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SUMMARY 

A heat conduction problem is set up which, in essence, simulates the conditions 
arising when a plane shock wave reflects from a co-planar solid boundary. The gas 
is assumed to be polyatomic, with one 'significantly relaxing' internal energy mode. 

The quantity of primary interest is the temperature of the solid at the interface, 
since this can be observed experimentally without much difficulty. Solutions are 
obtained for this quantity which cover a range of practically plausible relaxation times 
and 'wall effect' parameters. It is essential to include proper temperature jump 
boundary conditions for both active and relaxing (or inert) energy modes. Thus it is 
necessary to know accommodation coefficients for these modes of energy storage. 
The temperature jump effects are found to dominate the (interface) solid's temperature/ 
time history, with relaxation effects playing a very secondary role. 

The theoretical results are compared with some experimental observations and 
encouraging agreement is found. As a result of this agreement it proves possible to 
estimate the accommodation coefficient for the active modes (in this case for the 
combination platinum/air), the pressure being about 15 atmospheres. The pressure 
sensitivity of accommodation effects is commented on. 
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Q, Qo 	
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z 	 section 4 
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1. introduction*  

In the Sections to follow we shall consider the problem of the sudden contact 
between a hot, polyatomic, gas and a cold solid. With the interface lying at x = 0, 
the solid occupies the semi-infinite region x <0 whilst the gas occupies the region 
x > 0. We assume that at the instant of contact (time t = 0) the translational 
temperature in the gas has a value T whilst the temperature of the solid, together 
with that of the one internal energy mode in the gas which exhibits significant 
relaxation effects, is zero. 

Subsequent to the initial instant of time, the gas translational and internal mode 
temperatures will begin to equalise, the manner in which they do so depending on two 
separate phenomena. Firstly there will be excitation of the internal energy mode via 
intermolecular collisions in the gas phase, an effect which we shall describe by 
specifying the appropriate relaxation time T. Secondly, the g. temperatures will 
be influenced by the effectiveness of the solid material in accommodating both 
translational and internal mode energy states. This phenomenon will require the 
specification of two accommodation coefficients, one for each energy mode. At 
this stage we remark that all internal energy states which are usually described as 
"active" (i.e. having very short relaxation times) are implicitly included under the 
heading of translational state. Some discussion of this topic can be found in Clarke 
(1960a), where it is shown that under conditions of very rapid relaxation in the gas 
phase it is not necessary to c isider the details of the way in which that internal 
energy state is accommodated at a solid surface. **  If it should be come necessary 
to distinguish between such rapidly relaxing modes and our assumed "significantly 
relaxing" mode we will refer to them as "active" and "inert" modes, respectively. 

The quantity in which we shall be most interested in this study will be the 
temperature of the solid at the interface x = 0. The reason for this is as follows. 
The problem that we have set up in the preceding paragraph is very closely 
encountered in practice when a plane shock wave reflects from the closed end of a 
conventional shock tube. Then the behaviour of the solid's temperature at x = 0 
should be capable of observation with a standard type of thin film platinum resistance 
thermometer and the theory put to the test. Indeed, in the present instance, 
experiment has preceded theory and what follows is an attempt to explain the 
observations which were made. More will be said on this topic in a later Section; 
for the present we will continue with the task of setting up the theoretical model. 

A shortened version of the present paper was presented at the 3rd British 
Theoretical Applied Mechanics Colloquium, Kings College, Newcastle, 11th - 14th 
April, 1961. 

** See also Section 3, case (v), below. 
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In particular we assume that the gas pressure remains constant throughout the 
period subsequent to time t = 0, and that gas velocities are always everywhere zero. 
As support for this assumption we quote a recent study (Clarke, 1960b) which shows 
that the pressure and velocity disturbances induced by the sudden contact between a 
hot gas and a cold solid are of small amplitude (especially in regions adjacent to 
the interface) a few molecular collision times after t = 0. Any effects on the interface 
temperature due to changes of pressure are substantially over and done with in time 
intervals too short to be measured with even good quality shock tube instrumentation. 
The theory just referred to did not take account of temperature jump phenomena 
(or of relaxation effects) but, as will be appreciated from what follows, the inclusion 
of such effects will tend to diminish even further the amplitude of any heat-conduction-
induced pressure changes. In any actual shuck tube experiment there will, of course, 
be other factors present which are not included in our theoretical model. Especially 
are we thinking of the influence of the boundary layer behind the primary shock wave 
on the behaviour of this and the reflected wave, causing them to accelerate, or 
decelerate, 	depending on the conditions, type of gas, etc. (Mark, 1956). However, 
on the basis of the results to be obtained below and their ability to explain in large 
measure the observations from several experiments, we feel justified in neglecting 
such effects, at least for the time being. As some additional justification for neglect 
of these effects, we remark that our present interest lies mainly in the time region 
from about 0 to 10 te sec after shock reflection and that boundary layer influences 
take some time to develop far enough to interfere with the "one-dimensional" nature 
of the central core of the shock tube flow following shock reflection. 

With the assumption of constant pressure and zero velocity, the energy equation 
becomes 

8h +  8q 	0  
et 	8x 	' 

where h is the specific enthalpy and q the energy flux vector. h can be expressed in 
terms of the translational and inert mode temperatures, T and B respectively, as 
follows, 

h 	= 	f C 
Pa

dT 4 I C d(3 	 (2) 

o 	 o 

Here Cand C are the specific heat at constant pressure of the translational plus 
active Pa  classes and the inert mode, respectively. They are functions of temperature 
only, in general, but we shall subsequently assume each one to he a constant, at 
least over the temperature range of interest. Following the reasoning given by 
Hirschfelder, Curtiss and Bird (1954) we write 

q
aB 

p k5C 
7̀ a. 	 ax 

(see also Clarke, 1960a, for a further discussion).) is the "monatomic" thermal 
conductivity, corrected to account for the part played by

i.a 
  the active internal modes in 

the energy transfer processes and j15 is akin to the coefficient of "self diffusion". 

