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Chapter 1, 11\7710DIJCTIO-I 

It will be generally agreed that the subject of aircraft 

autostabilization has ral)idly grown in importance in recent years. 

The reason for this is not hard to find; it is simply that recent 

great advances in aircraft performance have demanded aircraft con, 

figurationswhich often have inherently poor stability and response 
characteristics. Examples of this are legion; to quote only three, 
the adoption of sweepback as a means of inGreasing critical Mach 

number has led in some cases to an undesirably high value of ZIT  

at high Clis ; the high operational altitudes now common, result in 

poor damping of the  lateral and longitudinal oscillations; and the 

inertia distribution of many modern hihtperformnnce aircraft is such 

that inertial cross-coupling in roll is readily induced. The reader 

will doubtless be familiar with many further examples of this trend 

of reduced stability- with increased performance. 

The problem that confronts us is, then, how we may improve an. 

aircraft's stability and response charaQteristi,os without sacrifice 

of performance. Some improvement can be achieved by careful design 

of the basic airframe. For example, the above-mentioned excessive 

v 
due to sweep mar be reduced by the adoption of anhedrall and a large 

fin may alleviate the undesired effects of inertial cross-coupling in' 

roll. However, the gains that can be attained in this manner are 

limited by the restriction that the aircraft's performance must not be 

reduced, and in many cases autostabilization must be resorted to if 

satisfactory response and stability characteristics are to be attained. 

If on autostabilizer system cf unlimited weight, complication 
and expense were permitted the stability and response characteristics 

of a given aircraft could certainly be made quite satisfactory under 

all conditions. In practice, of course, all three of the above 

factors will be limited and it should be appreciated that any 

discussion which fails to take into account the possible effects of 
such limitations may be somewhat unrealistic. Thus, for example, 
a study of the effects of changing lateral derivatives may show that 
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satisfactory lateral stability characLeristicS may be obtained with a 

value of nv several times that of the basic (i.e. non-autostabilized) 

aircraft. But it may be that the power available for the autostabilizer 

system is inadequate to generate the control surface deflections required 

to attain this value of n
v at moderate and large angles of sideslip. 

Even if sufficient power is available, the aircraft designer may well 

decide to limit the maximum amplitudes of the control surface deflections 

due to the autostabilizer so that in the event of a run-away catastrophic 

divergence will not occur. 

One important reason why comparatively little attention has been 

given to the more practical considerations of autostabilizor design such 

as the above-mentioned, is simply that the problem is non-linear; i.e. 

the mathematical formulation of such a problem reduces to a set of non-

linear differential equations. Whereas linear dynamic systems of great 

complexity may be described by differential equations having fairly 

straightforward methods of solution, the cceiplications involved in solving 

even a simple non-linear equation may be considerable. For aircraft 

motion having several degrees of freedom it is frequently found that no 

analytic solution of the resulting set of non-linear equations is known. 

Step-by-step numerical solution is usually a tedious process and recourse 

has usually to be made to analogue computation. The procedure then 

adopted is to solve the equations of motion for different values of the 

adjustable autostabilizer parameters within the preselected limits. The 

adjustable parameters of the autostabilizer system are then fixed at those 

values which have been shown to yield response characteristics acceptably 

close to the desired response characteristics. 

The above procedure suffers the disadvantage of demanding analogue 

computer equipment - perhaps of considerable expense - and the procedure 

has a certain crudity in that the final (optimum) values of the adjustable 

autostabilizer parameters cannot be attained directly but are arrived at 

by trial and error. Nevertheless, for the design of autostabilizers 

for pilotless aircraft having non-linear equations cf motion with several 

degrees of freedom this procedure is probably the best practical technique 
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available. Analytic me6hods are only likely to prove superior in 

prOblems of very limited ccmplexity. 

For piloted aircraft even the recourse of analogue computation 

may fail. It is well known that the stability requirements for piloted 

and pilotless aircraft differ. For example, spiral instability may be 

Quite acceptable in a piloted aircraft, whereas in a pilotless aircraft 

it would be catastlephIc. In a piloted aircraft, lonjitudinal or 

lateral oscillations having a very short period may cause confusion and 

discomfort to the pilot whereas in a pilotless aircraft these characteristics 

may be quite unobjectionable - or even desirable, since such short periods 

are usually associated with rapid rates cf response. Considerations such 

as theso show that we cannot simply assume that the optimum setting of the 

adjustable parameters of an autostabilizer calculated on the assumption of 

pilotless flight will necessarily be suitable for piloted flight. The 

above-mentioned analogue computer equipment may (with further expense) be 

extended to form a flight simulator, but the representation of flight in such 

a device may be too limited to be satisfactory: Actual flight tests using 

the autostabilizer equipment can, of course, only be undertaken then the 

aircraft is complete and it is obviously desirable to have the design of 

the autostabilizer equipment finalized (at least within limits to allow 

for possible inaccuracies in the data used for computation) well before the 

completion of the aircraft. Might we then attempt an analytical solution 

of the problem of optimizing the autostabilizer system of a piloted 

aircraft by representing the pilot mathematically by a suitable transfer 

function in the equations of motion ? For a purely linear system (i.e. 

linear aircraft and autostabilizer characteristics) this would be possible, 

but for a non-linear system the equations of motion would be even more 

complicated than in the case of a pilotless aircraft and the chances of 

an analytic solution being known even less. Apart from these consider-

ations, however, at the present time no satisfactory transfer function 

to describe the pilot is available,though it has recently been shown 

that an expression for the transfer function of a pilot may be obtained 

for certain very restricted types of manoeuvre such as pure yawing‘ 2 



more complicated manoeuvres it seems that the human pilot is 

actually able to vary his transfer function to suit the conditions 

of flight and the demands made on him, In view of this, the com-

plications of such an analytical solution starting from the equations 

of motion, as suggested in this paragraph, become formidable. 

From the above survey it might seem that an analytical solution 

of the problem of optimizing the autostabilizer system of a piloted 
airfract having non-linear characteristics (either in the aircraft 

dynamics, or in the autostabilizer system, or both) is, at present, 

hardly to be hoped for. In fact, this is not the case, and the 
purpose of this thesis is to present a straightforward technique 

developed by the present mTiter which yields exact solutions for the 

optimum values of the adjustable parameters of a spen±fied auto-
stabilizer system fo.:. linear cases and approximate solutions of good 

accuracy for many noa-linear cases of importance. This technique 
piloted and 

is ao;licable to bah/pilotless aircraft having linear characteristics 

(including the autostabilizer system) and to piloted aircraft having 
certain non-linear characteristics (either in the aircraft dynamics, 
the autostabilizer, or both). 

CHAPTER 2. 

2,1. THE  OPTIMIZATION PROCELURE FOR PILOTED LMCR/TT  

The most general procedure consists of a number cf steps as 

detailed below. In any particular example it will usually be possible 

to telescope two or more of the steps into one. 

Step 1. 
The response of the basic aircraft (the aircraft with no 

autostabilization) to a specified input is calculated. This response 

is called the 'basic response'. 

Step 2. 
The desired response to the input is specified, and compared 

with the basic response. In general the basic response will differ 
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apprecia'sly from the desired response and autostabilization will be 

requirel if the desired resnonse is to be attained or closely 

approached. 

Step 3. 
The type of autostabilization to be used is selected (i.e. 

A m A n
v' AnI"' etc.) and any limitations or non-linearities specified. q

Stop 1.. 
It is assumed that the desired response is attained exactly, 

through the combined actions of the autostabilizer and the pilot. 

Sten 5. 
The optimum adjustment of the variable parameters of the 

autostabilizer system is assumed to have been made when the effort 
demanded of the pilot is a minimum. We use the term 'effort' in a 

bread sense to include mental strain as well as physical exertion. 

The mathematical representation of effort by means of an 'effort 
function' is discussed later. 

nth this criterion equations for the optimum values of the 

adjustable parameters of the autostabilizer system are produced 

and solved. 

Step 7. 
The time history of the control surface deflections demanded 

of the, pilot with the optimum autostabilization is calculated. If 

these appear difficult to attain it is necessary to proceed to Step 8. 

-;a2. 
The response to the specified input with the optimum autestab- 

ilizatien 1:ut with no pilot action (other than such as may be included 
in the specified input) is calculated. This response is then compared 
with the desired resocnse. If it is acceptably close to the desired 

response the optimm autostabilizaticn may be regarded as satisfactory; 

if not, we conclude that the type of autostabilization chosen is 

inherently incapable of producing a satisfactorily close approximation 

to the desired response even when adjusted to its optimum value, and 

some other type of autcstabilization must therefore be selected. 
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Stop 1.. 
It is assumed that the desired response is attained exactly, 

through the combined actions of the autostabilizer and the pilot. 

Sten 5. 
The optimum adjustment of the variable parameters of the 

autostabilizer system is assumed to have been made when the effort 

demanded of the pilot is a minimum. We use the term 'effort' in a 

bread sense to include mental strain as well as physical exertion. 

The mathematical representation of effort by means of an 'effort 

function' is discussed later. 

nth this criterion equations for the optimum values of the 

adjustable parameters of the autostabilizer system are produced 

and solved. 

Step 7. 
The time history of the control surface deflections demanded 

of the pilot with the optimum autostabilization is calculated. If 

these =ear difficult to attain it is necessary to proceed to Step 8. 

,Step 8. 
The response to the specified input with the optimum autestab- 

ilizatien 1:ut with no pilot action (other than such as may be included 

in the specified input) is calculated. This response is then compared 

with the desired resocnse. If it is acceptably close to the desired 

response the optimm autostabilization may be regarded as satisfactory; 

if not, we conclude that the type of autostabilization chosen is 

inherently incapable of producing a satisfactorily close approximation 

to the desired response even when adjusted to its optimum value, and 

some other type of autostabilization must therefore be selected. 
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Discussion of the above procedure is delayed until the end of this 

chapter. Four examples now follow. In each we assume a pilot 
co 

effort function of the form 

is the elevatnr deflecti,m that must be applied by the pilot to 

attain the desired response, ands is a measure of time. Thus we 

shall assume that the optimum autostabilization is that which 

mini mimes this integral. (The procedure is by no means restricted 

to effrat functions of this type and the 1::ze of other types of effort 

function is described later). 

2.2. FXAMPLE 1. LONGITUDINAL SFORT-PERIOD RESPONSE  

TO AN IMPULSIVE PITCHING MOMENT 

The standard non-dimensional equations of motion for short-

period longitudinal response are 

(D- 
m. 

D raw  

w (r) 	(r) 	0 

	

\ 	
m 

w (7) 	D 	A (T) = m (T) 

( 2 . 1 ) 

( 2 . 2 ) 

assuming z(r) to be negligible 

with JD= — 
dr 

and q (7-  ) = dr 

We assume that an impulsive -pitchin moment (due to, for example, 

jgun recoil) is applied such that m(r) 
3 

10 where 6 may be 

made as small as we please. 

hpplying the Laplace transfonu to Equations 2.1 and 2.2 we 

obtain 

(s —w (s) 

s +.) 
—NsT 	•inr 

7-4 

whence w(s) =i13  10-1' 

s2  +2 Rs A- 	
+J2 

L [ 17 pp( T) J 2 
	T , where r p.D(r) 

(2.5) 

4.  (s) 
m) 	Ca(s) 	= 	10-3  
_9. 

( 

( 

2 . 

2 . 

