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Introduction 
 
The title ‘Airport Safety, Capacity and Investment’ could potentially cover an enormous 
range of topics and approaches.  Techniques used include probabilistic risk analysis, 
queueing theory, operational research, and cost benefit analysis (CBA).  The aim here is 
both to give an impression of the whole subject and to focus on a few key topics.  
Surveillance technology plays an important part in delivering safety and capacity, but has 
to be seen in the larger system picture, particularly when investment is contemplated. 
 
 

 
 
Figure 1. Airport ATC decision making 
 
This first figure tries to show the context of airport air traffic control (ATC) business 
decision making, which now involves very commercial assessments.  Safety, including 
rules, certification, and Target Levels of Safety, is paramount.  Next – and assuming 
increasing importance – come Environment issues, such as standards, routes, and 
planning restrictions.  Noise and pollutants, for instance nitrogen oxides, particulates and 
other emissions, are now of considerable concern to people living near airports.  The 
crucial message here is that operational and technical decisions must be made in the 
context of proposals and options that are safe and environmentally sensible.   

 

Safety – rules, certification, TLS…

Environment – standards, routes, planning …

Business decision making 
- commercial assessments 
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Safety 
 
Safety is paramount.  Many important safety-related factors and processes need 
consideration.  An initial list might be: 

 Airborne radar separation 

 Wake vortex separations 

o WV Advisory systems 

 Runway occupancy time for arrivals and departures 

o Aircraft speeds, layout 

 Controller workload 

 Equipment protection zones (eg ILS, MLS) 

 Runway incursions and surface incidents 

o Reporting systems 

 Equipment failures 

 Human errors 

 Weather (wind, visibility) 

o CAT I, II and III capacity 
 
Which of these have technological solutions?  Wake vortex advisory systems have been 
researched for many years, the basic idea being that reasonably high winds blow away 
aircraft vortices so that they do not affect a following aircraft – there is some interesting 
current work.  The poor weather capacity of major airports is a reason for buying systems 
such as MLS, which have smaller protection zones near to runways than ILS, and so 
enable more traffic.  Much more attention is now being paid to runway incursions.   
 
Airport safety assessment presents a rather mixed picture.  This list is a personal view, 
but likely to be widely shared by safety professionals. 

 No ‘Safety and Capacity Trade-offs’: acceptable safety must be achieved 

 Wake vortex separations were created about 30 years ago – they are believed to 
be generally very cautious  

 Formal safety management processes, increasingly based on Safety Cases 

 Few validated quantitative risk assessment models – ratio of incidents to accidents 
difficult to estimate 

 Incident monitoring strong in some States but not generally 

 ‘Political’ responses following accidents 
 
The Safety Case philosophy has been very popular in the UK.  Essentially, the operator 
has to demonstrate to the safety regulator that potential hazards have been examined, 
that equipment is ‘fit for purpose’, and that appropriate defensive mechanisms and 
reversionary operating modes are in place.  Risk assessments can be very difficult for 
airport operations because of the complex environment and possible failure modes. 
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Wake vortices are a major part of the ‘safety environment’.  They have huge implications 
for safety and capacity.  They were introduced when ‘jumbo jets’ started to operate.  The 
roll effects of a wake vortex can be severe, so the separations between aircraft are set 
cautiously. 
 
 

Leading aircraft 
( – examples) 

Following 
Aircraft 

Minimum 
Distance – 

nautical 
miles 

Heavy – B747, B767, 
Airbus A330 

Heavy 
Medium 
Small 
Light 

4 
5 
6 
8 

Medium – B737, 
Airbus A320 

Medium 
Small 
Light 

3 
4 
6 

Small – EMB-135, 
F28,  

Medium or 
Small 
Light 

3 

4 

Light – SD3-60 None - 

 
Figure 2. Wake Vortex Minima – arrivals (UK) 
 
The above Figure shows the UK’s Wake Vortex Minima for arrivals.  These are slightly 
different from the ICAO version; the departures minima are time-based and more 
complex.  These large distances affect capacity considerably, and lead to the need to 
sequence aircraft so as to avoid having to use the largest separations.   
 