(1) 

a T 
(3) 
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In fact we should, strictly, use a different diffusion coefficient to describe the diffusion 
of molecules in different internal quantum states, since the cross-sections may differ 
from one state to another. Hirschfelder et al suggest that the self-diffusion coefficient 
evaluated from "monatomic" kinetic theory should be used. However, it seems that the 
original Eucken correction to thermal conductivity to account for internal energy 
transfer, which implies that PO C

pt = 7t , gives rather better results than follow from 

this assumption. (C
pt = translational specific heat at constant pressure; X = "mon- 

atomic" conductivity, accounting for translational energy transfer only). From the 
implication that Pc C

pt = X we infer that q can be written as 

q = 
aT 
ax 	

ae 
a a  670 ( 4 ) 

where 
a = C/Cpa 

. 	 (5) 

It transpires that equation 4 leads to simpler analytical results than would arise 
if the value found for 4,6 from 'monatomic' kinetic theory is used. Thus, in additi,)n to 
the partial justification via comparisons with experiment, which was mentioned above, 
we have a further reason for ad.-  ting equation 4 in what follows and this we shall 
proceed to do. For example, the energy equation becomes 

aT 
a 

aa 	a 	aT 	ae ]) 
(x  [ 	

= , 	 (6) 
pa ( 	+ at / ax 	a L ax 	T 

using equation 2 also. 

A further relation between T and 6 can be derived from a consideration of the 
rate at which "inert" internal energy accumulates in a fixed volume of gas. Remem-
bering that gas flow velocity is assumed to be zero such accumulation is brought about 
by diffusion and by direct excitation of the inert state via intermolecular collisions. 
In formulating the condition, however, it is best to ignore the zero velocity 
assumption until the equation has been derived. In this way it becomes clear that 
one is, more properly, just neglecting a convection term relative to a diffusion term, 
as follows. The net rate of gain of inert mode energy per unit volume is given by 

a 
at 

and is made up of an increase due to convection, 

- 	a 	[up I e  c de , ax 

(where u = flow velocity), an increase due to diffusion, 

a ( jrc  ae 
ax 	ax 

0 

[ 	I C de 
o 



( - 
2 - ra)  ( t 

a 
 c 

va 
 aT 

ax)x=0 
f w  Cva dT 

T
o 

r
a 

(12) 
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and an increase due to excitation via collisions, let us say E. Then 

a 

at [0 	Cd e j 	aax  

0 

pu f C de] + a  (p..5C ax + E. 	 (7) ax 	ax 
❑ 

The overall conservation of mass requirement is 

ap 	apu 	0  , 
at 	ax 

whence it follows that equation 7 becomes 

pC ae  + pu C - 
a

3
x  - 
	

ax ax (045C ae  ) =E E. 	 (8) at 	 \  

We now assume that the second term in equation 8 is much less than the third in our 
present problem. In addition, we assume that E is proportional to the difference 
between the actual and equilibrium levels of inert internal energy, i.e. we put 

T 
E = 41  

fa 	
c de . 	 (9) r 

r is the appropriate relaxation time. Equation 8 therefore becomes 
T 

ae_a 
Pc  at 	ax p.0 ax 	

- P c de = 0, (10) 

with the approximations adopted to date and equation 10 now constitutes the required 
second relation between T and 0. Within the framework of the assumptions made so 
far, equations 6 and 10 are 'exact'. By this we mean that quantities like p, Cpa, k a , 

.5 etc. may be functions of T and 0, so that the equations are non-linear. We 
intend to linearise them shortly in order to progress as far as possible analytically, 
but in the meantime we shallformulate the boundary conditions to be satisfied by T 
and a. 

Let us assume that the temperature of the solid at the interface is given by 
T

o
(t). Then we must relate the translational and inert mode temperature jumps to the 

appropriate temperature gradients, introducing as we do so the relevant accommoda-
tion coefficients. Following the usual practice in simple kinetic theory (see for 
example Clarke, 1960a) we write 

2 - 

r. 

 ri) 
§fri 
8x x=0 

O
w 

T
o 

C de 	 (11) 

for the inert mode and 
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for the active classes. *  r. and ra 
are the inert and active accommodation coefficients 

and C
va 

is the specific heat at constant volume of the translational plus active modes. 

alm  and Tw  are the appropriate gas temperatures at x = 0. L • and t
a are the mean free 

paths for the transport of inert and translational plus active mode energy; they are 
different and we must evaluate them in a way which is consistent with the use of 
equation 4 to describe energy flux rates. This is readily accomplished by comparing 
the energy flux rate term from equation 4 with the appropriate rate written in terms 
of energy jumps and wall bombardment rate (as in the reference cited above). It is 
found illat 

2 haw  

iw Ow 
- 

pwCpaw 
(13) 

whilst 2 	h aw 	Cpaw 
aw 	it 

w C
vaw PVT Cpaw 

(14) 

O
w is the mean molecular speed evaluated at x = 0 (the wall bombardment rate is 

p 
w /4 in units of mass per unit area per unit time) and is given by 

it w  = (8 R Twilr)2  . 	 (15) 

