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Abstract 
 

Fibre interferometer configurations such as the Michelson and Fabry-Perot (FP) have 

been formed using uniformed and chirped Fibre Bragg Gratings (FBG) acting as 

partial reflectors. As well as increasing the dynamic range of the interferometer, 

chirped FBGs are dispersive elements which can allow tuning of the response of the 

interferometers to measurements such as strain and temperature. In a chirped FBG, 

the resonance condition of the FBG varies along the FBG’s length. Each wavelength 

is reflected from different portion of the FBG, which imparts a different group delay 

to the different components of the incident light. The implication of the wavelength 

dependence resonance position is that there is a large movement of the resonance 

position when the incident wavelength is changed. A chirped FBG FP can be 

configured in which the large movement of the reflection positions in the respective 

FBGs forming the cavity changes in such a way that the sensitivity of the cavity can 

be enhanced or reduced. The FP filter response can be tailored through the extent of 

chirp. 

 

In this project a theoretical model of the in fibre interferometers formed using chirped 

FBGs is presented. The model indicates that it is possible to form FP cavities with 

varying sensitivity to strain and temperature by appropriate choice of chirp parameters 

and cavity length. An experimental demonstration of a chirped FBG FP cavity with 

reduced sensitivity to strain. This scheme offers flexibility in determining the 

sensitivity of the FP sensor to strain, not only through the gauge length but also via 

the parameters of the chirped FBG pairs, allowing the use of long or short gauge 

length sensors. It is possible to configure the system to exhibit enhanced sensitivity to 

strain or alternatively, to have reduced or even zero strain sensitivity. This ability to 

tailor the sensitivity of the FP via the FBG parameters will enhance the capabilities of 

FP sensor system.  
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delay line scanning technique. Dispersion causes the 
broadening of the auto- correlations of the source and also 
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Figure 3.28 Chirped FBG FP filter with chirp oriented in the same 
direction, such that the cavity length, l(λ) is the same for all 
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Figure 3.36 illustrates the loop mirror interferometer configuration, where 
the cavity length is given by the path difference of the two 
reflected waves. The filter response for 2 different chirped 
FBGs used is also shown [104].  
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Figure 3.37 illustration of the phase based Bragg intragrating distributed 
strain measurement based on the dissimilar chirped FBG 
Michelson interferometer where one arm of the interferometer 
is terminated with a mirror with a broadband response[105].  
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Figure 3.38 illustration of arbitrary stain profile measurement based on the 
dissimilar chirped FBGs Michelson interferometer where the 
path matching is determined by the amount of stretching and 
the wavelength is determined by the maximum return signal 
when matching wavelength [108].  
 

Page 75

Figure 3.39 the effect of a perturbation upon a periodically chirped FBG 
showing the change in the resonance position. 
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Figure 3.40 illustration of the Michelson interferometer used to 
demonstrate the strain magnification using a chirped FBG in 
one arm and a mirror end in the other[51].  
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Figure 3.41 illustration of the dissimilar chirped FBG FP setup, a) non 
dispersive where the dispersion is cancelled, b) dispersion in 
the FP is not cancelled and there is the residual dispersive 
effect and c) other types of dispersive FP configurations. 
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Figure 3.43 illustration of the heterodyne interrogation of a chirped FBG 
FP resonator. A carrier of frequency ωc is created by ramping 
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Page 82

  



 xii

Figure 4.1 illustration of light in ray diagram undergoing internal 
reflection when the angle of incident to the core/cladding 
surface is greater than the critical angle ϕc 
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Figure 4.2 a plot of normalised refractive index against normalised 
frequency, V for the LP modes [2] 
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Figure 4.3 schematic of the grating with the boundary conditions as 
shown. 
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Figure 4.4 arrangement of the FP configuration. 
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Figure 4.5 illustrates a FP cavity formed between a fibre end and a 
mirror. 
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Figure 4.6 illustrates a FP cavity formed between 2 fibre ends with 
supporting members. 
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Figure 4.7 illustrates a FP cavity formed by fusion splicing piece of 
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Figure 4.8 a), schematic diagram showing a fibre FP cavity consisting of 
a section of an optical fibre forming a cavity with its’ ends 
cleaved such that R~4%. b) showing the transmission 
response with a small visibility but high intensity throughput 
where as in c) the reflection response has a high visibility but 
a low intensity throughput. 
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Figure 4.9 uniform FBG grating FP 
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Figure 4.10 shows the FBG FP wavelength response shown the cavity 
resonance mode modulated by the FBG stopband. 
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dependent cavity length and the total chirps, ∆λ =λ1- λo where 
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Figure 4.12 illustration of the chirped FBG FP cavity with FBG having the 
same central wavelength, λ0, where the cavity length for the, 
λ0, is the distance between the grating centres, l(λ0)=l0. The 
cavity length, l(λ), changes with different illumination 
wavelength.  
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Figure 4.13 diagram showing the tendency to change the cavity length, l 
by the effect of movement of the resonance points within the 
grating, +b to increase the cavity length and –b to decrease the 
cavity length. 
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chirps of the FBG oriented in the same direction as shown in 
a) and in the b) but in the opposite sense. When the 
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FBGs separated by a distance with the direction of the 
increasing chirped oriented away from the centre of the 
cavity. Increasing the wavelength will have a corresponding 
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Figure 4.16 a plot of the equation (4.55) for 3 wavelengths, 1550nm, 
1300nm and 800nm. 
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Figure 4.17 a) the FSR variation of the insensitive cavity configuration 
compared to the Bulk FP response and b) using the 
relationship of the positional dependence of wavelength, the 
equivalent FSR with wavelength is plotted using equation 
(4.56). 
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Figure 4.1 shows the enhanced configuration of the contra-propagating 
chirped FBG cavity where there is a decreased in the cavity 
length, l with wavelength. 
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Figure 4.19 a plot of equation (4.63) with λ0 of 1550 nm and chirp rate of 
25nm mm-1. 
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Figure 5.1 illustrates a chirped FBG FP cavity configured to have 
reduced sensitivity to strain. The cavity consists of 2 chirped 
FBGs with the direction of increasing chirp oriented away 
from the centre of the cavityλ0. The cavity is interrogated with 
a wavelength, λ and has a cavity length, l(λ), measured 
between the resonance positions. The total chirp, ∆λ = λ2−λ1 
where λ2>λ1. 
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Figure 5.2 a plot of the cavity length vs chirp rate required to construct a 
chirped FBG FP cavity that is insensitive to strain. The line is 
calculated using equation (5.5), assuming that, α=0.80 and λ 
= 1550nm. 
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Figure 5.3 a plot of the strain sensitivity of equation (5.9) as a function of 
wavelength. 
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Figure 5.4 illustrating a chirped FBG FP cavity that consists of 2 chirped 
FBGs with arbitrary chirp, with a central Bragg wavelength, 
λ0. The cavity is interrogated at a wavelength, λ, with a 
corresponding the cavity length, l(λ), measured between the 
appropriate resonance positions. The total chirp, ∆λ = λ2−λ1 
where λ2>λ1. 
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Figure 6.1 schematic diagram showing the input and output fields at the 
start and the end of the section. 
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Figure 6.2 the division of a FBG into section to facilitate the use of the 
TMM.  Each section has constant FBG parameters to form a 
composite grating of varying period, to model a stepped 
chirped grating.  
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Figure 6.3 the intensity and the phase response of a chirped FBG. 
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Figure 6.4 illustration of the time delay for the reflected and transmitted 
beam in a FBG through, a) positional dependent reflection 
point and b) through a difference in the group velocity 
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Figure 6.5 illustrates a uniform FBG where the Bragg wavelength, λB is 
strongly reflected and the off resonance wavelength is less so 
allowed a deeper penetration into the grating.  
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Figure 6.6 illustrates the reflection spectrum of a uniform FBG centred at 
wavelength of 1550nm having length of 4mm. (a) reflectivity, 
(b) phase and (c) the penetration depth. 
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Figure 6.7 shows the transmission profile for a uniform FBG having 
length of 4mm. (a) the transmitivity, (b) the phase response 
and (c) the path traversed.  
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Figure 6.8 illustrates a positively chirped FBG where the light is incident 
from the left. The longer wavelength, λ2 is reflected from a 
position in the FBG further to the right (positive in the right 
direction) compared to the shorter wavelength, λ1 in a 
Cartesian coordinate system.  
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Figure 6.9 illustrates the reflection response for a chirped FBG having 
length of 4mm with a chirp of +10nm. (a) the reflectivity, (b) 
the phase response and (c) the penetration depth.  
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Figure 6.10 illustrates the transmission response for a chirped FBG having 
a length of 4mm and a total chirp of +10nm. (a) the 
transmission (b) the phase response and (c) the path traversed 
which is the grating length . 
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Figure 6.11 illustrates a negatively chirped FBG where light is incident on 
the grating from the left. The longer wavelength, λ2 is 
reflected from a point near on the left hand side of the FBG 
(more negative towards the left) compared to the shorter 
wavelength, λ1 in a Cartesian coordinate system.  
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Figure 6.12 illustration of the reflection response for a negatively chirped 
FBG having a length of 4mm and total chirp of -10nm. (a) the 
reflectivity, (b) the phase response and (c) the penetration 
depth. 
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Figure 6.13 illustrates the transmission response for a negatively chirped 
FBG of 1550nm central wavelength, having a grating length 
of 4mm and a total chirp of -10nm. (a) the transmission 
profile, (b) the phase response and (c) the distance travelled 
across the grating. 
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Figure 6.14 showing the movement of the central wavelength with strain 
for a 4mm FBG with a total chirp of +10nm. 
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Figure 6.15 illustrates a positively chirped FBG experiencing axial strain 
and being interrogated at wavelength, λ. The displacement of 
the reflection point goes against the direction of chirp and 
hence reduces the penetration depth in this positively chirped 
FBG.  
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Figure 6.16 showing what the increasing strain has on the penetration 
depth of the reflected wave in the positive chirped 4mm FBG. 
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Figure 6.17 shows the variation of the penetration depth as a function of 
axial strain for a FBG of length 4mm with total chirp of 
+10nm illuminated at the central wavelength.  
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Figure 6.18 showing the rate of change of reflection point w.r.t strain as a 
function of grating length, lg for different total chirp in the 
FBGs at the central wavelength of 1550nm 
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Figure 6.19 showing the rate of change of the grating length with strain for 
the FBG as a function of the total chirp, ∆λc for different 
grating length for the central wavelength. 
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Figure 6.20 illustration of an arbitrary chirped FBG FP cavity 
demonstrating the aggregate changes in the reflection position 
and the length traversed in the grating which determines the 
strain sensitivity of the cavity. 
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Figure 6.21 illustration of an arbitrary chirped FBG FP cavity 
demonstrating the aggregate changes in the reflection position 
and the length traversed in the grating which determines the 
strain sensitivity of the cavity. 
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Figure 6.22 shows the cavity length required for a strain insensitive 
chirped FBG FP cavity employing two identically chirped 
FBGs in the reduced configuration shown in figure (6.21).  
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Figure 6.23 using the results in figure (6.22), a plot of cavity length 
required to achieve a strain insensitive cavity against chirp 
rate for the central wavelength @1550nm, using the Semi-
TMM approach together with equation (5.5), using ξ = 0.8 ε-1. 
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Figure 7.1 shows the experimental setup which uses 3dB fibre couplers 
to split and direct light to interrogate cavities simultaneous or 
individually with wavelength scanning or with a calibrated 
strain. 
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Figure 7.2 the implementation of the strain rig with travelling stages 
where the width between the two travelling stages forming a 
cavity can be varied by means of a travelling vernier and a 
piezo-actuator to apply the extension to the cavity.  
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Figure 7.3 A diagram illustrating the ring cavity configuration of the 
tuneable Ti:sapphire laser configured in the figure of 8. 
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Figure 7.4 diagram illustrating the design of the external cavity tuneable 
laser. 
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Figure 7.5 illustrates how a bulk optics FP is used to monitor the 
extension of the straining rig. The cavity is formed between a 
cleaved fibre end and the mirror surface. It is attached onto an 
adjacent moving stage, which shared the moving mechanism.  
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Figure 7.6 illustrates the monitoring FP response with the applied voltage 
showing the sinusoidal response. 
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Figure 7.7 shows the variation of the extension as a function of applied 
voltage produced by the piezo-actuator. The graph 
demonstrates the expansion and contraction of the piezo-
actuator in response to a sawtooth signal, driven at 30mHz. 
The hysterisis can be seen clearly. 
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Figure 7.8 shows a scan of the FP where the separation of the two peaks 
provides the value of the FSR together with the voltage ramp 
to scan the mirror with. 
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Figure 7.9 shows a photograph of the tube furnace.  
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Figure 8.1 schematic of a reduced strain sensitivity chirped FBG FP 
cavity where the movement of the resonance positions, 

δε
δb opposes the increase in cavity length caused by 

application of axial strain. 
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Figure 8.2 the reflection profile of the two chirped FBGs used to form 
the FP cavity (parameters detailed in table (8.1)) 
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Figure 8.3 the implementation of the strain rig with a manual travel to 
impart strain on both of the cavities in question. The lead 
screw is twisted back and forth to create the extension and the 
signal from D1 and D2 are captured simultaneously.  
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Figure 8.4 the strain response of the two cavities is simultaneously 
captured using a storage oscilloscope. The chirped FBG FP, 
shows a reduced strain sensitivity, as compared with the FP 
formed between the uniform period FBG FP 
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Figure 8.5 shows the grating profiles used in the experiment where the 
reflectivity for all gratings used <4%. The scan is achieved by 
sweeping the scanning wavelength of the Photonetics laser 
from 1506 to 1610nm in steps of 0.05nm. 
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Figure 8.6 illustrating the effect that strain has on chirped FBG FP 
cavities in a) the normal configuration where the movement of 
the reflection points in one grating acts to increase, in the 
other, act to decrease the cavity length, hence effect is nulled 
and the FP response will be that of the cavity length response 
to strain, b) the reduced configuration where the movement of 
the reflection points with strain reduces the effect strain has 
on the cavity and c) the enhanced configuration when the 
movement of the reflection point with strain in the grating 
enhances the effect of strain has on the cavity length.   
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Figure 8.7 the experiment configuration which involved the use of fibre 
couplers so that the cavities can be interrogated and monitored 
with a computer controlled software. The signal is captured in 
detector D1. 
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Figure 8.8 Strain response of the chirped FBG FP in the normal 
configuration. a) the driving voltage of the piezo, b) the 
intensity output from the monitoring bulk FP used in strain 
calibration and c) the strain response of the chirped FBG FP in 
the normal configuration interrogated at 1510nm. The 
calibrated strain level is ~730µε giving ~100 fringe cycles. 
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Figure 8.9 shows the plot of the strain sensitivity as a function of the 
inverse of the illuminating wavelength a) for normal, b) 
reduced strain sensitivity and c) enhanced strain sensitivity 
configurations. The linear relationships demonstrate that the 
strain sensitivity is proportional to the cavity length only and 
is not dependent upon the orientation of the chirp of the FBGs 
in the FP formations 
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Figure 8.10 shows the temperature response of the chirped FBG FP 
arranged in the reduced strain sensitivity configuration with 
the FBGs having a chirp rate of ~ 25 nm/mm and cavity 
length of 97mm, a) the temperature response at an 
illuminating wavelength of 1520nm and b) the temperature 
sensitivity at different illuminating wavelengths.   
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Figure 8.11 illustration of the reduced configuration of the chirped FBG 
FP cavity which consist of 2 chirped FBG with grating 
length~4mm, total chirp, ∆λc~100nm with the orientation of 
chirp going away from each other and having a cavity length 
between the grating centre ~ 97mm 
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Figure 8.12 the wavelength response of the chirped FBG FP in the 
reduced configuration with no reduction of the sensitivity 
observed, b) a FSR ~0.008nm is shown in the wavelength 
region of 1560nm and this cavity has a uniform wavelength 
response across the bandwidth and c) using the non dispersive 
chirped FP FSR response, equation (4.59), the detuned cavity 
length, l(λ) can be determined using the FSR values. The 
detuned cavity length can be distinguished with l(λ2)>l(λ1) for 
λ2>λ1 which is consistent with the chirped FBGs arranged in 
the reduced configuration, figure (8.11). 
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Figure 8.13 Schematic diagram of a dissimilar chirped FBG FP 
configuration employing a chirped FBG as one reflector and a 
cleaved fibre end as the other with a wavelength dependent 
cavity length, l(λ). 
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Figure 8.14 shows the reduced wavelength sensitive dissimilar chirped 
FBG FP configuration, where the direction of the increasing 
chirp is aligned away from the centre of the cavity. 
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Figure 8.15 a)shows the wavelength response of the dissimilar chirped 
FBG FP which consists of a chirped FBG and a cleaved end 
of the fibre forming a cavity with the length of ~7mm, 
measured from the centre of the FBG to the fibre end. b) a 
plot of the variation of the FSR with wavelength and c) a plot 
of wavelength detuned cavity length, l(λ) as a function of 
wavelength defined from equation (4.47). 
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Figure 8.16 shows the enhanced wavelength sensitive dissimilar chirped 
FBG FP configuration, where the direction of the increasing 
chirp is aligned towards the centre of the cavity. 
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Figure 8.17 a) shows the wavelength response of the dissimilar chirped 
FBG FP which consists of a chirped FBG and a cleaved end 
of the fibre. The cavity length is ~7mm, measured from the 
centre of the FBG to the fibre end. b) a plot of the variation of 
the FSR with wavelength and c) a plot of cavity length as a 
function of wavelength defined from equation (4.47). 
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Figure 8.18 showing the dissimilar chirped FBG FP with a very short 
cavity length with the chirped FBG having a chirp rate of 
~25nm/mm and cavity length ~2mm measured from the centre 
of the grating to the cleaved end 
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Figure 8.19 a) shows the wavelength response of the dissimilar chirped 
FBG FP which consists of a chirped FBG and a cleaved end 
of the fibre forming a cavity with the length of ~2mm, 
measured from the centre of the FBG to the fibre end. b) a 
plot of the variation of the FSR with wavelength and c) a plot 
of cavity length as a function of wavelength defined from 
equation (4.47). 
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Figure 8.20 experimental arrangement to strain only the grating of the 
chirped FBG FP. The shift in the RTSP with the application of 
strain is monitored. 
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Figure 8.21 a) the voltage ramp, b) the calibrating HeNe wavelength at 
which ~5 fringes appeared giving an extension of ~1.5µm in a 
grating of ~4mm which corresponds to an applied strain of ~ 
375µε. A progressing increasing strain sensitivity with 
increasing illuminating wavelength can be seen from c) to g) 
with wavelength in the range of 1565nm to 1575nm in steps 
of 2nm. The maximum observed phase change ~ 2π radian 
@1575nm.   
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Figure 8.22 illustrates the setup used to apply a strain gradient to a 
uniform period FBG to induce a chirp. This system was used 
to form the chirped FBG reflector in the FP cavity. 
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Figure 8.23 a) the wavelength response of the uniform period FBG FP 
which consists of a uniform FBG forming a FP with a fibre 
end and cavity length ~20mm.  b) – d) shows the same cavity 
when the chirp of the FBG is progressively increased. The 
bandwidth of the wavelength response is progressively 
broadened but the change of the chirp rate has no affect on the 
measured FSR.   
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Figure 8.24 a) the reflection profile of the 2 chirped FBG written by using 
a continuous phase mask method, b), the wavelength response 
@1547nm and the corresponding FSR,  c)the wavelength 
response @1549nm and  d) the wavelength 
response@1555nm. The measured FSR for all wavelengths 
corresponds to a cavity length ~65mm of a non dispersive FP 
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Figure 8.25 a), illustration of an overlapping cavity where the respective 
resonance positions provide the cavity length l(λ). b) there 
exist 2 wavelengths, λ1 and λ2 which shares the same cavity 
length. For a perfectly overlapping chirped FBG FP, the 
central wavelength will see a cavity length of zero between 
the reflection points in the respective FBGs.  
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Figure 8.26 a) the wavelength response of the overlapping chirped FBG 
FP cavity where the FSR is the highest at ~1526 and decreases 
on either side,  b) the measured FSR is plotted together with 
equation (8.6) and c) using the FSR data and using equation 
(8.6) the wavelength detuned cavity length, l(λ) is plotted as a 
function of wavelength. The wavelength at ~1526nm 
corresponds to a cavity length of zero. A linear fit gives a 
chirp rate ~27nm. Notice that for a cavity length l(λ), can be 
accessed by 2 illuminating wavelength.    
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Figure 8.27 shows the strain response of the overlapping chirped FBG FP 
cavity measured at illuminating wavelength of, a) λ=1535nm, 
b)λ=1545nm and c)=15650nm. 
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Figure 8.28 a) shows the plot of the measured phase shift as a function of 
the applied strain for different illuminating wavelength and b) 
is the strain sensitivity of the overlapping cavity as a function 
of wavelength. 
 

Page 233

Figure 8.29 measured temperature responses of the overlapping chirped 
FBG FP cavity with wavelengths a) @1535nm, b) @1540nm, 
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1 Introduction 

 

Advances in laser and fibre optic technologies are having a significant impact on the 

development of optical instrumentation systems for sensor and telecommunication 

applications. For sensor systems, the main research interest areas have been concerned 

with the production of a wide range of optical fibre based configurations and signal 

processing techniques that may be used in a variety of sensing and control schemes [1, 2, 

3, 4]. Fibre optic sensors and devices have several advantages over their conventional 

electrical counterpart in that they are compact in size, robust, chemically inert, non-

conductive and are immune to electromagnetic interference (EMI). 

 

In general, fibre sensor schemes are based on an interaction of the measurand with the 

fibre that changes the intensity, frequency, phase, wavelength, modal distribution, or 

polarisation of the light propagating within the fibre. Fibre optic sensors have been shown 

to offer performance that compares well with those of well-established conventional 

sensors. However commercial exploitation of fibre optic sensors has largely been limited 

to low volume markets, and they are still perceived to be costly to implement and 

difficult to handle. Consequently, fibre sensors are generally exploited in niche areas 

where their attributes are most needed. Examples include the Sagnac configuration for 

optical gyroscopes [5] for sensitive rotation measurement, optical fibre hydrophones [6] 

for applications in high sensitivity measurement for the detection of weak acoustic fields 

and applications in hazardous and hostile environments such as encountered in the oil and 

gas industries and other specialised areas where there is the need for passive and very 

light weight device with minimal intrusion for tackling difficult measurement situations. 

One clear advantage of fibre sensors is the relative ease with which elements can be 

multiplexed into arrays using a common input and output fibre, offering the possibility of 

quasi-distributed sensing [7] and remote monitoring. Multiplexing allows the sharing of 

the light source, detection and signal processing system, which can reduce the cost of the 

sensor system. 
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Fibre optic technology is finding increasing use in the field of distributed and embedded 

sensors in applications in the civil and aerospace industries [8]. Much of the work in 

embedded sensors has been in the development of the fibre Bragg grating (FBG). FBGs 

are simple sensing elements, which can be photo-inscribed into a silica fibre by UV 

irradiation [9]. This process creates periodic refractive modulation directly into the fibre 

core, forming a highly resonant device. In addition they are compatible with the 

telecommunications and optoelectronics industries which are driving the development of 

new optoelectronic devices and forcing prices down. 

 

FBG based sensors provide absolute wavelength encoding of information and their 

performance may be configured to be independent of the overall system light levels. The 

wavelength is dependent upon measurands such as strain and temperature. The 

wavelength selectivity of the FBGs allows arrays of FBGs to be encoded at different 

wavelengths to be addressed in serial or in parallel using Wavelength Division Multiplex 

technique (WDM) or having the FBGs array sharing a common wavelength and located 

at different vicinities, to be addressed using Time Division Multiplex (TDM) techniques 

or a combination of both techniques can be used with different multiplex architectures 

[10]. Their usage has been demonstrated for a wide range of sensing applications 

providing measurements of physical quantities such as pressure [11], ultrasound [12], 

acceleration [13] and magnetic field. Their small size, light weight and flexibility of 

deployment are attributes commensurate with embedded and surface mounted sensing 

schemes, making them the ideal candidate for use in quasi-distributed sensing. Embedded 

fibre sensors can be used for a variety of applications. One of the most important 

potential applications of FBG sensors is as the sensory elements in Smart Structures for 

self monitoring. A significant limitation to their mass exploitation is the requirement for 

temperature compensation of strain measurement errors caused by thermal fluctuations. 

 

A large number of techniques for demodulating the wavelength have been demonstrated 

and reported, eg scanning filters such as the tuneable FP [14] and acoustic-optic tuneable 

filter (AOTF)[15], using passive filters such as band-edge of a spectral filter[16] and 

wavelength division couplers[10], matched gratings pair [17]. All of these techniques 
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have their advantages and limitations. For high sensitivity measurement, fibre-optical 

interferometric sensors based on the optical phase change detection offer much higher 

resolution. Fibre equivalent interferometers such as the Michelson and Fabry-Perot have 

been formed using FBGs acting as mirrors. 

 

The Fabry-Perot (FP) interferometer is a key component for optical applications. It has 

already been demonstrated in the all fibre Fabry-Perot filter [18], which could be used as 

filters and sensors. The fabrication of such a device in the fibre form requires the 

introduction of highly reflective mirrors inside the fibre or terminating the ends with 

highly reflective materials, to form the cavity. The FBG inscription technique allows the 

creation of intrinsic reflectors without the need to physically intrude into the core and 

compromise the physical integrity and light guiding properties of the fibre. A pair of 

uniform period FBGs has been used to form the narrow band reflectors in the Fabry-Perot 

configuration [19]. The optical frequency response of in-fibre FBG Fabry-Perot filters 

have been studied theoretically and compared with experimentally measured data [20]. 

Such configurations have been demonstrated in the measurement of strain, temperature 

and vibration [21]. The inherent cross sensitivity between strain and temperature still 

exist for FBGs in the FP configuration. Many schemes have been reported to separate the 

strain and temperature responses, the most popular of which is to multiplex one or more 

reference FBGs in the system. The reference FBGs are kept isolated from strain but 

experience the same thermal environment as the active FBG sensor elements. 

Furthermore, it is difficult to distinguish between strain and temperature-induced 

wavelength shifts for which various techniques have been explored [22] which 

compromise the simplicity of multiplexed sensor arrays. 

 

To ensure good spectral overlap between these two gratings it is necessary to make the 

FBG as broadband as possible, hence the use of chirped FBG. Chirped FBGs are 

dispersive elements and they have been used as dispersion compensation elements [23] in 

communications systems. With this type of structure, the pitch of the grating is varied 

along the grating length, and a different wavelength is reflected from different portions of 

the gratings. They offer a wider bandwidth than uniform FBGs, as well as imparting 
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different group delay to different components of the light. In order to increase the 

dynamic range and bandwidth, FPs were formed using identical chirped FBGs with chirp 

oriented the same way [24, 25, 26]. Improvement in the fabrication technique increased 

the reflectivity of the chirped FBGs to the effect of achieving high Finesse and contrast 

for WDM applications in communication systems [24]. A broadband FBG FP with the 

chirps of the 2 FBGs oriented the same way has the same characteristics as that of the 

uniform FBG FP, and they have been employed in sensing purposes. The sensitivity of 

sensors based on such a cavity configuration depends on the separation of the FBGs in 

the FP arrangement. FBG FP sensors with arbitrary gauge length can be made by writing 

two FBGs in an optical fibre with a separation equal to the desired gauge length. 

However there will be restrictions on the difference in the strain and temperature 

experienced at the two grating locations. Long gauge length sensors have a greater 

likelihood of encountering changes in material of structural behaviour than a number of 

small strain gauges. Long gauge length sensors tend to average local strain 

concentrations. Small gauge length sensors are suited to point sensing and quasi-

distributed sensing and in the context of the FBG FP, small gauge length ensured that the 

two gratings can be located in close proximity to each other thereby ensuring they are 

exposed to the same local strain and temperature with little difference in the environment 

they are measuring.  

 

As well as providing a wider bandwidth than uniform FBGs, chirped FBG imparts 

different group delay to different components of the light. The implication of the 

wavelength dependence of the reflection positions is that when a chirped FBG is 

subjected to axial strain, the reflection point for a particular wavelength changes within 

the grating length. Depending on the chirp rate, the application of strain to a typically 

chirped FBG of length of orders mm can induce a large path length change for the 

reflected light, which is equivalent to straining a piece of fibre of centimetres in length 

[27]. Given the ability of the chirped FBG to form partial broadband reflectors and 

utilising the large movement of the reflection position with wavelength in chirped FBG, a 

chirped FBG FP can be configured in which the large movement of the reflection 

positions in the respective FBGs forming the cavity, changes in such a way that the 
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sensitivity of the cavity can have an enhanced or reduced nature. The sensitivity of the 

chirped FBG FP depends on the chirping parameters of the FBGs. The sensor and filter 

response can be tailored through the extent of chirp. Variable strain sensitised chirped FP 

with long or short gauge length would be a great asset. The novel configurations of using 

chirped FBG FP produce very interesting properties. 

 

In this thesis a novel configuration involving the use of chirped FBG pairs in the 

formation of fibre Fabry-Perot is considered. The aim of this work is to realise chirped 

FBG FP cavities with reduced or enhanced wavelength sensitivity which could be 

determined by the chirped parameters of the FBG and not so much by the cavity length. 

This scheme offers flexibility in determining the sensitivity of the sensor/filter to 

wavelength, strain and temperature via the parameters of the chirped FBG pairs, for long 

or short gauge length device. It is possible to configure the system to exhibit enhanced 

sensitivity to strain or alternatively, to have reduced or even zero strain sensitivity. This 

ability to tailor the sensitivity of the cavity to the effect of wavelength, strain and 

temperature, within the scope of FBG configuration will enhance the capabilities of FBG 

for use in structural monitoring, sensing and optical devices. 

 

1.1 Scope of thesis 
 

The large group delay experienced by the wavelengths which resulted in the reported 

strain magnification [27] and in the observed large path-length scanning in the matched 

path-length interferometric interrogation [28] involving the use of chirped FBGs are 

evident of the dispersive effect of the chirped FBG. This effect attributed to dispersion in 

the chirped FBG is not obvious in many of the reported literature on the use of chirped 

FBGs in the interferometric configuration. Many of which behaved in a non dispersive 

manner. The thesis will try to dispel the notion that the position dependent of the 

resonance position of wavelengths inside the chirped FBGs does not automatically make 

them dispersive when they are used in the interferometric configuration. 
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In chapter 2, the methods with which uniformed period FBGs and chirped FBGs are 

fabricated together with their physical difference will be outlined and the effect the chirp 

has on the reflected grating spectrum is described. Besides providing a broadband 

response, a chirped FBG imparts a wavelength dependent delay to the reflected signal 

and this has implications on the performance of the interferometers involving the use of 

these gratings. Chapter 3 attempts to provide a comprehensive review of the use of 

chirped FBG in the interferometric configuration and their performance and 

characteristics are explained. 

    

The dispersion inside the cavity affects the performance of the bulk FP interferometer by 

modifying the round trip phase shift(RTPS) of the cavity. When chirped FBGs are used 

in the FP configuration, the effect of dispersion will change the characteristics of these 

cavities. In order to gain more insight into the mechanism of the effect of dispersion has 

on chirped FBG FP, a theoretical model is developed in chapter 4, by drawing on analogy 

with the dispersive bulk FP interferometer, where the dispersion affects the cavity 

characteristics, analysis of the RTPS will be performed on the chirped FBGs FP with the 

aim of explaining the possibility of creating chirped FBG FP cavities with sensitivity 

which could be altered by the chirp parameters of the FBG with a range sensitivities and 

devices gauge lengths can be configured.  

 

Chapter 5 will try to establish the strain and temperature sensitivity of the chirped FBG 

FP to the wavelength sensitivity of the cavity. Dispersion in chirped FBG modifies the 

FSR of the cavity response and because of the relationship between the wavelength 

detuning with strain in FBGs, the strain sensitivity is also related to the wavelength 

sensitivity of the dispersive chirped FBG FP. By looking at the movement of the 

reflection point of the illuminating wavelength under the application of strain, the change 

in the RTSP of the cavity will be presented to show a relationship between the chirp rate 

and the length of the cavity required to configure a strain insensitive cavity. 

 

The general aim of chapter 6 is to present the different modelling techniques that have 

been applied to the FBG. Using the transfer matrix method (TMM), a model of FBGs and 
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FBG FPs will be developed to simulate the cavities response to wavelength and strain 

which will complement the theory put forward in chapter 4 and 5. Chapter 7 aims to 

detail the experimental setup used in the characterisation of the FBG FP sensitivity to 

wavelength, strain and temperature. A discussion of the operation and performance of the 

devices used is presented and the implementation of the monitoring systems and their 

calibration is discussed.  

 

Chapter 8 will present the experimental characterization of the chirped FBG FP of 

different configurations, formed with chirped FBGs fabricated via a range of techniques, 

to verify the predictions made in chapter 4 and 5. The properties of the cavities are 

investigated using a variety of methods including the application of axial strain, scanning 

the wavelength of the illuminating source and varying the temperature. Finally, the 

results are summarized, conclusions are drawn and future research directions discussed. 
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2 The Fibre Bragg Gratings 

2.1 Introduction 
 
The discovery of photosensitivity in optical fibres [1] has had a large impact on 

telecommunications and on sensor systems with the effect being used to develop 

devices for many applications [2]. The formation of a Fibre Bragg Grating (FBG) is 

generally based on the photo-sensitivity of silica fibre doped with germanium. When 

illuminated by UV radiation, the fibre exhibits a permanent change in the refractive 

index of the core. Meltz et al [3] demonstrated the first production of Bragg gratings 

by the side exposure method, in which a spatially modulated intensity interference 

pattern was used to photo-inscribe a periodic refractive index grating. 

 

The side exposure of the fibre by the interference of two intersecting beams of UV 

radiation allows fabrication of FBGs with user defined central wavelength, 

independent of the wavelength of the writing laser, figure (2.1). This UV exposure of 

the fibre imprints a regular structure of periodicity half the required Bragg wavelength 

into the fibre core over lengths in the range of millimetres to centimetres. The 

flexibility of this method allows Bragg wavelengths from the visible region to well 

beyond the telecommunications wavelength of 1550nm to be written[1].  

 

The FBG has a periodicity of the order of wavelength of length. FBG interacts with 

the propagating wave in the core creating the diffraction phenomena analogous to that 

of wave interaction with regular structures in crystals and bulk optical gratings. The 

interaction with the propagating wave allows the coupling of the forward mode to the 

backward mode with characteristics depending on the properties of the FBG.  FBGs 

have found applications in routing [4], filtering control and amplification of optical 

signals [5], as the feedback element in fibre lasers [6], in dispersion compensation [7] 

and in sensing applications [8].  
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For a FBG of typical length 5mm and period 0.5µm, the grating comprises of 

thousands of periods. These highly regular and partially reflective modulation planes 

reflect a set of waves, which then interfere. This interference is in general destructive 

but for the wavelength that satisfies the Bragg condition, the reflected light will add 

constructively. So the FBG acts as a mode coupler, coupling the forward propagating 

mode to a backward propagating mode only when the resonant condition is satisfied. 

 

2.2 Uniform FBG 
 
For a uniform FBG, the period Λ remains constant throughout the length and the 

reflection is the strongest at the Bragg wavelength, λB. The Bragg resonant 

wavelength is a function of the period, Λ and the mode effective index (neff) which is 

given by [9]; 

Λ= effB n2λ   (2.1) 

 

Light at the Bragg wavelength, λB, propagates in the fibre undergoes reflection and 

the rest of the light is transmitted through the grating unimpeded. The spectral 

characteristics depend on the grating’s parameters, such as the amplitude of the 

refractive modulations, grating length, the coupling strength and the overlap integral 

UV light 

Interference 
pattern 

refractive index modulation 
is imprinted in the core. 

Fibre 

Figure 2.1 The formation of FBG by UV light. 

Λ
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of the forward and backward propagating modes. A typical reflection spectrum of a 

uniform FBG is shown in figure (2.2) 

 

2.3 Linearly Chirped FBG 
 

A chirped FBG has a Bragg condition, equation (2.2) which varies as a function of 

position along the grating. This is achieved by ensuring that the periodicity, Λ, varies 

as a function of position, or that the mode index, neff varies as a function of position 

along the FBG [10, 11], or through a combination of both. The Bragg condition for 

the chirp FBGs can be written as; 

 

)()(2)( zznz effB Λ=λ    (2.2) 

 

where z is the position along the grating. With this type of structure, the resonance 

condition is no longer localised but is position dependent. Each position has its’ own 

resonance condition and reflects its own wavelength. This can also be interpreted as 

each wavelength having a different reflection point along the grating. The chirp in the 

FBG’s period gives rise to a broadened reflected spectrum as illustrated in figure 

(2.3). 

Figure 2.2, Schematic diagram of a FBG illustrating that only the wavelength 
of light, λB, that satisfies the Bragg condition, is reflected. 
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The wider bandwidth offered by chirp FBGs provides a larger spectral range to 

operate within. In a linearly periodic chirped FBG, the dependence of the period of 

the refractive modulation upon the axial position along the FBG can be expressed as 

[12]; 

z
l

z
g

o
o

)(
)( lg Λ−Λ

+Λ=Λ   (2.3) 

 

where Λo is the period at the start of the grating, Λlg is the period at the end of the 

grating and lg is the grating length.  The equation (2.3) describing the dependence of 

periodicity upon position is illustrated in figure (2.4a). This provides a varying Bragg 

condition along the length of the grating. 

λ1 

R
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λ2 λ 

λ1 

λ2 

b) 

a) 

chirp is created by the 
variation of period, Λ with 
positon, z. Λ(z) 

Λ1 Λ2 

typical bandwidth ~ nm 

The resonance condition for λ1 
and λ2  are satisfied at their 
perspective positions, 
λ1 = 2n Λ1 and λ2 = 2n Λ2 

Figure 2.3 Response of chirped Bragg grating where: 

a) Illustration of the spectral response of the chirped grating. 
b) the variation of the resonance condition with grating length. 
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The resonance condition is also dependent on the mode index. This provision of chirp 

in the FBG can also be realised by creating a varying mode index along the length of 

the FBG. Figure (2.4b), demonstrates how a variation in Bragg wavelength with 

position is possible by introducing a mode index variation with grating length while 

keeping the periodicity constant. The dependence of the mode refractive index upon 

the axial position along the FBG can be written similarly to equation (2.3); 

 

Λ2 

λ1

Figure 2.4, illustration of the chirped FBG with position detuned Bragg 
wavelength where the detuning is, a) driven by the position dependence 
periodicity, Λ(z) and b) is driven by the varying mode index with position neff(z).
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Λ1 
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Λ1 
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b) 
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Bragg condition: λB(z) = 2neff(z).Λ0 
and λ1, λ2 is given by; 
  
 λ1 = 2n1 Λ0  
and  λ2 = 2n2 Λ0 

Bragg condition: λB(z) = 2n0. Λ(z),  
and λ1,  λ2 is given by; 
   

λ1 = 2n0 Λ1 
and  λ2 = 2n0 Λ2 

n2 
mode index, n1 n2 
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where no is the mode index at the start of the grating, nlg is the mode index at the end 

of the grating. The practical methods of generating a chirped FBG using these two 

means are discussed in the chirp fabrication section (2.4.3). 

 

2.4 Fabrication of Fibre Bragg Grating 
 

This section discusses the methods used to generate a periodic modulation of the 

optical properties of the fibre and evaluates their merits and disadvantages. In 

particular, the methods used to fabricate the FBGs exploited in this thesis are detailed. 

 

2.4.1 Holographic method 
 

The fabrication of FBGs relies upon the introduction of a periodic modulation of the 

refractive index in the core of the fibre. The resulting regular structure acts as a means 

for coupling between modes. The change in the refractive index when exposed to UV 

radiation is made possible by the nonlinear effect, termed ‘photosensitivity’, occurring 

in the germanium doped fibre, which was first observed in the ‘Hill gratings’[1]. This 

permanent index modulation is imprinted in the core of the fibre by a standing wave 

formed within the core between counter-propagating modes of light in the blue-green, 

~488nm, region of the optical spectrum. This intensity dependent refractive index 

change of the fibre core is a result of the absorption feature associated with germania-

related defects @240nm, which is a 2 photon process for illumination at 488nm. This 

method produced FBG of restricted use, as the resulting FBGs were limited to 

operation at the wavelength of the laser used to fabricate them. As the fibres do not 

exhibit photosensitivity in the near IR region of the spectrum, this fabrication process 

is not suitable for producing FBGs for telecom applications.  

 

The current level of interest in FBGs was initiated by the work of Meltz et al [3], who 

developed a side exposure holographic technique, in which the optical fibre is side 

exposed to the spatially structured illumination pattern formed by 2 interfering UV 

laser beams at a wavelength of approximately 240nm. The photosensitivity is based 
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upon the absorption peak of the germania-related defects of the fibre centred at 

220nm. At these wavelengths, the refractive index change is a single photon process, 

making this approach more efficient.  

