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Abstract The problem of water flow around a tunnel cavity located in the saturated
capillary fringe on top of a very permeable, freely-draining substratum is considered for
the critical non-leakage condition when there is uniform vertical downward flow through
the upper surface of the saturated region. In this critical condition the soil-water pressure
is equal to zero everywhere on the cavity wall that is also a streamline. The conditions
at the upper fringe boundary are that the soil-water pressure is equal to the air-entry
value of the soil and the flux through this surface is the uniform infiltration rate. The
cavity surface and the fringe boundary which is elevated above the cavity position,
are found through conformal mapping and the use of integral representations of non-
standard mixed boundary-value problems. They are calculated for a range of infiltration
rates and compared with those obtained by assuming the upper fringe boundary to be
horizontal. The exact analysis given here gives larger tunnel cavities than those given by
the approximate treatment of the problem. The results have application in the design of
underground repositories against entry of seepage water, the construction of protective
capillary barriers and in the design of interceptor drainage systems.

Keywords : Tunnel cavity; Water exclusion; Capillary fringe; Conformal mapping;
Mixed boundary value problems

1. Introduction

The analysis of water flow around cavities in unsaturated soils shows the effect on
soil-water behaviour resulting from man-made excavations. It also facilitates the under-
standing of the role of macropores in unsaturated flow. Philip et al. (1989a) initiated
analytical studies of the perturbation of vertical unsaturated soil-water flow due to the
presence of cavities, using the so-called quasi-linear model that assumes an exponential
dependence of hydraulic conductivity on soil-water pressure, in an investigation of the
flow around circular cylindrical cavities. These were developed further in a series of
papers (Philip, 1989a, b; 1990; Philip et al., 1989a, b; Knight et al., 1989) concerned
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with the soil-water behaviour in the presence of two- and three- dimensional cavities of
various shapes.

Water will flow into a cavity when the soil-water pressure at any point on its wall
becomes greater than atmospheric. Philip’s analysis elucidated conditions under which
an air-filled cavity (that has the same effect when not leaking water as an impermeable
stone) excludes descending seepage water (the subcritical regime) or admits water (the
supercritical regime). In the critical regime some part of the cavity boundary is just
less than atmospheric pressure so that any further increase leads to water seeping into
the cavity. There is a critical cavity shape where the soil-water pressure everywhere
on the cavity wall is atmospheric and the cavity wall is also a streamline. For an
infinite flow field and a soil having an exponential hydraulic conductivity function as
assumed in Philip’s analysis, the cavity shape is parabolic-cylindrical for two dimensional
tunnel cavities and paraboloidal for three-dimensional cavities (Philip et al., 1989b). The
analysis has been further developed by Fujii and Kacimov (1998) and Kacimov (2000).

A different physical situation occurs when cavities are located in a saturated capillary
fringe above a water table when there is infiltration from the unsaturated soil above,
seeping downwards to a water table. Youngs (2002) calculated the critical shape of
tunnel cavities for water exclusion in this situation. His analysis notes that the hydraulic
conductivity in this tension-saturated region is the same as that of the saturated soil
under positive pressure and that the saturated region is bounded at its upper surface
by the locus of points where the soil-water pressure is equal to the air-entry value of
the soil, as used in many problems discussed by Polubarinova-Kochina (1977). Youngs’
critical shape approximated to the parabolic form found by Philip et al. (1989b) for
an exponential dependent hydraulic conductivity function that does not give a tension-
saturated capillary fringe above a water table.

Since the hydraulic conductivity is uniform throughout the tension-saturated flow
region, the flow pattern in this region is obtained by solving Laplace’s equation so that in
the case of two-dimensional flows conformal mapping techniques can be used. This was
used by Kacimov and Nicolaev (1992) in their investigations on subcritical flows around
impermeable holes and was also used by Youngs (2002). However, Youngs’ solution
was an approximation to the real situation for uniform precipitation in that his upper
boundary was assumed horizontal, equivalent to assuming some variable accretion over
the upper surface. When there is uniform accretion, the upper fringe surface is elevated
in the vicinity above the cavity and its shape is part of the mathematical solution. We
note further that the fringe height and hence the extent of the tension-saturated region
increase with the precipitation rate. In this paper a solution is given for this situation,
using conformal mapping and boundary-value problem theory techniques to obtain both
the critical tunnel shape and the fringe boundary. In particular, we calculate the width
and height of the tunnel as functions of the infiltration intensity and the air-entry
pressure.

