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Using a combination of the stochastic Monte Carlo technique and the iteration pro-
cedure of the solution to the Bethe–Salpeter equation, it has been shown that the
simulation of the optical path of a photon packet undergoing an nth scattering event
directly corresponds to the nth-order ladder diagram contribution. In this paper,
the Monte Carlo technique is generalized for the simulation of the coherent back-
scattering and temporal correlation function of optical radiation scattered within the
randomly inhomogeneous turbid medium. The results of simulation demonstrate a
good agreement with the diffusing wave theory and experimental results.
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1. Introduction

The stochastic numerical Monte Carlo (MC) technique is widely used in modelling of
optical radiation propagation in randomly inhomogeneous highly scattering media.
Various MC algorithms in a number of applications have been developed to estimate
the intensity of multiple scattered light (Iwai et al . 1995; Skipetrov & Chesnokov
1998; Skipetrov & Meglinskii 1998; Lenke & Maret 2000a; Churmakov et al . 2002).
The particular interest is explained by the fact that, for the multiple scattering of
optical radiation, the field-interference phenomena has been attracting great atten-
tion during the last decade (Ospeck & Fraden 1994; Boas et al . 1996; Ishii et al .
1997; Lenke & Maret 2000a, b; Lenke et al . 2002). This is because, despite multiple
scattering of light, typical for many colloidal and biological media, coherent effects
are still observed. Coherence is one of the principal parameters of laser radiation and
characterizes the degree to which the oscillating electromagnetic laser radiation main-
tains a near-constant phase shift. The manifestation of this is observed through the
interference effects, such as the coherent back-scattering (CBS) and angular and/or
temporal intensity correlation functions. The radiative transfer in randomly inhomo-
geneous highly scattering media, including coherence effects, is generally described in
frameworks of the Bethe–Salpeter equation (Kuzmin & Romanov 1996; van Rossum
& Nieuwenhuizen 1999), however, numerical modelling of these effects requires par-
ticular approaches. In this study, based on the combination of the MC technique and
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Figure 1. Schematic of MC photon packet random walk between the points of source RS and
detector RD. R1 and R2 are the points of the first and final scatterings, respectively. The
Cartesian coordinate system is used to specify a position of a photon packet within the medium.
The vectors kj−1 and kj are wave vectors before and after the jth scattering event, θj is the
angle between them and sj is the free path length.

the Bethe–Salpeter equation, represented as a series of the ladder diagrams, we gen-
eralize the computational technique in frame of a common approach to the CBS and
temporal field correlation function calculations. We consider the normal incidence of
radiation at a semi-infinite non-absorbing scattering medium with a plain boundary
interface as a typical case in theoretical studies.

2. Correlation transfer theory

The stochastic MC method for numerical calculation of the intensity radiation dif-
fusely scattered within a randomly inhomogeneous turbid medium is based on the
consequent simulation of the photon trajectories within the medium between the
points of the source RS and the detector RD (Churmakov et al . 2002). The simulation
of a single trajectory consists of the following stages: injection of the photon packet in
medium; generation of the photon path-length; generation of scattering events; def-
inition of reflection/refraction at the medium boundary; definition of detection and
accounting for the absorption. A typical trajectory of the photon-packet random
walks is schematically shown in figure 1.

Let a medium occupy a half-space z > 0, where z is the Cartesian coordinate
normal to the boundary. Let ki and ks be the wave vectors of incident and scattered
plain waves.

In the MC approach, calculation of the CBS and temporal correlations in the
plane-wave geometry is simply realized by fixing the directions of the incident and
emerging photon packets at the point RS and RD, respectively, and subsequent
integration over all possible RD positions.

The radiative transfer in a randomly inhomogeneous medium with temporal and
spatial fluctuations of the dielectric permittivity is described by the Bethe–Salpeter
equation,

Γ (R2,R1, t | ks,ki) = µspt(ki − ks)δ(R2 − R1)

+ µs

∫
pt(ks − k23)Λ(R23)Γ (R3,R1, t | k23,ki) dR3. (2.1)

Here, Γ (R2,R1, t | ks,ki) is Green’s function or propagator of the Bethe–Salpeter
equation. It describes the propagation of two, delayed in time t, complex-conjugated



45

Γ = p + p p + p p p + ...