 

The Bragg wavelength of FBGs fabricated using this technique is determined by the 

geometry of the interfering beams, providing flexibility in the characteristics of the 

FBG allowing a wide range of Bragg wavelengths to be produced. This technique 

allows the fabrication of FBGs with characteristics suitable for telecom and sensor 

applications. The interferometric setup for the side exposure technique is shown in 

Figure (2.5).   

A typical fabrication system is shown in figure (2.5). The UV beam is split into two at 

the 50/50 beam splitter. The two beams are brought together to interfere at the 

location of the fibre using mirrors, allowing control over the intercepting beams 

mutual angle θ. The Bragg wavelength of the FBG produced in the side exposure 

method is given by [9]; 

 









=

2
sin θ
λ

λ

uv

uveff
Bragg

n

n
   (2.4) 

 

UV radiation

50% beam 
splitter  

mirror 

mirror 

Compensation plate 

fibre 

Interference pattern produces 
the refractive modulation in 
the core of he fibre 

θ 

Figure 2.5 Two beam transverse interferometer. 
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where λBragg is the Bragg wavelength, neff is the effective mode index of the fibre, nuv 

is the refractive index of the silica when exposed to the UV light at λuv and θ is the 

mutual angle as seen in Figure (2.5). Variation of θ, or of the writing λuv, allows a 

wide range of Bragg wavelength to be written. The interference pattern produced at 

the intersection of the two beams imprints a regular pattern into the fibre. When using 

a low coherence UV source, the path difference between the two beams must be 

matched to produce a high visibility fringe pattern. Vibration and temperature changes 

that occur during exposure of the fibre, which may be as high as ±1oC, can influence 

the path length difference and ultimately deteriorate the quality of the interferogram. 

Operating the writing light source with short exposure time (10s of seconds) will 

minimises the effect. 

 

In writing FBGs, accurate placement of the fibre is critical to avoid the production of 

slanted FBGs which can couple light into other modes. Whilst the holographic side 

exposure technique is capable of producing Bragg wavelengths of arbitrary value by 

appropriate selection of the mutual angle between the converging beams, an 

alternative method based on the phase mask is commonly used. The use of phase 

mask allow highly repeatable fabrication of FBGs with a given Bragg wavelength 

defined by properties of the phase mask, however, this wavelength properties can not 

be tuned significantly. 

 

2.4.2 Phase Mask technique 
 

Phase masks are fabricated using lithography techniques. A silica plate is exposed to 

electron beams, and using techniques such as plasma etching, a one-dimensional 

periodic surface relief pattern is produced with well defined spacing and etched depth. 

The phase mask works in transmission. When a UV beam is incident normally to the 

phase masks surface, the beam is diffracted into the -1, 0 and +1 orders. Appropriate 

choice of etch depth allows the intensity of the zero order to be as low as < 5%, such 

that up to 40% of the UV energy is diverted in the ±1 orders [9]. The operation of the 

phase mask is shown in figure (2.6). The overlap between the ±1 orders close to the 

phase mask, produces the interference pattern that is inscribed into the fibre, as 

illustrated in figure (2.6). 
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Using the phase mask in close proximity to the fibre as shown, the inscribed period is 

equal to half of the period of the phase mask. The use of the phase mask allows highly 

reproducible fabrication of FBGs with fixed characteristics determined by the phase 

mask properties. The disadvantages of this method include the fact that a particular 

phase mask fabricated is use with a specific writing UV wavelength. When used at 

UV wavelengths other than the design wavelength, the diffraction efficiency is 

reduced and thus the zero order can influence the final Bragg wavelength. A different 

phase mask is required for each different Bragg wavelength. The phase mask 

technique offers easier alignment and imposes a less stringent requirement on the 

coherence of the writing source. A degree of flexibility in varying the Bragg 

wavelength can be achieved by application of strain to the optical fibre before the 

FBG is fabricated. The phase mask can also be used as a component of a 2 beam the 

interferometric set up as illustrated in figure (2.7).  

 

The phase mask can be used in a way similar to a beam splitter as shown in figure 

(2.7). The use of a phase mask in this way simplifies the alignment of the fabrication 

system. In figure (2.7a), the Bragg wavelength can be varied by tuning of the mutual 

angle, or by varying the UV writing wavelength. Whereas the prism used in the 

configuration shown in figure (2.7b) can be very compact and stable. Variations of the 

above scheme have been used to write FBGs. 

 

Incident UV 
light beam 

Fibre  

-1 st order  
Zero order  1 st order  

Fused silica phase mask 

Interferogram created in 
the core of the fibre 

Figure 2.6, Illustration of the fabrication of FBGs using a phase mask.  
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2.4.3 Chirped FBG fabrication 
 

The previous section dealt with the formation of uniform period FBGs, in which an 

interferogram of uniform period is created by the intersection of two UV beams. 

Chirped FBGs require a variation of the period or a variation of the effective 

refractive index along the length of the grating. Period chirped FBGs may be 

fabricated by bending [13] the fibre with respect to the interferogram, figure (2.8), 

where the projection of the interference pattern onto the curved fibre creates a 

variation in the period. Bending the fibre creates a functional dependence of the 

grating period upon the radius of curvature, so that a linear or a quadratic chirp may 

be created. FBGs with bandwidths from 7.5nm to 15nm, and reflectivity as high as 

99% have been reported [13]. 

mirror 

Fibre 

Interference pattern of the 
refractive modulation 

Phase mask 

Fibre 

mirror 

UV 
light 

+1 order -1 

UV 
light 

 

Figure 2.7, Holographic writing technique using a phase mask as a beam splitter a) 
using mirror and b) using a prism to vary the angle between the two interfering 
beams.  

prism 
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A more flexible technique for fabricating chirped FBGs, which is capable of 

producing Braggs reflection with wide bandwidth, exploits the interference of beams 

with dissimilar wavefronts [14]. The setup is shown in figure (2.9). 

 

 
By introducing lenses of different focal length into the paths of the 2 beams in the 

holographic arrangement, the wavefront curvatures will differ at the fibre. When the 

two beams are brought together to interfere, the resulting interferogram will no longer 

Inteferogram produced by 
the holographic method 

Figure 2.8, shows the configuration for writing linearly chirped FBG by bending 
the optical fibre [13]. 

Fibre  

 UV beams in the 
holographic methods 

Direction of increasing period 

Figure 2.9, writing chirped FBGs with interference of different wavefronts by 
using lens of different focus at the respective beam paths [14]. 

Lens of different 
focal lengths  

UV beam Beam 
splitter 

Mirror  Mirror  
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have constant period, the period varies as a function of distance along the axis of the 

fibre. Using this technique, chirped FBGs with bandwidths of ~10nm [15] and 44nm 

[14] and in excess of 140nm [16], with reflectivities as high as ~80% have been 

reported.  

 

Phase masks of constant period may also be used to impart chirp to an FBG, as is 

shown in figure (2.10)[17]. When the fibre is placed parallel to a phase mask, a 

constant period is inscribed into the core of the fibre. When the fibre is tilted, the 

period inscribed is a function of the incident angle. The angle of incident of the 

collimated UV beam can be changed by the introduction of a lens as shown in figure 

(2.10). The method produces a varying periodicity with grating length and the chirp 

imposed is determined by the mask’s period, the inclined angle α and the 

characteristics of the lens. Using this technique, an FBG of bandwidth ~6nm has been 

reported, and a theoretical value of bandwidth of 100nm is possible [17]. 

 

 
The phase mask technique is known for its repeatability and ease of use, but suffers 

from a lack of tuneabilty of the Bragg wavelength when compared to the holographic 

method. Chirped phase masks have also been used to inscribe a continuously chirped 

period FBGs [18]. The chirp phase mask consists of a continuously varying mask 

period, as is shown in figure (2.11). In this case, the writing process requires the fibre 

to be in close proximity to the phase mask, but does not require that the fibre is tilted. 

A bandwidth of ~ 2nm for a FBG length with length of 5cm has been reported [18].  

Figure 2.10, shows the configuration for writing a linearly chirp FBG using a 
uniform phase mask [17]. 

Incident UV 
light beam 

Fibre  

phase mask 

Lens with focus f 

α 
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distance d
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Linearly and non-linearly chirped FBGs have been written using a stepped phase 

masks [19]. This so called ‘stitched’ phase mask is composed of a series of sections of 

uniform period, with each section having a different period to its neighbour (step 

chirp) as shown in figure (2.12). 

 

 
Using this method, gratings with bandwidths of between 0.5nm and 15nm have been 

fabricated [19]. A stepped chirped grating can also be created by using a simple 

Interferogram creating the chirp pattern 

Figure 2.11, illustrations of writing a chirped FBG using a chirped phase mask.  

Incident UV 
light beam

Fibre  

-1 st order  
Zero order  1 st order  

chirp phase mask 

The ith  section with period Λi 

Figure 2.12, an illustration of the stepped chirped FBG produced by using a 
stepped phase mask. Each section consisted of constant period with a 
progressively increasing period from section to section [19].  

λi λi+1λi-1 
Local Bragg 
wavelength λn 
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Stepped phase mask 
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stretch and write technique [20]. A uniform phase mask is used with this technique 

and by shifting the writing beam along the mask while applying a progressively 

increasing strain to the fibre with every step, gratings with bandwidth of up to 10nm 

have been demonstrated [20]. 

 

Limited tuning of the Bragg wavelength can be achieved in the holographic writing 

method by pre-stretching the fibre prior to writing, and relaxing following fabrication. 

This idea can also be used in the fabrication of chirp FBGs. By introducing a non 

uniform strain profile such as a strain gradient along a uniform grating, chirped FBGs 

can be created using the same principle. According to equation (2.2), the effect of 

strain will modulate the effective refractive index and the period, the resonance 

wavelength at the position along the grating, z is given by [21]; 

 

)()( 00 zz ξελλλ +=   (2.5) 

 

where λ0 is the Bragg wavelength, ξ is the strain responsitivity of the fibre and  ε is 

the local strain. A strain gradient can be imposed by mounting a uniform FBG in a 

medium, such as an adhesive, with a variable degree of yielding when the adhesive 

have cured. The two ends of the fibre are loaded with different tension [22], thereby 

imposing a variation in period along the length of the grating. The central Bragg 

wavelength shift, which is related to the average of the strain across the grating, is 

determined by the strain response of the fibre used and the bandwidth is determined 

by the strain gradient created by the loading and characteristics of the adhesive. A 

Bragg wavelength shift of 7nm and bandwidths of 0.25nm to 2nm have been 

demonstrated [22]. Encapsulating a uniform FBG in a tapered elastic plate [23] or 

mounting on a tapered steel plate [24] where the area of the plate along its’ length 

decreases gradually, will have the same effect when the plate is strained. 

 

The strain gradient can also be achieved by straining a plate with a uniform FBG 

attached near to a hole drilled in the plate [25]. The deformation due to pressure of a 

circular diaphragm maybe used to impose a stain gradient [26], as may the use of a 

the cantilever beam [27, 28, 29, 30 31 32]. By mounting the uniform or pre chirped 

FBG to the surface of the cantilever, the effect of loading will create a non-linear 
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change in shape of the cantilever, thus transferring a strain gradient onto the FBG 

which modifies the period along the FBG’s length. 

 

Previous sections have shown that a period chirp can be created by the inscription of a 

refractive index of modulation of period that varies along the FBG. Chirped FBGs can 

also be realised by varying the effective refractive index of the propagation mode 

along the FBG. This may be achieved by changing the guiding properties along the 

length of the grating such as varying the diameter of the cladding of the fibre to a 

taper.  This tapered fibre can be created by differential etching using a timed chemical 

etching technique where the fibre becomes a tapered section as shown in figure 

(2.13).  The tapered fibre is designed at which there is a smooth change in the fibre 

diameter from 125µm to a value of 50µm over a length of 10mm. By exposing this 

gradual tapered region to an interferogram generated by the holographic method, a 

uniform periodic refractive index modulation is imprinted onto the core of the tapered 

region, thus forming a chirped FBG as shown in figure (2.13). The tapering of the 

fibre creates a varying mode index along the FBG which together with the uniform 

periodicity of the refractive index modulation establishes a varying Bragg condition 

along the FBG’s length. Using this method a bandwidth of 2.7nm has been created in 

a 10mm FBG [33]. 

 
The taper can be created by chemical etching [34, 35] or by stretching the fibre when 

exposure to the arc of a fusion splicer [36]. Writing a uniform periodic refractive 

Figure 2.13, chirped FBG created using a tapered fibre[33]. 

Tapered fibre with a 
differential change in 
the cross sectional area 

Inteferogram produced by 
the holographic method 

 UV beams in the 
holographic methods 
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index modulation in the core of the tapered section then creates the chirped FBG. By 

stretching the fibre, the differential change in the cross sectional area of the tapered 

fibre translates this strain to one of differential strain/strain gradient across the FBG, 

thus modifying the period along the FBG’s length. This coupled with the changes to 

the already varying mode index, via the strain optic effect changes the chirping 

further. A tuneable total chirp of 4.5±4nm has been demonstrated in this way [36]. 

 

Etching the surface of the fibre surface can modify the refractive index of the mode 

through the alteration to the propagating properties of the fibre. Etching can also be to 

directly create a periodic refractive index modification in the core of the fibre. 

Chirped FBGs have been fabricated with a bandwidth of 20nm over a grating length 

of 1cm, using the electron-beam etching method [37].  

 
Table 2.1 
 

Methods of creating chirp in FBGs 

method bandwidth reported 

bending the fibre[13] 7.5nm to 15nm 

interference of different wavefront[14] 10nm, 44nm and in excess of 140nm 

uniform period phase mask 

tilting fibre [17] 
6nm (theoretical 100nm) 

chirped phase mask [18] 2nm, 10nm 

stepped phase mask [19] 10nm 

strain gradient  

[22, 27,28,29,30,31,32] 

0.25-2nm 

temperature gradient [38] [39] 0.5nm 

taper fibre[33] 2.7nm 

direct writing using e-beam etching 

[37] 

20nm 

 
Change in the local temperature changes the Bragg wavelength by modifying both the 

physical period and the refractive index via the thermo-optic effect. Just as chirp can 

be created by imposing a strain gradient along the FBG, chirp can also be established 

by applying a temperature gradient along the grating length [38]. A thermal gradient 

can be generated by using two peltier thermo-electric elements at either end of a 

uniform period FBG [39], thus establishing a linear temperature gradient. Using this 

method the spectral bandwidth of a uniform FBG 0.2nm of a uniform FBG has been 
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shown to broaden from 0.2nm to 0.5nm with a temperature difference ~70oC  between 

the 2 ends of the grating. 

 

2.5 Summary 
 

A brief introduction to the formation of FBG has been provided. When a 

photosensitive optical fibre is exposed to spatially allocated UV light, a refractive 

index modulation is induced into the core of the fibre. The operation of a FBG as a 

mode coupler, causing coupling between the forward and backward modes and 

promotes the reflection of light which satisfies the Bragg condition. The difference 

between uniform period FBGs and the chirped FBGs was outlined and their spectral 

characteristics described. Methods used to inscribe FBGs have been detailed and 

methods used for fabricating chirped FBGs have been tabulated, table 2.1.  

 

In the theory section that follows, it can be seen that the exact chirp of the FBGs is not 

so important for the observation of dispersive effect in the FP interferometric response 

of the cavity. The specification of the chirped FBGs used in this work is mostly 

constrained by what is practically achievable in the chirped FBG writing process in 

our laboratory or limited by what is available commercially without incurring great 

cost. Based upon the finding in the theory sections, low reflectivity in the FBG 

reflectors in the formation of the FP will give a high visibility on reflections so low 

reflectivity (~4%) is suffice for the gratings and it is also much more difficult to 

achieve high reflectivity in chirped FBG in the writing process because of the wide 

band response of the chirped FBGs. 
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3 Review of FBG sensors and filters 

3.1 Introduction 

 

An FBG consists of a refractive index modulation formed inside the core of an optical 

fibre. The FBG creates diffraction phenomena when light propagating in the fibre 

core interacting with the FBG. The interaction with the propagating wave allows the 

coupling of the forward mode to the backward mode with characteristics depending 

on the properties of the FBGs. The distinguishing feature of FBGs is the flexibility to 

achieving desired spectral characteristics of the reflected and transmitted wave. FBGs 

are simple devices and they are found in key applications such as sensor elements [1], 

partially reflective mirrors for the formation of fibre Fabry-Perot (FP) interferometers 

[2] and as wavelength filters [3]. The reflected spectral bandwidth of the uniform 

period FBGs generally lies in the range ∼0.02nm to 0.3nm [4] but bandwidths of up to 

1.5nm [5] have been reported. The bandwidth of the reflected spectra can be increased 

considerably by chirping the FBGs achieved through a positional dependence of the 

period or mode refractive index. This broadband response can increase the operational 

bandwidth of FBG when employed as a reflective element in, for example an intrinsic 

FP interferometer. Chirped FBG may also be used to impose dispersion on 

wavelengths lying within the bandwidth, as the Bragg condition changes as a function 

of the position along the grating length, so that different components of the light 

travel different distances.  For the past decade, an intense research effort, and large 

body of published material, has been devoted to the use of FBG as sensors and 

telecom devices, they have been thoroughly reviewed [6, 7, 8, 9,10,11,12]. 

 

3.2 Uniform FBG sensors 

 

Fibre sensors are usually classified as either extrinsic or intrinsic. Extrinsic sensors 

carry light to and from some non-fibre element that modulates the light response to 

the measurand perturbation, whereas intrinsic sensors have the sensing element as the 

integral part of the fibre itself. FBGs belong to the latter as the interaction of the 



Chapter 3 Review of FBG sensors and filters 

 31

measurand with the fibre perturbs the characteristics of the FBG, and thus of the light 

propagating within its sensing region.  

 

Optical sensor systems involving a FBG sensing element usually work by injecting 

the output from a spectrally broadband source into the fibre. The resulting signal on 

reflection has a narrow band spectral component at, λB the Bragg wavelength. The 

transmission spectrum is the complement of the reflection as shown in figure (3.1). A 

FBG operates as a bandpass filter in reflection and notch filter in transmission. 

 

 

 
The use of these elements as a sensor is derived by the ability of these FBGs to shift 

the wavelength through the change in Bragg condition, equation (2.1). Under the 

influence of strain or temperature, the modulation of the FBG parameter will manifest 

itself through a change of the resonance condition and thus produce a shift in the 

Bragg wavelength. A simple illustration of the effect of the change in the physical 

dimension of the FBG on the spectra of the FBG is shown in figure (3.2).  

 

The perturbation arising from strain or temperature changes the geometry and the 

effective refractive index of the propagating mode of the FBG through the elasto-optic 

I 
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spectrum 

        Core UV inscribed holographic grating 
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Cladding 
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spectrum 

I 
 

λ

I 
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λB            λ 

Figure 3.1, shows a schematic diagram of a FBG illustrating that only the 
wavelength of light, λB, that satisfies the Bragg condition, is reflected. 

transmitted 
spectrum 
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and thermo-optic effects. This in turn creates a different coupling condition for the 

propagating modes, and the interaction of the FBG with the light will give different 

characteristics. Under the influence of strain and temperature, the sensor responds via 

a shift in the Bragg wavelength, Bλ∆ according to, 
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where ∆ε is the applied strain, n is the effective refractive index of the propagating 

mode, Λ is the grating period and the ∆T is the temperature change. 

 
The strain response arises from both the physical elongation of the grating, thus the 

corresponding fractional change in Λ, and from the change in the mode refractive 

index due to 






εd

dn , the photo-elastic effect. The thermal response arises from the 

thermal expansion of the fibre material and the temperature dependence of the mode 

refractive index 







dT
dn , the so called thermo-optic effect. The thermal response is 

dominated by the thermo-optic effect, which accounts for 95% of the observed 

wavelength shift [7]. 
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Figure 3.2, shows a schematic effect of perturbed FBG response with the 
corresponding wavelength shift. 
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Equation (3.1) can be separated into the strain and temperature contributions [7]: 

 

∆λB= ∆λε+∆λ∆T 

where 

∆λε=λB(1-pe)∆ε  ⇔ λξ
ε
λ
=

d
d  

and         (3.2) 

∆λ∆T=λB(α+ς)∆T ⇔ λζλ
=

dT
d  

where, pe~0.22 [10],is the photo-elastic coefficient for fused silica, ξ is strain 

responsivity with a typical value of 0.75ε-1. α is the thermal expansion with a typical 

value of 0.55x10-6 oC-1[13], ζ ~ 6.67x10-6 oC-1[1] is the thermo-optic coefficient and ζ 

is the temperature responsivity with a typical value of 8.3x10-6 oC-1 [13], for 

germanium-doped fibres. Table (3.1) summarizes the temperature and strain 

sensitivities represented in the text. 

 

Table 3.1  Strain and temperature response of FBGs at different wavelengths 

wavelength 

range, λ 
dλ/dε dλ/dT 

800nm 
0.52pm/µε@820nm [14] 

0.67pm/µε@837nm[15] 

6.64pm/oC [13] 

7.4pm/oC Corning Flexicore@824 [16] 

4.3pm/oC Andrew PM@833nm [16] 

7.36 pm/oC@837nm[13] 

6.35pm/oC@810nm[17] 

1300nm 1.0 pm/µε [18] 
8.67pm/oC[13] 

10.85pm/oC [19] 

1550nm 
1.15pm/µε [20] 

 

10.45pm/oC @1533nm[21] 

13pm/oC[16] 

 

The exact value of the thermal and strain response depends on the composition of the 

fibre used. The composition of the fibre and a built in strain during the FBG 

inscription [22], can have influence on the material characteristics. The strain 

response is temperature dependent [23,24] but remains constant from room 
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temperature to around 500 oC [25] whereas the temperature response is very much 

constant (room temperature to ~200oC but increases in value at high temperature [10]. 

 

One of the most significant limitations facing the wide scale deployment of FBG 

sensors in real world application is their simultaneous sensitivity to both temperature 

and strain. The application of the FBG sensors can be complicated by the complicity 

of strain and temperature especially in the measurement of quasi-DC strain in 

engineering environments. Temperature variations along the fibre path can lead to 

anomalous thermal apparent strain readings. A number of techniques for overcoming 

this limitation have been reported and demonstrated, including the use of dual 

wavelength gratings [26], cancellation of the thermal response of the grating [23], the 

use of a reference grating which is shielded from stain and only measures temperature 

[27, 28] with the latter technique being perhaps the most widely used. The reference 

FBGs are kept isolated in a strain free environment but experience the same thermal 

environment as the active FBG sensor elements [29]. This facilitates the separation of 

the FBG response due to temperature. 

 

3.2.1 FBG Sensor systems 
 

The FBG sensor systems are useful for a variety of applications, in particular smart 

structures[30], where FBGs are embedded into the structural material to allow real 

time evaluation of load, strain, temperature, vibration etc. for in-service and real-time 

monitoring of the integrity of the measurement of structural components. They can 

also be found in various applications such as strain measurement [31,32,33], 

temperature [34, 35], vibration [36], acceleration [37], ultrasound [38, 39], magnetic 

field [40] and pressure [41, 42]. They can also be used as optical filters, for tuning the 

lasing wavelength of laser diode [43] and reflectors in fibre Fabry-Perot etalon filters 

and interferometers. FBGs have also been deployed in routing [44], filtering control 

and amplification of optical signals [45], as feedback element in fibre lasers [46], and 

in dispersion compensation [47]. 

 

FBG sensor systems rely upon the measurement of the measurand induced shift in the 

Bragg wavelength. The detection of the shift in the measurement of λB allows the 
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magnitude of the measurand to be determined. This is done by injecting a broadband 

light into the fibre which contains the FBG, and monitoring the change in the λB as 

shown in figure (3.3). 

 

3.2.2 Interferometric demodulation 
 

The sensitivity of the FBG sensor system can be increased using interferometric 

detection. Unbalanced interferometers, such as the Mach-Zehnder (MZ) [48] can be 

used. This processing interferometer serves as a wavelength sensitive element and 

converts the shift in wavelength of the optical signal into a change of phase of the 

interferometric signal, producing a cosinusoidal intensity output with change in 

wavelength as shown in figure (3.4). 
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Figure 3.3, illustrates a basic wavelength division multiplexed FBG based sensor 
system with reflective detection. 
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Figure 3.4, illustration of the grating sensor system with interferometric 
wavelength discrimination using an unbalanced MZ 

Phase modulated output signal 
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The sensitivity of this wavelength readout device is limited by the maximum path 

length unbalance of the MZ, which is determined by the effective coherence length of 

the reflected bandwidth of the FBGs typically of order 0.2nm [48]. This corresponds 

to a maximum path length unbalance of ~1cm. The phase excursion for a given 

wavelength shift can be increased by having a larger path length imbalance to the MZ 

processing interferometer. This is achieved in the demodulation technique which 

employs a laser sensor concept, where a FBG is used as a feedback element for tuning 

and linewidth narrowing of a semiconductor laser diode device [43,49] or a pair of 

matched FBGs are used to form a cavity around a section of Erbium doped fibre 

[31,50] as shown in figure (3.5). 

 

 
FBGs are exposed to the measurand field which changes the lasing wavelength. The 

longer coherence length of the laser allows a longer path length unbalance in the 

processing interferometer from 1cm to an increased to 96m giving an amplification 

factor 1920 with an achieved resolution of 5.6x10-14 RMS Hz-1/2. 
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Figure 3.5, illustration of the grating laser sensor system where the wavelength 
sensitivity can be increased because of the improved signal linewidth. 
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3.3  Linearly Chirped FBG sensors 

 

The uniform FBG acts as a narrow band optical reflector. The characteristics of the 

narrow spectrum can be varied through external perturbations interacting with the 

grating and provide a shift in wavelength. When operating as sensors, they can 

provide real-time strain, temperature and structural integrity information. Chirped 

FBGs can be used in a similar fashion to provide information on the wavelength shift 

of the central wavelength. The non-localised Bragg condition of the chirped FBGs 

gives rise to a variation in the Bragg condition along the grating length. The Bragg 

condition can be expressed as a function of the position along the grating length given 

in equation (2.2). Not only do the chirped FBGs offer a broader reflected spectrum of 

light, but also the position dependence of the Bragg wavelength impose a different 

time delay to each wavelength component. As the illuminating wavelength increases, 

depending on the magnitude and the sign of the chirping coefficient, the light 

propagates further into the grating before reaching its resonant position and 

undergoing reflection. This effect imposes a varying group delay upon the reflected 

signal across the spectral bandwidth of the grating as illustrated in figure (3.6).  

 

 

Figure 3.6, illustrates the position dependence of each wavelength component 
for a linearly chirped FBG with a linear variation of the period. 

lg 

where 
b =  position along FBG  
lg = grating length 
       

λB 

b(λ)

wavelength, λ λ

position 
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The wavelength dependent position, b(λ), about the centre wavelength, λB can be 

expressed as a linear equation with wavelength [51]; 

 

( ) g
c

B lb
λ
λλ

λ
∆
−

=   (3.3) 

 

where ∆λc is the total chirp, lg is the grating length. The difference in distance 

travelled by each different wavelength creates a time delay. The group delay thus 

imparted to each wavelength component could be determined by measuring the time 

elapse for light within the bandwidth of the chirped FBGs to travel to its resonance 

position, using the time of flight technique [52] as illustrated in figure (3.7). The 

broadband source is pulsed and the wavelength is selected by a tuneable Fabry-Perot 

(FP) as shown. The time elapsed between the generation to the detection of the light 

pulse when it is reflected from its’ resonance position, is measured.  

 

The result of this group delay measurement is shown in figure (3.8) and demonstrates 

that different wavelengths are reflected from different positions along the grating 

length. 
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Figure 3.7, shows a schematic of the timed signal for measuring the group delay 
[52] 
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Several methods have been used to demonstrate the non localised nature of the 

reflection of the individual wavelengths. They are either based on direct phase 

detection using interferometric techniques [53] or using a synthetic wavelength 

technique [54,55]. In the synthetic wavelength technique, a continuous wave 

modulation is used to measure the group delay using the synthetic phase information 

as illustrated in figure (3.9)[55]. 
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Figure 3.9, Schematic of the synthetic wavelength technique [55] for measuring 
the group delay 
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Figure 3.8, the group delay measurement demonstrating the different delay of 
each wavelength due to the wavelength dependence of the reflection position 
[52].  
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The intensity of the output from the tuneable source operating at a particular 

wavelength, λ is modulated in the RF frequency range, Ωs using the MZ modulator. 

This generates a continuous wave with a synthetic wavelength, Λs given by [55];  

 

n
c

s
s Ω
=Λ

π2  

 

where c is the free space speed of light and n is the refractive index of the material. 

 

The phase of this synthetic wavelength, Λs, is detected using a phase detector when 

light of wavelength, λ is reflected from its respective resonance position. By changing 

the interrogating wavelength, λ  the delay for each wavelength can be mapped out as 

shown in figure (3.10). 

 
The accuracy of the phase measurement technique in determining the group delay 

depends on the sensitivity of the phase meter and the synthetic wavelength used. 

 

Chirped FBGs offer an attractive solution to the problem of chromatic dispersion in 

optical fibre systems. A chirped FBG can be used to provide a wavelength dependent 

delay to the reflected optical signal. In this sense the chirped FBG acts as a dispersive 

Figure 3.10, illustrates the results of the group delay measurement using the 
synthetic wavelength technique [55]. The results demonstrate that different 
wavelength are reflected from different positions along the chirped FBG 
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device where this dispersion or difference in delay of each component can be made to 

counteract the dispersive effect of the host materials. The wavelength dependence of 

the reflected position alters the optical path length travelled by each wavelength. The 

amount of dispersion depends on the shape of the group delay curve which is given by 

the chirp coefficient of the grating. Dispersion causes broadening [56] in an optical 

pulse because different wavelengths travel at different group velocities and arrive at 

different times, which changes the shape of the pulse in time domain. This effect is 

detrimental in communication systems where data bits will not be resolved. Chirped 

FBGs have been proposed for dispersion cancellation [57].  Figure (3.11) 

demonstrates the effect a chirped FBG upon a pulse that has travelled through a 

dispersive medium. 

   
This is achieved by imposing a longer optical path on the leading components of the 

pulse. Thus the slower component is allowed to catch up with the faster component of 

the pulse, reshaping it.  Chirped FBGs have been demonstrated for pulse compression 

[58,59,60] in all fibre applications. They allow a large amount of relative group delay 

to be compensated for in a very compact way. Furthermore, by changing the 

dispersion slope through the chirp parameters of the FBGs, they can be tailored to 

Reflection region for λblue Reflection region for λred 

time 

Dispersed  
input pulse 

time 

Compressed 
reflected pulse 

Figure 3.11, illustrates a chirped FBG imparts delay to different wavelength 
component in a pulse. Depending on the parameter of the chirp FBG, the 
slower component can catch up with the faster component on reflection, 
changing the shape of the pulse. 
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match specific needs. Besides offering wider bandwidth and dispersion cancelling, 

chirped FBGs can also be used as sensor elements. 

 

When a linearly chirped FBG is subjected to axial strain, there is a redistribution of 

the period as well as a change in the refractive index due to the photo-elastic effect. If 

the strain field is uniform, the whole of the chirped bandwidth is simply shifted to the 

longer wavelength region with increasing strain, figure (3.12). The bandwidth of the 

reflected spectra remains the same [61], as there is a uniform change of each grating 

pitch/period and of the refractive index along the grating. This, in accordance with the 

usual effect of strain/temperature, causes a shift in the Bragg wavelength while the 

effective bandwidth remains unaffected.  

 
The shift of the entire bandwidth of a chirped FBG has been used to detect strain [62]. 

The interrogation techniques developed for uniform FBGs such as those based on 

optical filtering and interferometric techniques will no longer be appropriate because 

of the broad bandwidth of the reflection, which decreases the coherence of the 

effective source. The technique involving matched gratings as a receiving device to 

Figure 3.12, the effect of stretching a chirped FBG, showing the shift in the central 
wavelength, ∆λB accompanied by the redistribution of the period. The chirp 
gradient is constant and thus there is no broadening of the reflected spectrum[61].  
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track the movement of the Bragg wavelength of the reflection from uniform period 

FBG has been adapted for the use with chirped FBG sensors [62]. The technique 

involves deliberately mismatching two identical broadband chirped gratings when 

under the influence of temperature or strain, figure (3.13). 

 

The setup is shown in figure (3.13) where a broadband source is launched into a 

circulator/coupler. The light is reflected from the sensor and directed to the identical 

receiving/reference chirped FBG(~10nm). Instead of tracking the wavelength change, 

the receiver/reference chirped FBG acts as a rejection filter. When no temperature or 

strain is applied, the correlation function of the two identical chirped FBGs pair will 

result in a minimum intensity at the detector. 

 
When strain or temperature is applied, the shift of the sensor bandwidth (top hat 

function) will no longer be overlapped with that of the receiver/reference grating’s so 

more light will pass through. As strain and temperature increases/decreases, more 

power will be detected. The response of the technique is termed, as the cross 

correlation between the reflection profile of the sensor (top hat function) with the 

transmission profile of the receiving/reference FBG(inverse of the top hat), will be 

triangular in shape. The responsivity to strain and temperature of this system will be 

that of the uniform FBG, namely that of equation (3.2). The dynamic range is given 

by the bandwidth or the breaking strain of the fibre (~0.1%) which ever comes first. 

Sensing Chirp FBG 

Receiving Chirp 
FBG 

Figure 3.13, Schematic diagram of the identical broadband chirped grating 
interrogation[62]. 
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This enables direct measurement of strain/temperature encoded in transmitted light 

intensity without the need for a filter or piezoelectric tracking system. The technique 

has the advantage of being simpler, faster and more cost effective. The system can 

incorporate more than one sensing/receiving pair, making multiplexing possible [63]. 

 

Theoretical studies of FBG filter responses using the coupled mode analysis [64] and 

the Transfer Matrix Method (TMM) technique [65], have shown that whether chirping 

is achieved through period or refractive index, the reflection spectrum becomes 

broadened and the reflectivity decreases with increasing chirp.  

 

Nonlinear/differential strain applied to an FBG has the effect of increasing/decreasing 

the chirp in the FBG. This is due to the fact that the application of a 

nonlinear/differential strain along the length, z, of FBG redistributes the pitch/period, 

Λ, according to the local strain, ε(z) given by; 

 

))(1()( zz o ε+Λ=Λ   (3.4) 

 

and the effective refractive index is given by; 

  

)())(1()( zzpnzn o εε−=  (3.5) 

 

where Λ0 and n0 are the original period/pitch and effective mode index respectively 

and pε  is the photo-elastic contribution [10] . Together with the Bragg condition, 

equation (2.1), the resonance condition can be approximated and becomes dependent 

on the local strain [66]; 

 

))()(1()( zzpz o ελλ ε+=  (3.6) 

 

The effect of the application of a non-linear/differential strain on a FBG will provide 

the grating with non-uniform pitch/period. It has been demonstrated, theoretically and 

experimentally that nonlinear/differential strain will shift the central wavelength and 

the amount of shift is related to the average strain [67] while the degree of broadening 

of the reflection profile is related to the strain gradient applied [67,68]. Figure (3.14), 



Chapter 3 Review of FBG sensors and filters 

 45

shows the shift of and the broadening of the FBG when a nonlinear strain is applied 

across it [69]. There is a gradual broadening of the profile as well as the shift of the 

central wavelength because of the increase in the average strain. Using the 

dependence of bandwidth on the applied strain gradient, strain has been measured 

independently of temperature by monitoring the normalised total reflected intensity 

using a tapered chirped FBG [70] and a period chirped FBG [71], under the 

assumption that the reflectivity of the chirped FBG remains unchanged under strain, 

while the profiles broadened.   

 

 
The redistribution of the period under the influence of strain, and the associated 

modification of the reflected spectrum, has been used in the measurement of 

disturbances along the grating length. This effect has been used to monitor localised 

pressure and to locate regions of point forces along the grating length from analysis of 

the reflection profile [72]. This principle has also been applied to achieve distributed 

strain measurement along the length of a FBG [73]. Figure (3.15) shows a schematic 

of this intensity based intra-grating sensing.  
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Figure 3.14, illustrates the effect of increasing the strain gradient on the FBG, 
the effect broaden the spectrum of the FBG as well as shifting the central 
wavelength due to the increasing average strain [69] 
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Under the influence of a non-uniform strain field such as a strain gradient, the 

pitch/period Λ(z) at position, z along the grating will be modified according to the 

local strain and will be accompanied by an associated change in the effective index 

n(z). In the studies of filter characteristics [74], the wavelength reflectivity of the 

chirped FBG is related to the local periodicity of the grating. By analysis of the 

reflection spectrum, the positional dependence of the phase matching condition can be 

derived [74]. A differential form of the normalised coupling length (related to the 

period Λ) is related to the product of the coupling strength, κ and the wavelength 

reflectivity, R(λ) at the phase matching region given by [74]; 
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where 
β
βδβ ∆

=  and  
λ
πβ 2

=  is the propagation constant. 

From the above relationship, and assuming the coupling strength, κ is constant 

(related to the amplitude of the refractive index modulation), the period/pitch (and 

thus the strain field, ε) is determined by the corresponding wavelength, λ by the 

Figure 3.15, Schematic of the intensity based intra-grating sensing [73] where 
the nonlinear strain field changes the distribution of the period in the Chirp 
FBG resulting in a modified reflected spectrum. 
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Bragg condition and thus the reflection position, z can be written in an integral form 

using the measured spectral reflectivities [75]; 
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where lg is the grating length.  This provides a relationship between the period, Λ, and 

thus the local strain field, ε with distance along the grating length z. This method has 

been used to determine the strain profile around a circular hole in an aluminium plate 

placed under tension. The method is only valid for monotonically increasing or 

decreasing strain profiles because of the wavelength reflectivity complicity when 

wavelength is reflected from more than one point, which will happen when the strain 

field is not monotonically increasing or decreasing. 

 

3.4 Uniform FBG Fabry-Perot filters 

 

The advent of the holographic method for FBG inscription has made fibre grating 

devices readily available for the fibre communications and sensing applications. Fibre 

Fabry-Perot filters are an important component in optical systems, as they are 

compatible with WDM based fibre communication systems, and may be used as  

tuneable filters for sensor demodulation.  Using a FBG pair to form a fibre FP has 

been advocated, to allow an increase in the sensitivity of FBG based sensors. The 

transmission response of such a grating pair FP has been demonstrated to have the FP 

like characteristics [76] and theoretical analysis has shown that FP cavity resonances 

will appear within the bandwidth of the FBG [76]. The simplest type of all fibre FP 

filters is that of a uniform FBG pair inscribed in the fibre core with the length of the 

cavity determined by the spacing of the FBGs, as illustrated in figure (3.16). 
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High sensitivity can be achieved in this interferometric configuration using phase 

measurement techniques. Figure (3.17) shows the spectrum of a FP formed by a pair 

of uniform FBGs (peak reflectivity ~30% @1541.6, bandwidth ~0.3nm, written and 

characterised in-house at Cranfield) with a cavity length of ~5cm, giving an 

equivalent cavity resonance spacing or Free Spectral Range (FSR) of ~0.016nm, 

figure (3.17c).  

 

The wavelength response of uniform FBG FP filters have been theoretical analysed 

and the predictions compared to experimental values [77]. Their response is identical 

to that of the bulk FP interferometers, except that the FBG mirrors are distributed 

reflectors with a narrow band response. The reflectivity of these filters is given by 

[78]; 

    
( )21

4
R
RRFP

+
=   (3.7) 

 

where R is the reflectivity of the FBG. The FSR/cavity resonance is given by the 

conventional FP response [78]; 

)()(2
)(

λλ
λ

ln
cFSR

eff

=  (3.8) 

 

where c is the free space speed of light,  neff is the effective refractive index of the 

mode and l(λ) is the cavity length.   

Figure 3.16, diagram showing a uniform FBGs pair forming a fibre FP. The 
bandwidth of the 2 FBGs overlap in wavelength [76].   

FBGs with overlapping Bragg wavelength λB 

Cavity length  
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Figure 3.17a), b) shows the spectral profile of the 2 uniform FBGs. The 
interference fringe in the profile is caused by the result of spurious cavity 
formed within the interrogation system with a fibre connector. c), the FP 
spectrum with a cavity length of ~5cm, giving a FSR = 0.016nm. (FBGs are 
written and FP characterised in-house at Cranfield) 
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The distributed reflective nature of the FBG modifies the bulk FSR response with off-

resonance wavelengths penetrating further into the FBG because they are scattered 

less, thus experience a longer cavity length than the on-resonance wavelength 

between the reflection points in the FBGs. An order of 10% variation of the FSR has 

been observed between the on and off resonance wavelengths [77]. Figure (3.18) 

shows the predicted reflection spectrum of a uniform FBG FP result, calculated using 

the Transfer Matrix Method (TMM).  