2. Analytical Solution

We consider a homogeneous, isotropic soil, which is underlain by a horizontal highly
permeable layer into which all percolated water drains and above which is located a



tunnel cavity D;C Do, as illustrated in Fig.1. The origin of coordinates (x,y) is at point
O in the centre of the tunnel. Along E;D; and E5D, at the base of the soil region next
to the highly permeable layer the soil-water pressure is atmospheric so that the pressure
head p is zero and hence the hydraulic head h = 0. The tunnel D;C D, protrudes into the
capillary fringe. The upper surface of the fringe A; BA; is a surface of constant pressure
head where p = P (P negative). Additionally, along A; BA, water enters uniformly from
the unsaturated zone above the fringe with a constant rate ¢ = ¢’k where 0 < ¢’ < 1
and k is the hydraulic conductivity of the saturated soil, so that each segment of the
fringe boundary receives an amount of water proportional to the horizontal projection
of the segment. We assume that the soil-water pressure on the walls of the tunnel is
maintained at a negligibly small negative pressure —e relative to atmospheric pressure
so that no water leaks into the tunnel. We also assume that the shape of the tunnel
is critical for the particular value of ¢ so that the streamline along BC' bifurcates at C'
and C'D; and CD, are streamlines.

We introduce a complex position coordinate z = x + iy and designate the flow
domain as GG,. We also introduce the complex potential w = ¢ + 1Y where ¢ = —kh
is the seepage velocity potential and 1 the stream function. The specific discharge is
V= V¢. The Zhukovskii function § = w — ikz = ¢ + ky + i(vp — kx) = 61 + i6,.

The boundary conditions in our problem are

¢ =0, along EyD; and FyD,
¢ =—ky, v=0 along DCD, (1)
¢ =—kP —ky, v =qr along A;BA,

In the w-plane the image of G, is a strip G,, but with a cut D;CD, and a curved
unknown boundary A;A,, which is shown schematically in Fig.2a. In the 6-plane the
image of G, is a strip Gy (Fig.2b).

We map conformally Gy onto the upper half-plane of an auxiliary plane ( = & + in

(Fig.2¢) by the function:
ikP . a+¢(
0 = ——Ilog
7 a—C

(2)

where the branch of the logarithm for —a < ( < a is fixed in the upper half-plane. In
(2) the parameter a is determined from the given maximum horizontal width x,, of the
tunnel (point D) as

T, 1 a+1
= —log

In order to solve the flow problem we have to find the second characteristic analytic
function. Youngs (2002) evaluated this function by conformal mapping of G, onto
Gy that is impossible in our case because A;BA, in Fig.2a is unknown. Riezenkampf
(see Polubarinova-Kochina, 1977, p.138-145) and Strack (1989, p.555) introduced an
auxiliary function in which the real part is constant along the flow domain boundary.
In our case this function does not possess this property along D;C' Dy and hence will
not help. Another option is to use the hodograph V. The hodograph domain Gy is
shown in Fig.2d where the cut Ey Ay M;BMsAsFEs is along the circumference of a radius
k but shifted a distance —q along the v axis, and points M; and M, correspond to

a—1



the inflexion points on the fringe boundary. As we can see from Fig.2d the hodograph
plane is a circular sextagon. It would be a formidable task to map this sextagon onto ¢
even by the Polubarinova-Kochina method of linear differential equations (Polubarinova-
Kochina, 1977, p.240-290) as we did in another problem concerning the design of drains
and soil channels (Kacimov and Obnosov, 2002).

Instead of conformal mapping of the second domain as in the hodograph method, we
use a different (simpler, as we believe) method based on the theory of boundary-value
problems (Gakhov, 1977, p.472-474) employed recently in other free-boundary problems
in subsurface mechanics (Ilyinsky and Kacimov, 1992). Thus, we formulate the so-called
mixed boundary value problem for an analytic function w*({) = iw = —¢ +i¢. This
satisfies the following boundary conditions along the real axis L of our auxiliary variable

p=0, —a<é<—-land1<¢<a, (@)
=0, —1<{<-1L ¥=g(E),[fl>a
The function g(¢) in (4) is found from the following arguments. According to (2) at
€] > a
k| P|

™

a+ &
— 5

On the other hand, from the uniform infiltration condition = = 1 /q. We substitute this
expression into (5) that yields along the fringe boundary

Vv —kr=— log

o a+ &
8l ¢

As (4) shows, at the transition points +a, +1 the boundary condition type changes from
Re w* to Im w*; that is, we arrive at a mixed boundary value problem.

