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SUMMARY  

The two-dimensional hypersonic sail is examined using the Newton-
Busemann pressure law. The results are compared with those of Daskin 
and Feldman (1958) who used the empirical modified Newtonian pressure 
law. It is found that for a given chord length of sail a corrected sail 
will give a specified lift for a smaller tension in the sail. 

At a flight Mach number of 10 at 100,000 ft. the tension in one 
particular sail considered could be supported with a working stress 
of about 20 tons/in . 
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LIST OF SYMBOLS 

B total length of sail 

C 	 chord of sail 

C
D 	

drag coefficient 

CL 	
lift coefficient 

C
p 	

pressure coefficient 

C 	 value of C behind normal shock 
pmax 

D drag 

L lift 

free-stream Mach number 

p  pressure 

p
o 	

stagnation pressure behind normal shock 

2 

q 
	

dynamic pressure, 

s 	 length along sail 

T 	 tension per unit span 

IT 	 free-stream speed 

x 	 longitudinal co-ordinate 

y 	 normal co-ordinate 

angle of attack 

0 	 local angle of sail 

p 	 density 

o- 	 local sail angle, see Fig. lb 

Subscripts 

T 	 trailing edge 

L leading edge 

conditions far upst ream of sail 



1. Introduction 

Daskin and Feldman (1958) investigated the characteristics of the 
two-dimensional hypersonic sail using the empirical Newtonian pressure 
law. As Hayes and Probstein (1959) point out, a rational theory of 
hypersonic flow should include the centrifugal correction of Busemann. 
Here the two-dimensional hypersonic sail is re-examined using the 
complete Newtonian pressure law, and the results compared with those 
of Daskin and Feldman,. 

The results obtained by including the centrifugal correction for a 
body of convex curvature are less accurate than those obtained by 
neglecting the correction. en the theory this is a result of the singularity 
which occurs when the pressure on the body falls to zero, and, as 
Freeman (1960) has pointed out, invalidates the assumption of the close-
ness of the shock wave to the body. However the present problem deals 
with a body of concave curvature (lower surface of the sail) and in this 
case the full centrifugal correction should apply. 

2. The sail equation 

The tw-dimensional hypersonic sail is assumed to be in a Newtonian 
flow. Accordingly we assume that a thin shock layer coincides with the 
surface of the sail and that there is no friction between the layer and the 
sail. 

Fluid which enters the shock layer is assumed to flow along stream-
lines with its velocity unchanged downstream of the shock. Because of 
the curvature of the shock layer the pressure on the under-surface of 
the sail, concave to the oncoming stream, is increased by a pressure 
difference across the layer due to the centrifugal effect. The pressure 
on the under-surface of the sail is then given by the Newton-Busemann 
pressure law, (see Figs, la, lb for notation), 

(y) 

2 	
de(y) f 

C 	
sine 	Sill 0 

dy 	
cos oly( 	i  ) dy . 	(1) 

pm ax 	 a 

In the limit of very high Mach number we may assume that the 
pressure on the reverse side of the sail is zero. The pressure on the 
front is given by equation (1), where the left hand side takes the 
simpler form pip

o 
thus 

f= sine 0 ± sin 0 	 cos a- 	. 	 (2) 
Po 	

dy 



which may be written 

sine  
de 
ds (5)  

(6)  

(9)  

(10)  

- 2 - 

Neglecting the mass of the sail, each element of the sail is in 
equilibrium under the forces due to the pressure difference across 
the sail and the two-dimensional tension in the sail. Thus 

p cos e ds = T d (sin ) 
or 

p 
	

T ds 
	 (3) 

Substituting (2) in (3) gives the basic equilibrium equation of the sail 

sin 6 	+ sine d© f 6  cosc dy . T de (4) 
dy e 	 p

c. 
ds 

L 

de 
sine-  cosh ds 

ds 
Po 

,O 
or 	 1 

ds 	 ds 
de sin 	

L
sin o-  cos o- d 

3. 	Sail geometry 

Put in (6) 

	

0 (0) 	
ds  de sine 
pe 

	

(e) 	j
e 	

cote 	¢(cr) do- 
l, 

Differentiating (8) with respect to 6 yields 

	

01 ( 0 ) 	1 cot El 	r ( 6) 

which has the solution 

0 (0) = A cosec 

where A is arbitrary constant. 

Po 

ri 

Po 
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But, at 0 = 	6(0 ) 	TJpo  frotil equation (8), so that 

A 	— sin 
Po 

From (7), (10), and (11) 

ds 	T 	
sin 0

L 
de 

Po 	sing  

The arc length, s, of the sail measured from the leading edge is 
given by 

Po 
= sin 0

L 
O
L 

sin3 0  

p 	 tan 10 pas 	
1 	 sin 0 

L 
—1.,   + sin e 

sin 6 	
L in 	

1 tan 
= —

2 
(cot 6

L 
- cot 6 1 3L) (13) 

 

The total length of the sail, B, is 

21  p
o

B 
1 	

sin 0
L 	 tan err  

— 
T 	

= 2 (cot 0
L 

- cot Ei
T sin eT 

± sineL 
	tan 	

L )ln 	(14) 
-To 

 

where C
T 

is the trailing-edge angle. 