3 ) 

4 ) 
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wh 	 17' ere 52  A- 2 Rs 	 = s2 R2 	J2 	s - . 	
z 1B 1B 

1=1 

1B
-=  m Z 

q w 
(2.6) 

For the aircraft of AlTendix I, flying at li=0.91  50,000' with the C.G. 

at 282 s.m.c., the following derivatives apply:- 

= -2.35, m = -0.108, m = -0.2263, m. =-0.0895, 

ip  = 0.293, u = ;65.0, 

whence P. = 1.706, J = 11.51, 

Api)lying the inverse Laplace transform to Equation 2.5, we obtain 

-Re vt(7) = - 10-3 , • 	 sin JT 

-1.7067 
W(;) = 1.225 e 	sin 11 	T 

11.51 

(2.7) 

(2.8) 

Equation 2.8 describes the basic response (i.e. the response to 
the seleet,;(1 input with no -utostabilization) in W  of the aircraft. 
Exoninatien of the graph of Equation 2.8 (Fig. 1) shows that the 
response is markedly oscillatory and only moderately damped. Let us 
su?pose that the desired response in w is described by 

wi)( T) = 1.225 e 	° 
T 

sin_11.51 T 

1 1 .51 

assume that the autostabilizer available is of such a type 
that an elevator deflection proportional to ti may be produced. Thus 

(neglecting terns in zn  ) the derivative m is at our disposal. 

In addition to the normal assumptions of linear theory implicit in 
Equations 2.1 and 2.2 we also assume that the motion is sufficiently 

small for saturation and limitation of control surface deflection effects 
in the autostabilizer system to be neglected. 

total m with autestfthilization 
Lot k' 

n of the basic aircraft 

(2.9) 
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where S2  +2 Rs + R2 
j2  =s2  s + s - . 	"• Z ) 4 7

1r
+ m z 

1B In 	 1B 	q w 

For the aircraft of Appendix I, flying at 11=0.91  50,000' with the C.G. 

at 28c/0 s.m.c., the follauing derivatives apply:- 

r%  = -2.352 m
VI 

= -0.108, m
q 
 = -0.2263, m. =-0.0895,  v. 

iB  = 0.298, IA = 365.0, 

uhence R = 1.706, J = 11.51, 

Applying the inverse Laplace transform to Equation 2.5, 1:,o obtain 
-RT 

W(T) = 	. 10-3  e 	Ein Jr 	 (2.7) 
tB 

-1.706r 
W( r) = 1.225 e 	sin 11,51 T 	 (2.8) 

11.51 

Equation 2.8 describes the basic response (i.e. the response to 

the selecterl input with no autostabilization) in w of the aircraft. 

Examination of the graph of Equation 2.8 (Fig. 1) shaus that the 

resi,onse is markedly oscillatory and only moderately damped. Let us 

su2pose that the desired response in w is described by 

07  WD( r)= 1.225 e -5. sin 11.51T (2.9) 

(2.6) 

U.: assume that the autostabilizer available is of such a type 

that an elevator deflection proportional to ti may be produced. Thus 

(neglecting terns in z ) the derivative m is at our disposal. 

In addition to the normal assumptions of linear theory implicit in 

Equations 2.1 and 2.2 we also assn-  e that the motion is sufficiently 

small for saturation and limitation of control surface deflection effects 

in the autostabilizer system to be neglected. 

total m with autestabilization 
Let k 
	

9. 

of the basic aircraft 



The pr. problem is to determine the optimra value of lc'. 

W 	Iv e have 	(T) = 0.1064 e -5'Crsin 11.51 T 	 (2.9) 

/ whence D wD' 	
-5.0T k (T) = e 	-0.532 sin 11.51 T+ 1.225 cos 11.51 r) (2.10) 

From Equations 2.1, 2.9, and 2.10, we obtain 

j(-- (T) = e -51°7  (-0.284 in T1.51 r + 1.225 cos 11.51 T)  (2.11) 
, whence D1D(T) = e-5.r,r (-12.63 sin 11.51 T - ).335 cos 11.51 T) (2.12) 

Equation 2.2 may be written in the form 

-(:"I'y D + g rriv/,)wp(i) .4. (D - 5 k' ':r)  (T) -,1_.in:I (T) 
=Pte' 

 77pD (r) -7- 	 _ i  
i 	(2.13) ID 	iB 	

\ 	1 
-B 	 lb 	e 

where mG is the (non-dimensionalized) applied 
impulsive moment 

and n
PD 

is the elevator deflection that must be 
applied by the pilot to attain the desired response. 

Substituting the numerical values of the derivatives into Equation 2.13, 

we obtain after some reduction, 

713  (r) = 

e-5.0r [ (+1.23 sin 11.51 T - 8.982 cos 11.51 r) 

+ k'(-0 2135 sin 11.51 T + 0.930 cos 11.51 

 

 

T) 

   

-/ G kr) 	 (2.14) 
d
.s 

Now our criterion for the optimum value of k is that the integral 

r Pm I = 	[I,—n . 
PD 

(r) 	2  d T 	should be a minimum. As 
1B  

mG = 0 for 
r> e , where e may be as small as we please, we may eliminate 

mG(r) from the remainder of the calculation (with consequent simplification 

of the expressions to be dealt with) by the device of changing our criterion 

from that of k' being chosen to minimize I to the following criterion: 
k' is chosen so as to minimize the integral Ie  , where 

fel m • rr (r)  12  dr.  . 

'B 

The problem is to determine the optimum value of kl . 

We have 	(r) . 0.1064 e -5.Qrsin 11.51 T 	 (2.9) 
/ whence DvtD' 

 
WD(T)  - e -5  .Or k- 0.532 sin 11.51 T+ 1.225 cos 11.51 r) (2.10) 

From Equations 2.1, 2.9, and 2.10, we obtain 

%(r) = e -51°7  (-0.284 in T1.51 r 	1.225 cos 11.51 T) (2.11) 

whence D1D(r) = e-5° Gr(-12.63 sin 11.51 T - x.335 cos 11.51 r) (2.12) 

Eqpation 2.2 may be writtcn in the form 

(in t D 	rnw) D(r) 	- mo 	(r) 	mq ( r) - Pm77. TIP (T) 1,3  
3-B 	-D(2.13) -13 

where m
G 

is the (non-dirnensionalized) applied 

impulsive moment 

and n
PD 

is the elevator deflection that must be 

applied by the pilot to attain the desired response. 

Substituting the numerical values of the derivatives into Equation 2.13, 
we obtain after some reduction, 

Pm 	np  (r) = 	[ (+1.23 sin 11.51 T 	8.982 cos 11.51 r) 
D 

k'(-0 2135 sin 11.51 r + 0.930 cos 11.51 01 

- June  / \ G kr) 
d
B 

(2.14) 

Now our criterion for the optimum value of k is that the integral r  
I = 	

(D 
 ,—n .T1

PD 
(r) 	2  d T 	should be a minimum. As " 	113  

mG = 
0 for r> e , where e may be as small as we please, we may eliminate 

m
G
(r) from the remainder of the calculation (with consequent simplification 

cf the expressions to be dealt with) by the device of changing our criterion 
from that of k' being chosen to minimize I to the following criterion: 
k' is chosen so as to minimize the integral Ie  , where 

I = 1P111,1-n • 77x,  (r) -1 2  dr. e 	
2B  



CO 

,-Pt at 	- 1  
- 5 

co 
Pt. sinwt dt 	= 

f 
e fe° 

pt. cos'- wt dt 

I' 

= 

w 

2 m2  

(2.15) 

(2.16) 

(2.17) 

— 
2
+ (42 

p2 	4. 
P (1)2 4- 4:42) 

f 
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With neFligible error, the following relations hold for e arbitrarily 

small. 

Squaring Equation 2.1'4. and integrating 

e and co , 	u-;e. of Equations 2.15, 

an expression for I6  of the form I6  = 

involving k' 

the result between limits of 

16, 17, yields after some reduction 

0.448 17:"- 0.854. k' + terms not 

(2.18) 

ai 
For 16  stationary 	

e
= 0 when k' m  

We must now ascertain the nature of the 

of the pilot with the optimum value of 

(r) is Obtained from Equation 2.14, 

le 	9.53 optimum 

control deflection demanded 

k' (Step 7). 

noting that because of the impulsive 
D 

nature of m(

▪  

T) the solution for n (T) is, strictly, valid only for T > e 

Thus we obtain 

4mn.
pD 

(T) = 	(-0.8;1)6 sin 11.51 T-  0.122 cos 11.51 7-) 

(2.19) 

Equation 2.19 is graphed in Fig.2. It will be seen that the required 

rip  (r) can hardly be attained, if only because the initial (r >e) amplitude 

ispnon-zero. However even if the pilot holds the stick quite fixed 

(Step 8), substitution of k' = 9.53 in Equation 2.15 et.seq. yields 

w(T) 	= 1.225 e-4.95T  sin 11.17r 
k' = 9.53.77p = 0, 	 11.17 	 (2.20) 

which, as may be seen from the graph (Fig.2) is a close approximation 

to the desired response. 

We conclude that a satisfactory approximation to the desired response 

is attained even if the pilot holds the stick quite fixed. The optimum 

autostabilization may, therefore, be regarded as satisfactory. 

PD 



w(T)  = 0-1.706T (-cos 11.51 r+ 0.645 sin 11.51r) w 
(2.24) 
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2.3 EXAMPLE 2, LONGITUDIKAL SHORT-FERIOD RESFONEE TO A  

EHARP-EDCED GUST  

(It is important to avoid the appearance of divergent integrals 

in the expression for the effort function. This, and the next example 

show how this may be accomplished even with specified inputs of infinite 

duration.) 

It is assumed that at r 0 the aircraft flies into a sharp-edged 

downgust of constant magnitude and infinite duration. The limited 

realism of this assumption should be appreciated - use of such a 

simplified representation leads to straightforward working, however, 

and there is no essential difficulty in extending the technique illustrated 

by this example to deal with more complicated forms of gusts. 

If the initial change in incidence due to gust is - Wo, then 

application of the Laplace transform to Equations 2.1 and 2.2 yields, 

for the response in W(r) of the basic aircraft. 

( s 	z) r ( s) 	s) 	-Wo 	
(2.21) 

(rali  s -I- ra w) lw(s) 	( 3  s 	m1)41 (s) = m(s) 	m*.  Wo  

0 	 7r 	 ki mg  + in*  

whence w(s) 	r-S 
22  + 2 Rs + le + .12 	 (2.23) 

with the same notation as the previous example 

for m(s) = 0 (i.e. no applied moment by the 

pilot or autostabilizer) 

Using the same numerical data as Example 1. and applying the 

inverse Laplace transform to Equation 2.23 we obtain 

(2.22) 

Equation 2.24 describes the response of the basic aircraft. 

The calculation now proceeds in a similar manner to Example 1. 

Note how in formulating the initial conditions for Equations 2.21 

and 2.22 we have chosen the origin of w such that wr4.= 0. 



In this way the appearr..nce of divergent integrals in the expression for 

itn.PD(7) 	2d r is avoided. 

o  There is no further new point to be made by completing the example, 

so we pass on to Example 3. in which there is rather more difficulty in 

eliminating divergent integrals. 

2.4.  EXKVPIE 3. TONGITUDIML SHDRT-PMIOD RESPONSE TO A STEP 

DEPLEC7ION  OF ELFVATOR  

(This manoeuvre is of some importance as it may represent a 

stressing case. As we shall show, the steady-state response must be 

considered separate7,y frun the trmsieLt respon: due to the appearance 

of divergent integrals in the expression for-
(T)32 

 dT 
	• D 

We write the equat3oyas of mot:2:mm as 
	0 

	

zw) w (r) 	= 0 	 (2.1) 

(

7 
 D mw yr) 	D m  ) (T) = m . 7p(r) mn 

.6 Ti (r) (2.25) 
4 

where❑ n Cr) represents the step deflection of the elevator, 

❑ n = 0 forT < 0, 6 n = 5 n form 0 

and Ti (-.•) is the additional 31evator deflection due to the pilot. 