Figure 2. Schematic of an iterative solution to the Bethe–Salpeter equation as a series of ladder
diagrams. Γ is Green’s function or the propagator of the Bethe–Salpeter equation and p is the
scattering phase function.

electromagnetic fields from R1 to R2. Vector k23 = k(R2 − R3)|R2 − R3|−1 is the
wave vector of radiation propagating from R2 to R3, k = nk0, where k0 = 2π/λ is
the wavenumber, λ is the wavelength and n = n1 + in2 is the refractive index of
the medium. The real part n1 determines the reflectivity mismatch at the medium
boundary. The imaginary part of n determines the photon mean free path length
(2n2k0)−1 = l = µ−1

t . Generally, the extinction coefficient µt is a sum of the scatter-
ing coefficient µs and absorption coefficient µa, µt = µs + µa. For a non-absorbing
medium, µt = µs and ks = ki = k.

Propagator Λ(R) = R−2 exp(−R/l) describes the transfer of optical radiation
between two successive scattering events, and stems from the product of the two
complex-conjugated Green functions. The function pt(kj−1 − kj) is defined as

pt(kj−1 − kj) =
G(kj−1 − kj , t)∫

G(kj−1 − kj , 0) dΩ
(2.2)

and coincides with the scattering phase function at t = 0, pt(kj−1 − kj) and dΩ
denotes a solid angle element about the direction of wave vector. Here, G(kj−1−kj , t)
is the Fourier transform of the permittivity correlation function,

G(q, t) =
1

(4π)2

∫
dr 〈δε(0, 0)δε(r, t)〉 exp(−iq · r), (2.3)

and, for t = 0, G(q, 0) gives the cross-section of single scattering. The optical the-
orem relates G(q, 0) and the scattering length ls = µ−1

s . In the context of the Born
approximation, this relation yields

1
ls

= k4
0

∫
G(kj−1 − kj , 0) dΩ. (2.4)

Iterating the Bethe–Salpeter equation (2.1), one obtains the series in scattering
orders,

Γ (R2,R1, t | ks,ki)

= µspt(ki − ks)δ(R2 − R1) + µ2
spt(ks − k21)Λ(R21)pt(k21 − ki)

+ µ3
spt(ks − k23)Λ(R23)pt(k23 − k31)Λ(R31)pt(k31 − ki) + · · · .

(2.5)

This series is usually illustrated by ladder diagrams (figure 2).
In the far-field zone, the temporal field correlation function of scattered radiation

can be expressed as the sum of the non-coherent and interference components,

CE(t | ks,ki) = C(L) + C(V ). (2.6)

Here, C(L) is the non-coherent component,

C(L)(t | ks,ki) =
∫

dR1 dR2 Γ (R1,R2, t | ks,ki) exp
(

− z1

l cos θi
− z2

l cos θs

)
, (2.7)
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and C(V ) is the interference component,

C(V )(t | ks,ki)

=
∫

dR1 dR2[Γ (R1,R2, t | 1
2(ks − ki), 1

2(ki − ks))

− k4
0G(ks − ki, t) × δ(R2 − R1)]

× exp
[
−z1 + z2

2l

(
1

cos θi
+

1
cos θs

)
+ in1k0(z1 − z2)(cos θi − cos θs)

+ in1k0(x1 − x2)(sin θi − sin θs)
]
,

(2.8)

where θi and θs are the angles of incident and outgoing photon packets, both laying
in the (x, z)-plane (see figure 1).

In case of retro-reflection, i.e. ks = −ki, the interference component C(V )(t | ks,ki)
is equal to C(L)(t | ks,ki), wherein the single scattering term is excluded.

The incoherent component determines the temporal field correlation function,

g1(t) =
C(L)(t | −ki,ki)
C(L)(0 | −ki,ki)

. (2.9)

The intensity correlation function is obtained as a quadratic form g2(t) = 1 + g2
1(t).

Equation (2.8) at t = 0 determines the normalized CBS peak,

ICBS(θs) =
C(V )(0 | ks,ki)

C(V )(0 | −ki,ki)
, (2.10)

describing its angular dependence.