 
Linkages 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 3. Safety, Capacity, Operations and Investment linkages 
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There are linkages between safety, capacity, operations and investment.  Figure 3 
illustrates some of these.  The phrase Maximum Safe Throughput – MST – is used here, 
although queueing theorists would call it Service Rate.  MST emphasizes the linkage to 
safe operations.  The comment at the left hand side is a general one, but obviously has 
special relevance to surveillance and detection. 
 
 
Capacity 
 
Capacity problems are not new: 

"The increase in the volume of traffic had brought about increased congestion 
around major airports.“ 

"The problem of ATC as regards the expeditious handling of traffic thus resolves 
itself into finding techniques which "waste" no more time than is strictly necessary 
and, if possible, "waste" that time in the most economical manner."   

These quotes are from a paper by G. E. Bell in 1949 (Journal of the Royal Aeronautical 
Society 1949, 53, 965).  At that time (1948), the average airport congestion delay at 
London Airport was 2 minutes for takeoffs and 3.5 minutes for landings.   
 
For airport delays, there is only one Queueing Theory graph that really matters – Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 4. Average delay versus traffic intensity – the capacity C is slightly less than the Maximum 
Safe Throughput, MST.   
 
Figure 4 illustrates that there needs to be an ‘acceptable delay’ target between the 
airlines, airport operator (mainly because of ramp and terminal congestion) and ATC.  
This fixes the scheduling capacity C at slightly less than the Maximum Safe Throughput, 
MST.  Any higher traffic than C produces very large congestion delays. 
 

Average  
delay 

Traffic Intensity 
(movements per hour)

Acceptable Delay 

C  MST
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The value of MST is crucial.  What determines its value?  The Appendix sets out and 
analyses a very simple model for an Arrival – Departure – Arrival operation “A-D-A”, a 
typical busy mixed mode runway.  Some key features are summarised here.  The basic 
sequence is something like: 

1. Arrival crosses threshold and lands 

2. Departure lines up behind the arrival 

3. When arrival is clear of runway the departure roll begins 

4. Departure becomes airborne 

5. “Safety buffer time” of some seconds before next arrival crosses threshold 
 

ATC must set up an inter-arrival separation that “guarantees” that departures can be 
interleaved between arrival pairs.  Some critical component timings are: 

 AO - arrival runway occupancy 

 DO - departure occupancy (roll to airborne) 

 SB - safety buffer 

    σ - standard deviation of inter-arrival times  

    T - inter-arrival spacing 

Working through the sequence, the controllers have to plan to set up an average inter-
arrival spacing of: 

       T = AO + DO + SB + ( k x σ )   
In this equation, k is an observed constant for the airport in question, eg depending on the 
kinds of aircraft using the runway and ATC safety management practices.  To minimise T, 
ie to save valuable seconds and hence increase the MST, the parameters in this equation 
have to be safely reduced, through operational changes and by using improvements 
generated through navigation, communication and surveillance.  Is the investment 
worthwhile? 
 
 
Investment Assessment 
 
The value of investments can be assessed by a variety of financial techniques.  One of 
the most popular is ‘Net Present Value’ – NPV.  NPV discounts money flows in the future.  
Note that the focus on cash not accounting.  A discount rate of r % implies that £1 in n 
years time is worth £1 / (1 + r) n today.  NPV is calculated by: 

 NPV = Σ ( Bi – Di – Ci ) / ( 1 + r ) i 

where 

 Bi = Benefits in year i 

 Di = Disbenefits in year i 

 Ci = Costs in year i 

 and the summation is over years 0 to n 

If the NPV is positive then the decision to invest is supported. 
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An older and simpler technique is ‘Payback’.  This is the time it takes to generate sufficient 
incremental cash to recover initial incremental capital outlay in full.  Some airlines use 
payback – often requiring the time to be less than 2 years. 
 