Application of the Laplace transform to Equations 2.1, 2.25 yields for n = 0 

(s 	(s) 	q (s) = 0 	 (2.3) 
Sv 

(2.26) 
P 

12. in • 
ti (s) = iB.  n 	n 

/ s k2 4. 2 Rs + R2 	
J2) (2.27) 

Applying the inverse Laplace transform to Equation 2.27 with the same 

notation as Example 1. we obtain for the basic response in w(r), 

R w(T) = mn. 6 	 e -Rr, 
cos Jr + 7  sin J T 

R2  4. J2  

(2.28) 



Thus 

(2.33) 

o -1 

0,  p m 5 r 

M 
- mw  p mw - mq zvir  

-12- 

Using the numerical data of Example 1., we obtain, 

	

w(T) 
	9.13 [ 	.... J147067 (cos 11.51 r+ 0.1482 sin 11.51 	(2.29) 

- weo 	V . e -1.706T (cos 11.51 r+ 0.1482 sin 11.51 r) 	(2.30) 

where 	is the steady-state response in IT 

Now for the steady-state, Equations 2.1 and 2.25 become 

— • w a av 	co 	-no o (2.31) 

virm 	m 8n  
W 0'3 	 Co 

where q.  is the steady-state response in q 

(2.32) 

(i.e. the steady state change of incidence is inversely proportional 

to the manoeuvre margin). Now re-writing Equation 2.25 in terms of 

the desired response, 

m
71 nPD( 	

m. . r) = ..( -i7- w D + mw) D(r) 4(213 D - m)1(r) - m
n 	n . 8 	(2.30 

ti r For 	[Tip (r) ] 2  dr to eLst nP - (r- co) must equal zero. 
D 	 D 

Thus w  and 8  must satisfy Equation 2.33 

i.e. 	Drs 	 • 	cap co= qco 

Hence, the steady-state response must be adjusted to the desired 

value by autostabilization or other means before attempting to improve 

the transient response. 

Let us suppose this has been done, so that w in Equation 2,30 

is equal to the desired steady-state incidence change wpco . Thus 

(strictly) the manoeuvre margin has been fixed and any further auto-

stabilization that may be introduced to improve the transient response 

-12- 

Using the numerical data of Example 1., we obtain, 

w(T) = 9 . 13 [ 	e^147067 (cos 11.51 r+ 0.1482 sin 11.51 T) 	(2.29) 

-1.706T = 	uco 	e 	(cos 11.51 r+ 0.1482 sin 11.51 r) 	(2.30) 

	

where 	is the steady-state response in 

Now for the steady-state, Equations 2.1 and 2.25 become 

- z „, W -• a 	= 0 co 

- rn. 17,7 m 	m w 	 co _ n  . n  

where q.  is the steady-state response in q 

Thus 

( 2.31) 

(2.32) 

0 

17 	 In ;On p m 5 77 
77 

m w - mw  

(i.e. the steady state change of incidence is inversely proportional 

to the manoeuvre margin). Now re-writing Equation 2.25 in terms of 

the desired response, 

mn . 
	 w 
(r) 	-C* D + m 	W 

D 
( T) 	113 D - m _ ) ( 7-  ) m . 	n (2.30 

Hence, the steady-state response must be adjusted to the desired 

value by autostabilization or other means before attempting to improve 

the transient response. 

Let us suppose this has been done, so that w in Equation 2,30 

is equal to the desired steady-state incidence change wpco 	Thus 

(strictly) the manoeuvre margin has been fixed and any further auto-

stabilization that may be introduced to improve the transient response 

p mw - mq zvir  (2.33) 

p 

For 	 T dr to ex.ist np  (r. co) must equal zero. 

Thus virco  and 8 must satisfy Equation 2.33 

i.e. w cc 	cap co= qco 
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mixit leave the value of the manoeuvre marLin unchanced. Hence the 

derivatives contained in the expression for the man.r.:.:uvre margin are 

no longer at our disposal1 and any autostabilination that we may wish 

to introduce must either consist of the vuriatiun of m. or the effective 
tier 

introductim of derivatives such as m. , m" . etc. In practice, however, 
q 	q 

it is unlikely that the steady-state response will be specified exactly, 

as we have assumed here, - it is more likely that the static margin 

only will be specified, leaving derivatives other than m at our 

disposal for autostabilization purrcles. In these circumstances the 

desired response should be specified in such a unnner that its steady 

state is zero (e.g. D wD(T) should be specified, rather than w,_(T) as 

in this example. 

Equation 2.29 is grafred in P:Ig.3. The basic response in w(r) is 

seen to be markcJIly oscillatory with a large initial overshoot, We 

assume a desired resoonse of the form 

W
D
(T) 

= 9,13 [1 - e-5"°T(cos 11.51T 	0.,1504 sin 11.51 7 )] 	(2.34) 
n. n 

whence -5.0T  e 	(112.0 sin 11.51r + 30.8 cos 11.51 r) (2.35) 

From Equations 2.1, 2.3)4, 2.35, 

A ( 

171-7  'n' n 

( 
21.45 + e

-5.0T
009.8!„ sin 11.51r 	9.35 ocs 11.517) (2.36) 

whence 

1D
c-5.0   T (1„21802 cos 11.51 T- 656.5 sin 11.51 r ) mr1.8-77   

assume that the autos'cabilizer available is of such a type 

that an elevator deflection proportional to Dw may be produced. Then 
m 

putting h  =  * with  alttostabsor we may solve Equation 2.25 for 

" 
(r) 4  tarie 

(2.37) 

-5.0rf  
21.45 + e 	009.8)4. sin 1;.51T + 9.35 COS 11.517) 

n 

AqD( T)  
( 2.36) 
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must leave the value of the manoeuvre mar Lin unen!7m7ed. Hence the 

derivatives contained in the expression for the marcuvre margin are 

no longer at our disposal
1 and any autostabilization that we may wish 

tointreducemusteitherconsistofthevariatienofm.or the effective 
rr 

introduction of derivatives such as m , 	
. etc. In practice, however, 

q 	q 
it is unlikely that the steady-state response will be specified exactly, 

as we have assumed here, - it is more likely that the static margin 

only will be specified, leaving derivatives other than mw  at our 

disposal for autostabilization purroses. In these circumstances the 

desired response should be specified in such a manner that its steady 

state is zero (e.g. D wD(T) should be specified, rather than wT.(T) as .L) 
in this example. 

Equation 2.29 is graphed in 2:1g.3. The basic response in w(r) is 

s_en to be markeJay oscillatory with a large initial overshoot. We 

assume a desired resoonse of the form 

17D(T) 	 -5. or, 
77-7-  = 

9,13 	e 	kces 11.51T + 0,15014 sin 11.51 r) 

n. n 

whence Dwp(r) -5'°T  e - e 	(112.0 sin 11.51r + 30.8 cos 11.51 r) 
n 

From Equations 2.1, 2.3)1, 2.35, 

(2.34) 

(2.35) 

whence 

D 	-5.c T 
mn.,57,7  (1;,21802 cos 11.51 T- 656.5 sin 11.51 r) (2.37) 

We assume that the autos'cabilizer available is of such a tyl:e 

that an elevator deflection proportional to Dw may be produced. Then m. 
putting h = W with alttostab41:1.zcr we may solve Equation 2.25 for 

77 - 4  barl.io (T) . D  
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-. 	-77 
aB un 	D 	 I sin 11.51 T 1 

.-1 
4. a negligible constant term due to rounding-iff errors 	(2.38) 

Putting T = 11.51T we obtain after some reduction 

[L-i 	P _ . 1 . 77. (T) 12 = (2.93.6 h + 85.75 1•3 

113 	n 
• 	.8. D 	

)e-.868T ens2 T  

+ (-51,300 h + 1 2136.0 h2) e7868T 
sin' T  

+ (-6,473 h + 312.0 112 )e-.868T sin 2 T 

4. terms not involving h 	 (2.39) 

ini-.grating Equation 2.39 between 0 and a , making use of the 

integral formulae of Equations 2.15, 2.16, 2.17 with e-ip 0 we 

obtain eventually 

f 	(') = 710 h2  - 27,525 h 

+ terms not involving h 	 (2.40) 

For this integral to be s'.-Aionary 

h = 'optimum 
= 27,52') = 19.6 

';k0),(2 

Substituting this value of h in Equation 2,38, the elevator 

deflection demanded cf the pilot with the optimum autostabilization, 

n (r), is given by 
-PD 

u 
in  

1. 
8 

n 	(r) 	= 	e-5.0T 	198.71 cos 11.51T - 100.9 sin 11.51T 
P D (2.42) 

Owing to the non-zero initial amplitude this deflection cannot be 

attained. However, proceeding to Step 8, we find that the stick-fixed 

response with the -)itimum autostabilizaticn is describerl by 

-4.50r I 	e 	cos 10.87 	0,417 sn. 10.8T Y1 j (2.43) 
7 7 

Equation 2.43 is graphed in Fig.4.  It vdll be seen that it 

approximates well to the desired response. 	The optimum autosta,Dilination 

may, therefore, be regarded as satisfactory. 

T1:2a3, 

. 	. 	(r) = 	
eT 

--"* 	1(-15.81 + 9.26 h) coo 1 1.51r +(-760.9 + 33.7 h) 

(2.41) 
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2.5.-D=IE 4, SHORT-PEPIOD InNGTIUDINAL WPONSE TO AN IMPULSIVE  
PITCHING MOMENT OF AN AIRODAFT EATING A NON-LINFAR VAPIATION 

OF PITCHING MarErT PITH INCIDETICE 

(This example illustrates how the optimization procedure maybe 

extended to deal with non-linear derivatives and serves as an intro-

duction to the technique used in the succeeding chapters for the 

optimization of autostabilizer systems having non-liliear characteristics.) 

Let the static variation of pitching moment coefficient with 

incidence be of the form Cm = Am + B =3  , where 
A .and B are constants. 

Then, for a conventional aircraft having the wing positioned near the 

C.C., we may allow for this non-linearity in the equations of motion simply 

by replacing the term mw. w(T) in Equation 2.2 by a cubic expression in 

W(T). With this exception, we use the numerical data of Example 1. 

The equations of motion become 

(D - z1v) w (T) 	(T) =0 

-m. Mv(T) + in  w( 7-) 	m • w3  71 	(1.13  D 11) 	(r) =m  (r) 

	

4 	Li 

For the same specified input as Example 1, and with the same desired 

response in w 

wn(T) = 0.1064 e-5'(IT  sin 11.51T 

Choosing 11  mi  = 132.3 and M m3  = -13,230.0 

IB 	 lB 

the static variation of C
m 

'with a is of the farm shown in Fig.5. 
(This form is chosen in ordIr to represent the characteristics of 

'pitch-up'). The elevator deflection demanded of the pilot if the 

desired response is to be attained exactly is given by 

gm  —n -alf.,- . Mw(r) + m'.wD(r) + 	. I-  wb(T) 13 + D'cID(?) in  • nPD(r)  
1B 

- m3  

- lem 

L 

n 	
• 

'a
li 

(T) - writ-,  (T) --.--' 	....._ .. 