 
The multiple bandpass response of the FP resonances has been shown experimentally 

using a pair of uniform period FBGs to form a FP cavity [78,79]. A FP was formed 

between 2 uniform FBGs (bandwidth 0.3 nm, peak reflectivity 95.5%) with an 

overlap of the two FBGs spectrum to within ~0.04nm, with a cavity of length 10cm.  

The Free Spectral Range (FSR) was 1GHz (~6pm@1300nm) with a finesse of 67 

[79]. A finesse as high as 5000 has been reported for such a filter [80]. Similar types 

of uniform FBG FP filters have been fabricated and the filter response adhere to the 

conventional Bulk FP response namely that the FSR is inversely proportion to the 

cavity length, equation (3.8). With stronger gratings and thus higher reflectivity, the 

visibility improves as in the case of bulk FPs but with these filters the dynamic range 

is limited by the bandwidth of the uniform FBG reflectors.  

 

The characteristics of the FBG FP filter response can be measured using an optical 

spectrum analyser (OSA) [78] or by wavelength scanning [79].  

Figure 3.18, the result of the TMM of a FP filter formed between 2 identical 
uniform FBGs. The FSR/cavity resonance spacing is determined by the cavity 
length between the gratings centre (The coding of the simulation was done 
under Matlab which was undertaken for the Phd project).  
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It can also be stretch scanned [79], in which the output from a laser operating at a 

wavelength in the longer wavelength region of the FBGs’ spectra is used to illuminate 

the FP. The cavity is subjected to axial strain, so that the FBG spectrum is scanned 

across the laser wavelength, according to the FBGs sensitivity to strain from equation 

(3.2). The wavelength sensitivity is given by the FSR of the filter which in turn is 

determined by the cavity length, equation (3.8). The normalised wavelength shift, 

∆λ/λ, of the FBGs is ~74% of the applied strain under tension and this is translated to 

the equivalent wavelength shift so that the wavelength response can be determined 

[79]. When stretch-tuned, both the Bragg wavelength and the interferometer fringes 

shift together at the same rate [79], an effect that is utilised in FBG based laser sensor 

systems. The same could be achieved by temperature scanning, as is shown in figure 

(3.19). Figure (3.19a) shows the wavelength response of a uniform period FBG FP 

formed by 2 overlapping FBG with central wavelength of 1560.5nm, bandwidth 

~0.3nm separated by a cavity length of ~4.9cm (written in-house at Cranfield) and 

figure (3.19b) shows the FP response when the FBG FP is subjected to strain and 

figure (3.19c) shows the FP response when the FBG FP is experiencing change in 

temperature. 

3.5 Uniform FBG Fabry-Perot sensor 

 

The operation of a uniform FBG FP as a sensor relies on the measurement of the 

meaurand-induced change in the optical length of the interferometer. The change of 

optical path translates into a change in the phase of the output from the interfering 

light signal. The operational range is determined by the bandwidth of the overlapping 

FBGs. As can be seen in the FBG FP’s strain and temperature responses, in section 

(3.4), where the change in the optical path length, due to strain or temperature, is 

accompanied with the change in phase in the detected interfering signal. Phase 

measurement demodulation schemes can offer high resolution.  

 

Unlike the use of a FBG as a point sensor, the FBG FP, with a longer cavity length, 

can be used to average the local strain concentration over the length of the device. The 

long gauge length FBG FP sensors can be interrogated by scanning the wavelength of 

the laser [81, 82] and they have been used to monitor the circumferential deforming of 

concrete structures [82] and to perform temperature measurement [81]. In the later, 
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the current of a Distributed Feedback (DFB) laser was modulated to provide a 

wavelength sweep of 0.15nm to interrogate an FBG FP sensor. The cavity, of length 

14.5mm (FSR~0.058nm) was formed between two broadband FBGs (1.8nm) [81] 

thermally enclosed in a controlled environment. The sweep of the laser wavelength 

produced ~2.6 interferometric fringes. Changes in temperature produced a change in 

the cavity length, accompanied with the phase change in the interferometric signal, 

together with the change in visibility because of the shift of the FBG bandwidth with 

respect to the interrogating wavelength. The change of visibility/amplitude gave a 

gross indication of temperature change whereas the phase measured provided a high 

resolution measurement of temperature. 

 

The averaging of strain fields of a structure, for example such as concrete columns in 

buildings and bridges, requires the use of long gauge length device such as a fibre FP, 

however FPs with long cavity length suffer from phase noise. A long cavity length 

sensing fibre FP, formed between a FBG and a reflective end, has been applied to the 

monitoring of the deformation of concrete columns [82]. The cavity illuminated by a 

tuneable laser source and interrogated using a reference fibre Michelson 

interferometer. The length of the path imbalance of the Michelson interferometer is 

matched to the sensor FP to within 10s of centimetres. When the wavelength is 

scanned, the interferometric signal is the sum of the signal derived from the long 

cavities (small FSR, high frequency in wavelength domain) of the FP and the 

Michelson but also signals from the composite cavities involving the sum (small FSR, 

high frequency in wavelength domain) and the differences (large FSR, low frequency 

in wavelength domain) of the two interferometers, and the phase noise involved if the 

laser suffers from frequency jitter. Using a low pass filter, only the low frequency 

signal is captured and knowing the length of the reference Michelson interferometer, 

the extension of the sensing FP is determined [82]. 

 

Low coherence interferometry [83,84,85] has been used to interrogate multiplexed 

FBG FP sensors. This approach reduces interferometric noise and allows high 

resolution to be achieved. This technique has been deployed to measure strain, 

temperature and vibration. Figure (3.20) shows the setup of the low coherence 

interferometry setup which consisted of the sensing interferometer (FBG FP) and a 

processing/reference interferometer (MZ)[85]. 
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By ensuring that the path length imbalance of the reference interferometer is within 

the coherence length(~1cm) of the FBGs used to form the FPs, interference fringes 

can be observed at the detector. Quasi-static strain and temperature may be 

determined by measurement of the shift of the Bragg wavelength of the individual FP 

pair with the use of an OSA, which has a low resolution (~sub nm), so that the 

interference fringes will not be resolved.  This provides a gross measurement. By 

modulating one arm of the MZ to produce a 2π phase change in the reference MZ, 

with a serrodyne signal of high frequency, a carrier frequency is created. In this 

heterodyne signal processing scheme, the carrier is phase modulated by the 

measurand. A wavelength selection device, such as a FP tuneable filter or a WDM 

device with a reasonable bandwidth which covers the FBG bandwidth ensures there is 

no cross talk between the various FBG FPs. Dynamic strain is encoded in the signal 

with the change in signal phase while the temperature and slowly varying strain is 

encoded as a change in Bragg wavelength. The magnitude of the vibration is 

determined by the amplitude of the side-band component about the carrier frequency, 

as detected by the spectrum analyser. The sensitivities of the FBG FP sensors is 

determined by the cavity length (FSR) used. 

Photo diode 

FBG-FP, 
λ1 

Wavelength selection 
device such as FP tunable 
filter or WDM  

Figure 3.20, schematic diagram of the low coherence interrogation of 
multiplexed FBG FP formed with different Bragg wavelengths. The path length 
imbalance of the MZ matches that of the FP to within cm as the effective Lc is 
determined by the bandwidth of the uniform FBGs (~0.3nm)[85]. 
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Signal demodulation using the Fast Fourier Transform (FFT) algorithm has been used 

on multiplexed FBG FPs with various cavity length, but using the same Bragg 

wavelength bandwidth, such that the signal is collocated in the same wavelength 

regions[86]. The reflected signal is that of the FBG reflection spectrum modulated by 

the various FSR created by the different cavities used. The transform of the spectrum 

will provide information on the FP cavities’ spacing. 

 

3.6 Dispersive Bulk type Fabry-Perot filter 

 

Chirped FBGs are dispersive element and when they are used as partial reflectors to 

form FP, the consequence of dispersion need to be considered. Dispersion causes the 

different components of wavelength to travel different optical path lengths whether it 

is through dispersion in material, where the refractive index changes with wavelength, 

or through a wavelength dependent position of the reflection point such as in the 

chirped FBG. The dispersion inside the cavity affects the performance of the bulk FP 

interferometer and parallel can be drawn with the chirped FBG FP.  

 

The bulk optical Fabry-Perot (FP) cavity, figure (3.21) which consists of a pair of 

optically flat surfaces arranged to form a resonance device has been studied 

extensively. The two inner surfaces are coated with a highly reflective material. When 

light enters into the FP etalon, it experiences multiple reflections between the highly 

reflective surfaces. When the multiple reflections are brought together by a focusing 

lens, they interfere coherently and narrow fringes are observed. These FP etalons are 

used in spectroscopy, as spectrometers and filters for wavelength division multiplex 

(WDM). 
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The optical delay incurred by each reflection on traversing the cavity gives rise to an 

additional phase difference for successive reflections. The total phase difference 

corresponds to a double passage of the cavity. For a wavelength, λ of a single 

polarisation at normal incidence, the round trip phase shift (RTPS) of the cavity is 

given by; 

λ
πθ nl

RTPS
4

=    (3.9) 

 

where n is the refractive index of the media in the cavity and l is the cavity length. 

When there is dispersion involved, the change in phase arising from a change in  

wavelength is given by the differential equation [87]; 
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For a dispersive material, each different wavelength will experience a different optical 

path, nl. The dispersion term 
λd
nld )(  will modify the phase delay for the different 

wavelengths.  When there is no dispersion involved, or it is insignificant, such as in 

air and in non dispersive fibre, the usual change of phase is derived; 
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Figure 3.21, Fabry-Perot Etalon 
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When the phase delay is simply an integer multiple of 2π, the reflected waves 

interfere constructively and when they are of odd multiples of 2π, then they interfere 

destructively. If the etalon does not contain a dispersive material, then the Free 

Spectral Range (FSR) is determined by; 

 

ln
cvFSR FSR )(2 λ

=∆=   (3.12)  

 

The effect of dispersion in the medium within a bulk FP interferometer formed 

between confocal mirrors, have been analysed by Vaughan et al [88]. The cavity 

contained a cell holding a vapour of calcium, which has a strong absorption at 423nm, 

figure (3.22).   

 

Through the Kamers-Kronig relations, the strong absorption region will produce a 

dispersive effect whereby a large change of refractive index with wavelength, 
λd

dn  

will occur [88]. The condition for the on-axis resonance in transmission is given by;  

 

pλ=2l(λ)n(λ)   (3.13) 

 

where p is the integer order of interference and l and n are functions of wavelength. 

This is simply a restatement of the fact that an integer multiple number of λ/2 must fit 

in the double pass cavity. 
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By considering the condition for the onset of next resonance, given that there is no 

change in length with wavelength (ie. no length dispersion), such that 
λd

dl  is zero, a 

modification to the FSR by the 1st order of dispersion is given by[88]; 
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where 
nl
cv

20 =∆  is the standard definition of conventional FSR in optics, which is 

cavity length dependent. Away from the strong absorption line, where the dispersion 

is insignificant, equation (3.14) reduces to (3.12) where; 

 

 ∆vFSR =∆v0. 
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Optical cavity 
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vapour 

Refractive index, 
n of the calcium 
vapour 

λ 

dn/dλ 

Figure 3.22, illustration of the experiment use to record the frequency response 
of a bulk FP containing a dispersive material. The inset shows the refractive 
index together with the index gradient with wavelength [88] 
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In the region where there is strong absorption, dispersion, 
λd

dn  is significant and the 

FSR of the dispersive cavity is modified according to equation (3.14). Experiment 

results have demonstrated that the FSR can change as much as 75% in value, figure 

(3.23).  

 

For a dispersive FP with dispersion in refractive index, 
λd

dn , the FSR or the spacing 

between cavity modes, depends on both n and 
λd

dn , equation (3.14).  Analysis of the 

resonance mode of the spontaneous emission emitted by a semiconductor sample 

(GaAs1-xPx) driven below threshold gives an indication of the FP resonance modes 

before the onset of a few or single mode operation when lasing. Using the same 

resonance mode analysis of the FP cavity with a dispersive element, equation (3.14) 

can be written in terms of wavelength [89]; 

 

 
lneff

FSR 2

2λλ −=∆  

        (3.15) 

where      
λ

λλ
d
dnnneff −= )(  

Detune frequency, ν  GHz 

FSR, ∆ν in MHz 

200 

FSR at different 
temperature 

Figure 3.23, experimental measurement of the FSR of a FP cavity containing a 
dispersive medium. The FSR varied by 75%, depending on the temperature of 
the cavity [88] 

Regions of total 
absorption where 
no signal is 
detected 

∆ν0 =200MHz 



Chapter 3 Review of FBG sensors and filters 

 60

The emission spectrum of this semiconductor is shown in figure (3.24).  

 
The semiconductor has a length of 0.043cm with a refractive index of the material, 

n=3.5 giving the standard FP resonance mode spacing, from equation (3.12), FSR = 

0.14nm. The effect of dispersion modified the FSR, with a measured FSR=0.1053nm 

in the region 648.5-649nm and a larger value of FSR=0.1175nm in the longer 

wavelength region 649.5-650.5nm, as shown in figure (3.24). Using equation (3.15), 

the effective refractive index of the semiconductor yields a value of nef = 4.65 and 

4.18 respectively compared to the normal value of 3.5 for the material. For a 

dispersive material FP, the resonance mode spacing is not only determined by the 

cavity length, l and the refractive index, n(λ) alone but the dispersion, 
λd

dn  plays an 

important role in determining the FSR by modifying significantly the effective 

refractive index. If the material dispersion modifies the refractive index term in the 

FSR expression, then it would be expected that length dispersion relevant to the use of 

chirped gratings to form the cavity, should modify both the effective length of the 

cavity and the FSR.   

 

To measure the dispersion of an optical fibre, the free space Mach-Zehnder 

interferometer, shown in figure (3.25) is used [90].  
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Figure 3.24, the spontaneous emission spectra from GaAs1-xPx driven below 
threshold, showing varying FSR/resonance mode spacing [89] 
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The interferometer is illuminated by a broadband source. A length of optical fibre is 

placed in one path of the MZ and the other path is in free space. A wavelength is 

selected such that only the material dispersion is significant and the waveguide 

dispersion is small. At wavelength λD, as shown in figure (3.25), the optical length 

mismatch between the two paths is zero, such that the group delays between the two 

paths of the interferometer are equal. For all other wavelengths, the group delay will 

not be balanced and the wavelength response is cosinusoidal with a periodicity 

increasing on either side of λD [90]. 

 

 

 

Broadband 
source 

Air path 

monochromator 

Mirror  Mirror 

Figure 3.25, Mach-Zehnder interferometer to measure the dispersion of the 
optical fibre and the results of the wavelength response where there is a change 
of FSR [90].  
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3.7 Dispersive Optical delay line interferometer 

 

Bulk optic gratings disperse different wavelength components into a range of angles. 

This effect may be exploited to shape laser pulses, by exploiting femtosecond Fourier 

transforms based on the optical delay line techniques[91]. A Rapid Scanning Optical 

Delay line (RSOD) consisting of a lens placed between a grating and a scanning 

mirror is shown in figure (3.26).  

 
Rotating the mirror imparts a time delay to every wavelength component of light 

which is equivalent to introducing a phase ramp in the frequency domain where, 

group delay is defined as; 
ω
θτ

d
d

= . The result is a delay or advance in the time 

domain. The wavelength dependent time delay is equivalent to an increase in distance. 

The RSOD has been used as a scanning element in low coherence interferometry 

[92,93]. The RSOD is generally used in an interferometric configuration, for example, 

incorporated in one arm of a Michelson interferometer as the interrogating 

interferometer. By matching the path length with a sensing interferometer, a large 

path length mismatch can be scanned in coherence interrogation. The scanning system 

separates the group and phase delay and allows the control of the carrier frequency 

(central frequency). When the scanning introduces no dispersion to the system, such 

as when all the components of the spectrum arrive at the same time, the output traces 

Figure 3.26, diagram of the rapid scanning optical delay line which consists 
of a bulk grating which transform the light in frequency domain. The lens 
focuses the dispersed light into the scanning mirror which impart a linear 
phase ramp to the frequency of the light[91]. 
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out the autocorrelation of the source with a regular carrier frequency. The carrier 

frequency is determined by the offset of scanning mirror, figure (3.26). When 

dispersion is introduced, eg. by tilting the grating or moving the lens, the auto 

correlation traces a broadened spectrum and the carrier frequency varies across the 

spectrum as the wavelengths components arrive at different time as shown in figure 

(3.27). 

 

 

3.8 Chirped FBG Fabry-Perot and Michelson interferometer filter 

 

Although narrow band uniform period FBG FP have been demonstrated, often, a 

response over a wide bandwidth, is required for dense WDM and wide bandwidth 

communications systems[94,97,98]. The limitation on the performance of a uniform 

FBG FP filter is the restriction placed on the operating bandwidth by the limited 

FWHM of the FBG~0.2nm. The use of chirped FBGs can extend the operating 

bandwidth much further. The structure of the filter is shown schematically in figure 

(3.28). The filter consists of two chirped FBGs written in series in an optical fibre, 

separated by a distance, l, forming a FP resonator. Each grating is linearly chirped in 

the same direction and acts as a broad band partial mirror. The response of the filter is 

determined by the strength and the bandwidth of the grating. 

Figure 3.27, Coherent interrogation of a reflective surface using the optical 
delay line scanning technique. Dispersion causes the broadening of the auto- 
correlations of the source and also alters the carrier frequency inside the 
envelope (characterised in-house at Cranfield).  
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Using the FBG FP model developed using the TMM technique, a spectrum consists of 

the cavity resonance modes within the envelope of the chirped FBG reflection profile, 

as shown in figure (3.29).  

 
Such devices have found applications as filters and sensors. A very broadband chirped 

FBG FP response has been demonstrated [94] and the spectral response is shown in 

figure (3.30). The filter comprises of two chirped FBGs centred @1550nm with the 

chirps of the two gratings oriented in the same direction having a grating length of 
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Figure 3.29, shows the reflection profile of the chirped FBG and the spectral 
response of the chirped FBG FP with the cavity resonance lies within the envelope 
of the chirped FBG reflection profile, giving a broad band response. The response 
was calculated using a TMM model of a pair of chirp FBGs (@1550nm, 2mm, 
5nm) with a cavity length of 5mm, giving a FSR= 0.16nm. 
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Figure 3.28, Chirped FBG FP filter with chirp oriented in the same direction, such that 
the cavity length, l(λ) is the same for all wavelengths. 
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4mm and bandwidth of 150nm separated with a cavity length of 8mm between the 

grating centres. The experimental results indicate that a measured value of the FSR of 

0.1nm correspond the cavity length of 8mm [94]. When the filter response was 

measured at wavelength, away from the centre of the chirped FBG reflection band, 

the spectral characteristics were identical to that at 1536nm with a measured FSR 

~0.1nm.  

 
By arranging chirped FBG FPs in such a way that the chirps of the FBGs are oriented 

in the same direction, the complex reflectivity of the 1st chirped FBG is the conjugate 

of the 2nd so that the net dispersion inside the FP cavity will be zero [94]. The round 

trip phase shift (RTPS) is determined by the cavity length, which in turn is dependent 

on the location of the reflection points within the two gratings. The cavity length is 

equal for all wavelengths. Chirped FBG FP cavities formed with the chirp of the FBG 

oriented the same way behave like conventional FP interferometer where the FSR is 

given by the corresponding wavelength dependent cavity length.  

 

The broadband/chirped FBGs FP have also been used to form tapped fibre optic 

transversal filters [95] with cavity length of 150.25mm (FSR=685MHz) and 28mm 

(FSR=3.7GHz). Making use of the dependence of FSR with cavity length, tuneable 

FSR cavities have been reported using the multiplexing of the broadband chirped 

FBG FP. Using 4 chirped FBGs with the first 3 chirped FBGs having bandwidths of 

Figure 3.30, shows the measured transmission response of a chirped FBG FP 
filter with cavity length of 8 mm. The corresponding FSR = 0.1nm over a 
0.4nm wavelength range around 1536nm is shown [94] 
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1nm occupying a different wavelength region and the 4th chirped FBG with a 

bandwidth of 8nm which covered all the wavelength region of the first 3. Using cavity 

lengths of 20mm, 28.7mm, 5.16mm, with their respective resonance spacing of 

5.16GHz, 3.63GHz, and 1.78GHz, have been demonstrated in a single length of an 

optical fibre for application  in microwave signal processing [96].   

 

Theoretical analysis of the FBG FP response using numerical techniques such as the 

transfer matrix method (TMM) have been reported for the chirped FBG FP with the 

chirps of the FBG oriented in the same way [94,97]. The models demonstrated the 

dependence of the FSR on the cavity length.  It can be shown that the cavities 

discussed above all obey the same bulk FSR dependence on the cavity length; 

   

   
)(2 λnl

cvFSR FSR =∆=   (3.16) 

 

 

Figure 3.31, measured transmissivity of the chirped FBGs FP filter with the 
cavity length = 0.5mm. The top trace is for the entire spectrum where the 
bottom trace shows the same results over a reduced wavelength range. The 
measured FSR is 1.5nm [94] 
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To obtain a larger FSR, it is necessary to reduce the cavity length. In the extreme case 

it is possible to obtain a filter response when the two chirped FBGs overlap [94,98]. 

  

An overlapping chirped FBG FP using identically chirped FBGs in the same 

orientation with one grating displaced w.r.t. the other by 0.5mm has been 

reported[94]. Figure (3.31), illustrates the spectrum of a cavity formed between 

overlapping chirped FBGs, where a FSR of 1.5nm is achieved for a cavity length of 

0.5mm. The overlapping chirped FBG FP with the chirped FBG oriented in the same 

way provides a uniform FSR response for all wavelengths, as the cavity length is the 

same for all wavelengths.  

 

Michelson type filters consist of chirped FBGs with chirps oriented in the same 

direction have also been demonstrated and the results showed the same FSR response 

relationship with cavity length [99]. Figure (3.32) shows the configuration of a 

Michelson interferometer using chirped FBG as partial reflectors. 

 

Figure 3.32, the spectral response of a Michelson filter consisting of 2 chirped 
FBGs (@1550nm, grating length of 5mm and bandwidth of 10nm) with length 
mismatch, ∆l =1.724mm which corresponds to a measured FSR of ~0.47nm, 
from the graph[99]  
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The Michelson interferometer using chirped FBGs as partial reflectors with the chirps 

in the FBG orientated in the same way as shown with a path difference, ∆l behaved 

like the overlapping chirped FBG FP with the chirps of the FBGs oriented in the same 

way. The cavity response, figure (3.32), shows that the FSR corresponds to the path 

difference, ∆l and remains uniform with wavelength because this path 

difference/cavity length is the same for all wavelengths.  

 

3.9 Dissimilar chirped FBG Fabry-Perot and Michelson interferometer filter  

 

Chirped FBGs act as dispersive elements by introducing a different time delay to the 

reflected wavelength components. Cavities formed between similar chirped FBGs 

filters, as discussed in the section (3.8), have the chirps of the FBGs oriented in the 

same direction, and hence the individual dispersion of each chirped FBG is cancelled. 

However when the chirp of the two chirped FBGs is dissimilar, dispersion effects 

become significant. 

 

Analogous to the response of the dispersive bulk FP in section (3.6), the effective 

refractive index term, neff in the conventional cavity response is modified by the 

material dispersion, 
λd

dn , equation (3.15);  

 
lneff

FSR 2

2λλ −=∆  

where the effective index is given by; 

    
λ

λλ
d
dnnneff −= )(  

Thus in cavities formed by the dispersive chirped FBGs, where the dispersion is 

provided by the variation of the resonance position with wavelength, 
λd

dl , the 

effective cavity length term in the FSR response should be modified by the 

factor,
λd

dl .  
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A theoretical study of the dispersive chirped FBG FPs, using the TMM, has shown a 

modification to the FSR response of the cavity through an effective cavity length, 

given by [100]; 

( )g
FSR lln −

=∆
0

2

2
λλ    (3.17) 

where l0 is the physical separation of the two grating centres and lg is the grating 

length. Examination of equation (3.17), suggest that the FSR of a dispersive cavity is 

independent of the chirp rate, 
λd

dl . The FP being modelled consisted of similar 

chirped FBGs oriented in the same direction where the dispersive effect of the FP 

should have been cancelled [94]. These cavities have been shown to behave with a 

conventional FP response.  

 
 

An indication that the behaviour of cavities involving the use of chirped FBGs may 

behave differently to the conventional FP response, is provided by an equation 

describing the FSR of the chirped FBG asymmetric Michelson interferometer, figure 

(3.33), given in Kashyap [101] with a response; 

)(2

2

λφ
λλ
∆+∆

=∆
lnFSR   (3.18) 

 

Figure 3.33, illustration of a Michelson filter consisting of 2 chirped FBGs with 
the chirps orientated in the opposite direction to each other [101].  
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where ∆φ(λ) is given as the differential reflected phase change from the two chirped 

FBGs. The equation (3.18) bears similarity in form to the dispersive FP cavity, 

equation (3.15); 

   






 −

−=∆

λ
λ

λλ

d
dnnl

FSR

2

2

 

which suggest that there may be a modification to the FSR value for a dispersive 

Michelson interferometer when ∆φ(λ), in equation (3.18) becomes significant in 

cavities made up of chirped FBGs with dissimilar properties, ie the chirps orientated 

in opposite direction. Examination of equation (3.18) reveals that there is an 

inconsistency in the units of dimension involved. Instead of the phase term in the 

denominator, there should be a term involving the dimension of optical path length.  

 
Dissimilar chirped FBGs have been used as reflectors in a Michelson interferometer 

as shown in figure (3.34) [102]. The dissimilar chirped FBG Michelson 

interferometric setup consists of two identical chirped FBGs configured so that the 

chirps are oriented in opposite directions as shown in figure (3.34).  

Figure 3.34, shows a Michelson interferometer filter consisting of 2 chirped 
FBGs centred @1541nm with chirp of 7.8nm and cavity length of 96mm with 
the minimum cavity length of 20mm and maximum cavity length of 
210mm[102] 
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The light in the output port of the 3dB coupler experiences a decreasing chirp from 

the top grating and an increasing chirp in the bottom grating. Measuring the time 

delay experienced by a pulse reflected from their respective resonance positions 

reveals the separation of the reflecting points and thus the cavity length for the 

wavelength concerned. Since the chirp is linear, the separation is linearly related to 

wavelength. Figure (3.35a) shows the cavity response with a non dispersive 

characteristic, equation (3.16) where the FSR corresponds to the separation of the 

reflection points/cavity length. The cavity response demonstrates the tuneability of the 

device where a continuous range of FSR can be accessed by tuning across the 

bandwidth of the chirped FBG. Using the linear detuning relationship between 

wavelength and position of the reflection from the chirped FBG, the filter’s response 

Figure 3.35, measured frequency response for the dissimilar chirped FBGs 
Michelson interferometer[102]. a) FSR of the various available cavities 
accessed by different wavelength and b) a plot of FSR with wavelength. Using 
the relationship of the detuned wavelength with position, the cavity length 
measured in terms of wavelength shows an inverse relationship with cavity 
length. 
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can be reduced to the non-dispersive bulk FP response; 
)(2 λnl

cvFSR =∆ , where l(λ) is 

the wavelength dependent cavity length and this is plotted in figure (3.35b) together 

with the experimental FSR values[102] and illustrates the inverse relationship with 

length, l(λ). This relationship is contrary to what is expected of a dispersive cavity. 

Judging by the above results, where the FP cavities response is inversely proportional 

to the cavity length, l(λ), reducing the cavity length will further increase the FSR 

value of the FP formed by dissimilar chirped FBGs. It is possible to have a situation 

where the cavity length is zero. The cavity length can be reduced by reducing the 

length mismatch of the two arms in the Michelson interferometer configuration [78] 

or writing the dissimilar chirped FBGs on top of one another to create an overlap 

cavity in the FP configuration [103] or in a loop mirror [104]configuration using just a 

single chirped FBG, as shown in figure (3.36). 

 
The filter response for the loop mirror configuration incorporating a chirped FBG is 

given by [104]; 

Figure 3.36, illustrates the loop mirror interferometer configuration, where the 
cavity length is given by the path difference of the two reflected waves. The 
filter response for 2 different chirped FBGs used is also shown [104].  

Reflection 
point for λ Tuneable light 

source, λ  

Output port 

In
te

ns
ity

A
U

Wavelength nm 

The detune wavelength where the 
path mismatch is zero giving a 
zero cavity length 



Chapter 3 Review of FBG sensors and filters 

 73

δλ
λ

λλ








=∆

d
dzn

FSR

2

2

  (3.19) 

where 
λd

dz  is the inverse of the chirp rate and δλ is the detuning. This equation can be 

rewritten in the standard non dispersive bulk FP response, since δλ
λ








d
dz  is the 

detuned distance and the variation in fringe space and FSR can be explain using the 

conventional FP response, 
)(2

2

λ
λλ

nlFSR −=∆ . The temperature response of the loop 

mirror resonator showed that the whole spectrum shifted with temperature with a 

temperature response the same as that of the uniform FBGs [104].  

 

3.10 Chirped FBG Michelson interferometric sensor 

 

It can be seen that the FSR/cavity mode spacing of the FP or Michelson 

interferometer, formed by two dissimilar chirped FBGs depends on the length of the 

cavity created by the respective resonance position in the two chirped FBGs and that 

they are wavelength dependent. If the grating is not already chirped, chirp may be 

induced by applying a strain gradient or temperature gradient along the grating. The 

resonance position inside the chirped FBG can be interrogated using a Michelson 

interferometer configuration as shown in figure (3.37). If a broadband mirror, such as 

a cleaved end of a fibre is used to define one end of the Michelson interferometer, it 

may act as a reference reflection point for all wavelengths. The wavelength 

dependence of the resonance position in the chirped FBG will produce the fringe 

pattern. The filter response can provide an indication to the resonance position within 

the chirped FBG under examination.  This is essentially what is involved in the phase 

based intragrating distributed strain sensing method [105,106]. From the filter 

response, every fringe is equivalent to 2π in the RTPS of the cavity. Unwrapping this 

phase information allows the cumulative phase to be determined. From the definition 

of the group delay, the gradient of which provides a measurement of length, in which 

case, it is the reflected position inside the chirped FBG, with respect to the mirror end, 

l(λ); 
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)(4
2 λ

λ
π

λ
θ ln

d
d

−=    (3.20) 

where θ is the cumulative phase. Equation (3.20) is essentially the equation from what 

the FSR for a non dispersive FP cavity is derived. Figure (3.37) illustrates the 

intragrating distributed strain sensing method [105]. 

 
From the Bragg condition; Λ= n2λ , the reflected wavelength provides a measure of 

the period and refractive index, from which the local strain, ε, is estimated. The 

variation of strain along the length of a grating is encoded in the Bragg wavelength as 

a function of position so that the strain field can be mapped out across the chirped 

FBG. Problem arises when the strain profile is not monotonically increasing or 

decreasing when there are multi values of strain, which impose the same Bragg 

condition for many different points along the grating. This can cause complexity in 

resolving the resonance positions, which restrict the use of the technique as a practical 

device. 
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Figure 3.37, illustration of the phase based Bragg intragrating distributed 
strain measurement based on the dissimilar chirped FBG Michelson 
interferometer where one arm of the interferometer is terminated with a 
mirror with a broadband response[105].  
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The problem of multiple resonance locations for a single wavelength in the distributed 

strain sensing scheme described above, can be overcome using a technique that has 

been used to measure the time delay and the reflectivity of chirped FBGs [107]. This 

technique has been adapted to determine the arbitrary strain profiles within FBGs 

[108]. The experimental setup is illustrated in figure (3.38). It consists of a balanced 

Michelson interferometer illuminated by a broadband source. 

 
In low coherence interferometry, interference fringes are observed when the path 

length mismatch of the arms of the Michelson interferometer is within the coherence 

length of the source. The maximum visibility occurs when the mismatch is zero. The 

reference arm containing the reference FBG is stretched to path match the distance, x, 

within the chirped FBG and a small dither signal of magnitude ~ 2µm, is applied via 

the PZT to scan over several interference fringes. The reference FBG is then strained 

tuned so that the wavelength of the reference FBG matches that of the local 

wavelength at x in the chirped FBG when the return signal is the maximum. The 

variation of strain along the length of the grating is encoded in the Bragg wavelength 

as a function of position and thus any arbitrary strain profile can be mapped out using 

the measured visibility. This is achieved irrespective of the fringe spacing/FSR 

values. Instead of strain tuning the reference FBG, a broadband mirror may be used in 

PZT to 
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Delay line 

Figure 3.38, illustration of arbitrary stain profile measurement based on the 
dissimilar chirped FBGs Michelson interferometer where the path matching 
is determined by the amount of stretching and the wavelength is determined 
by the maximum return signal when matching wavelength [108].  
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the reference arm in conjunction with a wavelength selection device [109]. The 

accuracy of the method depends on the bandwidth of the reference FBGs in the 

former or the bandwidth of the wavelength selection device in the latter. 

3.11 Strain enhancement of chirped FBG Michelson and large path-length 

scanning Fabry-Perot interferometer 

 

When a chirped FBG is stretched, there is a redistribution of the period as well as a 

change in the mode index via the photo-elastic effect. The entire bandwidth of the 

grating shifts to a longer wavelength [61]. Along the changes to the period and mode 

index there is a concomitant change in the reflection point for a particular wavelength 

as illustrated in, figure (3.39).  

From the wavelength detuning equation (3.3), ( ) g
c

B lb
λ
λλ

λ
∆
−

= . Using the strain 

response of an FBG, equation (3.2), 
δε
δλ

λ
ξ

B

1
=  , the change of the resonance position 

is given by [51]; 
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Figure 3.39, the effect of a perturbation upon a periodically chirped FBG 
showing the change in the resonance position. 
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where lg is the grating length, ∆λc is the total chirp and δε is the strain. Assuming that 

the strain responses of the FBG and of the optical fibre are the same, and comparing 

equation (3.21), with the strain response of the optical fibre, an effective length of the 

chirped grating, leff may be calculated [51];  

 

g
c

eff ll
λ
λ
∆

−=    

 

For a periodically chirped FBG, when it is subjected to axial strain, the location along 

the FBG from which light of a given wavelength is reflected changes, giving an 

effective extension enhancement of up to 3 orders of magnitude higher when 

compared to a bare fibre [51]. A fibre Michelson interferometer, with enhanced strain 

sensitivity, employing this idea has been demonstrated [51] and the setup is shown in 

figure (3.40). 

 
The Michelson interferometer consisted of a chirped FBG (∆λ=0.5nm, grating length 

=1cm) in one arm and a mirror in the other, such that the dispersion in this 

interferometric setup were not cancelled. The chirped FBG is created by applying a 

temperature gradient across the uniform FBG (@1000nm, ∆λ=0.2nm). The 

interferometer is illuminated by a tuneable laser source. The light is split at the 

coupler and one path is reflected off the mirror and the other path is reflected from the 

resonance point inside the chirped FBG and recombined to interfere on the detector. 

laser  

Reflection 
point for λ

detector 

Mirror end  

b(λ)

δb(ε) 

Reflection 
point for λ 
after strain 

λ 

Chirped FBG  

strain 

Figure 3.40, illustration of the Michelson interferometer used to demonstrate 
the strain magnification using a chirped FBG in one arm and a mirror end in 
the other[51].  
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The optical path difference between the two arms of the interferometer is dependent 

on the strain state of the chirped FBG. By modulating the laser frequency, a phase 

carrier is generated and the amplitude of the carrier frequency is directly proportional 

to the optical path length difference of the two arms. An axial strain of 500µε applied 

to a 1cm long grating (extension = 5µm) produces an optical path length change of 1-

3cm in the location of the resonance points [51], giving a 2000-5000 times of 

magnification, dependent on the chirp rate of grating used.  

 

The large transduction of the movement of the reflection position that transpired to a 

large shift in phase measurement in the Michelson interferometer when the individual 

chirped FBG is strained have been translated to a large scanning range in path 

matched processing/reference chirped FBG FP interferometer for low coherence 

interferometry [110]. The concomitant change to the reflection point imparted to 

every component of the wavelength in the bandwidth of a chirped FBG when it is 

strained, translates to a large group delay and thus large optical path change. This 

effect has been utilised for strain magnification [51]. Interferometric configurations 

employing chirped FBGs can be used as a processing interferometer in low coherence 

interrogation [110], to scan the path length mismatch of the sensing interferometer. 

This is achieved by stretching the individual chirped FBG. 

 

The effect of using the chirped FBG FP configuration as a processing/reference 

interferometer would depend on the dispersive effect of the cavity. A FP filter formed 

by a pair of identical chirped FBGs with chirps oriented in the same direction, will 

have a net dispersion equal zero [94] whereas using dissimilar chirped FBGs produces 

unwanted dispersion where the net dispersive effect is not cancelled. Figure (3.41a) 

shows the non dispersive chirped FBG FP configuration which consists of identical 

chirped FBG oriented in the same way and, figure (3.41b) and (3.41c) illustrate the 

dispersive FP cavities where some residual dispersive effect exists inside the cavity as 

the different wavelength components see different cavity lengths and thus on 

reflection inside the cavity, will incur different time delay. 
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Figure 3.41, illustration of the dissimilar chirped FBG FP setup, a) non dispersive 
where the dispersion is cancelled, b) dispersion in the FP is not cancelled and there 
is the residual dispersive effect and c) other types of dispersive FP configurations. 
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This type of processing interferometer has been used in Optical Coherence 

Tomography (OCT) [111]. The processing interferometer consisted of a non 

dispersion chirped FBG FP, shown in figure (3.41a), where the orientation of the 

chirp is in the same direction. The OCT setup is shown in figure (3.42a). A chirped 

FBG with λB @1300nm, grating length of 1cm and a chirp bandwidth of ∆λ=20nm, 

will give a theoretical strain amplification value, according to equation (3.21), of a 

factor of 75. An extension of 33µm applied to the 1cm grating produced a path scan 

of 3495µm[111], which corresponds to an amplification of a factor of 100 times. 

Figure (3.42b) shows the theoretical calculation of the autocorrelation function of the 

source with a bandwidth of 31nm, providing a coherence length, Lc of 52µm. Figure 

(3.42c) shows the experimentally recorded autocorrelation of a much broader 

autocorrelation function with Lc of 317µm. The broadening of the autocorrelation 

spectrum observed is due to the fact that some residual dispersion remained in the 

reference scanning interferometer. The two chirped FBGs used were ideally similar, 

however they are not exactly the same, which can introduce dispersion. The 

broadening of the autocorrelation was also observed from a dispersive fibre. When a 

section of dispersive fibres were placed in one arm of a free space Michelson 

interferometer and the optical path mismatch scanned using a mirror in the other arm, 

a broadened autocorrelation was produced as a result of this dispersion [112]. To 

ensure that there is no net dispersion inside the scanning reference processing 

interferomenter, a single chirped FBG was used in a loop mirror configuration such 

that the net dispersion will be zero, figure (3.42d). The achieved experimental 

autocorrelation of the source produced a coherence length, Lc of 69µm, which is still 

larger than the theoretical value with a possible reason being that the chirped FBG 

used is not linearly chirped but is non-linearly chirped which may introduce net 

dispersion.  
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A high resolution FBG FP resonator strain sensing system using a synthetic 

heterodyne technique has been theoretically analysed and experimentally 

demonstrated [113]. The chirped FBG FP cavities consisting of broadband chirped 

FBGs. Once cavity is formed with chirped FBGs centred @1550nm with a bandwidth 
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Figure 3.42a, illustrates the coherence interrogation configuration which 
consists of a reference interferometer and a sensing interferometer. b) the 
theoretical plot of the autocorrelation of the source, c) is the dispersion free 
configuration consists of 2 chirped FBGs but the scan revealed that there is 
still residual dispersion as the autocorrelation is broaden and d) 2nd 
interferometer configuration consisting of only a single chirped FBG and the 
scan produced a less broadened autocorrelation [111].  
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of ~27nm and a grating length of 0.504mm, separated by a cavity length of 60.504mm 

between the grating centres, and a shorter 2nd chirped FBG FP cavity formed with 

chirped FBGs centred @1548nm, bandwidth of 1.7nm and grating length of 0.2mm 

separated by a cavity length of 1.7mm. Figure (3.43) illustrates the setup of the 

experiment [113]. 

 
By ramping the injection current of the laser source, a carrier of frequency ωc is 

created. This is converted to a phase modulation by the change in the RTSP of the 

cavity and synchronous detection is performed on the output of the cavity. The change 

of phase experienced by the cavity when axial strain is applied, is derived from the 

amplitude of the 1st and 2nd harmonics about the modulation frequency, ωc. 