(R = gas constant, i.e. universal gas constant divided by molecular weight. ) 

Equations 11 and 12 relate the gas temperatures to the solid's temperature at 
x = 0, namely To  . Since this is an unknown quantity in the present problem, another 

condition is required at x = 0. This is provided by the continuity of energy flux across 
the interface. In other words we must have 

a T
s I aTas + a k

sw 	ax 	 'aw L axax x=o+ 	
(1.6) 

 

Finally, it is necessary to ensure that T and e remain bounded as x 4 P' for all t 
whilst the temperature in the solid, T

s
, must likewise remain finite as x 

The integrals in equations 11 and 12 represent the appropriate "energy jumps" at 
the interface. 
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2. The Linear Problem 

We now propose to line arise the problem as follows. Equation 6 will be written 
as 

where 

aT_ oar 

at 	ax2  

7̀- a 
C pa 

a ae 
[ t K 

a 2e 
a xa  

= 0 

Both a and  K  are assumed to be constant. Equation 10 will be written as 

ae 	a2 e 	—
1 

- 	( T - e) = 	 (19) 
at ax2  

and r is assumed to be constant. (Equation 19 is derived by assuming that  p13  and C 
are constants and that X = K  in order to be consistent with equation 4 for the energy 
flux*). The temperature in the solid is assumed to satisfy the equation 

aT
s 	

a2T
s 

= 
at - eXa  

where the solid's thermal diffusivity Ka  is a constant. 	

(20) 

The linearised versions of the two conditions 12 and 11 are 

a 
 (

aL21;) 	= Tw 
 - T ; t >0 , 

w 

88 
= 	r (ew  - T.) ; t > , 

w 

a = 	
2 - ra 	

2ya  K 

r
a 	

f2  w  

r. 	fl w 
r 	 • 2 -r. 	2rc  

and y a  is the specific heats ratio, C 	/C paw yaw' 

This is equivalent to assuming that the Lewis number for inert mode energy 
diffusion is equal to unity. i.e. in essence the Eucken assumption. 

where 

(21)  

(22)  

(23)  

(24)  
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The condition 16 i s unchanged (except that a is assumed constant). For com-
pleteness we write out the remaining conditions, 

ii Tsw 
= T

o 
; T, 0 bounded as x •• ,., 	 all for  

T 	
t > 0 

s 	
bounded as x . - 40  

(25) 

T = T 	; 0 = 0 : x > 0 co 
Ts 

=0 : x c 0 [ 
all at 
t = 0 

(26) 

Linearisation of the problem is, broadly speaking, justified for small values of the 
initial translational temperature rise, T T. The most serious assumption involved in 
the linearisations is the neglect of terms like (a xa/ 8 x)(8T/ax) in comparison with 

a
(a

2
T /a Xa) . While it is difficult to generalise about the relative magnitudes of these 

terms, it can be stated that the former is indeed quite small compared with the latter 
in the initial stages of the process and that certainly the reverse of the assumption 
made above is never true. We hope, therefore, to retain most of the essential 
physics of the problem in our subsequent analytical solutions, although anticipating 
that these may be lacking in the finer details. Additionally, we remark that the 
existence of temperature jumps tends to be in favour of linearisation, since the gas 
temperatures are always greater than T. 

The set of linear equations, from equation 16 through to equations 26 are best 
solved by Laplace-transforming them with respect to the time. Denoting such a 
transform by a bar over the appropriate symbol, e.g. 

Rs ; x) = re(t, x) e-st  dt , 	 (27) 

0 

equations, 17, 19 and 20 become 

[s- K ds -1 [ rT + a -6 
dx2 J 

d 
a 

i- 	
] — 

[1sr 	Tic --I-- 	0 	= T , 
dx 

a 

[ s - K
s 

d  
dx--1- ] Ts  . 0 . 

Eliminating 6 and  f from equations 28 and 29 in turn we find that 

[ s 
- 

d a 
K IT] {

d2 

S 	

ic 	
cc 	 T K 

1 + a + sr - Tx 
dx 2  ] 11  = (1  + "1;2  . 

[ 	

ds
2 

dx j 1 + + sr - 	a 	(T) cb-7  	= T. 

(28)  

(29)  

(30)  

( 3 1 ) 

( 3 2 ) 
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Appropriate solutions of these equations are 

1 +(1 + 	a)s r' 	
T 

1 	 11 	  T =  A exp ( - x — + B'exp (- x 	 + 
s(1 + s  T') N K 	 \ 	KT' 	1 + a 

11 	+ 	s r') 	 T i- 	 1 	w 
6 = A'e 	- x s —7 + 	( B exp ( - x 	 + 

K Kr' 	s(1 + s  T') 	1 + a 

where 
r' = r/(1 + a) . 

(33)  

(34)  

(35)  

(It is interesting to note that the behaviour of T and  6  depends on the factored value 
of relaxation time r' and not on r itself. Similar behaviour was also found by 
Clarke, (1960a).) A, A', B and B' are constants which can be found from the inter-
face conditions; we note that substitution of the results 33 and 34 into the original 
equations 31 and 32 shows that 

A' = A ; 	B' = -  a B , 	 (36) 

so that conditions 16, 23 and 24 are sufficient to find these constants and To. 

The appropriate solution of equation 30, satisfying the condition Tsw  = To, is 
simply, 

Ts = To  exp xT82) 
Ks 

and the energy flux requirement (equation 16) shows that 

\i

8  

gi  
X 8W 	K T0  = -  x

aw 
 (1 +a) j:",E . A (38) 

Defining the symbol Q so that 

Q = 	+  a ) 
Xaw 	Ks 	

(39) 
SW 

equation 38 states that 

To = -QA. 	 (40) 

Since we are only interested in the value of To  here, we need only evaluate the 
constant A. 