1.B 	 1B 

Substituting the numerical data of Example 1, 77e obtain 

(2.1.) 

(2.1,0 

(2.45) 
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2.5.EVITTE 4. SORT-PERIOD LONGITUDINAL RK'PONSE TO AN IMPULSIVE 
PITCHING ,10:ENT  OF AN AIROPAFT ITAVT1\7G A NON-LINPAR VITIATION  

OF PITC911'TG 717,077_,, T. PITH INCIDETCE  

(This example illustrates how the optimization procedure maybe 

extended to deal with non-linear derivatives and serves as an intro-

duction to the techn3que used in the succeeding chapters for the 

optimization of autostabilizer systems having non-lillear characteristics.) 

Let the static variation of pitching moment coefficient with 

incidence be of the form Cm = Am + B m3  , where A and B are constants. 

Then, for a conventional aircraft having the wing positioned near the 

C.G., we may allow for this non-linearity in the equations of motion simply 
by replacing the term mle  w(r) in Equation 2.2 by a cubic expressisn in 
w(r). With this exception, we use the numerical data of Example 1. 

The equations of motion become 

(D - zw) w (T) 	(r) =0 

•̂111. DW(T) + M
1 
 w(T) +/a

3  W

3
(7) + (dB  D M) q (r) = 'n (T) 

4 	m 
For the same specified input as Example 1, and with the same desired 

response in w 

wp) = 0.1064 e-5.117.  sin 11.51T 

Choosing g mi  = 132.3 and g m3  = -13,230.0 

113 	 1B 

the static varirtion of C
m 

with a is of the farm shown in Fig.5. 

(This form is chosen in crdr to represent the characteristics of 

'pitch-up'). The elevator deflection demanded of the pilot if the 

desired response is to be attained exactly is given by 

7710  (r) = • . Dw(T) 	m .11v (r) 	w (T) ]3 	DC1D(T) iB 	D 	 D 	m3' 	D 
213 

kirla la_D(r) 	PmG (r) 

1B 	 iB 

Substituting the numerical data of Example 1, we obtain 

(2.1.) 

(2.44) 

(2.45) 



gm_ 
i5  p  n 	(r) 

D 
= e-0°434T  [ 	(1.23  sin T - 8.982 cos T).4..k'(-0.2135 sin T 

+ 0.930 cos T) 

- 15.98 e-1.302T  sin3T - 0 . mG  (r) 

1B 	 (2.46) 

where T = 11.51 T 

Ls in aample 1, our criterion for the optimum k' is that 

1B 	 ] 2  
4 77P (T) 

	

. 	D 	d T 	is to be a minimum, with e as 

small as we please. 

Squaring Equation 2.46 we obtain after some reduction 

limb.  n 	(TT . (e 0' 	T)2  limb  (-0.8205 lc' 2  + 16.176 k' ) 

53 	PD -0.868T 4. e 	(0.866 k'2  - 16.7 k' ) 

-0.868T ' - 0.1984 k'2) 

+ 2.96 k' e-1.736T sin3  T cos T 	(2.47) 
+ terms not inv"Iting k' 

With negligible error, for very small 
,,,_. 

f e-Pt  at = -1  
c_,  

P ' 	
le  e-pt sin wt dt = 

e 	 4.  6.12 
P

2 	 (2.15,16) 

1 
 ., 0(e-Pt.sin tfn  dt may be evaluated by means of a 

table of Lap;ace transforms or may be read from the graphs (Figs. 18 ec 19). 

The remaining integral is evaluated by integratinn by parts, thus: 

I: at 3 .si 	t.eos t, dt 	at  e* .sin4  t 	..
co 
 4a. e". sin4t dt 

4 . 

	

4 	(2.48) 

00 

e 

= 
de 

-a [ 
(eat sin t) dt 

which last integral is evaluated as described above. 

Integrating Equation 2.47, making '.'se of the above integrals, 

we obtain after reduction 

[ 

(2.49) 

p 
Pm 	n (r) = e-°°434  [ (1.23 sin T - 8.982 cos T).4.k'(-0.2135 sin T 
15 	D 

.4. 0.930 cos T) 

15.98 e-1.302T sin3T  0 	
mG

(T) 

where T = 11.51 T 

Ls in aample 1, our criterion for the optimum k' is that 

ii.:3117 • 7-7 	2  pD  (T) ]d T 	is to be a minimum, with e as 

small as we please. 

Squaring Equation 2.46 we obtain after some reduction 

434T Pm 	n 	(T)12  = (e-°* - ' sin T)2  (-0.8205 k'2  + 16.176 k') 
7,71  -0.868T • e 	(0.866 k'2  - 16.7 k' ) 

-0.868T 
f  - 0.1984 k'2) 

+ 2.96 k' e-1.736T sin' T cos T 

+ terms not inv"11-ing k' 

With negligible error, for very small e , 
CC. 	 00 

(2.47) 

n  ,0(e-Pt.sin tf dt may be evaluated by means of a 1. 
table of Lap;ace transforms or may be read from the graphs (Figs. 18 ec 19). 

Thremaining integral is evaluated by integratinn by parts, thus: 

co e 

	at. sir t.eos t. dt = [ e4.71t.sin4  t] 
00 

3 
03 

.: e - 

f 4a. e4a t. sin
4t dt 
4 	

{22.4489) = -a ir  (eat  sin t\  ) dt de 

e 
which last integral is evaluated E,s described above. 

Integrating Equatinn 2.47, making '.se of the above integrals, 

we obtain after reduction 

iB (2.40 

I e-Pt e-Pt  sin cep dt = 	 
P ' 

2 	2 

P + w  (2.15,16) 
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r 

	

m  n 	 52,55 k' - 	765 kJ  1P-77 . " PD 	1 
+ terms net involvin7 k' 

whence k' 	10.78 	= 10.25 optimum ------, 2 x 55 

(2.50) 

Substituting this value of k' in Equation 2.43 ve find that the elevator 

deflection demanded of the pilot if the desired response is to be attained 

exactly is given by, 

Pm,7? (T) = 
pp  

j13 

e-0.434T(0.558 cos T - 0.955 sin T) 
_15.98 e-1.302Tsin3 T  (2.51) 

This is grapacd in F:tg.5. The required n (T) can hardly be attained, 

mdnly because the initial (T >e amplitude is non-zero. It is necessary, 

therefore, to proceed to step 8 rf the optimization procedure. 

Step 8 presents more ddfficulty than hitherto due to the non-

linearity of the equations of motion. The procedure adopted is as 

follaws. 

Equations 2.1, 2,44 are combined to give 

D2 + (in* 	k' - z ) D 	mg 	zw I w(T) .f  Pm vi (r 
-7-3 1B  13 	

1B 	
1B 
	 13 

(2.52) 

where mG(T) is the (nn-dimensionalized) 

e aprlied inTulsive moment 

I 
-.i 	re 	7. 

Since 	mG(r) dT = 10 -, 	► 	1-(T) d r = 1.225 (2.53) 

[ 

Substituting the ajpropriatc numerical data in Eouaticn 2.52 7ie obtain 

I 	10.214 D .r- 150. 	w(T) - 13123n 	(r) 	1. 225 	
(2.54) 

where 	denotes a unit impulse 

Equation 2.54 

(See Ref. 8) -

step interval 

by a triangula 

airsec. The 

is solved by Tustin's regression equation technique 

an extension of Cardinal Spectrum Lnalysis - using e 

rf 10 
1 of en airsecond and replacing the unit impulse 

pulse of equal strength (i.e. "area') and of base -T3 

solution is graphed in Pig.6. 	0-,wing to the limitations 



of finite-differemce tecl.niques such as that employe(?, the initial 

value is in error es (to a lesser extent) is the second value. 

Allowance has been made for this in drawing the curve describing the 

solution of Equation 2.54. These errors could be reduced (but 

never eliminated) by tf.'.king a smaller step-interval. 

Comparison of the desired response (Fig.1) with that graphed 

in Fig.6, shows good agreement between the two. We conclude therefore 

that the optimum autostabilization is satisfactory. 

2.6. Discussion of the Optimization Prcedure 

Step 
1. The purpose of this step is merely to confirm the necessity 

for autostabilization. For non-linear cases the calculation required 

for this step may be considerable and if it is reasonably certain that 

the basic response is unsatisfactory this step may be omitted. Thus 

in Example if  since the non-linearity is mild for small w it is 

reasonable to suppose that the basic response of the aircraft will be: 

somelthat similar to the basic response of Example 1., and Step I may 

sarely be omitted. 

Step 2. 
There should be little difficulty in specifying the form 

of the desired response - though there may be considerable difficulty 

in assessing the merit of any particular form of response chosen. 

For example, the author chose the form of the desired response in 

Example 1. 

wp(r) = 0.106, e-5'°Tsin 11.51 r 

simply because it is smooth and highly damped and therefore likely 

to be pleasing to the pilot. Yen:- other similar forms of response 

would have been ecuelly acceptable and it is not easy to formulate 

a numerical criterion for the relative merits of the possible response 

forms. 

It is true that (military) aircraft specifications frequently 

demanit that certain response and stability critelia should be met - 

of finite-difference tecl•niques such as that employe(?, the initial 

value is in error es (to a lesser extent) is the second value. 

Allowance has been made for this in drawing the curve describing the 

solution of Equation 2.54. These errors could be reduced (but 

never eliminated) by teking a smaller step-interval. 

Comparison of the desired response (Fig.1) with that graphed 

in Fig.6, shows good agreement between the two. We conclude therefore 

that the optimum autostabilization is satisfactory. 

2.6. Discussion of the Optimization Procedure 

Step 1. The purpose of this step is merely to confirm the necessity 

for autostabilization. For non-linear cases the calculation required 

for this step may be considerable P.nd if it is reasonably certain that 

the basic response is unsatisfactory this step may be omitted. Thus 

in Example if  since the non-linearity is mild for small w it is 

reasonable to suppose that the basic response of the aircraft will Ix. 

somelthat similar to the basic response of Example 1., and Step I may 

sarely be omitted. 

Step 2. 
There should be little difficulty in specifying the form 

of the desired response - though there may be considerable difficulty 

in assessing the merit of any particular form of response chosen. 

For example, the author chose the form of the desired response in 

Example 1. 

wp(r) = 	e-5'°Tsin 11.51 r 

simply because it is smooth and highly dnmped and therefore likely 

to be pleasing to the pilot. Iran:- other similar forms of response 

would have been ecually acceptable and it is not easy to formulate 

a numerical criterion for the relative merits of the possible response 

forms. 

It is true that (military) aircraft specifications frequently 

demanit that certain response and stability critelia should be met - 



_0_  

fcr c:cample, a minirum value of the loarithmic decrement of the 

longitudinal and lateral oscillations is commonly specified. 

Criteria of this kind are chosen on the basis of pilots experience 

and preferences, (see for exa1:21e Ref. 5) but although these criteria 

define the ooundaries between acceptable and unacceptable response 

characteristics they 7,,,_•ov-icle little guldr..nce on the relative merits 

of various acceptable responses. Optimum forms of response are 

comwonly specified for servomechanisms (see Ref. 10) usually forms 

rich minimize a certain function of output error GO such as 

E2  a T 

- but owing to the large number of freedoms possessed by an aircraft 

and the wide range of flight conditions under which it may operate it 

hardly seems practicable to extend this concept of optimum response to 

aircraft flight. Certainly any attempt to do so would be beyond the 

scope of this present report. 