Experimental results demonstrated the phase sensitivity of 0.587 rad µε-1 and 0.015 

rad µε-1 for the long (60.504mm) and short (1.7mm) cavities respectively. These 

phase responses are in keeping with the response calculated using the RTSP equation; 

λ
πθ nl4

=  with strain, which is determined by the length of the cavity. It appeared that 

using the dispersive chirped FBG as the partial reflectors to form the FP, only acted to 

Chirped FBGs resonator  
Tuneable laser 

Signal 
processing 
electronics  

Photodetector

Figure 3.43, illustration of the heterodyne interrogation of a chirped FBG FP 
resonator. A carrier of frequency ωc is created by ramping the injection 
current [113].  
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increase the dynamic range compared to uniform FBG and did not alter the strain 

sensitivity of these FPs. Though a theoretically determined FSR was quoted with a 

value of, ∆λFSR = 0.46nm, which is much larger than would have been expect for a FP 

with a cavity length of 60.504mm using the standard FSR equation; 
nlFSR 2

2λλ −=∆ . 

The FSR value of 0.46nm corresponds to a FP with cavity length ~ 16mm. This 

theoretically determined decreased in wavelength sensitivity/increased FSR value was 

used in the estimation of temperature induced error in the experiment via the 

temperature response of the FBGs, equation (3.2). In the experiment, there was no 

mention of the orientation of the gratings chirping direction and though the simulation 

for strain result and the FSR response obeys the conventional FP response, the 

broadband chirped FBG only improved the dynamic range of the cavity. 

  

3.12 Summary 

Table 3.2 characteristics of interferometers involving the used of chirped FBGs 

configuration characterised sensing/filter 

demonstrates 

distributed 

reflective nature 

dispersive 

effect 

Chirped FBG FP with chirps 
in FBG oriented in the same 

direction 
 
 
 
or  
 
 
 
 

 
 
 

broad band 
illumination, 

wavelength [94]  
 
 

theoretical TMM 
[94, 97] 

 

 
 
 
 

filter 
 
 
 

filter 
 
 

 
 

 
N/A 

all wavelengths 
sees the same 
cavity length 
 

N/A 
 all wavelengths 
sees the same 
cavity length 

 
 
 
 

no 
 
 
 

no 
 

 

 
 
 
 
 
 

 
 

broadband 
illumination 

straining single 
chirped FBG [111] 

 
 
 
interrogating 
interferometer  
 

 
 

N/A 
all wavelength 
sees the same 
cavity length 

 
 
 

yes 
 
 

 
 

strain 
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configuration characterised sensing/filter demonstrates 
distributed 

reflective nature 

dispersive 

effect 

overlap cavity 
 
 
 
 
 
 
 

 
 

broad band 
illumination, 
wavelength 

[94,98] 
theoretical TMM 

[94,97] 
 

 
 
 

filter 
 
 
 

 
 

N/A 
all wavelengths 
sees the same 
cavity length 
 
 

 
 
 

no 
 
 
 

 
broadband FBGs, no 

mention of chirp orientation 
 
 
 

 
single wavelength, 
wavelength [95,96] 

 
filter/ 

microwave 
signal 

processing 

 
 

N/A 
 

 
 

no 
 
 

 
chirped FBGs FP no 

mention of chirps 
orientation 

 

sweeping wavelength 
to generate carrier 

[113] 
theoretical TMM 

[113] 

 
 

strain 

 
 
can not be 
distinguished 

 
 

no 

Chirped FBGs Michelson 
with chirps in FBG oriented 
in the same direction 
 
 
 
 
 
 
 
 
 

 
 
 
 

broadband 
illumination, 
wavelength 

[99] 
 

 
 
 
 
 

filter 

 
 
 
 

N/A 
all wavelengths 
sees the same 
cavity length 

 
 
 
 
 

no 

Chirped FBGs Michelson 
with dissimilar chirps 

 
 
 
 
 
 
 
 
 
 

 
broadband 

illumination, 
 

wavelength 
[101,102] 

 
analytical [101,102] 

 
 
 
 

filter 
 
 

filter 

 
 
 
 

yes 
 
 

yes 

 
 
 
 

no 
 
 

no 

chirped FBGs Michelson 
with an mirror end 
 
 
 
 
 

 
 

sweeping 
illuminating 
wavelength 
[105,106] 

 
 
 

 
 
intra-grating 
strain sensor 

 
 
 

 
 

yes 
 
 
 
 

 
 

no 
 
 
 
 

Cavity length  

or 

or 
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configuration characterised sensing/filter demonstrates 
distributed 

reflective nature 

dispersive 

effect 

chirped FBGs Michelson 
with an mirror end 
 
 
 
 
 
 

broadband source 
with wavelength 
selection device, 

wavelength 
[108] 

 
 

arbitrary strain 
profile 

 
 

yes 

 
 

can not be 
distinguished 

chirped FBGs Michelson 
with an mirror end 
 
 
 
 
 
 

 
sweeping wavelength 
to generate a carrier 

[51] 

 
 

strain 
magnifications 

 
 

no mention 

 
 

yes 

chirped FBG Michelson 
with another uniform FBG 

 
 
 
 
 
 

broadband source 
with FBG to select 

wavelength, 
wavelength [109] 

 
 
 
arbitrary strain 

profile 

 
 
 

yes 

 
 
 

can not be 
distinguished 

overlap dissimilar chirped 
FBGs FP 

 
 
 
 
 

broadband 
illumination, 

wavelength [103] 
strain 
[103] 

 
 

filter/sensor 

 
 

yes 

 
 

no 

single chirped FBG loop 
 
 
 
 
 
 

Broadband 
illumination 

wavelength [104] 
temperature [104] 

analytical 
[104] 

 

 
 
 

filter/sensor 
 
 
 

 
 
 

yes 
 
 
 

 
 
 

no 
 
 
 

single chirped FBG loop 
 
 
 
 
 
 
 

 
broadband 

illumination, 
straining the single 
chirped FBG [111] 

 
 

Low 
coherence 

interrogating 
interferometer 

 
 
N/A, broadband 

source 

 
 

yes 

 

 

A brief introduction to the FBG sensors and filters is presented. The effect of the 

action of the external measurands such as temperature and strain has on the coupling 

mechanism which influences the response characteristics is discussed and illustrated. 

How this simple FBG element is used as a sensor element is outlined. A brief review 

strain 
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of uniform periodic FBG and chirped FBG sensors and filters and their response 

characteristics with the different signal demodulation methods have been discussed. 

The interferometric type of sensors and filters, most notably the Fabry-Perot and 

Mach-Zehnder interferometer involving the use of uniform and chirped FBGs have 

been discussed and reviewed. Drawing on examples from the dispersive bulk Fabry-

Perot interferometers, how the effect of dispersion has on the cavity response have 

been described. The effect of inherent dispersion such as with the dispersive optical 

fibre and in systems where dispersion can be introduced such as in the Optical Delay 

Line, can have on interferometers for processing/reference in Low Coherence 

interferometry have been described and the implication this will have on the use of 

dispersive chirped FBG interferometer was discussed.  

  

There is no one comprehensive wavelength, strain and temperature response for the 

chirped FBG FP that gives a conclusive dispersive effect on the cavity response due to 

dispersion in the chirped FBG. Take for example the Sagnac configuration [104] 

involving the use of a single chirped FBG which gives a wavelength response similar 

to the physically overlapped chirped FBG FP [103], ie, the FSR/resonance mode is 

dependent on the wavelength detuned cavity length only and in which case, it is small 

which means large FSR (small wavelength sensitivity) but the same Sagnac 

configuration with the chirped FBG has been used as processing interferometer [111] 

to give a large scan of the path length mismatch (~3mm), produced in the matched 

path length interferometer interrogation by straining. Now since strain scanning is 

similar to wavelength scanning in FBG FP interferometer[13], the consequence of the 

large path length scan (3mm) suggests a large phase excursion has occurred meaning 

a very high wavelength sensitivity for the interferometer. This is contrary to the 

former configured chirped FBG Sagnac interferometer response. This review suggests 

that there exist different interferometric response of interferometer consisting of 

chirped FBG.  
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4 Theory of Fibre Optic Bragg Grating and Fabry-Perot 

Interferometers 

 

4.1 Introduction 

 

This chapter discusses the principles of operation of FBGs in detail, from an introduction 

to the propagation modes of optical fibres to the concept of the coupling between the 

forward and backward modes in the perturbed optical fibre system. Coupled mode theory 

is used to explain the interactions between the various modes, and the phase matching 

condition for a periodic perturbation of the fibre is presented. The dispersion inside the 

cavity affects the performance of the bulk FP interferometer. Chirped FBGs are 

dispersive element in their own rights and when they are used in the FP configuration, the 

effect of dispersion will change the characteristics of these cavities will be discussed. 

  

4.2 Theory of light propagation in optical fibre 

 

The advent of laser, coherent and monochromatic light as signal sources have made 

quartz-glass fibre as a transmission medium viable with measured losses below 20dB 

Km-1. This opened up the prospect of using glass fibre to serve as the transmission media 

in optical communication systems. 

 

4.2.1 Propagation modes in optical fibres 

 

The propagation properties of the modes of optical fibres have been studied extensively 

[1]. The propagation of electromagnetic radiation such as light is governed by Maxwell’s 

Equations, solution of which provides rich information on the propagation, dispersion 

and energy confinement of each mode [2]. The generalised solution for the electric field, 

E, from Maxwell’s Equations consists of a travelling wave, in the form of [1]; 
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 )( ztieEE βω ±−=    (4.1) 

 

where ω is angular velocity and β the propagation constant given by effnk0=β , where 

0
0

2
λ
π

=k , λ0 is the wavelength of the light and neff is the effective refractive index of the 

mode. The fibre geometry provides an insight into the light guiding properties of the 

fibre. For light which coupled into the core of the fibre will be confined and propagate 

indefinitely in the core region of the optical fibre. The behaviour of light travelling in the 

core can be described by considering the path of a zig-zag light ray in the core region as 

illustrated in figure (4.1). 

 
The rays undergo multiple reflections at the core/cladding interface. For rays which are 

incident upon the interface at angles greater than the critical angle, ϕc, total internal 

reflection occurs. Light propagating this way is thought of as being lossless in an ideal 

fibre with no absorption. This angle sets a limit on the coupling angle, ϕA, through the 

Fresnel reflection equation relationship at boundaries. The mode propagation constant β 

is bound by the limits set by the mode and cladding refractive index; 

 

0201 knkn << β  (4.2) 

Figure 4.1, illustration of light in ray diagram undergoing internal reflection 
when the angle of incident to the core/cladding surface is greater than the critical 
angle ϕc 

ϕ>ϕc 

cladding refractive 
index n2

core refractive 
index n1 

ϕA 

light path in the core  

coupling angle 



Chapter 4 Theory of Fibre Optic Bragg Grating and Fabry-Perot Interferometers 

 97

where the propagation constant, β = sin ϕ, is the horizontal component that travels down 

the fibre, n1 and n2 are the core and cladding refraction index respectively. Light radiation 

is a wave-like phenomenon and as well as a direction of travel, it also carries phase 

information. Taking into account the phase shift experienced on reflection at the 

boundary surfaces, constructive interference occur will promote a discrete set of angles, 

which gives rise to a discrete set of propagating constants, β. The extent of the fibre’s 

ability to accept light into its bound modes is determined by the Numerical Aperture 

(NA). This value is the sine of the half angle of the cone of acceptance, given by [3]; 

 

nnnnNA ∆=−= 21
2
2

2
1   (4.3) 

 

Single-mode fibres typically have an NA of ~0.1 whereas the NA of multimode fibres is 

in the range 0.2 to 0.3. 

 

A summary to the guided modes solution to the Maxwell’s equation in cylindrical 

coordinates is presented in Appendix A. Knowledge of the modal properties is 

fundamental for the understanding of the behaviour of light in a perturbed environment 

such as encountered with FBGs. 

 

4.2.2 LP modes and cut off  

 

The exact solution of the wave equation for a step index fibre is very complicated 

involving all six non-zero field components in the so called hybrid EHlm and HEml modes 

[1].  A simplification to the solution can be arrived at using the approximation for the so 

called ‘Weak guidance’[2] where the fractional refractive index difference is assumed to 

be small. 

1)(

11

21 <<
∆

=
−

=∆
n
n

n
nn

  (4.4) 

 

Using the  Normalised Frequency, V, given by[2]; 
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222 )()( κaahV +=    (4.5) 

 

where  22
0

2
1

2 β−= knh  and 2
0

2
2

22 kn−= βκ . The graph in figure (4.2) shows the 

dispersion of a selection of LP modes. 

 
In the weakly guiding approximation, the lowest order LP mode, the LP01, has no low-

frequency cutoff. This mode is found to be identical to the exact HE11 mode. The onset of 

the next LP mode, the LP11, has a cutoff at V = 2.401. For some applications, fibres which 

support only a few modes or even just a single mode over a certain wavelength range are 

required. The condition for single-mode operation is when the normalised frequency V be 

less than < 2.405. The normalised frequency, V in equation (4.5), can be written as; 

 

2
2

2
1

2 nnaV −=
λ
π    (4.6) 

 

where a is the core radius and λ is the free space wavelength. The number of modes 

supported by an optical fibre is reduced as the fibre diameter is decreased, or when it is 

operated at a longer wavelength. Single mode fibres in the visible and infra-red part of 

the spectrum usually necessitate core diameters of only a few microns. 

normalised frequency, V 
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Figure 4.2, a plot of normalised refractive index against normalised frequency, V 
for the LP modes [2] 
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4.2.3 The effect of dispersion in light propagation 

 

Light propagation can be considered as a superposition of many plane-wave solutions 

which satisfy Maxwell’s equations. The electric field, E, in a Fourier representation, can 

be imagined to consists of a frequency bandwidth,  ∆ω  centre at a frequency, ω0[3]; 

 

∫
∆

=
ω

ωωωξ dtitE )exp()()(   (4.7) 

 

where ξ(ω) is the amplitude of the component of the plane wave, ω. After traveling a 

distance, z, the different components of the wave will have their phases changed by the 

amount β(ω)z where β  can be expanded using the Taylor series around the central β0; 

 

...
2
1)( 2

2

0 +∆+∆+= ω
ω
βω

ω
ββωβ

d
d

d
d  

 

where β0 is the propagation constant at ω0. Substituting in equation (4.7), 

 

∫
∆

+∆+∆+−=
ω

ωω
ω
βω

ω
ββωωξ dz

d
d

d
dtitzE )...)

2
1((exp)(),( 2

2

2

0  

 

which can be written as the propagation of a plane wave modulated by an envelope  

function whose phase velocity is given by; (β/ω)-1 and group velocity is given by; 

(dβ/dω)-1. The effect of dispersion (the relationship between ω and β) will cause the 

different components, ω to arrive at different times. The delay per unit length is given by 

[4]; 

  
ω
ββτ

d
d

dk
d

c
==

1  

 

where c is the speed of light. 
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4.2.4 Phase matching and Bragg condition 

 
Systems involving the exchange of energy can be represented by coupled mode equations 

with appropriate coupling constants. The coupled mode equation governing the forward 

and backward propagating modes in the FBGs can be written as [5]; 

 

  
FikBi

dz
dB

BikFi
dz
dF

ac

ac

+=−

−=+

δ

δ *

   (4.8) 

 

where F (Reference) represents the forward propagating mode, B (Signal) is the 

backward propagating mode and  δ is the effective detuning given by; 

 

   





 −∆+=

dz
zdkdc
)(

2
1 φ

βδ    (4.9) 

where ∆β = βu+ βv-2πN/Λ, is the detuning,      (4.10) 

 

 ∫∫ ∆= dxdynnk uuodc ξξωε  is the dc coupling constant 

and 

 ∫∫
∆

= dxdynnk vuoac ξξωε
2

 is the cross coupling constant. 

 

Since βu and βv are functions of wavelength, the ∆β has a strong spectral dependence. 

The strongest response is observed where, ∆β = 0, resulting in a synchronous transfer of 

power between the two modes, ( ie. when they are phase matched). The phase matched 

condition is given by[5]; 

     
Λ

=+
πββ 2

vu     (4.11) 

where,  
λ
π

β
u
eff

u

n2
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λ
π
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where nu
eff and nv

eff  are the mode index of the forward and backward propagating modes. 

Equation (4.11) can be written as;  

 u
eff

v
eff nn +

=Λ
λ    (4.12) 

 

Consideration of the conservation of energy promotes the coupling of modes with the 

same optical frequency, ω. For identical forward and counter propagating modes, 

equation (4.12) produces the Bragg condition;  

 

    Λ= effB n2λ     (4.13) 

 

where Λ is the period. The Bragg wavelength is reflected predominantly.  

 

4.2.5 FBG parameters 

 

The coupled mode equations for the forward and the backward propagating modes, when 

applied to a uniform period grating, can be solved using appropriate boundary conditions. 

Consider figure (4.3), where the grating has a length of Lg and the boundary conditions 

assume a forward propagating mode with F(0) = 1 and that the backward propagating 

mode, at the end of the grating, will be zero, B(Lg) = 0 as there are no perturbing beyond 

the end of the grating. 

 

 

grating length, Lg 

F(0)=1 F(Lg)

B(0) B(Lg)=0 

Figure 4.3, schematic of the grating with the boundary conditions as shown. 
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For uniform grating, dφ/dz = 0, and at the phase matched condition, ∆β = 0, It is possible 

to show that a closed form solution exists for the reflectivity, R(0), which is given by[5]; 

    

  
222

22

)(cosh

)(sinh

δα

α

−
=

gac

gac

Lk

Lk
R    (4.14)  

 

for kac<δ , where 22 δα −= ack   

 

The reflectivity in equation (4.14) has a decay nature and drops off exponentially along 

the perturbation region as power is transferred from the forward to the backward 

propagating mode. The maximum reflectivity Rmax is then obtained from equation (4.14) 

when δ = 0, ie. at the phase matching condition, λB=2neffΛ; 

 

  Rmax= tanh(kacLg)   (4.15) 

 

The first two zeros of equation (4.14) may be used to approximate the full Bragg grating 

bandwidth given by; 

 

   ( ) 22
2

2
π

π
λλ +=∆ gac

eff

Lk
Ln

  (4.16) 

 

The condition for weak grating corresponds to kacLg<<π, in which case the bandwidth is 

an inverse function of the grating length; 

 

  
geff Ln2

2λλ =∆     (4.17) 

This is length limited and while if the converse is true, kacLg>>π, ie. for a strong grating, 

(4.28) becomes; 
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eff

ac
n
k

2

2λ
λ =∆     (4.18) 

 

and the bandwidth depends on the coupling constant kac. 

 

4.2.6 Chirped FBG and the grating phase shift 

 

A variation of the grating period along the length of the FBG is termed chirp. Chirp can 

also be achieved by a variation of the mode refractive index. These different forms of 

chirp can both be represented by an additional phase function, φ(z), in the perturbed 

polarisation caused by the refractive index modulation given by[5]; 

 

  ( ) EccennnP zzNi
ograting 



 +

∆
+∆= +Λ ))()/2((

2
2 φπε  

 

The chirp changes the effective detuning parameters, ∆β in equation (4.9); 

 

   





 −∆+=

dz
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)(

2
1 φ

βδ  

 

Period chirp is created by a change in phase of the refractive index modulations 

analogous to a phase modulated carrier. The index perturbation can be written as a 

sinusoidal function; 

     cos(Kz+φ(z)) 

 which has constant spatial frequency, given by; 
Λ

=
π2K  with an additional position 

dependent phase variation φ(z) to represent the change in periodicity. The chirp could be 

viewed as a perturbation with a varying spatial frequency [6]; 

 

    cos(K+∆K)(z)) 



Chapter 4 Theory of Fibre Optic Bragg Grating and Fabry-Perot Interferometers 

 104

The relationship between the period, Λ, and the spatial frequency can be written as; 

 

Λ
Λ

−= ddK 2

2π   (4.19) 

 

 The rate of change of phase with distance along the grating, z, can be derived; 

 

K
dz
d

∆=
φ    (4.20) 

 

Λ
Λ

−= d
dz
d

2

2πφ   (4.21) 

   

From the Bragg condition; Λ= n2λ , equation (4.21) becomes[7] 

 

z
dz
dn

dz
d λ

λ
πφ

2

4
−=   (4.22) 

 

where 
dz
dλ  is the chirp rate of the FBG. Chirp in FBG can be represented by a variation of 

the periodicity or a variation of the mode refractive index along the grating length or a 

combination of the two or simply by an additional position dependent phase along the 

grating.  

 

4.3 Theory of the Fabry-Perot interferometer 

 

The bulk optic Fabry-Perot (FP) cavity, which consists of a pair of highly reflective 

optically flat surfaces arranged to form a resonance device is shown figure (4.4). When 

light enters into an FP etalon, it experiences multiple reflections between the highly 

reflective surfaces. When the multiple reflections are brought together by a focusing lens, 

they interfere coherently and narrow fringes are observed. 
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FP can be constructed in many ways, a bulk optical FP is a free space optical device. A 

fibre type FP etalon has been demonstrated whereby one of the reflective surfaces is 

formed by the cleaved end of a fibre coated with a highly reflective material. The cavity 

is formed between the cleaved fibre end and a mirror, figure (4.5). In this configuration, 

alignment is critical for light to couple back into the fibre from the mirror, making this 

configuration inefficient. 

 

An extension to this form of FP consists of the formation of an air cavity between two 

fibre ends, which requires supporting members to keep the two fibres in place, figure 

(4.6). 

light 

cavity, l 

fibre end face

Single mode fibre 

mirror surface 

light diverges 

Figure 4.5, illustrates a FP cavity formed between a fibre end and a mirror. 

ϕ

Transmitted 
rays

Incident ray 

Figure 4.4, arrangement of the FP configuration. 

Refractive index n 
inside cavity

Cavity length l 

Mirrors with reflectivity R1, R2 
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The alignment and strength of the device can be improved by creating mirrors within the 

fibre, by means of fusion splicing fibre ends together, figure (4.7). This creates mirrors 

within the fibre and offers all the merits of all fibre systems, but the integrity of the 

physical strength and the optical properties of the fibre can be compromised by the 

intrusion.  

 

A way to overcome this problem is to inscribe a pair of identical FBGs within the fibre, 

with an appropriate physical separation. The FBGs act as the reflectors, creating cavity 

within the fibre core, with little intrusion to both the physical strength and the guiding 

properties of the fibre. The versatility of the inscribing technique allows a series of such 

FBG FP to be inscribed in the same fibre, with each occupying a different wavelength 

bandwidth, exploiting wavelength division multiplexing capability of FBGs.  

 

 

light 

cavity, l 

fusion splice

fusion sliced 

Single mode fibre 

Figure 4.7, illustrates a FP cavity formed by fusion splicing piece of fibres together 
with a reflective surface to form reflective mirrors. 

light 

cavity, l 

Single mode fibre Multimode fibre

epoxy

air gap 

Figure 4.6, illustrates a FP cavity formed between 2 fibre ends with supporting 
members. 
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4.3.1 The bulk Fabry-Perot Etalon 

 

An FP Etalon, figure (4.4) is essentially an optical resonator. Consider normal incidence 

case, at which ϕ is zero. When the incident light enters the cavity, it will be reflected 

back and forth inside the cavity. The reflected waves at the two mirror surfaces will have 

a phase delay equivalent to twice the optical path length, nl. For a monochromatic wave 

of wavelength, λ, of a single polarisation, the round trip phase shift (RTPS) of the cavity 

is given by; 

 

  
λ
πθ nl4

=    (4.23) 

 

where n is the refractive index of the medium in the cavity. The collections of wavelets 

will interfere when brought together. When the phase delay is an integer multiple of 2π, 

the reflected waves interfere constructively and when they are of odd multiples of 2π, 

then they interfere destructively. Thus the cavity expresses a preference for fields with 

the right wavelength for which the RTSP is of multiples of 2π. Assuming a lossless 

cavity, the mathematical treatment of the transmitted intensity results in the expression 

[8]; 

 
)2(sin4)1)(1(

)1)(1(
2

2121

2
21

θRRRR
RRII oT

+−−

−−
=   (4.24) 

 

where R1 and R2 are the reflectivities of the two mirrors. The FP cavity acts as a multiple 

beam interferometer, and narrow transmission fringes are seen in the output of the FP. 

Such devices may be used as filters by using a fixed cavity length, or as optical spectral 

analysers by tuning the cavity length for scanning spectral information in the signals. 

 

From the equation (4.24), describing the transmission of the FP, the maximum intensity 

occurs when the RTPS, θ is an integer multiple of 2π radian. The condition can be 

achieved by changing the cavity length, l or via a change in the illuminating wavelength. 
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The change in the illuminating wavelength from one cavity resonant wavelength to the 

next which gives rise to a change in the RTSP of 2π radian, is termed the Free Spectral 

Range (FSR) and it is given by in terms of optical frequency, v; 

 

  
nl
cvFSR FSR 2

=∆=     (4.25) 

 

The value of FSR is the measure of the device sensitivity. For highly reflective mirrors, 

the width of the resonant cavity mode is small and when the reflectance decreases, the 

width of the resonance cavity mode broadens. The full width half maximum of the 

resonant frequency is given by[8];  
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   (4.26) 

 

and the Finesse (Ff) of the cavity is given by; 

 

 2/1
21

4/1
21

2/12/1 )(1
)(2

RR
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v

F FSR
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=
∆

=
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∆

=
π

δ
π    (4.27) 

 

The value of Ff is a measure of the device’s resolution and it is related to the reflectivity, 

R as well as the losses incurred inside of the cavity. The wavelength resolution is given 

by the product of the FSR and the Finesse, Ff. Large FSR can only be obtained at the 

expense of a lower wavelength resolution and small FSR will give a higher sensitivity. A 

large FSR translates to large dynamic range. 

 

The maximum and minimum transmissions are given by[8], 

 

  2
21

21
max

)1(
)1)(1(

RR
RRI

−

−−
=    (4.28) 

and 
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2

21

21
min

)1(
)1)(1(

RR
RR

I
+

−−
=    (4.29) 

 

The visibility, V is a very important factor and it determines how well the spectral 

features can be resolved. The visibility is given by; 

 

   
minmax

minmax
II
II

V
+
−

=    (4.30) 

 

The visibility also depends on both the state of polarisation and the degree of coherence 

of the interfering light beams. When the reflectivity R is small, such as that encountered 

in the Fresnel reflection in air/glass interface in cleaved fibre ends, the spectrum becomes 

sinusoidal. Assuming R1 = R2, from (4.40-4.42), the visibility, V, in the transmission 

becomes very small. In reflected intensity is given as, IR = (1 - IT ) and assuming there is 

no loss in the cavity, then the visibility, V in reflection will have a value near to one, and 

the fringes can be resolved but at the cost of having reduced intensity, as illustrated in 

figure (4.8c). 

 

IR 

θ

Reflection mode

IT 

θ 

Transmission mode 

2π

Figure 4.8a, schematic diagram showing a fibre FP cavity consisting of a section of 
an optical fibre forming a cavity with its’ ends cleaved such that R~4%. b) showing 
the transmission response with a small visibility but high intensity throughput where 
as in c) the reflection response has a high visibility but a low intensity throughput. 

IT

IR 

light 
FP cavity

Beam splitter 
a) b) 

c) 
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In the low Finesse regime, which is encountered in fibre/air interface where the 

reflectivity is small, (R ~4%), assuming that R1 = R2 and a lossless cavity, the reflectance 

according to equation (4.24) is [9]; 
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  (4.31) 

 

where V is given by; 

 2

2

)1(
)1(2
RRR

RRV
−+
−

=    (4.32) 

 

The response indicated by equation (4.31) corresponds to the cosinusoidal transfer 

function of the two beam interferometer. This is most appropriate for sensing applications 

as many phase measurement techniques [10] have been developed over the years which 

could be used for demodulation of low Finesse FP sensors. 

 

4.3.2 Dispersive Bulk Fabry-Perot 

 

The cavities of interest in this thesis are based on chirped FBGs, which are dispersive 

elements in their own rights. Parallels can be drawn from the analysis on the dispersive 

cavity based on the bulk type FP. The effect of dispersion of the medium within an 

interferometer changes the Optical Path Length (OPL) as a function of wavelength, 

which in turn has an effect on the RTPS of the device. The change in the Optical Path 

Length, nl, with wavelength is given by [11]; 

 

  
λλλ d

dnl
d
dlnnl
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∂
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Vaughan [12] presented a treatment for a bulk FP with a dispersive medium inside the 

cavity in which a large change in the FSR is observed. The absorption spectrum of the 

medium has a strong line in a wavelength region. The effect of absorption, through the 

Kamers-Kronig relations, causes dispersion in the material, whereby a large change of 

refractive index with wavelength occurs [12]. The condition for the on-axis cavity 

resonance in transmission for the type of device can be written as; 

 

    pλ=2l(λ)n(λ)    (4.34) 

 

where p is an integer order of interference, and l and n are now functions of wavelength. 

Differentiating equation (4.34) gives; 
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which may be rearranged to produce;  
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where c is the speed of light. For a unity change in the interference order, δp = 1, which is 

the definition of the FSR, using equation (4.34), equation (4.36) can be rewritten to 

describe the detuning of the FSR of a dispersive cavity, ∆vFSR; 
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where 
nl
cv

20 =∆  is the conventional definition of the FSR. For a bulk FP etalon, the 

cavity length, l is fixed, and is independent of wavelength. The only dispersive effect 

available is within the material that constitutes the cavity. If the refractive index change 
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with wavelength is significant, then the change in optical path with wavelength, equation 

(4.33) can be reduced to; 
λλ d

dnl
d
nld

=
)(   and substituting into equation (4.37); 
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If the material dispersion is very small, there is no noticeable change in FSR for the 

device, such that 0~ vvFSR ∆∆ . However if a material exhibits dispersion, there is a 

significant modification to the FSR value in equation (4.38). If a material whose 

dispersion can be controlled or tailor made with a specific wavelength response, is used 

in the FP cavity, the denominator in equation (4.38) can tend to zero, with the results that 

the ∆vFSR can be infinite. The device then becomes insensitive to wavelength change. The 

condition for this to occur is; 

     
λλ d

dnn
=    (4.39) 

This condition is independent of the cavity length, l. The condition holds if the ratio of 

the refractive index to wavelength is equal to the dispersion. If the condition in equation 

is not satisfied, as the wavelength is tuned away from this condition, the wavelength 

insensitive condition will no longer hold and the FSR will change. This observation 

depends on the functional form of the dispersion. Thus the wavelength response can be 

tuned by virtue of the illuminating wavelength and is not solely determined by the cavity 

length, l, as it would have been for the conventional FP response. Equation (4.38) can be 

written to allow comparison with the conventional cavity response[13];  
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where the effective refractive index term, neff in the conventional cavity response is 

modified by the material dispersion term, 
λ

λ
d
dn .  
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Chirped FBGs are dispersive elements and they offer a different dispersive effect, namely 

position detuning with wavelength, rather than refractive index dependence with 

wavelength. This distinction has a certain influence when they form FP interferometer. 

 

4.3.3 Fibre Bragg Grating Fabry-Perot 

 

Using FBGs as partial reflectors, FP can be created by writing 2 FBGs separated by a 

cavity length sharing the same wavelength bandwidth. Chirped FBG can be used the 

same way to provide the FP with a larger operating bandwidth. 

  

4.3.3.1 Uniform Period Fibre Bragg Grating Fabry-Perot 

 
The simplest type of fibre FBG FP consists of two uniform period FBGs separated by a 

cavity written in an optical fibre with the FBGs occupying the same wavelength 

[14,15,16]. Figure (4.9) shows the diagram of a FBG FP. 

 
The Bragg wavelength is given by equation (4.13) and the typical FBG bandwidth is 

given by equation (4.16-4.17) depending on the strength of the coupling between the 

backward and forward waves. At zero detuning, the peak reflectivity of the FP filter, RFP, 

with FBGs of identical reflectivity, R, is given by [17]; 

 

2)1(
4

R
RRFP +

=   (4.41) 

reflection point for λB 

Figure 4.9, uniform FBG grating FP 

FBGs with Bragg 
wavelength λB 

cavity length l 

grating length lg 
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Increasing the cavity length, l between the two gratings enables multiple band-pass peaks 

to appear within the FBG stop band as shown in figure (4.10). 

 
These cavity resonance modes are given by the conventional FP response, FSR [17]; 

 

 
)(2 λnl

cvFSR =∆=   (4.42) 

It has a bulk FP like characteristics and operates over a limited bandwidth, whose value 

depends on the overlap of the two FBGs’ bandwidths. Analytical solutions to the uniform 

FBG FP have been developed by Legoubin el at [17] and the results indicate a variation 

in FSR of the order of 10%[17] for a uniform FBG FP. This variation is attributed to the 

distributed nature of FBGs as discussed in section (3.4). 

 

4.3.3.2 Chirped Fibre Bragg Grating Fabry-Perot 

 

Chirped FBGs can be fabricated by various methods, discussed in section (2.4.3). When 

the chirped FBG is illuminated by a broad band source, different wavelength components 

experience a different group delay resulting from the wavelength dependence of the 

resonance positions along the FBG. This dispersive effect has been used for pulse 

compression [18,19]. The chirped FBG FP offers a larger bandwidth [20,21,22] 
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Figure 4.10, shows the FBG FP wavelength response shown the cavity resonance 
mode modulated by the FBG stopband. 
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compared to a uniform FBG FP provide a larger dynamic range. Figure (4.11) illustrates 

a chirped FBG FP which consists of two chirped FBGs separated by a cavity length.  

 
Consider the phase response of the chirped FBG FP cavity. Using the simple FP analysis 

in which the RTPS response is considered, equation (4.23), and differentiating with 

respect to wavelength gives [23]; 
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where 
λ∂

∂ )(nl  is the change in OPL with wavelength. Equation (4.43) can be written as; 
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The cavity response can be derived by considering the change of wavelength required to 

provide a 2π change in RTPS, equation (4.44). This is the definition of the FSR for the 

cavity, ∆λFSR ; 

Figure 4.11, shows a chirped FBG FP, which consists of  2 chirped FBGs separated 
by cavity length, where l(λ) is a wavelength dependent cavity length and the total 
chirps, ∆λ =λ1- λo where λ1>λo. 

direction of increasing chirp 

grating length, lg 

cavity length, l(λ) 

direction of increasing chirp 

chirped FBGs 

λ1 λo λ 

resonance point for λ 
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This can be simplified to provide a general expression for the FSR; 
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When there is no dispersion in the cavity, there is no change in the OPL with wavelength 

such that, 0)(
=

λd
nld . The FSR in equation (4.46) can then be reduced to the conventional 

non dispersive FP response; 

 
)(2

2

λ
λλ

nlFSR −=∆   (4.47) 

 

Equation (4.47) has the form of the standard FP response and has a standard FP 

behaviour where the FSR is determined by the length of the cavity. However the cavity 

length has a wavelength dependence, which may modify the FSR response. The effect of 

the wavelength dependent cavity length on the FSR variation is observed in the off-

resonance wavelength region of the uniform period FBG FP response [17] where the 

penetration into the grating is greater giving rise to a longer cavity length than the on-

resonance wavelength. It is also observed in the overlapping chirped FBG FP response 

[24, 25] as well as in the chirped FBGs Michelson interferometers [26] due to the 

distributed nature of the chirped FBG giving rise to different cavity length, l(λ) for  

different wavelengths. An analytical equation for the FSR, equation (4.47), has been 

derived for such chirped FBGs cavities where the cavity length, l(λ) is expanded about a 

reference wavelength using the Taylor expansion [26, 25, 27]. The response of such 

cavities can be explained using the conventional non dispersive cavity response, equation 

(4.47), though the chirped FBGs are dispersive elements. 
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As discussed in section (4.3.2) for cavities containing medium which are dispersive and 

in section (3.6) for cavities formed with dispersive fibre, the dispersion has an effect on 

the cavity where there is a change in the FSR response compared to the standard FP 

response to changes in the illuminating wavelength, equation (4.46). Chirped FBG 

provides a different means of dispersion, whereby a positional dependence of the 

reflection points of the different wavelengths inside the grating will also have an effect on 

the RTPS and thus the FSR of the chirped FBG FP cavities. 

 

In a chirped FBG FP cavity, the wavelength dependent cavity length provides the means 

for dispersion,  
λd

dl  Assuming that the modal and waveguide contributions to dispersion 

are small and can be neglected, ie 0~
λd

dn , the change in OPL, with wavelength; 
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can be reduced to;    
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Substituting this back to the general expression for the FSR, equation (4.46), the general 

equation for the FSR of the chirped FBG FP can be written as;  
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Consider a chirped FBG FP configuration as shown in figure (4.12). The orientation of 

the chirp direction is arbitrary, but the FBGs have the same bandwidths. 
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Assuming that the reflection position of the central wavelength, λ0, is located at the 

grating centres, FBG1 and FBG2, the cavity length for the centre wavelength is given by 

the distance between the grating centres; l(λ0) = l0. When the cavity is illuminated by a 

wavelength, λ, the wavelength will see a cavity length measured from the respective 

reflection position inside the two gratings which can be written as; 

 

    )()()()( 201 λλλλ blbl ++=  

 

where b1 and b2 are the detuned reflection positions for the wavelength λ about the centre 

wavelength, λ0. The rate of change of the cavity length with wavelength is given by; 
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Figure 4.12, illustration of the chirped FBG FP cavity with FBG having the same 
central wavelength, λ0, where the cavity length for the, λ0, is the distance between 
the grating centres, l(λ0)=l0. The cavity length, l(λ), changes with different 
illumination wavelength.  

resonance point for the 
interrogating wavelength λ l(λ) 

b1(λ) l(λ0)=l0 resonance point of the 
central wavelength λ0 

Interrogating cavity length 

cavity length for central wavelength 

where; b1 , b2 are detuned position about the central wavelength, λ0 in FBG1 
and FBG2 respectively.  
 

b2(λ)

 The cavity length can be written as; l(λ)= b1(λ)+l(λ0)+b2(λ) 
 

FBG2 FBG1 
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where, l(λ0)=l0 is constant for all wavelength. Substituting into the general equation 

(4.48) gives; 
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Two factors affect the change in the FSR response. The first is the detuned position, l(λ), 

and the second which changes the OPL with wavelength; 
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a factor which causes different wavelengths to experience different OPL. The magnitude 

and direction of the rate of position detuning with wavelength depends on the orientation 

and the parameters of the chirped FBGs. Consider a cavity comprising of 2 chirped FBGs 

with arbitrary orientation as shown in figure (4.13). 

 

cavity length, l 

+b1  

chirped FBG1  

gratings with chirp in 
arbitrary orientation 

-b1 -b2 

chirped FBG2 

direction of movement 
of resonance position 
with wavelength  for 
FBG1 

+b2 

tendency to change cavity length , l  
+b = to increase and -b = to decrease

Figure 4.13, diagram showing the tendency to change the cavity length, l by the 
effect of movement of the resonance points within the grating, +b to increase the 
cavity length and –b to decrease the cavity length. 

direction of movement 
of resonance position 
with wavelength for 
FBG2 
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The tendency to change the cavity length, l by the direction of movement of the reflection 

points inside the two gratings is illustrated in figure (4.13). Depending on the orientation 

of the chirped FBGs, the movement of the reflection point with detuned wavelength will 

either to increase/increase the cavity length of the illuminating wavelength. The reflection 

position moves in the direction of the increasing chirp of the FBG with increasing 

wavelength. From figure (4.13), the tendency for the movement of the reflection point to 

increase the cavity length is associated with it a positive wavelength detuned position, +b 

whereas the opposite effect will have a negative wavelength detuned position, -b for the 

gratings. The changes in the cavity length with wavelength have an effect on the RTSP 

and thus the FSR of these dispersive chirped FBG cavities. 

