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ABSTRACT 

Here we show how atomistic computer simulation can help experiment unravel the rich structural 
complexity of oxide nanomaterials and, ultimately, aid the fabrication of nanomaterials with 
improved, tuneable or indeed new properties. We first explore the simulation methodologies: 
energy minimisation, monte-carlo, genetic algorithms and molecular dynamics together with the 
potential models used to describe the interactions between metal and oxide ions. These tools can be 
used to generate realistic structures that include all the essential microstructural features observed 
experimentally, such as surface structure (morphology, surface energy, faceting, surface steps, 
corners and edges), grain-boundaries and dislocations, intrinsic and extrinsic point defects and 
epitaxy. We show how the theoretician is able to capture all these (experimentally observed) 
structural details by attempting to simulate crystallisation. Equipped with realistic models, 
important properties can be calculated, including: electronic, chemical (catalytic activity, ionic 
diffusion and conductivity) and mechanical (hardness, elastic constants). This is illustrated by 
calculating the ease of oxygen extraction from the surface of a CeO2 nanocrystal compared with the 
bulk parent material with implications for oxidative catalysis. Throughout this chapter we 
emphasise the importance of molecular graphics – a much maligned and underrated tool – but 
without which, the generation of much of the simulation and experimental data would not have 
been possible. 
 
Keywords: Interatomic potentials, evolutionary simulation, crystallisation, atom deposition, 
temperature assisted dynamics, nanocrystals, supported thin-films, encapsulated nanomaterials, 
nanopolycrystalline, dipolar surfaces, epitaxy, microstructure, properties. 
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9.1 Introduction 
A milestone for atomistic computer simulation will be the ability to model ‘real’ systems, which 
comprise, for example, 1023 atoms. This is unlikely to be realized in the near future, even with the 
almost exponential increase in computational power coupled with grid computing (for example see: 
[Schissel DP 2005]); at present ‘only’ trillions of atoms are possible. Accordingly, the simulator 
must resort to a variety of mechanisms such as imposing periodic boundary conditions or 
continuum descriptions of the material away from the site of interest rather than treat every ion 
explicitly. Perhaps the most important scientific field associated with the 21st century is that of 
nanomaterials, which is rather agreeable to the atomistic simulator in that it is now possible to 
model every single ion comprising the system explicitly – at least in one dimension. 
 
In this chapter we first describe briefly the theoretical methods, which include the interionic 
potentials used to describe the interactions between the oxygen and metal ions, together with the 
simulation strategies used to generate realistic atomistic structures. We have taken the liberty of 
ensuring the mathematics in this chapter is straightforward rather than rigorous. This is to help the 
non-expert gain a rudimentary understanding of atomistic simulation to help gauge its accuracy, 
scope and limitations without the pain of assimilating a forest of equations. We have, where 
necessary, provided references that are more rigorous for the interested reader. 
 
Equipped with these theoretical methods, we show how they can be used to generate realistic 
atomistic models of oxide nanomaterials. We start with isolated nanoparticles of MnO2 and explore 
how microstructural features (such as dislocations, grain-boundaries, microtwinning, vacancies, 
substitutionals interstitials, intergrowths, morphology) can be introduced into the model. We next 
look at CeO2 nanoparticles and investigate how the morphology of the crystal changes as one 
traverses to the nanoscale. Here, the atomistic models provide insights into the possible structures of 
edges and corners, which comprise a high proportion of the surface area of the nanoparticle and are 
difficult to characterize experimentally. Edge and corner sites are also likely to be more reactive 
compared with ions accommodating plateau regions. At this point we take a short diversion to 
structural characterization and use the atomistic models to calculate important properties. In 
particular, the model is used to determine how easy it is to extract an oxygen ion from corner, edge 
or plateau sites of the nanoparticle compared to oxygen extraction from the surface of the parent 
(bulk) material. 
 
Isolated nanoparticles have three dimensions at the nanoscale, whereas supported thin films have 
only one dimension – thickness – at the nanoscale. We show how simulation can be used to 
generate models for oxide supported oxide thin films. These models can then be used to predict the 
considerable influence that the substrate has in directing the structure of the thin film deposited 
thereon. Indeed, one can tune the properties of the thin film, by careful choice of substrate. We 
illustrate this by showing how the CeO2(110) surface can be exposed in preference to the more 
stable CeO2(111) by depositing a thin film of ceria on an yttrium stabilized zirconia substrate. This 
is important because the CeO2(110) surface is catalytically more active compared with the 
CeO2(111).  
 
In the final section we investigate the structure of nanoparticles that are supported on a substrate 
and consider the structural implications of encapsulating a nanoparticle into a host oxide material. 

9.2 Theoretical Methods 
In this section we describe potential models that can be used to represent the interactions between 
the ions comprising the nanomaterial, the computational codes, used to perform the simulations, and 
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finally, the strategies for generating atomistic models (atom coordinates) for the oxide 
nanomaterials. 

9.2.1 Interatomic potentials 

Many oxides are highly ionic and therefore we can describe them accurately using the Born model 
of the ionic solid [Stoneham AM 1985]. For nanomaterials, where a high proportion of the ions are 
located at a surface or interface, the interatomic potential must be reliable at describing ions in sites 
with low coordination. Clearly, the simplest way to address this is to use the same interatomic 
potential models to describe surface and interface ions as bulk ions. Indeed, this approach has 
enjoyed considerable success, for example see [Lewis GV 1985, Duffy DM 2004, Walker AM 
2004]. Conversely, as (inevitably) systems become more complex and the need for higher levels of 
accuracy arise, surface specific potential models may play a more significant role in the future. 
 
In the Born model of the ionic solid, all the ions are all assigned a charge. For a highly ionic 
material such as MgO, formal charges (i.e. -2 for oxygen and +2 for magnesium) have been shown 
to work well. Conversely, for oxides that are less ionic, partial charges are sometime more 
appropriate. The (attractive) interaction energy between the charge on the oxygen and magnesium 
ion is given by: 
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Where qMg and qO are the charges of the magnesium and oxygen ions respectively and rMg-O the 
distance between the two ions. Equation (9.1) suggests that the ions would prefer to move closer 
and closer to each other to achieve a more stable (lower energy) configuration. However, as the ions 
move closer to one another the ‘electron clouds’ of the two ions start to repel each other. This short-
range repulsion can be described using various equations, one of which is given below: 
 
Erepulsive = Aexp(-rMg-O/ρ)         (9.2) 
 
There are two variable parameters associated with equation 9.2: A and ρ, which can be fitted to the 
experimental properties. For example, if one were to increase the value of parameter ‘A’, the 
repulsive interaction between the two ions increases and the ions would move further apart. Thus 
the A parameter used to describe MgO (aMgO= 4.2Å) may be smaller compared to the A parameter 
used to describe BaO which has a higher lattice parameter (aBaO=5.5). 
 
Setting a particular value for A might give an accurate bond distance. However, ions are very rarely 
at their equilibrium distance and therefore one needs to describe the repulsive interaction between 
the two ions over a range of distances. Accordingly, the parameters A and ρ are fitted together and 
to a range of experimental data. This may include, for example, the lattice parameter, elastic 
constants, dielectric constants etc. This enables the potential model to accurately describe the oxide 
over a range of interatomic distances and is particularly important when simulating the system at a 
particular temperature, other that 0K, where the ions are vibrating or indeed diffusing. Gale and 
Rohl provide a comprehensive treatment of atomistic potentials and how they can be derived [Gale 
JD 2003]. 
 
The total energy of the system is the sum of all the interactions between all pairs of ions comprising 
the oxide nanoparticle: 
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Etotal = ∑  (Eattractive + Erepulsive)        (9.3) 

 
The energy is shown graphically for a diatomic molecule as a function of interionic separation in 
fig. 9.1. The minimum of the graph corresponds to the equilibrium bond distance where the 
attractive Coulombic term balances exactly the short range repulsion between the electron clouds. 
Starting from the equilibrium distance, as the ions move closer together, there is greater repulsion 
because of the electron clouds and the energy becomes more positive (less stable). Similarly, as the 
ions move further away from the equilibrium position, there is less repulsion from the electron 
clouds but also the Coulombic interaction is reduced and again the energy becomes more positive. 
The force, F, on the ions at each point can be calculated by measuring or calculating the gradient at 
a particular bond distance. At distances less than the equilibrium bond distance, the gradient (force) 
will be negative indicating that the force between the two ions tries to move them apart. Conversely, 
at distances greater than the equilibrium bond distance, the gradient will be positive and the force 
acts to move the ions closer together. At the minimum energy position, the force is zero. 
 