Whilst this difficulty of assessing the merit of a. given response 

should not be overloo]i.cd, we believe that it is of a philosophical 

rather than of practical importance. For any given aircraft one will 

always be able to suggest a suitable form for the desired response, 

even though one may be unable to define the optimum response. 

Step 3. 
It is obviously desirable that the type of autostabilization 

chosen should be capable of attaining the desired response without 

making excessive demands on the pilot. Otherwise, effort will have 

been wasted in fruitless calculation. For linear systems the time 

vector method of presentation provides an excellent means of predicting 

the probable effects of various types of autostabilization. 	The 

vector poIij,rns for the short period longitudinal oscillation of the 

aircraft of ExamIdes 1 to 3 are given in Fig.31. From inspection 

of these polyaons one can deduce the type of autostabilization most 

. likely to achieve the high damping associated with the desired response. 

Although for the short period longitudinal oscillation one could deduce 

as much from the coefficients of the auxiliary equation 
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I/ v.,  A. ra 	z q w 
j3  

. 0 

fr'r the mo-e complicated lateral oscillation this is hardly possible 

and the use cf time vector presentation is very desirable if an 

intellizent approach is to be made to the problem of choosing the 

type of autostabilization most likely to achieve the desired response. 

Step 2,„ For renertl (i.e. non optimum) autostabilization this 

assumption must be regarded as a mathematical artifice rather than 

an assertion of what is physically feasible. A check on the validity 

of this assumption with the optimum adjustment of the autostabilization 

is provided by Step 7. 

Step 5. 

A good discussion of the effects of pilot effort on aircraft 

response is contained in Ref. 4_ which see. 	This supports our view 

that the purpose of the autostabilizer is to relieve the strain on the 

pilot so that more of his attention may be devoted to tasks such as 

naviE:ation, weapon aiming, etc. and so that he may have greater 

reserves available for emergencies. Unless this view is accepted it is 

hardly possLble to optimize the autostabilizer system of a piloted 

aircraft as such, and one is reduced to improving the response character-

istics of the (same) aircraft in the (supposed) absence of a pilot. 

Ls shown in the Introduction this procedure may be somewhat unrealistic. 
Can optimization procedure for pilotless aircraft is developed later in 
this report.) 

The choice of effort function mast be made on empirical grounds, 

as there is insuf2icient data at present available on the psychological 

and physical strain experienced by a pilot in attempting a given task. 

In Example to 6 an 'integrated displacement-squared' effort function f 

[nPD (T) I

2 

pilot actions demanded to attain the desired response wece in each 

example physically unattainable, with the optimum autostabilization the 

of the form d T 	was employ :d. 	Llthough the 
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gm 
+ 	Z q w 

j3  

. 0 

fr'r the mo-e complicated laterza oscillation this is hardly possible 

and the use cf time vector presentation is very desirable if an 

intellizenI approach is to be made to the problem of choosing the 

type of autostabilization most likely to achieve the desired response. 

Step 	
For renertl (i.e. non optimum) autostabilization this 

assumption must be regarded as a mathematical artifice rather than 

an assertion of what is physically feasible. A check on the validity 

of this assumption with the optimum adjustment of the autostabilization 

is provided by Step 7. 

Step  5.  
A good discussion of the effects of pilot effort on aircraft 

response is contained in Ref. 4_ which see. 	This supports our view 

that the purpose of the autostabilizer is to relieve the strain on the 

pilot so that more of his attention may be devoted to tasks such as 

naviE:ation, weapon aiming, etc. and so that he may have greater 

ruscrvus available for emergencies. Unless this view is accepted it is 

hardly possLble to optimize the autostabilizer system of a piloted 

droraft as such, and one is reduced to improving the response character-

istics of the (same) aircraft in the (supposed) absence of a pilot. 

As shown in the Introduction this procedure may be somewhat unrealistic. 

(An optimization procedure for pilotless aircraft is developed later in 

this report.) 

The choice,  of effort function =1st be mode on empirical grounds, 

as there is insufficient data at present available on the psychological 

and physical strain experienced by a pilot in attempting a given task. 

In Example to 6 an 'integrated displacement-squared' effort function f 
[nPD (T) I

2 

pilot actions demanded to attain the desired response wece in each 

example physically unattainable, with the optimum autostabilization the 

of the form d T 	was employ:d. 	Llthough the 





amplitude to be so cmcill that one might well surmise that the effect 

of the pilot taking no action whatsoever would be to cause only a 

slight divergence from the desired response. However it is always 

desirable to prove this by proceeding to Step 8, particularly so for 

nen-linear systems, where a pilot input of small amplitude may produce 

an unexpectedly large change in the aircraft response. 

Step 8. 
It is worthy of remark that, for non-linear systems, 

Step 8 (together with Step 1) will probably be the most tedious 

part of the calculation. 

More general cements on the procedure as a whole and 

comparisons with published work are given towards the end of this 

report. 

(MIA= 

301. OPTIMIZATION  OF samE NON-LINEAR AUTOSTADILIZER SYSTEMS 

INTRODUCTION 

In pleneral, the amplitude of the control surface deflection 

generated by the autostabilizer system will be limited. The limits 

may be chosen deliverately so as to avoid catastrophic divergence 

in the event of an autostabil3zer run-away, or may arise through 

limitations of available jack effort, or through installation 

difficulties. Provided the control surface deflection required 

to attain the desired response does not exceed the limiting value 

the methods of the previous chapter may be applied, and the limits and 

the non-linearities arising therefrom need not be taken into account. 

In this clapter we show how the general optimization 

procedure for piloted aircraft maybe used to obtain the optimum 

values of the adjustable parameters of such a 'limited' autostabilizer 

system for the more general case when these non-linearities cannot be 

excluded from the analysis. The procedure is applicable both to 

'limited' or 'saturable' autostabilizer systems of the type described 

above, and to 'flicker' or 'flip-flop' autostabilizer systems in which 

the magnitude of the control surface deflection is constant, its sign, 



= P(x) 

-23-- 

at any instant, being tho came as thnt of nom. rrosP1Pot44d response 

parameter. In the latter easel  we assume that the system parameter 

to be optimized is the magnitude of the control surface deflection. 

We adopt the term 'Adtostabilizer Characteristic' to denote 

the graph of the autostabilizer output (i.e. control surface deflection) 

against the input signal to the autostabilizer. It is first necessary 

to derive a family of continuous characteristic curves which approximate 

to the discontinuous characteristic of the actual autostabilizer. The 

seventh-power polynomial approximation presented in the following section 

has been found to give solutions of good accuracy without introducing 

too great complication into the calculation required for the optimization 

procedure. 

3.2 	To d.:temlne the- Cc of 	of the Polynomial  Approximation 

to the Autosilizi7x Characterl3tic. 

y 

-7 - vm 

FIG.3.1.  

In Fig.3.1. 

y = the control surface deflection due to the 

autostabilizer 

x = the input signal to the autostabilizer (Thus for, say, 

m
q 
 autostabilization, y would be elevator deflection, 

and x, rate of pitch) 
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at any instant, being tho came as that of nom. rrosP1Pot44d response 
parameter. In the latter easel  we assume that the system parameter 
to be optimized is the magnitude of the control surface deflection. 

We adopt the term 'Adtostabilizer Characteristic' to denote 
the graph of the autostabilizer output (i.e. control surface deflection) 
against the input signal to the autostabilizer. It is first necessary 
to derive a family of continuous characteristic curves which approximate 
to the discontinuous characteristic of the actual autostabilizer. The 
seventh-power polynomial approximation presented in the following section 
has been found to give solutions of good accuracy without introducing 
too great complication into the calculation required for the optimization 
procedure. 

3.2 To d.:temlne the- Ceffioients of the Polynomial  Approximation 
to the Autosilizi7x Characterl3tic. 
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FIG.3.1.  
In Fig.3.1. 

y = the control surface deflection due to the 

autostabilizer 

x = the input signal to the autostabilizer (Thus for, say, 
mq  autostabilization, y would be elevator deflection, 
and x, rate of pitch) 



is the actual autostabilizer characteristic,  

Yri is the limiting value of y, 

Cd1 is the maximum value of the input signal -Hnt need be 

considered in any particular example, (Thus for m g  

autostabilization, x,k would be the maximum value of 

D(T) 

xs  is the 'saturation' x , 

If the mar.iliram arr.plit;ude of control surface deflection is limited 

to prevezi catastrophic divergence aiming from autostabilizer failure 

and run-D.7-.7.y, than yi\I  is fixed and the cnly parameter of yA at our 

disposal is ..i. . 	For 'flicker' cr 'fli-p-flep' autostabilization we F-, 
assume thht the par-..ix.`, u at our Oisposal is yy. 

In this %:ccfica w seek to obtain expressions for the 

coefficients of tho polynomial approximations to yk  . We select 

a po2yncmial approxLmtlon cf the form 

y =ax+a x3  +a 2 +a x7  = P(x) 	 (3.1) 
1 	3 	5 	7 

Our criterion for the choice cfa,a,a,a, is that 
1 	3 	5 	7 

	

P(x) 	'Sr 1 1 2  dIr. = a minimum 	 (3.2) 
Jr[rX  Jrs. ., 

Putting P(x.: - 	, , it wi-il be ceca t7lat j 	dx must be 
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7, is the actual autostabilizer characteristic,  
/a 

NI 
is the limiting value of y, 

is the mximum value of the input signal 
	

A need be 
considered in any particular example, (Thus for mq  

autostabilization, xm  would be the maximum value of 
D(T) ) 

xs is the 'saturation' x 

If the n1,217-Amum owlaitude of control surface deflection is limited 
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coefficients of thy: 	 apr,roximations to yA 	We select 
a polynomial approxLnatIon cf the fo= 

y 	 x3  +a x +a x7  -P(x) 
5 	7 

Our crit3rion for the choice cfa,a,a,a, is that 
I 	

1 • 	3 	5 	7 -  r  
0 	!.. 

Putting P(x 

discontinuous 11'7.cur‘l of 

For 0 s xsx
s 

whence 

YAI  e2  = r (a - --- )x.  +. a. x
3 
 +a z7 +a x7 12 , 	X3 	 3 	5 	7 _ (3.3) 

(3.1) 

I 	= a rjnInum 
x, A 

j 	. it w 	 / ill Le cecn t'mt 	cix must be 
4   evaluated in -;:-..?o step, ' to 7s, and xs  to 	because of the 

(3.2) 

0 

e2 cl.:: = 	(a - 1 
:) 	I 	

-7 
X 

3
4. 2a. (a - 
5 3  x: 

 +1

12a (a  )+ a: x: 

7 xs  7 

2 
4.-- 

9 

4. 2a _ 5 
13 

a 
7 

a 7 

(a 

13 7 .. 