NPV has one ‘unknown parameter’ – the discount rate of r %.  One idea is that a 
(minimum) estimate for r is the Weighted Average Cost of Capital (WACC), which focuses 
on how much it costs to borrow money in order to invest.  WACC is defined by: 

WACC = ( Rd x DE + Re x EQ ) / ( DE +EQ ) 

Where: 

Rd = Company borrowing rate 

Re = Shareholders’ expected return on equity 

DE = Debt 

 EQ = Equity 

A textbook commercial example from a year or so ago uses: Rd = 8%, Re = 15% (12% 
market return to shareholders plus 3% for risk), and DE/EQ (the company’s gearing) as 
1.42 (ie debt @ 60%) implies a WACC of 10.9%.  Given the changes in the economic 
climate and the present state of the aviation industry, these may no longer be appropriate, 
 
Indeed, industry analysts sometimes use a Risk-adjusted Discount Rate - r*.  The 
argument is that a rather higher figure than WACC should be used for cash flows in the 
period of uncertainty – or perhaps a steadily increasingly value of r?  This is because of 
the uncertainties intrinsic to ATM developments.  In particular, ATC and airlines are 
adaptive and tend to find a succession of low-cost operational improvements, so that 
investment benefits can be overstated and deferred.  There is no obvious recipe for 
working out what r* should be – perhaps 5% higher than the normal rate should be used?  
 
There a variety of elements that can be included in ATM costs and benefits/disbenefits, 
most especially: 

 Safety (‘Value of Human Life’: statistical cost of each fatality – €3M?)  

 ATC service charge and equipment/staff cost 

 Disbenefits from non-optimal flightpaths 

 Operating disbenefits from delays 

 Passenger delay disbenefits 

 Capacity benefits (additional flights) 
 
Eurocontrol and the FAA publish a great deal of information on these on their web sites.  
On delay costs: 

 IATA recommends figures for the average cost of delay to aircraft operators: 

o €22 per minute on the ground, and 

o €33 per minute in the air.   
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 FAA recommends hourly values of travel time savings on air carriers (1998 $): 

o $19.50 for personal 

o $34.50 for business 

But passenger delay disbenefits are not always included in airport financial assessments.  
The problem is that a passenger time saving is not ‘hard cash’ to the airline or airport 
operator. 
 
Another important gain is the so-called ‘Value of a Flight’: how much an airline would be 
prepared to pay to have an additional flight.  This obviously only means something at 
constrained airports, where there is little available capacity at peak hours.  The value 
depends critically on such factors as scarcity, time of day, complementary slots, linkages 
to other services, etc.  Given few additional fixed costs, the value will relate to airline 
operating profit.  A UK 1998 figure for an additional flight was €3000+ – but this was in a 
more profitable era for major airlines.  Airline yields are much lower now – and increasing 
competition implies these may persist in ‘normal’ periods.  Indirect estimates could be 
made from slot trading.  Moreover, it has been noted that airlines are often “willing” to 
incur penalties of the order of €1500 per flight in respect of noise restrictions fines.  A 
figure of €700 has been used in some Eurocontrol studies. 
 
What does this all mean?  An Illustration – based loosely on some past ‘future avionics’ 
proposals – may help to provide some warnings.  Figure 5 shows illustrative yearly cash 
flows (in real prices) for a major system change. 
  
 

Year

 
Figure 5. Cash Flows (real prices) for an illustrative major system change 
 
This is a strategic change, with aircraft/ground re-equipment over a period of years.  The 
roll out of kit involves no equipment retrofitting.  There is next a ‘bedding in‘ period, and 
then benefits in this example mainly derive from traffic growth.  Some benefits are from 
passenger time savings – shown as the top part of the bars.  With a discount rate of 10% 
the NPV is positive and hence worthwhile.  However, this includes all the passenger time 
gains; if these are not counted, then the NPV is negative, ie the investment is not 
worthwhile.   
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Worse follows if a risk-adjusted discount rate r* is applied to benefits, even if these include 
all the passenger time gains.  With a rate of 15%, the result is Figure 6.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 6. Cash flows (real prices) for an illustrative major ATM system change, with risk-adjusted 
discounting 
 
The heavily discounted cash flows sum to a large negative figure.  The costs are all ‘up 
front’, but the benefits are uncertain and take too long to arrive. 
 
 
Conclusions – focused on Surveillance 
 
Safe and efficient airport operations have been evolved over many years – the system is 
mature and the focus is on ‘best practice’. 

Capacity is well understood, but it requires continuous safety monitoring and assessment. 

Many prima facie worthwhile improvements might be made.  The problem is producing 
convincing cases in absolute safety terms and relative to competitor technologies.   

Assessment problems include:  

 Shortage of robust safety models (NB: there is a need to collect safety incident 
data rigorously across Europe) 

 Operational adaptive skills of ATC and airlines, which tend to reduce/defer new 
technology benefits 

 Few changes produce immediate operational (hard) cost savings to airlines and 
airports 

CBA and payback are important but there is still a role for strategic leadership, particularly 
in safety and systems architecture. 