The simplest boundary-value problem for an analytic function w*(({) is the Schwartz
one: given the real part ¢(7) of w (7 is an arc coordinate of L) along the boundary L
of the domain D in which the solution is sought, to determine w in the whole domain.
When D is the upper half plane, the solution to this Schwartz problem is given by a
singular (Cauchy-type) integral (Polubarinova-Kochina, 1977, p. 202-211). A mathemat-
ically similar solution for a harmonic function in a unit circle is given by the so-called
Poisson formula (Nehari, 1975, p.17). In mixed boundary-value problems the contour L
is divided into segments along which either the real or the imaginary part of w is spec-
ified. The boundary functions and hence the whole function w may exhibit different
properties when they approach these transition points, and w may be finite or infinite.

Volterra (1883) pioneered the solution of a mixed problem with two transition points
in a half-plane, so that L in his problem was divided into three segments with Re(w)
prescribed along one segment and Im(w) along the other two. Signorini (1916) derived
a formula for w*(¢) with an arbitrary number of points where 1(£) condition changes
to ¢(§). Volterra and Signorini posited that w*(¢) is finite at all these points. In our
problem, w*({) — oo as ( — fa. Obnosov (1981) generalized the Signorini formula
to the case when w*(() has integrable singularities at arbitrary transition points. This

is the most general class including all known solutions to the mixed boundary problem
found by Volterra, Signorini, Keldysh and Sedov (1937) (see Gakhov, 1977, p.472-474).

k| P|q

9(§) = 0—q)n

(6)




All approaches to solve the mixed problem are based on the reduction of this problem
to the Schwartz problem (factually, to the Cauchy integral formula, see Nehari, 1975,
p.94) by a proper choice of extra multipliers (Ry and R in (7) below) that must also
guarantee that the function searched belongs to the class predetermined. (Detailed
explanations are given in Polubarinova-Kochina (1977, p.208-209)).

Thus, from (4) the analytic function w* in the upper half-plane is represented by
(Obnosov, 1981)

ey _ BolQ) / —g(r,a)dr .
where M = (—o0, —a) U (a,00), ¢ is a real constant to be determined later and the
function Ry(() is given by

RO =\ 5 ®)

and Ry (7) is the limit value of the chosen branch on the real axis, selected so that it is
positive in the half-plane ¢ > 0 at ( = ¢ > a; . From this branch fixation we can conclude
that R (1) > 0 if |7| > a and |7] < 1, and Im[sign(7)Rg ()] < 0, Re[R{ (7)] = 0 if
1 < |7] < a. We evaluate the limit value of the integral (7) if { — &, |£] > |a| via the
Sokhotskij-Plemel formula (Henrichi, 1986, page 100). Recall that this formula gives the
limit of the Cauchy type integrals in (7) when { — . In other words, when approaching
L the Cauchy type integrals (Nehari, 1975) call for special treatment. We note that the
principal value of the integral should be taken (Gakhov, 1977) so that a singularity at
T = ( is isolated.

A parametric equation for the shape of the tunnel wall follows from (7) at {( — &,
—1<é<1as

a—+&

2(6) = (&) k= ) 1og |2

¢
y<§>:—¢//€:_F ( /\/7 m/de ) (9)

and that for the fringe at ( — £ € M, (i.e., |{] > a) as

_ _ P jate
z(§) =¥(§)/q = W(l—q)l g a—g

; (10)
WO = IPI=o/k = 1Pl =\ 5= (/\/ e )

+

In the limit & — +a where z — *oo we have

yla)=H =|P|/(1—¢) (11)
At £ — a the limit value ¢(a) must be finite and hence

__7/ |72 —a?g(1,a)/kdr
B 2-1 71-a




Thus, in (10)

y(g):ug'_\/(@ £+a /\/ T+z_a) (T;a_)/gde 12)

3. Computed Tunnel Shapes

Figure 3 shows the computed critical tunnel shape and fringe surface for x,,/|P| = 0.5
when ¢’ = 0.75, 0.5 and 0.25, obtained from (9) for the tunnel and from (10), after
some algebraic manipulation of (12) to avoid computational difficulties, for the fringe
(see Appendix). They were found by fixing the hydrological parameters ¢ and P and
specifying the tunnel half-width xz,, = xp,. The height of the tunnel and the height of
the capillary fringe both increase as the accretion rate ¢ increases.

