand side of Eq. 5.8

is larger for the delta wing, since the initial value of wc is smaller. As a result, Eq. 5.8

suggests that a vortex with a streamwise velocity deficit will experience a greater increase

in wc/wc,0 than that experienced by a vortex with a streamwise velocity excess, as ob-

served in Figure 5.11(a). Despite the notable differences in the streamwise velocity profile

evolution, the vortex core radius, peak tangential velocity, average core vorticity, and flow

angularity measurements (Figures 5.11(b), 5.11(c), 5.11(e) and 5.11(f)) are similar for

both the NACA 0012 and delta wing vortices. In agreement with the trends reported

in sections 5.2.1 and 5.2.2, the values of ωz/ωz,0 are notably lower than the average core

vorticity (Figure 5.11(d)). The maximum values of ωz,max/ωz,max,0 vary depending on

the initial vortex characteristics, prior to entering the streamtube contraction. In the
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preceding section, it was demonstrated that as the vortex Reynolds number increases, the

maximum value of ωz/ωz,0 for a particular wc/wc,0 reduces.

However, the delta wing vortex measurements do not agree with this trend. For example,

consider the measurements for the NACA 0012 and delta wing vortices which both feature

a vortex Reynolds number of Rev = Rev,0. The maximum value of ωz,max/ωz,max,0 of

the delta wing vortex is 39% lower than the NACA 0012 vortex with the same vortex

Reynolds number. The unperturbed measurements (Table 4.1) show that the delta wing

vortex has a core average vorticity which is 2.2 times that of the NACA 0012 wing-tip

vortex. Therefore, the streamwise vorticity inside the delta wing vortex is concentrated

over a smaller area compared to the NACA 0012 wing-tip vortex. As a consequence, prior

to entering the streamtube contraction, the intensity of the vorticity diffusion process at

the vortex centre is greater for the delta wing vortex. A result of this is that, inside the

streamtube contraction, the intensification levels at the centre of the delta wing vortex

are lower than the NACA 0012 vortex, due to elevated levels of diffusion. As detailed in

sections 5.2.1 and 5.2.2, this effect is local to the centre of the vortex, and the parameters

at the vortex core radius do not show the same trends. In addition, the maximum values of

ωz,max/ωz,max,0 observed in Figure 5.11(d) are inversely proportional to the unperturbed

values of average core vorticity (Table 4.1). This indicates that the average vorticity inside

the vortex core is an important parameter which defines the level of diffusion which is

experienced at the vortex centre during intensification.

It has been found that the evolution of the vortex core radius, peak tangential velocity,

and peak flow angularity, are not affected by a change in the unperturbed vortex type.

However, the streamwise vorticity characteristics depend on the characteristics of the

vortex prior to intensification. It has been found that diffusive effects become increasingly

apparent when the vortex average vorticity is increased. In the presence of a strong

streamwise velocity deficit, the vortex core fluid experiences a greater acceleration in

streamwise velocity than that experienced by the core fluid of a vortex with a streamwise

velocity excess. This out-of-plane perturbation resulted in peak flow angles which were

larger than anticipated by vortex filament theory.

5.2.4 Vortex ingestion trajectory

In section 5.1.1, it was shown that the intake capture streamtube velocity profile is not

uniform. Instead, the maximum streamwise velocity is located at the centreline, and

there are large in-plane velocities at the edge of the streamtube when close to the intake



126 Chapter 5 Measurements of streamwise vortex ingestion

highlight plane. This may have an impact on the evolution of the vortex as it passes

through the streamtube contraction. To assess this effect, the position of the streamwise

vortex in the upstream flow, relative to the intake centreline, was varied. To achieve this,

the vortex generator was translated laterally in the working section, such that the vortex

was in a position corresponding to x/Di = −0.70 from the intake centreline. This was

conducted using the NACA 0012 vortex generator at an angle of attack of 12o, and chord

Reynolds numbers of 1.1 × 105 and 1.7 × 105. The two freestream velocities resulted in

intake velocity ratios of 16.3 and 10.3 respectively. Note that the vortex position upstream

of the intake, for each of the intake velocity ratios, corresponds to a position which is 37%

and 47% of the streamtube radius from the intake centreline.

The streamwise velocity ratio wc/wc,0, Figure 5.13(a), is consistently lower than the cen-

treline counterparts for both intake velocity ratios. This appears to be a direct con-

sequence of the non-uniform contraction levels which have been measured across the

streamtube cross-section (Figure 5.1(a)). This feature indicates that the off-axis vortex,

at a particular z/Di, experiences locally lower streamtube contraction levels. Between

z/Di = 0.60 and z/Di = 0.20, the difference between the off-axis and centreline values

of wc/wc,0 for VR=16.3 reduces from 24% to 11%, which indicates that the flow on the

off-axis trajectory has experienced a greater strain rate over this region upstream of the

intake. Note that the values of wc/wc,0 for the centreline and off-axis measurements are

expected to reach approximately the same value inside the intake, since the intake ve-

locity ratio is the same for both cases. An important aspect which must be determined,

therefore, is if the vortex intensification process is affected by the differing strain rates.

All measured vortex characteristics (Figures 5.13(b) to 5.13(f)) show that there is little

dependence on the vortex trajectory when the streamwise velocity ratio wc/wc,0 is less

than 3.0. However, at greater contraction levels, the vortex intensification levels expe-

rienced by the vortex on the off-axis trajectory are closer to the vortex filament theory

than those measured on the centreline. For example, at z/Di = 0.20, the vortex ingested

along the off-axis trajectory has an 11% smaller core radius, with peak values of tangen-

tial velocity and streamwise vorticity which are 18% and 30% higher than the centreline

measurements. Note that the off-axis measurements in Figures 5.13(a) to 5.13(f) have

not been corrected for the fact that the vortex axis is tilted relative to the measurement

plane. It is estimated from the measurements that the tilt of the vortex axis does not

exceed 24o. A correction for the tilt of the vortex axis would result in off-axis vortex

characteristics which are closer to the vortex filament theory. However, the magnitude

of the change in vortex characteristics is likely to be small. For example, Burley et al.

[100] obtained measurements of the wing-tip vortex which was produced by a four-bladed



Chapter 5 Measurements of streamwise vortex ingestion 127

(a) (b)

(c) (d)

(e) (f)

Figure 5.13: Vortex characteristics, NACA 0012 vortex generator, VR=5.1, for centre-
line (CL) and off-axis (OA) ingestion trajectories, (a): Streamwise velocity at vortex cen-
tre (wc/wc,0), (b): Core radius (r/rc,0), (c): Peak tangential velocity (Vθ,max/Vθ,max,0),
(d): Peak streamwise vorticity (ωz,max/ωz,max,0), (e): Average core streamwise vortic-
ity (ωz,av/ωz,av,0), (f): Peak flow angle (α∗ = tan(αmax)/tan(αmax,0)). Note that V F

corresponds to vortex filament theory (Eqs. 5.3 to 5.7)
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helicopter rotor. The blades were of a NACA 23012 section, with a radius and a chord

of 2m and 0.121m, respectively. The measurements were acquired for a chord Reynolds

number of 1.76 × 106 in an open jet wind tunnel facility. It was demonstrated that a

vortex axis tilt of 32o resulted in an overestimation of the vortex core radius by 18%,

and an underestimation of the peak tangential velocity of 10%. These values are close to

the measurement uncertainty in the current research, and it can thus be concluded that

the effect of vortex axis tilt is likely to have a negligible effect on the trends which are

reported in Figures 5.13(a) to 5.13(f).

The off-axis ingestion measurements suggest that along the off-axis trajectory, the vortex

has experienced greater levels of vortex intensification, and the effects of diffusion are

smaller. Consider the vortex ingested along the intake centreline for VR=16.3. As the

streamwise velocity ratio increases (Figure 5.13(a)), the vortex undergoes intensification,

and there is a corresponding rise in the effect of diffusion which becomes increasingly ap-

parent as the value of wc/wc,0 increases. However, on the off-axis trajectory, the increase

in wc/wc,0 takes place over a far smaller distance (z/Di). During intensification, as the

vorticity levels increase, there is a corresponding rise in the rate of vorticity diffusion. It

is hypothesised that the differing strain rates for the centreline and off-axis trajectories

(Figure 5.13(a)) have an impact on the balance between the vorticity intensification and

vorticity diffusion processes. In particular, the increase in vorticity produces a correspond-

ing rise in the vorticity diffusion levels, which subsequently acts in opposition to further

increases in vorticity due to intensification. Therefore, if flow contraction process takes

place gradually, the diffusive effects will become more apparent than if the contraction is

rapid.

It has been demonstrated that, at low contraction levels, the vortex trajectory inside the

streamtube contraction has no effect on the vortex intensification process. However, as

the contraction levels increase, the vortex ingested along an off-axis trajectory undergoes

greater levels of intensification than those measured along the intake centreline, for a

given streamtube contraction. Furthermore, the off-axis vortex intensification levels are

closer to vortex filament theory than the centreline counterpart. It was found that the

time scale associated with the flow contraction reduces with distance from the intake

centreline, which appears to reduce the effect of diffusion. It can be concluded that the

highest levels of flow angularity will be measured when the vortex is ingested at the edge

of the intake capture streamtube, since the damping effects of diffusion are least. As a

result, it can be hypothesised that the highest levels of flow angularity inside the intake

will occur when a vortex is ingested along an off-axis trajectory.
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5.3 Summary

This chapter has been focussed on the results from the detailed study on the behaviour of

a streamwise vortex inside a contracting intake capture streamtube. As anticipated, the

vortex undergoes notable levels of vortex intensification in response to the flow contraction.

This is characterised by a reduction in the vortex core radius, coupled with increases in

the vortex peak tangential velocity, peak streamwise vorticity, and average core vorticity.

At large intake velocity ratio conditions, the peak flow angularity which is associated with

the vortex is damped by the contraction. Therefore, the largest levels of flow angularity

will occur at low intake velocity ratio conditions, such as those experienced during end-

of-runway operations. The loss of stability and performance of the aircraft engine is likely

to increase with the levels of flow angularity inside the intake flow [9], and so vortex

ingestion during low velocity ratio conditions will present the greatest risk to aircraft

engine operation.

An extensive parametric study was conducted to elucidate the details of the flow physics

associated with vortex intensification. An inviscid vortex filament model was employed to

quantitatively assess the levels of vortex intensification which have been obtained in the

measurements. It was demonstrated that the evolution of the vortex characteristics which

are defined at the edge of the vortex core, such as the peak tangential velocity and the

peak flow angle, are in good agreement with the line vortex model for contraction levels

wc/wc,0 of less than 2.0. However, it has been found that vorticity diffusion takes place

inside the vortex core. Subsequently, the increase in vorticity inside the vortex core is less

than anticipated from fundamental theory. The effects of vorticity diffusion are greatest at

the vortex centre, and increase with the vortex Reynolds number and the initial vorticity

levels inside the vortex, prior to the flow contraction. The dependence on the vortex

Reynolds number demonstrates that turbulent diffusion offers a notable contribution to

the overall vorticity diffusion levels. It has also been demonstrated that the streamwise

velocity perturbation inside the vortex core has an impact on the vortex intensification

process. Finally, for a given streamtube contraction, a streamwise vortex is subject to

lower levels of vorticity diffusion when the vortex trajectory is some distance from the

intake centreline. As a consequence, the vortex undergoes greater levels of intensification,

and the corresponding peak flow angles are higher than those which are obtained when

the vortex is ingested along the intake centreline. It can therefore be concluded that

the off-axis ingestion scenario is one which presents the greatest risk to the stability and

performance of an aircraft engine.





Chapter 6

Vortex ingestion simulations

It is of great interest to conduct studies using Computational Fluid Dynamics (CFD)

to assess the nature of vortex ingestion on aircraft engines. For example, CFD can be

employed to evaluate the likely airframe configurations and flight conditions which may

result in the ingestion of a vortex. In addition, simulations can uncover the potential

impact that such a vortex can have on the performance and operability of the intake and

the engine. Furthermore, CFD simulations are not subject to the same limitations as

experimental measurements, and can easily be employed to investigate a wide range of re-

alistic geometries and configurations at full-scale Reynolds numbers. However, the results

obtained from such studies can only be considered as reliable if the CFD simulations are

known to capture the correct flow physics of vortices. Unfortunately, there is little prior

research in the literature which identifies the correct approach to simulate vortex inges-

tion using CFD. To address this lack of understanding, detailed investigations have been

conducted to establish a validated CFD approach for vortex ingestion studies. The stud-

ies have permitted the identification of the mesh characteristics, turbulence model, and

inlet boundary conditions which are required to correctly simulate the vortical flows which

are of interest for vortex ingestion studies. Thereafter, the CFD approach is validated

by means of the measurements from the sub-scale vortex ingestion studies of chapter 5.

Finally, the approach is extended for use at full-scale conditions which, crucially, provides

a method to elucidate the impact of vortex ingestion on full-scale aircraft engines.

131
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6.1 Modelling requirements for vortex simulations

Before details of the CFD modelling requirements for vortex ingestion can be identified,

it is first necessary to consider the approach which may be taken to simulate the ingestion

of an externally-generated streamwise vortex by an aircraft intake. Although there are

no prior examples of such simulations in the literature at present, some important lessons

can be obtained from the simulations of other intake flow configurations in which vortex

ingestion takes place. Examples include ground vortices [101] and vortices generated on

the fuselage in the proximity of the engine [14]. In both examples, the vortex genera-

tion process has been included in the simulations of the intake flow and, in some cases,

components of the aircraft engine [14]. However, these simulations feature a number of

limitations. Firstly, large computational domains are required, with a large number of

mesh cells in order to correctly resolve the vortex generation and evolution processes in

the external flowfield. This can force a compromise in terms of mesh resolution in critical

parts of the CFD domain, such as the intake boundary layers [14], and can subsequently

limit the accuracy of the results. Furthermore, in such simulations, the range of vortex

characteristics and flowfield configurations is generally constrained by the fixed geometry.

As an alternative, it may be possible to avoid simulating the vortex generation process,

and instead to prescribe the vortex flowfield as an inlet boundary condition to a domain

which contains only the intake. This approach has been favoured in this research. Im-

portantly, the complexity and the size of the computational domain can be reduced, and

it may be possible to increase the mesh resolution in other key areas, such as the intake

boundary layer or components of the aircraft engine. In addition, the characteristics of

the vortical distortion, such as the vortex size and strength, may be controlled paramet-

rically using the boundary conditions to provide vital information on the sensitivity of

aircraft engines to vortical distortions.

A review of the literature has demonstrated that it can be challenging to correctly capture

the flow physics of vortices using CFD. For example, the results from the wing-tip vortex

simulations of Egolf et al. [81] highlighted that the wing-tip vortex diffused rapidly after

a short distance. This was particularly evident in the peak tangential velocity, which was

approximately 40% of the value which was obtained from experimental measurements.

This notable difference was attributed to numerical diffusion. A range of wing-tip vortex

studies using CFD (notably [81, 82, 102, 85, 84]) have demonstrated the wing-tip vortices

may be excessively diffused as a result of numerical diffusion, and that the impact of nu-

merical diffusion is dependent on the order of accuracy of the numerical scheme the grid

resolution in the vortex core, and the choice of turbulence model (section 2.5.3). This
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numerical diffusion may present a notable difficulty for vortex ingestion simulations. If

the vortex is subject to excessively large levels of numerical diffusion, then the correct

behaviour of the vortex during ingestion will not be captured. As a consequence, the

intensity of the vortical flow inside the intake, and so the inlet flow distortion levels, will

be underpredicted. To simulate vortex ingestion in the correct manner, it is therefore

necessary to identify CFD modelling guidelines which will minimise the numerical diffu-

sion levels. Simulations of an isolated vortex in a freestream flow have been performed to

provide a quantitative assessment of the sensitivity of the vortex evolution to the details

of the mesh characteristics, turbulence model, and boundary conditions. In this section,

description of the vortex convection simulations will be provided. This includes the de-

tails of the test case, the CFD domain details, the mesh characteristics, the boundary

conditions, and the numerical model.

6.1.1 Test case details

The evolution of the wing-tip vortex is validated using existing wing-tip vortex measure-

ments which are available in the literature. Wing-tip vortex measurements were acquired

by Devenport et al. [1] using a similar wing geometry, at comparable conditions to the

current experimental dataset as highlighted in Table 6.1.

Table 6.1: Comparison of vortex generation conditions considered in current research
and in Devenport et al. [1]

Current measurements Devenport et al. [1]

VG section NACA 0012 NACA 0012
b (m) 0.45 0.879
c (m) 0.15 0.203

AR = b/c 3.0 4.3
αvg (o) 12 5

x/c 6 4
Rec 1.1 - 3.6×105 5.3× 105

Rev 2.4 - 7.4×104 3.4× 104

rc/c 0.054-0.061 0.037
M 0.03-0.10 0.13
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(a) (b)

Figure 6.1: Experimental measurements and Squire model results for wing-tip vortex
characteristics downstream of a semi-span vortex generator, as a function of x/c, (a):

Vortex core radius (rc/rc,0), (b) Vortex peak tangential velocity (Vθ,max/Vθ,max0)

Note the similarities in the vortex Reynolds numbers. At this value of Rev, the vortex

diffusion rates will be characterised by an apparent diffusion coefficient, δ, (section 2.3)

with a value of between 1 and 10 (Figure 2.17). The measured vortex core radius features a

growth rate which is very close to the laminar growth rate given by the Squire model with

δ = 1, Figure 6.1(a), and the evolution of the peak tangential velocity lies between δ = 1

and δ = 10 (Figure 6.1(b)). Therefore, the experimental measurements are consistent with

the trends which have been reported in the literature [50], and so it can be concluded that

the test case is suitable as a means to establish CFD guidelines.

The measurements from the Devenport test case which have been employed to generate

the inlet boundary conditions have been acquired at x/c = 4 downstream of the wing

trailing edge, which is two chord lengths closer to the trailing edge of the wing than

the current experimental measurements (Table 6.1). However, the characteristics of the

vortex perturbation field are expected to be similar for both cases, since the measurements

have both been acquired in the near field of the wing, where the vortex roll-up process

is well underway (section 2.2. Note that the measurements in the Devenport test case

were acquired in a Cartesian axis system where the x-axis corresponds to the streamwise

axis. In the current research, the z-axis has been employed as the streamwise axis. The

Devenport test case simulations thus employ the x-axis as the streamwise axis.
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6.1.2 CFD methods

6.1.2.1 Mesh characteristics

Prior studies [82, 81, 83] have demonstrated that the in-plane and out-of-plane mesh

resolutions inside the vortex core have a strong effect on the evolution of the vortex.

Therefore, it is desirable to establish a meshing approach which permits a controlled

parametric study on the mesh resolution inside the vortex core. The simulation consists

of an isolated vortex whose axis is aligned with the streamwise direction. Therefore, a

suitable approach is to generate a CFD domain which places the vortex at the streamwise

centreline axis of the domain. A Cartesian mesh has been generated using ICEM 12.1,

and features symmetry boundaries which are parallel to the streamwise direction and

at a suitable distance from the vortex centre (Figure 6.2(a)). The domain is completed

with inlet and outlet boundaries which are perpendicular to the flow direction. A length

of 100rc from the vortex centreline to the symmetry boundary was employed. This is

expected to be sufficiently large to avoid potential interactions between the vortex and

boundaries. For example, Ragab and Sreedhar [46] found that a distance of 30rc from the

vortex centreline to the domain boundaries is sufficient. The extent of the CFD domain

in the streamwise direction was selected to be a length of 11.3c, where c is the wing chord

length. This distance encapsulates three of the experimental measurement points in the

Devenport dataset (Figure 6.1(a)). Therefore, the vortex characteristics extracted from

the CFD simulations can be compared with two measurement points.

(a) (b)

Figure 6.2: Characteristics of mesh employed for isolated vortex convection simulations,
(a): CFD domain dimensions, (b): Mesh characteristics on a plane perpendicular to the

streamwise direction and vortex axis (Y-Z axis)
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Figure 6.3: Definition of a swirl loop

The in-plane mesh topology features a region of constant spacing which spans the vortex

core diameter in the vertical and horizontal directions, Figure 6.2(b). Note that the

edge of this region corresponds to the node located at the vortex core radius. Using

this approach, the number of elements in the vortex core could be controlled. Beyond the

vortex core radius, the mesh element dimensions increase at an expansion ratio of 1.2. The

streamwise mesh resolution was defined using the concept of a vortex swirl loop, Figure

6.3, which corresponds to the helical path taken by a particle at the vortex core radius

convecting at the freestream velocity. The time taken for a single swirl loop, tsl, can be

approximated using the initial values of the vortex core radius (rc,0), the peak tangential

velocity (Vθ,max,0), as given in Eq. 6.1. It is thus possible to employ the streamwise

velocity (W∞) to compute the streamwise distance which corresponds to a swirl loop, Eq.

6.2. The streamwise mesh resolution was thus defined as the number of mesh elements

contained in the pitch of the vortex swirl loop.

tsl =
2πrc,0
Vθ,max,0

(6.1)

xsl = W∞tsl (6.2)

6.1.2.2 Boundary conditions

As an alternative to simulating the vortex generation process, all vortex simulations in this

research feature suitable inlet plane boundary conditions to implement the perturbation



Chapter 6 Vortex ingestion simulations 137

(a)

Figure 6.4: Tangential and streamwise velocity profiles employed to define the velocity
boundary conditions at the inlet plane of the CFD domain

field of a known vortex. There are a number of approaches in which the vortex perturba-

tion field can be obtained. Firstly, the vortex flowfield at a particular plane perpendicular

to the vortex axis can be extracted from experimental measurements. Alternatively, it

is possible to extract the vortex flowfield from the results of a CFD simulation which

includes the vortex generation process. Another possible approach is to employ a vortex

model, such as the Vatistas vortex model [103, 50], to generate the vortex velocity field.

However, for this test case, the experimental measurements obtained by Devenport et al.

[1] are available for use [104].

As described in section 6.1.1, the measurements at x/c = 4 downstream of the wing trail-

ing edge have been employed to generate the inlet boundary conditions. Inspection of the

measurements revealed that the wing-tip vortex at x/c = 4 is approximately axisymmet-

ric. Thus, the circumferentially-averaged tangential and streamwise velocity profiles from

this streamwise location (Figure 6.4(a)) were selected to define the inlet boundary con-

ditions. A cubic spline interpolation approach was employed in MATLAB to interpolate

the experimental grid points, with a spatial resolution of 0.0015m (0.2rc), onto a grid of

resolution 0.0001m (0.013rc). The velocity profiles were then interpolated onto the grid

nodes on the inlet plane of the CFD domain.

Note that the experimentally-measured velocity profiles extended from the vortex centre

to a distance of approximately r/rc = 40 from the vortex centre. The domain width

and height corresponded to 100rc from the vortex centre (section 6.1.2.1), and it was

therefore necessary to extrapolate the velocity profiles to the edges of the CFD domain.

An exponential function curve fit was employed define a continuous distribution of Vθ. The

measured streamwise velocity perturbation reduced quickly with distance from the vortex
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centre, such that the vortex streamwise velocity was approximately equal to the freestream

velocity for radii greater than r/rc = 4. Thus, a constant value of Vz = W∞ was enforced

beyond the experimental data at r/rc = 40. The boundary profiles were subsequently

prescribed as Cartesian velocity components on the inlet boundary plane. Note that a

compressible inlet boundary profile formulation was not required for this case, since the

experimental measurements, and the corresponding vortex convection simulations, were

conducted at a freestream flow Mach number of 0.13.

In addition to the velocity distributions, it is also necessary to prescribe details of the mean

turbulent flow at the inlet boundary. However, it was noted that vortex wandering may

have resulted in an over-measurement of in-plane velocity unsteadiness [1]. Therefore, it is

not possible to employ the in-plane turbulence measurements with confidence to prescribe

turbulence profiles as part of the inlet plane turbulence boundary conditions. However,

based on a wandering correction method, it was concluded that the vortex core may

contain low levels of turbulence. Therefore, it was deemed appropriate to apply uniform

turbulence boundary conditions which correspond to the measured freestream turbulence

intensity of TI = 0.1%. This is a simplifying assumption, since wing-tip vortices often

feature profiles of turbulence inside the vortex core [23, 43]. Note that the implications of

this choice of turbulence boundary condition are addressed in section 6.1.3.2. To complete

the definition of the turbulence boundary conditions, an eddy viscosity ratio of νt/ν = 1.0

was employed. This value was selected since the measurements from this test case [1]

suggest that the flow at the centre of the vortex features low levels of turbulence. Note,

however, that turbulent flow was reported at greater radii inside the vortex, and in the

surrounding flow, so the use of a turbulent viscosity ratio of zero is not appropriate.

The domain outlet boundary consisted of a uniform static pressure outlet condition.

The static pressure corresponded to the freestream static pressure of the unperturbed

freestream flow. The outlet plane featured a uniform turbulence profile which consisted

of a turbulence intensity of 0.1% and an eddy viscosity ratio of 1.0.

6.1.2.3 Numerical approach and convergence strategy

The vortex convection simulations were conducted using a density-based, cell-centred,

implicit RANS numerical model implemented in FLUENT 12.1. The objective was to

employ a commercial CFD package to provide a validated approach which can be used

both for fundamental studies of vortex intensification, and for engineering studies of vor-

tex ingestion. Therefore, a RANS-based turbulence modelling approach was favoured. A
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3rd order MUSCL discretisation scheme was employed in conjunction with Roe’s flux dif-

ference splitting to evaluate the convective fluxes and the turbulence equations. Finally,

the gradient and derivative terms were computed using a least squares approach. The

solution convergence was evaluated using the scaled residuals of the equations of continu-

ity, momentum, energy, and the relevant turbulence equations for the chosen turbulence

model. All simulations featured a typical scaled residual of less than 10−7. In addition,

the total circulation, as calculated on the outlet plane of the CFD domain, was monitored

to ensure that the streamwise vortex characteristics had also achieved convergence.

6.1.3 Results

In this section, the results of the vortex convection simulations are presented. Note that,

in all simulations, the vortex characteristics have been extracted using the Vorticity Disk

Method (section 3.6.2) with a circular zone radius of rmax/rc = 3 and a spatial resolution

of 0.027rc. Unless stated otherwise, simulations have been conducted using the k−ω SST

turbulence model.

6.1.3.1 Impact of mesh resolution

Notable levels of numerical diffusion can result if the mesh resolution inside the vortex

core is not sufficient (section 2.5.3). As a consequence, the evolution of the vortex will not

be captured correctly in the simulations. It is therefore necessary to establish guidelines

for the minimum number of mesh elements which should resolve the vortex core region.

To do this, a controlled parametric study on the in-plane and streamwise mesh resolution

inside the vortex core was conducted. The in-plane and out-of-plane mesh resolutions

were varied independently such that their influence on the vortex convection process can

be ascertained.

The in-plane mesh resolution has been characterised in terms of the number of uniformly-

spaced mesh elements which define the vortex core diameter when evaluated in the x-

and y-directions from the vortex centre. In-plane mesh resolutions of 4, 8, 16, 20 and

32 elements were investigated with a constant streamwise mesh resolution of 15 mesh

elements per swirl loop. This streamwise resolution is confirmed to be sufficient by the

studies conducted later in this section, and is further supported by Dacles-Mariani et al.