(37) 
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3. The Interface Temperature 

Making use of the "jump" conditions 21 and 22 in their tranformed form, together 
with equations 33, 34 and 36, we find, after a little tedious algebra, that 

(1 +a )a. i;Te Y(1 + srOf ri + (a + ar ) rsTr Ic  

( + a ar) 	+ se)1 ri + ( 1 + 	r 	+J A  1.  

(41) 

T _ 	o — 
T 1 + 	set r +1b +  sriArs  

5(1 + sr') [1 + a 	(1 + aar) 1(1 + sr91 ri ic l+ ( 1 +a) r 

whence To and A can be found via equation 40. Clearly the "exact" value of To  

involves the inversion of a very complicated Laplace transform. However, we 
intend to avoid the difficulties inherent in this task by considering a number of special 
cases. Each case will represent a possible set of physical circumstances and, by 
choosing these circumstances judiciously, we hope to build up a fairly comprehensive 
picture of the behaviour of the interface temperature To  with time. 

(1) 	a = 0. 

When a = 0, implying that C = 0, we can say that the inert internal energy mode 
has no communicable energy. Equations 40 and 41 show, in these circumstances, 
that 

Q T 
o CO 

where Q is equal to Q with a = 0. The transforms involved here are readily inverted 
and it is°found that 

Q 

1 + Q0 	 Q0)2 /a2 )erfc (Yrct(1 + Q0)/a) 	 (43) 
o 

T
o
(t) = 	 1 - exp (Kt(1 +  

(erfc is the complementary error function which approaches unity as its argument 
approaches zero). 

We may use equations 33, 40 and 42 (with a = 0) to find the magnitude of the 
temperature jump at the wall, namely Tw  - To. This turns out to be equal to 

a 
e

z 
erfc z, where za  9c01 Q )lag . Reference to Fig. 2b below shows that 

Tw  - To  is greater than T/4 for z-  < 4. This result is quoted as some support 

for the linearisations which have assumed, for example, that 7i,a  = constant. 

To  [1 + Qo  +aji]  (42) 
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It follows that To  is zero at the time t = and thereafter increases steadily and 
continuously to the final value 

Qo  

Q 
To(a)

+  
 -  	 (44) 

1 	o  

as t 	This final value is reached, within about 5%, in a time tf  given by 

117"ctf  (1 + Q0) = 10 a. 	 (45) 

Recalling the definitions of a and i (equations 23 and 18 respectively), equation 45 
implies that 

( 

	r a 

 2 - r 
tf  500 	 t

e 
, 

a 
(481 

where tc  is the mean time between molecular collisions. (In evaluating tf  here we 
have assumed that Q0 << 1, as it would be in a shock tube experiment; typically, 

Q
o 	

10
-2

). The interesting fact emerges that t
f 

is quite probably within the range 

of possible experimental resolution, especially if ra  happens to be rather low, Thus 

if r
a 

should be as low as 0.1 say, tf  cr 1.8 x 10
5 

t
o
, or about 18psec if we take 

(ii) 	a P = 1. 

Strictly speaking, the previous case applies only to monatomic gases, which have 
no internal energy states with communicable energy. We have implied that it might 
apply to gases with rapidly relaxing modes (like rotation in Ns  or 00  perhaps) and we 
hope to justify this shortly. In this sub-section we simply require that the "active" 
and "inert" accommodation coefficients shall have values such as to just make the 
product a r = 1. The relaxation time r (or r') may have any finite, non-zero value 
at this stage. 

Under these conditions, equations 40 and 41 show that 

o [ 
Q T 

1 i-Q+a-i- 
8771:1-671-a 	' 

whence 

t 	= 10
-10 
 sec. We note furthermore that t

f 
depends quite "strongly" on the 

accommodation coefficient r
a . 

We shall defer further comment until the next Section, when the question of 
comparison with experimental observations is to be dismissed. Meanwhile we 
continue to examine some more special cases. 

(47) 



QT  
To(t) = (1 + a)(1 + 	Q) 	{ 1 - exp (ict (1 + Q)2/ a2)erfc (Arx7(1 + Q)/a)] 	 (48) 

This result is true no matter what the value of r  may be, excluding for the moment 
the two special cases of r = 0 and 	These are to be dealt with below. Equation 48 
is, of course, identical with equation 43 except that Q now replaces Qo  and the whole 
right hand side is divided throughout by the factor (1 4-  a ) . Since Q is probably of 
order 10-2  in magnitude, the time-scale of the present case will be indistinguishable 
from that of case (i) for all practical purposes. Furthermore, it can be seen that, 
since Qo 

= Q/(1 + a), the amplitudes of T
o 

here and in case (i) are in the ratio 

(1 + Q
o
)/(1 + Q). The specific heats ratio is always less than unity so that with Q 

so small, no practical difference will exist here either. 

When a I' = 1 then, we conclude that the effects of a relaxing internal energy mode 
on the interface temperature are negligible. 

(iii) 	r = o. 

A further possibility occurs if we imagine that the inert mode is not accommodated 
by the solid surface at all. In that case ri  = 0 and so r .0. Equations 40 and 41 
then show that 

T' 	 , 	,- .7., 	
Q T 	

1 + (1 +a)sti 
[1 + Q + 	 + a(1 + 	— 1. 