 

Year
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APPENDIX 
 
 

MAXIMUM SAFE THROUGHPUT OF A MIXED MODE RUNWAY: A SIMPLE MODEL 
 
 
What sorts of changes in operations would be necessary to produce an increase in the 
Maximum Safe Throughput of a mixed mode runway?  To discuss changes, it is first 
necessary to set out a simple model of mixed mode operations.  The technological and 
operational modifications necessary to ensure such changes are not discussed here.  
Reality is more complex, of course, but the crucial features can be represented in a very 
simple way.   
 
The basic airport operation assumed is of an alternation of arrivals and departures using 
the runway, with the following “A-D-A” sequence: 

1. arrival crosses threshold and lands. 

2. departure lines up behind the arrival. 

3. when arrival is clear of runway the departure roll begins. 

4. departure becomes airborne. 

5. “safety buffer time” of some seconds before next arrival crosses threshold. 

This is the base sequence observed at busy airports when arrivals and departures are 
about equal in number.  It is “perturbed” by instances of two or more departures or two or 
more arrivals when there are queues of departures – or when flow-managed departure 
slots have to take priority – and arrivals respectively.  There are also additional constraints 
on both departure (eg slow aircraft followed by fast aircraft on same route) and arrival (eg 
Heavy aircraft followed by Light aircraft) sequences. 
 
The A-D-A sequence can only function in a sustained fashion if ATC set up an inter-arrival 
separation that offers a “guarantee” that departures can be interleaved between arrival 
pairs.  This implies the need to focus on the following critical ‘average’ component timings: 

 AO   - arrival runway occupancy time 

 DO   - departure occupancy (roll to airborne) time 

 SB   - safety buffer 

σ      - standard deviation of inter-arrival times (used to measure the amount that 
the observed times are spread about the average) 

 T   - inter-arrival spacing 
 
To accomplish a departure between two arrivals the controller must plan to set up an 
average inter-arrival spacing of: 

T = AO + DO + SB + ( k x σ ) 
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Each second in T is very valuable in capacity terms.  Note it is assumed here that it is the 
arrival occupancy which is critical, not the departure line-up time – but this may not always 
be the case.  k is a constant which expresses the fact that the controller cannot simply 
assume that it is only the average times that matter.  If an inter-arrival spacing is markedly 
less than the average – perhaps because the following aircraft did not decelerate as much 
as usual from the initial approach fix – then the departure might well not be allowed to 
leave the holding area if it were to be believed that the safety buffer had been “eaten 
away”.  In normal circumstances, the controllers cannot allow two aircraft to be actively 
using the runway at the same time.  Nor can they operate with a much higher “go around” 
rate than is considered acceptable by safety managers. 
 
The controllers setting up the arrival sequence thus have to ensure that the variability in 
inter-arrival spacing at threshold – which, it must be stressed, is dependent on how the 
pilots of the aircraft concerned fly in from the initial approach fix as well as how accurately 
the controller sets up the initial spacing – is catered for.  In the algebraic expression, this 
is allowed for by adding the term proportional to the standard deviation of the inter-arrival 
spacing.  A fit to the data would probably produce a value for k of the order of 1½.  
Controllers do not of course actually carry out computations of statistical distributions.  
The term k x σ just represents in broad terms the product of their experience and intuition. 
 
The values of all the parameters must be carefully monitored as part of the safety 
management process.  If, for example, the actual value of SB is allowed to reduce or the 
inter-arrival standard deviation σ is allowed to increase, then there would need to be 
concerted action to assure safety. 
 
There are also, of course, variations in arrival occupancy AO and departure occupancy 
DO, but “bits” of their standard deviations have not been added here because in terms of 
statistical variation they would probably not be as important as the inter-arrival time 
variability.  Effectively, the allowance for such variations is subsumed in the safety buffer, 
SB.  It would be conceptually straightforward to add in such elements to the “σ” term if a 
fuller model were to be required – but it would not be straightforward to validate fully such 
a model.  This would be necessary if the model were to be required to represent 
separations under more complex control procedures, eg “tailored” inter-arrival times. 
 