In nature, the ions comprising the oxide nanoparticle will exist in a low or minimum energy 
configuration. This is not necessarily the lowest energy possible (global minimum energy [Gale JD 
2003]) as most systems comprise, for example defects; rather the ion positions are such that the 
system exists in a ‘local’ energy minimum position. For a diatomic molecule it is easy to move the 
two ions into the lowest energy position (fig. 9.1). However, for a system comprising, for example, 
10,000 or more atoms, the problem is more challenging. Indeed, there are many mechanisms for 
exploring low energy structures and five important methods are described briefly in the following 
section.  

9.2.2 Simulation Strategies 

9.2.2.1 Energy Minimization [Gale JD 2003]   

Here, the ions are moved (iteratively) from a particular starting configuration to a lower energy 
configuration. This can be illustrated by considering the energy minimization of a diatomic 
molecule: 
 
● Start with a (best guess) bond distance (fig. 9. 1) 
 
● Calculate the gradient.  
 
● If the gradient is negative reduce the bond distance, if it is positive, increase the bond 
 distance.  
 
● This process is repeated by recalculating the gradient until the gradient becomes zero, which 
corresponds to a minimum energy position.  
 
In reality the problem is never quite this simple because a nanomaterial will have 3N-6 coordinates, 
where N is number of atoms and therefore we have to minimise in 3N-6 - dimensional space. 
However, the basic procedure is that outlined above although there are many variations.  
 

9.2.2.2 Monte Carlo - MC [Mohn CE 2005, Harris DJ 2004, 2005]   
As the name implies, the ions are moved in a random fashion – determined by a roll of the dice! - to 
generate a low energy configuration. For example, a starting configuration is generated and then all 
the ions are moved in a random direction (determined by a roll of the dice). If the new configuration 
is lower in energy, the configuration is accepted. Conversely, if the configuration is higher in 
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energy, the configuration is rejected. However, central to this method is that it allows the system to 
go uphill in energy as well as down and therefore escape from local energy minima that do not 
relate to realistic structures. In particular, instead of rejecting all structures that are higher in energy 
than the previous one, a further roll of the dice is performed. It is this second roll of the dice that 
decides whether a higher energy structure is indeed rejected. 
 

9.2.2.3 Genetic Algorithms - GA [Johnston RL 2003]   

Here, the atomistic structures of successive generations are constructed based upon attributes from 
the parent that are deemed desirable. Desirability in this sense means for example, low energy or 
realistic bond distances or chemically sound. Highly desirable configurations are assigned a high 
breeding probability and will likely generate lots of ‘daughter structures’ whereas undesirable 
structures are unlikely to ‘procreate’. It is probably worth noting that daughter structures may have 
more than two parents! 
 
9.2.2.4 Evolutionary Simulation [Sayle DC 2003a]  

Here, the atomistic model is evolved in a similar fashion to experimental synthesis. For example, 
molecular beam epitaxy involves the deposition of molecules onto a substrate, which then adhere to 
its surface to form a coating or thin film. To generate the analogous model, instead of placing the 
whole of the thin film on top of the substrate in one go, the molecular deposition process is 
simulated. In this way the atomistic model evolves during the simulation and in so doing captures 
(hopefully) some of the structural features observed experimentally. Variations on this theme, and 
there are many, may include simulating the nucleation and growth of a material from solution or 
crystallization from a melt. 
 
9.2.2.5 Molecular Graphics  
This important, powerful, and sometimes overlooked, approach provides a wealth of visualization 
tools to move and manipulate atom coordinates in 3D. It is used as a GUI (Graphical User Interface) 
to construct chemically/physically or intuitively correct starting configurations prior to the 
simulation, to animate and thus ‘observe’ the simulation, to analyze final structures and also to help 
one comprehend complex (crystal) structures from experimental data (i.e. x ray diffraction) that are 
difficult to understand in 2D. 
 
9.2.2.6 Molecular Dynamics - MD [Smith W 1996]  
This simulation strategy enables one to simulate the movement of the ions comprising the system at 
a particular temperature and as a function of time. The method uses Newtons laws of motion to 
calculate and change the positions of all the ions as they move, vibrate or collide with one another. 
For example, the force, F, acting upon a particular ion, i, at time, t, is given by: 
 
Fi(t)=miai(t)          (9.4) 
 
Where, mi is the mass of the ion and ai, its acceleration. At the start of the simulation, the positions 
ri(x, y, z) of all the ions, comprising the nanoparticle, are defined. The forces acting upon each ion 
can then be calculated by adding up all the pair-wise interactions between all the ions comprising 
the oxide nanoparticle using an interatomic potential such as that described in equation 9.3. The 
force, which is the gradient of the energy graph, fig. 9.1, is given by: 
 

dr

dE
F =            (9.5) 
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First, the accelerations of the ions can be calculated by rearranging (9.4) and dividing by the mass 
of the ion: 
 
ai(t) = Fi(t)/mi           (9.6) 
   
 
Once the accelerations have been calculated, the velocities can be updated after a particular time 
interval, δt: 
 
vi (t+δt) = v(t) + ai(t)(δt)         (9.7) 
 
Finally, the coordinates of the atom positions can be changed based upon the atom velocities: 
 
ri(t+δt) = ri(t) + vi(t)(δt)         (9.8) 

 
At this point all the required information has been calculated and the cycle repeats – i.e. the force, 
equation 9.5, is recalculated with the new atomic coordinates. 
 
The time interval, δt, used for a particular simulation, has to be chosen carefully and must be 
smaller than the time required for a bond to vibrate. This is to ensure that the energy and forces are 
updated before the ions have a chance to move too near to one another. Unfortunately, a bond 
vibration is of the order of 10-15 seconds and therefore the biggest limitation of MD simulation is 
the short period of time one can run the simulation. For example, to simulate just one second in real 
time would require the calculation of over 1015 cycles, which is, at present, well beyond even the 
fastest computer processors. Moreover, parallelization of the problem does not really help as the 
equations have to be solved sequentially and therefore introducing more parallel processors only 
enables the number of ions in the system to be increased, rather than facilitating any increase in the 
simulation time. However, as one might have anticipated, various innovative and imaginative 
methods have been introduced to help counter this somewhat debilitating limitation. 
 
Many computational codes have been written to allow the user to perform MD simulations (for 
example: collaborative computational projects, www.ccp.ac.uk). For most of the work described in 
this chapter the DL_POLY code was used to perform the dynamical simulations [Smith W 2002]. 
This (parallel) code was developed by Daresbury Laboratory in the mid 1990s for the molecular 
simulation community in the United Kingdom. After more than 20 years since its inception, this 
code enjoys a world-wide user base. Indeed, over 600 licenses have been issued. A philosophy, 
central to the DL_POLY MD code, is that its source code is freely available [Smith W 1996] and 
therefore the users can modify, add and share new subroutines to the code to suite their particular 
simulation. As such, the code has been continually evolving since its inception. 
 
In practice, it is rare that any one simulation technique is used in isolation; rather the methods are 
combined (especially with molecular graphics), which results in a more powerful technique.  
 
In this section we have provided a brief and necessarily simple overview of some atomistic 
simulation methods and procedures. For a more in depth and authoritative treatment, we suggest 
that the interested reader refer to ‘Molecular Modeling, Principles and applications’ by Andrew R 
Leach [Leach AR 2001], which provides an excellent and detailed reference source. In the 
following section we describe how the simulation techniques are applied to the study of oxide 
nanomaterials. 
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9.3 Nanoparticles 
In this section, we describe the evolutionary simulation procedure, used to generate the atomistic 
models described in this chapter, in more detail and illustrate the procedure using MnO2

 as an 
example. Next, we explore the structure, morphology and catalytic activity of CeO2 nanoparticles 
and compare with the parent material. 