- 

2 4. a 
7 

3 

15 x 
S 

a 	I x 
5 I  S 

2 
 -i l 

a. a 
3 	7 

.1. a2  
11 

X 
S 

(3.0 



Suniniug Equations 3.4 and 3.6 we obtain 
X.vi i 

II = €
2 

dx 

® 

3 

rn [
2ax +2a x 5  +2 a x 7  +2 a x 

	
+? (xifi-Dc s) 
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5 S 	— 7 	
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For xs  x < xm  

	

€2 = [ r(X) 
	

+ 
	2ym  P(x) 
	

(3.5) 

whence 

	

2 dx = 
	 YMai 3cM2 r j2 YM a3 
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necessary condition for Equation 3,2. to be satisfied is that 

(3.7) 

aI 	az 	 {; T 

a 3. = Ea 	= as 	as 
1 	3 	5 	7 

0 

(3.8) 
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Differentiating Ecluntion 3.7 we obtain 

	

2.-a 	2a 	5 	2a 	2a 81 
Tr ''''2 

	2 	 3 	 5 	7 	7 , 9 	_, 

	

as ' - '11 14.1 + Y.M -s 4- —3 	+ —3 XM 4.  —7 xliir + 9 xlvi — Yiit x- s 
(3.9) 

r=1. 	2a ai 	1 	4 	1 	4 	2 v 	+ y x 	 X?  + -5  )11 	7.14 	ir cx4  a a 	-111 m 	lif s 	5 	i 	.1v1 	9 	Ti1 	5 	a 
3 

at 	1 	 1 	6 	
2a 

	

i 7 	
2a 

	

3 	9 5 Al 	
2a7 
	13 2 	6 

-F-71 = 	3r11 Xj7 + YIVI 	+ 	XM 	 XM 	'E1 XM 	 XM :73.3r1M0 )XS 
5 

(3.11) 
a ai 	 8 	1 	

2a 	2a 
1 	9 	3 
	

2a5 1 1 	5 	13 	7 15 	2 	a 
' = 	 YM 	 9 ) 11 + 	x:RI + 13 	T + I 	 9 35.'1 x  s 7 

(3.12) 
Far statlowlry I, the following r=atr:im ecuation results. 

2.9. 

= x 

( 	4-) 

This equaticEi may 	 for all x, and y
:M 

by 
a X. 	 )7313 

putting - 1 
	= 	y 	 =. A 	etc, 	The solutions for 

Ai , A3, etc. may- be written in the form 

A = P +F k2  +P 161  , P le + P le 
i 	0 	2 	 4 	 6 	 9 

A ,-- Q + Q k
2 
+ ..... * . + Q k 

a 
3 	0 	2 	 o 

.  	P k 5 

= S + 	  + 
7 

3 

(3.15) 
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The coefficients P , P , 	S 	S are given in Table I both 
• 2 	 6 

as fractions and as numbers correct to 4 decimal places. It will 
be observed that the determinants required for the solution of Equation 

3.13 by Cramer's rule are ill-conditioned -berkle the elements of these 
determinants are left as fractions throughout the solution of Equation 

3.13, only the final solutions for the coefficients Po,  P2 , 	 S6, 
 
. S 

being converted to decimal form. 
5 

Graphs of y=Ax.I.A3X
, 

A x 	x are plotted in Figs. 7-16 

for k = 0, .1, .2, .3, .4, .5, .6, .7, .8, .9 	It will be seen that 
except for the lowest ks the polynomial approximation to the exact 

autostabilizer characteristic is very close and we believe that the 

accuracy of this approximation is sufficient for most practical calcul-

ations. We later give an example for the k =0 case (flicker auto-

stabilization), for vthich the approximation is least accurate, the results 
of which support this view. 

3.3 Example 5. Longitudinal Short-D6r1_od Rse,ponse to an Impulsive 
Pitching Moment vi th Flicker m1  Autostabilization 

(This example illustrates how a flicker autostabilizer system 

may be optimized using the same type of effort function used in the 
previous examples.) 

We shall employ the numerical data of Example 1 and the same 

magnitude of the applied impulsive pitching moment as in Example 1. 

The non-dimensicralized equations of motion may be written as 

(D - z ) w(r) - q (r) 	0 

"2a)1 (T) 

(2.1) 

+ m. ns (T) + mn• ri..p(r) nG(T) 

(3.1h) 

-t
( 	D+ m 

tiV I 
V (T ) 44 	D — 

where ma(r) is the impulsive moment 
77 
	

is the elevator deflection due to the autostabilizer 

72 	is the elevator deflection due to the pilot 
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3.13 by Cramer's rule are ill-conditioned -berkle the elements of these 
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7 
Graphs of y=Ax.I.A3X

, 
A x 	

7 
are plotted in Figs. 7-16 5  

for k = 0, .1, .2, .3, .4, .5, .6, .7, .8, .9 	It will be seen that 
except for the lowest ks the polynomial approximation to the exact 
autostabilizer characteristic is very close and we believe that the 
accuracy of this approximation is sufficient for most practical calcul-
ations. We later give an example for the k =0 case (flicker auto-
stabilization), for vthich the approximation is least accurate, the results 
of which support this view. 

3.3 Example 5. Longitudinal Short-D6r1_od Rssponse to an Impulsive 
Pitching Moment vi th Flicker m1  Autostabilization 

(This example illustrates how a flicker autostabilizer system 
may be optimized using the same type of effort function used in the 
previous examples.) 

We shall employ the numerical data of Example 1 and the same 
magnitude of the applied impulsive pitching moment as in Example 1. 
The non-dimensicralized equations of motion may be written as 

A 

	

(D - z ) 	(r) = 0 

	

w 	q 	 (2.1) 

rn 	 , 	7i13  w D mW  jV (T) 	D _ 	(T) = ,G(T) 	mn . ris(T) Cr) 
1.1 	

(3.16) 
where m (r) is the impulsive moment 

	

s 	
is the elevator deflection due to the autostabilizer 

	

np 	is the elevator deflection due to the pilot 
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From Example 1 the basic response in vT(T) is known to be 

w(r) . 0.1064. e-1'706Tsin 11.51 T 
	

(2.8) 
We assume a similar desired response to Example 1, i.e. 

wh(7) = 0.1064 	
sin 

11 21T 
	

(2.9) 

The associates responses in LwD(T), D'cli.(7) (2! kj(T) are as given 

in Eouation5 2.10, 2011, 2.12. 	In particular we have (7.) . e-5.0T 
O 

(-0.284. sin 11.51T + 1.225 cos 11.51 r) 
_.! 

A 
By ta!ing the maximum value of the desired rer7pone in 

max 
as 1.4- (the exact value 's 1.225 but this is not critic l)1  the 

coefficients of the polynomial approximation_ to the autostabilizer 

characteristic are given by 
A 	 A 

TIS 	77F [5.3883 qp - 19.7388 ( qD 	30.7925( qD 

where n 	= the amplitude of the elevator 
defle,:tion genorad by the 
autostabilizer 

, is the system parameter at our disposal for optimization purposes. 
For T > e 	( e is the duration of the impulsive moment) substitution 
of the numerical data in Equation 3.16 yields, for m1  = - 0.205, and 
for T = 11.517" 

- 15.7104(GID 	7] 
1.4 

(3.17) 

P .7 
13 

(T) 	0.301  e-0.434T (-0.532 sin T 1.225 cos T) D   
1.132.32: 0.10(4 

e-0' 434r sin  T 

-0.434T + 	(-12.68 sin T 9.385 coa T) 
0.70  e-0.434T (-0.284 sin T + 1.225 cos T) 

3 

251.on [5.3833CID ) - 19.7388{ g1 

1.4- 	 1.4.  

" 30.7925 JD -15.7101+ 

 

1 .4 
(3.18) 

e0.434T( 1.0165 sin T 8.052 cos T) 

+ 251.0 1 [5.3833 Q 19.7388 Q3  + 30.7925 Q5  - 15.7104 Q7] 
(3.19) 
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From Example 1 the basic response in w(r) is known to be 

w(T) = 0.1064 e-117°6Tsin 11.51 T 

We assume a similar desired response to Example 1, i.e. 

sin 11.51T lov (7) = 0.1064 D - 

The associates responses in E-w(r), Lls15(7) & '41(T) are as given 

in Fouation9 2.10, 2.11, 2.12. 	In particular we have EA (
T) 	e-5•0T 

(-0.284 sin 11.51r + 1.225 cos 11.51 r):1 
A A.  

By tahing the maximum value of the desired. rerpon:,,e limax 

as 1.4 (the exact vnaue 's 1.225 but this is not critical )1 the 

coefficients of the polyAomial approximtion to the autostabilizer
 

characteristic are given by 
A 	 r‘, 

nS nF [5.3883 qD- 19.7388( (ID V + 30.7925( cID 
1.4) 	 1.4 

where n 	ho amplitude of the elevator 
defle•:tion genorad by the 
autostabilizer 

715, is the system parameter at our disposal for optimization purposes. 

For T > 6 	( e is the duration of the impulsive moment) substitution 

of the numerical data in Equation 3.16 yields, for mn  = - 0.205, and 

for T = 11.51r 

u 	n 	(T) = 0.301 e-°"434
1  (-o 532 sin T + 1.225 cos T) 

iB 	IDD -0.341 
+132.3=0.10(4e 	sin T 

4T 
+ e 

0.45 (-12.68 sin T - 9.385 cos T) 

4T 
+ 0.7k0 e

-0 
 '43.  (-0.284 sin T + 1.225 cos T) 

3 

• 251.On [5.38330D 	-19.73880D 

+ 30.7925 i‘c1 	
7

D 	- 15.7104 CD )] 
1.4 	 1.4 

(3.18) 

= e °'434T(1.0165 sin T - 8.052 cos T) 

+ 251.0 7, [5.3833 Q 	19.7388 Q3  + 30.7925 Q5  - 15.7104- (27] 
(3.19) 

- 15.71(4 CD 
1.4 

(3.17) 



- 0.592057 p ` 

+ 0.060978 P5 e  .434T sin T  

T) ( 3.23) 

CO 	 cm 

f 1D8  d T = 0.807, .1 P1 11  d T 	0.774, 
cc 
F1
1

4 
d T = 

aT 
o 

12 
d T = 0.737 

-29- 

where Q = e-0.434T (0,875 oos T - 0.2039 sin T) 	 (3,20) 

whence, 

-n (T)=  .. 0.003387 e-C1'434T  sin T + 0.0364625 P 
PD 	 1 

"' 77F  D.3833 x(0.893 P ) - 19.7338x (0.898 P ) i 	 1 

+ 30.7925 x(0.898 P )5  - 15.7104 x.(0.898 P )1 

(3.21) 

with P = 	0.6,58  = e-' 434T E in  (T  - 77.  (....) ) °  

Squaring Equation 3.21 we obtain 

(3.22) 

r 	(1)12  
iD L 

77 F2 (23.3695 P1  2 
 •• 138,2968 P 

1 	 1 
4 + 378.6333 P 6  

'" 566.6059 P 8  + 556.0218 P in  .-. 266.7702 P 12 

I 	 1 	 1 

+ 5e..)029 P" 
i 

+ n  (-0 --,r9.3 P2  + 0.4704.28 P 4  
1 	 i 

+ 0.2436978 P a  + 0.16375 P 

- 0.04843 P31  e-°'4347sin 

- 0.0250995
1 
 P7 

c,;-0, 434T sin  

+ terms not involving 77 

	

co 	F 

f To Obtain the effort function 0  ET (T)12  dT it is necessary 

to evaluate integrals of the form )0 P  2n dT, and of the norm 

T 	2n-1 -0 Pi 	. 	 . 	In order to avoid too great .434T  
1 

a digression at this point, description of the evaluation of these 

integrals is held over to the next section of this chapter. Suffice 

to state that general formulae and graphs are given therein for the 

evaluati 0  of integrals Qf the forms 

in 	+0) , a  ariao being constants. 