[82], who employed a resolution of approximately 20 mesh elements per swirl loop for

wing-tip vortex generation simulations. As detailed in section 6.1.2.2, the inlet boundary

velocity profiles were interpolated to the grid nodes. This approach provided the most
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Figure 6.5: Influence of the in-plane mesh resolution on the vortex characteristics
predicted by the CFD solver at the inlet plane of the CFD domain, k − ω SST model

consistent way of ensuring that the peak tangential velocity and core radius of the vortex,

as provided to FLUENT, were constant for all mesh resolutions. The profiles were sub-

sequently interpolated on to the inlet plane of the given vortex convection mesh using a

least-squares method which is implemented in the FLUENT profile reader [105]. However,

it is acknowledged that, due to the large velocity gradients which are attributed to the

vortex flowfield, a cell-centred solver may not be able to establish the correct flowfield at

the inlet boundary. Therefore, it was first necessary to evaluate the vortex characteristics

which have been extracted from the inlet plane of the converged CFD solution. This has

been achieved by evaluating the vortex core radius (rc/rc,exp) and the peak tangential ve-

locity (Vθ,max/Vθ,max,exp) as a function of the in-plane mesh resolution (Figure 6.5), where

subscript ”exp” refers to the value which defined the inlet boundary condition profiles.

When the vortex core is defined by 4 mesh elements, the vortex which is obtained at the

inlet boundary features a core radius which is 57% larger and a peak tangential velocity

which is 31% lower than the prescribed values. Therefore, it is apparent that the CFD

solver is unable to resolve the vortex boundary conditions in a correct manner at such low

mesh resolutions. As the mesh resolution is increased, the characteristics of the vortex at

the inlet boundary quickly converge towards the values which were prescribed in the inlet

profiles. In particular, the results (Figure 6.5) demonstrate that a minimum of 16 mesh

elements are required inside the vortex core in order to capture the correct vortex core

radius and peak tangential velocity to within 5% of the prescribed value.

It is anticipated that the streamwise mesh resolution has an influence on the evolution of

the vortex characteristics as it convects. Therefore, the vortex characteristics, in terms

of the core radius, peak tangential velocity, peak streamwise vorticity, and total circula-

tion, (Figures 6.6(a) to 6.6(d)), have been extracted at a number of streamwise planes.

Note that subscript ”0” refers to the value at the inlet plane of the CFD domain. The



Chapter 6 Vortex ingestion simulations 141

(a) (b)

(c) (d)

Figure 6.6: Evolution of vortex characteristics during convection as a function of the
number of vortex swirl loops (Nsl), influence of the number of in-plane mesh elements
employed to resolve the vortex core diameter, k − ω SST model, (a): Vortex core ra-
dius (rc/rc,0), (b) Vortex peak tangential velocity (Vθ,max/Vθ,max0), (c): Vortex peak

streamwise vorticity (ωz,max/ωz,max0), (d): Vortex total circulation (Γ0/Γ0,0)

streamwise distance has been expressed as the number of swirl loops (Nsl = t/tsl), where

t = x/W∞, and tsl is given in Eq. 6.1.

The vortex characteristics which have been extracted from the CFD simulations show

that the vortex evolution is strongly dependent on the in-plane mesh resolution. For a

mesh resolution which consists of 4 elements across the vortex core, the vortex core radius

increases notably as the vortex convects (Figure 6.6(a)). For example, after approximately

12 swirl loops, the vortex core radius is 1.98 times the value prescribed at the inlet plane,

which corresponds to a core radius which is 3.23 times larger than the experimental

measurement. Similarly, the vortex peak tangential velocity (Figure 6.6(b)) and the peak

streamwise vorticity (Figure 6.6(c)) reduce dramatically to 67% and 32% of the value at

the inlet boundary. The results demonstrate that the vortex has undergone notable levels
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of diffusion during convection. The intensity of the diffusion process is evidently greater

than that observed in the experimental measurements of core radius (Figure 6.6(a)) and

the peak tangential velocity (Figure 6.6(b)). Interestingly, the total circulation of the

vortex increases as the vortex convects in the flow, Figure 6.6(d). This behaviour violates

conservation of angular momentum, and demonstrates that the CFD solver cannot capture

the correct flow physics for such a low mesh resolution. When the mesh resolution inside

the vortex core is increased, there is a corresponding reduction in the diffusion rates. For

example, when the in-plane mesh resolution is increased from 4 to 16 mesh elements, the

vortex core radius reduces from 198% to 144% of the value prescribed at the inlet plane. A

further increase in the mesh resolution to 32 elements results in vortex growth rates which

are close to those measured in the experiments for Nsl of less than 6 (Figures 6.6(a) and

6.6(b)). However, over greater convection distances, the CFD simulations indicate greater

levels of vortex growth than that which is observed in the experimental measurements.

It is also necessary to determine the impact of the streamwise mesh resolution on the

vortex convection process. Dacles-Mariani et al. [82] stated that, for wing-tip vortex

generation simulations, the in-plane mesh resolution has a stronger effect on the vortex

evolution than the out-of-plane mesh resolution. It was recommended that the out-of-

plane mesh resolution should be 1.35 times that of the in-plane mesh spacing, which

corresponds to approximately 20 mesh elements per vortex swirl loop. However, little

detail was given to the sensitivity of the vortex evolution to different out-of-plane mesh

resolutions. Therefore, streamwise mesh resolutions of 5, 10, 15 and 30 elements in each

vortex swirl loop were investigated. The vortex characteristics (Figures 6.7(a) to 6.7(d))

indicate that the vortex diffusion process does not behave in a monotonic fashion with

changes in the streamwise mesh resolution. Instead, the vortex evolution is unchanged

when the number of streamwise mesh elements is increased from 10 to 30. However, when

the mesh resolution is reduced to 5 elements per swirl loop, the vortex experiences a

rapid diffusion process. It is therefore apparent that, at sufficiently low streamwise mesh

resolutions, the flow physics of the vortex convection process cannot be captured correctly.

The vortex convection simulations have demonstrated that, although it was not possible

to obtain close agreements between the experimental measurements and the results which

have been extracted from the CFD simulations, acceptable results can be obtained for an

in-plane mesh resolution of 16 elements. In addition, it was demonstrated that a minimum

of 10 mesh elements should be employed to resolve the streamwise distance corresponding

to a single vortex swirl loop.
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(a) (b)

(c) (d)

Figure 6.7: Evolution of vortex characteristics during convection as a function of the
number of vortex swirl loops (Nsl), influence of the number of out-of-plane mesh elements
employed to resolve the distance corresponding to one vortex swirl loop, k−ω SST model,
(a): Vortex core radius (rc/rc,0), (b) Vortex peak tangential velocity (Vθ,max/Vθ,max0),
(c): Vortex peak streamwise vorticity (ωz,max/ωz,max0), (d): Vortex total circulation

(Γ0/Γ0,0)

6.1.3.2 Impact of turbulence model

A number of CFD studies of wing-tip vortex generation and evolution in the near field

have demonstrated that the agreement between the simulation results and experimental

measurements is strongly dependent on the choice of turbulence model [82, 81, 102, 85, 84].

A common result which has been reported in these studies is that the turbulence model

can produce large levels of turbulence inside the vortex core, which results in a vortex

which is more diffused that the experimental measurements suggest [82]. However, there

have been few prior studies which assess the impact of turbulence modelling on wing-tip

vortex convection simulations. Therefore, studies have been conducted using the Spalart-

Allmaras (SA), k−ε and k−ω SST eddy-viscosity models which are available in FLUENT
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(a) (b)

(c) (d)

Figure 6.8: Evolution of vortex characteristics during convection as a function of
the number of vortex swirl loops (Nsl), influence of the choice of eddy-viscosity tur-
bulence model, (a): Vortex core radius (rc/rc,0), (b) Vortex peak tangential velocity
(Vθ,max/Vθ,max0), (c): Vortex peak streamwise vorticity (ωz,max/ωz,max0), (d): Vortex

total circulation (Γ0/Γ0,0)

12.1. In addition, the ”modified” SA model and the Realizable k − ε turbulence models

were also investigated. These models feature modifications to the original SA and k − ε
turbulence models to offer improved performance for vortical flows [106]. The modified

SA model is of particular interest, since the model features an ad-hoc correction to the

turbulence production formulation was introduced to improve the agreement between

experimental measurements and CFD results of wing-tip vortex flow [82]. It is therefore

desirable to investigate if such turbulence models offer an improvement for the vortical

flows of interest in this research. In all cases, in-plane and out-of-plane mesh resolutions

of 16 and 15 mesh elements, respectively, have been employed.

The evolution of the vortex characteristics during the convection process demonstrates a

strong dependence on the turbulence model. In all cases, the vortex core radius grows
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at a rate which is faster than the experimental measurements (Figure 6.8(a)). Similarly,

the reduction in peak tangential velocity is consistently greater than the measurements

suggest (Figure 6.8(b)), and there is a notable reduction in the peak streamwise vorticity

at the vortex centre (Figure 6.8(c)). The results obtained using the k − ω SST model

are in the closest agreement with the experimentally-measured vortex core radius and

peak tangential velocity (Figures 6.8(a) and 6.8(b)), which are, respectively, 34% greater

and 11% lower than the experimental measurements after approximately 12 swirl loops.

However, the Spalart-Allmaras, k − ε and k − ε Realizable turbulence models produce

excessive levels of vortex growth. For both turbulence models, the vortex core radius

(Figure 6.8(a)) is almost 6 times the measured vortex core radius after 12 swirl loops.

The turbulent viscosity at the vortex centre, νt/ν, for each of the turbulence models

demonstrate that the turbulence levels inside the vortex core vary considerably between

different models, and that the SA and k − ε turbulence models result in the greatest

levels of turbulence inside the vortex core (Figure 6.9). For example, in the case of the

SA turbulence model, the turbulent viscosity levels are two orders of magnitude larger

than those observed in the k−ω SST results. This behaviour provides an explanation for

the differences in the vortex characteristics which have been presented in Figures 6.8(a)

to 6.8(d). In particular, where turbulence production rates are greatest, the vortex flow

experiences the high levels of turbulence and thus the diffusion levels are elevated. It

should be emphasised that the turbulence production levels are typically small for wing-

tip vortices [43], and are only augmented when a large streamwise velocity perturbation

exists [23, 46]. In the case under consideration for the current vortex convection studies,

the streamwise velocity perturbation is small, and turbulence production is expected to be

low [1]. Thus, the notable increase in turbulence inside the vortex core which is observed

in Figure 6.9 suggests that the turbulence models do not capture the correct behaviour

of the vortex turbulence field. The Spalart-Allmaras turbulence model, for example, uses

the vorticity tensor to compute the turbulent production. As a result, the turbulence

levels quickly rise inside the vortex core where the vorticity levels are greatest. The

turbulence levels are reduced by several orders of magnitude when the modified SA model

is employed (Figure 6.9). This is reflected in the evolution of the vortex characteristics

(Figures 6.8(a) to 6.8(d)), which are closer to the experimental measurements than those

of the standard SA model. Nonetheless, the modified SA model remains inferior to the

k − ω SST turbulence model.

A feature of the turbulent flow in wing-tip vortices is the presence of anisotropic tur-

bulent stresses [23, 30], which can be observed in a Cartesian coordinate system as a

misalignment between the mean in-plane Reynolds stresses and the mean in-plane strain
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Figure 6.9: Evolution of eddy viscosity ratio at the vortex centre (νt/ν) for different
turbulence models, as a function of the number of swirl loops (Nsl), k − ω SST model

rates (section 4.2). This presents a problem for eddy viscosity turbulence models, which

employ the Boussinesq assumption to determine the turbulence levels in the simulated

flow. A fundamental requirement for the Boussinesq assumption to be valid is that the

Reynolds stress tensor is aligned with the mean strain rate tensor. Clearly, this is not a

valid assumption for the vortical flows of interest in this research and, as a consequence,

it is not possible for EV turbulence models to capture the flow physics of vortices. This

limitation is a contributing factor to the limited agreement between the CFD simulations

and the experimental measurements shown in Figures 6.8(a) and 6.8(b). It is necessary

to determine if a second-moment closure turbulence model can be employed in favour of

the eddy viscosity models. The results from RSM simulations of wing-tip vortex gen-

eration have reported far closer agreement with experimental results in comparison to

eddy-viscosity models [84]. Thus, simulations using the wing-tip vortex convection test

case were performed by Stankowski [107] under the direction of and in collaboration with

this Doctoral research. It is important to note that the simulation mesh, numerical model,

and boundary conditions, were identical to those employed for the eddy-viscosity model

simulations. The Linear Pressure Strain (LPS) RSM model was selected. The RSM sim-

ulations were initialised using the solution from the converged k − ω SST simulations to

ensure that the simulations achieved a converged solution. In-plane mesh resolutions of 16

and 32 elements were investigated, with a streamwise mesh resolution of 15 mesh elements

per swirl loop. For an in-plane mesh resolution of 16 mesh elements, the vortex core ra-

dius and peak tangential velocity results (Figures 6.10(a) and 6.10(b)) obtained using the

RSM simulations are close to those of the k−ω SST model. When the mesh resolution is

increased to 32 elements across the vortex diameter, the simulated vortex diffusion rates

are in excellent agreement with the experimental measurements. For example, after 12
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(a) (b)

Figure 6.10: Evolution of vortex characteristics during convection as a function of the
number of vortex swirl loops (Nsl), influence of in-plane mesh resolution for k − ω SST
and RSM LPS turbulence models, (a): Vortex core radius (rc/rc,0), (b) Vortex peak

tangential velocity (Vθ,max/Vθ,max0)

swirl loops from the inlet plane, the vortex obtained from the RSM simulation features a

core radius and peak tangential velocity which are within 3% of the measured values. The

results therefore demonstrate that the laminar-like vortex diffusion levels which have been

obtained in the experiments can be obtained using an RSM simulation with a sufficiently

high mesh resolution. In addition, it should be reminded that for shorter convection dis-

tances (Nsl < 6), it is possible to achieve satisfactory agreement with the experimental

measurements with use of 16 mesh elements across the vortex diameter.

Additional insight into the vortex flow physics can be obtained in the details of the vortex

turbulence characteristics, such as the normal turbulent stress profiles at Nsl = 6, Figure

6.11(a).

(a) (b)

Figure 6.11: Cartesian turbulence profiles, evaluated perpendicular to the vortex axis
and through the vortex centre, (a): Results from the RSM LPS simulations, (b): Exper-

imental measurements
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There are some notable discrepancies from the experimental data. In particular, the sim-

ulations feature turbulence levels which are several orders of magnitude lower than that

observed in the experiments. The experimental measurements of v′2 and w′2 in Figure

6.11(b) may be excessively large as a result of wandering [1]. However, the out-of-plane

turbulence terms are essentially unaffected by wandering [1], and so the measurements

can be used with confidence. On this basis, the CFD simulations feature turbulence levels

which are two orders of magnitude lower than the experiments. An important conclusion

which can be reached is that, in the RSM simulations, the initially uniform turbulence

boundary conditions do not develop into the anticipated profiles which are observed in

Figure 6.11(b), and the turbulence levels which are prescribed at the inlet plane are not

self-sustained in the vortex flow. In fact, this is consistent with experimental measure-

ments [43] and simulations [46], which demonstrate that the turbulence production levels

are small in the absence of large streamwise velocity perturbations. Thus, despite the

promising agreement between the simulated and measured vortex diffusion characteris-

tics (Figures 6.10(a) and 6.10(b)), it is apparent that potentially important features of

the vortex flow have not been captured in the simulations. Therefore, it is necessary to

address an approach to ensure that the correct turbulence characteristics are simulated.

This will is the focus of the following section.

6.2 Turbulence boundary conditions for vortex simulations

An important conclusion from the preceding section is that additional simulations must

be performed to identify the turbulence boundary condition requirements which correctly

initiate the turbulence field at the CFD inlet plane. Details of the turbulence field can be

obtained from CFD simulations of the vortex generation process, or from experimental

measurements. Unfortunately, the in-plane turbulence measurements which are avail-

able for the test case in the preceding section are likely to be impacted by wandering.

Therefore, it is not possible to use the measurements to develop valid turbulence bound-

ary conditions. It was concluded that the experimental measurements obtained in this

research for the unperturbed wing-tip vortices should be used as a basis to develop an

approach for defining turbulence boundary conditions. This is appropriate since the mea-

surements do not include the effects of wandering and, in addition, are in good agreement

with the findings reported in the literature (section 4.2). The purpose of this section is

to present the development of an approach which can be used to prescribe appropriate

turbulence boundary conditions in conjunction with a vortex of known characteristics.
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6.2.1 Test case details

The test case which has been employed consists of the wing-tip vortex generated by the

NACA 0012 vortex generator at an angle of attack of αvg = 12o and a chord Reynolds

number of 1.7 × 105. The characteristics of the wing-tip vortex, measured at a distance

of z/c = 6 downstream of the wing trailing edge, are given in Table 4.1. Note that

the chord and vortex Reynolds numbers are similar to those of the test case which was

investigated in section 6.1.1. As demonstrated by Iversen [42] and Bhagwat and Leishman

[50], the vortex Reynolds number is a key parameter which characterises the evolution of

wing-tip vortices as they convect downstream of the wing. The test cases feature similar

vortex Reynolds numbers and vortex generator characteristics, so it is anticipated that

the diffusion levels experienced by the vortices during convection should also be similar.

In section 3.5, it was noted that the PIV configuration which was employed in this re-

search did not permit the translation of the PIV measurement plane. Therefore, it was

not possible to acquire vortex convection measurements for the unperturbed wing-tip vor-

tices which were investigated in this research. As a consequence, the vortex convection

simulations for this test case cannot be directly validated with experimental measure-

ments. However, it is known that the Squire vortex model provides a good description of

the evolution of the vortex characteristics for a wide range of wing-tip vortex flows [50].

Therefore, it is possible to use the Squire vortex model to evaluate the evolution of the

wing tip vortex for this test case.

6.2.2 CFD methods

6.2.2.1 Mesh characteristics

The CFD domain for the present studies features similar characteristics as those employed

in the Devenport studies (section 6.1.3). In particular, the Cartesian mesh featured extents

of 200rc in the x- and y-directions, which minimises the interaction between the streamwise

vortex and the symmetry boundaries which have been employed at the far field boundaries.

The CFD domain features a length of 10c in the streamwise direction, which corresponds to

approximately 15 vortex swirl loops. To minimise the effects of numerical diffusion during

the simulations, the guidelines which have been established in section 6.1.2.1 have been

employed. It was found that the vortex diffusion characteristics were in good agreement

with the experimental measurements when 32 mesh elements were used to resolve the

vortex core diameter. Therefore, the mesh employed for the test case in this section also



150 Chapter 6 Vortex ingestion simulations

featured a mesh resolution of 32 elements. In addition, the mesh featured 16 elements in

the streamwise distance associated with a single swirl loop.

6.2.2.2 Boundary conditions

The inlet boundary conditions for the test case outlined in section 6.2.1 have been gen-

erated using experimental measurements which have been obtained in the unperturbed

vortex measurements in chapter 4. The conditionally-averaged Stereoscopic PIV measure-

ments have been employed to ensure that the experimental data are not corrupted by the

effects of wandering. The data is defined on a circular zone which features a maximum ra-

dius of approximately r/rc = 3 from the vortex centre, Figure 6.12. The CFD inlet plane

features a width and height of 200rc, so the experimental data must be extrapolated in

the radial direction to provide boundary profiles which encapsulate the entire CFD inlet

plane. As illustrated in Figure 6.12, the streamwise velocity profile is approximately equal

to the freestream velocity (W∞). Therefore, the value of Vz at r/rc = 3 was applied for

all inlet plane points beyond r/rc = 3.

Figure 6.12: Tangential and streamwise velocity profiles employed to define the velocity
boundary conditions at the inlet plane of the CFD domain

The circumferentially-averaged tangential velocity profile can be derived from the circu-

lation distribution by means of Eq. 6.3. To implement this approach, it is necessary to

prescribe a profile for Γ(r) for r/rc > 3. Experimental measurements, for example, Tung

et al. [28] and Martin et al. [33], demonstrate that the value of Γ(r) increases only slowly

for r/rc > 2, and is approximately constant beyond r/rc = 10. Therefore, it is assumed

in this research that the circulation is constant beyond the circular zone, and is equal to

the value of Γ(r) at the circular zone edge. Importantly, the gradient of the circulation

profile (∂Γ2/∂r) remains non-negative throughout the flow. This condition is necessary
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to avoid the potential for centrifugal instabilities to be generated in the flow, as given by

Rayleigh’s stability criterion [53].

Vθ(r) =
Γ(r)

2πr
(6.3)

In general, the turbulence boundary conditions required for RSM simulations consist of the

turbulent kinetic energy (k), the turbulent dissipation rate (ε), the mean normal stresses

(u′2, v′2, w′2), and the mean Reynolds stresses (u′v′, v′w′, u′w′). All such components, with

the exception of ε, can be extracted directly from the experimental measurements. To

obtain ε, it is possible to employ Eq. 6.4 in conjunction with the turbulent kinetic energy

profile and a suitable value of the turbulence length scale, l [106]. Note that Cµ=0.09.

Similarly, it is possible to define profiles of the specific dissipation (ω) using Eq. 6.5 [106].

ε = (C0.75
µ )k1.5/l; (6.4)

ω = k0.5/((C0.25
µ )l); (6.5)

Little information is available in the literature to define a suitable value of the turbulence

length scale, and so an objective of the present study is to identify the most appropri-

ate value for the vortices under investigation. An important feature of the turbulence

field in wing-tip vortices is the presence of non-isotropic, non-axisymmetric turbulence

components, such as the in-plane normal stresses and Reynolds stresses (Figures 6.13(a)

and 6.13(b)). To preserve the details of the turbulence characteristics, the conditionally-

averaged circular zone, instead of a circumferential average, has been employed to gener-

ate the turbulence boundary conditions. In this way, the highly non-axisymmetric normal

stresses and Reynolds stresses can be preserved. Experimental measurements [1] suggest

that, beyond the vortex core and the wing wake, the turbulence characteristics quickly

reduce to values similar to freestream turbulence. Therefore, for r/rc > 3, the turbulence

components are scaled to produce an overall turbulence intensity of approximately 0.1%,

which is representative of the typical freestream turbulence levels in a typical low-speed

wind tunnel.

Valuable insight into the requirements for turbulence boundary conditions can be pro-

vided by assessing the sensitivity of the vortex convection simulations to the details

which are provided in the turbulence boundary conditions. Three different turbulence
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(a) (b)

Figure 6.13: Velocity unsteadiness measurements obtained from the NACA 0012 wing-
tip vortex measurements in the unperturbed freestream, (a) In-plane normal stress

(u′u′/W 2
∞), (b): In-plane Reynolds stress (u′v′/W 2

∞)

boundary condition strategies have therefore been investigated. The first corresponds

to turbulence boundary conditions which have been generated using all of the required

turbulence components for RSM simulations, namely, the profiles of turbulent kinetic

energy (k), turbulent dissipation (ε), the normal stresses (u′2, v′2, w′2) and the Reynolds

stresses (u′v′, u′w′, v′w′). As discussed in section 6.2.3, this approach was found to give

good agreement between the CFD results and the trends reported in the literature. The

second strategy consists of providing only the profiles of k and ε. In such a scenario, the

turbulent stresses at the inlet boundary are assumed to be isotropic, and are evaluated

internally by FLUENT using the turbulent kinetic energy profile [106]. The final bound-

ary condition strategy consists of uniform inlet turbulence levels across the entire inlet

plane, where the turbulence levels are prescribed as the values obtained at the centre of

the unperturbed vortex. As such, the turbulent kinetic energy k/W 2
∞ is equal to 0.013,

which corresponds to a turbulence intensity of TI/W∞=0.093. Note that this value is

two orders of magnitude larger than those prescribed at the inlet plane of the Devenport

test case simulations which were reported in section 6.1.3. The corresponding profiles of

turbulent dissipation were computed using a turbulence length scale of 0.1rc.

In a manner similar to the Devenport test case, the vortex boundary conditions were

interpolated linearly on to the CFD inlet plane mesh (section 6.1.2.2). The outlet plane

boundary condition consisted of a uniform static pressure distribution with a value corre-

sponding to the freestream static pressure. Finally, the far-field domain boundaries which

are parallel to the vortex axis were defined with a symmetry boundary condition.
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6.2.2.3 Numerical model and convergence strategy

The vortex convection simulations in this section were performed using the same numerical

model and convergence strategy as those employed for the Devenport test case (section

6.1.2.3).

6.2.3 Impact of turbulence model

In section 6.1.3.2, it was demonstrated that choice of the turbulence model has a strong

effect on the ability of the CFD solver to correctly simulate the evolution of an isolated

vortex. Importantly, it was asserted that eddy-viscosity models are unable to correctly

capture the evolution of the vortex characteristics, and that it is necessary to assess the

behaviour of the vortex characteristics and the turbulence properties when suitable inlet

boundary conditions are prescribed. There is little information on suitable length scales

for wing-tip vortex flows. However, Baldwin et al [108] employed a length scale of l = 0.1rc

at the inlet boundary for wing-tip vortex convection simulations. Therefore, a turbulence

length scale of l = 0.1rc has been employed to define the inlet boundary profiles of ε and ω

for the RSM and k−ω SST simulations, respectively. Note that the Linear Pressure Strain

(LPS) pressure strain model has been employed for the RSM simulations. Preliminary

studies demonstrated that the choice of pressure strain model had little effect on the

evolution of the vortex mean characteristics [107].

When appropriate turbulence boundary conditions are employed, the vortex evolution in

the k − ω SST simulations (Figures 6.14(a) to 6.14(c)) is characterised by large levels of

diffusion. For example, after Nsl = 11, the simulated vortex core radius is 2.2 times the

value anticipated from the Squire vortex model with δ = 1 (Figure 6.14(a)). Instead,

the vortex diffusion characteristics are close for δ = 60, which is notably larger than

anticipated from the experimental measurements available in the literature. The intense

diffusion levels which have been observed in this test case are a result of the prescription

of the turbulence profiles on the inlet boundary. In contrast, the results from the RSM

simulation, demonstrate that the vortex core radius (Figure 6.14(a)) and peak tangential

velocity (Figure 6.14(b)) evolve in a manner which is close to the laminar trend given by

the Squire model.

When appropriate turbulence boundary conditions are prescribed, k − ω SST turbulence

model produces unrealistic vortex diffusion characteristics. In contrast, the correct evolu-

tion of the vortex characteristics is obtained using the RSM approach in conjunction with
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(a) (b)

(c) (d)

Figure 6.14: Evolution of vortex characteristics during convection as a function of
the number of vortex swirl loops (Nsl), experimental measurements employed to define
turbulence boundary condition profiles, k − ω SST and RSM LPS turbulence models,
(a): Vortex core radius (rc/rc,0), (b) Vortex peak tangential velocity (Vθ,max/Vθ,max0),
(c): Vortex peak streamwise vorticity (ωz,max/ωz,max0), (d): Vortex total circulation
(Γ0/Γ0,0). Note that Dev. refers to the wing-tip vortex measurements of Devenport et

al. [1]

suitable turbulence boundary conditions. Therefore, it can be concluded that EV models

such as the k−ω SST model result in a vortex diffusion process which is excessively rapid,

and it is necessary to employ second-moment closure turbulence models to investigate the

flows of interest for vortex ingestion.