The inter-arrival time determines MST: the smaller the value of T the larger the value of 
MST, which equals (2 x 3600/T).  Maximizing MST thus translates into minimizing T, and 
hence into minimizing the component timings which constitute T.  Operational aspects of 
these components are discussed in turn. 
 
AO - arrival runway occupancy time: Assume that this is the critical factor rather than 
lining-up time, ie that the latter will be accomplished before the landing aircraft is clear of 
the runway.  The incidence of unnecessarily long times for this part of the operation can 
be reduced in a number of ways by using ATC instructions which expedite the operation, 
increasing the number of runway exits, or making these exits of “rapid turn-off” form. 
 
DO - departure roll to airborne time: Again, the ATC instructions used need to be of a form 
that will ensure expedition.  The aircraft’s roll to airborne time on the runway is governed 
by the flight operations requirements for a safe manoeuvre, and is virtually fixed given full 
power acceleration.  However, the time interval of interest starts with the ATC instruction 
for clearance to roll, which can sometimes be improved. 
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SB - safety buffer: The safety buffer – the time between a departure’s airborne time and 
the next arrival crossing the threshold – has always been recognized as a crucial 
parameter in the assessment of capacity.  The need for this safety separation critically 
affects the decisions made by the controller when considering whether or not it would be 
prudent to release a departure from the holding point.  The value used for the safety buffer 
will depend on such things as the nature of recommended operational practices in the 
prevailing weather conditions, radar and other equipment available to the controller, and 
the performance of the aircraft involved (it may be, for example, that aircraft using Flight 
Management Systems are more likely to maintain spacings).  A value of about 30 seconds 
might be appropriate for the safety buffer, ie is seen as ensuring the necessary degree of 
safety: this corresponds to a distance from threshold of about 1 nautical mile. 
 
σ - standard deviation of inter-arrival spacing: The standard deviation is multiplied by a 
factor k, which essentially sets the balance between too many go-arounds or occasions 
when the controller does not attempt to insert a departure (k small) and an inefficient 
operation having unnecessarily long inter-arrival separations (k large).  The controllers’ 
instructions set up the initial separations, which are then changed by the actions of the 
pilots when they decelerate the aircraft in the final approach. 
 
To reduce the standard deviation, it is therefore necessary to focus on the controllers’ 
instructions, perhaps examining what could be gained from computer assistance, and/or 
on the piloting of the aircraft, perhaps by requiring particular operating procedures.  It 
should be emphasized again that the variability due to pilot effects is additional to that 
from ATC procedures.  The “minimum” inter-arrival spacing varies between airports: for 
example, it may be more difficult for controllers to set up separations in circumstances 
where there is a 90-degree heading change onto the final approach, as compared with a 
long and straight “run in”. 
 
It is also possible to reduce the average inter-arrival time T by setting up particular 
sequences of aircraft.  The basic equation for T conceals some structure in this regard.  
The word “average” was not defined.  With a random sequence of aircraft types in the 
arrival and departure traffic streams, the correct “average” that the controller would use 
would need to be somewhat larger than the arithmetic means.  This is because the 
controller who is planning arrival separations may not actually know the type of departure 
to expect and thus has to allow for the fact that on occasion there could be a sequence of 
Heavy category aircraft, with their markedly longer runway occupancy times. 
  
To reduce the average inter-arrival time, it is therefore potentially possible to “tailor” the 
inter-arrival separations to the types of aircraft in the runway sequence.  It is easy to see 
how this could be done if the departure and arrival sequences could be wholly pre-
specified, at least for 15/20 minutes in the future (ie to cover the stack-threshold segment 
within which the arrival sequence is set up).  If, however, there were some degree of 
uncertainty in the sequence then such “clockwork” timings would not function perfectly.  
The critical question is how efficiently the operation would be likely to work in practice.  It 
should be stressed that such tailoring has to take place during the setting-up of the arrival 
sequence if it is to produce a reduction in the average inter-arrival interval.  Tactical 
changes to the aircraft spacings during the final approach, say, to adjust for a Light or 
Heavy departure, while they will add to safety or reduce the chance of a go-around, do not 
change the average inter-arrival spacing.  Tailoring would require a more complex model 
to account for (eg) the different combinations of aircraft categories in an arrival/departure 
sequence and the variations in arrival and departure occupancies.   