Using the results of the next section with P = P we obtain, 

4 r- 2 
PI  d T 	1.097, [ PI 	d T . 0.908, 	

6 
 d T w 0.852, 

Pte` dT and 	
2n-1 aT e sin T d T where 

Pre 

 



H5()  

f P ems'434T  sin T d T = 0.2461, 	•e-0.434T sin T d T= 0.366, 
0 

p t-0°2-34T  sin T d T= 0.4105, 

• 
Integrating Equation 3.23, maYing use of the above integrals, we obtain 

after some realction, 

[77 

	

 P 
(T) la d T = 2.3522 	— 0.54959 np  

terms no 	 ?l 

whence 
0.5'1-959  x 5-7 	 — 	 0.67°  

PF opth-num = 	2 x 2.3522 

(The positive sits indicates that the sign of n s  at any instant is 

the same as that of q .) 
Since the total elevator deflection , i 	ns , must be PD 

of a smooth nature in or1er to obtain the desired response exactly, 

(3.24-) 

(3.25) 

and since r1 5(r) is discontinuous, it follows that n (r) must also be 

discontinuous. The pilot will certainly be unable to provide such 

a discontinuous n (r), so we may proceed at once to Step 8 of the 
PD 

optimization procedure, without actually calculating the time history 

of 77 PD , with the optimum adjustment of n 

The stick-fixed response for n-r, = 0. 67°  and with the exact 2 

au..;ostabilizer characteistic (not the polynomial approximation) 

has been calculated by piecewise application of standnrd linear 

response theory, the 'pieces' being the intervals between successive 

A 
zeroes of q(r). The resulting time histories of w(T), and a(r) 

are plotted in Fig.17. It will be seen thtt the response in w(r) 

approximates well to the desired response and the optimum autostabilization 

may therefore be regarded as satisfactory. 

7 '-0.34T P .e 	sin T d T= 0.422 
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it will be Color --.--,a tlrt the so21.t4::n for a 'e-ads' at the 

sec:112,  ;ler° o 	1 (r) ■ 	 i6 u 	t?-_,-..:3i non in dizooni,inuous 

auLL,-1:.ic control cy',AL-os JrivT be explainc:d as f:_lior;s-. 

17)-ao to th, -7-rea_noe of (-,mavoi'7:ble) time la7s in 1.),e 

autoFtabilizer circuit 's-w-l_tchin-_;' of the e:levLtor daeLt 	oc:;11r 

until a short time G T  	(T) 	 TTen-e the 

ga%-.1h of Cll.  (T) against T at the second zero of 	of is of the fo-Tm 

dr: nn 

• 

E 

occur,- at the pci_at Et, When the a (T) graph comneAces 

to follow the Lath Li r7. Eut swit-_,hin3 in the opposite sense occurs 

at pint I), whereupon q 	com,-.ences to follow the path DPEG, which 

it does as far as the n::%:t s-(itching point H. 	The conditions at H 

are s'imilar to those at B ao.d za the cyr,lio variation cf CI is 

rope`_ bed aa 	 Thl.s ph:home-Lon is lot-un as '011:_tter:,_nz' and, 

for this u=1,T1o, is cf theretical rather than practical interest 

since an exact flicker characteristic is not practically attainable, 

and the presence of unavoidable ii.,:perfections such as dead-bands 

(see below) in the autostabilizer characteristic generally obviates 

chattering. 

:fl-ot Lon 

••••••••■■•■••.. 
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The time history of 1,#) with chattering in /4 (T), and 	may 

be found from Equation 2.1, a.suming that the chattering amplitude 
of q is negligible in comparison with wr(r), and Dw (r). 

With this assumption Equation 2.1 becomes 
(D 	zw) w (r) = 0 	 (3.26) 

This has the solution 

w (r) = w. e+zw'T  (3.27) 

where w
e is the amplitude of w at the 

comwencement of chatter 

and T is measured from the commencement of 

chatter 

3.). Evaluation of Some Integrals Required for the Optimization 

of Non=linear Autostabilizer Systems 

Its demons rated in Example 5 we require to evaluate iutPtgroln co 
of two kinds, (i) 	Pen  d T, 

and (ii) P2"rjaT  e 	sin T d T, where P = eaT  sin (T 4./3) 
It will be found that integrals of these kinds are frequently 
required when optimizing non-linear systems in which the non-linearity 

is expressible as a finite power series in some response parameter and 
it is convenient to evaluate these integrals once and for all for a 

	

range of a,i3 1  & n 	rather than separately for each example. 

Evaluation of Integrals of the First Kind 
Denoting these by I , we have 00 

I . 	F" d T = 	e2naT. sin (T +/9)  d T 	 (3.28) 
i 	 0 

The substitution t -. T 4. /9  yields 
I  = e-2n16 (1.  _ le  ) 
i 

where I.  = [(eat sin t)2n a t  

It, = sr (e at sin t)2n d t 	 (3.31) 

(3.29) 

(3.30) 

3 
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The time history of tic (r) with chattering in 	(T), andn(T), may 

be found from Equation 2.1, a. suming that the chattering amplitude 

of CI is negligible in comparison with w(r), and Dw (r). 

With this assumption Equation 2.1 becomes 

(D zw) w (r) 

This has the solution 

w (r). e+zler  

where wc is the amplitude of w at the 

commencement of chatter 

and T is measured from the commencement of 

chatter 

(3.26) 

(3.27) 

3.L4. Evaluation of Some Integrals Re sired for the Optimization 

of Non-lines Autostabilizer Systems 

;.s demons rated in Exauple 5 we require to evaluate iutRgroln co 
of two kinds, (i) 	p2n d T,  

and (ii) 	
P2"-i eaT sin T d T, where P = e

aT sin (T .1.0) 

It will be found that integrals of these kinds are frequently 

required when optimizing non-linear systems in which the non-linearity 

is expressible as a finite power series in some response parameter and 

it is convenient to evaluate these integrals once and for all for a 

range of a,S, & n 	rather than separately for each example. 

Evaluation of Integrals of the First Kind 

Denoting thesec„by I , we have 
co 

I, 	 T=T = 	e2naT
. sin2n (T  + 0) d T 

	

The substitution t = T 	0 	yields 

e-2n19 

	

 
(ico 

... 

	 ) 

where I 

	

co = 	
(eat sin  t)2n d t 

	

Io  = 	(eat  sin t)
2n 

d t 

3 

(3.28) 

(3.29) 

(3.30) 

(3.31 ) 
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Ico may be obtained from a table of Laplace transforms (e.g. Ref.18) as 
CO 

I = f e2rlat sin
2n 

t cl t 	 (2n)  

(-2na)(-2-2na + 22 )(71172  + Z. ) . • (2na2 + 	2  ) 
0 

I 	is plotted. for n = 1,2,3,2,.,5,6,7 and -0.5 < a < -0.05 in Figs. l(F) 3.3ti:721).9. 

I, has been evaluated by graphical integration for the same n and a 

as I
co  , and for 0 < < 21T . Carpets of the variation of To with 

these parameters are given in Fik:71.3 20 - 26 

Evaluation of Integrals of the Second "Kind 

• Denoting these by I , we have co 	 2 

. I = 	P2n-1 
e
at 

sin (T +0) dT e2nat . sin2n-1 (T 	13. sinT. d T 
2 	

)  

0 	 0 

The substitutd.c. 	t = T + 13 yields 

-2ne.0 I = e 	 e
2nat 

sin 
 2n-1 

t. sin (t-0) at 
2 	 19 	 (3.30 

= e-2nd 
e2nat [ 

sl  
. 
n  2n  t -G c',..s0 - sin 0. sin2n-1t. cost ] dt 	(3.35) 

0 
= e-2n3.6' 

cos 0 (I. - Ii  ) 

- e
-2n 

 sin 0 r e2nat• 
 sin2n-1 t. cost. rat 	 (3.36) 

a0 

The last integral is evaluated by integration by parts which yields 

with a <o (i.e. a stable desired response) 

e
2nat 

sin2n-1
t cost dt = 	sin 0. e

2n:,.0 	
e 	sin2111  t dt 

-1 	2n 	 2nat 
2n 

Thus substituting from Equation 3.37 in Equation 3.36 we obtain 

-2na,(3 	 \ 	1 	. 2n+1 	 -21-419 

	

I 	= e 	cos /3 (I - I )  sin 	 (I
- 
-

g
) 

	

2 	 oo 	/9 	2n 	g + a sin p. e 

(3.37) 

(3.38) 
1 	2n+1 	-2na/3 I s . 1 = -271  sin 	/3 	e 	(cos /9 + a sing) 	- 	) 	 (3.39) 

2 
 

This equation enables us to express the integrals of the second kind 

in terms of integrals of the first kind, as below 

I2 
	en 

1 	. 231+1 
= 	San 	+ (cns A + a sin 0) I (3.40 

(3.33) 
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It will sometimes be found that for large a, n, and for /3 close to 

2,1-  I - I is given as a small differtnce between two approximately 

equal numbers, and in such circumstances difficulty will occur in 

evaluating I and I accurately. Rather than attempting great ar3curacy 
2 

ix the evaluation of I and I0 , the best procedure is then to 

replace )9 by a negative angle - 2T + # = P and to evaluate

jb  (eat  sin t)211  d t graphically or numerically.
2 

2n449  

3,5. Example 6. L2agitudinal Short-period Response to an 

Impillsivo Moment with 	 Auto:tabilization. 

(This example illustrates how a 'limited' or saturable 

autostabilizer system may be optimized by the use of the seventh-

power polynomial approximation developed earlier in this chapter. 

An effort function similar to that of the previous examples is 

employed.) 

With the numerical data, and desired response, of Example 1, 

and assuming a limiting elevator deflection of t 1.05°, the calculation 

proceeds similarly to Example 5, except that Equation 3.17 is replaced 
by 

1 
S 	7.2 5)6 	Po  ( LID + P,  k2 	)   + 	ko 

1 .4 	- 	-174 	 8 	
()7. 

p  
 

1.4 J 
A 

where k - I L==1='.. q SAT. being the 
'saturation' value of q 

and the coefficients Po ....S are as listed in Table I 
8 

The problem is to find the optimum k . Putting k2  = h the 

equation corresponding to Equation 3.21 of Example 5 is 

pp(T)x 1.056
5 	5

1 .05
7.296  (-0.003387 e-0'4.314.-T  sin T + 0.04.0827 Z) - - 

+ 	PoZ + Q0Z3  + RoZ5  + SoZ7 .1 

(3.2+2) 

+h[PZ+ 

+h2[PZ+QZ3  

Q2  73 +R2  Z5  

+R 	Z5  
4 	4 

4. S2  

+ 3 
4 

Z7 1 

Z7  

h3E pz+Qz3 +Re + S Z7 
6 	6 	6 	6 

h4 	+ 93  z3 + R Z5 S 8Z
7 

(3.42) 

-34— 

It will sometimes be found that for large a, n, and for [3 close to 

2ir I - I is given as a small difference between two approximately 

equal numbers, and in such circumstances difficulty will occur in 

evaluating I and I accurately. Rather than attempting great accuracy 
2 

ii the evaluation of I and I , 
the best procedure is then to co 

replace 1 by a negative angle - 2T + 0 = P and to evaluate 

I 	= 
I (e

at  sin t)
2n 	graphically d t 	aphically or numerically.

2 

0.- 2n419  

3.5. Example 6. L2ngitudiml Short :period Response to an 

Impulsive Moment with Ilmited mg  Autoytabilizaticn. 

(This example illustrates how a 'limited' or saturable 

autostabilizer system may be optimized by the use of the seventh-

power polynomial approximation developed earlier in this chapter. 

An effort function similar to that of the previous examples is 

employed.) 