6.2.4 Analytical turbulence BC profiles

The preceding section has demonstrated that RSM simulations, in conjunction with suit-

able turbulence boundary conditions, can correctly capture the evolution of the vortex
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(a) (b)

(c) (d)

Figure 6.15: Evolution of vortex characteristics during convection as a function of
the number of vortex swirl loops (Nsl), sensitivity of vortex characteristics to the tur-
bulence components defined at the inlet boundary, RSM LPS model, (a): Vortex core
radius (rc/rc,0), (b) Vortex peak tangential velocity (Vθ,max/Vθ,max0), (c): Vortex peak

streamwise vorticity (ωz,max/ωz,max0), (d): Vortex total circulation (Γ0/Γ0,0)

flow. However, in general, detailed measurements of the turbulent stresses and turbulent

kinetic energy may not be available for cases of interest for vortex ingestion studies. One

possible approach is to produce suitable turbulence boundary conditions using an analyt-

ical or semi-empirical approach. It is necessary to evaluate which turbulence components

are required to correctly initialise the vortex flow. Thereafter, it will be possible to iden-

tify suitable analytical profiles which can be employed to approximate the nature of the

turbulence profiles which have been measured experimentally.

Firstly, it is of interest to determine if the vortex convection process is affected when

only the profiles of k and ε are prescribed. The evolution of the vortex core radius (Fig-

ure 6.15(a)), peak tangential velocity (Figure 6.15(b)), peak streamwise vorticity (Fig-

ure 6.15(c)), and total circulation (Figure 6.15(d)) are unchanged in comparison to the
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 6.16: Contours of turbulence characteristics obtained from RSM LPS simula-
tions, Nsl = 6, (a), (d) and (g): All turbulence components prescribed, (b), (e) and
(h): Profiles of k and ε prescribed, turbulent stresses computed from k, (c), (f) and (i):
Uniform turbulence boundary conditions comprising a turbulence intensity of TI = 10%

and uniform turbulence length scale l = 0.1rc

case where all turbulence components are prescribed. However, when uniform turbulence

boundary conditions are employed, the vortex undergoes a strong adjustment after the

inlet boundary which results in a rapid reduction in the vortex core radius, peak tangen-

tial velocity, and total circulation. This behaviour is not consistent with the trends which

have been observed thus far in the vortex convection simulations. Therefore it is clear

that that such uniform turbulence profiles are not appropriate as a method of initialising

the turbulence characteristics of the vortex.

Further insight into the evolution of the vortex flow can be obtained using the contours
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of selected turbulence characteristics at a distance of Nsl = 6 downstream of the inlet

plane, Figures 6.16(a) to 6.16(i). When the complete set of turbulence characteristics are

provided in the inlet boundary conditions, the peak turbulent kinetic energy remains at the

vortex centre (Figure 6.16(a)), and the characteristic turbulence anisotropy is preserved,

as indicated by the elliptic u′2 contours (Figure 6.16(d)). Finally, as anticipated, the

in-plane Reynolds stresses feature the characteristic four-lobed pattern (Figure 6.16(g)).

Interestingly, when only the profiles of k and ε are prescribed, the vortex develops almost

identical turbulence profiles (Figures 6.16(b), 6.16(e), and 6.16(h)) as those for the case

when all components were prescribed. When uniform turbulence boundary conditions are

prescribed, the peak turbulent kinetic energy is located outside of the vortex core (Figure

6.16(c)), and the mean in-plane and Reynolds stresses (Figures 6.16(f) and 6.16(i)) feature

notably different structures to the other simulations. In addition, the turbulence contours

observed in Figures 6.16(c) do not resemble the experimental measurements (Figures

6.13(a) and 6.13(b)), so it can be concluded that it is not appropriate to define the

turbulence boundary conditions in terms of uniform turbulence profiles.

Inspection of the circumferentially-averaged turbulent kinetic energy profile (k/kmax) re-

veals that the profile can be closely approximated with a Gaussian curve fit, Figure 6.17.

Note that the profile corresponds to the measurements from the NACA 0012 wing-tip

vortex at an angle of attack of αvg = 12o, for a vortex Reynolds number of 3.7× 104 and

a chord Reynolds number of 1.7 × 105. The equation for the Gaussian profile is given

by Eq. 6.6, where kmax is the peak turbulent kinetic energy, k∞ is the turbulent kinetic

energy at a large distance from the vortex, and r is the distance from the vortex centre.

In addition, the parameter c can be determined from Eq. 6.7, where the constant FWHM

in Eq. 6.7 corresponds to the Full Width at Half Maximum value of the Gaussian profile

Figure 6.17: Gaussian curve fit of turbulent kinetic energy (k/kmax) profile obtained
from PIV measurements, as a function of distance from the vortex centre (r/rc)



158 Chapter 6 Vortex ingestion simulations

[109]. In particular, the value of FWHM is equal to a radius corresponding to the value

of k = kmax/2 as determined from the experimental profile of k (Figure 6.17). To com-

plete the definition of the turbulence boundary conditions, Eq. 6.4 has been employed to

calculate the profile of the turbulent dissipation rate.

k(r) = k∞ + (kmax − k∞) e−r
2/2c2 (6.6)

c =
FWHM

2 ln 2
=

0.366rc
2 ln 2

(6.7)

(a) (b)

(c) (d)

Figure 6.18: Evolution of vortex characteristics during convection as a function of the
number of vortex swirl loops (Nsl), sensitivity of vortex evolution to method employed
to define vortex turbulence boundary conditions, complete boundary conditions using
experimental measurements (RSM LPS), boundary conditions using model for turbu-
lent kinetic energy profile (RSM LPS k model), (a): Vortex core radius (rc/rc,0), (b)
Vortex peak tangential velocity (Vθ,max/Vθ,max0), (c): Vortex peak streamwise vorticity

(ωz,max/ωz,max0), (d): Vortex total circulation (Γ0/Γ0,0)
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(a) (b)

(c) (d)

(e) (f)

Figure 6.19: Contours of turbulence characteristics obtained from RSM LPS simula-
tions, Nsl = 6, (a), (c) and (e): All turbulence components prescribed, (b), (d) and
(f): Profiles of k and ε prescribed using model for turbulent kinetic energy (Eq. 6.6),

turbulent stresses computed from k

The results from the vortex convection simulations, Figures 6.18(a) to 6.18(d) demonstrate

that the vortex evolution for the simulation with the boundary conditions model are

almost identical to those where the boundary conditions were prescribed directly from

the experimental measurements. Therefore, the correct vortex diffusion characteristics

can be captured when a simple analytical model for the turbulence boundary conditions

is employed.

The contours of the turbulence characteristics after 6 vortex swirl loops from the inlet

boundary, Figures 6.19(a) to 6.19(f), also indicate that the analytical turbulence profile

captures the expected turbulence levels and characteristics. In particular, turbulence
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anisotropy is correctly developed as the vortex convects, which results in elliptic normal

stress contours (Figure 6.19(b)), in addition to the correct four-lobed in-plane Reynolds

stress contours (Figure 6.19(f)). Therefore, it can be concluded that suitable turbulence

profiles can be generated using an analytical profile for the turbulent kinetic energy. This

provides an approach to generate appropriate turbulence boundary conditions for vortical

flow where experimental measurements of the turbulence profiles are not available. In

section 6.4.2.3, this method is generalised for use with sub-scale and full-scale vortex

ingestion simulations for which no prior details of the velocity or turbulence fields are

available.

6.2.5 Impact of turbulence length scale

A final parameter which is used to define the turbulence boundary conditions is the

turbulence length scale, which represents the typical size of the turbulent eddies contained

in the flow [110]. The prescription of the turbulence length scale at the inlet plane permits

a description of the k and ε profiles at the inlet plane, as required for RSM simulations

using FLUENT [105]. The vortex convection simulations which have been presented

in the preceding sections have been performed using a turbulence length scale of 0.1rc

to define the turbulence field at the inlet boundary. It is necessary to establish the

most appropriate turbulence length scale for use in vortex convection simulations. In

addition, the sensitivity of the vortex convection simulations to the value of turbulence

length scale should be assessed. Thus, length scales of 0.01rc, 0.1rc, 1.0rc and 10rc have

been investigated. In addition, based on the simulations of Baldwin et al. [108], Iversen

[42] proposed a turbulent vortex model which featured a turbulence length scale which

increases linearly with distance from the vortex centre, Eq. 6.8, where αI = 0.01854.

l = αIr (6.8)

The evolution of the vortex characteristics (Figures 6.20(a) to 6.20(d)) is surprisingly

insensitive to the change in turbulence length scale from l = 0.01rc to 1rc. However, when

the turbulence length scale is increased to l = 10rc, there is a corresponding increase in

the diffusion levels experienced by the vortex. As a consequence, the vortex features a core

radius which is approximately 10% larger than that observed in the simulations where

the turbulence length scale is between 0.01rc and 1rc. It is also necessary to consider

the evolution of the vortex turbulence field. To obtain a quantitative assessment of the
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(a) (b)

(c) (d)

Figure 6.20: Evolution of vortex characteristics during convection as a function of the
number of vortex swirl loops (Nsl), sensitivity of vortex evolution to turbulence length
scale at inlet boundary (l), (a): Vortex core radius (rc/rc,0), (b) Vortex peak tangential
velocity (Vθ,max/Vθ,max0), (c): Vortex peak streamwise vorticity (ωz,max/ωz,max0), (d):

Vortex total circulation (Γ0/Γ0,0)

streamwise development of the turbulence characteristics, measurements of the out-of-

plane velocity fluctuations at the vortex centre (wrms) have been extracted from Chow et

al. [23], Devenport et al. [1] and Han et al. [43]. It should be noted that, in contrast to

the in-plane turbulence measurements, the out-of-plane turbulence measurements are only

weakly affected by wandering [1]. The experimental measurements have been presented

alongside the values of wrms obtained from the CFD simulations (Figure 6.21(a)).

In all cases, the turbulence decay rates observed in the CFD simulations just downstream

of the inlet plane are notably greater than the experimental measurements suggest. Be-

yond Nsl = 2, the turbulence length scale has a measurable effect on the turbulence decay

characteristics. The greatest decay rates occur for a length scale of l = αr. As the length
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(a)

Figure 6.21: Evolution of streamwise turbulent stress the vortex centre (wrms/wrms,0),
as a function of the number of swirl loops (Nsl), influence of turbulence length scale.
Simulation results have been compared with the experimental measurements of [43, 23, 1]

scale is increased, the agreement between the CFD results and the experimental measure-

ments improves. At l = 10rc, however, the turbulence levels increase with downstream

distance, which is not consistent with the measurements. It can therefore be concluded

that a turbulence length scale of 1rc provides the most suitable boundary condition to

capture the evolution of the vortex turbulence characteristics.

6.2.6 Summary of requirements

An extensive study has been undertaken to identify the correct approach to model stream-

wise vortices using CFD. Simulations have been conducted of an isolated wing-tip vortex

contained in a uniform streamwise flow. Experimental measurements of the wing-tip

vortex characteristics have been employed to evaluate the CFD simulation results. As

anticipated, the evolution of the vortex as it convects inside the CFD domain is strongly

dependent on the mesh resolution. A minimum of 16 mesh elements, measured on a plane

perpendicular to the vortex streamwise axis, are required across the vortex core diameter.

For lower mesh resolutions, the vortex was subject to excessive levels of diffusion, which

resulted in a vortex which was larger and of a lower intensity than measured experimen-

tally. In addition, it was found that a minimum of 10 mesh elements are required to

resolve the streamwise distance which corresponds to a single vortex swirl loop.

A range of RANS turbulence models have also been investigated. It was demonstrated

that single-equation and two-equation eddy viscosity (EV) turbulence models provide only

limited agreement with the experimental measurements. The fundamental assumptions
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which are used in the formulation of eddy viscosity models are invalid for the streamwise

vortices of interest for vortex ingestion studies, which means that such models are unable

to correctly simulate the vortex flow physics. As a consequence, second moment closure

models, in the form of Reynolds Stress Models, are required. However, the RSM simula-

tions demonstrated that correct turbulence characteristics inside the vortex do not result

when uniform turbulence boundary conditions are prescribed at the inlet. Instead, it is

necessary to prescribe appropriate turbulence boundary conditions. A sensitivity study

found that suitable profiles of turbulent kinetic energy (k) and turbulent dissipation rate

(ε) are sufficient to initialise the turbulence field at the CFD inlet boundary. These profiles

can be prescribed in the form of a Gaussian curve, the coefficients of which have been de-

termined from the sub-scale, unperturbed, wing-tip vortex measurements obtained in this

research. It was found that this boundary conditions approach produced results which

were in excellent agreement with the results obtained using experimental measurements

to define the turbulence boundary conditions.

The CFD modelling requirements developed herein ensure that the effects of numerical

diffusion on vortex ingestion simulations can be minimised, and allow the flow physics

wing-tip vortices to be correctly modelled in CFD. The guidelines will therefore be applied

to investigate vortex ingestion, which is the focus of the remainder of this chapter.

6.3 Sub-scale vortex ingestion

In the previous section, a series of guidelines were developed to allow vortical flows to be

simulated correctly using CFD. The guidelines can now be applied to investigate vortex

ingestion flows, as detailed in this section. Firstly, the guidelines are utilised to perform

sub-scale vortex ingestion simulations at the conditions which have been investigated

experimentally in chapter 5. In this way, the first validated CFD approach for vortex

ingestion will be established. This section therefore provides a description of the vortex

ingestion test case, the CFD domain, the boundary conditions, and the numerical model.

The results from the CFD simulations are then evaluated using the sub-scale vortex

measurements which were reported in chapter 5.
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6.3.1 Test case

In chapter 5, the measurements from a wide range of configurations of streamwise vortex

ingestion were analysed. The experiments investigated a number of intake flow condi-

tions and initial vortex characteristics to identify the dominant flow physics and vortex

characteristics which occur when a vortex is ingested. The experimental measurements

have shown that the vortex Reynolds number (Rev), the vortex core average vorticity

(ωz,av), and the streamtube contraction levels (wc/wc,0), are the most important parame-

ters which define the evolution of the vortex as it is ingested. In particular, it was found

that important diffusion effects take place when wc/wc,0 is greater than 2. Therefore, a

configuration with a large intake velocity ratio has been selected. The test case consists of

the ingestion of the NACA 0012 wing-tip vortex along the intake centreline. The vortex

was generated at a chord Reynolds number of 1.7 × 105 and at a vortex generator angle

of attack of 12o. At this condition, the vortex featured a vortex Reynolds number of

2.4× 104. The intake velocity ratio (Wi/W∞)is equal to 10.3, such that the intake Mach

number and mass flow are Mi = 0.56 and ṁi = 1.467kgs−1, respectively. Therefore, this

test case is appropriate to evaluate if it is possible to capture the important diffusion

processes which have been measured in chapter 5.

6.3.2 CFD methods

6.3.2.1 Intake geometry and mesh characteristics

The aircraft intake geometry which has been employed in the sub-scale studies corre-

sponds to the intake model which was investigated in the experimental vortex ingestion

measurements (section 3.1). The mesh was generated in the research of Stankowski [107]

in collaboration with this research. The intake is embedded inside a Cartesian mesh do-

main (Figure 6.22(a)) which extends 25Di in the vertical and horizontal directions, and

15Di in the streamwise direction. Therefore, the domain edges are located at a distance

of 12.5Di from the intake centreline. The intake highlight plane is located at a streamwise

distance of 8Di downstream of the intake highlight plane to avoid interactions between

the perturbation field of the intake and the inlet boundary conditions.

The blocking strategy consisted of a C-grid around the intake surfaces to maintain appro-

priate mesh quality around the intake lip and to control the intake boundary layer reso-

lution, Figure 6.22(b). An O-grid topology was employed close to the intake centreline to

ensure that the Cartesian domain can transition smoothly into the C-grid surrounding the
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(a) (b)

Figure 6.22: Sub-scale vortex ingestion simulation domain (a): Domain details, (b):
Details of mesh close to intake

circular intake geometry. For the vortex and freestream conditions described in section

6.3.1, a single vortex swirl loop is approximately 0.1m. Therefore, the vortex is expected

to convect a distance of 10 swirl loops from the inlet plane to the intake highlight position.

It is apparent from the results of section 6.1.3.1, such as Figure 6.6(a), that the vortex

may experience unrealistic levels of vorticity diffusion if the mesh is not of a sufficient res-

olution. Thus, the central rectilinear block features a region of increased mesh resolution.

In this way, it was possible to ensure that a minimum of 16 mesh elements were used to

resolve the vortex core diameter at the inlet plane. At z/Di = 0.20, the mesh resolution

ensured that 12 mesh elements resolved the vortex core. This estimate is based on the

measured value of rc from the experiments (section 5.2.1). In addition, the streamwise

mesh resolution consisted of 15 mesh elements in the streamwise distance which corre-

sponds to a single swirl loop. In this way, it is anticipated that numerical diffusion as

a result of the mesh characteristics will be small. With reference to Figure 6.20(a), the

vortex core radius is expected to grow by no more than 10% from the value at the inlet

boundary. The intake boundary layer mesh resolution was sufficiently high to ensure that

the value of y+ is no greater than 1, and the domain consisted of approximately 7.2× 106

mesh elements. Further details of the mesh characteristics can be obtained in [107].

6.3.2.2 Boundary conditions

The approach used in section 6.1.2.2 has been employed to prescribe the vortex on the inlet

boundary of the CFD domain. In particular, the boundary conditions have been defined

using the conditionally-averaged velocity and turbulence fields. For the vortex ingestion
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simulations, however, it is necessary to prescribe compressible inlet boundary conditions,

due to the presence of large sub-sonic Mach numbers inside the intake (section 6.3.1).

Distributions of flow direction (~d), total pressure (P0), and total temperature (T0), are

therefore required, in addition to appropriate turbulence boundary conditions. The flow

direction ~d = (dx, dy, dz) is computed by normalising the Cartesian velocity components

(Vx, Vy, Vz) by the corresponding velocity magnitude |V|, Eq. 6.9. Note that, similar to

the convection simulations, the Cartesian velocity components have been derived from

the circumferentially-averaged profiles of Vθ and Vz which have been obtained in the

unperturbed flow measurements (chapter 4).

dx =
Vx
|V|

dy =
Vy
|V|

(6.9)

dz =
Vz
|V|

It is assumed that the total pressure distribution can be obtained using Bernoilli’s equa-

tion, Eq. 6.10, where p is the static pressure, and ρ∞ is the density in the freestream. To

apply Eq. 6.10, it is assumed that the freestream flow associated with the unperturbed

vortex is incompressible. This is valid for the vortical flows considered in this research

since the Mach number of the flow does not exceed M = 0.10.

P0 = p+
1

2
ρ∞|V|2 (6.10)

Note that total pressure loss inside the vortex core has been neglected. This has been

justified on the basis that the wing-tip vortex measurements of Chow et al. [23] have

indicated that the total pressure loss in the extended near field of the wing is approxi-

mately 1% of P0,∞. Therefore, the total pressure loss for wing-tip vortices is small, and it

is therefore appropriate to consider it negligible. The vortex flowfield generally features a

static pressure distribution as a consequence of the large tangential velocities which occur

inside the vortex (section 2.2.1), which can be approximated by integrating the radial

momentum equation, Eq. 6.11. Note that Vθ is the circumferentially-averaged tangential

velocity profile which is used to generate the in-plane velocity field. The resulting static
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pressure perturbation can then be superimposed on the surrounding uniform static pres-

sure field which is attributed to the freestream flow, and subsequently forms an input to

the calculation of the total pressure distribution in Eq. 6.10.

∂p

∂r
= ρ

V 2
θ

r
(6.11)

There is little information on the temperature profiles inside a wing-tip vortex. How-

ever, the total temperature field has been assumed to be constant. In addition, Mayer

and Powell [111] acquired numerical solutions to the steady, axisymmetric Navier-Stokes

equations applied to an isolated streamwise vortex, and found that the static temperature

perturbation was zero for an incompressible flow. At a Mach number of 0.5, the vortex

featured a static pressure of T/T∞ = 0.80. These results are consistent with the findings

of Aboelkassem and Vatistas [112], which demonstrated analytically that the static tem-

perature at the vortex centre is approximately 0.83T∞ for a Mach number of 0.4. It is

therefore concluded that, for incompressible flow, the static temperature perturbation is

also negligible.

To complete the definition of the inlet boundary conditions, the turbulence boundary con-

ditions were prescribed using the turbulent kinetic energy, normal stresses, and Reynolds

stresses, obtained from the experimental measurements. Thus, the same method as that

employed in section 6.2.4 has been used to create the turbulence profiles at the inlet plane.

A turbulence length scale of l = 1rc has been employed, based on the findings of section

6.2.5. Therefore, it was possible to compute the distributions of turbulent dissipation

rate or specific dissipation, using Eqs. 6.4 and 6.5, depending on the choice of turbulence

model.

A symmetry boundary condition has been employed on the far-field boundaries which are

parallel to both the intake axis and the freestream direction. The outlet boundary which

is located external to the intake flow was defined using the freestream static pressure,

coupled with a turbulence intensity and length scale of 5% and 1rc, respectively, for the

turbulence boundary conditions. Note that the freestream static pressure has been defined

using the static pressure which was measured using the Pitot-static probe. The flow inside

the intake was defined using the experimental measurements of static pressure, along with

the mass flow which was calculated from the static pressure levels. In FLUENT 12.1, it is

possible to specify a desired mass flow in conjunction with the static pressure [106]. The

solver performs incremental changes on the static pressure at the outlet to satisfy a mass

flow of 1.467kgs−1 which was calculated from the experimental measurements.



168 Chapter 6 Vortex ingestion simulations

6.3.2.3 Turbulence modelling

The vortex convection simulations in sections 6.1.3.2 and 6.2.4 demonstrated notable

differences between the results obtained with eddy-viscosity and RSM turbulence models.

It was shown that it is necessary to employ an RSM to correctly simulate the vortex

as it convects in a uniform freestream flow. It is therefore of great interest to evaluate

the performance of eddy-viscosity and RSM models for vortex ingestion simulations. In

particular, it will be possible to determine if the unsuitability of eddy-viscosity models for

vortical flows has a detrimental effect on simulations of engineering interest. To this end,

the k − ω SST turbulence model has been employed, in addition to the Linear Pressure

Strain RSM model.

6.3.2.4 Numerical scheme and convergence strategy

The simulations were performed using the steady, implicit, density-based solver imple-

mented in FLUENT 12.1, in a manner which is similar to the vortex convection simula-

tions as detailed in section 6.1.2.3. However, in contrast to the convection simulations,

convergence could only be achieved using a strategy where the numerical scheme is mod-

ified during the iterative convergence process. The convergence strategy was different for

the k−ω SST and RSM simulations. For the k−ω SST turbulence model, the simulation

was initialised using uniform freestream conditions, in conjunction with a CFL number

of 1 and 1st-order upwind numerical scheme for continuity, momentum, and turbulence

equations. After 500 iterations, the CFL number was increased to 2, and the numerical

scheme was changed to the 2nd-order upwind scheme. After a further 500 iterations, the

3rd-order MUSCL numerical scheme was employed, and a CFL number of 5 was selected.

Following an additional 1500 iterations, the intake static pressure and target mass flow

conditions were prescribed, and iterations were continued by progressively increasing the

CFL number to 20. Approximately 20000 iterations in total were required to achieve

satisfactory convergence. In general, the continuity residuals reached a value of 10−4, the

momentum residuals achieved a value of 10−3, and the turbulence equation residuals were

of the order 10−6.

For the simulations which employed the RSM turbulence model, it was necessary to

initialise the simulations from the converged k−ω SST results using a CFL number of 5.

In addition, a 1st-order upwind numerical scheme was employed for all eight turbulence

equations for the first 6000 iterations. The numerical scheme was then changed to the 2nd-

order upwind scheme, and the simulations were continued for a further 3000 iterations.
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The CFL number was then increased to 10 for 3000 iterations, before a final increase

to 20. Convergence was typically achieved after a total of 15000 iterations, at which

the continuity and momentum residuals attained values of 10−5 and 10−3. In addition,

the turbulence terms converged at approximately 10−7. Note that successful convergence

could not be obtained using the 3rd-order MUSCL discretisation scheme for the turbulence

terms. Instead, the 2nd-order upwind method was employed for these equations.

6.3.3 Results

6.3.3.1 Vortex characteristics

To assess the results obtained from the k−ω SST and RSM simulations, the vortex char-

acteristics have been normalised using two approaches. The first is to normalise the vortex

characteristics using the intake diameter Di and the freestream velocity W∞. Using this

approach, it is possible to evaluate the evolution of the vortex characteristics as the vortex

convects from the inlet plane of the CFD domain, inside the intake capture streamtube,

and inside the intake. The second approach is to normalise the vortex characteristics for

each case by their respective values at z/Di = 2.25. This approach, which was employed

in chapter 5 to analyse the experimental measurements, will allow an assessment of the

vortex intensification levels which have been obtained in the simulations.

The streamwise velocity at the vortex centre (wc/W∞), vortex core radius (rc/Di), peak

tangential velocity (Vθ,max/W∞, peak streamwise vorticity (ωz,maxDi/W∞), core circula-

tion (Γc/W∞Di), and peak flow angularity (αmax) are shown in Figures 6.23(a) to 6.23(f).

The values of wc/W∞ (Figure 6.23(a)) as the vortex convects from the inlet plane towards

the intake at z/Di = 0 are similar for both turbulence models. Furthermore, the results

from the CFD simulations are in good agreement with the experimental measurements

during the streamtube contraction process. In particular, between z/Di = 2.25 and

z/Di = 0.20, the differences between the simulated and experimental values of wc/W∞

reduce from 16% to 6% for the k−ω SST model, and from 6% to zero for the RSM simu-

lations. The results in Figure 6.23(a) also demonstrate that the intake perturbation field

has little effect at z/Di = 2.25. For example, the RSM simulation results indicate that

the value of wc/W∞ at z/Di = 2.25 is only 4% greater than the value at the inlet plane

of the CFD domain. This provides further evidence that it was appropriate in chapter 5

to consider the vortex characteristics at z/Di = 2.25 as the unperturbed values prior to

contraction inside the capture streamtube.
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(a) (b)

(c) (d)

(e) (f)

Figure 6.23: Evolution of vortex characteristics during ingestion as a function of dis-
tance from the intake highlight plane (z/Di), vortex characteristics normalised by intake
inner diameter (Di) and freestream velocity (W∞), Rev = 3.4 × 104, VR=10.3, (a):
Vortex core radius (rc/c), (b) Vortex peak tangential velocity (Vθ,max/W∞), (c): Vortex
peak streamwise vorticity (ωz,maxDi/W∞), (d): Vortex core circulation (Γc/W∞Di), (e):

Vortex peak flow angularity (αmax)
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The evolution of the vortex core radius (Figure 6.23(b)), peak tangential velocity (Figure

6.23(c)) and peak streamwise vorticity (Figure 6.23(d)) indicates that the vortex in the

k − ω SST simulations is subject to notable levels of diffusion between the inlet plane

and the beginning of the streamtube contraction at approximately z/Di = 2.25. In

particular, the vortex grows to a maximum of 3.06 times the value of rc prescribed at the

inlet plane, with a peak tangential velocity and peak streamwise vorticity which are only

53% and 15% of the inlet plane values. In contrast, the RSM simulations feature very

low levels of vorticity diffusion, such that rc/Di and Vθ,max/W∞ are equal to the values

prescribed at the inlet plane, and ωz,maxDi/W∞ has reduced by 23%. The contrasting

results between the two turbulence modelling approaches provides a clear indication of the

limitations of using eddy viscosity turbulence models for vortex simulations, since the mesh

characteristics and turbulence models are identical for both cases. These limitations are

also apparent in the core circulation values, Figure 6.23(e), which increase by 62% in the

initial stages of the convection process, that is, between the inlet plane and z/Di = 5. In

contrast, the vortex obtained in the RSM simulations features a constant core circulation

during the convection phase, which is consistent with experimental measurements [1].