In the approximate analysis of Youngs (2002) A; BA; was assumed horizontal at an
elevation H above F; Es, which requires a non-uniform distribution of infiltration across
the fringe, the distribution of which was found a posteriori in the solution with ¢’ a
minimum above the apex of the tunnel. His tunnel cavity is described by

(1 +tp)coshma/|P|+ty, — 1) (13)

H
— = —(1 — —;) arccos
\plom P 2

3 — cosh mx,, /| P|
1 + coshmz,,/|P)|

where

iy =

The tunnel cavity shapes given by (13) are compared with those given by (9) for
T /|P| = 0.5 for ¢ = 0.75, 0.5 and 0.25 in Fig.3, assuming H to be the fringe height at
x — too given by H = |P|/(1 — ¢'). Tt is seen that (13) gives a slightly smaller cavity
than that given by the present analysis because of the different boundary conditions at
the top of the fringe used in the two cases.

Figure 4 shows the critical tunnel shapes for ¢’ = 0.75, 0.5 and 0.25 when the tunnel
height is fixed at L/|P| = 1.0. Note that by fixing L calls for a different procedure
in computing the shapes than that used when z,, is fixed. In the latter a was found
from (3) and then used in (9) and (10). When L is fixed, a was obtained by solving the
second of the equations in (9) at £ = 0 when y(0) = 0. It is seen that as ¢’ increases the
tunnel becomes narrower and the fringe surface becomes higher and flatter. Figure 5
shows the effect on the tunnel shape for different tunnel heights for the same accretion
rate. The tunnel size increases overall while the fringe boundary rises in the vicinity
above it, becoming more humped.

In Fig.6 the tunnel height L/|P| calculated from (9)is plotted against x,,/|P| for
¢ =0.75, 0.5 and 0.25. Also shown in Fig.6 is the relationship given by Youngs’ (2002)
approximate analysis. Figure 7 shows the calculated fringe height above the tunnel
yo/|P| at x = 0 for the same values of ¢

Youngs (2002) suggested the approximate relationship

= (14)



to describe the width to height ratio of the tunnel cavity with the infiltration rate. This
is shown in Fig.8 in which results from the present analysis are compared. It is seen
that (14) gives a good fit to the computed results, especially at large values of ¢’ for
which it was suggested.

4. Discussion

The analysis given here leads to the shape of tunnel cavities in the critical condition for
water exclusion when they are located in the saturated capillary fringe on top of a freely
draining very permeable stratum and there is uniform flow across the fringe boundary. It
uses conformal mapping and integral representations of non-standard mixed boundary-
value problems to find a solution for conditions presented at the fringe boundary, namely,
for the mixed boundary condition of a surface at constant soil-water pressure head and
of uniform flux. The shapes of the cavity and the fringe surface, that is elevated in the
vicinity above the cavity, are found in the solution for a given ratio of infiltration rate to
soil hydraulic conductivity. The cavity sizes obtained in the analysis differ only slightly
from those given by Youngs’ (2002) approximate analysis in which the fringe surface is
assumed to be horizontal. An interesting extension of Youngs’ (2002) analysis shows
that under certain conditions a cavity can span a water table and yet remain dry.

The situation considered is the exclusion of water from tunnel cavities of critical
shape where the tunnel wall is a streamline. A wider tunnel of the same height with
the given flow rate would leak water while a narrower one might, but not necessarily,
continue to exclude water seepage. When there is water entry, the boundary conditions
on the tunnel walls are mixed with a seepage surface that is unknown a priori and is
part of the solution. The problem is thus mathematically more difficult. Knight et al.
(1989) and Philip et al. (1989a, b) show that the flow pattern is governed primarily
by the apical curvature of a cavity. A blunter apex than that for the critical situation
would leak water whereas a sharper one would divert the streamline from the stagnation
point at the apex away from the tunnel wall.