1 + s r' 	 K 	0 	1 + a 	s(1 + s ri) 

Unfortunately the transforms involved here are not now so readily inverted in 
terms of tabulated functions, but the result can be written in terms of a contour 
integral via the usual Laplace inversion theorem. Thus 

Q T 	 -1 

[ 1 + (1 + a)sri 	[1 + Q +afisr+'sr'+ a(1 + a)_
(

— 	e 
is d8 

 T
o
(t)   f 

27r 	(1 +a)(1 + sr') 
Br 

(Br is the Bromwich contour, running parallel to the Im(s) axis and to the right of 
all singularities in the integrand). 

It is clear from the integral in equation 50 that we can always find times less 
than id  for which 

-1 

T 	
Q T 

o 	1 f 	 a 	\it'? 	is ds 
o
(t) • 	 [ 1+ Qo  2tri 	1+  1+ Q 	ic 	

e 
 

Br 

(51*) 

e.g. Put t s = z ; then equation 50 becomes 

QT
o
(t) 	Tcof [ 1+   (1 + a )zrs/t] [ 	 z dz z rift a(1 + a )ilr r 

1 + Q + 	t+ 	 e 
(1+a)(1+ze/t) 	Kt  Br 

Then, when r' /t >> 1 we have 

Q 	.1 	 a(1 + a )  
71 

To(t) 	tai
1 + a + Q + 	

z dz 
e — 

Br 	 siTT. 

Noting that Qo  = Q/(1 +a) and replacing z by st equation 51 follows. 

( 4 9 ) 



It can be seen at once that 
Q T 

To(t) 	
( 1 	a)(1 + Q) 

Q T 
0)  

as t 
1 + Q (53) 
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This contour integral gives precisely the result written in equation 43. We infer 
therefore that when r = 0, T(t) behaves initially exactly as if the inert mode took no 
part in the proceedings, i. e. 

o 
 behaves as if the inert mode was "frozen", (see case 

(iv) below). 

How relaxation subsequently affects this picture is difficult to generalise upon, 
but we may proceed as follows. The original Bromwich contour in equation 50 can 
be deformed so that T(t) is written as a loop integral around s = 0. Paying proper 
heed to the phase of the

o 
 radicals on this contour we can eventually produce the follow-

ing real integral representation. 
Q T 

T
o
(t) - 

(1 +a)( + Q) 

j
le -Vie 

	 (52) 

, 
[I 	( 1 + a)y] [[(1 + Q)(y 1)31-  + 	

2 
 + 

a2(1 + a)2 
 y(y-1) 

Ts  K 

Y)I] [(1 + Q)2(1 

-1 	-tyir' 
[ay2 	 y2  (1 y) 2  

a Q T op 

IT ilrrirl  

QT  

ir(l+a) f
el -(1 +a)y/[a+ a(1 + a) 

all -F 	I a) 	 2 

2 
e dy 

y (1 - y)2  

above it is found that the final  interface 
= 0 or a-1  for any values of r' satisfying 
0 and m are to be dealt with separately). 

The manner in which To(t) approaches its final value in the present case is, however, 

clearly different from the smooth behaviour exhibited by equation 48 in case (ii). 
The real integrals in equation 52 are still far too unwieldy to give us any indication 
of this behaviour as they stand. It seems however, that some progress could be 
made if we examined the situation for which r' »a2( + a )2 bc because it would then 
be possible to neglect some terms in the integrals in equation 52 and even discard 
the first of these altogether. Rather than follow this course directly at this stage, we 
shall make the assumption that a = 0 in the original contour integral in equation 50. 
Physically, this assumption is equivalent to examining a time region within which 
relaxation time effects dominate the temperature jump effects (which account for the 
Et(1. + a) pa terms), the relaxation time being, comparatively, a "long" one. With 
a = 0 the transform of T

o
(t) can be rewritten as follows 

Comparing this result with equation 48 
temperatures are the same whether r 

r' < a (As mentioned earlier r' = 
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T  1 	a fir' 	1 	, -1, 	a 	1 	, -1 
s(1 + Q) 	(1  + Q)2 	13  glIS 	(1 	a)(1 + Q) s2 gats  ). 	(54) 

1  
gi(8) = 	 (55) 

+ a9'(1 + Q)  

g 	
1 

(s) = 	 g(s) . 	 (56) 
J's-+-P 

QT

where 

This result is now in a suitable form for us to use the theorem (Erdelyi et al 1954) which 
states that 

- 
I J 	(2 IrTit ) u 

v  
f(u) du 	s -2 v 	g (a

-1). 
sv 

The symbol 	means "has the Laplace transform" and g(s) is the transform of f(t). 
After a little manipulation, it is found that 

(1 +a)(1 + Q)
. T (t) = 1 	a 	e

-t/2r' 
Q 	 1+ Q 	

I
o  (t/2r') 

(58) 

+ a (1 + (1 4. 	Q)2)

J 	

Jo  (2 &tie" ) exp [ -(1 (1 + 
 Q) 	

w] erfc [ 	a 	dw . 
1 + Q 

o 

(Jo  and Io  are the first kind, zero order, Bessel and modified Bessel functions, 
respectively; see Watson 1944). It does not seem possible to simplify the integral in 
equation 58 any further, but it is relatively easy to compute numerically. In fact 
Fig. 1 shows equation 58 plotted vs. t/ r' for the values Q = 0.01 and a = 0.28. The 
latter number is appropriate to almost classically excited vibration in a diatomic 
molecule: the vibrational mode in such a molecule would almost certainly qualify for 
the title "inert". We note from equation 58 that when t/ r' is very small 

Q 
o 

To(t)
a

o 
' 

which corresponds with the final value of T when the inert mode is "frozen" (see 
equation 51 et seq and case (iv) below). We  have already remarked (in case (ii) above) 
on how little this final value of T differs from the "t/T/ 4 .0" value (see equation 53) 
of Q 	/(1 + a)(1 + Q) and Fig. 1

o 
 exemplifies this. We see too, that the sole effect of 

relaxation on To  (at least under the present assumptions) is to produce a 'kink' in 
T (t) of quite small amplitude, whose trough occurs when t/r' is 2. As a matter of 
inierest we show the aeries expansions for To(t), valid for tie «1 and >>1, 
respectively. 