The large diffusion levels which have been obtained upstream of the intake for the k − ω
SST simulations has a notable influence on the subsequent vortex intensification process.

The vortex in the k − ω SST is larger than the experimental measurements, and the

values of peak tangential velocity, peak streamwise vorticity, and peak flow angularity,

are substantially under-estimated. As a consequence, the vortex intensification process

is not captured correctly using the k − ω SST model. Meanwhile, the results from the

RSM simulations are in good agreement with the experiments for the range of z/Di

positions which were measured experimentally. In particular, the difference between the

simulations and the measurements is less than 10% for the vortex core radius, 5% for the

peak tangential velocity, and 6% for the peak flow angularity. However, the peak vorticity

levels which have been obtained from the RSM simulations feature a larger difference from

the experimental measurements. At z/Di = 2.25, the vortex in the RSM simulations

features a peak vorticity which is 64% of the value obtained in the experiments. This

appears to be a result of vorticity diffusion takes place as the vortex convects from the

inlet plane to the intake. During the intensification process, the differences between the

simulations and the measurements improves, such that the simulated streamwise vorticity

at z/Di = 0.20 is 84% of the measured value.

The results from the RSM simulation show that peak vorticity is most challenging char-

acteristic to capture in the correct manner. As the vortex convects from the inlet plane

towards the intake, there is a notable reduction in the peak vorticity (Figure 6.23(d)).
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In contrast, the parameters which are evaluated at the core radius, such as the vortex

core radius, peak tangential velocity, and core circulation (Figures 6.23(b), 6.23(c) and

6.23(e)) undergo little change during the same convection process. This result shows that

vorticity diffusion is strongest at vortex centre, and has a smaller impact on the vortex

flowfield beyond the vortex centreline. A similar result was obtained in the analysis of the

experimental measurements of vortex intensification in chapter 5. Therefore, it is clear

from the results of the CFD simulations that, similar to the intensification process, the

effect of vorticity diffusion is not uniform across the vortex core. Subsequently, during

the vortex intensification process, the characteristics from the RSM simulations which

have been evaluated at the core radius are in very good agreement with the experimental

measurements. Although the initial value of the peak streamwise vorticity is lower than

the experimental measurements at z/Di = 2.25, the evolution of the peak vorticity in

the streamtube contraction is in good agreement with the measurements. Thus, the re-

sults from the CFD simulations are consistent with the findings from the analysis of the

experimental measurements in chapter 5.

A similar result was obtained in the analysis of the vortex ingestion measurements. In

particular, it was found that the parameters which have been measured at the vortex core

radius are in good agreement with the vortex filament model, whereas diffusion has an

impact on the peak vorticity at the vortex centre

The results in Figures 6.23(a) to 6.23(f) demonstrate the likely issues of using eddy vis-

cosity turbulence models for vortex simulations. Firstly, it is not possible to capture the

evolution of the vortex while it convects in the flow upstream of the intake. As a con-

sequence, the vortex at the beginning of the intensification process does not feature the

correct characteristics. The second issue is that, since the vortex intensification levels are

not correct, simulations with an eddy-viscosity model are likely to result in misleading in-

let flow distortion characteristics. For example, at z/Di = −1.0, the peak flow angularity

as given by the k− ω SST model is only 53% of the value given by the RSM simulations.

This may have a notable impact on the conclusions which are obtained from inlet flow

distortion studies. Consequently, the inlet flow distortion characteristics for this vortex

ingestion case have been investigated in section 6.3.3.2.

Given the excellent agreement between the RSM simulation results and the experimental

measurements, it is possible to conclude that the CFD approach which has been employed

is suitable for vortex ingestion simulations. It is therefore possible to use the simulation

results to obtain additional understanding of the vortex ingestion process in the flow

downstream of the experimental measurement planes. The evolution of wc/W∞ (Figure
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6.23(a)) indicates that the flow continues to contract from z/Di = 0.20 to approximately

z/Di = −0.75. Thus, the contraction process is complete downstream of the intake

highlight plane, after which there is a very slow rise in wc/W∞. As the flow moves along

the intake, it is anticipated that the boundary layers will grow in thickness. Therefore, the

gradual increase in blockage will produce a small increase in velocity, as observed in Figure

6.23(a). Inside the intake, the vortex features a peak flow angularity of approximately 7o,

which is notably smaller than the flow angularity associated with the unperturbed vortex.

The evolution of the vortex characteristics (Figures 6.23(b) to 6.23(d) and Figure 6.23(f))

between z/Di = 0.20 and z/Di = −0.75 is consistent with vortex intensification. After

wc/W∞ stabilises inside the intake, the vortex evolves in a manner consistent with vorticity

diffusion, such that there is an increase in the rc/Di, coupled with a reduction in Vθ,max

and ωz,max. The diffusion rates are greater than those experienced in the flow upstream

of the intake. This is anticipated, since the gradients of vorticity inside the vortex are

greater after intensification, so the diffusion due to laminar and turbulent momentum

transfer will be more intense. In addition, due to smaller vortex core radius (Figure

6.23(b)), the number of mesh elements which resolve the vortex core has also reduced

from 16 mesh elements in the freestream flow to approximately 8 to 10 mesh elements

inside the intake. Thus, the levels of mesh related numerical diffusion are expected to

have increased. This reduced in-plane mesh resolution is likely to be the cause for the

18% increase in the vortex core circulation as the vortex enters the intake flow, since a

similar effect has been observed in the vortex convection simulations when the in-plane

mesh resolution is low (Figure 6.6(d)).

6.3.3.2 Distortion characteristics

The vortex characteristics in the preceding section demonstrated that the vortex under-

goes a notable transformation from the unperturbed freestream flow to inside the intake.

There is a need to assess the corresponding intake flow distortion levels which result from

the ingestion of a vortex. To do this, the intake flow has been extracted at z/Di = −0.70

downstream of the intake highlight plane. This axial location inside the intake is repre-

sentative of the position of the aerodynamic interface plane for civil aircraft engines [72].

The contours of normalised total pressure (P0/P0,∞) and flow angularity (α) have been

extracted for both the k − ω SST and RSM simulations, Figures 6.24(a) to 6.24(d).

For both turbulence models, the total pressure contours (Figures 6.24(a) and 6.24(b))

demonstrate that there is little total pressure loss inside the vortex core, and the primary

source of total pressure loss inside the intake flow is attributed to the intake boundary
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(a) (b)

(c) (d)

Figure 6.24: Inlet flow distortion characteristics at z/Di = −0.70 downstream of the
intake highlight plane, Rev = 3.7×104, VR=10.3, vortex ingested along intake centreline,
(a): Total pressure contours (P0/P0,∞), k−ω SST, (b) Total pressure contours (P0/P0,∞),
RSM LPS, (c): Flow angularity (α = tan−1 (Vθ/w), k − ω SST, (d): Flow angularity

(α = tan−1 (Vθ/w), RSM LPS

layers. For example, in the RSM simulations, the total pressure loss at the vortex centre

corresponds to 0.997P0,∞, which is clearly small. This is in qualitative agreement with

the sub-scale experimental measurements obtained by Talwar [71] and Hodjatzadeh [73],

who reported similar total pressure loss levels.

The total pressure distortion levels, expressed in terms of the DC60 distortion coefficient

(Table 6.2), are also negligible. However, the vortex imparts measurable levels of flow

angularity across the intake flow, Figures 6.24(c) and 6.24(d), in the form of a bulk flow

rotation in the positive direction about the streamwise axis. The peak flow angularity

levels are strongly dependent on the turbulence model. A maximum of 3.9o is obtained

for the k− ω SST simulations, which is half of the value which was observed in the RSM

simulations. This difference is a result of the excessive numerical diffusion levels which
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Table 6.2: Distortion descriptors for sub-scale vortex ingestion, Rev = 3.7 × 104,
VR=10.3, vortex ingested along intake centreline, k−ω SST and RSM turbulence models

k − ω SST RSM (LPS)

DC60 9.30E-04 8.50E-04
SC60 4.46E-05 3.51E-05
SI (o) 1.4409 1.5249

were observed in the results of section 6.3.3.1. This notable difference in results is not

reflected in the swirl distortion descriptors, Table 6.2. The SC60 coefficient, which is of

the order of 10−5, indicates very low levels of swirl distortion. This is expected since

the flow consists of an axisymmetric bulk swirl. This result highlights that the SC60

parameter is not appropriate to evaluate the swirl distortion levels when the vortex is

ingested close to the intake centreline. A third parameter which can be used to quantify

the inlet flow distortion levels is the swirl intensity (SI) [113], Eqs. 6.12 to 6.14, where

α(θ)i is the swirl angle as a function of circumferential position θi along ring i evaluated

at a constant radius.

SI =
SSik × θ+

i + |SS−i | × θ
−
i

360
(6.12)

SS+
i =

1

θ+
i

∫
θ+i

α(θ)idθi (6.13)

SS−i =
1

θ−i

∫
θ−i

α(θ)idθi (6.14)

The swirl intensity parameter (SI) corresponds to 1.44o and 1.53o for the k − ω SST and

the RSM simulations, which shows that there is only a small increase in this parameter

between the two turbulence modelling approaches. The small increase in SI may be

attributed to the fact that although the vortex in the RSM simulations features greater

in-plane swirl velocities, the vortex is smaller, and so the largest in-plane velocities cover

a smaller area of the intake flow that the vortex flow obtained from the k − ω SST

simulations. This is consistent with the previous observations that the flow contraction

has a damping effect on the distortion associated with the vortex. Note that the distorted
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flow inside complex s-shaped intakes can be characterised by SI values of between 6 and

12 [113], which demonstrates that the swirl distortion levels which have been obtained in

the sub-scale simulations moderate in comparison to the distortions which are measured

inside complex intake geometries. Despite the low levels of the distortion descriptors,

it should be emphasised that even small levels of flow angularity in the intake flow are

sufficient to impact the performance of an aircraft engine. For example, given an average

flow angularity of only 2o, a loss in surge margin of approximately 2.5% was measured

by Meyer et al. [9]. In addition, the distortion descriptors provide a mass-averaged

description of the entire intake flow. It is possible that the response of an aircraft engine

may be more closely linked to the maximum flow angularity values in small areas of the

intake flow, such as in the immediate vicinity of the hub.

Overall, the inlet flow distortion characteristics which have been determined from the CFD

simulations are consistent with the limited number of experimental measurements of the

flow distortion which results from vortex ingestion. Therefore, the CFD method which

has been developed herein provides a method to investigate a range of vortex ingestion

scenarios.

6.4 Scale effects

The sub-scale vortex convection and ingestion simulations have been used to establish

an approach to simulate vortex ingestion using CFD. This has been possible due to the

availability of sub-scale wing-tip vortex measurements in the literature and, crucially, the

first comprehensive experimental investigation of vortex ingestion. This CFD method has

been used in the previous section to provide new insight into the evolution of a sub-scale

wing-tip vortex as it enters into a sub-scale intake. Of course, engineering investigations of

vortex ingestion are concerned with full-scale configurations, for which there is currently

very little understanding. Thus, it is necessary to employ the validated CFD method

to investigate vortex ingestion at full-scale. Two important objectives will be achieved.

Firstly, wing-tip vortex measurements have demonstrated that the vortex evolution is

strongly dependent on the vortex Reynolds number, which generally increases from sub-

scale to full-scale. It is consequently important to establish if similar trends are prevalent

during vortex ingestion. Thus, the full-scale vortex ingestion simulations will establish

fundamental understanding of the effect of scale on vortex intensification flow physics.

Secondly, using a realistic aircraft intake geometry, it will also be possible to characterise

the likely inlet flow distortion characteristics during vortex ingestion at representative

conditions.
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In this section, the details of the CFD approach are provided. This includes the intake

geometry, the mesh characteristics, the boundary conditions approach, and the numerical

scheme. Then, the test matrix is described, which identifies the intake conditions and

vortex characteristics which are investigated. Finally, the results of the CFD simulations

are analysed.

6.4.1 Test matrix

It is necessary to determine representative conditions for the vortex ingestion simulations.

In particular, suitable unperturbed vortex characteristics, freestream conditions, and in-

take flow conditions, must be identified. To do this, it is constructive to consider a possible

future engine-airframe configuration which is likely to be susceptible to vortex ingestion,

such as the medium-sized civil airliner shown in Figure 6.25.

This configuration is of similar dimensions to current single-aisle civil airliners, such as

the Boeing 757, and features rear-mounted engines and canards at the forebody of the

aircraft. For such a configuration, there is a risk that the canard wing-tip vortex will

enter the capture streamtube of the intake. As discussed in the Introduction, the risk

of vortex ingestion is likely to be greatest during end-of-runway operations, such as the

rotation phase of the take-off run. For this category of aircraft, a rotation velocity of

70ms−1 is appropriate. Under take-off conditions, a representative civil aircraft engine

will feature an intake flow Mach number of 0.47, and a corresponding flow velocity of

Wi = 145ms−1. Therefore, at rotation, the intake velocity ratio V R = Wi/W∞ is equal

to 2.1. To estimate the characteristics of the canard wing-tip vortex, it is necessary

to prescribe the canard dimensions. Possible future airliner configurations with canards

were investigated by Strohmeyer and Seubert [114]. The canards which were investigated

featured a surface area of between 10% and 23% of the primary wing area. Thus, a

Figure 6.25: Possible future civil airliner with rear-mounted engines and canards [3]
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value of 15% was selected as a suitable, first-order approximation to the area of the

canards on the conceptual aircraft configuration in Figure 6.25. The wing area of the

Boeing 757-200, corresponding to 35m2 was taken to be representative of the conceptual

aircraft wings. Thus, the canard area was found to be 5.25m2. The canard geometry

was assumed to consist of an unswept, rectangular wing, with an aspect ratio of 5[114],

which results in a canard chord and semi-span of 2.65m and 6.6m. To obtain an estimate

for representative values for the size and strength of a canard wing-tip vortex, it has

been assumed that the canard wing consists of a NACA 0012 section with a rectangular

wing-tip. It is then possible to estimate the wing-tip vortex characteristics using the

wing-tip vortex measurements which have been obtained in this research. A suitable

approach is to consider the worst-case in terms of the vortex characteristics, where the

vortex strength is greatest. This takes place at the maximum lift coefficient [17]. The

current experimental measurements were acquired close to the maximum lift coefficient

of the NACA 0012 vortex generator (section 3.5), and are thus appropriate to be used to

estimate the canard vortex characteristics. In section 4.3, the non-dimensional vortex core

circulation and core radius (Table 4.1) correspond to Γc/W∞c = 0.205 and rc/c = 0.545,

respectively. Note that these values correspond to the NACA 0012 wing-tip vortex at

an angle of attack of 12o, and a chord Reynolds number of 3.6 × 105. This angle of

attack is unlikely to be attained during normal aircraft operation, but represents the

condition where the lift coefficient, and so the vortex strength, is greatest [17]. It is

acknowledged that, during normal aircraft operation, the control surfaces of an aircraft

do not operate at large incidences or close to the maximum lift coefficient. However, such

a condition can be considered as the worst-case in terms of the possible characteristics

of the vortex which is generated by the canard, since the vortex strength is greatest.

Based on the preceding values, for a chord length of 2.65m and a freestream velocity of

70ms−1, the vortex core circulation and core radius are, respectively, 40.74m2s−1 and

0.144m. The core circulation corresponds to a vortex Reynolds number of 2.7 × 106,

which is two orders of magnitude greater than the values associated with the vortices

which were investigated experimentally in chapter 4. It is also of interest to consider a

vortex ingestion scenario at a lower freestream velocity, prior to the rotation phase. As

the freestream velocity is reduced, there is a corresponding increase in the intake velocity

ratio (Wi/W∞) since the intake flow velocity is typically constant throughout the take-

off run [2]. Therefore, the capture streamtube contraction levels are increased, which

will result in a corresponding rise in the vortex intensification levels (section 5.2.1). The

measurements of the wing-tip vortex in the unperturbed flow demonstrate that the non-

dimensional circulation and core radius (Γc/W∞c and rc/c) increase by less than 5% when

the freestream velocity was reduced from 35.3ms−1 to 11.0ms−1 (Table 4.1). Therefore,
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Table 6.3: Full-scale and sub-scale vortex ingestion configurations

Scale Full-scale Sub-scale Full-scale Sub-scale
VR (Wi/W∞) 2.1 2.1 4.9 4.9

Wi 145 74.5 145 74.5
W∞ 75 35.4 32 15.2
Mi 0.47 0.22 0.47 0.22

Γc/WiDi 0.108 0.146 0.046 0.063
rc/Di 0.055 0.082 0.055 0.082
Rev 2.7× 106 7.3× 104 1.2× 106 3.1× 104

Rec 1.3× 107 3.5× 105 5.6× 106 1.5× 105

as a first-order approximation, it is appropriate to consider Γc/W∞c and rc/c as constant

values. An intake velocity ratio of 4.9 was selected, which corresponds to a freestream

velocity of 32ms−1. Therefore, at this freestream velocity, the vortex Reynolds number is

1.2× 106 (Table 6.3).

Sub-scale simulations have also been conducted assuming an intake inner diameter (Di)

and vortex generator chord of 0.1m and 0.15m, respectively. These values correspond

to the intake and vortex generator geometries which were investigated in the sub-scale

vortex ingestion experiments of chapter 5. The sub-scale and full-scale simulations fea-

ture identical intake velocity ratios to ensure the simulated vortex experiences the same

flow contraction characteristics. Thus, for a VR of 2.1, the intake velocity and freestream

velocity are 74.5ms−1 and 35.4ms−1, respectively. This condition was investigated exper-

imentally in chapter 5. To achieve an intake velocity ratio of 4.9, the freestream velocity

is reduced to 15.2ms−1. Thus, using the sub-scale values of Di and c, the vortex Reynolds

numbers for the two sub-scale freestream velocities are 7.3× 104 and 3.1× 104.

Based on the scaling approach which has been employed, it is interesting to note that

the vortex core radius and core circulation, when normalised by the intake diameter and

intake flow velocity, are very similar for the sub-scale and full-scale simulations. For

example, for an intake velocity ratio of 2.1, Γ/WiDi is equal to 0.108 and 0.146 for the

full-scale and sub-scale conditions, respectively. In addition, the core radii are 0.06 and

0.08. This result indicates that, despite the large differences in the absolute values of

the vortex characteristics, the scaling approach has ensured that the vortex perturbation

field, relative to the intake flow, is similar for both scales.
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6.4.2 CFD Methods

6.4.2.1 Intake geometry

The geometry for an modern, high-bypass ratio civil aircraft engine has been created

[115]. The intake geometry, Figure 6.26, included a representative diffusion section, and

a non-rotating spinner. The fan diameter Di is 2.61m, and the hub to tip ratio is 0.3.

Finally, the fan face is located at a distance of approximately 0.5Di downstream of the

intake highlight plane.

6.4.2.2 Mesh characteristics

The sub-scale simulations were performed using the mesh which was detailed in section

6.3.2.1. Using a similar approach to the sub-scale simulations, the full-scale intake was

placed inside a Cartesian domain, Figure 6.27. The Cartesian domain extended a distance

of 12.5Di in the x- and y-directions from the intake centreline. In addition, the inlet

boundary was located at a distance of 5Di upstream of the intake highlight plane, and

the domain extended 10Di domain downstream of the intake highlight plane.

Close to the intake centreline axis, a refined Cartesian mesh was employed to maintain a

suitable mesh resolution in the location of the vortex. In accordance with the findings from

Figure 6.26: Details of intake geometry for full-scale vortex ingestion simulations
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Figure 6.27: Details of the CFD domain employed for full-scale vortex ingestion simu-
lations

the vortex convection simulations, a resolution of 32 elements per vortex core diameter

was employed. In addition, 16 mesh elements were employed to resolve a single vortex

swirl loop. Using this approach, it was possible to minimise the effects of grid related

numerical diffusion. The domain consisted of approximately 7× 106 mesh elements.

6.4.2.3 Boundary conditions

The flow conditions which have been selected in section 6.4.1 for investigation have not

been measured experimentally. Thus, to generate the appropriate vortical inlet boundary

conditions, it necessary to employ models for the vortex perturbation field. The Vatistas

vortex model [103] has been found to provide a good description of the vortex tangential

velocity profile [50]. The tangential velocity distribution, as a function of the vortex core

radius, total circulation, and distance from the vortex centre, is given by Eq. 6.15 ,

where n is an integer. It has been found that n=1 is suitable for ground vortices [72],

meanwhile n=2 is more appropriate for wing-tip vortices [50]. Thus, a value of n=2 has

been selected to define the inlet boundary conditions in this research. Expressions for

the streamwise and radial velocity distributions for wing-tip vortices were developed by

Bhagwat and Leishman [50], as given in Eq. 6.16 and 6.17. The parameter A is equal to

the integral of the streamwise momentum perturbation associated with the vortex [116],



182 Chapter 6 Vortex ingestion simulations

and z is the distance downstream of the wing trailing edge. The sub-scale experimental

measurements have demonstrated that a streamwise velocity perturbation of 15% greater

than the freestream velocity is measured at the conditions of interest. It is assumed that

the vortex boundary conditions are at a distance of z/c = 6. Therefore, for the sub-scale

and full-scale configurations, it is possible to evaluate the values of A and z which are

required for Eq. 6.16 and 6.17.

Vθ(r) =
Γ0

2π

[
r

(r2n
c + r2n)

1
n

]
(6.15)

Vz(r, z) = V∞ −
A

z

[
1− r2

(r2n
c + r2n)

1
n

]
(6.16)

Vr(r, z) = −Ar
2z2

[
1− r2

(r2n
c + r2n)

1
n

]
(6.17)

In a manner similar to the sub-scale vortex ingestion simulations, the static and total

pressure distributions have been computed under the assumption of incompressible flow,

with no total pressure loss. An exact solution for the static pressure exists [103], as given

in Eq. 6.18

p = p∞ +
πρ

4

[
Γ0

2πrc

]2
[

2

π
tan−1

(
r

rc

)2

− 1

]
(6.18)

Therefore, using Bernoulli’s theorem, it is possible to calculate the total pressure distri-

bution, Eq. 6.19.

p0 = p+
1

2
ρ
(
V 2
θ + V 2

r + V 2
z

)
(6.19)

Equations 6.15 to 6.19 were used to generate the flow direction and total pressure distri-

butions on the CFD inlet plane for the freestream conditions and vortex characteristics

which are given in Table 6.3. A MATLAB script was employed to calculate r using the

mesh node positions on the inlet plane, and to calculate the corresponding perturbation

field at each node location. This perturbation field was then imported into FLUENT

using the Profile loader.
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The vortex convection simulations in section 6.2.4 highlighted that appropriate turbu-

lence boundary conditions must be prescribed in conjunction with the vortex velocity and

pressure fields. However, there is a dearth of measurements of wing-tip vortices at full-

scale in the literature to guide the definition of the boundary conditions for the full-scale

simulations. In section 6.2.4, a model for the turbulent kinetic energy (k) profile was

developed. It was shown the model could be used successfully to initialise the turbulence

field inside the vortex. A required input for the model is the maximum turbulent kinetic

energy, kmax/W
2
∞. A value of k/W 2

∞ = 0.013 was employed. However, in section 4.3.4, it

was shown that the turbulence intensity TI/W∞, and thus the turbulent kinetic energy,

increases as a function of the vortex Reynolds number and the chord Reynolds number.

Further insight can be provided from Figures 6.28(a) and 6.28(b), which show the Carte-

sian turbulence components (urms/W∞, vrms/W∞, wrms/W∞) as a function of the vortex

and chord Reynolds numbers. The Cartesian components for the sub-scale measurements

increase linearly with the vortex Reynolds number and the chord Reynolds number. The

measurements of Chow et al. [23] have also been included. These measurements have been

acquired at a vortex Reynolds number of 1.5× 106, which is the same order of magnitude

as the conditions to be investigated in the full-scale simulations (Table 6.3). In particular,

the values of urms/W∞, vrms/W∞, and wrms/W∞, are similar to the levels which were

measured at sub-scale for Rev = 7.4× 104.

It is not possible to develop a trend for the turbulence components as a function of Rev

and Rec due to the lack of data which is available in the literature to populate Figures

6.28(a) and 6.28(b). However, the trend which is indicated in Figures 6.28(a) and 6.28(b)

(a) (b)

Figure 6.28: Experimental measurements of Cartesian components of turbulence at
vortex centre (urms/W∞,vrms/W∞,wrms/W∞) as a function of (a): vortex Reynolds

number (Rev), (b): wing chord Reynolds number (Rec)
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is that the turbulence intensity does not continue to increase in proportion to Rec and

Rev but, instead, stabilises at a value of between 0.10W∞ and 0.15W∞. Based on this

result, it can therefore be concluded that the turbulence levels which have been measured

using the PIV measurements at a vortex Reynolds number of 7.4× 104 provide a suitable

representation of the likely levels at full-scale. At this condition, a turbulent kinetic energy

of kmax/W
2
∞=0.032 was measured, and was thus specified in Eq. 6.6 to generate the

turbulent kinetic energy distribution for the full-scale vortex cases. In addition, a length

scale of l = 1rc has been employed to produce distributions of the turbulent dissipation

rate (Eq. 6.4).

6.4.2.4 Numerical scheme

Steady simulations were conducted using the same as that employed in the sub-scale

validation. In particular, a 3rd-order MUSCL scheme was used for the continuity and

momentum equations, and a 2nd-order upwind model was utilised for the turbulence terms.

In the full-scale simulations, the Green-Gauss node-based method [106] was employed for

the calculation of the gradients of the fluxes, since this method was found to provide

better convergence characteristics than the least-squares approach [115].

Iterative convergence was achieved using a similar convergence strategy to the sub-scale

vortex ingestion simulations 6.3.2.4. The RSM simulations were initiated from converged

k − ω SST results using a CFL number of 5. The continuity and momentum equations

were solved using the 3rd-order MUSCL discretisation scheme, and a 1st-order upwind

numerical scheme was employed for all eight turbulence equations for the first 1000 itera-

tions. The numerical scheme was then changed to the 2nd-order upwind scheme, and the

simulations were continued for a further 1000 iterations. The 3rd-order MUSCL scheme

was then implemented, and the CFL number was then progressively increased to 60 such

that convergence was typically achieved after a total of 10000 iterations. All equations

converged with residuals of 10−12.

6.4.3 Results

The purpose of the full-scale simulations is to identify the influence of scale on the vortex

ingestion process. Thus, the analysis in this section is focussed first on the evolution of

the vortex as it undergoes intensification. This will establish fundamental understanding

of the vortex flow physics at realistic vortex Reynolds numbers. Thereafter, the inlet flow
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distortion characteristics will be assessed to determine the likely effects of vortex ingestion

on a realistic, full-scale aircraft engine.