9.3.1 Amorphisation and Recrystallisation (A&R)  of MnO2 

Many atomistic studies, used to investigate the structure and energetics of a system, proceed by 
defining the basic atomistic structure (‘by-hand’), which is then simulated using static or dynamical 
methods. However, for systems that comprise complex 3D microstructures, such as nanoparticles, 
the starting structural models can prove challenging to generate. For example, the simulator needs 
to include within the atomistic model the morphological structure, including the particular low 
energy surfaces that are exposed. And whilst there are many simulation codes available to generate 
individual surfaces (such as ref: [Gay 1995]), for a nanoparticle one also needs to consider the 
atomistic structure of edges, where a pair of surfaces meet and vertices, where three or more 
surfaces meet, together with the implications of dipolar surfaces [Harding JH 1999]. One also 
requires a representation of the defect chemistry, which may include point defects that exist within 
the bulk or surface regions of the nanoparticle including, both intrinsic and extrinsic defects such as 
vacancies, interstitials and substitutionals together with clustering or segregation of these defects. 
For larger nanoparticles, defects such as dislocations and/or grain boundaries are likely to be 
present. And whilst the introduction and simulation of a specific and isolated grain-boundary or 
dislocation is now routine within the perfect ‘bulk’ material [Duffy DM 1986, Walker AM 2004], it 
remains challenging to introduce these into, for example, a 50,000-atom nanoparticle. 
 
All these structural and microstructural features are likely to influence, or indeed govern, the 
properties of the oxide nanomaterial. Accordingly, if the simulator is to offer predictions of a 
nanoparticle that are both accurate and can be used reliably by the experimentalist, the atomistic 
models must include all the microstructural features alluded to above. To introduce all these 
features ‘by-hand’ is certainly a daunting if not intractable a prospect and therefore an alternative 
simulation strategy must be sought to generate models with this complexity.  
 
Materials synthesis inevitably involves some kind of ‘crystallisation’ process. Indeed, it is the 
crystallisation process that controls the (micro)structure and hence the properties of the material. 
Moreover, by modifying the crystallisation process (whether crystallisation from solution, vapour 
deposition, molecular beam epitaxy, ball milling etc.) one can exact some control over the 
microstructure and hence the properties of the material. Clearly, the ideal way of capturing, within a 
single atomistic model, all the microstructural features observed experimentally, is to simulate the 
crystallisation process itself. Indeed, there are many theoretical studies that explore the 
crystallization process. For example Piana and Gale performed some highly detailed MD 
simulations on the growth and dissolution of urea crystals [Piana S 2005]. Similarly, Hamad et al. 
used MD to explore the embryonic stages of ZnS nanobubbles [Hamad S 2005]. These outstanding 
and elegant dynamical atomistic simulations capture much of the important features associated with 
the nucleation, growth and dissolution processes. Indeed, these approaches would prove ideal in 
generating models for nanoparticles. Unfortunately, they would also prove far too computationally 
expensive (at present) to use them to generate models for oxide nanoparticles comprising, for 
example, 50,000 atoms. An alternative approach to this problem, and one that can routinely 
accommodate 100,000+ atoms with the computational facilities available today, is Amorphisation 
and Recrystallisation (A&R) [Sayle DC 1999 and Sayle TXT 2005b]. We illustrate this 
evolutionary technique in the following section by considering the example of MnO2 nanoparticles. 
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9.3.1.1 Microstructure  

MnO2 is a widely studied electrochemical material that accommodates over 14 polymorphs [Chabre 
Y 1995] and comprises an internal interconnecting tunnel structure with channel sizes 
commensurate with that of cations spanning H+ to Cs+. Accordingly, they can act as host lattices for 
the insertion, storage and extraction of cations and hence charge, which is central to their ability to 
store energy. Among the several varieties of MnO2, the form known as γ-MnO2 exhibits the best 
electrochemical activity. This material comprises a wealth of microstructural features. Indeed, it has 
been proposed that this rich microstructure facilitates the exemplary properties of this material. The 
microstructural features includes: de Wolff disorder, which is the intergrowth of domains 
comprising single and double channels, microtwinning and a variety of point defects such as cation 
vacancies. Clearly, the ability of A&R to evolve, from an amorphous precursor, the crystalline 
MnO2 structure together with microstructural features observed experimentally is a stringent 
validation of the A&R strategy and provides a useful demonstration of the technique. In the 
following section we describe briefly the generation and structure of MnO2 nanoparticles about 
10nm in diameter. Further details have been published elsewhere [Sayle TXT 2005b]. 
 
9.3.1.2 Evolution of the Atomistic Model  
A ‘cube’ of MnO2, comprising about 25,000 atoms, was constructed and is shown in fig. 9.2(a). The 
coordinates of all the ions comprising this cube were then changed to increase the lattice parameter 
by 36% and MD was then performed on this system at 2000K. The MnO2 can perhaps be compared 
with an elastic band, which is tensioned and then released. As soon as MD is applied to this 
tensioned configuration, the Mn and O ions ‘implode’. And as they accelerate and move towards 
the centre of the cube the hit other ions and bounce off. The culmination of all the accelerations and 
collisions results in the amorphisation of the MnO2, which is shown in fig. 9.2(b). Essentially, the 
energy introduced into the system to tension the nanoparticle, results in its amorphisation. During 
prolonged MD simulation, the MnO2 nanoparticle starts to recrystallise. Snapshots of the 
recrystallisation are shown in fig. 9.3(a-f) together with the energy of the system in fig. 9.3(g): 
From 0-1000ps the MnO2 is amorphous. At about 1000ps, a crystalline seed evolves within the 
amorphous MnO2 and the Mn and O ions start to condense onto the surface of this seed increasing 
its size, fig. 9.3(a, b). The crystallization front propagates from this seed to encompass the whole 
nanoparticle; recrystallisation is essentially complete after about 3000ps. The energy of the system 
goes down during the recrystallisation with the difference in energy between the amorphous 
structure and crystalline structure reflecting the latent heat of crystallisation. Finally, the 
nanoparticle is cooled, under MD, to 0K. The complete simulation is computationally intensive and 
required about 5 days using 96 processors of a SunFire F15K Galaxy-class configuration 
supercomputer.  
 
9.3.1.3 Final Structure  
Inspection of the final, 0K structure, shown in fig. 9.4, reveals a crystalline nanoparticle, which 
accommodates predominantly domains that confirm to the pyrolusite structure [Chabre Y 1995] - a 
low-energy polymorph of MnO2. Fig. 9.4(a) shows a representation of the Mn and O atom positions 
comprising the nanoparticle. The oxygen sublattice forms a close packed array and gives rise to 
octahedral sites, 50% of which are filled by Mn to give the MnO2 stoichiometry. In particular, it is 
the filling of these octahedral sites that gives rise to the particular polymorph. In fig. 9.4(a) a 
rectangle has been drawn that encompasses two oxygen planes and an atomic plane of Mn 
sandwiched between. These three planes are shown (plan view) in fig. 9.4(b). Inspection of the 
filling by Mn reveals straight single parallel lines of Mn, which correspond to the pyrolusite 
polymorph. These lines also change direction, which corresponds to microtwinned domains as 
observed experimentally [Hill MR 2004]; an enlarged segment is depicted in fig.9.4(c). Detailed 
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analysis of the final structure, using graphical techniques, reveals also the presence of vacancies, 
which have also been observed experimentally. 
 
In summary, A&R has been used to generate models for MnO2 nanoparticles that are realistic in 
that they reflect the low-energy polymorphic configuration (pyrolusite) and include complex 
microstructural features that have been observed experimentally. Accordingly, we suggest therefore 
that the A&R strategy is an appropriate simulation tool one can use to generate realistic models of 
oxide nanoparticles. 

9.3.2 CeO2  
The second isolated nanoparticle that we consider is ceria, CeO2. This material has enjoyed much 
attention recently because its high oxygen conductivity, at moderate temperatures, makes it a 
potential candidate as a component of a fuel cell [Yu HB 2005]. Here, we explore its catalytic 
properties. 
 
In the early 1980s, three way catalysts (TWC) were found to have the ability to oxidise CO and 
hydrocarbons, while simultaneously reducing NOx to form less toxic products such as CO2, H2O 
and N2. These conversions are attained in a narrow window of the air-to fuel ratio [ Di Monte R 
2005]. CeO2, is a common promoting component in TWC, which has been attributed to its low 
Ce4+/Ce3+ redox potential and high oxygen defect mobility, but what are the implications for this 
material when one traverses down to the nanoscale? 
 