 

4.3.3.3 Co-propagating chirped FBG Fabry-Perot cavity 

 

The co-propagating cavities are chirped FBG FP cavities which consist of 2 identical 

chirped FBG separated by a distance and that the orientation of the increasing chirp of the 

FBGs are aligned in the same directions as shown in figure (4.14). Changing the 

illumination wavelength changes the resonance position inside the chirped FBGs and thus 

alters the length of the cavity. The movement of the reflection points with wavelength in 

a chirped FBG is to move in the direction of the increasing chirp. Consider the co-

propagating chirped FBG FP cavity in figure (4.14a). In FBG1, the tendency for the 

movement of the reflection point with wavelength is to reduce the cavity length whereas 

in FBG2, the movement of the reflection point with wavelength is to increase the cavity 

length. If FBG1 and FBG2 are identical, then the movement of the distance between the 

reflections points inside the 2 chirped FBG remains unchanged thus the cavity length 

remains constant. The same argument applies to the co-propagating chirped FBG FP with 

the direction of the increasing chirp oriented in the same direction, figure (4.14b) but 

opposite to the cavity in figure (4.14a).  
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For identically chirped FBGs, the magnitude of movement of the reflection point with 

wavelength; 

     
λλλ d

db
d
db

d
db

== 21   

are the same and that they act against each other as shown in figure (4.14). Equation 

(4.49) becomes; 0=
λd

dl  and substituting this result into the general FSR equation (4.48) 

gives; 

    
0

2

2nlFSR
λλ −=∆    (4.51) 

 

a) 

λ1

λ2 
λ  

λ1 

λ2 

λ 

l(λ0) 

−b1 

dl/dλ=0 dl/dλ=0 

Figure 4.14, shows the co-propagating cavities of chirped FBG FP with 
chirps of the FBG oriented in the same direction as shown in a) and in the b) 
but in the opposite sense. When the wavelength is increased, the movement of 
the reflection point moves in the direction of the increasing chirp. The net 
effect in the 2 chirped FBGs cancels out each other such that there is no 
change in the cavity length. 

+b2 

Direction of chirp 

+b1 −b2 

increasing the wavelength have on the reflection 
points with respect to the change in cavity length, l 

l(λ0) 

l(λ0) = l(λ) = l0  for all 
wavelength for co-propagating 

FBG1 FBG2 FBG3 FBG4 

b)

Scenario A 
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The wavelength response of chirped FBG FP with the chirps of the FBG oriented in the 

same direction is similar to the conventional FP response [10,28] where the FSR is given 

by the corresponding cavity length between the gratings centres, equation (4.51). 

 

4.3.3.4 Contra-propagating chirped FBG FP: The reduced Configuration 

 

The contra-propagating cavities which consist of the chirped FBG FP, comprises of 2 

identically chirped FBG separated by a distance with the direction of the increasing chirp 

oriented not in the same direction. The reduced configuration is of the contra-propagating 

chirped FBG FP cavity configuration where the direction of the increasing chirp of the 

FBG is oriented away from the centre of the cavity as shown in, figure (4.15). This 

configuration is designed to have a reduced sensitivity to wavelength. 

 
When the cavity is illuminated by a wavelength, λ, due to the positional dependence of 

the reflection position with wavelength in the 2 chirped FBG, the light will see a cavity 

cavity length for the illuminating 
wavelength and it is wavelength  
dependent

Figure 4.15, shows the reduced configuration of the contra-propagating chirped 
FBG cavity which consists of 2 identical chirped FBGs separated by a distance with 
the direction of the increasing chirped oriented away from the centre of the cavity. 
Increasing the wavelength will have a corresponding increase in the cavity length. 

tendency for the 
movement of the 
reflection points to 
increase cavity length, l 
with increasing 
wavelength 

+b2 

λ 

Scenario B (the reduced configuration ) 

λ1 

λ2 

l(λ) 

+b1 

dl/dλ=+ve 

λλ d
db

d
dl 2=

the change of cavity 
length with wavelength 
is given by; 

FBG1 FBG2
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length, l(λ), and this is wavelength dependent, figure (4.15). As the wavelength increases, 

the movement of the resonance position, b1 in FBG1, moves in the direction of the 

increasing chirp such that there is a tendency for the cavity length to increase with 

wavelength. The same argument applies to FBG2 which can be seen in figure (4.15). The 

increase in the reflection positions with wavelength in the 2 FBGs are given by;  
λd

db1  and 

λd
db2  for FBG1 and FBG2 respectively. There is a tendency for the cavity length, l to 

increase with wavelength so that ve
d
dl

+=
λ

. From the dependence of the RTSP upon the 

illuminating wavelength for the general cavity, equation (4.43); 

 

     






∂
∂

+−=
λλ

π
λ
π

λ
θ )(44

2

nlnl
d
d , 

 

an increase in the cavity length, dl, provides a positive  phase shift (2nd term RHS) which 

counteracts the negative phase shift (1st term RHS) induced by the optical wavelength 

change in the cavity [29]. The overall effect of the two counteracting responses to 

wavelength changes in the cavity will provide a reduced phase response. Therefore, this 

configuration has a reduced sensitivity to wavelength than is exhibited by a conventional 

FP cavity. The sensitivity depends on how the two phase shifts are balanced out. The 

change in cavity length is related to the chirp rate for a reduced configuration. Given that 

ve
d
dl

+=
λ

,   equation (4.48) can be written as; 

    






 −

=∆

λ
λ

λ

λλ
)(2 l

d
dln

FSR   (4.52) 

 

For the identical chirped FBGs, the values of 
λλλ d

db
d
db

d
db

== 21 , such that the change of 

cavity length with wavelength can be written as 
λλλ d

db
d
db

d
dl 22 2 == . From the grating 
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response, the movement of resonance position with wavelength can be represented 

by[30]; 

     
C

l
d
db

c

g 1
=

∆
=

λλ
  (4.53) 

where lg is the grating length, ∆λc is the total chirp and C is the chirp rate nm/mm. 

Substituting into Equation (4.52); 

   

    






 −

=∆

λ
λ

λλ
)(122 l

C
n

FSR  

    






 −

∆
=∆

C
l

l

FSR λλ

λ
λ

2)(1

0

0   (4.54) 

where 
0

2

0 2nl
λλ −=∆  is the conventional FSR for a FP with the cavity of length l0. 

Analogous to the dispersive bulk FP, where the FSR is modified by the material 

dispersion, the dispersive chirped FBG cavity response is modified by the chirp rate, 

which is a length dependent term. When the denominator of equation (4.54) becomes 

zero, the FSR for the reduced cavity becomes infinite; ∆λFSR→∞. At this point the 

reduced cavity becomes a cavity which is insensitive to wavelength. This condition 

occurs on the loci of the curve; 

 
C

l λλ 2)( =    (4.55) 

  

Figure (4.16) shows the plot of this wavelength insensitive cavity length for the 3 

wavelengths, 1550nm, 1300nm and 800nm. 
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Table (4.1), below provides some figures of merit to compare the cavity lengths required 

to construct a wavelength insensitive cavity for 3 different interrogating wavelengths, for 

a range of chirp rates; 

  

Table 4.1 

Table indicating the insensitive length required for the wavelength for  800nm, 

1300nm and 1500nm from equation (4.55).  

Wavelength 
Chirp rate 

10nm/mm 

Chirp rate 

20nm/mm 

Chirp rate 

25nm/mm 

800nm 160mm 80mm 64mm 

1300nm 260mm 130mm 104mm 

1500nm 300mm 150mm 120mm 

 

As can be seen from table (4), the cavity length is inversely proportional to the chirped 

rate. If the cavity were formed between a single chirped FBG and a reflective fibre end, 

the cavity length for wavelength insensitive would be halved, such that 
C

l λ
= . At the 

design wavelength, the rate of change of phase with wavelength is zero. Such a device 
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Figure 4.16, a plot of the equation (4.55) for 3 wavelengths, 1550nm, 1300nm 
and 800nm. 
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could be useful to reduce frequency jitter noise for wavelength stabilisation of external 

cavity lasers but such configuration usually requires a large cavity length which will 

suffer from polarisation fading effect if the FBG is fabricated in single mode fibre. 

 

As the wavelength is tuned away from the design wavelength, the condition for zero 

sensitivity no longer holds. By expanding the cavity length, l(λ) about the central 

wavelength cavity length, l0 to a 1st order approximation; 

 

    δλ
λ
λλλ

d
dlll )()()( 0 += ,  

 

equation (4.54) can be written about the detuned wave δλ; 

 

    















 +−

=∆
δλλ

λ

λλ δλ

C
l

C
n

FSR 12)(1122
)(

0

  

This can be simplified to; 

 

 








−=








−=∆
δλ

λ

λ

δλ

λλ δλ

d
dzn

C
n

FSR

22122
)(

22

  (4.56)  

 

where 
λd

dz  is the inverse of the chirp rate C-1, expressed here as a positional detuning 

factor.  
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The equation (4.56) has the same functional form as the expression describing the 

conventional FSR, except that it is offset by the insensitive cavity length, 
C

l λλ 2)( = , 

which is shown in figure (4.17a).  By careful design of the chirped FBG cavity, the bulk 

equivalent FSR, 
nlFSR 2

2λλ −=∆  can be offset by an effective length such that there is a 

physical length, l(λ) ≠ 0 for which ∞=∆ FSRλ . The FSR can then be tuned by changing 

the wavelength as shown in figure (4.17b). As the device has a wavelength dependent 

cavity length, this is equivalent to having access to a Bulk Fabry-Perot with many cavity 

lengths. The FSR variation depends on the chirp parameters of the FBGs. 

 

  

The response of the dispersive chirped FBG FP cavity is analogous to the dispersive bulk 

FP in section (4.3.2). Using the treatment carried out by Vaughan [12] on the analysis of 
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Figure 4.17a) the FSR variation of the insensitive cavity configuration 
compared to the Bulk FP response and b) using the relationship of the 
positional dependence of wavelength, the equivalent FSR with wavelength is 
plotted using equation (4.56). 
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the dispersive bulk Fabry-Perot interferometer using the on axis resonance condition for a 

cavity, equation (4.34); 

      )()(2 λλλ lnp =  

 

Differentiating the equation and consider the condition of onset of the next cavity 

resonance provides a general cavity response in terms of the optical frequency which is 

given in equation (4.37); 

     






 −

∆
=∆

λ
λ

d
nld

nl

v
vFSR )(

2
21

0  

 

Treating the chirped FBG FP in a similar fashion, the change in OPL for the chirped FBG 

FP is related to the change in the cavity length; 

       
λλ d

dln
d
nld

=
)(   

Since from equation (4.53); 

       
Cd

dl 12=
λ

 

the equation (4.37) becomes; 

   






 −

∆
=∆

Cl

v
vFSR λ21

0    (4.57) 

When the denominator becomes zero, the condition for wavelength insensitive cavity 

becomes; 

       
C

l λ2=  

which is the same condition for a wavelength insensitive cavity derived using the RTSP 

consideration, equation (4.55). This demonstrates the consistency in using the two 

methods to derive the insensitive cavity length. The analogy between using the two 

different types of dispersive elements is very close. The condition for the insensitive bulk 

type FP occurs when the functional form; 
λλ d

dnn
=   is satisfied (which is length 
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independent) and the condition for the insensitive chirped FBG FB occurs when 
λλ d

dll
=  

is satisfied (which is independent of the refractive index). One advantage of using chirped 

FBGs is that the dispersion can be controlled by means of chirping parameters. Different 

FBGs with different chirp rates can be fabricated which can form FP cavities with a wide 

range of sensitivities for all wavelengths and not being limited by material properties.   

 

4.3.3.5 Contra-propagating chirped FBG FP: The enhanced Configuration 

 

The enhanced configuration comprises of 2 identical chirped FBGs separated by a cavity 

length to form a FP with the increasing chirp of the FBGs oriented towards the centre of 

the cavity as show in figure (4.18). When the cavity is illuminated by a wavelength, λ, 

the light will experience a cavity length, l(λ) because of the positional dependence of the 

reflected wavelength in the 2 chirped FBGs. As the reflection position of the wavelength 

moves in the direction of the increasing chirp with increasing wavelength, there is a 

tendency for the movement of the reflection point, b1 in FBG1 to reduce the cavity 

distance and the same argument is applied to the movement of the reflection point, b2 in 

FBG2, figure (4.18). Increasing the wavelength has a tendency to reduce the cavity length 

the wavelength experiences in this cavity and hence, ve
d
dl

−=
λ

. Consider the RTSP with 

wavelength for a general cavity, equation (4.43); 

 

     






∂
∂

+−=
λλ

π
λ
π

λ
θ )(44

2

nlnl
d
d .  

 

The reduction in the cavity length, dl provides a negative phase shift (2nd term in the 

RHS) but there is also the normal wavelength response of the cavity with a further 

negative the phase shift (1st term in the RHS). 
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The overall effect of the two responses of the cavity enhances the negative shift in phase 

as the wavelength is tuned, therefore giving an enhanced wavelength sensitivity cavity 

compared to a standard FP with the same cavity length. Assuming identical chirped 

FBGs, the change of cavity length can be expressed in terms of the chirp rate [30]; 

 

     
C

B
d
dbl

c

1222)(
−=

∆
−=−=

∂
∂

λλλ
λ   (4.58) 

 

where C is the chirp rate. Substituting into the FSR equation for a general chirped FBG 

FP cavity; equation (4.52) becomes;  

    






 −−

=∆

λ
λ

λλ
)(122 l

C
n

FSR    (4.59) 

Under the condition of the wavelength insensitive cavity, equation (4.55); 

     
C

l λλ 2)( =  

 

the change of cavity 
length with wavelength 
is given by; 

l(λ) 

the cavity length is interrogating 
wavelength dependent  

Figure 4.18, shows the enhanced configuration of the contra-propagating chirped 
FBG cavity where there is a decreased in the cavity length, l with wavelength. 

tendency for the 
movement of reflection 
point to decrease cavity 
length, l with increasing 
wavelength 

−b2 

λ 

Scenario C (the enhanced configuration) 

λ1 

λ2 

−b1 

dl/dλ=-ve 

λ λ d 
db 

d 
dl 

2 = 

FBG1
1
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the equation can be rearranged to give;  

     
)(

2
2 λ

λ
l

C
=  

Substituting back into equation (4.59), the wavelength sensitivity of the cavity is given 

by; 

    

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λ
λ

λλ
)(22 ln

FSR  

    
))(2(2

2

λ
λλ
lnFSR −=∆     (4.60) 

 

This has the form of a conventional FP response, however the apparent cavity length is 2 

times the actual length or the cavity has become twice as sensitive. The enhanced 

configuration under the wavelength insensitive condition for the reduced configuration 

with a cavity length, l(λ), will become twice as sensitive to wavelength, equation (4.60). 

The effect of detuning the wavelength is small, and the FSR is almost constant. By using 

chirped FBG FP in the enhancing configuration, the sensitivity of the cavity can be 

increased without the need for a large cavity length FP, making small device with high 

sensitivity possible. A small cavity length device with high wavelength sensitive has 

implications in low coherence interferometry. It can be used as a processing 

interferometer where the small length of the cavity will be less stringent on the coherence 

of the signal source and at the same time providing a high wavelength sensitivity readout. 

 

4.3.3.6 Phase response of the insensitive chirped FBG FP 

 

The general RTSP equation for the dispersive chirped FBG FP is given by equation 

(4.44); 

  λ
λ
λ

λλ
πθ dl

d
dlnd 






 −=

)(4     

In the reduced configuration, section (4.3.3.4), the change of cavity length with 

wavelength is positive and is given in terms of C; 
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C

l 12)(
=

∂
∂
λ
λ   

 

Using the Taylor expansion, the cavity length, l(λ) can be written about the cavity length 

of the central wavelength, λ0 of the chirped FBG, using the 1st order approximation and 

substituting back into equation (4.44) gives; 
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For a wavelength insensitive cavity designed for the central wavelength, λ0, equation 

(4.55) can be written as; 

     
λ
λ )(2 0l

C
=  

 

Substituting back into equation (4.61) gives; 
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    (4.62) 

 

Integrating from λ0 to the detuned wavelength, λ0+∆λ, the phase change incurred will be; 
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λπθ

λλ

λ

d
C

nd ∫∫
∆+ ∆

−=
0

0

2

8
 

 

which gives (details of which can be found in Appendix B);  
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This can be simplified to;  
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λπθ

C
n    (4.63) 

 

A plot of equation (4.63) is shown in figure (4.19) assuming n=1.5, and a chirp rate of 

25nm mm-1. The graph demonstrates that the cavity has a quadratic phase response. 

 
The phase response of the wavelength insensitive cavity is quadratic about the central 

wavelength. When this is used in the FP response equation (4.31); 

 

    )cos(10 θVII +=     

The nature of the cavity response with wavelength, produces a variation of the FSR, 

symmetrical about the insensitivity wavelength. The sensitivity increases with increasing 

detuning about this wavelength. 

 

The dispersion present in these cavities changes the wavelength response, and, dependent 

on the chirp parameters of the grating, different wavelength sensitivities can be achieved. 

These different wavelength sensitivities may have implications to the strain and 

temperature sensitivities for the cavities. 
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Figure 4.19, a plot of equation (4.63) with λ0 of 1550 nm and chirp rate of 
25nm mm-1.
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Table 4.2, FP response of interferometers involving the used of chirped FBGs 
configuration  FP response Equation  
 
general bulk FP cavity 
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


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∆
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λ

d
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n

v
vFSR
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equation (4.38)[12] 
 

 
bulk FP cavity 
 
 
 
 
 
 
 

 
 

ln
cv

)(20 λ
=∆  

 
equation (4.25) 
 
corresponding wavelength 
dependent refractive index   

 
dispersive bulk FP cavity 
 
 
 
 
 
 
 

 
 

ln
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l
d
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FSR 22
=







 −

=∆

λ
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equation (4.40)[13] 
 
corresponding dispersion 
modified effective refractive 
index response 

 
uniform FBG FP 
 
 
 
 
 

 
 

)(2 λnl
cvFSR =∆  

 
equation (4.42)[ 17] 
 
corresponding wavelength 
dependent cavity length   

 
general chirped FBG FP with 
arbitrary chirps 
 
 
 
 
 

 



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d
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equation (4.48) 
 

 
Chirped FBG FP with chirps in 

FBG oriented in the same 
direction [20, 21,22] 

 
 
 
or  
 
 
 
 

 
 
 
 
 

0

2

2nlFSR
λλ −=∆  

 
 
 
equation (4.51) 
 
corresponding wavelength 
dependent cavity length  but all 
wavelengths have the same 
cavity length 

refractive index, n 

Cavity length, l 

refractive index, n 

Cavity length, l 

refractive index, n 

Cavity length, l 

Cavity length l(λ) 

Cavity length l(λ) 

l(λ0)=l0 
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configuration  FP response Equation  
general reduced configuration 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
wavelength insensitive cavity 
condition, equation (4.67) 
 

C
l λλ 2)( =  

 
 
 
 
 
 
 
 
phase response about the design 
wavelength 
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equation (4.52), 
 
corresponding dispersion 
modified effective cavity length 
response 
 
equation (4.54) 
 
corresponding dispersion 
modified effective cavity length 
response 
 
 
equation (4.57) 
corresponding dispersion 
modified effective cavity length 
response 
 
 
 
 
equation (4.56) 
 
 
 
equation (4.56) 
 
 
 
equation (4.63) 
 

 
enhanced configuration  
 
 
 
 
 
 
 
at condition equation (4.67) 
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equation (4.59) 
 
corresponding dispersion 
modified effective cavity length 
response 
 
 
equation (4.60) 
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4.4 Summary  
 

The principles of operation of FBGs have been discussed using the coupled mode theory 

to explain the interactions between the forward and backward propagating mode due to 

the periodic perturbation of refractive index modulation. The dispersion inside the cavity 

affects the performance of the bulk FP interferometer such that the cavity characteristics 

are changed by dispersion. Analysis using the RTPS for FP cavities has been performed 

on the chirped FBGs FP and the performance of these dispersive cavities is analogous to 

the dispersive bulk FP. The summary of the FP configuration and FP responses have been 

tabulated. Depending on the chirped FBG FP configurations, the sensitivity could be 

altered by the chirp parameters of the FBG and different sensitivity device with different 

gauge length can be configured.  

 

From the analysis of the wavelength response of the chirped FBG FP, the effect of 

scanning the wavelength changes the reflection point in the two FBGs which can have an 

enhance/reduce effect on the normal wavelength response of the cavity. Using the 

relationship between strain and wavelength scanning [15] in the FBG FP, by suitable 

design of the chirp parameter in the chirped FBG FP, the cavity can be made such that the 

effect of changing wavelength in the chirped FBG will encounter act the effect of the 

cavity and hence a reduced or zero strain sensitivity chirped FBG FP can be configured. 
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5 Variable Strain and Temperature sensitive chirped FBG FP cavity 

5.1 Introduction 

 

The strain sensitivity of the uniform period FBG FP cavity corresponds to the cavity length, l of 

the device. To ensure good spectral overlap between the two FBGs and to extend operational 

range, broadband chirped FBGs may be used as the partial reflectors [1]. Not only does a chirped 

FBG provide a broadband response, it is also a dispersive element which imparts a wavelength 

dependent delay to the reflected signal. In section (4.4.3), the analysis showed that the presence 

of a dispersive element within the interferometric cavity has led to significant modification to the 

cavity response with wavelength. This implies that the presence of the dispersive element will 

also influence the strain and temperature sensitivities of the cavity. 

 

When a chirped FBG is subjected to axial strain, the location along the FBG from which light of 

a given wavelength is reflected changes, giving an effective extension enhancement of up to 3 

orders of magnitude when compared to a bare fibre [2]. An enhanced strain sensitised fibre 

Michelson interferometer, employing this idea has been demonstrated [2]. By appropriately 

configuring chirped FBGs in a FP cavity, the strain sensitivity can be enhanced or reduced 

depending on the parameters of the FBGs. The ability to alter the strain sensitivity via the 

parameters of the chirped FBG pairs, instead of using the length of the cavity, gives an added 

dimension and capability to fibre FP sensors. A reduced sensitivity to strain increases the 

unambiguous measurement range of the sensor whereas enhanced strain sensitivity would allow 

high-resolution measurements with smaller gauge lengths. 

  

5.2 Strain sensitivity of chirped FBG Fabry-Perot 

 

Consider a chirped FBG FP with two identical chirped FBGs separated by a cavity length with 

the increasing chirp of the FBGs directed away from the centre of the cavity as shown in figure 

(5.1). Let the two chirped FBGs be of equal but opposite chirp around the central wavelength, λ0.  
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When illuminated by a laser operating at wavelength, λ, the length of the cavity, l(λ) is the 

distance between the corresponding reflection position within the two FBGs, as indicated figure 

(5.1). When the cavity is subjected to strain, 2 counteracting effects occur. There is the tendency 

for the reflection point in the chirped FBGs to move against the direction of the chirp, thus 

reducing the cavity length. There is also the physical elongation of the cavity.  Consider an 

optical fibre with length, l, subjected to axial strain, δε, the change in the optical length with 

strain is given by[2]; 

ll ξ
δε
δ

=
)(    (5.1) 

where l is the equivalent optical length of the fibre and ξ is the strain responsivity determined by 

the photoelastic properties of the fibre with a typical value of; ξ = 0.75 ε-1 [3]. 

 

To determine the parameters of the chirped FBGs required to counteract the strain induced 

change in fibre length, the effect of strain upon the chirped FBGs must be considered. The 

Figure 5.1, illustrates a chirped FBG FP cavity configured to have reduced sensitivity to 
strain. The cavity consists of 2 chirped FBGs with the direction of increasing chirp 
oriented away from the centre of the cavityλ0. The cavity is interrogated with a 
wavelength, λ and has a cavity length, l(λ), measured between the resonance positions. 
The total chirp, ∆λ = λ2−λ1 where λ2>λ1. 
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resonance position of an interrogating wavelength, λ, measured relative to the reflection point of 

the central wavelength, λ0, within a chirped FBG of length lg and total chirp ∆λc, can be written 

as[2]: 

     g
c

lb α
λ
λλ

λ
∆
−

= 0)(    (5.2) 

where α is a multiplying factor <1 [2], which determines how deep into the grating the 

illuminating wavelength can penetrate. The value of α is dependent on the fibre material 

constants, the strength and the extent of the chirp of the grating. The normalised shift in central 

wavelength of the FBG in response to strain is given by [2]: 

     ξ
δε
δλ

λ
=

1     (5.3) 

Applying strain to a chirped FBG causes a movement of the resonance location at the 

interrogating wavelength. This can be determined by differentiating equation (5.2) with respect 

to strain and combining the result with equation (5.3) [2]: 

     ξλα
δε
λδ

C
b

=
))((    (5.4) 

where C is the chirp rate given by ∆λc ⁄lg. The value of α is assumed to be 0.80 [2], where the 

chirped FBG under investigation is subjected to strain under similar condition.  

 

In the chirped FBG FP cavity, the movements of the resonance positions in the chirped FBGs 

under the application of strain, will have the tendency to either increase or decrease the cavity 

length, which is dependent on the orientation of the grating in the FP. When they are used in the 

enhanced configuration, section (4.3.3.5), the movement of the reflection points in the chirped 

FBGs are fashioned such that the cavity length has a tendency to increase, coupled with the 

action of strain has on stretching the physical cavity, will further enhance the strain response of 

the cavity.  
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In a reduced configuration shown in figure (5.1), the relative movement of the resonance points 

in the two oppositely oriented chirped FBGs can counteract the increase in the length of the 

cavity in response to tensile strain, so that there is no net change to the cavity length. For this to 

happen, the RHS of both equation (5.1) and equation (5.4) (given that there are 2 chirped FBGs 

in the FP cavity) must be balanced. For the cavity to be strain insensitive, the following 

relationship between the cavity length, illuminating wavelength, grating strength and chirp must 

be satisfied; 

     
C

l λαλ 2)( =     (5.5) 

This strain insensitive cavity length is similar to the wavelength insensitive cavity length derived 

in section (4.3.3.4) except for the grating strength factor, α = 0.8 [2]. The analytical solution 

given in equation (5.5) is plotted in figure (5.2). 

 
From equation (5.4), it can be seen that the smaller the chirp rate C, the larger the movement of 

the resonance points, which allows the strain acting on a large cavity length to be counteracted. 

 

It is useful to consider the effect of operating away from this design wavelength, for example, at 

wavelength, (λ+δλ), upon the response of the cavity. In this case, using equation (5.2), the 

increase in cavity length is given by; 

Figure 5.2, a plot of the cavity length vs chirp rate required to construct a chirped FBG 
FP cavity that is insensitive to strain. The line is calculated using equation (5.5),
assuming that, α=0.80 and λ = 1550nm.
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    δλλδλλ
C

ll 12)()( +=+ .   (5.6) 

from which 

     δλδ
C

l 12=     (5.7) 

where δl is the change in the cavity length caused by the change in  the illuminating wavelength, 

δλ. Since the FBGs are considered to have a linear chirp (ie C is a constant), when the cavity is 

subjected to strain the movement of the resonance position at the wavelength (λ+δλ) can only 

compensate for the extension of a cavity of length l(λ). Thus it is only the affect of strain on the 

additional length, δl, that gives rise to a change in the overall cavity length and thus in the phase 

of the output. The change in RTPS in response to strain is given by[4]; 

 

     δεξδ
λ
πδθ l4

=    (5.8) 

 

where δl(from equation (5.7)) is the detuned length which contributes to the phase shift. Using 

equation (5.7), equation (5.8) becomes; 

     δλδεξ
λ
πδθ

C
n 18

=    (5.9) 
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Detuning the illuminating wavelength from the design wavelength allows a degree of tuning of 

the strain sensitivity of the cavity. A plot of the strain sensitivity determined using equation (5.9) 

is shown in figure (5.3). The strain sensitivity is plotted as a function of illuminating wavelength 

determined using the parameters; n=1.458,  ξ=0.8±.1[3] and C=25nm mm-1 for a cavity with the 

design wavelength of 1550nm. 

 

5.3 The phase response of the chirped FBG FP to strain 

 

Consider a general chirped FBG FP. The RTSP of this general FP cavity with an OPL of nl is 

given by; 
λ
πθ nl4

= . By differentiating the RTPS with strain, the change in the RTSP of the 

cavity under the influence of an applied strain can be written as[4]; 

 







 +=

∂
∂

=
εελ

π
ελ

π
ε
θ

d
dln

d
dnlnl

d
d 4)(4    (5.10) 

Figure 5.3, a plot of the strain sensitivity of equation (5.9) as a function of wavelength. 
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Consider chirped FBG FP cavity that is made up of 2 identical chirped FBG configured in an 

arbitrary orientation, as shown in figure (5.4). When the cavity is interrogated at a wavelength, λ, 

the cavity length, l(λ) can be written in terms of the cavity length from the central Bragg 

wavelength, l(λ0) and the wavelength detuned position, b; 

 

     l(λ) = l(λ0)+2b(λ) 

 

Differentiating the expression with respect to strain; 

  

     
εε

λ
ε d

db
d

dl
d
dl 2

)( 0 +=    (5.11) 

 

From equation (5.4); gCd
db ξλα
ε
= , where ξg is the strain response of the FBG, equation (5.11) 

can be written as; 

 

Figure 5.4, illustrating a chirped FBG FP cavity that consists of 2 chirped FBGs with 
arbitrary chirp, with a central Bragg wavelength, λ0. The cavity is interrogated at a 
wavelength, λ, with a corresponding the cavity length, l(λ), measured between the 
appropriate resonance positions. The total chirp, ∆λ = λ2−λ1 where λ2>λ1. 
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εε

λ
ε d

db
d

dl
d
dl 2

)( 0 +=    (5.12) 

Assuming that the length of the cavity at the interrogating wavelength is the same as the length 

of the cavity of the central wavelength; 0ll ≈  and substituting equation (5.12) into the 

expression, equation (5.10), describing the change in the RTSP under the influence of an applied 

strain; 

     







+






 +≈

C
n

d
dn

n
nl

d
d

g
λξα

ελ
π

ε
θ 2114   (5.13) 

 

where fd
dn

n
ξ

ε
=






 +

11  and ξg are strain responses of the fibre and FBG respectively. Assuming 

the value for the strain responses for fibre and FBG are the same, as they are determined by the 

same values in the elasto-optic and strain coefficients[2],  Equation (5.13) can be reduced to; 

 







 +=

C
ln

d
d λα

λ
ξπ

ε
θ 24    (5.14) 

From equation (5.14), the phase response with strain of the chirp FBG FP cavities is dependent 

on the cavity length, l as well as the direction and magnitude of the movement of the resonance 

position. By using different value of C with different orientations of chirps, the strain sensitivity 

of the cavity can be changed for a given length of cavity in the chirped FBG FP. 

 

In a chirped FBG FP which consists of 2 identical chirped separated by a distance forming a 

cavity with the direction of the increasing chirps oriented away from the centre of the cavity, 

figure (5.4), the cavity is fashioned such that the movement of the reflection positions of the 

illuminating wavelength in the chirped FBG have a tendency to decrease the cavity length to the 

application of strain. Thus 
εd

db is negative and equation (5.15) becomes; 
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




 −=
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d λα

λ
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ε
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The phase of the cavity is strain insensitive when the cavity length satisfies the condition; 

      
C

l λα2=  

 

For a given illuminating wavelength, a chirped FBG FP configured as shown in figure (5.4), with 

the chirped FBG having a given chirp rate, C, there exists a cavity length that the cavity becomes 

insensitive to strain. This same condition is derived from considering the balancing the 

movements of resonance position as the cavity is subjected to strain, equation (5.5). 

 

When operating wavelength is detuned away from the wavelength at which the cavity is 

designed to be insensitive to strain, the cavity length can be expanded as a Taylor series about 

the designed ‘strain insensitive cavity length’, l(λ0) ; 

 

     λλλ ∆+=
C

ll 12)()( 0  

 and equation (5.15) can be written as;  
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


∆+ CC
ln

d
d λαλλ

λ
ξπ

ε
θ
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212)(4
0   (5.16) 

 

Since the cavity is designed such that; 
C

l λαλ 2)( 0 = ,  the above equation becomes; 

 

   
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



 ∆=








∆+

λ
λ
ξπ

ε
θ

λλ C
n

d
d 124     (5.17) 

 

which is the same as equation (5.9) in the previous section, derived from considering the 

balancing of the movement of the resonance position as the cavity is subjected to strain. 

 

 



Chapter 5 Variable Strain and Temperature sensitive chirped FBG FP cavity 

 148

5.4 The phase response of the chirped FBG FP to temperature 

 

The resonance position of an interrogating wavelength, λ, measured relative to the reflection 

point of the central wavelength, λ0, within a linearly chirped FBG of length, lg and total chirp 

∆λc, is written as; 

    gT
c

lb α
λ
λλ

λ
∆
−

= 0)(     (5.18) 

where αT now is a temperature factor to reflect the fact that movement of the resonance position 

is temperature driven. This factor determines how deep into the grating the illuminating 

wavelength can penetrate into the grating with temperature. Together with the wavelength 

response of the FBGs[3]; 

     gT
ς

δ
δλ

λ
=

1    (5.19) 

 

where gς is the temperature response of FBGs. Differentiating equation (5.18) with respect to 

temperature and combining the result with equation (5.19) gives the rate of change of the 

resonance point with temperature; 

    gT CT
b ζλα
δ
λδ

=
))((    (5.20) 

Following a similar argument to that prescribed in section (5.3) for the strain response, the 

temperature sensitivity of the chirped FBG FP cavity may be derived and it is written as; 

 

   





 +=

C
nnl

dT
d

gTf
λζαζ

λ
πθ 24   (5.21) 

 

where ζf and ζg are the fibre and FBG temperature responses respectively. If the temperature 

response; ζf  = ζg = ζ which is a reasonable assumption to make for the same fibre material, then 

the equation becomes; 
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     





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C
ln

dT
d

T
λα

λ
ζπθ 24   (5.22) 

The cavity exhibits temperature insensitivity at the wavelength λ which satisfies the condition; 

 

     
C

l T
λα2=    (5.23) 

From the analyses for the wavelength insensitive cavity presented in, section (4.3.3.4) and for 

strain insensitive cavity, section (5.3), the insensitive cavity length for wavelength, temperature 

and strain of this reduced configuration are given by 
C

l λ
λ 2= , 

C
l λαε 2=  and 

C
l TT

λα2=  

respectively. For a given wavelength, the insensitive cavity length for wavelength, strain and 

temperature occur at different cavity lengths, dependent on the value of α and αT. This is 

because the phase change in response to a change of wavelength is different to the phase 

response to strain tuning or temperature tuning.  For example, the strain response of FBG is 

given by; 

      ξ
δε
δλ

λ
=

B

1  

and the definition of strain is given by; 

     
l
ld δε =  

substitute into the strain response gives; 

      
l
dld ξ

λ
λ
=   

where ξ has a value ~0.75 ε-1 [3]. This means that the strain tuning of the wavelength is only 

about 75% efficient which is near to the value of α~0.8. The value of α~0.8 is the average 

penetration depth over the bandwidth of the chirped FBG due to strain which reflects the FBG 

strain responsitivity, ξ ~0.75.  
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5.5 Summary 

Table 5.1, strain response of FP interferometers involving the used of chirped FBGs 
configuration  FP strain response equation  
general chirped FBG FP with 
arbitrary chirps 
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The strain sensitivity of the chirped FBG FP has been discussed. The dispersive element of the 

chirped FBG modifies the FSR of the cavity response and because of the relationship between 

the wavelength detuning with strain in FBG, the strain sensitivity is also related to the 

wavelength sensitivity of the dispersive chirped FBG FP. The reduce strain sensitive chirped 

FBG FP was analysed using the movement of the reflection of the illuminating wavelength with 

strain and from the phase response of the cavity with strain for which the relationship between 

the chirp rate and the length of the cavity required to configured a strain insensitive cavity has 

been presented.   

 

The analytical results for the chirped FBG FP presented in section 4 and 5 give indications of the 

performance of the FP cavity to wavelength and strain. Using Numerical techniques to solve the 

coupled mode equations of the FBG will provide solutions with phase information which is 

lacking in the analytical techniques. At present there are no literatures with numerical results to 

suggest the effect of dispersion in the chirped FBG on the interferometric response of the chirped 

FBG FP and the solution using numerical techniques will compliment and support of the theory 

put forward so far. 
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6 FBG and FBG FP Simulation 

 

6.1 Introduction 

 

Periodic structures pervade many areas of science and technology. Many works have been 

published detailing the interactions of waves with periodically modulated refractive index 

structures [1,2]. The perturbation created by the periodic structure, such as that comprise a FBG, 

to the uniformity of the material provides the means for a coupling mechanism. Recent advances 

in fabrication methods have allowed the writing of uniform period and non-uniform period FBGs 

[3]. The use of a non-uniform FBG provides extra degrees of freedom over those offered by 

uniform FBGs. A variety of analytical formalisms have been derived for the spectral response 

[4,5,6,7] and results have provided information on the performance of FBG structures, such as 

dispersion, the appearance of side lopes and the coupling strength. Numerical techniques [8,9] 

have been applied to solve the coupled mode equations, equation (4.8), that describe the 

interaction of the guided light with FBGs. Analytical solutions exists in closed form for FBGs 

with uniform period[10], but solutions for FBGs with varying FBG parameters require the used 

of numerical techniques such as the Runge-Kutta method[11]. As well as providing solutions to 

the couple modes equation for non-uniform FBG parameters, numerical techniques provides 

solutions with phase information which is lacking in the analytical techniques. From the studies 

of periodic structure filters, matrix method [12] has been developed for grating analysis. This 

class of method was developed to model the performance of optical thin films and integrated 

optical devices, and includes the effective-index method [12], the transfer matrix method [13] 

and the effective medium method [8,9]. These techniques have all been applied to the study of 

FBGs. 

 

The effective index method [12] involves the division of the grating into its periodic sections. 

The propagation constant, β, for each section is computed from the standard, three-layer guide 

dispersion relations. Using the Maxwell equations the component of the magnetic field can be 

written in terms of the perpendicular components of the electric field. Using the boundary 
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condition that requires that the electric and magnetic fields are continuous across the interface 

and that the fields in each section are impedance matched to those of its preceding section, 

yielding a matrix relationship between the fields at the left and right side of each section can be 

determined. The overall structure is characterised by a global matrix obtained by multiplying the 

individual matrices together. Rouard’s method [14] was developed for thin film design. It is a 

recursive method where the reflectivity of the each layer is determined by summation of the 

multi-beam reflection from a single layer, with a phase value dependent on the separation 

distance between the layers. The function has an Airy shape similar to the FP response. The 

reflectivity of one layer is used progressively to calculate the reflectivity of the following layer in 

a recursive manner until the whole grating is represented. 

 

The effective medium method uses the coupled mode equation (4.8) and reduces it to a 

propagating wave equation, where the principle root, or the effective index of the equation is 

related to the detuning and the coupling coefficients of the FBG. The principal root provides 

information on the reduced wave propagation constants. The sign of the root and its analysis 

provides physical interpretation to the wave guiding characteristics [6,8] within the wavelength 

band of the grating. If the wavelength is close to the Bragg wavelength of the grating, it is 

strongly reflected through constructive interference of the reflected wavelets. This reflection 

band is associated with the opening of a photonic band gap, which is related to the Bragg 

wavelength of the grating. In the photonic band gap (reflection band) regions, light will not 

propagate and thus termed evanescent, whereas light whose wavelength lies outside the 

reflection band is defined as propagating wave. This analysis technique can be adapted to the 

non-uniform period case where this photonic bandgap has a positional dependence. For a non-

uniform period FBG, each position along the grating has a associated local Bragg wavelength 

and a local photonic band gap. The solution to the reduced propagating equation comes from 

Quantum Mechanics where the phase integral technique is employed. The Wentzel-Kramers-

Brillouin(WKB) method [8], is a technique that applies a second-order approximation to the non-

uniform FBG equation with a slowly varying envelope function. A general solution exists and is 

matched across the boundary of the photonic bandgap by considering it as a boundary layer 

problem where a 2x2 transfer matrix is derived. A semi-analytical approximation is then 

obtained for the reflectance spectrum of the non-uniform period FBG.  
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The TMM method [13] involves the division of the length of the grating into many sections, 

where the length of each section is much larger than the period of the index modulation 

corrugation. Each section assumed to have a uniform grating response with constant parameters 

such as period, coupling coefficient and refractive index modulation, for which an analytical 

solution to the coupled mode equation exists. These solutions can be written as a 2x2 transfer 

matrix for the forward and backward waves for each section. The solution to each section of 

grating is used as the input field to the following section of the grating, which may have a 

different functional dependence of its grating parameters.  The process is repeated until the 

whole of the grating section is transformed under the constraint of appropriate boundary 

conditions. The overall structure is characterised by a global matrix obtained as the product of 

the individual matrices. This approach is simply a numerical method for solving the coupled-

mode equations for non-uniform FBGs[12]. 