To(t) 1 	a (1 + Q)(I + a + 2Q)  
Q T., 	(1 4- a )(1 + Qo) 2(1 + a + Q) 

(57) 

(59)  



- 14 - 

To(t) 
1  

Q To 	(1 + a)(1 + Q) 	(1 +a)(1 + Q)1 	rr t 

They confirm that T(t) lies below the initial and final values in the vicinity of tie 0 
and 	c*. Equation 59

o 
 was obtained from equation 58, and equation 60 direct from the 

real integrals in equation 52 with a .0.  (The curve labelled "equation 59" in Fig. 1 
includes the next term, involving (tie ). The coefficient of this term is a lengthy 
algebraic expression in a and Q). 

When a 0 we anticipate that To(t) will behave in a way very similar to that 
sketched in Fig. 1, except that for very small values of tit' , the curve will start from 
the origin and then quickly fair into the curve in Fig. 1, (see equation 51 et seq). When 

e is not very much greater than a2(1 +a)2/ic it seems reasonable to expect that the 
relaxation effect exhibited in Fig. 1 will, roughly speaking, be superimposed upon the 

(1 - e
zz

erfc z)-type of curve found previously, (see Fig. 2b). Either way, it seems fair 
to comment that the relaxation time effects are, somewhat surprisingly, quite small in 
relation to the temperature jump effects. In practice it seems highly probable that 
they will not be distinguishable at all, even in this extreme case of r = 0, which 
produces the most favourable set of circumstances for such effects to work on To(t). 

(iv) 

In case (i), with a = 0, relaxation time is of no importance. In cases (ii) and (iii) 
we have examined two extremes of gas/solid behaviour (as far as the inert mode is 
concerned) and found solutions for T (t) which are valid for 0 < r' 	. In this and the 
succeeding sub-section we examine the extremes of r' , starting with 7' = 	. The 
wall conditions will be left in a general state for the time being and commented upon as 
and when necessary. 

Putting r' = a, in equations 40 and 41 we find that 

L iQ 	
QT a(1 +a) 	+ (a + ar) 	 r 	1187-0  = 	

(61) 
(1 + aar)riTar + (1 + a)r 	o 	s 	

(1 -Faar) T/Tic + (1 +(dr'  

which is still a very unwieldy transform expression. Therefore we shall examine only 
the two cases, a r = 1 and 	F = 0. 

i+Q+a [ 

When a F 1 equation 61 gives 

T. 

s 
(62) , 	i.e. 

	no 

+a 

which is precisely equation 47. Thus equation 48 is true even when r' = 
gas-phase excitation of the inert mode occurs at all: the gas/solid interaction is solely 
responsible for the changes which occur in inert mode temperature. 

When r =0 equation 61 gives 

(60) 



To [+ Q 
o

+ a 
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Q T o co 

 

 

(63) 

   

    

which is precisely equation 42. To(t) is therefore the same as in equation 43, which 
is not surprising because, setting r = 0 and r' = co simultaneously is another way of 
saying that the inert mode has no communicable energy. Since the time scale and 
amplitude of T (t) differ so little between the results 62 and 63 for r = a-1  and 0, it 
seems reasona%le to suppose that this will also be so for all intermediate r values. 
When r' = cc it is conventional to refer to the internal energy mode as "frozen". But 
note how wall effects can make some quantities (in particular of course To(t)) behave 
as if the mode is not frozen. 

(v) 	7' r- 0 . 

The final special case concerns the so-called "equilibrium approximation". It is 
clear from equation 19 that when r' (and hence r ) = 0, 0 = T everywhere. Thus the 
internal mode is now in the class that we have described as active. Letting r' = 0 in 
equations 40 and 41 leads to the following transform expression for the interface 
temperature. 

[ 1+Q + (1 +a  )
a 	

To  1 + aar K 	 a)s 

Clearly the time dependence of T is similar to that found in cases (i) and (ii) 
(equations 43 and 48, respectively). 	quation 64 is valid for all r in the present case 
and it is interesting to note how r makes itself felt in the time scale of the To  

variations. In particular, when a r = 1 it can be seen that this time scale is exactly 
the same as that found in case (ii), equation 48. The latter result has now been shown 
to be valid for 0 c r' c *D. 

When r= 0 it can be seen that the time scale is increased by a factor (1 + a )2  
compared with the one just mentioned for a r= 1. Since a is possibly significant 
compared with unity, the change of time scale with r may be noticeable in typical shock 
tube experiments. 