3. Comparative analysis of MC simulation
and scattering order series approach

Let us compare an analytic procedure of summing up the ladder-diagram series with
the MC technique for calculation of the intensity of radiation scattered within a
non-absorbing (l = ls) turbid medium at the stationary conditions. The first term
of the iterative series describes the single scattering, the second term describes two
scattering events, etc. Similarly, the MC method describes the radiation propagation
as a stochastic process consisting of 1, 2, 3 . . . , N scattering events. The addition of
extra ladder section Λ(Rj−1j)p0(kj−1 − kj) in the theoretical description is realized
in the numerical experiment by simulating a photon, which travels a certain distance
s to the next scattering event.

In the MC method, the free photon path s between two successive scattering events
is governed by the Poisson distribution (Sobol’ 1974),

f(s) = µt exp(−µts). (3.1)

The probability ξ that the photon travels a path exceeding s is equal to

ξ =
∫ ∞

s
f(s′) ds′. (3.2)
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Using the probability density function (3.1), one easily finds

s = − ln ξ

µt
, (3.3)

where ξ is a random number uniformly distributed in the interval [0, 1].
A new direction of the photon packet is determined by the scattering phase func-

tion. The photon packets are detected if they arrive at the detector with an exit
position RD and angle lying within the detection conditions. Then a sequent scat-
tering event is simulated by repeating the steps described above.

Physically, a series arising upon the iteration of (2.1) is an expansion in orders
of scattering. If the integration over Ri is replaced by a random choice Ri = s and
the integration over directions of Ri is realized by a random choice of angles with
the statistical weight determined by the phase function, then the solution to the
Bethe–Salpeter equation is simulated by the MC scheme described above.

Due to the fact that the phase function is normalized to unity,∫
p0(kj−1 − kj) dΩ = 1, (3.4)

the statistical weight of the photon packet within the MC technique does not change
during the scattering. In the theoretical approach, the statistical weight of the pho-
ton packet is conserved due to the optical theorem. Indeed, due to the identity∫

Λ(R) dR = 4πl, the expansion parameter of an iterative series (2.5) can be pre-
sented as

µs

∫
dRj Λ(Rj−1j)p0(kj−1 − kj) = µsl, (3.5)

which turns to unity in a non-absorbing medium. The Henyey–Greenstein phase
function is used to describe an anisotropic scattering (Henyey & Greenstein 1941).
A consideration of light scattering within an absorbing medium (µsl �= 1) requires a
proportional reduction of the statistical weight of photon packet by a factor,

µsl = (1 + ls/la)−1, (3.6)

where la = µ−1
a is the absorption length. Details on the reflection/refraction at the

medium boundary are given elsewhere and not considered in current paper (Chur-
makov et al . 2002).

4. Calculation of the CBS and the temporal correlation function

Based on a comparison of the MC method and the analytical series (2.5), it is possible
to generalize the MC technique to accomplish simulation of the CBS and temporal
field correlation function of the optical radiation scattered within the randomly inho-
mogeneous turbid medium.

Calculation of the temporal intensity correlation function is similar to the spatially
resolved reflectance simulation (Churmakov et al . 2002). The only difference is that,
after each scattering event, the statistical weight of a photon packet is multiplied by
the phase function pt(kj−1 − kj).

Diffusing-wave spectroscopy (DWS) (Maret & Wolf 1987; Pine et al . 1988) studies
temporal evolution of inhomogeneities within a medium. In most applications, one
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considers the Brownian mechanism of temporal decay of inhomogeneity fluctuations
presenting the temporal permittivity correlation function as a product of the static
correlator G(q, 0) and exponential function

G(q, t) ≈ G(q, 0) exp(−Dsq
2t). (4.1)

Here, Ds is the self-diffusion coefficient and q is a wave vector transfer. Thus, in the
MC technique, proceeding from the calculation of the intensity to the calculation of
the temporal correlation function, one has to replace the phase function according to

p0(kj−1 − kj) → p0(kj−1 − kj) exp(−Ds|kj−1 − kj |2t). (4.2)

In the diffusion approximation, the momentum transfer is changed to its average,

exp(−Ds|kj−1 − kj |2t) → exp(−1
2(t/τ0)(l/l∗)), (4.3)

where τ = (4Dsk
2)−1 is the characteristic time of scattering particle diffusion at

a distance comparable with the wavelength, l∗ = ls(1 − 〈cos θ〉)−1 is the transport
length and

〈cos θ〉 =
∫

dΩ p(kj−1 − kj) cos θj∫
dΩ p(kj−1 − kj)

is the average cosine of a scattering angle, describing the anisotropy of the phase
function. In case of strong anisotropy, 1 − 〈cos θ〉 � 1, the factor (t/τ0)(l/l∗) is still
small enough, even if t/τ0 ∼ 1.