 

6.2 The Transfer Matrix Method  

 

The solution to the coupled mode equation (4.8) has a closed form solutions only for Bragg 

gratings with uniform periodicity and uniform refractive index modulation. To represent a real 

FBG, parameters such as variation in period along the grating length (chirp) and variation in the 

amplitude of the refractive index modulation (apodisation) need to be included in the model. The 

refractive index modulation induced in the fibre generally has a certain spatial profile, eg 

Gaussian, as, in general, the UV laser used in FBG fabrication systems has a Gaussian intensity 

profile which could present a physical effect. It is desirable to design FBG devices with 

controlled transfer characteristics for specific applications and requirements. The modelling of 

FBGs with non-uniform characteristics requires the use of numerical solutions such as the 

Runge-Kutta method, which is very time consuming, or with other techniques, which can be 

more complex to implement. The transfer matrix method (TMM) is the most appropriate 

technique for FBG modelling, as a result of its simplicity, accuracy and speed with which it 

allows simulation of FBGs with arbitrary parameters [15]. 
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The technique involves the division of the grating length, lg into a large number, N, of sections 

each of length δl. One section of the grating is shown in figure (6.1). Parameters such as index 

change, grating period and coupling coefficient are taken to be constant within each section, 

allowing the closed form solution to be used. The coupled mode equations (4.8) are used to 

calculate the output fields of each short section δli. Each section may possess a unique and 

independent function for which a closed form solution exists. For such a grating section with an 

integral number of periods, the analytical solution for the amplitude reflectivity, transmission and 

phase may be determined. These quantities are then used as the input parameters for the 

proceeding section, which may have a different functional dependence for the grating 

parameters.  

 
The input and output fields for a single grating section are shown in figure (6.1). The grating 

may be considered to be a four-port device with input fields of F(−δ(li/2) and B(−δ(li/2) and 

output fields of F(δ(li/2) and B(δ(li/2). For a short uniform grating, the two fields on the RHS of 

the following equation are transformed by the matrix into the field on the LHS; 
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From the solution of the coupled-mode equation for the uniform grating, the transfer matrix, Ti, 

connecting the input and output fields is given by [13]; 

F(−δli/2) F(δli/2) 

B(−δli/2) B(δli/2) 

where the section have constant grating parameters such 
as period, Λ, the coupling constants,  α and κ and the 
detuning, δ. 

δli

Figure 6.1, schematic diagram showing the input and output fields at the start and 
the end of the section. 
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The whole grating matrix transformation is constrained by the boundary conditions F(0) = 1 and 

B(Lg) = 0. Working from left to right, the field at the output of each section are calculated in turn 

and used as the input of the preceding section, figure (6.2). 

 
The process continues until all of the matrices representing the individual element have been 

calculated to give; 
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The transmitivity, Γ and the reflectivity, Rρ are given by; 
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F(0) F(lg) 

B(0) B(lg) 

δl1 

Λn  αn 
κn  γn 

Figure 6.2, the division of a FBG into section to facilitate the use of the TMM. 
Each section has constant FBG parameters to form a composite grating of varying 
period, to model a stepped chirped grating.  

δln

[T1] [T2] [T3]….. [Tn]…….
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The accuracy of grating simulation by this technique is strongly dependent on the choice of N, 

the number of grating sections. It is important to make N sufficiently large otherwise the coupled 

mode theory collapses. 

 

6.3 Penetration and transmission depth 

 

There is a growing interest in the exploitation of the dispersive properties of FBGs for 

applications such as dispersion compensation and pulse shaping in all fibre optical systems. The 

basis upon which the group delay dispersion can be determined is from the phase response of the 

known complex reflectivity of the grating spectra. The group delay, which is the time difference 

between the arrival of the wavelength components, is related the distance travelled and this can 

be determined from the relative phase of the individual component of the grating response [16]. 

 

Light reflected or transmitted from a FBG contains both phase and amplitude information. From 

equation (6.4), the complex reflectivity, Rρ  and complex transmitivity, Γ can be rewritten as; 
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where B is the reflected wave, F is the incident wave, and ψρ(λ) and ψΓ(λ) are the relative phases 

of the two waves for reflection and transmission respectively. Figure (6.3) shows the typical 

phase response of a linearly chirped grating. 
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The group delay of the reflected light can be determined from the phase ψ(λ) of the amplitude 

reflection coefficient, Rρ(λ), by using equation (6.5). The first derivative provides an indication 

of the time delay τ, and is given by [17]; 
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where ω is the angular frequency and c is the velocity of light. Thus an optical wave travelling 

through a medium of length L and refractive index n will undergo a phase change; 

  

     
λ
πψ nL2

=     (6.7) 

where λ is the wavelength. The derivative of the phase with respect to wavelength is an 

indication of the delay experienced by the wavelength component of the reflected light;  
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The time delay, equation (6.6) imparted to an incident light is related to the change in phase with 

wavelength which in turn is related to the distance travelled, equation (6.8). For the reflected 

light, it is the distance to its resonance position inside the FBG at which the Bragg resonance 

condition (2.1) is satisfied. Therefore, each wavelength can be associated with a reflection point 

along the length of the FBG and a concomitant wavelength dependent penetration depth into the 
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Figure 6.3, the intensity and the phase response of a chirped FBG 
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FBG. The time delay also provides information regarding the optical path traversed for the 

transmitted wave. To determine the magnitude of the penetration depth and path traversed, FBGs 

have been modelled and the phase response analysed to determine the penetration depth for 

reflected wave and distance traversed for the transmitted wave. 

 

6.4 TMM simulation of FBGs 

 

The tangent of the phase of the reflected and transmitted waves is taken to be the ratios of the 

imaginary to the real part of the complex reflectivity or transimitivity in equation (6.5). The 

gradient of the phase with wavelength can reveal the time delay and thus the positional 

dependent of the reflection point of the wavelength. 

 
Consider the waves in reflection and transmission, where the incident light comes from the left 

and impinges on the grating structure as shown in figure (6.4). In transmission, the wave 

proceeds to the right whereas under reflection, the wave will coupled to the backward 

Time delay,  
τ = 2lg/vg Λ1 Λ2 

lg

λ1 

λ2 

λ2 

λ1 

lg 

 
τ1 = lg/v1 
 
τ2 = lg/v2 

Figure 6.4, illustration of the time delay for the reflected and transmitted beam 
in a FBG through, a) positional dependent reflection point and b) through a 
difference in the group velocity 

a) 

b) 
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propagation wave at the point where it is phase matched and satisfies the resonance condition. 

The reflected wave will travel in the backward direction to the left as shown. The delay τ is 

related to the wavelength gradient of the accumulated phase according to equation (6.6-6.8). The 

delay and thus the length associated with reflection or transmission is derived from the phase.  

 

6.4.1 Uniform FBG 
 
In a uniform FBG, figure (6.5), the Bragg wavelength is strongly reflected whereas the off 

resonance wavelength is reflected less strongly.  The time delay for the different components of 

the wavelength as they are reflected from different portions of the grating can be distinguished 

from the phase information of the grating.  

 
Figure (6.6) demonstrates the reflection spectrum and the phase response of a uniform FBG with 

a grating length of 4mm, with a central wavelength of 1550nm and FWHM~0.3nm. From the 

penetration depth of the wavelength components determined form equation (6.8) are shown in 

figure (6.6). The discontinuities in the phase response, figure (6.6b) correspond to the band-

edges of the FBG, arising from of the grating boundary causing a FP effect[17], where the wave 

is trapped by cavity effects and undergoes multiple reflections, resulting in an increased time 

delay, indicated by the sharp peaks in the penetration depth, figure (6.6c). Off resonance, the 

penetration into the grating is greater than on-resonance, leading to a larger penetrating depth. 

Figure 6.5, illustrates a uniform FBG where the Bragg wavelength, λB is strongly 
reflected and the off resonance wavelength is less so allowed a deeper penetration 
into the grating.  

The Bagg wavelength,λB is strongly 
reflected whereas off resonance is 
less scattered and penetrate deeper 
into the grating 

λB 
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From the analysis, the cavity response of a FP formed between uniform period FBGs is modified 

by the different penetration depth. In the conventional FSR equation, the cavity length becomes a 

function of wavelength [10]; 
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Figure 6.6, illustrates the reflection spectrum of a uniform FBG centred at 
wavelength of 1550nm having length of 4mm. (a) reflectivity, (b) phase and (c) 
the penetration depth. 
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)(2 λnl
cFSR =    (6.9) 

where, l(λ) is the wavelength dependent cavity length of the FBG FP. 
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wavelength /nm

Figure 6.7, shows the transmission profile for a uniform FBG having length of 
4mm. (a) the transmitivity, (b) the phase response and (c) the path traversed.  
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The equation gives a larger FSR at the edges of the FP bandwidth than the on resonance 

wavelength. .Figure (6.7) shows the transmission response of a uniform FBG, the phase response 

and the path length travelled, calculated assuming the parameters detailed previously. There is a 

small variation of the path length travelled by the different wavelength components, figure 

(6.7c). The on-resonance wavelength sees a much shorter path than the off-resonance 

wavelength. 

 

6.4.2 Positively chirped FBG  
 
 

In a chirped FBG, the positional dependence of the resonance condition gives rise to a broadened 

spectrum. As well as the broaden spectrum, different wavelength experience different delays as 

they are reflected from different positions along the FBG. Figure (6.8) shows light incident from 

the left and reflected from a positively chirped FBG, where the longer wavelengths are reflected 

from position further into the grating. 

 
Figure (6.9) shows the simulated reflection, phase response and penetration depth for a 4mm 

long chirped FBG with a total chirp of +10nm, central wavelength of 1550nm. It can be seen that 

the longer wavelength penetrates deeper into the grating. The higher the chirp, the more linear 

the slope of the wavelength dependence of the penetration depth becomes. 

Figure 6.8, illustrates a positively chirped FBG where the light is incident from the 
left. The longer wavelength, λ2 is reflected from a position in the FBG further to the 
right (positive in the right direction) compared to the shorter wavelength, λ1 in a 
Cartesian coordinate system.  

 Positively  chirped FBG 

λ1 

Reflection point for λ1 Reflection point for λ2 

λ2 
λ2 > λ1 
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Figure (6.10), shows the transmission profile, phase and path travelled for a FBG with a central 

wavelength of 1550nm, grating length of 4mm and a total chirp of +10nm. As was the case for 

the transmission response of the uniform FBG in figure (6.7), there is a small variation of the 

grating length with wavelength in traversing the grating, is seen for the positively chirped FBG. 

Figure 6.9, illustrates the reflection response for a chirped FBG having length of 4mm
with a chirp of +10nm. (a) the reflectivity, (b) the phase response and (c) the 
penetration depth.  
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Again there is the FP effect, where the wavelength at the band-edge remains trapped in the 

structure to produce a longer delay and hence a longer length response. In transmission, all the 

wavelengths see the same grating length of 4mm, except for the small variation near the central 

wavelength regions of 1550nm, shown in figure (6.10c).  

  

Figure 6.10, illustrates the transmission response for a chirped FBG having a 
length of 4mm and a total chirp of +10nm. (a) the transmission (b) the phase 
response and (c) the path traversed which is the grating length . 
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6.4.3 Negatively chirped FBG 
 

For a negatively chirped FBG, the positional dependence of the resonance condition is opposite 

to that of the positively chirped FBG, such that the longer wavelength component is reflected 

from a position near to the left hand side of the FBG, as shown in figure (6.11). 

 
Figure (6.12) shows the simulated reflection response, phase and penetration depth of a FBG of 

4mm length with a total chirp of -10nm with central wavelength at 1550nm. Notice that the 

phase response for the negatively chirped FBG, figure (6.12b) is inflected the other way 

compared to phase response of the positively chirped FBG, figure (6.9b).  This time, the shorter 

wavelength penetrates deeper into the grating, figure (6.12c) and the penetration depth trend 

reverses compared to the positive chirped FBG, figure (6.9c). The chirped FBG has a grating 

length of 4mm with a central wavelength of 1550nm and a total chirp of -10nm. The simulated 

transmission response for the negatively chirped FBG is shown in figure (6.13). The 

transmission response for the negatively chirped FBG is very similar to that of the positively 

chirped FBG in figure (6.10). 

Figure 6.11, illustrates a negatively chirped FBG where light is incident on the 
grating from the left. The longer wavelength, λ2 is reflected from a point near on the 
left hand side of the FBG (more negative towards the left) compared to the shorter 
wavelength, λ1 in a Cartesian coordinate system. 
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There is the same cavity effect due to the boundary of the grating edge where the wavelength in 

the bandedge is trapped in the structure giving a longer time delay. The variation of the grating 

length with wavelength in travelling through the negatively chirped FBG is small and all the 

wavelengths see a grating length of ~4mm as shown in figure (6.13c). 

Figure 6.12, illustration of the reflection response for a negatively chirped FBG 
having a length of 4mm and total chirp of -10nm. (a) the reflectivity, (b) the 
phase response and (c) the penetration depth.
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Figure 6.13, illustrates the transmission response for a negatively chirped FBG of 
1550nm central wavelength, having a grating length of 4mm and a total chirp of -
10nm. (a) the transmission profile, (b) the phase response and (c) the distance 
travelled across the grating. 
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6.5 Modelling the strain effect on the chirped FBG 

 

The change in penetration depth in reflection and the distance traversed in transmission in 

response to an applied axial strain for chirped FBG is investigated using the TMM model. Under 

the influence of strain, the FBG will experience a physical elongation of the grating period, Λ 

and a change of refractive index, n due to the elasto-optic effect. Both of these effects influence 

the Bragg condition, equation (2.1). The refractive index of the optical fibre is dependent on the 

strain experienced according to [18]; 

 

  ( )[ ] εε dppvp
n

ndn 121112

3
0

0 2
)( +−−=   (6.10) 

 

where    n0  = the initial refractive index,  

 v = Poisson ratio 

  p11 and p12 = Pockels coefficients  

 

Using the TMM method, the change in the penetration depth in reflection and the change in the 

distance traversed in transmission in response to an applied strain is investigated for a chirped 

FBG with a central wavelength of 1550nm. FBGs with a range of grating lengths and total chirp 

are simulated and the phase information of the reflected and transmitted waves, derived from the 

complex reflectivity, Rρ and transmitivity, Γ, equation (6.5), is analysed to determine the 

penetration depth and distance traversed.  The changes in these distances when the FBGs are 

subjected to the axial strain, is investigated for the illuminating central wavelength at 1550nm. 

This response to strain is considered in the context of the FBG FP configuration and is dependent 

on the orientation of the chirped FBGs. The strain response of the FBG will affect the strain 

sensitivity of the FP cavity. 

 

 

 

 



Chapter 6 FBG and FBG FP Simulation 

 170

6.5.1 The change in the penetration depth of the chirped FBG with strain 
 
The effect of strain on FBG will shifts the whole reflection profile according to the strain 

responsitivitiy of the FBG. Incorporating the strain parameters into the model, a grating centred 

at a wavelength of 1550nm with grating length of 4mm and a total chirp of +10nm is used. The 

strain dependent wavelength shift of the central wavelength is simulated and the predictions are 

plotted in figure (6.14). 

 
From figure (6.14), the shift of the central wavelength with strain gives a linear response and a 

value of  1812.1=
ε
λ

d
d  pm µε-1 is determined, compared to the accepted value of 1.2 pm µε-1 

[19]. The value of the strain sensitivity of the FBG determined by the model serves as an 

indicator for the validity of the approximation of the strain parameters used. 

 

The shift of the grating reflection profile is due to the redistribution of the reflection positions for 

different wavelengths in the presence of a uniform strain. In a positively chirped FBG as shown 

in figure (6.15), interrogated with a wavelength, λ, the increasing period of the FBG is directed 

towards the positive direction in the Cartesian system. Under the influence of an axial strain, the 

reflection point for an arbitrary wavelength λ will move in the direction against the increasing 
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Figure 6.14 showing the movement of the central wavelength with strain for a 
4mm FBG with a total chirp of +10nm. 
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chirp, as shown in figure (6.15). This has the effect of reducing the penetration depth in a 

positively chirped FBG. 

 
The effect of strain on the penetration depth profile for a positively chirped FBG is shown in 

figure (6.16). As the strain increases in the FBG, the whole reflection profile is shifted towards 

the increasing wavelength region thus the movement of the whole penetration profile is shifted to 

the right. 

  

positively chirped FBG 

λ 

λ 

Reflection point for λ without strain 
Reflection point for λ under axial 
strain 

Figure 6.15, illustrates a positively chirped FBG experiencing axial strain and being 
interrogated at wavelength, λ. The displacement of the reflection point goes against 
the direction of chirp and hence reduces the penetration depth in this positively 
chirped FBG.  
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Figure 6.16, showing what the increasing strain has on the penetration depth of 
the reflected wave in the positive chirped 4mm FBG. 
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For a given wavelength, this has the effect of reducing the distance of the reflection point from 

the edge of the grating, thus reducing the penetration depth of the light at that wavelength. 

 

Assuming that the grating is illuminated with the wavelength of the central wavelength, of 

1550nm, the variation of the penetration depth for the illuminating wavelength with strain is 

simulated for the same positive chirped FBG and is it shown in figure (6.17). 

 
From figure (6.17), the change of the penetration depth with strain at the wavelength of 1550nm 

gives a value of 61066.464 −×−=
εd

db mm µε-1 which compares well with a value of −460 x 10-6 

mm µε-1 using equation (5.4) with a strain response of ξ =0.742 x 10-6 µε-1[19]. This changed in 

the wavelength detuned distance, b with strain serves as a validation of the strain simulation. 

 

The change in the penetration/reflection position of the chirped FBG with the application of axial 

strain is investigated using the reflection response of the FBG. FBGs with a central wavelength 

of 1550nm and grating lengths, lg in the range of (0.5-5mm) and with different total chirps in the 

range of (3-30nm) is used in the simulations. The change in penetration depth with strain of the 

central wavelength of 1550nm is evaluated for different grating length, lg and different total 
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Figure 6.17, shows the variation of the penetration depth as a function of axial 
strain for a FBG of length 4mm with total chirp of +10nm illuminated at the 
central wavelength.  
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chirp, ∆λc. The movement of the reflection point for 1550nm with strain, 
εd

db  is plotted as a 

function of grating length, lg for different total chirp, ∆λc as shown in figure (6.18). 

 
Figure (6.18), shows a plot of the rate of change of reflection point of the central wavelength at 

1550nm for a chirped FBG subject to an axial strain as a function of the grating length. As a 

figure of merit, the application of a strain of 1µε on a piece of 1mm of bare fibre will produce an 

extension of; =
εd

dx 1x10-6mm µe-1 (~ 0.8 x10-6mm µε-1 in terms of optical path). Thus for a 5mm 

long FBG, with a total chirp of 3nm, the rate of change of the reflection point with strain, 

determined from figure (6.18) is -4000x10-6mm µε-1 which is equivalent to applying a strain of 

1µε to 4m length of optical fibre. In a FP configuration employing a dispersive element such as a 

chirped FBG as a compensating partially reflective mirror, the large movement of the reflection 

point in response to the applied strain would compensate for the optical path length increase in a 

cavity of length of 4m. This is simply a restatement of equation (5.4); ξ
λ
λ

ε g
c

l
d
db

∆
= . For a given 

total chirp ∆λc, the rate of change of reflection point with strain is proportional to grating length. 

Figure 6.18, showing the rate of change of reflection point w.r.t strain as a 
function of grating length, lg for different total chirp in the FBGs at the central 
wavelength of 1550nm 
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The larger the grating length, lg or smaller the total chirp ∆λc, the larger the movement of the 

reflection point.  

 

A similar conclusion can be drawn in the case of a cavity employing chirped FBGs oriented in 

such a direction that the movement of the reflection point with strain will have an enhancing 

effect on strain sensitivity of the cavity. From this analysis, a highly strain sensitive cavity could 

be configured by just employing FBGs with small chirp rate and long grating length in a short FP 

cavity. 

 

6.5.2 The change in length of the chirped FBG with strain 
 
 

The change in the length of the chirped FBG with the application of axial strain is investigated 

using the transmission response of the FBG. FBGs with different grating lengths in the range of 

(0.5-5mm) and total chirps in the range of (3-30nm), were modelled and the change in the length 

of the grating for the illumination wavelength of 1550nm, under the application of strain is 

evaluated from the phase information of the complex transmission, Γ . The values for the change 

in the length of the grating with strain experienced by the central wavelength of 1550nm, is 

plotted in figure (6.19). 
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Figure 6.19, showing the rate of change of the grating length with strain for the 
FBG as a function of the total chirp, ∆λc for different grating length for the central 
wavelength. 
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The graph in figure (6.19) is a plot of the change in the length of the grating with strain as a 

function of total chirp for different grating lengths, experienced by the central wavelength of 

1550nm. It can be seen that the smaller the magnitude of the total chirp, the larger the change in 

the length of the grating with strain experienced by the central wavelength. As the magnitude of 

the total chirp, ∆λc increases, the change in the grating length with strain converges to a value 

which is equivalent to straining the grating length, lg in question. This is expected of straining a 

length of a grating. The effect is the same for both the negatively and positively chirped FBG, 

figure (6.19). The change in the grating length with strain in transmission is consequential in the 

FP cavity which comprises of the chirped FBG where the light is required to travel through the 

grating where the difference in the path length travelled between the 2 lights needs to be 

considered for the cavity response with strain, figure (6.20).  

 

6.5.3 Strain response of the chirped FBG FP: A semi TMM approach 
 

Consider the chirped FBG FP, figure (6.20) which consists of two chirped FBGs separated by a 

cavity length, L measured from the inner grating edges between the two. The FBGs are identical 

with the chirp orientated in an arbitrary direction. The two rays with wavelength, λ, are incident 

on the cavity from the left. One is reflected from the first grating and the second one traverses 

the 1st grating, as well the cavity length, L, before it undergoes reflection from the 2nd grating. 

The strain sensitivity of this FP cavity is characterised by the change of distances experienced by 

the 2 rays and it is dependent on the orientation of the chirp of the two FBGs. The change in 

distances experienced by the 2 rays under the application of strain is considered and the 

aggregate effect of the changes in the reflection position and changes in the grating length is 

evaluated together with the changes in the cavity length, L is considered. The strain sensitivity of 

the chirped FBGs cavity is determined.  
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6.5.4 Strain insensitive chirped FBG FP cavity 
 

Consider the chirped FBG FP cavity which consists of 2 identical chirped FBG with a central 

wavelength of 1550nm and, with the increasing chirp of the FBGs oriented away from the centre 

of the cavity as shown in figure (6.21). Excluding the cavity length, L, the path travelled by ray 1 

on a single round trip of the cavity consists of the transmission through FBG1, reflection from 

FBG2 then another transmission through FBG1. On its second pass through FBG1, the chirp has 

an opposite sense. Ray 2, experiences one reflection from FBG1. Under the application of strain, 

the reflection points of ray 1 and ray 2 move in the direction against the increasing chirp in the 

respective FBGs, which has a tendency to reduce the length of the cavity L, figure (6.21). In 

contrast, the transmitted ray 1 will experience an increased in the length of the grating FBG1 

under the application of strain. 

Figure 6.20, illustration of an arbitrary chirped FBG FP cavity demonstrating 
the aggregate changes in the reflection position and the length traversed in the 
grating which determines the strain sensitivity of the cavity. 
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Using the data from sections (6.5.1) and (6.5.2) for the changes in penetration depth in reflection 

and the changes to the grating length in transmission experienced by the central wavelength at 

1550nm under the application of strain. The accumulated changes of the distances experienced 

for the 2 rays are determined for different total chirps and different grating lengths. For a cavity 

to be strain insensitive, the aggregate of the accumulated change in distances for the 2 rays 

experienced in their travel through the cavity must equal to zero. The cavity length, L, required 

to create a strain insensitive cavity is plotted, against the grating length, lg for different total chirp 

∆λc in figure (6.22). 

ray 2 

ray 1 

Figure 6.21, illustration of an arbitrary chirped FBG FP cavity demonstrating 
the aggregate changes in the reflection position and the length traversed in the 
grating which determines the strain sensitivity of the cavity. 
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From figure (6.22), for a given total chirp, ∆λc, the smaller the grating length, lg the shorter the 

strain insensitive cavity length, L will be and for a given grating length, the higher the total chirp, 

the smaller the cavity length, L will be for a strain insensitive chirped FBG FP cavity. 

 

Figure 6.23, using the results in figure (6.22), a plot of cavity length required to achieve a 
strain insensitive cavity against chirp rate for the central wavelength @1550nm, using the 
Semi-TMM approach together with equation (5.5), using ξ = 0.8 ε-1. 
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Figure 6.22, shows the cavity length required for a strain insensitive chirped FBG 
FP cavity employing two identically chirped FBGs in the reduced configuration 
shown in figure (6.21).  
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Plotting the strain insensitive cavity length, L, against chirp rate (nm/mm), figure (6.23), shows 

that the cavity length required to achieve a strain insensitive FP cavity has an inverse relationship 

with the FBG chirp rate. The result of the analysis for the strain insensitive configuration using 

this semi TMM is compared to the strain insensitivity length derived analytically in section (5.4) 

for the chirped FBG FP and the two results demonstrates the same trend except for a multiplying 

factor which depends on the elasto-optic parameters used in the semi TMM simulation. By 

careful design of the chirped FBG FP, the strain sensitivity can be reduced or enhanced 

depending on the orientation and the size of chirp rate, C in the FBGs. 

 

6.6 Summary 
 
The different modelling techniques that have been applied to the FBG have been discussed and 

outlined. A brief introduction to TMM method have been presented and the coding of the TMM 

using Matlab has been developed to model the FBGs. Using the relationship between the phase 

response with wavelength, the group delay has been determined from which, the penetration 

depth for reflection and distance traversed for transmission have been presented for the FBGs. 

Using the idea of penetration depth and distance traversed for the FBG, a semi TMM approach to 

the strain response of the chirped FBG FP has been presented and the condition for the strain 

insensitivity chirped FBG FP has been derived which is consistent with the treatment using the 

RTPS  of the chirped FBG FP cavity considered in chapter 5. For a given gauge length of the 

chirped FBG FP, the chirp rate required to configured a strain insensitivity cavity can be 

determined using figure (6.23) or using equation (5.5) in section 5.  
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7 Details and specifications of devices used in the design of experiment 

7.1 Introduction 

 

This chapter aims to detail the experimental setup used in the characterisation of the FBG FP 

sensitivity to wavelength, strain and temperature. A discussion of the operation and performance 

of the devices used will be presented and the implementation of the monitoring systems and their 

calibration will be discussed.  

 

7.2 Experimental set up 

 

The experimental characterisation of a FP formed between two chirped FBGs has been 

undertaken using the set-up shown in figure (7.1). The characterisation has been performed by 

comparing the spectral response of two cavities. One cavity (1st cavity) is formed between 2 

chirped FBGs (details of the gratings used are provided in chapter 8) with their chirps oriented 

such that a reduced sensitivity to strain or a variable FSR is expected, while the other cavity 

(reference 2nd cavity) has been formed between two chirped FBGs with the same orientation, 

such that the response would mimic that of a bulk cavity or of a FP cavity formed between two 

uniform period FBGs. The advantage of the use of chirp FBGs to form the reference cavity is 

that the operational bandwidth will be similar to that of the 1st cavity. These FP cavities formed 

between chirped FBGs with their chirps oriented the same way have been experimentally to have 

the conventional FP response to wavelength [1] and for strain [2]. 

 

The two cavities are mounted on a strain rig, where they are subjected to the same level of strain 

and interrogated simultaneously. One end of each cavity is fixed to a V-grove using an adhesive 

(Cyanocrylate) whilst the other ends are attached a second V-grove mounted on a translation 

stage. A known extension, and thus strain, can be applied to the FP cavity by adjusting the 

separation of the 2 V-groves. The output from a tuneable source (Photonetics Tuneable external 

cavity laser or Ti/sapphire), is coupled into the fibre and it is split by a 3 dB fibre coupler (FC1) 

into two paths. One path is directed to a second 3 dB coupler (FC2), to interrogate a reference 
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(2nd) cavity, while the other path is split once more by a 3 dB coupler (FC3) to interrogate the 

chirped FBG FP cavity (1st cavity).  

 
Detector (D1) is used to monitor the reflected signal from the 1st cavity (reference) and detector 

(D2) is used to monitor the reflected signal from the 2nd cavity. Detector (D5) is used to monitor 

intensity fluctuations of the input light source, which may be used to correct the corresponding 

signals from the other detectors in the network. 

 

The fibre network is designed to allow the characterisation of the cavities with wavelength and 

strain sensitivities individually. The FBG FP cavities can easily be removed and re-spliced back 

into the fibre network. The strain rig shown in figure (7.2) can be calibrated by monitoring the 

extension of a bulk FP, illuminated with a known wavelength such as a HeNe source, where one 
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Figure 7.1, shows the experimental setup which uses 3dB fibre couplers to split 
and direct light to interrogate cavities simultaneous or individually with 
wavelength scanning or with a calibrated strain. 
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of the reflectors is mounted on the translation stage. The separation of the blocks on the 

translation stage where the FP cavity is to be mounted can be altered by means of a travelling 

vernier and the extension is applied by a piezo-actuator.  

 
 

7.3 The light source 

 

Two light sources have been used in the investigations described in this chapter. The first is a 

Ti:Sapphire tuneable laser produced by Schwartz Electro-Optics, Inc.  The broad gain bandwidth 

of the Ti:Sapphire medium allows operation in the infra-red wavelength region when pumped by 

the all lines output of an argon ion laser. It is of a stable confocal cavity design which makes the 

adjustment of mirrors for alignment of the cavity and optimisation of the laser much easier. 

Figure 7.2, the implementation of the strain rig with travelling stages where the 
width between the two travelling stages forming a cavity can be varied by means 
of a travelling vernier and a piezo-actuator to apply the extension to the cavity.  
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Figure (7.3), shows a schematic diagram of the tuneable Ti:Sapphire laser. It is a solid state laser, 

which consist of the Titanium doped Sapphire crystal with a very broad emission spectrum 

ranging from around 700nm to 1100nm.  The crystal is pumped by a high powered argon ion 

laser. The surface of the crystal is polished at Brewster’s angle so that a single polarisation can 

lase. The laser is configured as a ring cavity.  The incorporation of the optical diode permits the 

light to circulate around the cavity in one direction only. Single mode operation is ensured by the 

addition of the Etalon filter with a very small cavity length which makes its’ FSR large enough 

to sample the linewidth of the crystal only once. Tuning of the laser emission wavelength is 

facilitated by a birefringent filter. As a result of the large bandwidth of the gain spectrum, 

different set of wavelength dependent reflective mirrors are provided corresponds to specific 

wavelength range in the bandwidth. To match the characteristics of the FBGs, the mirror set used 

had the laser operating in the 780nm to 860nm region. 

 

The specifications of the SEO TITAN-CW Series, Ti:sapphire Tuneable Laser [3] are detailed in 

Appendix C.  

 

Pump laser beam Ar+ 

Output Mirror Etalon Optical Diode 

Birefringent  
Filter 

Lens and broadband 
half wave plate 

Ti:sapphire crystal with 
Brewster angle end face 

Figure 7.3, A diagram illustrating the ring cavity configuration of the tuneable 
Ti:sapphire laser configured in the figure of 8. 
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The 2nd light source used, is a Photonetics Tuneable External Cavity Laser (Tunics Plus CL-

band) which operates in the wavelength range 1500nm-1640nm. Figure (7.4) illustrates the 

operation of the external cavity laser. 

 
The external cavity is of the modified Littman-Metcalf configuration which is comprised of the 

end face of the laser diode and the retro-reflective mirror surface with a dispersive, bulk grating 

in between. The mirror is placed such that it retro-reflects the 1st order diffraction from the 

grating. The grating disperses the light and the first order diffracted beam travels to the tuning 

mirror and is reflected back the way it came into the laser diode as an optical feedback for 

linewidth narrowing of the laser. The lasing frequencies are determined by the co-incidence of 

the resonance frequencies of the cavity with the wavelength selective elements of the bulk 

grating. Tuning of the laser wavelength is achieved by varying the angle of the mirror, which 

changes the wavelength selection for the optical feedback. Due to the detrimental effect of 

spurious reflections and feedback sources, the laser has an optical isolator and angled-polished 

output fibre connector. The laser provides mode hop free operation with resolution of 1 pm and 

output power of up to 20mW. The wavelength jitter is < 3 pm [4] and its linewidth is better than 

150kHz. The laser may be continuously scanned across the wavelength range, or stepped 

scanned with step size as little as 1pm with time interval of 0.1 to 25 sec. per step.   

 

Figure 7.4, diagram illustrating the design of the external cavity tuneable laser. 
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7.4 Calibration of the piezo-actuator 

 

The application of axial strain to the cavity was achieved using the configuration illustrated in 

figure (7.5). The strain rig consists of two stages, where one of the stages is fixed and the other is 

held with a linear piezoelectric actuator (Newport 17PAS 013). The actuator is driven by a 0-10 

V DC function generator, which produces a linear voltage ramp of amplitude 65V, producing an 

extension of 100 µm. The spacing between the two stages can be varied by a manual travel as 

shown. 

 
The extension of the cavity is monitored by a bulk FP formed between a cleaved fibre end 

attached to a moveable travelling stage, and a mirror surface mounted on to a fixed travelling 

stage as shown in figure (7.5). The moveable part of the travelling stage at which the fibre end is 

placed, is attached to the moving stage of the strain rig. A HeNe laser is used as the light source. 

This monitoring FP experiences the same extension as the travelling stages of the strain rig, as 

shown in figure (7.5). From the knowledge of the extension and the spacing of the travelling 

 

Manual travel for offsetting the  
monitoring FP 

623nm 
source 

Back reflected light 

Bulk FP formed between the 
end of fibre and a mirror 

Photo diode 

Piezo  actuator 

Figure 7.5, illustrates how a bulk optics FP is used to monitor the extension of the 
straining rig. The cavity is formed between a cleaved fibre end and the mirror surface. It 
is attached onto an adjacent moving stage, which shared the moving mechanism.  

Chirp FP cavities 

Manual travel  to 
offsetting the  width of 
the stages. 

Strain rig 
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stages, the strain can be determined. The extension produced by the actuator is calibrated against 

the known wavelength of the HeNe source. The low reflectivity of the fibre end (4%) coupled 

with the inefficiency associated with coupling the reflection from the mirror into the fibre results 

in the FP having a low finesse, and therefore a (1+cosθ) response. A sawtooth modulation 

voltage (5 VPP, offset 2.44VDC at 30mHz) is applied to the actuator driver which produces a 

corresponding voltage (0-65V) at the input of the piezo-actuator. This voltage (0-65V) at the 

input of the piezo-actuator is stepped down to an acceptable value for the DAQ card (< ±12 V) 

which is used to monitor the driving voltage of the piezo-actuator. A 2nd analogue input channel 

of the DAQ is used to capture the output of the FP response with applied voltage, monitored by a 

photodiode. A typical scan of the monitoring FP cavity by the application of a ramp of amplitude 

65V and of frequency 30mHz to the piezo-actuator is shown in figure (7.6). 

  
For an extension of the cavity length of λ/2, there is change in phase of 2π radians in the FP 

response. A visual interpretation of the output phase can resolve a 1/4 of a fringe and this is 

equivalent to an 1/8 of the HeNe wavelength. Using the number of fringes measured and thus 

extension, a graph of the applied voltage against extension can be determined. The calibration is 

repeated for the downward ramp of applied voltage. The result of the calibration is shown in 

figure (7.7).  
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Figure 7.6, illustrates the monitoring FP response with the applied voltage showing the 
sinusoidal response. 
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The maximum measured extension was 79.58 ± 0.08µm, compared with the manufacturer quoted 

value of 100µm. The discrepancy is probably due to wear and age of the device. Figure (7.7) 

demonstrate the typical hysterisis of the piezo-actuator. The hysterisis information allows the 

calibration of the extension with the applied voltage so that the strain can be determined.  

 

7.5 Wavelength monitoring for the 800nm source 

 

A scanning FP Interferometer (TecOptics, FPI-25) is used to monitor the spectral stability of the 

lasers used. It consists of a pair of highly reflective mirrors with a variable cavity length which 

allows the FSR to be adjusted and thus provides measurements with different sensitivity to be 

performed. The mirrors have a 96% reflectivity at 780nm giving it a maximum Finesse of 77. A 

fraction of the collimated output of the tuneable Ti/Sapphire laser is diverted into the aperture of 

the scanning FP, entering the cavity formed by a pair of flat mirrors. One of the mirrors is 

scanned by the movement of a piezo-stack in the orders of a wavelength in movement which 

sweeps across a FSR of the cavity. The output of the scanning FP is monitored in transmission. 

The sensitivity of the measurements are defined by the FSR, which is controlled by the virtue of 

the cavity length. Figure (7.8), illustrates a scan of the Ti/Sapphire laser where the FSR is given 

by the separations of the two peaks. 

Figure 7.7, shows the variation of the extension as a function of applied voltage produced 
by the piezo-actuator. The graph demonstrates the expansion and contraction of the piezo-
actuator in response to a sawtooth signal, driven at 30mHz. The hysterisis can be seen 
clearly. 
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7.6 Temperature measurement 
 

The cylindrical tube furnace, supplied by Carbolite Furnaces Ltd., was 180mm long with an 

internal diameter of 15mm. The furnace had a temperature range of 900°C with an accuracy of 

±1°C. The furnace used a PID circuit to maintain the desired temperature with a stability of ± 

1°C. The furnace had a uniform temperature zone of length 40mm in the middle of its ceramic 

inner tube. A photograph of the tube furnace is shown in figure (7.9). The large volume inside 

the furnace will create a large temperature fluctuation. To overcome this, a narrow piece of 

copper tubing is inserted and suspended in the furnace cavity. The temperature within the tubing 

was determined by using a K-type thermocouple positioned near the centre of the furnace. 

 

 
 

in
te

ns
ity

 /a
u 

∆ν /Hz 

FSR 

Figure 7.8, shows a scan of the FP where the separation of the two peaks 
provides the value of the FSR together with the voltage ramp to scan the mirror 
with. 

Voltage ramp 
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7.7 Summary 
 

The experimental setup for the characterisation of the FBG FP has been outlined in detail. A 

brief discussion of the operation and performance of the devices used have been presented and 

details of the implementation and calibration of the strain monitoring systems have been 

reviewed. 
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Figure 7.9, shows a photograph of the tube furnace.  
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8 Calibrations of chirped FBG Fabry-Perots 

 

8.1 Introduction 

 

In chapter 4 and 5, an analysis of the dependence of the resonance point in a chirped FBG upon 

wavelength and applied strain indicated the ability to create interferometers with variable 

sensitivity to strain, and the possibility of fabricating FP etalons with variable free spectral range. 

FP cavities were formed between chirped FBGs, fabricated via a range of techniques. The 

properties of the cavities are investigated using a variety of methods including the application of 

axial strain, scanning the wavelength of the illuminating source and varying the temperature.  

 

(I am very grateful to my colleague, Dr. C-C. Ye for taking his precious time to write these 

chirped FBGs, in-house at Cranfield, unless stated otherwise) 

8.2 Observation of reduced strain sensitivity in a chirped FBG FP illuminated at 800nm 

 

A chirped FBG FP is configured such that the direction of the increasing chirp of each FBG is 

oriented in opposite sense, aligned away from the centre of the FP, as shown in figure (8.1). The 

chirped FBGs are fabricated by exposing a bent optical fibre to uniformly spaced UV 

interference fringes, section (2.4.3)[1] which creates a chirp of ~ 20nm centred at 810nm. The 

chirped FBGs are written with a distance of 132mm apart to create a FP cavity.   

 

resonance point for  λ 

direction of increasing chirp 

resonance point for λ 

stretch δε
δb

δε
δ b

Figure 8.1, schematic of a reduced strain sensitivity chirped FBG FP cavity where the 

movement of the resonance positions, 
δε
δb opposes the increase in cavity length caused by 

application of axial strain. 
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When the cavity is illuminated by a wavelength, λ, the length of the cavity is measured between 

the reflection positions in the respective FBGs. In this configuration, the movement of the 

reflection point with strain moves in the direction against the increasing chirp, which counteracts 

the increasing in cavity length associated with axial strain, so that this cavity will be less 

sensitive to strain.  

 

Attempts are made to compare the strain sensitivity of the chirped FBG FP with a uniform period 

FBG FP. The second FP, used for comparison, is formed between a pair of uniform period FBGs, 

and is arranged to have the same cavity length as the chirped FBG FP.  The parameters of the 

two FPs are indicated in table (8.1). 

 

 
The profiles of the chirped FBGs are shown in figure (8.2). The profile of the two FBGs are very 

closely matched. The discrepancy between the reflection spectrum are probably due variation in 

the configuration of the UV writing beam between the sequential exposure of the fibre to form 

the 2 FBGs. The low reflectivity of the FBGs results in the FP cavity response with a 

cosinusoidal transfer function[2]. 

Uniform FBG cavity 

Central Wavelength  812.3nm 

 Bandwidth  0.1nm  

Grating Length  2.2mm 

Reflectivity  7% 

Cavity Length  132mm 

Chirped FBG cavity 

Central wavelength 815nm 

total chirp  20nm 

Grating Length 2.6mm 

Reflectivity   5% 

Cavity Length  132mm 

Table 8.1 
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The cavities are mounted on the rig shown in figure (8.3), so that both cavities will experience 

the same axial strain. The cavities are interrogated using a Ti/Sapphire laser, operating in the 

800nm wavelength range and the reflected signals from D1 and D2 are captured using a digital 

storage oscilloscope. The application of strain to the cavities has to be done manually, as the 

strain tuning by the piezo-actuator or the strain monitoring by use of the bulk FP with a HeNe 

source had not been implemented at the time. 