9.3.3.1 Morphology 

The atomistic structure of CeO2 nanoparticles has been well characterized by several groups using 
transmission electron microscopy [Wang ZL 2003, Zhang F 2004]. In particular, the shape of CeO2 
nanoparticles, about 10nm in diameter, can be described as conforming to truncated octahedra. 
Specifically, the nanoparticles were observed to expose {111} surfaces, truncated by {100} - within 
a TEM micrograph, these polyhedra project into hexagons. TEM images of these nanoparticles are 
presented (with permission) in fig. 9.5(b) together with a schematic illustrating the proposed 
morphological shape, based upon the TEM micrographs. 
 
Atomistic simulation can be used to predict the crystal morphology by calculating the energy of low 
index surfaces and this method has been shown to be remarkably accurate. Intuitively, the more 
stable the surface, the more that particular surface is exposed in the morphology. Indeed, this 
strategy has been shown to be a powerful simulation tool and has enjoyed much success 
[TITILOYE JO 1991] not least because of its inherent simplicity. The calculated energies of the low 
index surfaces of CeO2 are (111)>(110)>(100) and therefore the simulation would, in accord with 
experiment, predict {111} to dominate [Vyas S 1998]. Surface energy calculations also predict that 
the morphology of CeO2 should comprise more {110} than {100}. However, this is not supported 
experimentally; rather the only other face observed is the {100}, which is surprising because this 
surface is dipolar [Harding JH 1999].  
 
It is inevitable that a simplistic simulation approach, such as predicting crystal morphologies based 
solely on surface energy calculations, will fail in certain circumstances. This is because crystal 
morphologies can be preparation dependent [Chen HI 2005]. Accordingly, simulation strategies, 
used to predict crystal morphologies, must include features pertaining to nucleation and growth 
[Rohl AL 2004]. This added complexity may facilitate more accurate predictions but at a cost of 
loosing simplicity of approach.  
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In the following section we describe how A&R can be used to predict the crystal morphology of 
CeO2 nanoparticles. This should also prove a useful validation of the A&R method because detailed 
TEM images are available to compare. It is worth bearing in mind that the A&R method has to 
accommodate two unexpected features associated with the morphology of CeO2. First the non-
existence of (relatively low-energy) CeO2{110} surfaces, and second the ability for A&R to evolve 
{100} surfaces and necessarily quench the dipole, which is associated with the (100) surface.  
 
9.3.3.2 Evolution of the Atomistic Model 

A&R was used to predict the morphological shape and atomistic configuration of CeO2 
nanoparticles about 8nm in diameter. Full details regarding the simulation can be found elsewhere 
[Sayle TXT 2004] and follow a very similar procedure as that described above for MnO2 
nanoparticles. The morphologies of the CeO2 nanoparticles, predicted using A&R, are shown in fig. 
9.5(a); TEM images are also shown, fig. 9.5(b), as a comparison. The theoretical models do indeed 
exhibit truncated octahedral morphologies in accord with experiment and, in contrast to surface 
energy predictions, the predicted morphologies do not (at first sight) expose {110} surfaces. 
However, upon closer inspection of the atomistic models, fig. 9.5(a), we note that the edges, formed 
where two {111} surfaces intersect, could perhaps be described as {110}. Also, steps on the {111} 
also appear commensurate with {110}. TEM images are primarily 2D projections and therefore 
structural features that are ‘3D’ are difficult to identify experimentally. Accordingly, we suggest 
that the atomistic models, which can be observed and manipulated in 3D using graphical 
techniques, are valuable in that they can be used to help interpret TEM images and therefore aid 
experiment in characterizing the full 3D atomistic structure of CeO2 nanoparticles. 
 

9.3.3.3 Dipolar Surfaces 

Fluorite-structured {100} surfaces are dipolar and therefore inherently unstable [Norenberg H 
2001]. Surface energy calculations on dipolar surfaces have necessitated quenching the dipole prior 
to simulating the system with static or dynamical methods, which is normally achieved by 
physically rearranging the ions ‘by-hand’ [Stanek CR, 2004]. Conversely, A&R is a simulation 
method in which the structure/atom positions evolve during the simulation. Accordingly, this 
approach does not need (or indeed allow!) the simulator to manually move ions with an aim of 
quenching the dipole. However, close inspection of the CeO2{100} at the end of the simulation, fig. 
9.6, revealed a 50% reduction in the number of oxygen ions at the {100} surfaces. Specifically, the 
simulation has evolved a structure in which the dipoles associated with the {100} surfaces have 
been quenched. Moreover, because these surfaces have evolved, we suggest that they are likely to 
be more realistic than dipolar surfaces that have had their dipoles quenched manually (based upon 
chemical intuition) because the simulated crystallization (A&R) reflects (in part) crystallization that 
occurred during the experimental synthesis. However, this assumption must be tested on a system 
where the real structure of the (quenched) dipolar surface is unambiguous - down to the individual 
positions of the surface ions, which is, at this time, a contentious issue [Norenberg H 2001]. 
 
9.3.3.4 Oxidation of CO to CO2 using CeO2 nanoparticles  

Once a realistic model of the CeO2 nanoparticle has been generated, this model can be used to 
predict its catalytic activity. In particular, atomistic simulation can be used to predict whether the 
nanoparticle would be catalytically more or less active compared with the parent material. For 
example, the oxidation of CO to CO2 involves extracting oxygen from the surface of CeO2. Clearly, 
if one could make the surface oxygens more facile to extraction, one can, potentially, fabricate a 
more active catalyst. It has been shown previously, that extracting oxygen from the step site of 
CeO2 is easier than from the plateau [Sayle TXT 1992, 1994]. This appears intuitive in that an 
oxygen ion accommodating a step site is lower coordinated compared with an oxygen ion at a 
plateau site and therefore less strongly bound to the surface. One can then argue that if more step 
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sites can be generated at the surface of the catalyst then, theoretically, one should be able to 
generate a more active catalyst. One way of achieving this (discussed later) is to deposit a thin film 
of CeO2 on a substrate, which acts as a template in directing the CeO2 to expose a reactive surface. 
The other approach is to traverse to the nanoscale: 
 
At risk of stating the obvious, the dictionary definition of a polyhedron is: a solid figure consisting 

of more than four plane faces. A pair of faces will meet along an edge and three or more edges meet 

at a vertex. Accordingly, as a particle decreases in size, the proportion of ions accommodating edge 
and vertex sites, compared to those occupying plateau regions, increases. In addition, the number of 
surface to bulk atoms also increases. Eventually - at the nanoscale - the number of edge sites 
becomes commensurate with plateau sites and surface ions commensurate with bulk ions. Indeed, 
one can perform a simple count of the ions in the CeO2 nanoparticle, fig. 9.5(a), to confirm this. 
Accordingly, the CeO2 nanoparticle should comprise a high concentration of labile (low-
coordinated) surface oxygen species. 
 
To explore the catalysis of the CeO2 nanoparticle, we need to determine how difficult it is to extract 
an oxygen ion from its surface. The simulation procedure that can be used to calculate this is 
relatively straight-forward. In particular, we choose an oxygen ion to remove, we then extract this 
ion out of the surface and replace two Ce4+ with Ce3+ (to accommodate for the charge imbalance). 
The energy of this system is then calculated and compared with the energy of the same system but 
with an oxygen ion removed from a different position. Using this procedure one can generate a 
table of oxygen location vs. vacancy formation energy. However, when one inspects the atomistic 
model, fig. 9.5, a daunting number of different surface oxygen species are available for extraction; 
the nanoparticle comprises 15,972 ions, many of which are surface or near surface species. 
Accordingly, an oxygen vacancy formation energy ‘averaged’ over the whole nanoparticle was 
calculated. Specifically, 266 oxygens were removed from the surface of the starting (prior to 
amorphisation) configuration together with 532 Ce4+ species replaced by Ce3+. The rationale 
underlying introducing the defects prior to the amorphisation is that the A&R will direct the 
vacancies and Ce3+ species into a range of low-energy configurations thereby providing a more 
realistic average reduction energy for the nanoparticle. The nanoparticle comprises, in total, 15,972 
ions and therefore removal of 266 oxygens results in a reduced nanoparticle with composition 
CeO1.95. This system was amorphised and then recrystallised; further details pertaining to the 
simulation can be found elsewhere [Sayle TXT 2005a]. The final structure is shown in fig. 9.7. 
 