The MC simulation of the CBS peak can also be realized in a similar manner.
First, one has to exclude the single scattering from the detected signal, as it does not
contribute to the interference term. In case of normal incidence and a small back-
scattering angle θs, one can put 1

2(ki−ks) = ki and cos θs ≈ cos θi = 1 in (2.8). Due to
the translational invariance with respect to the (x, y)-plane, we replace the exponen-
tial factor exp(iq⊥(RS − RD)⊥) with cos(q⊥(RS − RD)⊥). Here, the subscript ‘⊥’
denotes the component of a vector transversal to the normal.

Thus, in order to simulate the CBS peak, one calculates a product of the weight
of a photon packet detected on the surface at the distance |(RS − RD)⊥| from the
point of incidence and the factor cos(q⊥(RS − RD)⊥).

All the photon packets are launched normally to and collected over the boundary
surface of the medium. No refractive index mismatch is assumed at the boundary
nmedium = nambient medium = 1. Photons are detected in a solid angle defined by the
numerical aperture of the detector. The latter is taken as 90◦ and 1◦ for the temporal
correlation function and CBS calculations, respectively. The MC procedure takes
approximately one hour to simulate 105 detected photons in calculations on a 1.8 GHz
Pentium 4 CPU.

5. Results and discussion

The results of calculation of the temporal field correlation functions for scattering
slabs of thickness L with different anisotropy (〈cos θ〉 = 0, 0.5 and 0.9) are presented
in figures 3 and 4. The optical properties of slabs are µs = 30 mm−1 and µa = 0. Thus
the transport mean free path lengths are l∗ = 33.3, 66.6 and 333.3 µm for isotropic
(〈cos θ〉 = 0), intermediate (〈cos θ〉 = 0.5) and high-anisotropy (〈cos θ〉 = 0.9) scat-
tering media, respectively. The thickness of slabs L is selected based on the value of
transport path length l∗, as L = ml∗, with m = 1, 2, 5, 10.
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Figure 3. The normalized temporal field correlation functions ln(g1) versus (t/τ0)1/2 for the
factor of anisotropy 〈cos θ〉 = 0.5. Symbols correspond to different slab thicknesses: �, L = l∗;
◦, L = 2l∗; �, L = 5l∗; •, L = 10l∗; ♦, semi-infinite medium. Solid lines show the diffusion
theory prediction for a non-absorbing slab (equation (5.1)).
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Figure 4. The normalized temporal field correlation functions g1(t) for semi-infinite medium
versus (t/τ0)1/2 for different factors of anisotropy: �, isotropic (〈cos θ〉 = 0); •, intermediate
(〈cos θ〉 = 0.5); �, high anisotropic (〈cos θ〉 = 0.9). the dashed line is the DWS prediction.

The results of simulation of the temporal field correlation function g1(t) versus
(t/τ0)1/2 for the set of slabs L are presented in figure 3. The parameter τ0 is taken
as 0.933 ms (Skipetrov & Meglinskii 1998; Skipetrov & Chesnokov 1998).
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Figure 5. The peak of CBS (ICBS) as a function of kl∗ sin θs: �, 〈cos θ〉 = 0; ◦, 〈cos θ〉 = 0.5;
�, 〈cos θ〉 = 0.9. Solid lines represent (1) equation (5.2) and (2) equation (5.3).

The obtained results (see figure 3) are reasonably well described by the analytical
formula (Pine et al . 1990)

g1(τ) ∝ sinh(α[L + z1 − z0])
sinh(α[L + 2z1])

, (5.1)

where α = (3t/(τ0l
∗2))1/2, z0 = l∗ is the depth at which the incident light is com-

pletely diffused and z1 ≈ 2
3 l∗ is the extrapolated boundary length. Since the influence

of the factor of anisotropy decreases as a slab becomes thicker, there is a tendency
for a better agreement between the results of the MC simulation and that of the
diffusion theory (see figure 3). We ascribe that to the diminishing role of lower-order
scatterings, which cannot be properly accounted for within the diffusion theory.