 

Figure 8.3, the implementation of the strain rig with a manual travel to impart strain 
on both of the cavities in question. The lead screw is twisted back and forth to create 
the extension and the signal from D1 and D2 are captured simultaneously.  
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Figure 8.2 the reflection profile of the two chirped FBGs used to form the FP cavity 
(parameters detailed in table (8.1)) 
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Strain is applied to the cavities by rotating the lead screw of the stage. The extension to the FP 

cavities and the reflected signals of the two cavities were captured simultaneously. A typical 

result is shown in figure (8.4).  

 
In figure (8.4), the phase response of the two cavities is shown. The phase response is different 

for the two cavities even though they have the same cavity length. This demonstrates that the 

strain sensitivity of the chirped FBG FP cavity does not depend on the cavity length alone but it 

is modified by the dispersive effect introduced by the chirped FBG. The phase noise (ratio of 

noise to magnitude of the modulation) in the chirped FBG FP cavity is less then that exhibited by 

the uniform period FBG FP, because of the reduced effective cavity length of a dispersive cavity, 

described by equation (4.57), for the reduced strain sensitivity chirped FBG FP configuration, 

section (4.4.3.4). 

 

The ratio of phase response of the uniform period FBG FP to the chirped FBG FP, determined 

from figure (8.4) is approximately 3:1. Using the expression for the RTSP of a non dispersive 

FP; 
λ
πθ nl4

= , the change in the RTSP to an applied strain is [3]; 
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FBG FP

Strain response of 
chirped FGB FP 
with reduced strain 
sensitivity 

Figure 8.4, the strain response of the two cavities is simultaneously captured using a 
storage oscilloscope. The chirped FBG FP, shows a reduced strain sensitivity, as 
compared with the FP formed between the uniform period FBG FP 
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     ln
d
d

λ
ξπ

ε
θ 4

=    (8.1) 

where l is the cavity length and ξ is the strain response of the fibre. For a dispersive chirped FBG 

FP cavity configured to have the strain sensitivity reduced, section (4.4.3.4), the phase response 

to applied strain is derived by differentiating the RTPS, taking into account the movement of the 

reflection point with strain in the chirped FBG (dispersive effect), Thus for a chirped FBG FP, 

the dependence of the phase upon strain is given by equation (5.15); 

  

    





 −=

C
ln

d
d λ

λ
ξπ

ε
θ 24   

 

Assuming that the FBG’s strain responsivity, ξ, is the same as the fibre strain responsivity, the 

ratio of the phase response for the uniform FBG FP to the reduced configuration chirped FBG FP 

can be written as the ratios of equation (8.1) to (5.15); 

 

      






 −

C
l

l
λ2

    (8.2). 

 

From the FP parameters given in table (8.1), a ratio of the phase response is estimated to be ~2:1 

which compares well with the experimental value of 3:1. The discrepancy may arise from the 

estimation of the experimental data used in the calculation. 

 

 

From equation (5.4), the change of resonance position is inversely proportional to the chirp rate, 

C. There is a large movement for the resonance position of a wavelength with strain in a FBG 

with small chirp rate which means a larger cavity length needs to be configured to realise a 

reduced strain sensitivity configuration chirped FBG FP. Attempts were made to realise a further 

reduction in strain sensitivity of the chirped FBG FP. A cavity length of ~ 10cm will be of use 

for practical systems, be less susceptible to frequency jitter noise and be easier to isolate from the 

environment than a longer cavity. 
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8.3 Chirped FBG FP with chirp rate of 25nm mm-1 and cavity length of 97mm 

 

The Ti:Sapphire laser was used only for initial studies of FP cavities. During the course of the 

work, the power output for the Ar+ laser used as a pump fell below the threshold. In addition, 

issues arising from vibrations produced by the flow of cooling water through the Ar+ laser 

induced frequency jitter and the lack of control in wavelength tuning in the 800nm Ti:Sapphire 

laser. It was decided to change to the wavelength region of the newly acquired 1550nm 

Photonetics tuneable laser source.  

 

From equation (5.5), the formation of a strain insensitive cavity with length of around ~10cm 

requires the use of chirped FBGs with a chirp rate of ~25nm/mm. Chirped FBGs with high chirp 

rate may be fabricated using the interference of UV beams with dissimilar wavefronts [4]. By 

introducing a cylindrical lens in one arm of the holographic arrangement when writing gratings, 

the wavefront will be distorted with a different curvature to the other beam. Using geometry 

considerations, the variation in period along the grating can be written as [5]; 

  

  

2/12
22

2
2

22
2/12

11
2

1

11

)cos2(
cos

)cos2(
cos

)(

zzDD
zD

zzDD
zD

UV

++
+

+
++

+
=Λ

φ
φ

φ
φ

λ
λ  (8.3) 

 

where φ1 and φ2 are the angles of two interfering beams with respect to the fibre, D1 and D2, are 

the distances between the lens and the fibre, z is the position along the fibre and λUV is the UV 

writing wavelength. Using a single lens in one path of the holographic arrangement with a 

distance D of ~10cm [5], an FBG with the total chirp of ~100nm in a grating length of ~4mm has 

been written with this method. Cavities with length ~93mm comprising of chirped FBGs 

oriented in different directions have been created.  

 

Using the Photonetics tuneable laser source and sweeping the wavelength from 1506nm up to 

1610nm in steps of 0.05nm, the reflected intensity is recorded and compared to the reflection off 

a fibre end. The reflectivity for all the gratings is less than 4%. Figure (8.5) shows the profile of 
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some of the gratings that have been used in the experiments. More details of the grating profiles 

can be found in Appendix D. 

  
The jagged appearance of the reflection profile of the gratings is probably due to FP effect by the 

grating edges as well as the quality of the 2 interfering UV beam profiles, in general, where the 

mismatch in intensity across the beam causes different fringe visibility within the grating profile. 

The appearance of FBG profile will not affect the performance of the chirped FBG FP, aspect 

from the visibility of the return signal. However, if the variation in the profile is caused by the 
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Figure 8.5, shows the grating profiles used in the experiment where the reflectivity for all 
gratings used <4%. The scan is achieved by sweeping the scanning wavelength of the 
Photonetics laser from 1506 to 1610nm in steps of 0.05nm. 
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effective concatenation of individual FBGs, each occupying a different bandwidth, then the 

reflection points of the wavelength will become non-unique. As a result, it might be expected 

that there would not be any movement of the reflection points in response to applied strain and 

that the performance of the FP would be equivalent to that of a conventional FP.The strain, 

temperature and wavelength responses of chirped FBG FP cavities employing these FBGs in 

different orientations were investigated. 

 

8.3.1 The strain response  

 
FP cavities were constructed using a pair of chirped FBGs separated by a cavity length of 

~97mm. Figure (8.6) illustrates the 3 types of chirped FBG FP configurations. These cavities are 

configured such that the direction of increasing chirp for each FBG is aligned in the same 

direction, figure (8.6.a) (normal configuration), figure (8.6b) where the direction of increasing 

chirp for the FBG are aligned in opposite directions, away from the centre of the FP (reduced 

sensitivity configuration) and figure (8.6c) where the direction of the increasing chirp for the  

FBGs are aligned in opposite directions but towards the centre of the FP (enhanced sensitivity 

configuration). From the analysis presented in chapter (5), the response of each of these cavities 

to an applied axial strain should produce a response which depends on the orientation of the 

chirped FBG. For the normal configuration, figure (8.6a), the phase response with strain should 

correspond to the conventional FP response with a cavity length of 97mm. The reduced strain 

sensitivity configuration should demonstrate a much reduced phase response to applied strain, 

whereas the enhanced sensitivity configuration should demonstrate a phase response to strain 

that is around twice the phase response of the normal configuration. Figure (8.7) illustrates the 

experimental setup where a chirped FBG FP cavity is mounted on the strain rig (previously 

described in figure (7.4)). The application of strain, the monitor of strain and the monitoring of 

the reflected signal from detector, D1 is controlled by the PC. 
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The effect of strain on the 
cavity, l 

a) Scenario A (normal configuration ) 

δε
δb

δε
δb

δε 
δl 

cavity length, l

c) Scenario C (enhanced configuration ) 

δε
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δε
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δε 
δl 

cavity length, l

tendency for the reflection 
point to move against the 
chirp with strain, hence 
enhance the effect of strain 
on cavity length. 

b) Scenario B (reduced configuration ) 
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cavity length, l

tendency for the reflection 
point to move against the 
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reducing the effect of strain 
on cavity length. 

The effect of strain on the 
cavity, l 

The effect of strain on the 
cavity, l 

Figure 8.6, illustrating the effect that strain has on chirped FBG FP cavities in a) the 
normal configuration where the movement of the reflection points in one grating acts to 
increase, in the other, act to decrease the cavity length, hence effect is nulled and the FP 
response will be that of the cavity length response to strain, b) the reduced configuration 
where the movement of the reflection points with strain reduces the effect strain has on 
the cavity and c) the enhanced configuration when the movement of the reflection point 
with strain in the grating enhances the effect of strain has on the cavity length.   

tendency for the reflection point to 
move against the direction of 
increasing chirp with strain. The 
reflection point in one FBG moves to 
increase the cavity length whereas in 
the other, movement goes to reduce 
the cavity length, net result is zero 
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The cavity is illuminated at wavelength, λ, and it is strain tuned by applying a modulation 

voltage across a piezo-actuator with a frequency of 30mHz. The strain is monitored by the HeNe 

laser and bulk FP and the reflected signal from D1 is recorded. The whole process is controlled 

by a PC and the data is captured using a DAQ card with software written in LabviewTM. 

 
Figure (8.8a) shows the applied voltage from the input of the piezo-actuator used to apply strain 

to the cavity, figure (8.8b) shows the response of the bulk FP illuminated at 633nm, used to 

calibrate the extension and figure (8.8c) shows the strain response of the normal configuration 

chirped FBG FP cavity at 1510nm. The experiment is repeated for a range of different 

illuminating wavelengths within the bandwidth of the chirped FBG FP. The strain response for 

the normally configured chirped FBG FP cavity, figure (8.8c), for different illumination 

wavelengths can be found in Appendix E.  

 

The experiment is repeated for the 2 other chirped FBG FP cavities (reduced and enhanced 

sensitive configurations). The strain sensitivity of the 3 cavities are calculated and plotted against 

the inverse of wavelength, as shown in figure (8.9). The predicted strain sensitivity for the 

reduced configuration will be near zero, equation (5.15) and the enhance configuration will give 

twice the value of the normal configuration, equation (5.14) at a cavity length of a cavity length 

of l=97mm with α=0.8. 
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Strain is applied with the 
strain rig as shown in figure 
(7.5) controlled by the piezo-
actuator and monitored with 
the HeNe source bulk FP  

λ 

Figure 8.7, the experiment configuration which involved the use of fibre couplers 
so that the cavities can be interrogated and monitored with a computer controlled 
software. The signal is captured in detector D1. 
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Far from showing different strain sensitivities, the chirped FBG FP cavities all demonstrate a 

strain sensitivity akin to the conventional FP response where the strain sensitivity is proportional 

to the cavity length, equation (8.1). 
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Figure 8.8, Strain response of the chirped FBG FP in the normal configuration. a) the 
driving voltage of the piezo, b) the intensity output from the monitoring bulk FP used in 
strain calibration and c) the strain response of the chirped FBG FP in the normal 
configuration interrogated at 1510nm. The calibrated strain level is ~730µε giving ~100 
fringe cycles. 
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Figure 8.9, shows the plot of the strain sensitivity as a function of the inverse of the 
illuminating wavelength a) for normal, b) reduced strain sensitivity and c) enhanced strain 
sensitivity configurations. The linear relationships demonstrate that the strain sensitivity 
is proportional to the cavity length only and is not dependent upon the orientation of the 
chirp of the FBGs in the FP formations 
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From the data presented in figure (8.9a), the strain sensitivity for the chirped FBG FP configured 

with the chirps oriented the same way, has an average strain of 0.83 radian µε-1. This compares 

well with an experimentally demonstrated strain sensitivity of 0.83 radian µε-1, for a uniform 

FBG FP measured at a wavelength of 1562nm. Equation (5.14) which describes the strain 

sensitivity of chirped FBG FP cavities, can be modified by ignoring the movement of the 

reflection points in response to strain. The equation is reduced to the standard FP strain response, 

equation (8.1); 

      ln
d
d

λ
ξπ

ε
θ 4

= . 

A plot of 
ε
θ

d
d  against 

λ
1  should then give a linear relationship. Figure (8.9) demonstrates this 

linearity, where the cavity length, remains constant at~97mm for all cases. The cavity length is 

not effectively reduced/increased, as predicted for a dispersive FP. From the slope of the graph in 

figure (8.9), the values for the strain responsivity, ξ are 0.70, 0.71 and 0.71±01 ε-1 determined for 

the 3 chirped FBG FP cavities respectively, assuming n = 1.5 and l = 97mm. The theoretical 

value of the strain sensitivity using equation (8.1), assuming the strain responsivity of the fibre, ξ 

is 0.78 ε-1 [6] and that the refractive index, n =1.5, gives a strain sensitivity of ~0.88 radian µε-1 

at a wavelength of 1550nm, which is similar to the average strain sensitivity exhibited by the 3 

chirped FBG FP cavities. 

 

From the strain characterisation of the chirped FBG FP, the results indicate that these cavities 

behaved like a non-dispersive conventional fibre FP cavity. No significant enhancement or 

reduction in strain sensitivity is observed. The strain response of the cavity appeared to be 

decoupled from expected influence of the dispersive chirped FBG. This could happen if the chirp 

is not continuous in the grating, as in the case of stepped chirp or concatenated FBGs, where the 

gross total chirp is still significant but the period change with position is created in discreet steps. 

In this case, as the cavity is subjected to an axial strain, there is no movement of the reflection 

points inside the chirped FBGs. The strain response is then equivalent to that of a cavity of 

length measured between the respective reflection points inside the chirped FBGs. The 

appearance of the chirped grating profiles, figure (8.5) is similar to the sum of many short 
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uniform period FBGs. The individual peaks may be interpreted as the spectra of broadband 

uniform FBGs with very small lengths with some wavelength overlaps with neighbouring FBGs. 

 

8.3.2 Temperature response 

 

The chirped FBG FP configured to have a reduced sensitivity to strain, figure (8.6b) with the 

increasing chirp oriented in opposite directions, away from the centre of the FP, is used in this 

experiment to investigate the temperature sensitivity of the cavity. This FP cavity was placed in 

the modified tube furnace with a narrow conducting copper tubing inside, to redistribute the heat 

more evenly inside the furnace and to reduce convection, which may cause temperature 

fluctuations.  
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Figure 8.10, shows the temperature response of the chirped FBG FP arranged in the 
reduced strain sensitivity configuration with the FBGs having a chirp rate of ~ 25 nm/mm 
and cavity length of 97mm, a) the temperature response at an illuminating wavelength of 
1520nm and b) the temperature sensitivity at different illuminating wavelengths.   

b)  
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The experimental arrangement is shown in figure (8.7), with the heating furnace in place of the 

strain rig. The FP cavity was interrogated with a single wavelength and the temperature of the 

furnace was increased gradually. The temperature and the reflected signal were captured using a 

DAQ card and data acquisition software written in LabviewTM. The experiment was repeated for 

a range of different illuminating wavelengths. Figure (8.10) shows the temperature response of 

this reduced configured chirped FBG FP with chirp rate of 25nm/mm with a cavity length of 

97mm. By differentiating the RTSP with respect to temperature, the temperature sensitivity of 

the fibre FP can be written as; 

     ln
dT
d

λ
ςπθ 4

=    (8.4) 

 

This equation can be arrived at by using equation (5.21) and ignoring the movement of reflection 

points in the chirped FBG in response to temperature. Using equation (8.4), with a temperature 

response value of ζ = 6.67x10-6 oC-1[6] and 8.39x10-6 oC-1 [7], n = 1.5 and l = 97mm, the 

temperature sensitivity is predicted to be in the region of 7-10 radian oC-1. When compared to the 

measured temperature sensitivity of the chirped FBG FP, 6.86 radian oC-1. The experimental and 

theoretical predictions are of the same order of magnitude. The small difference in the theoretical 

and experimental sensitivity values is probably due to the fibre type and the presence of a 

temperature gradient along the length of the oven and that this temperature gradient increases 

with increasing temperature. This chirped FBG FP cavity has a standard fibre FP response to 

temperature without significant reduction in the sensitivity as predicted for the reduced 

configuration. From equation (8.4) a plot of 
dT
dθ  against  λ should record a 1/λ relationship. 

Instead, the graph demonstrates a positive gradient, figure (8.10b). Using the average 

temperature sensitivity of 6.86 radian oC-1 in equation (8.4), a temperature response of the fibre is 

predicted to be ζ = 5.6x 10-6 oC-1, compared to accepted value of ζ=8.39x10-6 oC-1. This 

temperature experiment will not yield accurate temperature response measurement because of 

the long cavity length of this FBG FP ~10cm, and it is difficult to establish a constant 

temperature throughout the cavity length which is reflected in the differences in the theoretically 

predicted and experimental value for the temperature sensitivity. 
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8.3.3 The wavelength response 

 

The wavelength response of the chirped FBG FP is investigated, using the same experimental 

setup used for the strain characterisation, figure (8.7). When scanning the wavelength of the 

external cavity laser in the 1550nm region, the reflected intensity is recorded. The chirped FBG 

FP cavity used is of the reduced configuration as shown in figure (8.6b). The cavity has a length 

of 97mm between the grating centres with each grating having a chirp rate of ~25nm/mm. From 

the analysis performed in section (4.4.3.4), the wavelength response of this cavity will have a 

much reduced phase response to wavelength. Figure (8.11) shows the configuration of the 

chirped FBG FP, with the alignment of the increasing chirp opposite to each other and away 

from the centre of the FP. 

  

The wavelength response is shown in figure (8.12a) in the wavelength range of 1510nm to 

1565nm. No reduction or enhancement in the wavelength sensitivity is observed. The figure 

shows the varying visibility for the FSR across the bandwidth due to the mismatch of the 

reflectivity of the 2 gratings. The FSR can be seen more clearly in a smaller wavelength region 

of, figure (8.12b), where a FSR ~ 0.008nm can be resolved. 

Total chirp, ∆λc =100nm direction of increasing chirp 

grating length  lg= 4mm 

cavity length between the grating centres l=97mm 

Figure 8.11, illustration of the reduced configuration of the chirped FBG FP cavity which 
consist of 2 chirped FBG with grating length~4mm, total chirp, ∆λc~100nm with the 
orientation of chirp going away from each other and having a cavity length between the 
grating centre ~ 97mm 

l(λ1) 

l(λ2) 
Where l(λ2)>l(λ1) 
for λ2>λ1 
in a reduced 
configuration 
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Figure 8.12, the wavelength response of the chirped FBG FP in the reduced 
configuration with no reduction of the sensitivity observed, b) a FSR ~0.008nm is 
shown in the wavelength region of 1560nm and this cavity has a uniform 
wavelength response across the bandwidth and c) using the non dispersive 
chirped FP FSR response, equation (4.59), the detuned cavity length, l(λ) can be 
determined using the FSR values. The detuned cavity length can be distinguished 
with l(λ2)>l(λ1) for λ2>λ1 which is consistent with the chirped FBGs arranged in 
the reduced configuration, figure (8.11). 
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The results in figure (8.12a) do not indicate an alteration to the wavelength response, which is 

contrary to what is expected of this chirped FBG FP cavity. The behaviour of this cavity can be 

explained using the conventional non dispersive FSR equation (4.47); 

 

    
)(2

2

λ
λλ

nlFSR −=∆     

 

which retains the wavelength detuned cavity length, l(λ), of the chirped FBG FP. This FP 

response can be derived if the dispersive element is ignored in the general FSR equation that 

describes a dispersive FP, equation (4.48). From figure (8.12.a) and (8.12b), a measured FSR 

value of ~ 0.008nm, correspond to a cavity length ~10cm using equation (4.47). The wavelength 

response of this chirped FBG FP cavity is very much uniform throughout the bandwidth but on 

closer examination of FSR in figure (8.12a), there is a small variation of the FSR due to the 

wavelength detuned cavity length, l(λ), figure (8.12c). This wavelength detuned cavity length 

can be determined using equation (4.47) together with the measured FSR values, ∆λFSR. The 

calculated detuned cavity length, l(λ) is shown in figure (8.12c) and the smaller wavelength sees 

a shorter cavity length than the longer wavelength. This is consistent with the arrangement of the 

2 chirped FBG in this reduced configuration, figure (8.11) where the smaller cavity length 

appearing in shorter wavelength region. 

 

The experiment is repeated using the other cavities. All of the cavities have the same length 

~97mm. The measured FSR for all cavities was in the region of ~0.008nm, irrespective of the 

configuration of the cavity used. The wavelength response and behaviour of these cavities adhere 

to the conventional non dispersive FP response, equation (4.47), where FSR is modified by the 

variation in the wavelength detuned cavity length, l(λ) accordingly. This variation of the FSR, 

∆λFSR can be clearly seen when the chirped FBG FP has a small cavity length. 

 

In the wavelength response of the chirped FBG FP, there is no observation of a reduced/increase 

in the effective cavity length by the effect of dispersion in the chirped FBG. The possible reason 

being that there is no continuity in the period of the chirped FBG as discussed in the strain 
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response section (8.3.1) where the chirped FBG behaved like the stepped chirped FBG or the 

concatenations of many uniform period FBGs. 

 

8.4 Dissimilar chirped FBG FP formed between a chirped FBG with chirp rate of 

25nm/mm and a cleaved end of an optical fibre 

 

The discussion to date has focussed in the formation of an FP cavity between two chirped FBGs 

with identical parameters but differing orientation with the aim of modifying the phase response 

to strain and wavelength. It is possible to achieved similar performance by employing chirped 

FBGs in the cavity that have differing parameters such as length, chirped rate etc. In section 

(4.3.3), which provides an analysis of the wavelength response of chirped FBG FP, the analysis 

assumed that the cavity consists of chirped FBG with similar parameters, differing only in the 

orientation. The cavities will be dispersive unless the chirps of the FBGs are oriented in the same 

directions such that, the dispersive effect cancels. Dissimilarly chirped FBG FPs formed with 

FBGs of different chirp parameters will always be dispersive as discussed in, sections (3.9) and 

(3.11). From the analysis of the chirped FBG FP presented in section (4.3.3.2), the general 

equation describing the wavelength sensitivity of the chirped FBG FP provided by equation 

(4.48);  
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For 2 differently chirped FBGs, the dispersive term, describing the change in cavity length with 

wavelength, is given by equation (4.49); 
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An extreme example of the dissimilar chirped FBG FP would be the FP formed using a chirped 

FBG to form one reflector and using a mirror or cleaved fibre end to form the other reflector. In 

this case, one of the terms on the RHS of equation (4.49) will be zero and the change of the 
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cavity length with wavelength will be determined by the rate of the wavelength detuned 

resonance position for the single chirped FBG. 

 

The behaviour of the dissimilar chirped FBG FP is demonstrated by cleaving the chirped FBG 

FP in half and using the cleaved end of the fibre as a broad band reflective surface as shown in 

figure (8.13). The cleaved fibre end provides a reflectivity of ~4% at all wavelengths. 

 

8.4.1 Wavelength response of the dissimilar chirped FBG FP 

 

As the dissimilar chirped FBG FP is considered dispersive, the wavelength response, ie the FSR 

of the cavity is modified by the inclusion of the dispersive element and will be significantly 

different to the conventional FP wavelength response, equation (4.48). In a similar way to the 

identical chirped FBG FP, they can be configured to show reduced or enhanced wavelength 

response, section (4.3.3). Following similar argument for the chirped FBG FP configured to 

provide a reduced wavelength sensitivity as discussed in section (4.3.3.4), the chirped FBG FP 

consists of a single chirped FBG and a cleaved fibre end will show a reduced wavelength 

sensitivity if the orientation of the increasing chirp of the FBG is aligned away from the centre of 

the cavity as shown in figure (8.14). 

Figure 8.13, Schematic diagram of a dissimilar chirped FBG FP configuration employing 
a chirped FBG as one reflector and a cleaved fibre end as the other with a wavelength 
dependent cavity length, l(λ). 

Chirped FBG 

resonance point for λ 
wavelength dependent cavity length, l(λ) 

λ 
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In this experiment, a dissimilar chirped FBG FP cavity is formed in which the reflectors are a 

chirped FBG, with a chirp rate of ~25nm/mm, and the other reflector consists of a fibre cleaved 

end, as shown in figure (8.14). The cavity length, measured from the centre of the grating to the 

end of the fibre is ~7mm. The change in the reflected intensity is observed when the wavelength 

of the laser used to illuminate the cavity is scanned from 1513nm to 1600nm. The results are 

shown in figure (8.15). The varying visibility of the FSR is due to the difference between the 

reflectivity of the chirped FBG with that of the cleaved fibre end, figure (8.15a). The measured 

FSR has an average value of ~0.12nm. Using equation (4.47);      

     
)(2

2

λ
λλ

nlFSR −=∆   

This FSR corresponds to a cavity length of ~ 6.7mm, which is similar to the estimated length of 

~7mm from the centre of the grating to the fibre end. The observed average FSR of 0.12nm is 

akin to a non-dispersive FP response and again there is no significant reduction in the 

wavelength sensitivity in this dispersive cavity.  

 

The measured FSR is plotted against wavelength in figure (8.15b) and, using the standard non 

dispersive FSR equation (4.47), the wavelength detuned cavity length, l(λ) is calculated from the 

FSR values, assuming that the refractive index, n = 1.5, The calculated wavelength detuned 

cavity length, l(λ) is plotted as a function of wavelength in figure (8.15c). 

Figure 8.14, shows the reduced wavelength sensitive dissimilar chirped FBG FP 
configuration, where the direction of the increasing chirp is aligned away from the centre 
of the cavity. 

direction of increasing chirp 

resonance point for λ wavelength detuned cavity length, l(λ) 

λ 

cut length from the centre of grating~7mm 

cleaved end 



Chapter  8 Calibrations of chirped FBG Fabry-Perots  

 212

 

FS
R

 ∆
λ,

 n
m

 

wavelength /nm 

0

1

2

3

4

5

6

7

1513 1533 1553 1573 1593

In
te

ns
ity

, a
u 

0.06

0.08

0.1

0.12

0.14

0.16

0.18

1513 1533 1553 1573 1593

y = 0.0445x - 62.79

0.06

1.06

2.06

3.06

4.06

5.06

6.06

7.06

8.06

9.06

10.06

1513 1533 1553 1573 1593

C
av

ity
 le

ng
th

 , 
l(λ

) /
m

m
 

Wavelength step 0.005nm 

Figure 8.15a shows the wavelength response of the dissimilar chirped FBG FP which 
consists of a chirped FBG and a cleaved end of the fibre forming a cavity with the 
length of ~7mm, measured from the centre of the FBG to the fibre end. b) a plot of 
the variation of the FSR with wavelength and c) a plot of wavelength detuned cavity 
length, l(λ) as a function of wavelength defined from equation (4.47). 

a) 

b) 

c) 
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In figure (8.15c), the dependence of the cavity length upon the illuminating wavelength 

demonstrates the effect of the variation in reflection position of the chirped FBG. The chirped 

FBG was configured such that the shorter wavelength was reflected from position nearer to the 

cleaved end of the fibre, figure (8.14). A linear regression fit to the data reveals a gradient of 

0.0445 mm/nm. The inverse, 23nm/mm should match the chirp rate of the chirped FBG, which 

was fabricated to be 25nm/mm. 

 

When the orientation of the chirped FBG is reversed, such that the orientation of the increasing 

chirp is towards the centre of the cavity, figure (8.16). Following a similar argument to that put 

forward in section (4.3.3.5), the arrangement of the chirped FBG in the cavity is akin to the 

enhanced wavelength sensitivity configuration of the chirped FBG FP.  

 
The wavelength of the illuminating external cavity laser is scanned from 1513nm to 1594nm in 

steps of 0.002nm. The reflected signal from the cavity is shown in figure (8.17). In figure 

(8.17a), the reflected spectrum is very different to when the chirped FBG is reversed in the 

cavity, figure (8.15a), though the appearances of the peaks in the reflection profile bear 

similarities. The varying visibility of the FSR is due to the difference between the reflectivity of 

the chirped FBG with that of the cleaved fibre end, figure (8.17a). 

Figure 8.16, shows the enhanced wavelength sensitive dissimilar chirped FBG FP 
configuration, where the direction of the increasing chirp is aligned towards the centre of 
the cavity. 

direction of increasing chirp 

resonance point for λ wavelength detuned cavity length, l(λ) 
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cut length from the centre of grating~7mm 

cleaved end 
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Figure 8.17a shows the wavelength response of the dissimilar chirped FBG FP which 
consists of a chirped FBG and a cleaved end of the fibre. The cavity length is ~7mm, 
measured from the centre of the FBG to the fibre end. b) a plot of the variation of the 
FSR with wavelength and c) a plot of cavity length as a function of wavelength defined 
from equation (4.47). 
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The measured FSR from figure (8.17a) has an average value of 0.1nm. Using the non-dispersive 

FP response equation (4.47), a cavity length of ~ 8mm is derived, which again is similar to the 

estimated length of ~7mm. The observed average FSR of 0.1nm is what is expected from a non-

dispersive FP response using equation (4.47) and there is no significant enhancement in the 

observed sensitivity from the measured FSR value, figure (8.17b). Using the standard non 

dispersive FSR equation (4.47), the wavelength detuned cavity length, l(λ) is calculated from the 

measured FSR values, assuming that the refractive index, n = 1.5. The calculated wavelength 

detuned cavity length is plotted as a function of wavelength in figure (8.17c).  The chirped FBG 

was configured such that the longer wavelength was reflected from a position nearer to the 

cleaved end of the fibre, figure (8.16). A linear regression fit to the data produced a gradient of 

0.046 mm/nm and the inverse, 22nm/mm matches the designed chirp rate of 25nm/mm of the 

grating used. 

 
If the cavity length of this dissimilar chirped FBG FP is reduced further, to within sub-

millimetres in length, the cavity should still be dispersive and the FSR/wavelength response will 

be modified by the inclusion of the dispersive factor, equation (4.48). The FP response of this 

cavity should not adhere to a conventional FP response. The dissimilar chirped FBG FP is shown 

in figure (8.18) with the chirped FBG oriented such that the increasing chirped is directed 

towards the centre of the FP. The cleaved end of the fibre is located at ~ 2mm away from the 

centre of the grating forming a cavity as shown in figure (8.18). The wavelength response of the 

cavity is shown in figure (8.19). 

cleaved end 

Cleaved from the centre of the grating ~2mm 

Illuminating wavelength, λ 

chirped FBG  

Direction of chirp 

Figure 8.18, showing the dissimilar chirped FBG FP with a very short cavity length with 
the chirped FBG having a chirp rate of ~25nm/mm and cavity length ~2mm measured 
from the centre of the grating to the cleaved end 
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The wavelength response shown in figure (8.19a) demonstrates a large variation of FSR, as much 

as 500% across the spectrum of the grating, figure (8.19b). This large variation of the FSR can be 

explained by the non dispersive FP response, equation (4.47). The derivative of the FSR with 

respect to cavity length, l is inversely proportionally to the square of the cavity length. For small 
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Figure 8.19a shows the wavelength response of the dissimilar chirped FBG FP 
which consists of a chirped FBG and a cleaved end of the fibre forming a cavity 
with the length of ~2mm, measured from the centre of the FBG to the fibre end. b) 
a plot of the variation of the FSR with wavelength and c) a plot of cavity length as a 
function of wavelength defined from equation (4.47). 
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cavity length, the rate of change in the FSR with cavity length is large, figure (8.19b). Using the 

standard non dispersive FSR equation (4.47), the wavelength detuned cavity length is calculated 

from the measured FSR, with the assumption that the refractive index, n = 1.5. The calculated 

wavelength detuned cavity length is plotted as a function of wavelength in figure (8.19c). The 

calculated wavelength detuned cavity length, l(λ) in figure (8.19c) shows the longer wavelength 

is reflected from the position in the chirped FBG nearer to the cleaved fibre end and that the 

central wavelength is reflected near the centre of the grating with a cavity length of ~2mm which 

agreed with the estimated distance measured from the grating centre to the fibre end. The linear 

fit to the wavelength detuned cavity length, figure (8.19c) predicts a chirp rate of 24nm/mm. 

 

There is no significant change to the observed FSR of the above dispersive dissimilar chirped 

FBG FP cavity. The responses of these cavities obeyed the conventional non dispersive FSR 

equation (4.47) and there is nothing to suggest that the wavelength responses of these dissimilar 

chirped FBG FP cavities are dispersive. Other than the wavelength detuned cavity length, l(λ), 

there is no significant change to the value of the FSR value of these cavities. 

 

8.4.2 Straining the dissimilar chirped FBG FP 

 

When an axial strain is applied to a chirped FBG, the location inside the FBG from which light 

of a given wavelength is reflected changes. The concomitant change in the reflection point 

imparted to every wavelength component within the bandwidth of the chirped FBG translates to 

a large group delay and thus a large optical path change, and a concomitant change in the RTSP 

in an interferometric configuration. This effect has been utilised in a Michelson interferometer 

with enhanced strain sensitivity [8] and in chirped FBG FP configuration used as a path length 

matching processing interferometer in low coherence interferometry [9]. The chirped FBG 

Michelson interferometer configuration used in the stain magnification experiment [8] is similar 

in that of the low finesse chirped FBG FP formed by a chirped FBG and a cleaved fibre end with 

low reflectivity. 
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Attempts were made to repeat the strain sensitivity enhancement observed by Kersey et al [10] in 

a FP arrangement. The chirped FBG FP consists of a chirped FBG and a fibre cleaved end, as 

shown in figure (8.20). Instead of measuring the modulation of the carrier frequency created by 

ramping the wavelength of the illuminating laser, a direct measurement of the shift in the RTSP 

of the reflected signal is used. The large displacement of the reflection point in response to 

applied strain should translate to a larger shift in RTSP. The chirp is fabricated in the wavelength 

region of 1550nm by the method of fibre bending technique [1]. The FBG has a total chirp of 

~12nm over a length of ~4mm. The distance between the translation stages of the strain rig is set 

with the width equal to the grating length of chirped FBG. The chirped FBG FP is mounted on 

the strain rig such that the fibre cleaved end is held free and the length of the grating is stretched 

over the width of the space between the two travelling stages of equal length and secured by the 

application of glue so that when the stages are stretched, strain is applied across the grating and 

not anywhere else, figure (8.20). The extent of the strain is monitoring using the bulk FP with a 

HeNe source. 

 
The cavity is illuminated by the output from the tuneable laser and an axial strain is applied to 

the FBG. The extension of the strain rig is monitored using the bulk FP illuminated by the HeNe 

source. The reflected signal from the chirped FBG FP is detected by a photodiode which is 

monitored and captured using a DAQ card. The experiment is repeated for the illuminating 

wavelength in the range of 1565nm to 1575nm in steps of 2nm. The results are shown in figure 

(8.21).  

cleaved 
endstraining 

resonance position for λ 

b(λ) 

Figure 8.20, experimental arrangement to strain only the grating of the chirped 
FBG FP. The shift in the RTSP with the application of strain is monitored. 

λ 

lfree 

Grating length, lg= 4mm 
Wavelength detuned position 
from the bandwidth edge 

λ1 λ2 
Total chirp, ∆λc=λ2− λ1  
where, λ2 >λ1. 

V-grove mounted on 
translation stage 
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Figure (8.21a) shows the applied voltage from the input of the piezo-actuator used to apply strain 

to the FBG. Figure (8.21b) shows the response of the bulk FP illuminated at 633nm, used to 

calibrate the extension. The observed ~ 5 fringes of the calibrating HeNe wavelength, 

corresponds to an extension of ~1.5 µm. Given that the length of the grating is 4mm, this 

translates to a strain of ~375µε.  
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Figure 8.21a) the voltage ramp, b) the calibrating HeNe wavelength at which ~5 
fringes appeared giving an extension of ~1.5µm in a grating of ~4mm which 
corresponds to an applied strain of ~ 375µε. A progressing increasing strain 
sensitivity with increasing illuminating wavelength can be seen from c) to g) with 
wavelength in the range of 1565nm to 1575nm in steps of 2nm. The maximum 
observed phase change ~ 2π radian @1575nm.   
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The strain response of this cavity can be explained using the conventional FP response to strain. 

From the RTSP of a FP cavity; 

      
λ
πθ nl4

=  

the cavity length l can be written as; 

     freelbl +=  

The strain sensitivity of this cavity can be rewritten as; 

 

    
ελ

π
ε
θ

d
lbndn

d
d free ))((4 +

=  

 

When there is no movement of the reflection point of the wavelength with applied strain inside 

the FBG, the equation can be simplified to; 

        ξλ
λ
π

ε
θ )(4 bn

d
d

=    (8.5) 

 

where b(λ) is the distance measured from the resonance position inside the FBG to edge of the 

grating near to the centre of the FP, as shown in figure (8.20). From equation (8.5), the strain 

sensitivity is proportional to the wavelength detuned length b(λ). As the length of the grating is 

the only portion of the cavity experiencing the strain, the contribution to the change in the RTSP 

comes only from the response of the FBG. The maximum value b can take is that of the grating 

length. An applied strain of ~375µε is predicted to induce a maximum of ~ 4π radian (2 fringes). 

From the observed strain response of the cavity, figure (8.21c)-(8.21g) for the 5 increasing 

illuminating wavelengths, the strain sensitivity increases with increasing wavelength. This 

indicates that the wavelength detuned length b is shorter for shorter wavelength than for longer 

wavelength which gives an indication of the orientation of the chirp in the FBG. From figure 

(8.21g), the observed maximum phase excursion with applied strain is <4π radian. So the strain 

response of this cavity is proportional to the wavelength detuned length, b and when the 

reflection position of the wavelength is near the bandage of the grating, λ2 or near where b is 

small, the strain sensitivity will be a minimum. 
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The strain response in figure (8.21) shows no observable large phase change due to the 

movement of the reflection position with strain. Chirped FBG fabricated by the technique of 

interference of different wavefront [11] have also been used in this experiment but they also 

yielded a conventional FP response with applied strain. 

 

The strain response of the chirped FBG FP in response to straining only the chirped FBG shows 

no indication of strain enhancement or magnification, but the strain response does illustrate the 

positional dependent of the reflection position of the wavelengths of the chirped FBG.  

 

8.4.3 Wavelength response of dissimilar chirped FBG FP with the chirp in the FBG 

created by applying a strain gradient along the length of FBG 

 

Using a different method of generating chirp in the FBG, a chirped FBG FP is formed between a 

FBG and a cleaved end of the fibre to see if the dispersive effect of chirped FBG will have any 

observable changes to the wavelength response of the cavity  

 

Cleaved  end to 
form FP

Figure 8.22, illustrates the setup used to apply a strain gradient to a uniform period FBG 
to induce a chirp. This system was used to form the chirped FBG reflector in the FP 
cavity. 

Increasing 
load 

Uniform FBG becomes 
increasingly chirped with 
increasing strain gradient.  

λ 

Metal lever 

cavity length ~20mm 

Optical fibre 

Adjusting screw 
to impart load 



Chapter  8 Calibrations of chirped FBG Fabry-Perots  

 223

A uniform period FBG can be chirped by the application of a strain gradient along the grating 

length [12]. This may be achieved by using a metal lever to impart the strain gradient to the FBG 

as shown in figure (8.22). A uniform period FBG with centre wavelength of 1553.2nm, and 

grating length ~3mm, is glued to the side of the metal lever as shown in figure (8.22). The metal 

lever is secured to the optical table. By adjusting the loading screw, the metal lever is pressed 

downwards, imparting a non-linear strain along the length of the FBG.  

 

The FBG FP is formed by cleaving the fibre at one end and forming a cavity with the FBG as the 

reflector. The length of the cavity measured from the centre of the FBG to the fibre end, is ~ 

20mm. The cavity is illuminated by the output from the external cavity laser, over the 

wavelength range of 1552nm to 1555nm and the reflected signal is recorded at one load level. By 

tightening the adjustable screw, the metal lever transfers a positional dependent axial strain 

which changes the period along the grating length, thus creating chirp in the grating [12]. The 

load is gradually increased by tightening the screw on the lever and the wavelength is scanned 

for this state of loading. This is repeated for 4 states of loading and the results are shown in 

figure (8.23).  