6.4.3.1 Vortex characteristics

To evaluate the evolution of the sub-scale and full-scale vortices, the vortex centre velocity

(wc/wc,0), core radius (rc/rc,0), peak tangential velocity (Vθ,max/W∞), peak streamwise

vorticity (ωz,maxDi/W∞), have been extracted and normalised by the value at z/Di =

2.25. In addition, the peak flow angularity (αmax) has been calculated.

The evolution of wc/wc,0, Figure 6.29(a), demonstrates that the streamtube contraction

levels are almost identical for the sub-scale and full-scale cases which have been investi-

gated. This is expected, since the intake velocity ratio features the same value for both

scales. In addition, it is clear that the streamtube contraction characteristics for a simple

intake model are similar to those obtained for a realistic aircraft geometry. The change in

vortex core radius (Figure 6.29(b)), peak tangential velocity (Figure 6.29(c)), and peak

streamwise vorticity (Figure 6.29(d)) indicate that the full-scale and sub-scale vortex in-

tensification process is very similar in nature. One aspect which must be investigated is

the rate at which vorticity diffusion takes place for the sub-scale and full-scale simulations.

This is investigated in chapter 7.

6.4.3.2 Inlet flow distortion

The simulations of vortex ingestion for the sub-scale validation test case (section 6.3.3.2)

highlighted that the inlet flow during vortex ingestion consisted of a bulk swirl distortion

coupled with low levels of total pressure distortion. A similar assessment of the inlet

flow distortion characteristics has been performed for the full-scale and sub-scale vortex

ingestion simulations. Note that the measurement plane on the full-scale simulations has

been positioned at z/Di = 0.55, which corresponds to the approximate location of the

engine fan face [115].

The total pressure loss contours for the sub-scale cases (Figures 6.30(a) and 6.30(b)) are

consistent with the findings in section 6.3.3.2, since the total pressure loss is less than

0.01P0,∞ at the vortex centre, and the intake boundary layer is the greatest source of

total pressure loss throughout the intake flow. The total pressure loss at the vortex centre

is 0.994 for VR=2.1, and is 0.999 for VR=4.9, so it can be concluded that the change in

streamtube contraction levels has little influence on the loss levels inside the vortex core.
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(a) (b)

(c) (d)

(e)

Figure 6.29: Evolution of vortex characteristics during ingestion as a function of dis-
tance from the intake highlight plane (z/Di), vortex characteristics normalised by intake
inner diameter (Di) and freestream velocity (W∞), Rev = 3.4 × 104, VR=2.1 and 4.9,
(a): Streamwise velocity at vortex centre (wc/wc,0), (b): Vortex core radius (rc/rc,0), (c)
Vortex peak tangential velocity (Vθ,max/Vθ,max,0), (d): Vortex peak streamwise vorticity

(ωz,max/ωz,max,0), (e): Vortex peak flow angularity (αmax)
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(a) (b)

(c) (d)

Figure 6.30: Total pressure loss contours (P0/P0,∞) at z/Di = −0.55 downstream
of the intake highlight plane for full-scale simulations and z/Di = −0.70 for sub-scale
simulations, (a): Sub-scale, VR=2.1, (b) Sub-scale, VR=4.9, (c): Full-scale, VR=2.1,

(d): Full-scale, VR=4.9

This is consistent with the experimental measurements of Talwar [71] and Hodjatzadeh

[73]. The full-scale simulations (Figures 6.30(c) and 6.30(d)) demonstrate that the total

pressure loss at the fan-face is characterised by loss which is adjacent to both the intake

casing and the spinner. For VR=2.1, The loss levels in the fluid at the spinner and the

casing consist of a minimum of 0.897 and 0.915, respectively. Since the vortex has been

ingested along the intake centreline axis, then the vortex wraps around the spinner as it

moves through the intake. Thus, the total pressure loss which is surrounding the spinner

can be attributed to both the spinner boundary layer loss and the loss associated with

the vortex core. When the intake velocity ratio is increased to 4.9, the minimum values of

total pressure at the spinner and the casing are 0.893 and 0.912. Therefore, the differences

in the flow distortion characteristics between the two intake VR conditions are small. This

is reflected in the DC60 values, Table 6.4, which are equal to 1.64 and 1.58 for VR=2.1
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Table 6.4: Full-scale and sub-scale inlet flow distortion characteristics

Scale Sub-scale Full-scale Sub-scale Full-scale
VR 2.1 2.1 4.9 4.9

DC60 6.00× 10−3 1.52× 10−3 6.10× 10−3 1.47× 10−3

SC60 9.81× 10−4 2.22× 10−5 3.57× 10−4 1.76× 10−5

SIav (o) 6.51 3.73 2.95 1.65

and VR=4.9, respectively. It is apparent that a slightly greater DC60 has been obtained

for VR=2.1 as a result of the marginally greater levels of loss adjacent to the spinner.

The DC60 values, similar to the sub-scale simulations, are approximately constant for

both intake velocity ratios. Importantly, the DC60 levels are of the order 10−3, which

corresponds to negligible levels of total pressure distortion.

The contours of flow angle for the sub-scale simulations (Figures 6.31(a) and 6.31(b))

demonstrate that the flow consists of notable levels of swirl distortion. In particular,

the vortex results in a bulk swirl flowfield, where the peak flow angle reaches 19.9o for

VR=2.1, and 12.7o for VR=4.9. It should be reminded that the peak flow angles in the

unperturbed flow are identical for both intake velocity ratios, and the differences are sim-

ply a result of the different streamtube contraction levels. In particular, the experimental

measurements (chapter 5) and the corresponding analysis demonstrated that the peak

flow angles are inversely proportional to the streamtube contraction levels. As discussed

in section 6.3.3.2, the SC60 distortion descriptor does not provide an accurate reflection

of the swirl distortion levels in the intake flow. This result is also evident for the sub-

scale simulations in this section, since the SC60 parameter corresponds to 9.8 × 10−4

and 3.7 × 10−4 for VR=2.1 and 4.9 (Table 6.4). The value of SI, however, provides a

better representation of the notable levels of swirl inside the intake flow. For intake ve-

locity ratios of 2.1 and 4.9, SI corresponds to 6.5o and 3.0o. Limited information which

is available in the open literature suggests that the distortion which occurs inside com-

plex s-shaped intakes can be characterised by SI values of between 4 and 11 [113]. The

distortion which results from such intake designs is known to have a marked impact on

the performance of aircraft engines, and so it can be concluded that the swirl distortion

levels which have been measured from the sub-scale simulations do indicate the potential

for a loss in aircraft engine performance. At full-scale conditions, the peak flow angle cor-

responds to 6.2o for an intake velocity ratio of 2.1 (Figure 6.31(c)). This value is notably

lower than that observed in the equivalent sub-scale simulation (Figure 6.31(a)), where
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(a) (b)

(c) (d)

Figure 6.31: Flow angularity contours (α) at z/Di = −0.55 downstream of the intake
highlight plane for full-scale simulations and z/Di = −0.70 for sub-scale simulations,
(a): Sub-scale, VR=2.1, (b) Sub-scale, VR=4.9, (c): Full-scale, VR=2.1, (d): Full-scale,

VR=4.9

the peak flow angle was 19.9o. The vortex characteristics (Figure 6.29(b) to 6.29(e)) show

that the characteristics of sub-scale and full-scale vortices are very similar throughout

the contraction process upstream of the intake highlight plane. Therefore, the differences

arise inside the intake. As the vortex wraps around the spinner, the vortical flow is forced

radially outward from the intake centreline. To conserve angular momentum, there must

be a corresponding reduction in the tangential velocity of the vortex. Furthermore, the

contours of streamwise velocity inside the intake (Figure 6.32) demonstrate that, close

to the spinner, the flow undergoes an acceleration as it moves through the intake. As a

consequence, in the flow surrounding the spinner, the ratio Vθ/wc is expected to reduce,

which will produce a net reduction in α. Similar conclusions can be reached for the results

obtained at an intake velocity ratio of 4.9 (Figure 6.31(d)).

It should be emphasised that the low DC60 and SC60 values which have been reported
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Figure 6.32: Contours of streamwise velocity (wc/W∞) on symmetry plane x = 0

in Table 6.4 are a consequence of the fact that the distortion characteristics inside the

intake are axisymmetric (Figures 6.30(a) to 6.31(d)). The CFD approach which has

been developed in this research have been employed by Heimbucher [115] and Pernod

[117] to investigate the inlet flow distortion levels which result from the ingestion of

a vortex at various locations inside the intake capture streamtube relative to the intake

centreline. Vortex strengths of Γ∗ = Γ0/WiDi of 0.29, 0.47 and 0.95 were investigated with

a vortex core radius r∗c = rc/Di of 0.29. The vortex size and strengths have been selected

to represent possible canard wing-tip vortices [117]. Note, therefore, that the vortices

simulated by Pernod [117] feature the same order of magnitude of vortex strength as

those considered in the full-scale studies in this research (Table 6.3). However, the vortex

core radius in the freestream is 5.3 times larger than the current simulations. Importantly,

the values of DC60, SC60 and SI increase as the vortex ingestion position is moved from

the intake centreline to 30% and 60% of the intake capture streamtube radius, Figures

6.33(a), 6.33(b) and 6.33(c). The distortion levels are notably higher than the values

which are obtained when the vortex is ingested at the intake centreline. For example,

the DC60 values range between 0.02 and 0.14 for ingestion at 90% of the intake capture

streamtube radius. In addition, SC60 descriptors lie within the range of 0.073 and 0.28.

These values are of the same order as those which are known to induce engine instability

[76]. Similarly, the SI values, which range from 3.9o to 12.6o when the vortex is ingested

along the intake centreline (Figure 6.33(c)), are of a similar order to the SI values which

have been measured on complex s-shaped intakes [113]. Consequently, it can be concluded
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(a) (b)

(c)

Figure 6.33: Inlet flow distortion characteristics at z/Di = −0.55 downstream of the
intake highlight plane for full-scale simulations, VR=1.71, influence of vortex strength
(Γ∗) and distance of vortex centre location from intake centreline axis (%R∞), where R∞
is the radius of the intake capture streamtube far upstream of the intake, figures from

[117], (a): DC60, (b): SC60, (c): SI

that the distortion levels which result from the ingestion of representative canard wing-tip

vortices have the potential to induce a loss of engine stability and performance.

The sub-scale and full-scale simulations of vortex ingestion have demonstrated that the

inlet flow total pressure distortion is dominated by the total pressure loss inside the intake

boundary layers, which is very low. The primary difference which was observed between

the sub-scale and full-scale simulations is the presence of is presence of additional total

pressure loss at the spinner surface in the full-scale simulations. Importantly, the total

pressure loss attributed to vortex is small on both scales. This result is in agreement with

previously reported measurements of sub-scale and full-scale vortex ingestion flows. Fur-

thermore, total pressure distortion levels across intake flow are unaffected by an increase

in intake velocity ratio. As anticipated, swirl distortion characteristics are dependent
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on intake velocity ratio. Swirl distortion levels are lower for full-scale simulations than

sub-scale simulations. The primary reason is the presence of the spinner, which causes

a reduction in tangential velocity coupled with an increase in streamwise velocity, the

overall effect of which is to reduce the peak swirl angles. Therefore, sub-scale simulations

in the absence of the spinner will over-estimate the swirl distortion characteristics. Never-

theless, full-scale simulations indicate swirl intensity values have the potential to impact

the performance of an aircraft engine.

6.5 Summary

Simulations have been performed using Computational Fluid Dynamics (CFD) to identify

the correct approach to simulate vortex ingestion. An important feature of this work is

that the intake is simulated in isolation, and the streamwise vortex is prescribed as a

boundary condition upstream of the intake. A review of the literature has identified that

it can be particularly challenging to simulate wing-tip vortices using CFD. The results

from wing-tip vortex simulations have demonstrated that the agreement with experimental

results can be poor, and is strongly dependent on the details of the mesh characteristics

and the turbulence modelling approach. Few studies have elucidated the requirements for

simulating an isolated wing-tip vortex, as required in this research. Additionally, there is

little prior knowledge of the correct CFD approach for simulating vortex ingestion flows.

Studies have been performed in this research to address this lack of knowledge.

Wing-tip vortex convection simulations were first conducted to evaluate the impact of the

mesh resolution on the ability of the CFD solver to capture the vortex convection process.

The evolution of the vortex characteristics was assessed using experimental measurements

which are available in the literature. It was demonstrated that notable levels of numerical

diffusion can result when the in-plane and out-of-plane mesh resolution is insufficient.

As a consequence, the vortex diffuses rapidly, and the agreement with the experimental

measurements is poor. Using the vortex convection results, it has been possible to establish

the required mesh resolution to ensure that mesh-related numerical diffusion is minimised.

The CFD simulations have shown that eddy-viscosity turbulence models are inappropri-

ate for simulating vortex convection and vortex ingestion flows. A notable result is that

commonly-used eddy-viscosity models, such as the Spalart-Allamras and k−ω SST mod-

els, over-predict the rate at which the wing-tip vortex diffuses. This is a result of large

levels of turbulence inside the vortex core which are generated by the turbulence model.
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Eddy-viscosity models rely on the Boussinesq assumption, which states that the turbu-

lence and strain rate tensors are aligned. The experimental measurements which have

been obtained in this research, in agreement with those in the literature, show that the

Boussinesq assumption is not appropriate for the vortex flows. As a result, turbulence

models which employ the Boussinesq assumption are unable to capture the flow physics

associated with vortices. The vortex convection simulations demonstrated that the vor-

tex evolution is in good agreement with the experimental measurements when a Reynolds

Stress Model (RSM) is employed. A key requirement for RSM simulations is that ap-

propriate turbulence profiles must be prescribed at the inlet boundary condition. This

research has demonstrated that it is necessary to prescribe profiles of the turbulent kinetic

energy (k) and the turbulent dissipation rate (ε), in conjunction with a turbulence length

scale of l = 1rc. The sub-scale wing-tip vortex measurements (chapter 4) measurements

have thus been utilised to create an analytical profile for the turbulent kinetic energy.

In this way, it is possible to prescribe suitable turbulence boundary conditions when the

vortex turbulence characteristics are not known a priori.

Simulations were also performed using a sub-scale vortex ingestion case which was in-

vestigated in the experimental programme. It was found that agreement between the

experimental measurements and the results obtained with the k − ω SST turbulence

model were poor. In particular, the vortex experiences notable levels of diffusion prior to

the contraction process. However, the details of the vortex intensification process from

the RSM simulations are in very good agreement with the experimental measurements.

It is therefore concluded that RSM simulations, in conjunction with appropriate turbu-

lence boundary conditions, are imperative for vortex intensification and vortex ingestion

simulations. When applied to full-scale vortex ingestion flows, it has been found that the

notable distortion levels arise from the ingestion of a typical canard wing-tip vortex.





Chapter 7

Synthesis and discussion

In the preceding chapter, it was demonstrated that the vortex intensification process can

be subject to notable levels of diffusion. It was demonstrated, using the wide range of

configurations which have been investigated in this research, that the diffusion levels are

strongly dependent on the streamtube contraction levels, the details of the vortex prior to

the streamtube contraction, and the trajectory the vortex follows inside the streamtube.

Importantly, it was shown that, under certain conditions, a simple vortex filament model

is not appropriate for modelling the evolution of a vortex inside a streamtube contraction.

The purpose of this chapter is to detail the development of a semi-empirical model which

can capture the effects of diffusion on the vortex as it undergoes intensification. Such

a model will permit the development of understanding of the fundamental flow physics

surrounding the diffusion process. In addition, a semi-empirical model will provide a

validated approach to estimate the characteristics of a vortex following ingestion. This

will provide invaluable information which can be used to evaluate the likely inlet flow

distortion features which result from the ingestion of a streamwise vortex.

7.1 Semi-empirical model

The experimental measurements obtained in this research show that, for local stream-

tube velocity ratios (wc/wc,0) of greater than 2, vorticity diffusion plays a role in vortex

intensification. It was found that diffusion has a measureable influence on the vortex

characteristics, and it was demonstrated that the vortex undergoes less intensification

than anticipated from vortex filament theory. The differences between the measurements

and vortex filament theory were greatest when the vortex was ingested along the intake

195
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centreline, and when the local streamtube contraction levels are large. Under such condi-

tions, a model based on inviscid, incompressible theory does not adequately capture the

evolution of the vortex inside the streamtube contraction, and it is therefore desirable

to obtain a model for the effects of diffusion. The purpose of this section is to describe

the implementation of a semi-empirical model which captures the diffusion process which

takes place during vortex intensification.

7.1.1 Model formulation

In order to implement a model for vortex diffusion, it is useful first to consider the evolution

of a vortex in a uniform streamwise flow. An example of this case is a wing-tip vortex

which, following generation, will convect downstream of the wing. As discussed in section

2.3, vorticity diffusion results in a gradual increase in the vortex core radius, coupled

with a reduction in the vortex peak tangential velocity. The rate at which the vortex

diffuses has been found to depend on a number of factors, including the vortex Reynolds

number and the streamwise velocity perturbation. It has been found that the Squire

vortex model (Eq. 2.22) provides a good description of the vortex diffusion process,

through the use of an empirical parameter defined as the apparent diffusion coefficient, δ

is selected empirically to match the vortex growth rates with experimental measurements.

A value of δ of more than 1 suggests that the vortex growth rate exceeds that attributed

to laminar viscosity alone. A number of important aspects of the vortex diffusion process

can be identified from the Squire vortex model. Consider a vortex of a given strength and

a fixed initial core radius rc,0. The growth of the vortex core radius as a function of time

is therefore increased when δ increases, as illustrated qualitatively in Figure 7.1(a) for

small values of time t. In addition, the vortex experiences a reduction in peak tangential

velocity (Figure 7.1(b)) and peak streamwise vorticity (Figure 7.1(c)). As a result, δ can

be considered as a measure of the strength of the diffusion process, such that an increase

in δ represents an increase in the rate of diffusion. A second feature of vortex diffusion

is that, as the initial vortex core radius reduces, for a given value of δ, the diffusion

rates increase (Figure 7.1(d)). Thus, when the vortex size reduces, the rates of diffusion

increase, and the increase in the vortex core radius per unit time is greater.

In this research, an approach is sought to implement the Squire vortex model as a diffusion

correction to the vortex filament model. It has been demonstrated in the preceding

paragraph that, using the Squire vortex model, the vortex diffusion process between two

points in space can be characterised in terms of the time the vortex takes to convect

between the points, plus a semi-empirical function of the vortex Reynolds number which
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(a) (b)

(c) (d)

Figure 7.1: Evolution of streamwise vortex characteristics from the Squire vortex model
Eq. 2.22, as a function of the apparent diffusion coefficient (δ) and time (t) for small val-
ues of t, (a): Vortex core radius (rc/rc,0), (b): Peak tangential velocity (Vθ,max/Vθ,max,0),
(c): Peak streamwise vorticity (ωz,max/ωz,max,0), (d): Influence of initial core radius

(rc,1) on evolution of vortex core radius (rc/rc,0)

specifies the contribution of turbulent diffusion. A similar approach has been employed

by Ananthan and Leishman [69]. A schematic of the approach developed in this research

is given in Figure 7.2(a). Consider a streamwise vortex with an initial core radius of rc,1

measured upstream of the streamtube contraction, where the freestream velocity is W∞.

It is assumed that the streamwise velocity perturbation inside the vortex is small at plane

1, so that wc,1 = W∞. At some point inside the streamtube contraction, the streamwise

velocity has increased to w2, and the core radius has reduced to (rc,2). It is assumed

that the effect of the coupling between the tangential and streamwise velocity fields is

small, so that the streamwise velocity at the vortex centre remains approximately equal

to that of the flow surrounding the vortex. The current experimental measurements have
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(a)

Figure 7.2: Schematic of intake flowfield and definitions for vortex intensification and
diffusion models

demonstrated that this is a valid assumption where the streamwise velocity perturbation

is small. Thus, in the absence of viscous or turbulent diffusion, the core radius rc,2 is equal

to the initial core radius (rc,1) plus a change in core radius which is a result of inviscid,

incompressible vortex filament intensification (∆rc,V F ). This can be calculated using Eq.

7.1 and, as anticipated, will produce a negative change in core radius for a contracting

flow.

∆rc,V F = rc,1

√
wc,1/wc,2 − rc,1 = rc,1

(√
wc,1/wc,2 − 1

)
(7.1)

rc,2 = rc,1 + ∆rc,V F + ∆rc,D (7.2)

It was demonstrated in chapter 5 that this relationship is appropriate where wc/wc,0 is

less than approximately 2. However, at greater contraction levels, there is a gradual

increase in the difference between the vortex filament model and the measurements. It

was hypothesised that such differences between the measurements and the vortex filament

result are caused by diffusion, and can be denoted ∆rc,D. Therefore, the vortex core radius

can be determined using the combination of the vortex filament result, and the change

in core radius due to diffusion, Eq. 7.2. The approach which has been proposed in this
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research is to employ the Squire model (Eq. 2.22) to determine the value of ∆rc,D. Using

the Squire vortex model, the change in core radius due to diffusion is given by Eq. 7.3,

where δi is the apparent diffusion coefficient for vortex intensification. Note that, as

expected, the diffusive contribution produces a positive change in core radius, which is in

opposition to intensification.

∆rc,D =
√
r2
c,1 + 4αlδiνt1,2 − rc,1 (7.3)

In addition to the initial core radius rc,1, there are two important inputs in to Eq. 7.3.

The first is the convection time between the two points in the contraction (t1,2). This

can be calculated easily with knowledge of the streamtube velocity field in space. Once

the vortex core radius, with the diffusion correction, is known for plane 2 using Eq. 7.2,

the change in the vortex core radius (rc,2/rc,1) can be calculated (Eq. 7.3). This value

can be considered to be the change in the vortex filament radius, corrected for diffusion.

This change can then be used to determine the change in vortex filament properties, in a

manner similar to the inviscid vortex filament theory which was detailed in section 2.4.1.

In particular, the change in vortex core radius provides expressions for the vortex core

average vorticity (Eq. 7.5), the peak streamwise vorticity (Eq. 7.6), and the peak flow

angularity Eq. 7.7. To derive Eqs. 7.4 to 7.7, it is assumed that the core circulation of

the vortex is constant. This is a valid assumption, since the measurements have shown

that the changes in the vortex core circulation during intensification are smaller than the

measurement uncertainty.

Vθ,max,2
Vθ,max,1

=
rc,1
rc,2

(7.4)

ωz,av,2
ωz,av,1

=

(
rc,1
rc,2

)2

(7.5)

ωz,max,2
ωz,max,1

=

(
rc,1
rc,2

)2

(7.6)

α∗ =
(Vθ,max/wc)2

(Vθ,max/wc)1

(7.7)
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A crucial input into the diffusion correction is the apparent diffusion coefficient (δ), the

value of which is currently not known for vortex intensification flows. Note that Ananthan

and Leishman [69], who used a similar approach to model helicopter rotor wake intensi-

fication, assumed that the apparent diffusion coefficient is constant and depends only on

the vortex Reynolds number as given in Eq. 2.21. However, there has been no attempt to

determine directly the value of δ during the intensification process, or to assess whether

the value remains constant as a function of the vortex intensification levels.

7.1.2 Calculation of the apparent diffusion coefficient

The modelling approach selected in this research is to use the Squire vortex model to apply

a diffusion correction to the vortex filament model. This requires a priori knowledge of the

apparent diffusion coefficient. The purpose of this section is to evaluate the required value

or trend for δi to permit the application of the Squire vortex model. This will complete

the details required for a diffusion-corrected vortex filament model.

It is necessary to determine the behaviour of the apparent diffusion coefficient δi between

two planes inside the streamtube contraction, denoted plane 1 and plane 2, (Figure 7.2(a)).

Plane 1 corresponds to the measurements at z/Di = 2.25, at which it is assumed that

the vortex characteristics are equal to the unperturbed state. An expression for δi can

then be derived by stating that the difference between the measured vortex core radius

(rc,2) and the core radius calculated from vortex filament theory (rc,2,V F ) is equal to the

contribution from diffusion (∆rc,D). Thus, the Squire vortex model can be employed

to apply a correction to the vortex filament theory result. If we select the difference

between the measurement and the vortex filament result (rc,2 − rc,2,V F ) as amount by

which diffusion will cause the vortex core radius to increase during the time between the

two measurement planes, then it is possible to express the Squire model as Eq. 7.8.

rc,1 + (rc,2 − rc,2,V F ) =
√
r2
c,1 + 4αlδiνt1,2 (7.8)

In a manner consistent with the inviscid vortex filament model which was used to aid the

analysis in the preceding chapter, the vortex filament theory here is implemented using

the measured streamwise velocity at the vortex centre wc,2/wc,1. It is then possible to

rearrange Eq. 7.8 to obtain an expression for the apparent diffusion coefficient (Eq. 7.9).

δi =
(rc,1 + rc,2 − rc,2,V F )2 − r2

c,1

4αlνt1,2
(7.9)
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The convection time t1,2 can be determined using the measured profile of the streamwise

velocity wc as a function of the distance travelled by the vortex (z). Inherent in this

calculation is the assumption that the streamwise velocity at the vortex centre (wc) is

approximately equal to that of the surrounding flow. Therefore, the assumption that

t = z/W∞ is valid, as required for the Squire vortex model (Eq. 2.21). In this research,

t1,2 was calculated using Simpson’s Rule applied to the discrete measurements of wc at

each of the measurement planes.

The values of the δi have been calculated for the wide range of vortex ingestion configu-

rations which have been investigated in this research. The analysis of the experimental

measurements, conducted in chapter 5, found that the vortex undergoes lower levels of

intensification than anticipated from vortex filament theory. The differences between the

vortex filament model and the measurements increased in proportion to the local stream-

tube contraction levels. It was concluded that diffusion which results from laminar and

turbulent momentum transfer was the likely cause of this trend. To provide further in-

sight into this behaviour, the values of δi has been calculated for the NACA 0012 wing-tip

vortex with a vortex Reynolds number of Rev = 3.7 × 105 for the case where the vortex

has been ingested along the intake centreline. Note that three intake velocity ratios (VR),

corresponding to 2.0, 5.1 and 10.3, have been investigated to produce a wide range of

streamtube contraction levels. Wing-tip vortex convection measurements suggest that

a value of δi of the order 101 is appropriate for the vortices measured in this research.

Similar values have been calculated from the current experimental measurements (Figure

7.3), which range from close to zero for low contraction levels, to a maximum of 13 at

Figure 7.3: Apparent diffusion coefficient (δi) as a function of local streamwise velocity
ratio (wc/wc,0-1) for intake velocity ratios of VR=10.3, 5.1 and 2.0, Rec = 1.7 × 105,

Rev = 3.7× 104, centreline ingestion
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wc/wc,0−1 of 3.1. A value of δi = 0 is expected at wc/wc,0−1=0, since this corresponds to

the unperturbed condition. A negative value of δi was obtained at the lowest wc/wc,0−1.