The results for a semi-infinite medium (figure 4) are in a good agreement with the
predictions of the DWS theory (Pine et al . 1988; MacKintosh & John 1989). These
results exhibit quite weak dependence of the temporal correlation function on the
anisotropy. However, for large values of t/τ0, a deviation of a logarithmic plot of g1
from a linear dependence is observed (see figure 4). Similar behaviour of g1(t) was
predicted earlier (Kuzmin & Romanov 1997).

The results of the CBS peak simulation, considered for the same isotropic, inter-
mediate and high-anisotropy semi-infinite scattering media, are presented in figure 5.

Expressed in terms of the dimensionless parameter q̃ = kl∗ sin θs, the simulated
angular dependence of the CBS exposes typical behaviour, indicating that it is prac-
tically independent of anisotropy (see figure 5). The results of simulation are com-
pared with those predicted by the analytical approach (MacKintosh & John 1989)
(see figure 5). The latter can be represented as

I
(1)
CBS = exp(−γkl∗ sin θs), (5.2)
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Figure 6. The angular dependence of the CBS enhancement B for the different anisotropy
parameter: �, 〈cos θ〉 = 0; ◦, 〈cos θ〉 = 0.5; �, 〈cos θ〉 = 0.9. The maximum B values are 1.87,
1.97, 1.99 for 〈cos θ〉 = 0, 0.5 and 0.9, respectively. The flat part of the plot for 〈cos θ〉 = 0.9 is
a bit lower then that presented by Lenke et al . (2002), due to different values of the transport
path lengths: l∗ = 333.3 µm in the present simulation and l∗ = 314 µm (see inset, extracted
from Lenke et al . (2002)).

or, in its linear approximation,

I
(2)
CBS = 1 − γkl∗ sin θs, (5.3)

where γ is the relative slope of the CBS decay.
The results obtained are quite closely related to (5.2), wherein γ = 2 (see figure 5).

The results of simulation also indicate a universal decreasing trend, whereas the
diffusion approximation predicts that the CBS peak falls down with different slope
values for different anisotropy. The diffusion approximation (Akkermans et al . 1988),

I
(diff)
CBS ∝ 1 − 2

(1 + z∗)2

1 + 2z∗ kl∗ sin θs, (5.4)

yields the slope γ(diff) ≈ 2.3 for 〈cos θ〉 = 0 and γ(diff) ≈ 0.71 for 〈cos θ〉 → 1, where
z∗ = 0.71(1 − 〈cos θ〉)−1.

Due to the non-zero single scattering, the CBS peak is not equal to 2. Qualitatively,
this effect is apparent in figure 6, where the results of the angular dependence of the
CBS intensity enhancement are presented.

The CBS intensity enhancement or parameter B (see figure 6) is determined as

B(θs) = 1 +
C(V )(0 | ks,ki)
C(L)(0 | −ki,ki)

. (5.5)

The results of MC simulation for isotropic scattering show that B = B(0) = 1.87.
It agrees with the results derived from a generalized solution of the Milne problem:
B = 1.88 (van Rossum & Nieuwenhuizen 1999). In the limit of 〈cos θ〉 → 1, the
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theory predicts that B = 2. This also agrees with the results of our MC simulation,
B ≈ 1.99 for 〈cos θ〉 = 0.9. The results of our simulations also agree with the results
reported by Lenke et al . (2002).

6. Summary

Based on the combination of the MC technique and the solution to the Bethe–
Salpeter equation, it has been shown that it is possible to employ a unified approach
describing the coherence effects in randomly inhomogeneous disperse multiple scat-
tering media. The results of simulation demonstrate a good agreement with the DWS
theory. They are also in good agreement with the experimental results (Pine et al .
1988; MacKintosh & John 1989) and the results of an alternative simulation (Lenke
et al . 2002). Potential applications of this modelling technique are various studies of
suspensions, liquid crystals, biological tissues, etc.
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(Project PST.CLG.979652). V.L.K. acknowledges support of The Russian Foundation for Basic
Research (Project no. 02-02-16577).
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