Inspection of the reduced nanoparticle, fig. 9.7(a-c), reveals an octahedral morphology comprising 
{111}, truncated by {100}, which is similar to the unreduced nanoparticle, fig. 9.5.  The Ce3+ ions 
can be seen to decorate step and corner sites in addition to positions on {111} terraces. A simple 
count revealed that 20% of the total number of Ce3+ species occupy positions on {111} terraces, 
26% decorate {111} step (17%) or corner (9%) positions and 11% occupy positions on {100}. The 
remaining 43% of the Ce3+ species occupy positions within the bulk of the nanoparticle. We note, 
however, that most of these ‘bulk’ Ce3+ species occupy positions one or two atomic planes below 
the surface rather than deep inside and near the centre of the nanoparticle. Locating oxygen 
vacancies is much more difficult compared with locating Ce3+ species because a vacancy is not a 
physical entity within an atomistic model, and the relaxation of the lattice surrounding an O2- 
vacancy or Ce3+ is sometimes considerable. Consequently, a simple count of the vacancies, together 
with their location, was not possible, although oxygen vacancies were identified to occupy step and 
corner sites in addition to {111} terrace sites. In addition, oxygen vacancies were observed to lie 
one oxygen subplane below the surface oxygen ions.  
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The energy required to extract an oxygen ion from the bulk and from the ‘perfect’ (111), (110) and 
(310) surfaces of CeO2 was calculated by Sayle, Parker and Catlow [Sayle TXT 1992, 1994]. From 
these values, the energy associated with oxidizing carbon monoxide to carbon dioxide, using an 
oxygen ion extracted from a ceria surface, was calculated following: 
 
CO(g) + 2CeO  →  )(2 gCO  + 

••

OV  + 
'2 CeCe        (9.9) 

 
These values are presented, together with the average energy required to extract an oxygen ion from 
the surface of a CeO2 nanoparticle to oxidize the carbon monoxide, in table 9.1. We note that the 
more negative the energy the more labile the oxygen and therefore the easier it is to remove from 
the lattice to promote the oxidation of CO. 
 
The simulations suggest that it is easier to extract oxygen from the surface of a CeO2 nanoparticle 
compared with the bulk parent material. In particular, the average energy required to extract an 
oxygen ion from the surface of the ceria nanoparticle is lower compared with the (most stable) 
CeO2(111) surface associated with the parent material. Moreover, the average energy required to 
extract oxygen from the nanoparticle is calculated to lie between those energies calculated 
previously for extracting an oxygen from the bulk, (111), (110) or (310) surfaces. This we suggest 
is a realistic value because fig. 9.7 reveals that O2- vacancies and Ce3+ ions populate all conceivable 
positions in the nanoparticle including ‘bulk’, terrace and step sites and comprise a variety of 
configurations spanning simple isolated defects to complex multi-defect clusters. For illustration, 
the atom positions showing the structure of three defect clusters are shown in fig. 9.7(d-f) 
 
In conclusion, the simulations predict that ceria nanoparticles can offer more reactive surfaces 
compared to the parent material, because of the higher proportion of step/corner sites, and therefore 
facile oxygen species. Accordingly, ceria nanoparticles may help promote the oxidation of CO to 
CO2, which is central to the performance of ceria based three-way catalysts. 

9.3.3.5 Reducibility of CeO2 nanoparticles using Monte Carlo 

In 1996, Cordatos, Ford and Gorte generated atomistic models for CeO2 nanoparticles CenO2n (n=2-
20 and n=50) using a Monte Carlo approach coupled with simulated annealing [Cordatos H 1996]. 
The authors found that the Ce50O100 nanoparticle exhibited the fluorite structure and exposed the 
(111) surface. The reducibility of the clusters was determined from the difference in lattice energies 
of CenO2n and CenO2n-1, where charge neutrality was maintained by changing two Ce4+ ions to Ce3+. 
The authors concluded that the reduction of ceria nanoparticles is structurally sensitive and that 
larger crystals are more difficult to reduce. 

9.3.3.6 Aggregated nanoparticles and Grain-boundaries 

Experimentally it is well-known that during the synthesis of oxide nanoparticles the nanoparticles 
are not always monodispersed; rather they aggregate together - as shown by HRTEM for example 
see Ref [Wang ZL 2003]. The interfacial structure between the two nanoparticles can (for example) 
be coherent (if perfectly aligned), can form a twin-boundary (if they are aligned but miss-oriented 
by a particular angle) or form a more general and complex grain boundary structure. Examples 
(HRTEM) of all such grain-boundary structures can be found in [Wang ZL 2003, Zhang F 2004]. 
The properties of a grain-boundary have been shown to differ profoundly compared with the perfect 
parent material [Sata N 2001, Duffy DM 1986, Sayle DC 2005]. Clearly, for aggregated 
nanoparticles, the number of grain-boundaries will be considerable. Accordingly, if one is to make 
predictions pertaining to the properties of nanoparticles then models for nanoparticles that comprise 
grain-boundaries must be generated. And using atomistic computer simulation it is possible to 
generate such structures. For example, fig. 9.8 shows a model for a CeO2 nanoparticle that 
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comprises two twin-boundaries. This nanoparticle, which comprises about 21,000 atoms, was 
generated using an analogous procedure as that used to generate MnO2 or CeO2 nanoparticles, 
described above. 

9.4 Supported Thin Films 
Thus far we have explored, using atomistic simulation, the structure of ‘isolated’ nanoparticles and 
find the structure and chemistry to be quite different compared with their bulk counterparts. In the 
next section we consider oxide thin films supported on an oxide substrate. Here, in contrast to a 
nanoparticle, which has all three dimensions at the nanoscale, the thin film exists at the nanoscale in 
only one dimension – its thickness. 

9.4.1 Ion Deposition 

Atomistic models for oxide thin films with nanoscale thicknesses, supported on an oxide substrate, 
can be generated by depositing those ions comprising the oxide thin film, onto the surface of the 
substrate using MD. This type of approach can be classed as evolutionary and reflects or simulates 
the basic operation of experimental deposition techniques such as molecular beam epitaxy. We 
illustrate the technique using CaO/MgO(001) as a model system. 
 
9.4.1.1 CaO/MgO(100) 

Snapshots (taken during MD simulation) depicting the growth of CaO deposited on MgO(100) are 
shown in fig. 9.9. More details pertaining to this study can be found in reference [Sayle DC 1999a]. 
Initially, ions are fired from a source to the surface of the MgO substrate and as the ions hit the 
surface, they move, under MD, into low energy configurations. For example, cations and anions 
diffuse across the surface via a hopping mechanism and if they come in close contact, they are 
likely to adhere to form a diatomic. Further ions ‘diffusing’ across the surface will add 
progressively to this diatomic to form a larger cluster. The structure of this CaO cluster is clearly 
influenced profoundly by the interactions from the underlying substrate. Eventually, with continued 
deposition, a second layer will start to evolve followed by a third and so forth. It is interesting to 
note that the Ca and O ions swap positions with Mg and O ions of the underlying MgO(100) 
substrate. This is because an energetically facile surface diffusion mechanism involves an exchange 
process between the deposited ions and ions occupying the surface atomic layer of the substrate. 
This suggests that ionic materials may not be grown on a substrate with a similar structure without 
significant intermixing across the interfacial regions. This phenomenon was explored in more depth 
by Harris and co-workers [Harris DJ 2005]. 
 
The nature of the substrate, on which the ions are deposited, also has a significant influence on the 
structure of the oxide thin film deposited thereon. For example, substrates that comprise a high 
concentration of surface steps, provide energetically favourable nucleation sites for ions deposited 
thereon. This is because of the increased coordination of an ion that adheres at a step, compared 
with a plateau position. The surface(s) exposed by the substrate will also influence profoundly the 
thin film because the substrate can act as a template in directing the structure of the overlying thin 
film [Sayle DC 2002a]. This is especially relevant for films with nanothicknesses, because the 
interfacial interactions will comprise a significant component of the total energy.  
 