We may make use of the result 64 as follows. The theory to date permits us to 
imagine that the "translational-plus-active" modes do in fact consist of only the 
translational energy states. To emphasise this fact in what follows we shall replace 
the suffix "a" by a suffix "t" where this may be appropriate; e.g. r

t 
for ra where r

t 
is now the proper translational accommodation coefficient. Then, with 7" = 0, the 
internal energy mode of specific heat C becomes an active mode. With the inter-
pretations adopted in this particular paragraph, it is clear that Qo  in equation 42 is 
synonymous with what we imply by Q in equation 64. The two results, 42 and 64, are 
not, however, completely comparable because equation 42 implies that the active 
internal mode temperature is T. at time t = 0 whilst equation 64 as it stands has been 
derived on the assumption that this temperature is zero at this same time. A little 
thought will indicate that we may in fact compare equations 42 and 64 directly by 

Q Tc.  
(64) 



- 16 - 

omitting the factor 1/(1 + a) on the latter's r:ght-hand side. This factor only appears 
in equation 64 because, with the interpretation that we are now placing on that result, 
the internal energy mode must, immediately subsequent to time t = 0, be brought into 
equilibrium with the translational states. Tie 1/(1 + a) term shows how the energy, 
originally in translation only, is shared between translational and internal states. 

All this is by way of a somewhat lengthy justification for comparing the quantity 
written as 'a' in equation 42 with the factor (1 + a)a/(1 + aaF) in equation 64. Remember-
ing that a in this latter expression is now taken to mean ((2 - rt)/rt).(2yty0w), with 

K
t 

equal to K based on "suffix t" values, we Lmply that 'a' in equation 42 has the 
following value 

(1 + C/Cpt)(Cpt /Cvt
)(2gt  O

w
)((2 - r

t)/rt ) 	
(65) 

1 + (C/Cvt) L(2 rt) / (2 	ri):1 (ri/rt )  

r. here refers to the accommodation coefficient of the internal energy mode which we 
are now treating as active. 

Equation 65 indicates how the proper translational coefficient and the active internal 
mode coefficient should be combined. So far as the writer is aware, no measurements 
of ri  have been made; accommodation coefficients for diatomic gases are usually quoted 
as a single overall figure, such as we ha ,re implied by 'a' in equation 42 anyway. Thus 
it is not possible to comment on the rela.Live sizes of the terms in equation 65. However, 
there is an intuitive feeling (see e.g. Sherman, 1955) that ri  for an active mode will be 
of the same order as r

t 
(since translation is also an active energy mode). If we assume 

that ri  does equal r
t' 

equation 65 becomes simply 

2 -rt 
	

2 K
t  

a - 	
r
t 
	ft 

w  C va 

where Cpa 
= C

pt 
+ C and similarly for C

va
. Remarking that K

t 
and K are in fact 

identical in magnitude, we see that ra  and rt  also have the same magnitude in these 

circumstances. There would seem to be a good case for an experimental investigation 
of the energy accommodation coefficients for separate energy modes, in order to 
clarify issues like those just discussed. It would not, however, appear to be an easy 
thing to do. 

4. 	Comparisons with Experiment 

In this final Section we set out to compare the theory with some results obtained 
from experiment. By and large, the theory suggests that purely relaxation time effects 
will not be of any great practical significance. Consequently we anticip ate that the 
experimental results should compare reasonably well with the simple 1 - ez  erfc z 
function, which has appeared most often in the preceeding analysis of special cases. 

a = 
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The experimental results were obtained using a thin film platinum resistance 
thermometer on the closed end of a conventional (2" internal diameter) shock tube. 
The film was drawn in the form of a spiral with a resistance of 2,500 0 . With the 
thermometer output connected to the pre-amplifier of a Tektronix 535 oscilloscope the 
circuitry had a rise-time of about 0.12 microseconds. The shock tube was driven by 
hydrogen at 230 psia, the low pressure end containing air at a pressure of 200 mm Hg. 
This arrangement produced a primary shock wave of Mach number about 3,2. The 
experiment was conducted at an early stage in this particular shock tube's history so 
that, unfortunately, no proper shock speed measuring gear was available at the time. 
Consequently the shock Mach number was estimated from the diaphragm-pressure 
ratio, using results prel,iously obtained in similar tubes. The shock reflection 
problem was dealt with by using a constant specific heats ratio of 1.4 (i.e. ignoring 
vibrational relaxation effects and treating rotation as an active mode in air). On this 
basis, the pressure in the reflected shock region has been estimated at 15.3 atmospheres 
whilst what we have written in previous Sections as To, turned out to be about 1 ,2000K. 
Such a temperature rise of course rather higher than one would like for comparison 
with the foregoing linear theory. But we emphasise that the present investigation is 
purely heuristic and that it is with the broad behaviour of To(t), rather than its finer 
numerical details, that we are mostly concerned. Figs. 2a and 3a are typical of the 
oscilloscope traces obtained subsequent to the reflection of the primary shock. 

Fig. 2b shows the function 1 - ez erfc z plotted against z2 , together with some 
experimental points taken from the trace in Fig. 2a. The latter were obtained by
scaling the experimental ordinate at time t = 2usec to fit the ordinate of 1 - ez erfc z 
at z2  = 4. In order to check the fit obtained between theory and experiment in Fig. 2b, 
the ordinate at t = 2lAsec on Fig. 3a was also scaled to agree with the ordinate from 

1 - e
z

erfc z at z2  =4. (The trace in Fig. 3a was obtained from a different experimental 
run than the one yielding Fig. 2a). Since Fig. 3a was obtained with an oscilloscope 
sweep-speed of 0.2 usec/cin. and the equipment rise time has been estimated as 0.12 
usec, we may expect to find some effect of the electronics on the experimental 
observations. This latter effect may be evaluated theoretically as follows. 