Inspection of Eq. 7.9 shows that such a value of δi occurs when the measured change

in rc is of a greater magnitude than that anticipated from vortex filament theory. It is

likely that the low contraction levels, coupled with the measurement uncertainty on rc,

are the cause of the negative value. The calculated values of δi confirm that the impact of

diffusion becomes greater as the contraction levels rise. This result also suggests that the

rate of diffusion increases during the vortex intensification process. For example, when

(wc/wc,0-1) is less than 1, the diffusion rates are small and close to the rates observed in

laminar vortex diffusion. As a result, the impact of diffusion is also small, and the vortex

characteristics are in close agreement with vortex filament theory. At greater contraction

levels, however, the apparent diffusion coefficient increases to a value of 13 at (wc/wc,0-

1)=3.1, which indicates that there has also been a corresponding rise in the diffusion

rates. This increase can be attributed to two factors. Firstly, the vorticity levels inside

the vortex core rise substantially during intensification, as demonstrated by the peak and

average core streamwise vorticity measurements (Figures 5.8(d) and 5.8(e)). Therefore,

even in the presence of purely laminar flow, one can expect an increase in the levels of

diffusion inside the vortex core. In addition, the current measurements suggest that the

turbulence levels inside the vortex core are large. Therefore, it is likely that turbulent

diffusion also contributes to the increase in δi observed in the measurements.

The behaviour of the apparent diffusion coefficient as a function of the vortex Reynolds

number, and for an even greater range of contraction levels than Figure 7.3, is shown in

Figure 7.4(a). The data presented in Figure 7.4(a) corresponds to the results extracted

from all of the NACA 0012 vortex generator configurations where the vortex was ingested

along the intake centreline. It is clear from the wide range of conditions that the vortex

diffusion rates increase as a function of the contraction levels. In addition, for a given

(wc/wc,0-1), δi is somewhat sensitive to the initial characteristics of the vortex, prior to

intensification. For example, at (wc/wc,0-1) of approximately 1.8, the value of δi increases

from 3 to 11 when the vortex Reynolds number increases from Rev = Rev,0 to Rev =

1.6Rev,0. However, further increases in Rev do not produce a corresponding rise in δi. This

behaviour does not agree with the conclusions of Bhagwat and Leishman [50] who found

that, for vortex Reynolds numbers of above 104, the value of δi increases monotonically

with Rev. It was concluded that the turbulent diffusion levels increased with the vortex

Reynolds number due to a rise in the turbulence levels inside the vortex core. It should

be noted that the experimental data which was analysed by Bhagwat and Leishman

[50] comprised a far greater range of vortex Reynolds numbers than that considered in
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(a) (b)

(c)

Figure 7.4: Apparent diffusion coefficient (δi) as a function of local streamwise velocity
ratio (wc/wc,0-1), centreline ingestion, (a): Influence of vortex Reynolds number Rev,
where Rev,0 = 2.4 × 1−4, (b): Influence of vortex Reynolds number Rev, δi normalised
by vortex Reynolds number (δi × 104/Rev), (c): Influence of vortex type, where N and
D refer to the NACA 0012 vortex generators, 12 and 6 refer to vortex generator angles
of attack (αvg) of 12o and 6o, respectively, δi normalised by vortex Reynolds number

(δi × 104/Rev)

this research. It is therefore likely that the differences in δi between Rev = Rev,0 and

Rev = 3.1Rev,0 cannot easily be detected. Interestingly, there is a notable reduction

in scatter when δi is normalised by the vortex Reynolds number (δi × 104/Rev), Figure

7.4(b). Such behaviour confirms that δi increases approximately linearly with Rev across

the range of conditions which have been investigated in this research. This result is in

agreement with the model for the apparent diffusion coefficient proposed by Squire [49]

(Eq. 2.21), as well as the conclusions of Bhagwat and Leishman [50]. The link between

the apparent diffusion coefficient and the vortex Reynolds number demonstrated in Figure
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7.4(b) shows that, for a given streamtube contraction, the diffusion levels experienced by a

vortex will increase with the vortex Reynolds number, due to an increase in the turbulent

diffusion levels.

Further insight to the behaviour of δi can be provided by including the delta wing vortex

measurements, Figure 7.4(c). It is clear that the delta wing vortex measurements do not

conform with Eq. 2.21. In particular, only a single positive value of δi has been obtained

for the delta wing vortex with a vortex Reynolds number of 2.4Rev,0. As observed in

section 5.2.3, the delta wing vortex core radius is smaller than that anticipated from

vortex filament theory at four of the five measurement planes, which means that a negative

value of δi is obtained (Eq. 7.9). The single value of δi lies below the NACA 0012 wing-

tip vortex trend, which indicates that the diffusion rates experienced by the vortex are

lower than that observed on the NACA 0012 vortices at similar contraction levels and

vortex Reynolds numbers. This also appears to be a consequence of the effect of the large

out-of-plane velocity deficit. Further differences from the NACA 0012 wing-tip vortex

trend have been observed in the values of δi/Rev calculated for the delta wing vortex

of vortex Reynolds number Rev,0. In particular, the values lie some distance above the

trend obtained from the NACA 0012 wing-tip vortex data, which demonstrates that the

delta wing vortex features diffusion rates which are larger than anticipated at this vortex

Reynolds number. Clearly, the vortex Reynolds number is not the only parameter which

influences the diffusion rates experienced by the vortex.

In the previous chapter, the importance of Rev was hypothesised from the behaviour of

the changes in the peak streamwise vorticity (ωz,max/ωz,max,0) and the average vorticity

(ωz,av/ωz,av,0). It is therefore promising that a similar dependence on Rev has been found

in δi, since this parameter has been calculated using the vortex core radius. The influence

of Rev on the change in the vortex core radius (rc/rc,0) is not apparent when plotted as

a function of wc/wc,0 (for example, Figure 5.9(a)). The reason can be explained with

reference to the NACA 0012 wing-tip vortex measurements, for vortex Reynolds numbers

of Rev,0, 1.6Rev,0 and 3.1Rev,0. Recall that the freestream velocity was used to control the

control the vortex Reynolds number, and the intake mass flow was varied to maintain an

approximately constant intake velocity ratio. Therefore, the convection time between the

measurement planes t1,2 decreases as the vortex Reynolds number is increased. From Eq.

2.22, the total effect of diffusion between two planes is proportional to both the convection

time and the value of δi. At a vortex Reynolds number of Rev,0, the value of δi is the

lowest of the three cases (Figure 7.4(a)), and the convection time, for example, between

z/Di = 2.25 and z/Di = 0.20 is approximately 0.0109s. When the vortex Reynolds

number is increased to 3.1Rev,0, there is a corresponding rise in δi, but the convection
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(a) (b)

Figure 7.5: Apparent diffusion coefficient (δi) as a function of local streamwise velocity
ratio (wc/wc,0-1), centreline ingestion, (a): Influence of vortex Reynolds number Rev,
where Rev,0 = 2.4 × 1−4, (b): Influence of vortex Reynolds number Rev, δi normalised

by vortex initial average vorticity (δi × 104/Rev)

time between the same two measurement planes reduces to 0.0035s. As a consequence, the

overall effect of diffusion on the change in core radius is similar, and there is little difference

between the measured values of rc/rc,0 for the different vortex Reynolds numbers.

It was demonstrated in section 5.2.4 that the differences between the vortex filament model

and the measured vortex characteristics reduced when the vortex was ingested along an

off-axis trajectory relative to the intake centreline. Therefore, it was concluded that the

effects of diffusion were smaller along such a trajectory. A number of important points can

be identified from the corresponding values of δi, Figure 7.5(a). Firstly, in agreement with

the centreline measurements (Figure 7.4(a)), the apparent diffusion coefficient increases

with the local contraction levels. A comparison with Figure 7.4(a) indicates that the

off-axis values of δi are approximately half of those obtained on the intake centreline. In

addition, it should be emphasised that the measured vortex core radius evolution is far

closer to the vortex filament model, and so a large number of the values of δi for the off-

axis cases are negative. It is likely that the outlier of δi=6 at (wc/wc,0-1)=0.2 is a result of

measurement uncertainty, since this behaviour has not been observed in any other cases.

In agreement with the results of the centreline cases (Figure 7.4(c)), there is a reduction

in scatter when δi is normalised by the vortex Reynolds number, Figure 7.5(b).

The analysis of the behaviour of δi for centreline and off-axis vortex ingestion scenarios

has demonstrated that a curve fit for δi/Rev can be obtained as a function of the local

contraction levels (wc/wc,0-1). It has been found that the best curve fit for both centreline
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and off-axis cases is that of a second-order polynomial with an intercept of δi/Rev=0 at

(wc/wc,0-1)=0, Eqs. 7.10 and 7.11, respectively. A comparison of the curve-fits with

the experimental data is shown in Figures 7.6(a) and 7.6(b). Note that only the NACA

0012 wing-tip vortex data has been employed in the calculation of the curve-fit equations.

This was to avoid contamination from the impact of the large streamwise velocity deficit

associated with the delta wing vortex. Furthermore, the outlier identified in the off-

axis data at (wc/wc,0-1)=0.2 (Figure 7.5(b)) has also been removed from the calculation.

As shown in Figures 7.6(a) and 7.6(b), the curve-fits provide a good description of the

experimental data. This is supported by the R2 coefficients, which are equal to 0.94

and 0.93 for centreline and off-axis cases, respectively. It is acknowledged, however, that

the curve-fit for the off-axis measurements has been generated using a small collection

of measurements. Nonetheless, the nature of the off-axis curve is clearly consistent with

that obtained from the larger centreline dataset. This establishes confidence in the trend

acquired for the off-axis case.

The curve-fits of δi/Rev now provide an approach to calculate the apparent diffusion

coefficient for any value of (wc/wc,0−1) and Rev. Therefore, it is now possible to determine

the contribution of diffusion to the vortex intensification process which takes place during

vortex ingestion.

δi × 104

Rev
= 0.1752

(
wc
wc,0

− 1

)2

+ 1.0121

(
wc
wc,0

− 1

)
(7.10)

δi × 104

Rev
= 0.1182

(
wc
wc,0

− 1

)2

+ 0.0982

(
wc
wc,0

− 1

)
(7.11)

A number of important features of the vortex intensification process have been identified

from the preceding analysis. As expected, the effects of diffusion increase during the

intensification process, which causes a rise in the apparent diffusion coefficient δi. For a

fixed initial vortex core radius, δi provides an indication of the vortex diffusion rates. It

has been found that δi increases as a function of the local streamtube contraction levels,

which is a result of the increase in the diffusion attributed to viscosity and turbulence. It

has been demonstrated that the vortex Reynolds number is the most important parameter

which captures the diffusion rates for all conditions investigated. The value of δi is also

strongly dependent on the vortex ingestion trajectory. It has been found that the diffusion

rates are less than half of those measured at the same conditions, but along the intake

centreline. Based on this analysis, a curve fit of δi as a function of (wc/wc,0− 1) and Rev
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(a) (b)

Figure 7.6: Curve-fit for apparent diffusion coefficient (δi × 104/Rev), as a function
of local streamwise velocity ratio (wc/wc,0-1), (a): Centreline ingestion, (b): Off-axis

ingestion

has been developed. This provides the necessary input into the diffusion-corrected vortex

filament model which has been proposed in this research.

7.2 Assessment of vortex intensification models

The purpose of this section is to assess the capability of the semi-empirical vortex inten-

sification model which has been developed in the preceding section. The model has been

generalised sufficiently, such that the only required inputs are the streamtube contraction

levels (wc/wc,0-1), an estimate for the time required for the vortex to convect through

the contraction (t1,2), and the vortex Reynolds number (Rev = Γc/ν) prior to entering

the streamtube contraction. It is assumed that, at a particular location in the intake

capture streamtube, the streamwise velocity at the vortex centre (wc) is equal to that

of the streamtube in the absence of the vortex. This is a valid assumption provided the

vortex streamwise velocity perturbation wc,0/W∞ is less than 0.15, based on the experi-

mental dataset obtained in this research. To carry out an assessment of the new vortex

intensification model, the streamtube velocity field from an inviscid CFD simulation has

been acquired using the same sub-scale intake geometry which was used in the experi-

mental measurements. Details of the mesh characteristics are provided in section 6.3.2.1.

It should be noted that the velocity field is required to obtain a good estimate of the

convection time t1,2. Therefore, a similar estimate of the streamtube velocity field may

also be obtained from a simple potential model. A first-order estimate of t1,2 may also
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be acquired by assuming t1,2 = z/(wc −W∞), where wc is the streamwise velocity at the

required point in the streamtube contraction. Finally, it is assumed that the vortex and

the intake capture streamtube are isolated, and thus any interaction effects with nearby

surfaces are neglected.

A number of cases from the experimental dataset have been employed to assess the model

validity, as detailed in the following subsections.

7.2.1 Example application 1

In this example, the semi-empirical model has been applied to the case corresponding

to an initial vortex Reynolds number of Rev = 3.3 × 104. The intake velocity ratio is

VR=10.3, and the vortex is ingested along the intake centreline. The streamwise velocity

ratio (wc/wc,0) and the vortex convection time t1,2 have been obtained using an inviscid

CFD simulation at the correct freestream and intake flow conditions.

The performance of the semi-empirical model can be assessed using the results for the

change in vortex core radius (Figure 7.7(a)), peak tangential velocity (Figure 7.7(b)),

peak streamwise vorticity (Figure 7.7(c)), average streamwise vorticity (Figure 7.7(d)),

and peak flow angularity (Figure 7.7(e)). Note that the experimental measurements show

that the local streamtube contraction levels (wc/wc,0) reach a value of 4.1 at z/Di = 0.20.

The analysis of the experimental measurements have demonstrated that the effects of

diffusion become apparent for wc/wc,0 greater than 2, and thus the vortex intensifica-

tion measurements for this configuration are in a regime where diffusion is important.

The results obtained from the semi-empirical model (VF+D) demonstrate a pronounced

improvement over the vortex filament model (VF), Table 7.1. In particular, the vor-

tex intensification levels obtained from the semi-empirical model are very close to the

measured levels, and feature an error which is no greater than 4% of the experimental

measurements. Such errors are within the measurement uncertainty. Note that the peak

streamwise vorticity features a maximum error of 20% at z/Di = 0.38. In contrast, the av-

erage core vorticity which results from the semi-empirical model is in very good agreement

with the experimental measurements. In chapter 5, it was found that vorticity diffusion is

strongest at the vortex centre, and becomes weaker with distance from the vortex centre.

Importantly, the apparent diffusion coefficient δi is computed using the measured vortex

core radius, where the effects of diffusion are known to be smaller. Consequently, δi does

not reflect the high levels of diffusion which are experienced at the vortex centre, which

explains the poor agreement between the model and the measurements. Nevertheless,
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(a) (b)

(c) (d)

(e)

Figure 7.7: NACA 0012 vortex generator, αvg = 12o, Rev = 3.7 × 104, V R =
10.3, centreline ingestion, normalised by measurement at z/Di=2.25, (a): Core radius
(rc/rc,0), (b): Peak tangential velocity (Vθ,max/Vθ,max,0), (c): Peak streamwise vortic-
ity (ωz,max/ωz,max,0), (d): Average streamwise vorticity (ωz,av/ωz,av,0), (e): Peak flow

angularity (α∗)
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with the inclusion of the effects of diffusion, the result from the semi-empirical model is

notably closer to the measurements than the vortex filament model result, which features

an error of 64%.

Table 7.1: Model errors for vortex filament (VF) and semi-empirical (VF + D) vortex
models, normalised by experimental measurements of vortex characteristics, NACA 0012

vortex generator, αvg = 12o, Rev = 3.7× 104, VR=10.3, centreline ingestion

z
Di

Model rc
rc,exp

Vθ
Vθ,exp

ωz,max
ωz,max,exp

ωz,av
ωz,av,exp

α∗

α∗exp

0.80 VF 0.993 1.024 1.138 1.031 1.044
VF+D 1.007 1.010 1.106 1.002 1.030

0.60 VF 0.964 1.045 1.221 1.085 1.049
VF+D 0.994 1.015 1.149 1.021 1.078

0.38 VF 0.939 1.087 1.400 1.157 1.090
VF+D 1.014 1.007 1.202 0.994 1.010

0.20 VF 0.894 1.164 1.638 1.302 1.171
VF+D 1.060 0.984 1.170 0.930 0.990

7.2.2 Example application 2

The second example consists of an initial vortex Reynolds number of Rev = 7.4×104. The

intake velocity ratio is VR=4.9, and the vortex is ingested along the intake centreline. The

streamwise velocity ratio (wc/wc,0) and the vortex convection time t1,2 have been obtained

using an inviscid CFD simulation at the correct freestream and intake flow conditions.

The comparison of the experimental measurements and the vortex filament model, Figures

7.8(a) to 7.8(e), demonstrate that the semi-empirical model offers a smaller improvement

over the vortex filament model than was observed in the previous example. This is a

result of the streamtube contraction levels, which are notably smaller in this example. In

particular, in this example, the measured value of wc/wc,0 is 2.5, compared with 4.1 in the

previous example. The analysis of the experimental measurements has demonstrated that

the diffusion only has a small effect on the vortex intensification process when the local

contraction levels (wc/wc,0) are less than 2 (section 5.2.1). Therefore, it is unsurprising

that the semi-empirical model offers only a modest improvement when compared to the
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(a) (b)

(c) (d)

(e)

Figure 7.8: NACA 0012 vortex generator, αvg = 12o, Rev = 7.4 × 104, V R =
4.9, centreline ingestion, normalised by measurement at z/Di=2.25, (a): Core radius
(rc/rc,0), (b): Peak tangential velocity (Vθ,max/Vθ,max,0), (c): Peak streamwise vortic-
ity (ωz,max/ωz,max,0), (d): Average streamwise vorticity (ωz,av/ωz,av,0), (e): Peak flow

angularity (α∗)
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vortex filament model results (Table 7.2). It is also important to note that, in a manner

similar to the results in section 7.2.1, the semi-empirical model overpredicts the increase

in peak streamwise vorticity, but features a small error for the average core vorticity. This

behaviour is consistent with the fact that the semi-empirical relationship for δi has been

developed using the vortex core radius, which is less susceptible to the effects of diffusion

than the peak streamwise vorticity. The error associated with ωz,max/ωz,max,0 for the

semi-empirical model is of a similar magnitude to that observed in the preceding example

application (section 7.2.1), which features a notably lower contraction level, along with a

lower vortex Reynolds number. This result is consistent with the findings in section 5.2.2,

where it was demonstrated that the levels of diffusion at the vortex centre increase with

the vortex Reynolds number, causing the measured values of ωz,max/ωz,max,0 to deviate

further from inviscid vortex intensification.

Table 7.2: Model errors for vortex filament (VF) and semi-empirical (VF + D) vortex
models, normalised by experimental measurements of vortex characteristics, NACA 0012

vortex generator, αvg = 12o, Rev = 7.4× 104, VR=4.9, centreline ingestion

z
Di

Model rc
rc,exp

Vθ
Vθ,exp

ωz,max
ωz,max,exp

ωz,av
ωz,av,exp

α∗

α∗exp

0.80 VF 1.016 1.015 1.190 0.999 1.026
VF+D 1.021 1.010 1.177 0.989 1.021

0.60 VF 1.030 1.022 1.261 0.992 1.045
VF+D 1.042 1.011 1.234 0.970 1.034

0.38 VF 1.002 1.060 1.413 1.055 1.069
VF+D 1.028 1.030 1.341 1.001 1.042

0.20 VF 0.974 1.086 1.595 1.116 1.107
VF+D 1.030 1.027 1.425 0.997 1.046

7.3 Scale effects

The sub-scale measurements have been used to develop a semi-empirical model for vortex

intensification. However, it is necessary to assess the suitability of the model for the

full-scale applications which are of interest for engine-airframe integration studies. A

key difference between sub-scale and full-scale vortex ingestion conditions is the vortex
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Table 7.3: Full-scale and sub-scale vortex ingestion configurations for the assessment
of scale effects, ingestion along intake centreline

Case Sub-scale exp. Sub-scale exp. Sub-scale CFD Full-scale CFD
VR (Wi/W∞) 16.3 5.0, 10.3 4.9 4.9

Rev 2.4× 104 3.7× 104 3.1× 104 1.2× 106

rc/Di 0.087 0.092 0.082 0.055
Rec 1.3× 107 3.5× 105 5.6× 106 1.5× 105

Reynolds number. For example, a full-scale canard wing-tip vortex may feature a vortex

Reynolds number of the order of 106, whereas the sub-scale measurements have been

conducted where the vortex Reynolds number are within the order of 104. Wing-tip

vortex measurements have shown that the levels of turbulence diffusion become greater

when the vortex Reynolds number is increased. This behaviour was also observed across

the limited range of Rev which was investigated in the sub-scale vortex intensification

studies and the modelling studies. It is therefore crucial that the sub-scale model, which

was developed in the preceding section, is assessed at typical full-scale conditions.

At present, there are no measurements of vortex ingestion, or vortex intensification, at

vortex Reynolds numbers which correspond to full-scale configurations. Thus, the full-

scale and sub-scale CFD results from the CFD scaling studies (section 6.4) have been

employed. The CFD simulations have been processed using the same post-processing

approach as the experimental measurements (3.6.2). Note that the circular zone resolution

was maintained at 0.021rc for both sub-scale and full-scale simulations. In addition,

similarly to the analysis conducted in chapter 5, the measurements at z/Di = 2.25 have

been selected as the conditions at the start of the contraction process. Inspection of the

streamwise velocity (wc/W∞) in Figure 5.1(b) confirms that this is an appropriate method

for both sub-scale and full-scale simulations, since the influence of the flow contraction at

this position is small.

The values of δi for the sub-scale and full-scale simulations have been plotted along-

side a subset of the experimental measurements in Figure 7.9(a). The conditions which

have been employed in the comparisons are given in Table 7.3. The values of δi which

have been determined from the sub-scale CFD simulations are in excellent agreement

with the sub-scale experimental measurements. This provides further support that the

CFD method which has been developed in this research permits the correct vortex in-

tensification and diffusion characteristics to be modelled. The full-scale measurements
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(a) (b)

Figure 7.9: Apparent diffusion coefficient (δi) as a function of local streamwise velocity
ratio (wc/wc,0-1), centreline ingestion, (a): Influence of vortex Reynolds number Rev,
where Rev,0 = 2.4× 104, (b): δi normalised by vortex Reynolds number (δi × 104/Rev)

demonstrate that δi is approximately one order of magnitude larger than the sub-scale

counterparts. Therefore, the turbulent diffusion levels which occur for full-scale vortex

intensification is notably larger than those at sub-scale. The results which were compiled

by Bhagwat and Leishman [50], as shown in Figure 2.17, provide clear evidence that the

diffusion levels are proportional to Rev. Furthermore, it is clear from Figure 2.17 that δ

is also an order of magnitude larger when Rev is increased from 1× 104 to 1× 106, which

is similar to the current measurements in Figure 7.9(a).

In section 7.1.2, it was found that δi is proportional to Rev, and a curve fit for δi/Rev could

be obtained. When the values of δi in Figure 7.9(a) are normalised in a similar manner,

the data which has been acquired at full-scale move closer to the sub-scale measurements

and the sub-scale curve fit given in Eq. 7.10, and are now of a similar order. This result

shows that the vortex Reynolds number is a key parameter which defines the diffusion

levels during the vortex intensification process, and that full-scale vortex intensification

is characterised by greater levels of vorticity diffusion. However, it is clear that further

CFD simulations on a wider range of sub-scale and full-scale configurations should be

conducted to further test the suitability of the trend from the semi-empirical model. In

particular, such studies should encapsulate a wider range of vortex Reynolds numbers and

intake velocity ratios. The latter will address the suitability of the relationship for δi at

the large values of wc/wc,0 which have been investigated in the sub-scale measurements.
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7.4 Summary

The analysis of vortex ingestion measurements in the preceding chapter highlighted that

vortex filament model is only suitable at low contraction levels, where the local streamwise

velocity ratio (wc/wc,0) is less than approximately 2. At higher streamtube contractions,

diffusion causes large differences between the vortex filament model and the measure-

ments. Analysis with a semi-empirical vortex model has found that the effect of diffusion

on vortex evolution can be characterised in terms of the rate at which diffusion takes

place, along with the time which elapses during the diffusion process. A semi-empirical

model has therefore been developed to capture the flow physics associated with vortex

intensification and vortex diffusion. The model includes a semi-empirical parameter δi,

termed the apparent diffusion coefficient, which captures the rate at which diffusion takes

place. It has been found that diffusion rates grow during the vortex intensification pro-

cess, which is a result of the increase in the vortex core vorticity, along with the presence

of turbulent flow inside the vortex core. In addition, the diffusion rates have been found

to scale with the vortex Reynolds number. This result is consistent with the findings from

studies of wing-tip vortex evolution in uniform freestream flows. It has been hypothesised

that the rise in diffusion rates is a consequence of an increase in the turbulence levels

inside the vortex core. An important conclusion from the analysis is that the vortex

Reynolds number Rev = Γc/ν is the best parameter to characterise diffusion levels. This

result is also in agreement with the observations made during the analysis of the experi-

mental measurements (chapter 5). A curve-fit was developed for δi/Rev as a function of

the streamtube contraction levels, with which the contribution to diffusion on the vortex

intensification process can be calculated. The semi-empirical model developed in this

research correctly captures the effects of diffusion which have been observed in the exper-

imental measurements. The results from the semi-empirical model are in good agreement

with the measurements for a range of vortex ingestion conditions.





Chapter 8

Conclusions

This research consists of the first extensive study of the behaviour of an isolated stream-

wise vortex in a contracting intake capture streamtube. The research is focussed on

the potential scenario where a streamwise vortex, which has been generated upstream of

an aircraft intake, enters the intake capture streamtube and is ingested by the intake.

Stereoscopic Particle Image Velocimetry (Stereo PIV) has been employed to obtain quan-

titative measurements of the vortex evolution upstream of the highlight plane of a 1/30th

scale intake model. A range of experimental configurations were investigated to elucidate

the behaviour of a streamwise vortex during the ingestion process. The intake capture

streamtube levels, defined in terms of the intake velocity ratio V R = Wi/W∞, have been

varied through control of the freestream velocity and the intake mass flow. Furthermore,

a range of different streamwise vortices were generated in the unperturbed flow upstream

of the streamtube contraction. In this way, it was possible to identify the influence that

the vortex characteristics, such as the vortex Reynolds number (Rev), have on the vortex

ingestion process. Using this approach, it has been possible to establish new understand-

ing on the vortex intensification process. The experimental measurements have also been

employed to establish a validated CFD approach to simulate vortex ingestion flows. The

results from the experimental and CFD analyses have important consequences for current

engine-airframe integration studies. The following subsections provide a summary of the

main findings in this research.
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8.1 Flow physics of vortex intensification

Detailed experimental measurements were acquired to address the dearth of knowledge

and understanding about the evolution of streamwise vortices inside a contracting intake

capture streamtube. A summary of the main findings from this research are provided

below.

- The vortex undergoes notable levels of intensification when it passes through the

contracting streamtube. The vortex intensification levels are strongly dependent on

the local contraction levels (wc/wc,0) inside the intake capture streamtube. This

process is characterised by a reduction in the vortex core radius, coupled with an

increase in the vortex peak tangential velocity, peak streamwise vorticity, and aver-

age core vorticity. In addition, the peak flow angles in the vortex flow reduce during

intensification. Therefore, the flow angularity associated with the vortical distortion

is damped naturally by the contraction process.