9.4.1.2 Growth Rates 

A major limitation with MD, in the context of ion deposition, is the timescale generally accessible, 
which, using (present day) computational resources is still only of the order of nanoseconds. If the 
whole of the thin film is deposited within this timescale, this corresponds to thin film growth rates 
of at least meters per second; experimentally, depositions are typically of the order of ‘atomic layers 
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per second’. One solution to reduce the simulated deposition speed is to increase the temperature of 
the simulation. This increases the diffusivity of the ions in the simulation to levels commensurate 
with experiment (at a much lower and more realistic a temperature). However, one must be cautious 
in using this approach because at high temperatures the diffusion mechanisms may change, which 
may result in artificial structures. Methods for circumventing timescale issues, pertaining to MD 
simulation, are receiving considerable attention at present, and various innovative strategies are 
being devised – see, for example, [Voter AF 2002, Harris DJ 2004]. 
 

9.4.1.3 Incommensuration 

Another important issue associated with simulating oxide thin films with nanoscale thicknesses is 
the incommensurate relationship that exists between the lattice parameter of the substrate and thin 
film deposited thereon. For example, consider the CaO/MgO system in which the lattice parameters 
of the component materials are: aCaO= 4.8 Å; aMgO= 4.2 Å. To create a model for a CaO thin film 
supported directly on top of the MgO substrate with all ions in alignment (coherent interface – see 
Sutton AP 1995]), would require the CaO to be compressed by about 13%. This is easily achievable 
for a single atomic layer because the energetically favourable cation-anion interactions across the 
interface will compensate for the energy required to strain a single atomic layer of CaO to bring it 
into alignment with the underlying MgO substrate. However, for each additional layer of CaO 
added, an extra strain energy term would also need to be added. Eventually, at a particular critical 
thickness [Dong L 1998, Lu YF 2005], the strain energy would outweigh the energy associated with 
the interactions across the interface between the CaO and MgO [Schnitker J 1998]. Above the 
critical thickness, the structure and configuration of the overlying thin film may change with respect 
to the underlying substrate to reduce the strain. (Micro)structural changes include, for example, the 
formation of superlattices, misfit dislocations, low interfacial densities, grain-boundaries etc 
[Chambers SA 2000]. Clearly, atomistic simulation must be able to reproduce these microstructural 
features if reliable predictions are to be made using these models. And in the following section we 
describe how such microstructural features can be introduced into the atomistic models. 

9.4.2 Near Coincidence Site Lattice (NCSL) theory 

One way of addressing the difference (incommensurate relationship) between the lattice parameter 
of the thin film and that of the substrate, is to use a near coincidence site lattice theory to predict 
epitaxial relationships with low associated misfits. In the following sections we describe how this 
approach is used, in conjunction with atomistic simulation, to generate models of thin films. 
 

9.3.2.1 BaO/MgO 

Sayle and co-workers [Sayle TXT 1993] used a NCSL theory, coupled to atomistic simulation, to 
predict superlattices for BaO (aBaO=5.5Å) thin films supported on MgO (aMgO=4.2Å). For example, 
for the BaO(100)/MgO(100) system, 10 BaO unit cells (55.0 Å) of the thin film are nearly lattice 
matched with 13 MgO unit cells (54.6Å) of the substrate. Clearly, 54.6Å and 55.0Å are in near 
coincidence and the BaO overlayer only needs to be expanded by a small amount, from 54.6 to 
55.0Å, to facilitate coincidence. This particular NCSL configuration is associated with a residual 
misfit, F, calculated, to be about +0.7%, following: 
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where n is the number of BaO unit cells (equal to 10) and m, the number of MgO unit cells (equal to 
13). Clearly, the energy required to accommodate a 0.7% misfit is much lower that that required to 
accommodate the full 27% misfit associated with the fully coherent system (i.e. n = m = 1). 
 
In addition to coincidences found by matching integer unit cells of the thin film with that of the 
substrate, coincidence can also be found by rotating one material with respect to the other. For the 
simplest case - where the thin film is the same material as the substrate - a twist grain-boundary will 
result [Duffy DM 1986]. For the BaO/MgO system, a configuration associated with a low misfit 
and favourable interfacial interactions, involves a 45o rotation of the BaO overlayer with respect to 
the MgO substrate and was observed experimentally by Cotter and coworkers [Cotter M 1988]; 
atomistic models for this structure have also been generated [Sayle DC 2002b]. 
 
9.3.2.2 CeO2/Al2O3 

When a thin film is supported on a substrate, the supported thin film will respond structurally to the 
substrate to facilitate a low-energy configuration. This can include, for example, dislocation 
evolution and will influence the defect chemistry of the system. In this respect Sayle and co-
workers explored how easy it was to extract an oxygen ion from the surface of a CeO2 thin film, 
when supported on an Al2O3 substrate, compared with oxygen extraction from the parent material 
[Sayle DC 1995]. The calculations suggested that supporting the CeO2 thin film on top of Al2O3 
might promote the migration of oxygen from the interfacial region to the surface, a process of 
catalytic importance. 
 
9.3.2.3 NiO/ZrO2 

Fisher and Matsubara extended the NCSL/atomistic simulation approach to generate heterophase 
interfaces between materials with rectangular surface symmetries and used the method to simulate 
eight heterophase interfaces between NiO and cubic ZrO2 [Fisher CAJ 2005]. They observed that 
many of the interfaces were found to comprise disordered, open structures with correspondingly 
high energies as a consequence of the strong repulsive forces between like-charged ions in close 
proximity. The exception was the NiO(111)/ZrO2(100), which was observed to exhibit good 
coherency across the interphase boundary, where the NiO and ZrO2 shared an oxygen plane. The 
rationale underlying this study was to demonstrate the ability of simulation-based methods for 
identifying interface configurations associated with strong cohesive forces holding the materials 
together for optimizing the properties of composites of technologically important materials. 
 
A limitation with using a ‘NCSL strategy’ is that the simulator has to decide which particular NCSL 
to construct and then use atomistic simulation (i.e. energy minimization and or MD) to determine 
whether the configuration is of low-energy and therefore likely to be structurally realistic. An 
alternative is to use an evolutionary method to guide the generation of the interfacial configurations 
and structures. These methods, which includes simulated ion deposition section 9.4.1, do not require 
(or even allow!) the simulator to pre-specify a particular interfacial configuration. 

9.4.3 Amorphisation and Recrystallisation 

Here, the oxide thin film is placed on top of an oxide substrate and then amorphised. MD 
simulation, applied to this system (amorphous thin film on top of crystalline substrate) for long 
duration, results in the recrystallisation of the thin film [Sayle 1999]. In contrast to the 
recrystallisation process observed for ‘isolated’ nanoparticles in section 9.3, the underlying 
(crystalline) substrate is central in directing the structure of the overlaying (amorphous) thin film. In 
particular, the structure of the substrate facilitates the crystallization of the thin films by acting as a 
pseudo ‘nucleating seed’. In addition, the simulator does not have to wait for a crystalline seed to 
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spontaneously evolve from the amorphous sea of ions and therefore the simulation time, and hence 
computational cost, is reduced.  
 
9.4.3.1 SrO/MgO(100) 

Snapshots illustrating the A&R process as applied to an SrO thin film, about 1nm thick, supported 
on an MgO(001) substrate, are presented in fig. 9.10. Inspection of the final crystalline structure, 
fig. 9.10(d), using molecular graphics, revealed that the SrO thin film generated conformed to 8 
lattice spacings for the overlying SrO thin film, lattice matched with 10 lattice spacings of the 
underlying MgO substrate (NCSL configuration). This supercell corresponds to a lattice misfit of 
about -2%, based upon the lattice parameters of the component materials: aSrO=2.57Å; aMgO=2.10Å, 
which is much smaller that the ‘bulk’ misfit (+20%). In addition, mixed screw-edge dislocations, 
shown in fig. 9.11, were observed to have evolved within the SrO thin film, which help both to 
accommodate the misfit associated between the thin film and underlying support and to remove 
deleterious interfacial interactions such as cations in close proximity [Sayle DC 2000].  
 