The parametric equations of the sail follow simply. 

dx 
= cos° ds = T sin

de 
	6 

de 
 

Po 
L 

cos 6 
from (14). 

sin:  

pox 	
sin

L 1 	1 
sin 0

L 	
sin 0 	sin ti (15) 

dy 	 ds 
= sin e 

de 	 d0 

sin 6
L 

Po sin20 
, from (14). 

(12) 



PoYT 
T 

cos OL  cos 0
T sin OT 

sin O
L
_ 

(19) 
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e 
	si n 01_, 

cos 0
L 

- cos 	 
sin 

Eliminating 0 between (15) and (16) gives for the equation of the 
sail 

2 

1 1-.0j  
x sin 0

L 
= —

2 	'T 	
- y cos e

L 
. 

The shape of the sail is a parabolic cylinder with the vertex of the parabola 
pointed downstream, as was noted by Hayes and Probstein (1959). 

The co-ordinates of the trailing-edge are 

Po
X

T 	1 ( 1 	1 	
sin 0

L  
T 	2 	sin()L 	sin 0

T 
sin 6

T 
	 (18) 

(16)  

(17)  

and the chord, c, of the sail is 

12 
Po 	r(PoxT  

T / 
( PoYT)2  

T 
(20) 

while the geometrical angle of attack, a , is given by 

a = tan
-1 	PoYT 	PoxT 	

(21) 
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4. Aerodynamic characteristics 

The tension in the sail is uniform so that the simplest method of 
f inding the total lift and drag is to consider only the attaching forces 
and their angles at the leading and trailing edges. Then it follows that 

L = T (sin E
T 

- sin 0) . 

D = T (cos O
L 

- cos 0
T

) . 

and the corresponding coefficients are 

Po 	
(sin G

T 
- sin ) 

U 2c 	
p

o
c/

T 

po 	(cos e
L 

- cos e
T

) 

D 1 2 
Pcn 
	

c 
p

o
c/

T 

and 
C

L 	
sin OT  - sin 0L 

CD 	
cos G

L 
- cos G 

cot (e 	OT) . 

The lift-drag ratio is given by the same result for both the corrected 
and uncorrected sail. Clearly lift-drag ratios in excess of unity are 
achieved if C

L 
C
T 

< 900   ; in other words with tight sails with small 

leading edge angles. 

For infinite Mach number, and a specific heat ratio of 1.4, 
= 1.839. For Mach numbers above 4, p 	rapidly Po/q„ 	 o/c6 

approaches this limiting value. See Daskin and Feldman (1958), Table 1. 

C
L  

(22)  

(23)  

(24)  

(25)  

(26)  
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5. Results 

In Fig. 2 the sail shape given by the complete pressure law is 
compared with that found by Daskin and Feldman (1958) using the 
uncorrected Newtonian pressure law. The corrected sail is much 
shorter and tighter than the uncorrected one when both are used at 
the same tension. 

Fig. 3 compares the aerodynamic characteristics of the two sails 
with O

L 
= 10°. For a given trailing-edge angle, QT, the corrected 

sail offers a higher lift and drag for a smaller incidence. 

A better comparison of the performance of the two sails is got 
by requiring a given lift from a given chord length of sail. The two 
sails will not work at the same incidence, for at a given incidence the 
corrected sail always gives a higher lift, Fig. 4. For a given lift the 
corrected sail will work at a lower incidence. Above a certain value 
of lift it is necessary to increase the leading-edge angle

, 
O
L

. 

When the lifts given by a corrected and an uncorrected sail are 
equal, Fig. 6 shows that the value of pociT  is greater for the corrected 

sail. In other words, if the chord, c, is the same for both sails, there 
is a smaller tension in the corrected sail. When the values of p

o
c
/T 

in Fig. 6 are greater for an uncorrected sail than for a corrected one, 
it will be found in Fig. 4 that the uncorrected sail is no longer able to 
yield as much lift as the corrected sail. 

Fig. 5 shows the increase of drag with incidence. Similar 
conclusions to those in the last paragraph can be drawn from the 
drag results. 

To estimate the rnagnite of the tension in one of these sails 
consider a sail with

L 
= 10°, OT  = 20°, at a flight Mach number 

of 10 at 100,000 ft. The sail loading is found to be 240 lb/ft
2
. The 

tension per foot span in a sail of 10 ft. chord, would be 14,500 lb. 
A sail 0.05 in. thick of woven high tensile steel /ire could support 
such a tension, with a stress of about 20 tons/in . 
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6. Conclusions 

A corrected sail is much shorter and tighter than an uncorrected 
one, when there is the same tension in the sails. For any given 
incidence there is a corrected sail which will give a higher lift and 
drag than an uncorrected one. For given leading-edge and trailing-
edge angles the corrected sail gives higher lift and drag at a smaller 
incidence. For a fixed chord length of sail yielding a specified lift 
there will be less tension in a corrected sail. 

Flightt  
(0 	10 
working at 

at a Macht,  number of 10 at 100,000 ft. would require a sail 
w20 ) 0.05 in. thick of 'oven high tensile steel wire, 

a stress of about 20 tons/in . 
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