- Fundamental vortex theory was employed to implement an inviscid, incompressible

vortex filament model. This provides the first comparison of the vortex character-

istics which are estimated from vortex filament theory with experimental measure-

ments of wing-tip vortex intensification.

- The vortex ingestion process is characterised by notable levels of vorticity diffusion

inside the vortex core. The diffusion process acts in opposition to vortex intensifica-

tion. The effects of diffusion arise due to laminar and turbulent momentum transfer,

and become increasingly pronounced as the streamtube contraction levels increase.

Analysis of the vortex flowfield has revealed that diffusion is strongest at the vortex

centre, and has a smaller influence on the vortex characteristics which are evaluated

at the vortex core radius. As a result, the vorticity levels inside the vortex core not

attain the values which are anticipated from fundamental theory.

- When the local streamtube contraction levels (wc/wc,0) are less than approximately

2.0, the vortex characteristics at the edge of the vortex core, such as the vortex core

radius, peak tangential velocity, and peak flow angle, are in good agreement with the

results from the vortex filament model. This result demonstrates that the impact of

vorticity diffusion is greatest at the vortex centre, and reduces with distance from

the vortex axis.
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- At streamtube contraction levels wc/wc,0 of greater than 2, the effects of vorticity

diffusion become increasingly apparent. A result of this is that the vortex intensifi-

cation levels become progressively lower than that anticipated from inviscid theory.

The differences between the measurements and the inviscid theory are notable. An

increase in the vortex Reynolds number (Rev = Γc/ν) produces a corresponding rise

in the diffusion levels at the vortex centre. This research provides the first evidence

to show that vortex intensification features a dependence on Rev. This result is

a consequence of turbulent diffusion inside the vortex core, and is consistent with

findings from wing-tip vortex measurements. The impact of Rev is strongest on the

vorticity characteristics at the vortex centre, and parameters which are measured

at the edge of the vortex core are only weakly influenced.

- For a particular streamtube contraction, the vortex intensification levels are depen-

dent on the characteristics of the vortex prior to the flow contraction. In particular,

the analysis has identified that the vortex Reynolds number (Rev), the core average

vorticity (ωz,av), and the streamwise velocity perturbation ((Vz −W∞)/W∞) have

an influence on the vortex intensification process.

- A semi-empirical model was developed to obtain further details of the link between

the vortex Reynolds number and the effects of diffusion. The experimental measure-

ments were thus employed to establish a semi-empirical relationship the apparent

diffusion coefficient for vortex intensification (δi) as a function of the vortex Reynolds

number and the local streamtube contraction levels. The model which has been de-

veloped in this research provides an approach to determine the vortex characteristics

during the intensification process, and has been found to be in good agreement with

the experimental measurements.

- Full-scale CFD simulations, which were conducted in this research, confirmed that

the diffusion levels were a strong function of the Reynolds number. Furthermore,

it demonstrated that the model developed herein is appropriate for use to estimate

the evolution of the vortex characteristics at full-scale conditions.

- The vortex intensification characteristics are dependent on the initial location of

the vortex relative to the intake centreline. When the vortex follows an off-axis

trajectory inside the capture streamtube, the effects of diffusion are reduced when

compared to that on the intake centreline axis. Therefore, for a given flow contrac-

tion, a vortex which has been ingested at the edge of the intake capture streamtube

undergoes greater levels of vortex intensification than that experienced along a cen-

treline trajectory.
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8.2 Modelling requirements for CFD simulations of vortex

ingestion

Simulations have been performed using Computational Fluid Dynamics (CFD) to identify

the correct approach to simulate vortex ingestion. A review of the literature has identified

that it can be particularly challenging to simulate wing-tip vortices using CFD. The

agreement between simulations and experimental measurements of wing-tip vortices is

strongly dependent on the details of the mesh characteristics and the turbulence modelling

approach. Few studies have elucidated the requirements for simulating vortex convection

and vortex ingestion flows. Studies have been performed in this research to address

this lack of knowledge. Wing-tip vortex convection simulations were first conducted to

evaluate the impact of the mesh resolution on the ability of the CFD solver to capture

the vortex convection process. The evolution of the vortex characteristics was assessed

using measurements which are available in the literature.

- The studies have confirmed the findings in the literature that notable levels of nu-

merical diffusion can result when the in-plane and out-of-plane mesh resolution is

insufficient. As a consequence, the vortex diffuses rapidly, and the agreement with

the measurements is poor. Using the vortex convection results, it has been pos-

sible to establish new guidelines on the required mesh resolution to ensure that

mesh-related numerical diffusion is minimised.

- Eddy-viscosity turbulence models are inappropriate for simulating vortex convec-

tion and vortex ingestion flows. A notable result is that commonly-used eddy-

viscosity models, such as the Spalart-Allamras and k − ω SST models, over-predict

the rate at which the wing-tip vortex diffuses. This is a result is in agreement with

previously-reported findings in CFD simulations wing-tip vortex flows. Large levels

of turbulence inside the vortex core which are generated by the turbulence model.

Importantly, eddy-viscosity models rely on the Boussinesq assumption, which states

that the turbulence and strain rate tensors are aligned. The experimental measure-

ments which have been obtained in this research, in agreement with those in the

literature, show that the Boussinesq assumption is not appropriate for the vortex

flows.

- The vortex convection simulations demonstrated that the vortex evolution is in

good agreement with the experimental measurements when a Reynolds Stress Model

(RSM) is employed. Such models are required to capture the anisotropic turbulent
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stresses which occur inside the vortex core. A key requirement for RSM simulations

is that appropriate turbulence profiles must be prescribed at the inlet boundary con-

dition. This research has produced a new approach to define turbulence boundary

conditions at the inlet plane of the CFD simulation. It has been found that it is

necessary to prescribe profiles of the turbulent kinetic energy (k) and the turbulent

dissipation rate (ε), in conjunction with a turbulence length scale of l = 1rc.

- The sub-scale measurements which have been acquired in the experimental studies

have been utilised to create an analytical profile for the turbulent kinetic energy. In

this way, it is possible to prescribe suitable turbulence boundary conditions when

the vortex turbulence characteristics are not known a priori.

- Simulations were performed using a sub-scale vortex ingestion case which was inves-

tigated in the experimental programme. It was found that agreement between the

experimental measurements and the results obtained with the k−ω SST turbulence

model were poor. It has been established that that RSM simulations are impera-

tive for vortex intensification and vortex ingestion simulations as long as suitable

turbulence profiles are provided in the inlet boundary conditions.

8.3 Consequences for engine-airframe integration studies

- Prior to entering the streamtube contraction, the streamwise vortices which are at

risk of ingestion are typically characterised by large flow angles. For example, wing-

tip vortices which have been generated by canards may feature flow angles of up to

30o. Such swirl distortions are likely to have a detrimental effect on the turboma-

chinery performance and stability, and may also result in local flow separations on

the intake surfaces.

- During the vortex ingestion process, the peak swirl angle inside the vortex reduces.

In particular, the peak swirl angles inside the capture streamtube are inversely

proportional to the intake velocity ratio. It can therefore be concluded that the

flow contraction has a damping effect on the swirl distortion levels, which may

subsequently mitigate the impact of the vortex on the turbomachinery. Conversely,

this result shows that vortex ingestion during low intake velocity ratio conditions

will result in the greatest swirl distortion levels. Vortex ingestion during end-of-

runway operations, such as the rotation and climb-out phases of flight, may result

in the largest impact on the turbomachinery performance and stability.
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- An inviscid vortex filament model can be used during low intake velocity ratio

conditions to estimate the change in the vortex characteristics during ingestion. This

knowledge now permits straightforward calculations to be performed to estimate the

vortex characteristics and the possible inlet flow distortion characteristics inside the

intake.

- A semi-empirical model has been developed to account for the effects of diffusion,

and can therefore be employed to provide suitable estimates of the vortex charac-

teristics following ingestion at large intake velocity ratios. This information can

also be employed to prescribe CFD inlet boundary conditions to turbomachinery

simulations.

- The influence of diffusion is favourable from the perspective of the swirl distortion

levels, and the vortex peak swirl angles following ingestion are lower than antici-

pated from inviscid vortex intensification theory. Consequently, the inviscid vortex

filament model can be used to provide a worst-case estimate of the vortex charac-

teristics after ingestion.

- The effects of diffusion on the vortex intensification process are dependent on the

ingestion trajectory, and the vortex intensification levels are greatest when the vortex

is ingested near the edge of the capture streamtube. Once inside the intake, the

vortex ingested on the off-axis trajectory will have greater peak flow angles than

those observed for centreline ingestion. Thus, the off-axis ingestion scenario must

be considered to be the worst-case for preliminary assessments of vortex ingestion.

- The CFD studies have demonstrated that numerical diffusion can result in an under-

prediction of the vortex intensification levels during ingestion. Therefore, the inlet

flow distortion characteristics may be incorrect if a suitable CFD approach is not

employed. Guidelines have been established in this research to minimise the effects

of numerical diffusion.

- The vortex ingestion simulation which have been performed in this research is good

agreement with the measurements. It can be concluded that it is appropriate to

prescribe a known vortex as part of the inlet boundary conditions, as an alternative

to simulating the vortex generation process. This has notable benefits. Firstly, the

size and complexity of the computational domain can be reduced, and it is possible

to, for example, increase the mesh resolution in key areas of the domain, such as

the intake boundary layers.
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- The CFD approach which has been developed in this research was applied to in-

vestigate vortex ingestion along the centreline axis of a full-scale intake. It was

demonstrated that the inlet flow distortion which results from the ingestion of a ca-

nard vortex is characterised by low levels of total pressure distortion, coupled with a

bulk swirl of moderate flow angles. The results are consistent with the limited range

of experimental flow distortion measurements which are available in the literature.

- The CFD framework which has been developed in this research can be employed

to study a wide range of possible vortex ingestion scenarios. For example, under

the instruction of the current PhD research, Heimbucher [115] and Pernod [117]

investigated full-scale vortex ingestion using a realistic aircraft intake.

8.4 Recommendations for future work

Based on the findings of this research, it is possible to identify a number of aspects which

can be investigated experimentally:

- The experimental studies which have been conducted in this research cover a range

of initial vortex characteristics and streamtube contraction conditions. In conjunc-

tion with the full-scale CFD simulations, it has been possible to demonstrate that

the vortex intensification process is influenced by the vortex Reynolds number. It

would therefore be beneficial to obtain measurements of vortex ingestion for a wider

range of vortex Reynolds numbers than those which have been considered in this

research. This could be achieved using vortex generators with a greater size, or by

investigating vortex ingestion for even greater freestream velocities. In addition,

measurements should be acquired for a greater number of vortex generator angles

of attack. This will permit isolation of the impact of the vortex Reynolds number

for a constant chord Reynolds number. These additional conditions will contribute

to fundamental understanding of the role of turbulent diffusion on the vortex inten-

sification process, and will provide validation for full-scale CFD simulations.

- The measurements indicate that the streamwise velocity perturbation inside the

vortex has a notable effect on the vortex intensification process. A parametric

study on the impact of the streamwise velocity perturbation could be performed

using swirl generators, such as those employed in [45] or those which are commonly

utilised in vortex breakdown experiments [47].
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- It was found that the vortex intensification process is dependent on the trajectory

which the vortex follows inside the capture streamtube. Additional insight could be

obtained by investigating a wider range of off-axis locations across the diameter of

the intake capture streamtube.

- The current PIV measurements have been obtained in the flow external to the

intake only. Additional insight into the vortex intensification process could be ob-

tained from measurements inside the intake. Although challenging, some success

of aerodynamic measurements inside ducts has been reported [118]. Measurements

inside the intake would also provide valuable information on the swirl distortion

levels inside the intake, and would allow an assessment of the velocity field which is

likely to be presented to the fan as a result of vortex ingestion.

This research has established an approach which can be employed to investigate vortex

ingestion using CFD. The following could be performed to build upon the findings of this

research:

- A wider range of sub-scale vortex ingestion simulations should be conducted to ex-

tend the validation of the CFD methods which have been developed in this research.

- The experimental measurements have found that the evolution of the vortex inside

the capture streamtube is dependent on the ingestion position. It would thus be

beneficial to investigate off-axis ingestion scenarios to provide further insight into

the flow physics. This will require careful design of a mesh which will adequately

resolve the vortex core along the off-axis ingestion trajectory.

- The full-scale vortex ingestion simulations should be developed to include a fan or

the first stage of the aircraft engine, in a manner similar to that conducted by Vun-

nam and Hoover [14]. This will permit the CFD methods which have been developed

in this research to be included in distortion CFD simulations on turbomachinery re-

sponse.

- Further full-scale vortex ingestion simulations can be conducted to validate the

semi-empirical model for use at full-scale vortex Reynolds numbers and for greater

streamtube contraction levels.



Appendix A

Test matrix

In this appendix, the test matrix for the sub-scale vortex ingestion measurements is pro-

vided. The details include the vortex generator configuration, the freestream and intake

flow conditions, the vortex Reynolds number, and the nominal vortex core location relative

to the intake centreline at (x/Di, y/Di) = (0,0).
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Table A.1: Test matrix for centreline (CL) and off-axis (OA) vortex ingestion measure-
ments

V G αvg W∞ (ms−1) Rec = W∞c
ν Rev = Γc

ν V R = Wi
W∞

x/Di

CL cases
0012 12o 10.9 1.1× 105 2.4× 104 5.2 0
0012 12o 11.0 1.1× 105 2.4× 104 16.3 0
0012 12o 17.2 1.7× 105 3.7× 104 2.0 0
0012 12o 17.2 1.7× 105 3.7× 104 5.1 0
0012 12o 17.3 1.7× 105 3.7× 104 10.3 0
0012 12o 35.4 3.6× 105 7.4× 104 2.1 0
0012 12o 35.4 3.6× 105 7.4× 104 4.9 0
0012 6o 35.4 3.6× 105 3.4× 104 2.1 0
0012 6o 35.4 3.6× 105 3.4× 104 4.9 0
Delta 12o 35.3 4.7× 105 5.6× 104 2.1 0
Delta 12o 35.4 4.7× 105 5.6× 104 4.9 0
Delta 6o 35.3 4.7× 105 2.3× 104 4.9 0

OA cases
0012 12o 10.9 1.1× 105 2.4× 104 5.2 -0.7
0012 12o 10.9 1.1× 105 2.4× 104 16.3 -0.7
0012 12o 17.2 1.7× 105 3.7× 104 5.1 -0.7
0012 12o 17.2 1.7× 105 3.7× 104 10.3 -0.7
0012 12o 35.4 3.6× 105 7.4× 104 4.9 -0.7
0012 6o 35.3 3.6× 105 3.4× 104 4.9 -0.7
Delta 12o 35.3 4.7× 105 5.6× 104 4.9 -0.7



Appendix B

Calculation of vortex

characteristics

In this appendix, a description of the PIV post-processing approach is given. In particular,

this focuses on the details of the Vorticity Disk Method (VDM) which is used to extract

the vortex characteristics from the Stereo PIV measurements. In addition, the effects

of wandering are assessed to underline the importance of accounting for the changes in

vortex position for each of the instantaneous PIV measurements.

B.1 Vorticity Disk Method

B.1.1 Circular zone size and resolution studies

A central aspect of the Vorticity Disk Method (VDM), as described in section 3.6.2, is that

the vortex centre is identified in each instantaneous PIV measurement, and a sub-zone of

the PIV measurement is interpolated onto a circular grid. In this way, it is possible to

evaluate the circumferentially-averaged flowfield properties and profiles which have been

presented throughout the Thesis. Two parameters which must be selected are the radius

of the circular zone (rmax), and the mesh resolution of the circular zone. This latter

characteristic has been defined in terms of the number of mesh points which define the r

and θ directions, for a polar coordinate system which is located at the origin of the circular

zone, Figure B.1. To evaluate the influence of the size and resolution of the circular zone,

a synthetic vortex flowfield has been generated using the Vatistas vortex model, section
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Figure B.1: Circular zone with (r,θ) coordinates and circular zone maximum radius
(rmax) illustrated

Table B.1: Circular zone characteristics and corresponding vortex characteristics ob-
tained using the Vorticity Disk Method, influence of circular zone resolution (Imax, Jmax),

rmax = 0.025m

Imax Jmax rmax core points rc (m) Vθ,max (ms−1) Γc (m2s−1)
30 53 0.025 10 0.00776 20.32 0.991
90 157 0.025 29 0.00787 19.53 0.965
150 261 0.025 48 0.00789 19.39 0.981
210 365 0.025 67 0.00801 19.33 0.973
270 469 0.025 86 0.00809 19.29 0.980
330 577 0.025 106 0.00805 19.27 0.975

6.4.2.3. Only the tangential velocity distribution (Eq. 6.15) has been generated, since the

radial velocity is small. A vortex total circulation (Γ0) and core radius (rc) of 1.6m2s−1

and 0.008m have been selected, in addition to a Vatistas parameter of n=1.4. These

values are representative of the conditions which have been measured in the unperturbed

flow.

Firstly, the influence of the circular zone resolution has been assessed. The mesh resolution

inside the circular zone has been defined using Imax and Jmax to refer to the number of

mesh points in the r and θ directions, respectively. The ratio Jmax/Imax is constant and

equal to 1.74. Using this approach, the mesh spacing in the r and θ directions at r = rmax

is approximately the same [72]. A range of mesh resolutions, from (30,53) to (330,577),

have been investigated with a circular zone resolution of rmax = 0.25m.
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The differences between the prescribed and the calculated vortex characteristics are pre-

sented in Figures B.2(a) to B.2(c) as the absolute percentage difference. It is apparent

that the errors are less than 5% for all mesh resolutions investigated. There is a notable

reduction in the errors to less than 2% when the mesh resolution is increased from (30,53)

to (90,157), for which the number of radial mesh points which define the vortex core

increases from 10 to 29. The errors reduce slowly for further increases in mesh resolution

beyond (90,157), showing that a circular mesh resolution which corresponds to approx-

imately 30 radial points inside the vortex core. It is important to note, however, that

the vortex core radius reduces during the ingestion process (section 5.1.2). Therefore, the

circular zone must be of sufficient resolution to ensure that reductions in the vortex core

radius to not lead to a marked increase in errors. Therefore, a circular zone resolution

of (150,261) has been selected. This provides a suitable balance between measurement

resolution and memory limitations during post-processing.

A second circular zone parameter which must be evaluated is the maximum radius of

the circular zone, rmax. This characteristic has a direct influence on the measurement

of the vortex total circulation (Γ0). Circular zone radii of 1.88rc, 3.13rc, 4.38rc, 5.63rc,

and 6.88rc were investigated (Table B.2). The total circulation which has been calculated

increases from 1.429m2s−1 for rmax = 1.88rc to 1.595m2s−1 for rmax = 6.88rc. These

values represent errors which reduce from 10.7% to 0.3%, respectively (Figure B.3). This

dependence on rmax is consistent with existing wing-tip vortex measurements, such as

Tung et al. [28] and Martin et al. [33], which have demonstrated that the total circula-

tion of the vortex can only be obtained after a minimum distance of approximately 10rc

from the vortex centre. In the current experiments, this would require a circular zone

diameter of 0.16m, which is larger than the vertical extent of the useful PIV measurement

region. Furthermore, reflections from the intake surfaces were found to cause invalid data

at approximately r/Di = 0.5, which corresponds to r/rc = 6.25. It was decided that

resolution of the vortex core profiles and the vortex characteristics, with the exception of

the total circulation, should be favoured over a reduced circular zone resolution coupled

with a large circular zone radius. On this basis, a circular zone radius of rmax = 3.13rc

was selected.

B.1.2 Effect of wandering on vortex measurements

A notable feature of wing-tip vortex flows is that the vortex position fluctuates in a random

manner [16, 1, 27, 86]. This presents a difficulty for point-based measurements, since the

correct position of the vortex centre cannot be determined. The wandering effect causes
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(a) (b)

(c)

Figure B.2: Difference between prescribed and measured vortex characteristics as ob-
tained the Vorticity Disk Method, influence of circular zone resolution. Errors expressed
as a percentage difference from prescribed value, (a): Vortex core radius error (δrc), (b):

Peak tangential velocity error (δVθ,max), (c): Core circulation error (δΓc)

Table B.2: Circular zone characteristics and corresponding vortex characteristics ob-
tained using Vorticity Disk Method, influence of circular zone radius (rmax), (Imax,Jmax)

= (150,261)

rmax rmax/rc Γ0 (m2s−1)
0.015 1.88 1.429
0.025 3.13 1.555
0.035 4.38 1.582
0.045 5.63 1.591
0.055 6.88 1.595
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Figure B.3: Difference between prescribed and measured vortex characteristics as ob-
tained the Vorticity Disk Method, influence of circular zone maximum radius (rmax).
Errors expressed as a percentage difference from prescribed value. Vortex total circula-

tion error (δΓ0)

point-based measurements to over-estimate the vortex core radius, and underestimate

the peak tangential velocity and streamwise vorticity levels. Therefore, it is necessary to

account for the changes in vortex position. This can be achieved using global measurement

methods such as PIV, since the vortex position in each instantaneous measurement can

be identified before the vortex characteristics are calculated. This approach has been

employed in this research, such that each circular zone which is input into the VDM

routine is located at the instantaneous vortex centre position. The average flowfield

properties and characteristics are thus calculated. The vortex characteristics and velocity

field are thus conditionally-averaged. This is in contrast to a simple flowfield average,

where the average velocity field is computed without adjustments for the vortex position,

and the vortex characteristics are subsequently computed using the averaged flowfield.

To illustrate the differences between the methods, the two processing approaches will

be performed using a configuration from the unperturbed wing-tip vortex dataset. The

selected case corresponds to the wing-tip vortex produced by the NACA 0012 vortex

generator at an angle of attack of αvg = 12o, a chord Reynolds number of 1.7 × 105 and

a vortex Reynolds number of 3.7× 104.

The vorticity contours for the simple-averaged and conditionally-averaged measurements,

Figures B.4(a) and B.4(b), demonstrate that the simple-averaging technique results in no-

tably lower streamwise vorticity levels. In particular, the peak streamwise vorticity for the

simple average case is 43% lower than that obtained with the conditional-averaging tech-

nique. Furthermore, the vortex core radius is 15% larger than the conditional-averaging
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(a) (b)

Figure B.4: Contours of streamwise vorticity (ωzDi/W∞), NACA 0012 wing-tip vortex,
αvg = 12o, Rec = 1.7× 105, Rev = 3.7× 104, influence of PIV post-processing approach,

(a): Simple averaging, (b): Conditional averaging

result, and the peak tangential velocity is 11% lower. These results confirm that vor-

tex wandering can result in a diffusion of the true vortex characteristics, and must be

accounted for appropriately. This has been achieved in this research by employing the

conditional-averaging technique.

B.2 Inviscid intake flow simulations

An assumption which has been employed in the analysis of the vortex ingestion mea-

surements (chapter 5) is that the measurements which were obtained at a distance of

z/Di = 2.25 upstream of the intake highlight plane can be considered to be representative

of the vortex in the unperturbed, freestream flow. Measurements of the streamwise veloc-

ity at the vortex centre for an intake velocity ratio of V R = Wi/W∞ = 5.0, Figure 5.1(b),

suggested that this assumption is appropriate. However, to provide further support, sim-

ulations of the intake flowfield were performed using CFD. The sub-scale intake geometry

was employed in conjunction with the mesh employed for the vortex ingestion studies,

section 6.3.2. Simulations were conducted for the vortex ingestion configurations which

were conducted at a freestream velocity of W∞ = 17.2ms−1 and intake velocity ratios of

VR=10.3, 5.0 and 2.0. The freestream and intake flow conditions were prescribed using

the same approach as that described in section 6.3.2.2. Note that the experimental mea-

surements of pressure and temperature were employed directly to prescribe the boundary

conditions for the simulations.
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Figure B.5: Streamwise velocity normalised by freestream velocity (w/W∞) along in-
take centreline axis for intake velocity ratios of VR=10.3, 5.0 and 2.0, W∞ = 17.2ms−1

The simulations demonstrate that the normalised streamwise velocity (w/W∞) at z/Di =

2.25 is close to a value of 1.0 for all intake velocity ratios. Thus, the perturbation in

streamwise velocity due to the presence of the intake is small at this streamwise position.

For example, for an intake velocity ratio of 5.0, the streamwise velocity w/W∞ is equal to

1.043. When the intake velocity ratio is increased to 10.3, the velocity at z/Di = 2.25 as-

sociated with the intake w/W∞ increases to 1.096. However, it should be noted that this

value is small in comparison to the range of streamwise velocities which occur between

z/Di = 2.25 and z/Di = 0.20. When VR=10.3, for example, the perturbation corre-

sponds to 2.6% of the value of w/W∞ which occurs at z/Di = 0.20. The effect on the

vortex characteristics can be estimated using vortex filament model (section 5.1.2). For

a change in velocity of wc/wc,0 = 1.096, then the vortex core radius will be 4.7% smaller

than the unperturbed value. Therefore, the change in core radius due to the intake per-

turbation at z/Di = 2.25 is smaller than the measurement uncertainty 3.7. An additional

simulation was performed for the conditions corresponding to W∞ = 11.0ms−1 and an

intake velocity ratios of VR=16.3. This represents the largest streamtube contraction

levels which were investigated in the experimental programme A.1. At this condition, the

streamwise velocity perturbation w/W∞ − 1 at z/Di = 2.25 increases to 16.3% of the

freestream velocity. Thus, the vortex characteristics at z/Di = 2.25 will feature a change

in core radius of 7.8%. Figures B.6(a) to B.6(d) demonstrate the effect of normalising

by the vortex characteristics at z/Di = 2.25 (2.25) in comparison to normalising by the

unperturbed vortex measurement (U/P). It is evident that, even at the largest intake

velocity ratio tested, the impact on the change in vortex characteristics is smaller than

the experimental uncertainty.



234 Appendix B Calculation of vortex characteristics

(a) (b)

(c) (d)

Figure B.6: Influence of normalising vortex characteristics by measurement at z/Di =
2.25 (2.25), in comparison to normalising vortex characteristics by measurement in un-
perturbed flow (U/P), NACA 0012 wing-tip vortex, αvg = 12o, Rec = 3.6 × 105,
Rev = 7.4 × 104, (a): Vortex core radius, VR=16.3, (b): Peak tangential velocity,

VR=16.3, (c): Vortex core radius, VR=10.3, (d): Peak tangential velocity, VR=10.3



Appendix C

Uncertainty analysis

In this appendix, details of the measurement uncertainties in the experimental work are

provided. In particular, the approach which has been used to evaluate the velocity uncer-

tainties on the PIV measurements is given. Additionally, the approach used to determine

the intake and freestream flow conditions is described, and the associated uncertainties

are provided.

C.1 PIV measurement uncertainties

It is imperative that the measurement uncertainties associated with the velocity mea-

surements which have been obtained using PIV. In this way, it is possible to establish

the corresponding uncertainties on the vortex characteristics in the unperturbed and con-

tracting flows.

In general, the total uncertainty attributed to each velocity vector, δtot, includes contribu-

tions from a bias uncertainty (δbias) and a random uncertainty (δrms) [87]. The following

subsections provide details on the approach which has been used to determine each of

these components.

C.1.1 Bias uncertainties

The first contribution to the bias uncertainty is referred to as the registration error [96].