9.4.3.2 MgO/BaO(100) 

Figure 9.12 shows the structure of a thin film of MgO supported on a BaO(100) substrate. Here the 
recrystallisation resulted in the evolution of a nanopolycrystalline MgO film. The nanocrystallites 
range from about 200 to 2,000Å2 in size and are rotated, with respect to the underlying BaO surface 
normal by various angles. The structure of the grain-boundaries that are formed between 
neighbouring grains are consistent with grain-boundaries observed experimentally [Yan Y 1998, 
Pennycook SJ 1999]. An STEM image of an MgO grain-boundary is included in the figure for 
comparison and has been reproduced with permission [Pennycook SJ 1999]). Further details of this 
study can be found in [Sayle DC 2000b]. 
 
9.4.3.3 CeO2/YSZ  

In section 9.3.2 on CeO2 nanoparticles, it was suggested that by traversing down to the nanoscale, 
one is able to increase the proportion of reactive to unreactive CeO2 surfaces simply by virtue of the 
fact that if one goes small enough, then the number of oxygen ions accommodating reactive 
step/corner sites will be commensurate to oxygen ions comprising more stable positions and 
therefore unreactive surfaces. An alternative strategy is to fabricate thin films with nanoscale 
thicknesses. In particular, if a material, which is deposited onto a substrate, is sufficiently thin, then 
it is likely that the substrate will act as a template in directing the structure of the thin-film 
deposited thereon - including the particular surface it exposes. 
 
For example, the (111) surface is energetically the most stable ceria surface. It is therefore exposed 
preferentially compared with less stable surfaces [Gritschneder S 2005]. However, the energy 
required to create oxygen vacancies on the (111) surface, which is directly linked to its catalytic 
activity [Sayle TXT 1992, 1994], is higher compared with the (110) surface. One therefore desires a 
mechanism for fabricating CeO2(110) in preference to CeO2(111). One way is to traverse to the 
nanoscale, as described previously, the other is to deposit a ultra-thin film of CeO2 on top of a 
substrate material. The rationale underlying the latter is that the substrate may act as a template 
[Sayle DC 2002a] in directing the structure of the overlying thin CeO2 film. A simulation study was 
therefore performed to explore this possibility. 
 
A CeO2 film, about 2nm thick, was deposited on top of an YSZ(110) substrate (YSZ: yttrium 
stabilized zirconia). The CeO2 was first amorphised and then recrystallised. Full details of the 
simulation can be found in reference [Sayle DC 2002c]. It was anticipated that the YSZ(110)  
exposed at the surface would direct the CeO2 thin film to expose the (catalytically active) (110) 
surface also.  
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Fig. 9.13 shows graphically the atom positions comprising the CeO2/YSZ(110) system. Inspection 
of these figures revealed that the YSZ(110) substrate did indeed influence the structure of the CeO2 
thin film. However, surprisingly, while the CeO2 exposed the (110) surface as anticipated, it 
exposed also the (111) and dipolar (100). In particular, the CeO2 thin film overlayer was observed 
to be nanopolycrystalline with each of the nanocrystalline domains exposing a particular face at the 
surface – either (110), (100) or (111). It was proposed that the lattice misfit between the YSZ 
substrate and CeO2 thin film deposited thereon was in part responsible for the nanopolycrystalline 
structure of the CeO2 thin film.  

9.4.4 Melting and Seeded-Crystallisation  

Similar to A&R, this evolutionary strategy involves crystallization from a melt. However, to reduce 
the computational time required for the system to evolve ‘naturally’ a crystalline seed, seeds were 
manually introduced into the liquid. 
 
9.4.4.1 FeO(nanocrystalline)/FeO 

A study by Phillpot and co-workers describe a simulation strategy for generating models for 
nanopolycrystalline FeO with grain-sizes of about 5nm using MD simulation [Phillpot SR 1999]. In 
particular the authors deposited an ultra thin, molten film of FeO on top of an FeO substrate. Within 
the molten film they introduced sixteen randomly oriented crystalline ‘seeds’. The system was then 
cooled gradually under MD. During the crystallization, the (molten) Fe and O ions condensed onto 
the seeds propagating their structure and, because the seeds were misoriented, the crystallization 
resulted in the formation of a nanopolycrystalline film with general grain-boundaries as propagated 
by the orientation of the seeds. Inspection of the grain-boundaries revealed them to be structurally 
realistic – similar to those observed experimentally [Sutton AP 1995]. 

9.4.5 Temperature Assisted Dynamics 

Another strategy for overcoming the debilitatingly short timescales accessible using MD 
simulations is Temperature Assisted Dynamics (TAD). This strategy is derived from a variety of 
methods labeled ‘hyperdynamics’, which were developed by Voter and co-workers [Voter AF 
2002]. The strategy involves the use of simulations, performed at high temperatures, to gauge 
evolution of a system at a lower (realistic) temperature. For example, the energy required for an ion 
to move out of the surface of a material is so high that the probability of it happening at room 
temperature - and within timescales accessible to MD - is low. Conversely, if we increase the 
temperature, the probability of it occurring within the same timescale increases. Accordingly, the 
simulation is run at sufficiently high a temperature to ensure the process occurs with the timescale 
accessible. Once the transition is detected (i.e. the ion moves out of the surface), the attributes of 
this process are recorded and characterized. This process, together all other related important 
processes, are then transferred back to a simulation performed at a more realistic (low) temperature. 
For a more comprehensive treatment of the method see [Voter AF 2002]. 
 
9.4.5.1 BaO/SrO 

Harris and co-workers used TAD to explore the surface diffusion and heteroepitaxial growth of 
BaO on an SrO substrate. Crucially, it was found that the surface diffusion proceeds most 
favourably by an exchange mechanism involving the surface layer. For example, as a barium ion 
diffuses across the SrO surface, it was found that an energetically favourable pathway, in addition 
to a simple hopping across the surface, is for the barium ion to swap places with a strontium ion 
located within the surface atomic layer of the underlying SrO substrate [Harris DJ 2004, 2005]. This 
has severe implications for growing sharp interfaces between different oxide materials using, for 
example, molecular beam epitaxy. Mixing can also lead to surface contamination and subsequent 
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changes in surface properties. It is likely that this phenomenon will occur also at the surface of 
nanomaterials – nanoparticles and thin films, which will present problems to applications utilizing 
nanodevices. 

9.5 Supported Nanoparticles 
Thus far we have seen that changing one or more of the dimensions of a system to the nanoscale 
can influence, sometimes profoundly, its microstructure and hence properties. Clearly it is 
important to be able to exercise control over the structure to fine tune or indeed optimize desirable 
properties [Sata N 2000]. To this end one can envisage supporting oxide nanoparticles on an oxide 
substrate: Indeed, it is well-known that small metal particles, supported on an oxide substrate, can 
be catalytically more active compared with the parent materials [Diebold U 2003]. 

9.5.1 MO/BaO (M= Sr, Ca, Mg) 

Models for SrO, CaO and MgO nanoparticles were generated by placing a rectangular 25,000-atom 
block of each oxide onto the surface of a BaO(100) substrate. The oxide nanoparticles were then 
amorphised and recrystallised. Further details can be found in ref. [Sayle DC 2002d]. During the 
recrystallisation, the interactions between the nanoparticle and the underlying BaO substrate were 
found to have a profound influence on the structure of the nanoparticle. Indeed, these interactions 
facilitate a wealth of microstructural features that evolve during the recrystallisation.  

For the SrO/BaO(100) system (“low” -7% misfit – equation 9.10), the SrO nanoparticle was found 
to lie coherent with the underlying BaO substrate. For the CaO/BaO(100) system (“medium” -15% 
misfit) only small regions of coherence was observed between the CaO and BaO with dislocations 
evolving within CaO regions that were misaligned with respect to the underlying BaO. For the 
MgO/BaO system (“high” -31% misfit), the misfit is so high that no regions of coherence between 
the MgO nanoparticle and BaO substrate could be identified. This study also proposed the existence 
of a critical area for dislocation; the concept of a critical thickness is well-known [Sayle DC 
2002d]. If confirmed experimentally, this prediction may have important implications with respect 
to the field of microelectronic circuits. 
 