The engineering applications of this study are in the design of underground repos-
itories, including the construction of protective capillary barriers and in the design of
interceptor drainage systems. It might also give an insight into the emergence and
growth of stalactites in caves as well as providing a basic understanding of the role of
macropores in soil-water flow. The work is an example of the use of analytical tools to
provide solutions to practical problems.
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In order to compute values of y(§) from eq.(12) we make the transformations 7 = a/s
and t = a/, to produce

ya/t)y g /-0 aQ—tQ/ L e () L i
Pl T w (I—q)itt @@= s)(1—s) \1=s)t—s
(A1)

Because of symmetry, y(—a/t) = y(a/t), and after algebraic manipulation eq.(A1) re-
sults in

t) 2—12)(1—12) /1 log[(1 1—5)] d
y(a/t) +‘1\/ / ogl(1+9)/(1— )] *0<t<1l (A2
| P| (1—¢) \/a2 $2)(1—s2) s —t

for the right hand branch of the fringe boundary.

The integral in (A2) has three singularities. At s = £1 it has regular singularities so
that we deal with common improper integrals. The singularity at s = ¢ is more subtle.
At these internal points the improper integral does not exist in the common sense and
we take the principal value of the integral (Polubarinova-Kochina, 1977 p. 204). Thus,
we isolate the singular points and write

1
/ =hLh+L+13+1 (A3)

-1

—1+4+€1 t—eo 1—e€1 1
]12/ ,]22/ ,I3=/ 7]42/ (A4)
-1 —1+e1 t+e2 1—e

where €; € are small constants. Integrals Iy and I3 in (A4) are found numerically
by computer algebra routines (Wolfram, 1991). Integrals I; and I3 can be evaluated
asymptotically. Thus

in which

1 log2 — log(1 — s)

2(a® = 1)(1 1) /1—61 ios & (A5)

or upon integration
_ 2y/e2+1log2 — loge]

Iy (A6)
2(a® —1)(1 —1)
Thus, for the two end singularities we get
Il = V261 2+1log2 —loge; log2 —2+loge; (A7)
(a® — 1) 1—1t 1+1¢

The desingularised integrals are put into (A2) and values of y(a/t)/|P| computed.
Practical computations showed that sufficiently small values of ¢; and e, were required
in order for the fringe height to converge to the known value of y = |P|/(1 — ¢') as

I'—>iOO.



Figure Captions

Fig.1 Uniform precipitation flowing around a critical tunnel cavity located in the sat-
urated capillary fringe on a water-bearing stratum at atmospheric pressure: the physical
domain G,.

Fig.2. Flow in the capillary fringe: (a) the complex potential domain G,; (b) the
Zhukovskii function domain Gy; (c) the auxiliary half-plane ( = £ + in; and (d) the
hodograph domain Gy, .

Fig.3. The critical tunnel cavity and fringe surface calculated for z,,/|P| = 0.5 and
for ¢ = 0.25, 0.5 and 0.75: the line of the cavity is eq.(9) and the dotted line is eq.(13).

Fig.4. The critical tunnel cavity and fringe surface calculated for ¢ = 0.5 and
L/|P| = 0.5, 1.0 and 2.0.

Fig.5. The critical tunnel cavity and fringe surface calculated for L/|P| = 1.0 and
for ¢ = 0.25, 0.5 and 0.75.

Fig.6. The tunnel height L/|P| plotted as a function of tunnel width x,,/|P| for
¢ = 0.25, 0.5 and 0.75: the lines are the relationships given by eq.(9) for z = 0, the
dotted lines are those given by eq.(13).

Fig.7. The fringe height yo/|P| above the tunnel plotted as a function of tunnel
width x,,/|P| for ¢ = 0.25, 0.5 and 0.75, given by eq.(10) for x = 0.

Fig.8. The width-height ratio x,,/L of critical tunnel cavities plotted as a function
of ¢/, the precipitation rate ¢ expressed as a fraction of the hydraulic conductivity k:
the line is eq.(14); symbols are values calculated from eq.(9), circles z,,/|P| = 0.25,
triangles x,,/|P| = 0.5 and squares z,,/|P| = 1.0.

Fig.9. Water exclusion from a tunnel cavity spanning a water table maintained by
artesian pressure in a lower very permeable substratum.
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