This source of uncertainty is a result of a misalignment between the light sheet and the

calibration plane. The source of the uncertainty, and its effect on the PIV measurements,

235
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can be described as follows. Consider a scenario where two PIV cameras are focussed

on a region of interest in the x-y plane, Figure C.1(a). The camera calibration was

performed using a calibration plate at a location which is displaced by ∆z from the

position of the light sheet. As a consequence, the measurement on the light sheet is back

projected onto the calibration plane. Consequently, the perceived centreline location on

the image obtained by Camera 1 is in reality displaced in the positive x direction relative

to the centreline, and conversely for Camera 2. This can produce a bias uncertainty in

the presence of out-of-plane velocity gradients. Consider the scenario depicted in Figure

C.1(b), which features flow in the z-direction only, with a positive velocity gradient ∂w/∂x.

The velocity vectors which are measured by Camera 1 and Camera 2 at the centre of

their respective images are illustrated in Figure C.1(c). For ∆z = 0, the velocity vectors

would be equal in magnitude. However, due to the offset between the light sheet and the

calibration plane, the Camera 1 obtains a measurement in a region where the out-of-plane

velocity is greater than that at the location which is observed by Camera 2. To obtain a

Stereo PIV image, the vectors from Camera 1 and Camera 2 are subsequently combined

to produce a final, 3-component PIV vector VPIV. Due to the mismatch between vectors

V1 and V2, the measured velocity vector contains an in-plane velocity component, ubias.

This bias uncertainty is non-physical, and is simply a result of the misalignment ∆z.

The magnitude of the registration error can be determined using trigonometry. When the

camera axes are at 45o to the image plane, then the velocity bias ubias is given by Eq.

C.1.

ubias =
∂w

∂x
∆z (C.1)

For a laminar pipe flow, Van Doorne et al. [96] demonstrated that a 0.1mm misalignment

resulted in an uncertainty which was 1% of the centreline velocity. Therefore, appropriate

steps must be taken to ensure that the calibration plane is as close as possible to the posi-

tion of the light sheet. This was achieved in this research using a calibration plate which

has been designed specifically for Stereo PIV calibration. The calibration plate features

a thin slot which is aligned with a mirror which is perpendicular to the calibration plane.

Using this arrangement, when the light sheet is aligned with the calibration plate, the

light sheet will enter the slot, and will be reflected by the mirror, such as the scenario

which is illustrated in Figure C.2(a). This method also permits the identification of the

orientation of the light sheet plane relative to the calibration plate plane. For example,

if the light sheet is tilted relative to the calibration plane, then the reflected light sheet
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(a) (b)

(c)

Figure C.1: Schematic illustrating the registration error, (a): Nomenclature and general
description of offset between PIV calibration plane and laser light sheet, and correspond-
ing optical axis geometry, (b): Example out-of-plane velocity gradient, (c): Qualitative
illustration of velocity vectors which are measured by Cameras 1 and 2, and the resulting

3-component PIV vector

will not return along the incident light sheet path. It is then possible to identify the re-

flected light, Figure C.2(b), and perform adjustments until the light sheet is perpendicular

to the calibration plate and in close alignment. This approach minimises uncertainties

due to misalignment between the light sheet and the calibration plane, and a possible

displacement of no more than 0.25mm is assumed.

As shown in Eq. C.1, the bias uncertainty results when there are in-plane gradients of

the out-of-plane velocity. In this research, there are two likely sources of out-of-plane

velocity gradients across the region of interest. The first is due to the streamwise velocity

perturbation inside the vortex core, which is evident in the sample contours which have

been obtained for an unperturbed NACA 0012 wing-tip vortex at W∞ = 35ms−1, Figure

C.3(a). Additionally, the intake capture streamtube features notable in-plane gradients

of the out-of-plane velocity, as demonstrated in Figure C.3(b). It is thus necessary to

consider the possible registration error which results from these in-plane velocity gradients.
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(a) (b)

Figure C.2: Illustration of laser light sheet alignment with a PIV calibration plate, (a):
Light sheet in good alignment with calibration plate, (b): Light sheet out of alignment

with the calibration plate. Images courtesy of TSI Inc.

Assuming a light sheet misalignment of ∆z = 0.25mm, then the registration error contours

for the convecting vortex and ingested vortex flows are given in Figures C.3(c) and C.3(d),

respectively. Based on these sample images, it is apparent that the maximum values of

δreg correspond to 0.009W∞ at the vortex centre for the wing-tip vortex in the uniform

flow, and 0.02W∞ near the edge of the region of interest for the ingestion flows. Note,

however, that the streamwise velocity for the ingestion flow corresponds to approximately

97ms−1 at the centreline, and approximately 58ms−1 at the location of the maximum

values of δreg. Thus, the peak registration error is 0.012W∞. These uncertainties can

also be expressed in terms of the pixel displacement, Eq. C.2, where ∆t is the PIV

measurement time delay, and M is the magnification.

δreg(px) = δreg(ms
−1)∆tM (C.2)

It is clear that the value of the registration error is dependent on the vortex characteristics

and the intake capture streamtube characteristics. It has been found that the typical max-

imum values of the registration error for a wide range of vortex ingestion configurations

corresponds to δreg = 0.04px.

A second source of bias uncertainty is termed peak locking, and can result in the PIV

processing stage. When the particle image in the PIV images is less than 2 pixels in

diameter, the conventional 3-point interpolation schemes which are employed to locate

the correlation peak can become unsuitable [87]. When this happens, the displacement of

the particle between two images cannot be determined accurately to sub-pixel resolution,



Appendix C Uncertainty analysis 239

(a) (b)

(c) (d)

Figure C.3: Results pertaining to light sheet misalignment studies, NACA 0012 wing-
tip vortex, αvg = 12o, Rec = 3.6 × 105, Rev = 7.4 × 104, (a): Contours of ∂w/∂x for
unperturbed vortex, (b) Contours of ∂w/∂x, VR=4.9, z/Di = 0.20, (c): Contours of

δreg, unperturbed vortex, (d): Contours of δreg, VR=4.9, z/Di = 0.20

and the particle displacement which is obtained from the PIV processing stage tends

towards integer pixel displacements. Peak locking can be identified from the particle

image displacement histograms for each PIV image. A PIV vector field without peak

locking is characterised by a smooth distribution of particle image displacements (left

image of Figure C.4). An example of a typical PIV image histogram with peak locking

is shown on the right image in Figure C.4. The particle image displacement histograms

feature dominant peaks at integer pixel displacements. Peak locking can be avoided

using an appropriate optical and seeding configuration to ensure that the particle image

diameter is a minimum of 2 pixels. Furthermore, iterative window shifting techniques can

be employed to help mitigate the effects of peak locking [87].
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Figure C.4: Typical particle image displacement histograms, without (left) and with
(right) peak locking [87]

C.1.2 RMS uncertainties

In addition to the bias uncertainties, it is possible to account for a range of RMS uncer-

tainties which arise during the PIV image processing stage. Raffel et al. [87] reported the

results of numerical simulations using synthetic PIV images. Using this approach, it is

possible to estimate the uncertainty contributions from the particle image size, the image

displacement between PIV images, the seeding density, the image quantisation levels, the

background noise in the PIV images, and the effect of velocity gradients across the PIV

image. As demonstrated in this section, the results of the simulations have been employed

to generate uncertainty estimates as a function of the details of the PIV images and the

processing approach.

C.1.2.1 Particle image size

In section C.1.1, it was demonstrated that bias uncertainties can result when the resolution

of the particle image is insufficient. In addition, an RMS uncertainty can be introduced

(Figure C.5). The RMS uncertainty is non-uniform with the number of pixels which

define the particle image diameter, and there is an optimum particle image resolution.

This optimum is dependent on the size of the interrogation window, such that a particle

size of 2.5px is optimum for an interrogation window size of 64×64px. For an interrogation

window of 16 × 16px, the optimum particle resolution is approximately 2px. When the

particle image size is greater than 2.5px, the correlation peak broadens. This can reduce

the signal to noise ratio of the true particle displacement peak relative to the adjacent

displacement peaks [119].
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Figure C.5: Influence of particle image size on RMS uncertainty [87]

Inspection of the PIV images which have been obtained in this research has revealed

that the particle image resolution is approximately 2px. Therefore, since an interrogation

window size of 32× 32px has been employed, the estimated RMS uncertainty due to the

particle image size is δs = 0.03px

C.1.2.2 Particle image displacement

The particle image displacement refers to the spatial displacement of the particle images

inside the interrogation window, as obtained between the two PIV frames. It has been

found that the RMS uncertainty increases from zero at zero displacement, in a linear

fashion, until the particle image displacement reaches 0.5px (Figure C.6). Thereafter,

the uncertainty slowly increases as a function of the particle image displacement. Note

that the uncertainty is reduced for smaller particles, in agreement with the results of

Figure C.5, and for larger interrogation windows. The low RMS uncertainties which

occur for displacements of less than 0.5px can be exploited by using iterative window

shifting techniques [87].

An iterative window shifting method with a window size of 32× 32px has been utilised in

this research. Since the typical particle image diameter is 2px, then the maximum RMS

uncertainty attributed to the particle image displacement is δdisp = 0.01px.

C.1.2.3 Seeding density

The seeding density of the PIV images can be characterised in terms of the number of

seeding particles which are contained in each interrogation window. This can be a notable
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Figure C.6: Influence of particle image displacement on RMS uncertainty [87]

Figure C.7: Influence of seeding density on RMS uncertainty [87]

source of RMS uncertainty. When the number of seeding particles is insufficient, the

signal to noise ratio of the correlation process reduces, and the likeliness of invalid vectors

increases [87]. The results, which have been generated using a 32 × 32px interrogation

window, demonstrate that the RMS uncertainty increases for larger particle displacements

(Figure C.7).

Inspection of the PIV images has revealed that approximately 10-15 particles are contained

in each 32 × 32px interrogation window. Therefore, the RMS uncertainty contribution

due to the seeding density is δden = 0.03px. An exception is found inside the vortex core.

Due to the large rotation rates inside the vortex core, the seeding particles experience a

centrifugal force which causes the particles to migrate radially outwards from the vortex

centre. It has been estimated from inspection of the PIV images that the number of

seeding particles is reduced to approximately 5 particles in each interrogation window.
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Figure C.8: Influence of image quantisation on RMS uncertainty [87]

Therefore, the RMS uncertainty increases to δden = 0.04 inside the vortex core. This

uncertainty has been assumed for all uncertainty calculations.

C.1.2.4 Image quantisation

An RMS uncertainty is also introduced as a result of the number of bits which are utilised

by the digital camera to resolve the PIV image intensity levels for each pixel. As these

image quantisation levels reduce, there is an increase in the RMS uncertainty of the PIV

measurement, Figure C.8.

The cameras used in this research are of 12-bit specification, and so a conservative estimate

of the RMS uncertainty associated with the quantisation levels is δq = 0.03px.

C.1.2.5 Background noise

In experiments, background noise can arise in the PIV images due to unwanted reflections

or due to the ambient light conditions. The RMS uncertainty which was associated with

this can be estimated by applying white noise at was applied to each pixel as a fraction

of the pixel dynamic range [87]. For a particle image displacement of 0.5px, the RMS

uncertainty associated with background noise is small when the background noise is less

than or equal to 10% of the pixel dynamic range (Figure C.9). For higher levels of

background noise, the uncertainty levels increase in a monotonic fashion.

To provide a conservative estimate of the contribution of background noise to the RMS

uncertainty of the PIV measurement, a background noise of 5% has been assumed. This
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Figure C.9: Influence of background noise levels on RMS uncertainty [87]

value was also assumed by Murphy [72] for similar experiments in the same wind-tunnel

facility and using the same PIV imaging apparatus. Thus, an RMS contribution of δbn =

0.03 has been selected, assuming a maximum particle image displacement of 0.5px.

C.1.2.6 Displacement gradients

Certain flows may feature notable in-plane velocity gradients across the PIV measure-

ment region. Examples include vortical flows, such as those of interest in this research, or

boundary layer flows. In the presence of a strong in-plane velocity gradient, the displace-

ments of the particles inside an interrogation region may not be the same. The correlation

process which is utilised to obtain velocity vector information from the PIV images ob-

tains the average particle velocity inside the interrogation window. Thus, if the particles

do not have the same velocity, then the result from the correlation process will contain

an uncertainty. In general, the correlation will be biased towards lower velocities, since

faster particles are most likely to leave the interrogation window between the two PIV

frames. The results demonstrate that the uncertainty is reduced for smaller interrogation

windows and increased seeding density levels (Figure C.10).

Assuming that the PIV measurements are acquired on a plane which is perpendicular to

the vortex axis, then the possible effects of displacement gradients on the measurement of

vortical flow will be greatest inside the vortex core where the vortex tangential velocity

gradients are large. An estimate of the displacement gradients which may be encountered

in this research can be obtained by assuming a Rankine vortex velocity distribution inside

the vortex core, Eq. C.3, as shown qualitatively in Figure C.11.
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Figure C.10: Influence of displacement gradients on RMS uncertainty [87]

Figure C.11: Qualitative illustration of Rankine vortex velocity distribution for dis-
placement gradient uncertainty example

Vθ = ωr (C.3)

The peak tangential velocity (Vθ,max) and core radius rc have been assumed to be equal

to 10ms−1 and 0.01m respectively, which are representative of the unperturbed vortex

measurements which have been obtained in this research. Therefore, the vorticity ω can

be determined (Eq. C.4).

ω =
Vθ,max
rc

=
10

0.1
= 1000s−1 (C.4)

It is then of interest to estimate the change in velocity which is likely to occur in the

radial direction across a single rectangular interrogation window. To do this, a camera

configuration corresponding to the current experimental measurements (section 3.4.1) has
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been assumed. Thus, the magnification is 0.1, and the imaging hardware consists of a

digital camera with a CCD size and resolution of 15× 15mm and 2048× 2048px. Thus,

the physical size of a single pixel is Lp = 7.3× 10−5, Eq. C.5. The corresponding change

in velocity across a single pixel is therefore 0.073ms−1 (Eq. C.6).

Lp =
1

M

LCCD
Npx

=
1

0.1

0.015

2048
= 7.3× 10−5m (C.5)

∆Vθ = ωLp = 1000× 7.3× 10−5 = 0.073ms−1 (C.6)

Finally, it is necessary to express the velocity gradient in terms of pixel displacements per

pixel. To do this, a time delay of ∆t = 20 × 10−6s is assumed, which gives a physical

displacement of ∆X = 1.46× 10−6m (Eq. C.7). Finally, using Eq. C.8, the displacement

gradient is equal to 0.02px.

∆X = ∆Vθ∆t = 0.073× 20× 10−6 = 1.46× 10−6m (C.7)

δx =
∆X

Lp
=

1.46× 10−6

7.3× 10−5
= 0.02px (C.8)

With reference to Figure C.10, for 5 particles inside a 32×32px interrogation window, the

corresponding RMS uncertainty due to the displacement gradients is 0.1px. A compari-

son with the RMS uncertainty contributions which have been introduced in the preceding

sections highlights that the RMS uncertainty due to displacement gradients can be the

dominant source of uncertainty. Fortunately, the effects of displacement gradients on

the correlation process can be mitigated using window deformation techniques [87, 91].

Such methods employ an iterative process to deform the particle images. In this manner,

the displacement gradients inside the interrogation window can be accounted for, and

the RMS uncertainty associated with the displacements can be avoided. Since a win-

dow deformation technique has been employed in this research, the contribution of the

displacement gradients to the RMS uncertainty (δgrad) has been neglected.
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C.1.2.7 Calculation of PIV measurement uncertainty

The total uncertainty which is associated with a single, 3-component, velocity vector from

the Stereo PIV measurements can be determined using the bias and RMS uncertainty

contributions which have been detailed in the preceding subsections. Note that peak

locking does not need to be included in this calculation, since inspection of the current

PIV measurements revealed that peak locking did not occur. In addition, the effects of

displacement gradients have been neglected, since a window deformation method has been

employed as part of the PIV processing approach.

The total RMS uncertainty, δRMS on a single PIV vector can thus be computed using

quadrature as the combination of contributions from the particle image size, particle image

displacement, seeding density, image quantisation, and background noise, Eq. C.9.

δRMS =
√
δs + δdisp + δdenδq + δbn = 0.07px (C.9)

The RMS uncertainty in Eq. C.9 corresponds to the uncertainty on a single PIV vector

from one camera. Thus, Eq. C.10 is employed to compute the total uncertainty for a

Stereo PIV measurement. Note that the typical registration uncertainty is included at

this stage, since the uncertainty is introduced during the combination of the two velocity

vectors to produce a single 3-component velocity vector.

δTOT =
√

2δRMS + δreg = 0.10px (C.10)

The pixel displacement uncertainty in Eq. C.10 must now be converted into velocity in

physical space. This can be achieved using Eq. C.11, where M is the magnification, ∆t

is the PIV measurement time delay, LCCD is the edge size of the camera CCD chip, and

NCCD is the number of pixels along the dimension LCCD.

δu =
δTOT
M∆t

LCCD
NCCD

(C.11)

It is also of interest to determine the uncertainty on the vortex core radius, the vortex

core circulation, and the vorticity measurements.

The uncertainty associated with the vortex core radius is limited simply by the spatial

resolution of the PIV measurements, which corresponds to approximately 1 × 10−3m.
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Table C.1: PIV measurement uncertainties for a selection of unperturbed vortex and
vortex ingestion configurations, NACA 0012 wing-tip vortex at αvg = 12o, Rev = 3.7 ×

104, W∞ = 17.8ms−1

Case Unperturbed VR=10.3, z/Di = 0.20 VR=5.0, z/Di = 0.20
δu (ms−1) 0.34 1.60 0.92
δu/W∞ (%) 1.9 8.99 7.88
δu/wc (%) 1.70 1.78 1.71

δu/Vθ,max (%) 3.36 8.99 6.14
δωz/ωz,max (%) 5.08 9.85 7.62
δωz,av/ωz,av (%) 10.0 15.2 13.3
δrc/rc (%) 5.75 11.63 9.62
δΓc/Γc (%) 3.4 9.0 6.1

Thus, a spatial measurement uncertainty of 5×10−4m has been assumed. The uncertainty

on the vortex core circulation has been determined using the uncertainties on the vortex

core radius and the vortex peak tangential velocity measurements.

An estimate of the uncertainty of the out-of-plane vorticity measurements can be obtained

by considering a linear calculation of velocity gradients. Therefore, the uncertainty on

the in-plane velocity gradients ∂u/∂y and ∂v/∂x is given by Eq. C.12, [72].

δ∂u/∂y = δ∂v/∂x =
1

2∆x

√
2δ2
u (C.12)

Note that the grid spacing is constant in the x and y directions, such that ∆x = 1×10−3m.

Therefore, the total uncertainty on the vorticity measurements is given by Eq. C.13.

δωz =
√

2δ2
∂u/∂y (C.13)

For all experiments, M=0.1, LCCD = 0.015m and NCCD = 2048. The value of ∆t varied

as a function of the streamwise velocity in each of the vortex convection and ingestion

configurations. In this way, it was possible to ensure that the maximum particle displace-

ment was less than 1/4 of the light sheet thickness. This is an important requirement to

ensure that the seeding particles remain inside the light sheet for both PIV frames [87].

Therefore, three different cases have been selected to illustrate the range of measurement

uncertainties which have been encountered in the experimental programme.
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Figure C.12: Schematic of the pressure measurement system

C.2 Pressure measurements

C.2.1 Calculation of freestream and intake conditions

To characterise the freestream flow, a Pitot-static probe was mounted in the working

section at a location which is outside of the intake capture streamtube, Figure C.12.

The reference pressure for the Pitot-static probe measurements was the ambient pressure,

Pamb, which was measured using a Druck DPI 261 digital manometer. The two measure-

ments from the Pitot-static probe, therefore, correspond to pT1 and pT2, Eq. C.14. Two

Furness Controls FC-044 differential pressure transducers were employed to measure pT1

and pT2.

pT1 = P0,∞ − Pamb
pT2 = p∞ − Pamb (C.14)
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The dynamic pressure in the working section was determined using Eq. C.15.

q∞ = pT1 − pT2 (C.15)

To calculate the freestream density, ρ∞, Eq. C.16 was employed, whereR = 287Jkg−1K−1.

The total temperature T0 corresponded to the temperature inside the settling chamber of

the wind-tunnel.

ρ∞ =
p∞
RT0

(C.16)

Finally, the freestream velocity is then computed with Eq. C.17

W∞ =

√
2q∞
ρ∞

(C.17)

To determine the flow conditions inside the intake, it is assumed that the total pressure

inside the intake, P0,i, is equal to the freestream static pressure. This is an appropriate

assumption, since the total pressure loss associated with the vortex is small. Therefore,

it is possible to use isentropic relations to determine the intake flow properties.

The static pressure inside the intake was obtained using the pneumatically-averaged pres-

sure from four static pressure ports which were located at equidistant points around the

intake inner circumference. The reference pressure for the static pressure port measure-

ments was the freestream total pressure. Thus, to determine the intake static pressure,

Eq. C.18 was employed. The static pressure inside the intake was measured using an

Omega PX139-005D4V differential pressure transducer.

pi = pT1 + pT2 + Pamb (C.18)

It is then possible to compute the ratio PR, given in Eq. C.19, which can be employed

to determine the static temperature (Ti) and the density (ρi) inside the intake, Eq. C.20

and C.21, respectively.

PR =
P0,∞
pi

(C.19)
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Ti =
T0

PRγ/(γ−1)
(C.20)

ρi =
pi
RTi

(C.21)

Finally, the velocity inside the intake can be determined with Eq. C.22, where cp =

1005Jkg−1K−1. In addition, the mass flow and Mach number are given by Eqs. C.23 and

C.24, where Ai = πr2
i is the flow area inside the intake.

Wi =
√

2cp (T0 − Ti) (C.22)

ṁi = WiAiρi (C.23)

Mi =
Wi√
γRTi

(C.24)

C.2.2 Uncertainties

In general, the uncertainty the pressure measurements consist of comprise the transducer

uncertainties, and the uncertainties which are attributed to the measurement of the am-

bient pressure (Pamb) and the total temperature (T0).

The transducer uncertainties consist of the measurement accuracy as given by the man-

ufacturer (δacc), the resolution uncertainty (δres), and the calibration uncertainty (δcal).

The measurement accuracy of the FC-044 and PX-139 transducers are, respectively, 0.3%

and 0.1% of the full-range, where the full-range pressures are 2500Pa and 34474Pa. The

corresponding measurement accuracy values in Pa are provided in Table C.2.The cali-

bration of the transducers was performed using a Druck DPI 603 Pressure Calibrator,

and the corresponding calibration curves for T1 and T2 are given in Figures C.13(a) and

C.13(b). The calibration uncertainties were obtained using the LINEST function in Mi-

crosoft Excel. The resolution uncertainty is attributed to the number of bits of the DAQ

card along with the voltage at which it operates. In this research, a National Instruments

PCI-6255 16-bit DAQ card was employed, which featured a 216 bit resolution and an
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(a) (b)

Figure C.13: Calibration points and curves, (a): FC-044 (T1) calibration, (b): PX-139
(T2) calibration

Table C.2: Transducer uncertainties

FC-044 (T1) PX-139 (T2)
δacc (Pa) 7.50 34.47
δres (Pa) 1.37 0.21
δcal (Pa) 4.42 6.78
δtot (Pa) 8.81 35.16

operating voltage of 12V. Thus, the resolution uncertainty is given by Eq. C.25. Table

C.2 provides the values of the transducer uncertainties.

δres =
12

216
= 1.831× 10−4 (C.25)

The digital manometer which was employed to measure the ambient pressure Pamb fea-

tured a measurement resolution of 10Pa. Therefore, the uncertainty in the ambient pres-

sure measurements is δPamb = 5Pa. Finally, the total temperature T0 was measured to

an accuracy of 1K, with a resulting uncertainty of δT0 = 0.5K. It is now possible to

undertake the uncertainty propagation analysis to determine the typical uncertainties on

the freestream and intake conditions.

Firstly, the freestream velocity is calculated from Eqs. C.15, C.16. Thus, the uncertainty

in the freestream velocity requires use of the uncertainties for Pamb, T0, and the calculation
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of the uncertainty levels of p∞, ρ∞, and q∞. Firstly, the uncertainty on p∞ is given by

Eq. C.26.

δp∞ =
√
δ2
Pamb

+ δ2
totT1

=
√

52 + 8.812 = 10.13Pa (C.26)

The freestream static pressure for W∞ = 17.8ms−1 was approximately 102200Pa, which

gives a static pressure uncertainty δp∞/p∞ of 9.91× 10−5, Eq. C.27.

δp∞
p∞

=
10.13

102200
= 9.91× 10−5 (C.27)

This can then be used to determine the uncertainty on the freestream density, given by

Eq. C.28, where a typical value of T0 = 292.15K has been employed. In addition, since

the dynamic pressure is determined using the difference between the transducer readings

T1 and T2, the uncertainty is given by Eq. C.29, given a typical freestream dynamic

pressure of q∞ = 181Pa.

δρ∞
ρ∞

=

√(
δp∞
p∞

)2

+

(
δT0
T0

)2

= 1.71× 10−3 (C.28)

δq∞
q∞

=

√
δ2
totT1

+ δ2
totT2

q∞
= 4.87× 10−2 (C.29)

Finally, the uncertainty associated with the freestream velocity, δW∞/W∞, can be com-

puted using Eq. C.30.

δW∞
W∞

=

√
δq∞
q∞

2

+
δρ∞
ρ∞

2

= 2.44× 10−2 (C.30)

The uncertainty on the intake conditions can be determined using the relationships in

Eqs. C.18 to C.22. The total uncertainty on the intake static pressure, δpi , is given by

Eq. C.31. Using a typical static pressure of pi = 84000Pa, it is possible to calculate the

typical uncertainty, Eq. C.32.

δpi =
√
δ2
totT1

+ δ2
totT2

+ δ2
Pamb

= 36.59Pa (C.31)
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δpi
pi

= 4.36× 10−4 (C.32)

The total pressure inside the intake flow is assumed to be equal to that in the freestream.

Therefore, the uncertainty δP0,i and fractional uncertainty δP0,i/P0,i are given in Eqs. C.33

and C.34.

δP0,i =
√
δ2
Pamb

+ δ2
totT1

= 10.13Pa (C.33)

δP0,i

P0,i
= 9.982× 10−5 (C.34)

The uncertainty associated with the pressure ratio is thus calculated using Eq. C.35. It

is then necessary to compute the intake static pressure uncertainty, Eq. C.36 and the

uncertainty associated with T0 − Ti, Eqs. C.37.

δPR
PR

=

√(
δP0,i

P0,i

)2

+

(
δpi
pi

)2

= 4.47× 10−4 (C.35)

δTi
Ti

=

√(
γ − 1

γ

δPR
PR

)2

+
δT0

T0

2

= 2.32× 10−3 (C.36)

δT0−Ti =

√
δ2
T0

+

(
δTi
Ti
Ti

)2

= 0.81K (C.37)

Finally, the uncertainty in (T0−Ti) can be expressed in terms of Eq. C.38, which permits

calculation of the uncertainty on the intake velocity, Eq. C.39.

δT0−Ti
T0 − Ti

= 5.37× 10−2 (C.38)

δWi

Wi
= 0.5

δT0−Ti
T0 − Ti

= 2.69× 10−2 (C.39)
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