In fig. 9.14, the structure of the MgO/BaO(100) system is shown. Close inspection of the 
nanoparticle reveals a variety of microstructural features, including: 
 
(i) Morphology The nanoparticle is not a rectangular block, rather it comprises four 
crystallites interconnecting at various angles. The central region, coloured red, exposes the 
MgO(100) at the surface and at the interface, i.e. MgO(100)/BaO(100). The missoriented 
crystallites, coloured yellow, blue and grey, emanating from this central region, appear to exhibit 
triangular pyramidal morphologies. The nanoparticle exhibits a high density of surface steps. 
 
(ii) Grain-boundaries The four interconnecting crystallites, are misaligned, which gives rise 
to various grain boundary structures. Inspection of these structures in fig. 9.14(a) reveals that they 
are complex (general) and therefore difficult to assign to a particular coincidence site lattice (CSL) 
description. Moreover, bending of the lattice planes compounds this difficulty. 
 
(iii) Epitaxial Configurations The crystallites expose the MgO(100) and MgO(111) surfaces 
at the interface (we note that rocksalt {111} surfaces are dipolar). No epitaxial configuration could 
be identified. This is attributed to the high misfit associated with this system. 
 
(iv) Point defects The interfacial region, fig. 9.14(b), is highly defective and includes voids, 
vacancies and cation intermixing across the MgO/BaO boundary. 
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(v) Decorations  Inspection of fig. 9.14(a) reveals that the surface of the MgO nanoparticle is 
decorated with many Ba ions that have migrated from the BaO substrate. 
 
(vi) Dislocations Dislocations were observed to have evolved within the MgO nanoparticle, 
the core structure of a mixed screw-edge dislocation is shown in fig. 9.14(c) 
 
This study provides an illustration that supporting a oxide nanoparticle, on an oxide substrate, can 
influence profoundly the structure and microstructure of the nanoparticle and is likely to modify its 
properties. 
 

9.6 Encapsulated Nanoparticles 
An important area within nanoscience is the embedding of nanoparticles within a host lattice. For 
example various materials have been encapsulated within microporous materials such as zeolites 
[Viswanadham N 2001]. More recently, materials have been encapsulated within single and 
multiwall carbon nanotubes [Monthioux M 2002], leading to the fabrication of one-dimensional 
materials. The intense scientific interest in these systems is hardly surprising since with appropriate 
choice of encapsulating lattice, one can potentially exact control over the structure and properties of 
the encapsulated material. This has inspired many researchers to explore materials that might act as 
the host lattice and materials that might prove suitable to be encapsulated. By mixing and matching, 
an almost limitless number of possible systems can be envisaged. One can also envisage 
encapsulation of a nanoparticle within a fully dense host lattice. Indeed, Jeng and Shen have 
explored the structure of NiO nanoparticles encapsulated within CaO by sintering and annealing 
NiO and CaO powders [Jeng ML 2000]. Atomistic simulation can also be used to predict the 
structure and morphology of encapsulated nanoparticles. One such study by Sayle and Parker, 
explored the influence of introducing an oxide nanoparticle into the near surface region of an oxide 
host [Sayle DC 2003b]. In particular, models for oxide encapsulated oxide nanoparticles were 
generated by constructing a block of a rocksalt-structured oxide. The surface region of this block, 
comprising about 25,000 atoms, was then amorphised Once amorphous, a spherical nanoparticle 
about 700 atoms in size, was introduced. The whole system was then recrystallised and the system 
analysed structurally. The procedure is illustrated, for CaO encapsulation within an MgO host, in 
fig. 9.15. 
 
The introduction of the amorphous CaO nanoparticle into the amorphous MgO substrate is shown in 
fig. 9.15(a). Fig. 9.15(b) shows the system after recrystallisation. In this figure, the CaO 
nanoparticle has been extracted out of the host lattice to show more clearly the morphology of the 
nanoparticle and the void, within the MgO host, it occupies. Fig. 9.15(c) shows the system with a 
segment of the simulation cell cut-away. This enables one to see more clearly the nanoparticle 
within the host lattice. In fig. 9.15(d), a slice cut through the system is shown to reveal that the CaO 
nanoparticle rotates slightly with respect to the MgO host. The driving force for this to occur was 
attributed to reducing the lattice misfit associated with the configuration, whilst maximising 
favourable cation-anion interactions across the (curved) interfacial region. Careful analysis, using 
graphical techniques, reveals that the CaO nanoparticle exposes {100}, {110} and {111} facets to 
the MgO host at the interfacial regions. In addition, this procedure was performed for (BaO and 
CaO) nanoparticles encapsulated in MgO, and (SrO and MgO) nanoparticles encapsulated in BaO. 
The structure of MgO, BaO, CaO and SrO nanoparticles, which have been extracted out of their 
respective host lattices to reveal more clearly the morphology they accommodate, are shown in fig. 
9.16(a-d) respectively. 
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The study raised several issues pertaining to the encapsulation of nanoparticles. In particular, the 
nanoparticles were identified to be highly strained. For example, the SrO nanoparticle, encapsulated 
within BaO, revealed that the SrO maintained full alignment of counter ions across the interfacial 
regions. The lattice misfit associated with the SrO/BaO system is about -7% and therefore the SrO 
is tensioned to maintain this aligned configuration. It was proposed that the energetically favourable 
cation-anion interactions across the interfacial region outweighed the energetically deleterious 
effect of tensioning the lattice. Clearly, if the size of the nanoparticle were increased then the energy 
required to tension the lattice, which operates effectively in 3-dimensions, would increase faster 
than the increase in the favourable interfacial interactions, which is a surface phenomenon and 
inherently two-dimensional. This suggests that there is a ‘critical’ size associated with encapsulated 
nanoparticles, above which misfit dislocations evolve. Indeed, dislocations/commensurate 
structures were observed for the other three systems, which are all associated with a higher lattice 
misfit. The critical size was predicted to depend upon a combination of both the nanoparticle and 
the host within which it is encapsulated.  
 
In summary, the encapsulated nanoparticles exhibited a range of morphologies, expose a variety of 
facets at the nanoparticle/host lattice interface, and are observed to rotate within the cavity in which 
they occupy. The structure and nature of the nanoparticles reflect the lattice misfit between the 
nanoparticle and the host lattice. Further details can be found in [Sayle DC 2003b] 

9.7 Conclusions 
In this chapter we have explored primarily how models of oxide nanomaterials, with full atomistic 
detail, can be generated using computer simulation. These include isolated nanoparticles, ultra-thin 
films supported on a substrate, supported nanoparticles and encapsulated nanoparticles. Once a 
model is available, a wealth of electronic, chemical and mechanical properties can then be 
calculated and the results used predictively to aid experiment: Properties amenable to calculation 
include, for example, diffusion coefficients, ionic conductivity [Sayle DC 2005], catalytic activity 
(included in this chapter), elastic constants, bulk and shear moduli, Youngs moduli, piezoelectric 
constants, phonons, dielectric constants, surface energies [Gay DH 1995]. A well-established and 
popular computer code for calculating a variety of properties using such atomistic models is the 
General Utility Lattice Program (GULP), which is freely available from the Author [Gale JD 2003]. 
 
The atomistic models derived are also useful as starting structures for Quantum Mechanical (QM) 
simulations. This is because it is less expensive computationally to generate models using atomistic 
simulation compared with QM 
 
It is tempting to think, especially when viewing the animations of MnO2 crystallising (fig. 9.3), and 
the resulting nanoparticle structures, that one is observing ‘real’ crystallisation at the atomistic 
level. However, one must exercise caution in that the simulation is bound by (artificial) simulation 
constraints implicit in the methodology – not least by the potential models describing the 
interactions between the ions. Conversely, it is very surprising that such highly-complex 
microstructural features, observed experimentally, such as the dislocations, grain-boundaries, 
morphologies, surface structures, isolated and associated point defects, have simply evolved in a 
purely artificial way within the simulations described above. Accordingly, we suggest that the 
simulated Amorphisation and Recrystallisation (A&R) we have discussed in this chapter, must, at 
least in part, reflect crystallisation that occurs in nature, and that the models generated using this 
approach are realistic. 
 



 22 

If used with a degree of caution, models generated using atomistic simulation can help experiment 
unravel the rich structural complexity of nanomaterials and aid the fabrication of nanomaterials 
with improved, tunable or indeed new properties. 
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