The voltage output from the thermometer gauge is proportional to T (t). Let us 
assume that equation 43 in case (i) above is the relevant function. The a%mittance 
of the electrical circuitry can be written in Laplace transform form as (1 + str)-1, 
where t

r is the rise-time. Consequently the oscilloscope trace should be proportional 
to the transform 

Q T 	
1 
	ire (1 + Q0)/a 

(1 + Qo) 	(1 + str) 	s( IRO + Q0)/a +ca. ) 

2  or, in other words, the difference between this trace and the function 1 - ez  erfc z 
should be 

t
r 
	 17-‘1 (1 + Q0)/a 

(1 + st
r

) 	N/70(1 Qo)/a 	ir7 ) 
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Writing 
1,72(1  + Qo) 	

b 
a 

for brevity, this transform can be inverted to give the correction term 
VTR 

-t/t 	
" 

r -t/tr  bat 
erfc (bIri) + 	

rt" 	
e

xa
dx 

2 r 
- (1 + 1/ba tr)-1 	e 	e 

b j 
o 

The value of Qo  in the experiments under discussion was estimated to e about 
0.01 (the temperature rise of the gauge having been estimated at about 12°C, using 
the gauge calibration factor and voltage output measured on the oscilloscope), so that 
we may reasonably neglect it compared with unity. Then 1/b2 r  a2 / K c. 0.48 x 10-6  sec 
in the present case. 1/112tr  is taken as 4, then, and the correction factor evaluated on 

this basis is shown in Fig. 3b. (Note that z2 	tax / K ). The agreement between theory 
and experiment is fairly satisfactory, bearing in mind the approximations and 
assumptions made in deriving the results. (We remark that the slope of the theoretical 
curve corrected for rise-time effects is indeed zero at time t =0 and has been drawn as 
such in Fig. 3b). 

The comparisons of Figs. 2b and 3b are consistent with the theoretical deduction 
that inert internal mode effects will not be significant. The inert mode in the present 
case would be vibration in N2  and 02  , which would not be significantly excited at the 
temperatures encountered in the experiments. Thus what we have written as a above 
would be small enough compared with unity to be ignored. The theory is of course 
rather approximate if the inert mode is vibration, because this class of energy states 
would not be anywhere near classically excited under the experimental conditions. 
Thus a would really be a function of temperature and not constant, as has been assumed. 
Since the average vibrational specific heat would have been small anyway, this fact is 
probably not of any great significance in the results depicted in Figs. 2 and 3. 

By far the most interesting feature of the results appears as a result of the 
relation between z2  ( alt/K) and real time t. The theoretical and experimental match 
has suggested that z2  .4 corresponds to a real time of 2 usecs. From the gas 

conditions in the reflected shock region a /K is estimated to be 1.13 (2 - r
a

)
2 
 ra t 10

-10 
 

secs. and it follows that r
a 

has the value 0.03, roughly. While a "translational" 

accommodation coefficient of this magnitude is very small compared with the usual 
values of about 0.8 to 0.9 on so-called "engineering" metallic surfaces, it is 
significant to recall some general remarks made by Estermann (1960). These are to 
the effect that molecular scattering from crystalline surfaces is most frequently 
consistent with very small (almost zero) energy accommodation coefficients. The 
accommodating surface in the present experiments is the platinum film of the thermo-
meter gauge*. This was formed by drawing the spiral shape on to glass sub-strate 

Accommodation effects on the sub-strate material surrounding the gauge may in fact 
be very different, but such "two-dimensional" effects are implied to be negligible in 
the present problem. 
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material with Hanovia paste (liquid bright platinum), followed by baking in the usual 
way at temperatures near the softening point of the glass. Hanovia paste is basically 
hydrochloroplatinic acid in a mixture of organic liquids which boil off during the heat 
treatment process. Addition of heat to H2Pt C16  reduces it to hydrochloric acid and 
platinic chloride (Pt C14). Presumably further heating reduces this salt, depositing 
the platinum metal which then forms a strong bond with the glass sub-strate. The 
chemistry involved in the manufacture of a thin film gauge strongly suggests that the 
platinum will present a crystalline surface to any gas in contact with it. 

However, examination of the platinum film surface under the microscope indicates 
that it has a sintered appearance and is very much more of an "engineering" surface 
than a properly crystalline one. At first sight this fact seems to be at variance with 
the inferences made above, but it must be remembered that the collisional mean free 
path for the gas molecules isonly about 10-6  cm. at a pressure of 15 atmospheres. 
This is certainly very small compared with the "roughness" of the film surface and, 
accordingly, it seems plausible to assume that only one (or at most, only a few)• 
encounters occur between a gas molecule and the solid material of the film before that 
molecule again collides with another gas molecule. Such behaviour may well be 
consistent with small accommodation effects. 

It is an obvious corollary of such arguments that a reduction in overall gas  pressu r•e 
should lead to an increase in accommodation coefficient, since the mean free path will 
increase and more gas/solid molecular encounters occur before the advent of an 
"interrupting" gas/gas molecule encounter. Some tentative experimental observations 
support this view, the accommodation coefficient roughly doubling for a reduction of 
pressure by about a factor of four. 

The results of this exploratory investigation appear sufficiently encouraging to 
warrant a more careful and extensive experimental study. This matter is at present 
in hand and it is hoped to report on the findings at a later date. (Recent experiments 
have served to confirm the general findings of the earlier brief results). 

The author is grateful to Mr. .T. R. Busing for providing the experimental 
information referred to in the text: also to Mr. G. M. Lilley for his helpful criticisms 
of the original manuscript. 
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