 

For a non dispersive cavity such as the uniform period FBG FP, the cavity response will adhere 

to the convectional FSR response, equation (4.42) where the FSR corresponds to the wavelength 

detuned cavity length. For a FP formed between a chirped FBG and the cleaved end of the fibre, 

it is similar to FP formed between chirped FBGs with dissimilar parameters, section (3.9) and 

section (4.3.3.2). As the dispersive effects in the dissimilar chirped FBG FP do not cancel, it is 

considered dispersive where the effective cavity length term in the conventional cavity response 

is modified by the dispersive term of the chirped FBG, equation (4.48). This dispersive chirped 

FBG FP cavity response will be significantly different to the conventional FP cavity response. 
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Figure 8.23a, the wavelength response of the uniform period FBG FP which consists of a 
uniform FBG forming a FP with a fibre end and cavity length ~20mm.  b) – d) shows the 
same cavity when the chirp of the FBG is progressively increased. The bandwidth of the 
wavelength response is progressively broadened but the change of the chirp rate has no 
affect on the measured FSR.   
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Before the applications of any load, the FP formed is that of the uniform period FBG FP formed 

between the uniform period FBG with the cleaved fibre end. Figure (8.23a) shows the reflected 

spectrum for the uniform FBG FP when no load is applied to the FBG. The measured FSR of 

~0.04nm corresponds to a cavity length of 20mm. As the load is increased, figure (8.23b-d), the 

bandwidth of the spectrum broadens but there is not significant change to the measured FSR, ~ 

0.04nm. Not only does the profile of the grating broaden but the centre wavelength also shifts in 

response to the increase in the average strain along the grating length. There is no significant 

difference to the measured FSR value of ~0.04nm and chirping the FBG have no effect on the 

cavity response.  

 

The chirp in the FBG FP used so far has been derived by different techniques, ie, bending fibre 

method [13], interference of different wavefront [11] and induced strain gradient to the FBG 

[12]. Using the chirped FBG created, attempts have been made to observe significant changes in 

the dispersive FP FSR response, equation (4.48). However all of the FP response of the chirped 

FBG FP cavities, demonstrate a non dispersive FBG FP response to changes in wavelength with 

a wavelength dependent cavity length only. The information provided by the wavelength 

dependent cavity length shows the positional dependent of the reflection positions for 

wavelength, exist inside the grating. These chirped FBG have the same characteristics as the 

stepped chirped FBG [14] where there is no continuity in the period but still provide a broadband 

response. Using the idea that the periods are discontinuous can explain the experimentally 

derived wavelength response and the interferometric filter response reported in some literatures 

involving the use of chirped FBGs in interferometric configurations.   

 

To ensure there is continuity of the chirp in the FBG, chirped FBGs fabricated using the 

continuous chirp phase mask method [15] are sought. Two such gratings were acquired 

commercially. The FBGs have a central wavelength of 1550nm with a length of 5mm and total 

chirp of 10nm. The details and specifications of the chirped FBGs are detailed in Appendix F. 

The experimentally determined reflection spectrum of the 2 chirped FBGs are shown figure 

(8.24a).  
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Figure 8.24a) the reflection profile of the 2 chirped FBG written by using a continuous 
phase mask method, b), the wavelength response @1547nm and the corresponding 
FSR,  c)the wavelength response @1549nm and  d) the wavelength response@1555nm. 
The measured FSR for all wavelengths corresponds to a cavity length ~65mm of a non 
dispersive FP cavity. 
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The chirped FBG FP cavity was formed between the chirped FBG and the cleaved fibre end. The 

cavity length was ~65mm, similar to the configuration shown in figure (8.13). The performance 

of the chirped FBG FP was assessed by scanning the wavelength of the illuminating source and 

the results are shown in figure (8.24b-d) in 3 wavelength regions, figure (8.24b) @1547nm, c) 

@1549nm and d)@1555nm. The wavelength scan was repeated in other illuminating wavelength 

regions as well as reversing the orientation of the chirp of the FBG in the FP configuration. A 

measured FSR value of ~0.012nm prevailed in all wavelength regions within the bandwidth and 

for both orientations of the chirped FBG. The measured FSR corresponds to the standard non 

dispersive FP response with a cavity length ~65mm. The chirp rate of the FBG and the 

orientation of the chirp have no bearing on the FP response.  This can be explained if there is no 

continuity in the period of the chirped FBG and the continuity/dispersive term in equation (4.48) 

is neglected such as in the stepped chirped FBG or concatenation of many uniform period FBGs. 

There is no movement of the reflection point when the wavelength is tuned. 

 

8.5 Overlapping cavity chirped FBG FP 

 

The overlapping cavity consists of two co-located chirped FBGs with grating lengths of 4mm 

and total chirp, ∆λc~100nm(fabricated using the dissimilar wavefronts method [4]), but with 

chirps oriented in opposite directions, as shown in figure (8.25a). In figure (8.25b), there are two 

wavelengths, λ1 and λ2 for which the cavity length, measured between the reflections positions in 

the respective FBGs, have the same length. There exists a wavelength whose wavelength 

dependent cavity length, l(λ) equal to zero. For a perfectly overlapping chirped FBG FP, the 

central wavelength will see a cavity length of zero between the reflection points in the respective 

FBGs.  
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The collocation of two chirped FBGs in an optical fibre is created by writing two chirped FBG at 

the same physical location in the fibre. The two chirped FBGs are oriented in the opposite 

direction. The writing of 2 chirped FBGs in the same location is more likely to disrupt the period 

of each [16] and therefore, the continuity of the chirp of each FBG, so making the FP more likely 

to behave like the non-dispersive FBG FP with a response corresponding to the wavelength 

detuned cavity length, l(λ). 

 

 

 

Chirped FBG1 

Chirped FBG2 with the 
orientation in the opposite 
direction to that of  FBG1 

wavelength λ, 
reflected from 
the 1st grating  

Resonance point of 
wavelength, λ 

wavelength λ, 
reflected from 
the 2nd grating 

l(λ) 

Figure 8.25a), illustration of an overlapping cavity where the respective resonance 
positions provide the cavity length l(λ). b) there exist 2 wavelengths, λ1 and λ2 which 
shares the same cavity length. For a perfectly overlapping chirped FBG FP, the central 
wavelength will see a cavity length of zero between the reflection points in the 
respective FBGs.  
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8.5.1 Wavelength response of the overlapping cavity 

 

The overlapping chirped FBG FP cavity is illuminated by wavelengths in the 1500-1610nm 

range. The wavelength is scanned with wavelength steps of 0.002nm and the reflected spectrum 

of the overlapping chirped FBG FP is shown in figure (8.26). 

 

Using the conventional non-dispersive FP response, equation (4.47) and substituting the 

wavelength detuned cavity length, l(λ) in terms of the chirp rate, C, the FSR can be written about 

the wavelength where the cavity length is zero (overlapping wavelength), δλ; 

 

  








−=−=∆

C
nnlFSR δλ

λ
λ

λλ δλ

22)(2
)(

22

   (8.6) 

 

where the factor 2 indicates that there are 2 gratings involved. At the overlapping wavelength of 

the 2 chirped FBGs, the FSR, ∆λFSR will be infinite. From equation (8.6), the FSR will be 

symmetrical about the overlapping wavelength. From the wavelength response, figure (8.25a), 

the spectrum is symmetrical about 1526nm. At this wavelength, the FSR is the largest and it 

progressively decreases on either side of 1526nm. Assuming a chirp rate of 25nm/mm and 

refractive index n=1.5, equation (8.6) is plotted in figure (8.25b) to allow comparison with the 

experiment data and the two fit closely to each other.  

 

From the measured FSR in figure (8.26b), using the non dispersive FP response with 

wavelength, equation (8.6) with the assumption that the refractive index, n = 1.5, the wavelength 

detuned cavity length is calculated. The wavelength detuned cavity length, l(λ) is plotted as a 

function of wavelength in figure (8.26c). A linear regression fit to the figure (8.26c) gives a chirp 

rate of ~ 27nm/mm which compares well with the designed chirp rate of ~25nm/mm. From 

figure (8.26c), the same cavity length can be accessed by 2 different illuminating wavelengths. 
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Figure 8.26a) the wavelength response of the overlapping chirped FBG FP cavity where the 
FSR is the highest at ~1526 and decreases on either side, b) the measured FSR is plotted 
together with equation (8.6) and c) using the FSR data and using equation (8.6) the 
wavelength detuned cavity length, l(λ) is plotted as a function of wavelength. The 
wavelength at ~1526nm corresponds to a cavity length of zero. A linear fit gives a chirp rate 
~27nm. Notice that for a cavity length l(λ), can be accessed by 2 illuminating wavelength.   
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The dimensions of the overlapping chirped FBG FP can be very small, maximum cavity length 

being equal to that of the FBGs used ~4mm. When this cavity is used as a filter, a continuous 

FSR range from 0.1nm to several nanometers can be accessed by detuning the illuminating 

wavelength. Both high resolution and large dynamic range can be accessed in a single point 

sensor head.  

 

8.5.2 Strain response of the overlapping cavity 

 

The overlapping chirped FBG FP grating was subjected to axial strain using the strain rig 

discussed in section (7.4). The maximum strain imposed was 740µε, as calibrated with the HeNe 

source. The cavity was interrogated over the wavelength region of 1510-1610 nm in steps of 5nm 

by tuning the output of the laser and the strain response was measured at each wavelength.  

 

Figure (8.27) illustrates the strain response for 3 wavelengths. The measured strain response over 

the entire wavelength range can be found in Appendix G. The phase noise evident on the traces 

is attributed to the wavelength noise, <3pm, of the laser source [17]. The strain response in figure 

(8.27) demonstrates the wavelength detuned position of the cavity length in the overlapping 

chirped FBG FP. By increasing the illuminating wavelength away from the overlapping 

wavelength at which the cavity length is zero, a larger cavity length can be accessed. The graphs 

illustrate the dependence of strain sensitivity on the cavity length, l(λ). The cavity length, l(λ) 

can be written as the wavelength detuned position about the overlapping wavelength when the 

cavity length is zero using the Taylor expansion, equation (5.7);  

    δλδλ
C

l 12)( =   (8.7) 

where δλ is the detuning from the wavelength at which the cavity length is zero. 
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Using the RTSP equation; ln
λ
πθ 4

=  where l is the length of cavity, and substituting equation 

(8.7), the strain response is given as [3]; 

  δλ
λ

ξπ
ε
θ

C
n

d
d 18

=   (8.8) 

where ξ is the strain response of the grating/fibre. At the overlapping wavelength when δλ = 0, 

the strain sensitivity, equation (8.8) becomes zero. At this wavelength, the cavity length 

measured between the reflection positions in the respective FBG is zero, equation (8.7) but no 

Figure 8.27, shows the strain response of the overlapping chirped FBG FP cavity 
measured at illuminating wavelength of, a) λ=1535nm, b)λ=1545nm and c)=15650nm.
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matter how much strain is applied, the strain sensitivity at this wavelength is still zero, so there is 

no movement of the reflection point in the FBG. The wavelength reflection position inside the 

chirped FBG remains fixed, which is contrary to expectations. The strain response of the cavity 

is plotted in figure (8.28). 

 

 
In figure (8.28a), the phase is plotted as a function of the applied strain for different interrogating 

wavelengths. For each wavelength, the strain sensitivity is seen to be linear. In figure (8.28b), the 

strain sensitivity is plotted as a function of illuminating wavelength. The linear relationship 

verifies equation (8.8). As the strain sensitivity is a function of wavelength, the strain sensitivity 
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Figure 8.28a) shows the plot of the measured phase shift as a function of the applied strain 
for different illuminating wavelength and b) is the strain sensitivity of the overlapping 
cavity as a function of wavelength. 
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of the cavity may be controlled by virtue of the illuminating wavelength. From this graph, the 

wavelength at which this cavity is insensitive to strain is determined to be ~1526nm, the same 

wavelength as that at which the FSR of the cavity is maximum, figure (8.26). 

  

A least squares fit to the data plotted in figure (8.28b) produces a gradient of 6.666±0.009×10-4 

radian µε-1 nm-1. Using this value, assuming n = 1.5, C = 25nm mm-1 and  λ = 1550nm in 

equation (8.8) gives a value for the grating/fibre strain response, ξ = 0.685±0.001 compares to 

the experiment value ξ = 0.742 at 1550nm. The discrepancy is probably due to the change in the 

material characteristics due to UV exposure when writing the grating at the same place twice. 

 

This chirped FBG FP cavity provides a strain sensor with large dynamic range based on the 

construction of a single sensor head with a continuous range of wavelength addressable FSR 

values. Using different illuminating wavelengths, the same sensor allows different strain 

sensitivity to be employed.   

 

8.5.3 Temperature response of the overlapping chirped FBG FP cavity 

 

The overlapping grating was then placed in the tube furnace described in section (7.6) and the 

thermal response of the cavity was monitored. The cavity was interrogated in the wavelength 

region of 1510-1610 nm and the temperature of the furnace was increased gradually. Figure 

(8.29) illustrates the measured responses of the cavity to temperature for 3 interrogating 

wavelengths. The measured temperature response for the other interrogating wavelengths can be 

found in Appendix H. As with the strain response, the temperature response of the overlapping 

chirped FBG FP demonstrates the same wavelength detuned cavity length dependence, figure 

(8.29). Increasing the detuned wavelength from the wavelength at which the cavity length is zero 

provide a larger cavity length and thus offers an increased temperature sensitivity. 
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Figure (8.29) illustrates the dependence of temperature sensitivity on the wavelength detuned 

cavity length, l(λ) of the chirped FBG FP. Using equation (8.7), and differentiating the RTSP 

with respect to temperature, the temperature sensitivity about the detuned wavelength, δλ can be 

written as; 
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Figure 8.29, measured temperature responses of the overlapping chirped FBG FP cavity 
with wavelengths a) @1535nm, b) @1540nm, c) @1550nm. 
 

in
te

ns
ity

 
in

te
ns

it y
 

in
te

ns
ity

 

Temperature /oC 



Chapter  8 Calibrations of chirped FBG Fabry-Perots  

 236

δλ
λ

ςπθ
C

n
dT
d 18

= ,   (8.9) 

 

where ζ is the temperature response of the grating/fibre. A plot of the phase shift against 

temperature for different illumination wavelength (detuned cavity length) is shown in figure 

(8.30). As the wavelength increases, the phase sensitivity increases. The phase response at each 

wavelength is seen to be linear, while the sensitivity is a function of wavelength, figure (8.30a). 

This demonstrates the tuneability of the temperature sensitivity of the cavity by virtue of the 

illuminating wavelength. 

 

In figure (8.30b), the temperature sensitivity is plotted as a function of illuminating wavelength. 

The linear relationship verifies equation (8.9). From the graph, the wavelength at which this 

cavity is insensitive to temperature is determined to be ~1526nm same as the results given in the 

wavelength and strain response from the previous section.  

 

Again, when the cavity is interrogated at the overlapping wavelength, when δλ=0, the 

temperature sensitivity is zero, equation (8.9). Increasing temperature has no effect on the cavity 

at this wavelength, thus no change in the distance between the positions of the reflection point 

inside the chirped FBG, which constitute the cavity length. The overlapping chirped FBG FP 

behaves like the bulk type of FP.  

 

A least squares fit to figure (8.30b) gives a gradient of 5.145±0.034 ×10-3 radian oC-1 nm-1. Using 

this value together with equation (8.9), assuming n = 1.5, λ = 1526nm and C = 25nm mm-1, the 

temperature responsivity for the fibre/grating is determined to be ζ = 5.20±0.18x10-6. When this 

is compared to the accepted value ζ=8.39x10-6 of a FBG @1550nm, the two have the same order 

of magnitude and the discrepancy is probably due to fibre type used, and the temperature 

fluctuations in tube furnace. 
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8.6 Summary  
 

The large group delay experienced by the wavelengths which produces the strain magnification 

and large path length scanning in the interferometric configuration is caused by the dispersion 

inside the chirped FBG. Using this dispersive effect, chirped FBG FP cavity configured to have 

the strain sensitivity reduced has been observed (section (8.2)) at the 800nm wavelength region 
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Figure 8.30a) shows the plot of the measured phase shift as a function of the temperature 
for different illuminating wavelengths and b) is the temperature sensitivity of the 
overlapping chirped FBG FP cavity as a function of wavelength. 
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with the chirp created in the FBG by the fibre bending method.  Attempts were made to produce 

dispersive chirped FBG cavities in the 1550nm region which will respond to strain, wavelength 

and temperature differently to the conventional non dispersive FP response. Different method of  

creating the chirp in the FBG have been used and different chirped FBG FP configurations have 

been tried out to observe changes to the FP response but all of which can only indicate a non 

dispersive response. 

 

The wavelength detuning of the reflection positions can be seen in the results of the experiments 

but the continuity of the wavelength with position which gives the dispersive effect is not 

obvious. The chirped FBG at the 1550nm wavelength region behaved more like the stepped 

chirped FBG even with the commercially available chirped FBG fabricated with the continuous 

chirped phase mask. The non dispersive FP response of the chirped FBG has also been 

demonstrated by other authors too, specifically the wavelength detuned reflection position of the 

chirped FBG has been utilised in providing a variable FSR in FP filters and in phase based 

intragrating distributed strain sensing method. The results of the overlapping chirped FBG FP, 

section (8.5) is one such result where different strain, temperature and strain sensitivity can be 

accessed by the wavelength detuning in a single sensor head/filter. It is more understandable that 

the overlapping chirped FBG FP behaved like the non-dispersive cavity as the writing of the 

gratings at the same physical location disrupts the continuity of the chirp of each. 

 

The different techniques used to create chirp in the FBG in the experiments involved chirping 

through the change of the period. The observed dispersive effect of the strain magnification in 

Kersey et al [8] experiment uses chirp created by inducing a temperature gradient along the 

length of the FBG which uses a different chirping mechanism through the mode refractive index. 

Perhaps a more accurate method of imparting chirp to the FBG, such as those offered by the 

direct writing technique using e-beam to create chirped FBGs employed in achieving a large 

scanning of the path-length mismatch [18]. With the direct writing method, each period is written 

individually and every period is uniquely defined. On the other hand the fabrication of gratings 

using the holographic method requires exposure to short duration of UV pulse but the process 

takes times of orders of minutes. Any fluctuations in temperature or movement of the fabrication 

system will cause the period of the refractive index modulation to vary. This can be seen in the 
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wavelength response of the uniform period FBG FP, figure (8.23a). In addition to the FP 

response within the Bragg wavelength region, there is a broadband response extending a number 

of nanometres away from the actual Bragg wavelength. This implies that there is a smearing of 

the refractive index modulation making the periodicity non-unique.  

Table 8.2 Characteristics of interferometers involving the used of chirped FBGs 

Configuration Method of chirping characterised 

demonstrates 

distributed 

reflective nature 

dispersive 

effect 

Chirped FBG FP with 
chirps in FBG oriented 
in the opposite direction 
 
 
 
Cavity length  = 132mm 

Bending the fibre 
Chirp rate of 

~20nm/2.6mm 

 
Single 
wavelength 
@800nm 
illumination and 
characterised by 
straining  
 

 

 
 

 
N/A 

 
 

 
 
 
Reduced 
strain 
sensitivity 
 

 
Chirped FBG FP with 
Cavity length  ~97mm 

 
chirps in FBG oriented 
in the same direction 

 
 
 
chirps in FBG oriented 
in the opposite direction 
 
 
 
chirps in FBG oriented 
in the opposite direction 
 
 
 
 

 
 
 
 
 
 
 
 

Wavelength@1550nm 
Interference of 

different wavefronts 
with chirp rate of 

100nm/4mm 
 
 
 
 
 

 
 
 
 
 
 
 
Single 
wavelength 
@1500nm 
illumination and 
characterised by 
straining  
 

 

 
 
 

yes 
 
 

 
 
 

No observed  
reduction or 
enhancement 

of strain 
sensitivity 

 

Chirped FBG FP with 
cavity length ~97mm. 
 
chirps in FBG oriented 
in the opposite direction 

 

 
Wavelength@1550nm 
Interference of 
different wavefronts 
with chirp rate of 
100nm/4mm 

Single 
wavelength 
@1500nm 

illumination and 
characterised by 

temperature 
 
 
 

Can not be 
resolved due to 
large fluctuation 
in temperature 

no observed 
reduction of 
temperature 
sensitivity 
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Chirped FBG FP with 
cavity length ~97mm. 
 
chirps in FBG oriented 
in the opposite direction 

 

 
Wavelength@1550nm 
Interference of 
different wavefronts 
with chirp rate of 
100nm/4mm 

wavelength 
@1500nm 

illumination and 
characterised by 

wavelength 
scanning 

 
 
 

yes 

no observed 
reduction of 
wavelength 
sensitivity 

Chirped FBG FP with 
dissimilar grating 
 
 
 
Cavity length ~6.7mm 
 

Wavelength@1550nm 
Interference of 

different wavefronts 
with chirp rate of 

100nm/4mm 

Single 
wavelength 
@1500nm 

illumination and 
characterised by 

wavelength 
scanning 

 

yes 

no observed 
reduction of 
wavelength 
sensitivity 

Chirped FBG FP with 
dissimilar grating 
 
 
 
Cavity length ~7mm 
 

Wavelength@1550nm 
Interference of 

different wavefronts 
with chirp rate of 

100nm/4mm 

Single 
wavelength 
@1500nm 
illumination and 
characterised by 
wavelength 
scanning 
 

yes 

no observed 
reduction of 
wavelength 
sensitivity 

dissimilar chirped FBG 
FP  
 
 
 
Cavity length ~2mm 
 

Wavelength@1550nm 
Interference of 

different wavefronts 
with chirp rate of 

100nm/4mm 

Single 
wavelength 
@1500nm 
illumination and 
characterised by 
wavelength 
scanning 
 

yes 

no observed 
reduction of 
wavelength 
sensitivity 

Dissimilar chirped FBG 
FP 
 
 
 
 
 
 

Wavelength@1550nm 
Bending the fibre to 
create a chirp rate of 

12nm/4mm 

Single 
wavelength 
@1500nm 

illumination and 
characterised by 

strain 

 
yes 

 
 
 

No observed 
enhanced 

strain 
sensitivity 

 
 

Dissimilar chirped FBG 
FP with cavity length 
~20mm 
 
 
 
 

Wavelength@1550nm 
Inducing a strain 

gradient across the 
grating length  to 

create a chirp in FBG. 

wavelength 
@1500nm 

illumination and 
characterised by 

wavelength 
scanning 

 
yes 

 
 
 

No observed 
enhanced 
sensitivity 

 
 

strain 
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Dissimilar chirped FBG 
FP with cavity length 
~65mm 
 
 
 
 

Wavelength@1550nm 
Commercially 

purchased chirped 
FBG with chirp rate 

of 10nm/5mm 

wavelength 
@1500nm 

illumination and 
characterised by 

wavelength 
scanning 

 
N/A 

 
 
 

No observed 
enhanced 
sensitivity 

 
 

overlap dissimilar 
chirped FBGs FP 

 
 
 
 
 

Wavelength@1550nm 
Interference of 

different wavefronts 
with chirp rate of 

100nm/4mm 

wavelength 
@1500nm 

illumination and 
characterised by 

wavelength 
scanning 

 
characterised by 

staining 
 

characterised by 
temperature  

 

 
 

Yes 
 
 
 
 

Yes 
 
 
 

yes 

 
 

No 
 
 
 
 

No 
 
 
 

no 
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9 Conclusion 
 

In this thesis, the rationale behind the use of chirped FBG in the formation of novel 

chirped FBG FPs have been presented. Starting from the theoretical understanding behind 

the principles of FBGs and dispersion in FP cavities, the performance of the dispersive 

chirped FBG FP have been put forward, drawing on the outcomes and behaviour of 

reported results involving the use of chirped FBGs in interferometric configuration.  

 

The argument put forward for changes in the FSR of the chirped FBG FP response stems 

from the fact that the constituents of the FP are dispersive. Dispersion causes the different 

components of wavelength to travel different optical path lengths whether it is through 

dispersion in material, where the refractive index changes with wavelength, section 

(4.3.2) or through a wavelength dependent position of the reflection point such as in the 

chirped FBG, section (4.3.3.2). Analogous to the material dispersive FP cavity, where the 

refractive index term is modified by the material dispersion present to become an 

effective refraction index in the FSR equation (4.40), the length dispersion in the chirped 

FBG will modify the cavity length term to one of an effective cavity length. Effectively, 

the sensitivity of the cavity can be changed through the chirp parameters of the FBG used 

to form the FP. An indication of the wavelength sensitivity of the FP cavity is given by 

the corresponding effective cavity length. The effective length of the chirped FBG FP 

could be made longer, thus giving an increased in sensitivity or made shorter, thus a 

reduced in sensitivity but keeping the physical cavity length of the chirped FBG FP 

constant. The wavelength sensitivity of the dispersive chirped FBG FP can be extended to 

the strain sensitivity and temperature sensitivity through the strain and temperature 

responsivities of the FBG to wavelength change.  

 

The experimental evidence of a reduced strain sensitivity using the chirped FBG FP at 

800nm (section 8.2), demonstrate the viability of changing the strain sensitivity using the 

chirped FBG FP configuration. The physical phenomenon involved can be explained by 

the dispersive effect of the chirped FBG and it is in support of the physical outcome of 

the reported strain enhancement of 2000-5000 times of a 500µε applied to a 1cm long 
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grating (extension = 5µm) produces an optical path length change of 1-3cm in the 

location of the resonance points, using an interferometric configuration (section (3.11)). It 

is also evident in the observed large scan of the path length mismatch (3495µm), 

produced in the matched path length interferometer interrogation involving the 

application of 33µm extension to a 1cm chirped FBGs (section (3.11)). Unfortunately this 

cavity did not survive so that the wavelength response could be verified with the strain 

response.  

 

Attempts to produce differing sensitivity in the chirped FBG FP formed in the 1550nm 

wavelength region have proved unsuccessful. Different techniques for creating chirp in 

the FBG have been used with all the chirped FBGs being periodically chirped. The 

behaviour of all these chirped FBG FPs adhered to the conventional FP response with the 

corresponding cavity length equals to the distance between the reflection positions in the 

FBGs. This wavelength dependence of the reflection position can be discerned from the 

wavelength, strain and temperature response of these cavities and it is especially so where 

the cavity length of the chirped FBG FP is small such as the overlapping chirped FBG FP 

cavity, section (8.5). 

 

If there is no continuity of the period in the chirped FBG such as experienced in the 

stepped chirped FBG, cavities formed would behave with a conventional FP response. It 

could happen during the grating writing process where vibration and temperature 

fluctuations can create a smearing of the periodicity of the FBG, similar to the stepped 

chirped FBG with a much smaller wavelength step, though the gross chirp is still 

registered. The smearing of the reflection points makes it non unique and thus the chirp 

becomes discontinuous. Writing 2 gratings at the same location in the optical fibre 

disrupts the continuity of the chirp further which causes the overlapping chirped FBG FP 

to behave like the non dispersive cavity. The reported strain magnification is performed 

on a FBG whose chirp is created by inducing a temperature gradient along the length of 

the FBG, which involved a different chirping mechanism of delivering chirp to the FBG. 

In a chirped FBG induced by temperature gradient, the thermo-optic effect dominates, 

providing a positional variation in the mode refractive index along the FBG, which is 
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more akin to refractive index change in material dispersion. Whereas in the case of the 

observed large group delay in the interferometric scanning, the chirped FBG is created by 

writing the periodicity directly using e-beam techniques which reduces the smearing of 

the period and provide continuity in the period.  

 

The scheme using chirped FBG FP offers immense flexibility in determining the 

sensitivity of the FP.  The sensitivity of the chirped FBG FP will not so much depend on 

the actual cavity length but more reliant on the parameters of the chirped FBG pair. This 

has huge implications for these cavities to be used as sensors and filters. High wavelength 

sensitivity means a large phase excursion can be created by a small sweep of the 

wavelengths and this can create very narrow passband filter whereas a wavelength 

insensitive cavity will have a very low phase noise. Short gauge length device with high 

wavelength sensitivity have implications in interferometric demodulation. The sensitive 

small gauge length device can be used as a processing interferometer where the small 

length of the cavity will be less stringent on the coherence of the signal source and at the 

same time providing a high wavelength sensitivity readout such as in the FBG 

demodulation. 

 

Long or short gauge length sensor can be made possible in the chirped FBG FP to 

configure systems to exhibit enhanced sensitivity to strain or alternatively, to have 

reduced or even zero strain sensitivity. High strain sensitivity means a small strain will be 

needed to create a large phase excursion for use in scanning a much larger path length 

mismatch before the breaking strength of the optical fibre is reached. Reduced sensitivity 

to strain increases the dynamic range of the measurement system whereas enhanced strain 

sensitivity increases the resolution and they are all encompassed within this scheme. This 

ability to tailor the sensitivity of the FP cavity to strain will enhance the capabilities of 

FBG for structural monitoring. 
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9.1 Future work 
 

In this thesis, the performance of the chirped FBG FP has been discussed in the context 

of dispersion. The theoretical study has shown promise for the development of in fibre FP 

cavities with variable FSR that may be tailored to a particular application or be used as 

filter and sensor with controllable sensitivity to wavelength, strain and temperature. 

 

Future work is needed to establish the discrepancy between theory and experiment for the 

latter chirped FBG FP cavities. This would be in the form of a theoretical study as well as 

an experimental investigation.  

 

It is envisaged in the future to improve on the TMM model for the dispersive chirped 

FBG FP cavities so that it will verify and support the predictions that have been made of 

the responses of dispersive chirped FBG FPs to wavelength, strain and temperature. This 

would involve the incorporation of the different chirping mechanisms used to create the 

FBGs. In particular, to predict and verify the cavity response to the reported strain 

magnification and the large scanning of the path length mismatch in coherence 

interferometry for the FP, Michelson as well as in the Sagnac/loop configuration by 

straining of the individual chirped FBG. The realisation of the model could facilitate the 

prediction of the specification of the chirped FBG cavity requirement for different 

sensitivity. It will provide a prediction to the performance of chirped FBG FP cavity and 

of the outcome of future experimental investigation. The success of this wave model will 

provide a full spectrum as well as the phase information to the wavelength, which can 

serve as a validation to the theoretical predictions of the performance of the chirped FBG 

FP, put forward in this thesis. 

 

The observed non dispersive response of the chirped FBG FP cavity to wavelength, strain 

and temperature, with a corresponding wavelength dependent cavity length can be used 

with Hi-Bi fibre. By writing the chirped FBG FP in a Hi-Bi fibre, the two polarisation 

modes will have different sensitivity by virtue of the different effective index, neff. The 

sensitivity of the two polarisations can be utilised to separate the strain and temperature 
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response. It will also be interesting to find out the exact form that these chirped FBGs 

take. A method of which is by the use of coherence interrogation to look at the refractive 

index modulation structure inside the FBGs. A resolution of less than 0.5 µm of a typical 

length of a period, is required which needs a very broadband light source. Also in 

experimental investigating of the chirped FBG FP response, different grating with chirp 

derived from methods that have been outlined above can be used. The aim of this is to see 

if the dispersive effect in the chirped FBG does have an effect on the performance on the 

FPs and also to have repeatable and predictable results which will go some way to verify 

what has been put forward in this thesis.  

 

The success of this part of the program will enhance the capabilities of FBG as filters and 

sensors for structural monitoring and for use in other areas where selective sensitivity is 

required. 
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Appendix A 
 
The solution to the Maxwell Equation in a cylindrical coordinate system is based on 
the treatment of Yariv [i]. The propagation of electromagnetic radiation is governed 
by Maxwell equations:  
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where E and H are the electric and magnetic field vectors and D and B are the 
corresponding electric and magnetic flux densities. The current density vector Jf and 
the charge density ρf represent the source for the electromagnetic field. In the absence 
of free charge in the medium such as optical fibres, Jf and ρf = 0. In a homogeneous 
and isotropic medium, the Maxwell equations can be reduced to the scalar wave 
approximation for which the longitudinal field components Ez and Hz must satisfied.  
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Ez and Hz are the longitudinal electric and magnetic field components. The 
dependency of the other transverse components can be deduced from the standard 
Maxwell equations (A1). Since the refractive index profiles n(ρ) of most fibre are 
cylindrically symmetric, it is conveniently to use the cylindrical coordinate system. 
The index of refraction as a function of the radial distance ρ is given by:  
 

n(ρ) = n1, 0≤ρ≤ a 
        (A3) 

n(ρ) = n2, a<ρ 
 
where a is the core radius and n1 and n2 are the core and the cladding refractive index 
respectively. 
 
In the cylindrical coordinate system, using the standard trigonometry transformation, 
the reduced wave equation can be express as: 
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Assuming the general wave equation having the form as shown:  
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where the transverse field component is given by: 
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and F(ρ) is the radial dependence of the field and the angular field dependence has a 
discrete set of angles ϕ such that l=0,1,2,…where the ± sign indicates the state of 
circularity. Substituting this general solution into the reduced equation (A4) and 
assuming that the Ez and Hz are singled-valued function of ϕ, then (A4) becomes: 
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This is the differential equation for Bessel functions of order l and the general solution 
can be expressed as a linear combination of the Bessel functions which is written as: 
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Jl and Yl are the Bessel function of the first and second kind respectively in the core 
region and that Il and Kl are the modified Bessel functions of the first and second kind 
respectively in the cladding region. These are the general solutions and the number of 
constants can be reduced when appropriate consideration for viable solution exist in 
the core and cladding regions. These conditions require the solution be finite in the 
core and that the field distribution should trail off towards zero when (ρ → ∞). Some 
of the constants are eliminated and the solution is simplified to:  
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and          (A7) 
 

ϕκρ
ρ
ρ i

l eK
D
C

tH
tE ±









=








)(

),(
),(

  for ρ ≥ a 

 



 c

Solution to the Bessel differential equation (A6) required that h and κ be positive so 
that: 
 

0102 knkn << β  
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where V is the normalised frequency. A relationship between the various fields can be 
derived by writing the Maxwell Equations (A1) in its differential form. A set of 
simultaneous equation involving, Eϕ ,Hϕ and Eρ, Hρ in terms of  Ez and Hz can be 
expressed in terms of the set of solution (A7).  Applying the boundary condition 
required the continuity of the tangential fields components across the core-cladding 
interface such that the Ez, Hz , Eϕ and Hϕ be the same at ρ = a. For a non-trivial 
solution to this set of simultaneous equations, the determinants involving these many 
Bessel functions to be zero. This produces the eigenvalue equation whose solutions 
determine the propagation constant β for the fibre modes: 
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This has a quadratic form in 
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l  and the solution of which produce two 

different equations corresponding to the two quadratic roots. The resulting equations 
yield two classes of solution, one of which is designated conventionally as the EHlm 
mode and the other the HElm modes. These are hybrid modes involving all six field 
components and the field distribution is very complex but under certain condition, the 
especially the low order mode, the field distribution is predominantly polarised in 
certain direction. When l = 0, when there is no angular dependency on the transverse 
field distribution, equation (A9) can be reduced to a simple form with the help of 
some Bessel functions identities, for Transverse Electric (TE) mode: 
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where the non vanishing terms are Hρ, Hz and Eϕ. and for Transverse Magnetic (TM) 
mode: 
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where the non vanishing terms are Eρ, Ez and Hϕ.. The solution for l = 0 are a special 
case as they are radial symmetric and produce completely transverse solutions. The 
graphical solution of the above by plotting each side of the equation (A10) or (A11) 
against ha, reveal that for TM and TE mode. The onset of the propagation mode is 
when, κa is near zero and not quite attain a positive value such that the field in the 
fibre is still un-guided as ha→V. When modes approaching the cut-off condition, the 
fields extend well into the cladding layer, thus near cut-off the modes are poorly 
confined. For TE or TM modes, there is no propagation until V= 2.405 is reached. 
This value comes about from the first root of J0(V) when V=2.405. Before the onset of 
the TM01or the TE01 mode, there exists the fundamental mode so called HE11 which 
do not have a cut-off value. This mode have all six nonzero components of the field 
exist and it is the so called the hybrid mode. Some of these components can be 
ignored and can be considered as highly polarised. For single mode operation, the 
operating value of V is below 2.405.  
 
                                                           
i  A. Yariv, ‘Optical Electronics’, Chapter 3, 4th edition, International edition, 

1991. 
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Appendix B 
 
The phase response of the insensitive chirped FBG FB cavity in section (4.3.3.6) is 
written as; 
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when it is integrated from the central wavelength λ0 to λ0 +∆λ, then (C1) becomes; 
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The phase response going from λ0 to λ0 +∆λ, is given by; 
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The integral can be simplified by; 
 

   λ
λ
λλ

λ
λ
λ λλ

λ

λλ

λ

dd ∫∫
∆+∆+ −

=
∆ 0

0

0

0

2
0

2  

           λ
λ

λλ
λ
λ λλ

λ

λλ

λ

dd ∫∫
∆+∆+

−=
0

0

0

0

202

1  

         
λλ

λλ
λ

λ
∆+





 +=

0

0

0)ln(  

             1)ln()ln(
0

0
00 −

∆+
+−∆+=

λλ
λ

λλλ  

        1ln
0

0

0

0 −
∆+

+






 ∆+
=

λλ
λ

λ
λλ

 

              
λλ

λ
λ
λ

∆+
∆

−






 ∆
+=

00

1ln  

 

using ( ) ..
2
11ln 2 +−=+ xxx  |x|<1 

              
2

00

2

00 2
1








 ∆
+

∆
−







 ∆
−

∆
=

λ
λ

λ
λ

λ
λ

λ
λ  

         
2

02
1








 ∆
=

λ
λ  

equation (C3) becomes; 
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Appendix C 

The specifications of the SEO TITAN-CW Series, Ti:sapphire Tunable Laser. 

Output Power (at 800mw) 

(Standing-wave or ring cavity) 

250mW                      (3W Pump Power) 

500mW                      (5W Pump Power) 

750mW                      (7.5W Pump Power) 

Minimum Tuning Ranges (Pump power 5W or greater) 

Mirror Set 

Short-band                       700-820nm 

Mid-band                         780-900nm 

Long-band                       890-1020nm 

Spectral Linewidth (5W pump power) 

Standing-wave Cavity               <2GHz 

Unidirectional Ring Cavity        <40MHz 

Output Beam 

TEM00 

Horizontally Polarized 

Diffraction-Limited Beam Diameter (approx. 1mm@ exit) 

Coherence Length, 
v
clc δ

64.0=  

Standing-Wave:      δν = 2x109 Hz 

  lc ≈ 10m 

Ring Cavity:            δν = 40x106 Hz 

  lc ≈ 500m 

Divergence:              Θd = 2λ/πw0 

w0 = 0.47-0.53mm 

Θd = 0.96-1.08mrad 
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Appendix D 
The reflection profile of the chirped FBGs used in the experiments 

 

a) the grating profile 
of FBG no.1 

b) the grating profile 
of FBG no.2 

c) the grating profile 
of FBG no.S3 
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Appendix E 
 
Phase response of the chirped FBG FP with designed chirp of 25nm/mm arranged so that 
the direction of increasing chirp is oriented in same way separated by a cavity length of 
97mm between the gratings centres, figure (8.6a). 
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Appendix F 
 
Details and profiles of the chirped FBGs written using continuous chirped phase mask 
bought commercially.  
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Quotation     

Attn: S Cheung Quote No. 30622 

To: Cranfield E-mail: <S.Cheung.2000@Cranfield.ac.u
k> 

From: George Date: 21/4/2004 

Re: Stock chirped FBGs Pages: 1 
 
Item specification    Qty  unit price Total 
1 Inventory chirped FBGs, wl : 

~1550nm, grating length : 5mm, 
refl : 5-10%, bw : 11.01nm, fiber 
type : SM, fiber length : 1.5m, no 
connector, spectrum included 

1 USD250.- USD250.- 

2 Inventory chirped FBGs, wl : 
~1550nm, grating length : 5mm, 
refl : 5-10%, bw : 5.07nm, fiber 
type : SM, fiber length : 1.5m, no 
connector, spectrum included 

1 USD250.- USD250.- 

3 Handling, one time fee 1 USD20.- USD20.- 
 
                Total: USD520.-  
     

• Term: FOB Montreal, QC, Canada 
• Delivery time: 2 to 5 days 
• Freight: Paid by the customer 
• Payment: Net 30 days 
• This quotation is valid for 30 days 

 
With Best Regards, 
 
George 

O/E Land Inc. 
 
 

O/E LAND INC. 
4321 Garand, St-Laurent, Quebec, H4R 2B4, CANADA 
Tel: (514)334-4588,  Fax: (514)334-0216,  Email: sales@o-eland.com 
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Appendix G 
Strain response of the overlapping chirped FBG FP with grating length of 4mm and 
chirp rate of 25nm/mm with the orientation of the chirp opposite to each other. 
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Appendix H 
Temperature response of the overlapping chirped FBG FP with grating length of 4m and 
designed chirped rate of 25nm/mm with the chirp oriented opposite to each other.  
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