With the numerical data, and desired response, of Example 1, 

and assuming a limiting elevator deflection of ± 1.050, the calculation 

proceeds similarly to Example 5, except that Equation 3.17 is replaced 

by 

riS = 37.2/6 	o 7174 	2 it 	1.4  
l tf____ r  ( (11) ) 4. p %2  ( qp ) 4. 	 4. S IC9( % )71 

a 

	

^ 	 A 

A 0  
 A 

where k - -1-2- 
ri,  
-* 	q SAT. being the 

- 	1.4 	' 	 e., 
'saturation' value of q 

and the coefficients Po ....S are
 as listed in Table I 8 

The problem is to find the optimum k . Putting k2  = h the 

equation corresponding to Equation 3.21 of Example 5 is 

—17

PD 	- 
(T),c 5

1.05
7.296 _ 

- - 
5
1.05 	s 
7.296  (-0.003387 e -0.434T sin T + 0.040827 4 

+ F PoZ + Q0Z3  + Roe + SoZ7
  1 

+h[Pz+ Q2  Z3 +R
2  Z

5  +S
2  Z7 1 ' 2  

• 	
h2 [

P 	Z3  + R Z5 	s Z7  I 
4 	4 	4 	4 

j+111 [P Z +Q
6

Z 3  +RZ5 	S 
6

Z7  

• h4 	Si  Z3  + R Zs  + Sa 	I 	 (3.42) 

1.4 

(3.42) 



'1
2 di.#4 2abdT +fb2 dT 

0 	 0 	(3.44) 0 
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where Z = 0.898 P , P being defined by Equation 3.22. 
1 

To evaluate the effort function, 

we write Equation 3.42 as 

-n, (T) 57.296  
-1.05 

where a = 	(-0.003387 e-0.434T sin T + 0.040827 z) 

end b = the remainder cf the r.h.s. of Equation 3.42 

non 	 co 

II i 
	(T) j2  d T 
PD 

= a + b 

(3.43) 

L
\ 	57.296 npD(T) 	

1 0 	

2 

5 	
dT = 

In Equation 3.44 	a2 d T need not be evaluated since it does 

0 	

I'm  0 
not involve h , and therefore will not appear in the equation for 

a 
the optimum h, Fri 

r 

 r [n (T) 12  d T = 0. 
0 

The evaluation of 	2 a b 
c

is straightfo yard since the integrals 

required are of the forms 	P 	dT, 	P2n-1 e-C4434T  sin T dT, 2n 
1 	 i 

	

o 	 0 
and these may be read from the list on Page 29 or more generally, for 

other problems, evaluate by means of the carpets of Figs. 20 to 26 
co 

Using these integrals 	b2  d T is easily calculated once b 2  is 
known. However, b is comprised of no less than twenty terms and it 

would be very tedious to have to evaluate b 2  anew for each problem. 

b 2  has therefore been evaluated once and for all, for a general Z, 

the result being tabulated in Table II. 

Making use of this table, we eventually obtain co 

f

5..T56 17  

0 	 +2,293.68167 h4  - 2,828.8175 h5  

+2,098.11575 h6  - 861.2662 h7  

150.35609 h.°  

(3.45) 
(Note that it is desirable to leave rounding-off until late in the 

calculation, as far as possible. This is the reason for the appearance 

of such a large number of significant figures in the coefficients of the 

.2 
n (T) j dT = _50.50289h + 328.961681.12  + 2,512.19225 h'  

-35- 

where Z = 0.898 P,  , P
i 
 being defined by Equation 3.22. 

[ 
To evaluate the effort function, 	n 	d T 

LD we write Equation 3.42 as 

-17 

	

(T) x

71.17
6 

-1.05 
 _ a + b 

(3.43) 
there a . -22-1-M (-0.003387 e-°'434T  sin T + 0.040827 Z) -1.0 

2nd b = the remainder of the r.h.s. of Equation 3.42 

non 

f
o _

p P(T) x 57.29  ] 2 aT = 2  
1,o5 	

2abdT 	b2 dT 
D 

0 	 0 	0 	 0 

rel 

rIn Equation 3.44 	a2  d T need not be evaluated since it does 

not involve h , and therefore will not appear in the equation for 
a 

the optimum h, ah 	J [77 (T) ]2  d T = 0. 

(3.44) 

0 
The evaluation of J 2 a b 	is straientfo vard since the integrals 

2n 	 2n-1 -0.434Tf 
required are of the forms 	P 	dT, 	 sin T dT,  

1 
0 

and these may be read from the list on Page 29 or more generally, for 

other problems, evaluate by means of the carpets of Figs. 20 to 26 

Using these integrals 	b2  d T is easily calculated once b is 
0 

known. However, b is comprised of no less than twenty terms and it 

would be very tedious to have to evaluate b 2  anew for each problem. 

b 2  has therefore been evaluated once and fcr all, for a general Z, 

the result being tabulated in Table II. 

Making use of this table, we eventually obtain co 	 2 

f 571:05' n (T) 1 dT = -50.50289h + 328.96168h2  + 2,512.19225 h3  

0 +2,293.68167 h4  - 2,828.8175 h5  

.4.2,098.11575 h6  - 861.2662 h7  

150.35609 110  
(3.4.5) 

(Note that it is desirable to leave rounding-off until late in the 

calculation, as far as possible. This is the reason for the appearance 

of such a large number of significant figures in the coefficients of the 
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above equation.) 

Differentiating Equation 3.15 with respect to h, and equating 

the result to zero, the only solution between 0 and +1 is h = 0.004. 

• • 

	k- 0.22 	(... km%  . . 4 x . 2 2 = 0.308) 
The total elevator deflection demanded to attain the desired response, 

7113D 	ns is of a smooth nature. 	Since ns is discontinuous it 

Thllows that n
PD 

 must also be discontinuous. It is presumed that 

the pilot will be unable to provide such a discontinuous npio(7), 

(although the discontinuity is less severe than in Example 5) and we 

therefore proceed at once to Step 8 of the optimization procedure, 

omitting Step 7. 

The stick-fixed response for qsAT  = 0.308 is calculated by 

piecewise application of standnnd linear response theory, the time 

histories of /CRT) and w(T) being graphed in Figs. 27 - 28. 

The autostabilizer is initially (T 4 o) unsaturated, but owing to 

the impulsive nature of the applied moment the saturation q is 

attained in a very short time (T < e). Thus for purposes of calculation, 

6 8 0.8 only two 'pieces' are necessary,e 4 T < 	airsec, and 11.51 
T 

	

0.886 	 0.886 airsec since 

	

1.51 	 ciSAT is not attained for T > 11.51 airsec. 

It will be seen that the stick-fixed response in w closely 

approaches the desired response, and the optimum autostabilization may, 

therefore, be regarded as satisfactory. 

CHAPTER  

4.1. A, BRIEF EXPOSITION OF CARDINAL SPECTRUM ANALYSIS  

The purpose of this chapter is twofold. Firstly, it is 

intended to provide the reader having no previous knowledge of cardinal 
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the result to zero, the only solution between 0 and +1 is h = 0.0484 
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the pilot will be unable to provide such a discontinuous nrip(r), 

(although the discontinuity is less severe than in Example 5) and we 

therefore proceed at once to Step 8 of the optimization procedure, 

omitting Step 7. 

The stick-fixed response for qaA2  = 0.308 is calculated by 

piecewise application of stanc9nrd linear response theory, the time 

histories of q(T) and w(T) being graphed in Figs. 27 - 28. 

The autostabilizer is initially (T 4 o) unsaturated, but owing to 

the impulsive nature of the applied moment the saturation q 
A  is 

attained in a very short time (7.  < e). Thus for purposes of calculation, 

0.886   
only two 'pieces' are necessary,e 4 T < 11.51 

airsec
, 

and 

0.886  . 	 A 	 0 886 
T > 	airsec, since a_ 	is not attained for 7.  > 	'--- airsec. 

11.51 	, 	
--6.0 	 11.51 

It will be seen that the stick-fixed response in w closely 

approaches the desired response, and the optimum autostabilization may, 

therefore, be regarded as satisfactory. 

CHAPTER /1- 

4.1. ADRIFT EXPOSITION OF CARDINAL SPECTRUM ANALYSIS  

The purpose of this chapter is twofold. Firstly, it is 

intended to provide the reader having no previous knowledge of cardinal 
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spectrum analysis with sufficient background to follow the application 

of this technique in the following chapters, and secondly it serves to 

introduce the nomenclature and symbols used therein. The treatment is 

a highly condensed version of that of Ref. 7 with such changes in 

nomenclature and symbolism as have been found to be desirable. For 

a more rigorous and extensive discussion of Cardinal Spectrum Analysis 

Refs. 6 and 7 should be consulted. 

Basic Theory of Cnrdinal Spectrum Analysis  

1. Definition of a Cardinal Spectrum 

The cardinal spectrum of a function of time is sinply a 

series of numbers corresponding to the heights of successive ordinates 

of the function measured at equal time intervals. 

Thus, denoting the 

cardinal spectrum 

cf F(t) by id) F(t), 

we have, 

F(t) = (f0, 

2. Triangular pulse Interpolation 

to may approximate to the area under the curve F(t) by 

summing a series of triangles of base 2E0 as shown in  Fig-4.2. 

It is advantageous to 

define not only the 	F./.0 

area under the curve • 
P'1:""'"'••••••••• 
/ • • • 

FIG.4.1. 

FIG.4.2. 

but the curve itself 

by summing a series of 

• " 
• • • 

• • 	t •, 
e • I 

6 	z?.. 	3:6 	t  
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1. Definition of a Cardinal Spectrum 

The cardinal spectrum of a function of time is simply a 

series of numbers corresponding to the heights of successive ordinates 

of the function measured at equal time intervals. 

Thus, denoting the  

cardinal spectrum 

I 	I 
of F(t) by @-") F(t), 	

f' 	L 	 
fo 

we have, 

F(t) = (f0, fi  , fa, 	 

2. Triangular Pulse Interpolation 

We may approximate to the area under the curve F(t) by 

summing a series of triangles of base 2e as shown in Fig.4.2. 
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define not only the 
,......---7 	ir--------- 
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. • N! 	,-____ -4  N., 
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___ t 
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__ 

3 S 	. 
by summing a series of -c. 	

i) 
 

FIG.4.2. 

FIG.4.1. 
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triangles in this way, because it enables us to describe a curve 

numerically and uniquely. Using cardinal spectra alone, this is 

not possible. 	For example, given (0.) F(t) = (3,5,6,2,4, ....) one 
could draw F(0 as any curve passing through these points. Defining 

F(t) as the sum of a series of triangular pulses is equivalent to 

joining up the successive ordinates of the spectrum by straight lines. 

Expresses] mathemat::_cally this is the equation 
ic=n 

F(t)  f
le k 

A (t) 

where fk.6 k(t) denotes the triangular pulse having its peak at 

t = k 8 . 	The 'value' of the interpolation pulse fk.A k  is 

defined as f1 . 8  . This is an approximation to the area under 

F(t) from t = (k 	tot = (k + 8  

2 (a) Examples 

(i) (LILL) 
	 Ea) 

(2,1,3,4,4, 	) 

(ii) 

(3,0,0,2,0,0, 	 ) 

3. Pulse Admittance of a Physical System 

This is defined as the resprnse of the system to an 

impulse having the form of a traingular interpolation pulse of 

value 8 occurring at or very near t = o. We use the symbol M(t) 
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to denote the pulse admittance of a given system and, where necessary, 

we shall represent it by its cardinal spectrum. We use the notation 

11(t)
0' 
 m m

21  m
om, .....). 	If the instant cf application 

of the input pulse occurs at t no , the response cf the system is 

the 'displaced pulse admittance' denoted by M(t - no ) 

In this case 

M(t - no) = (0, 0, 0, ....0 mo,  m , m2, 	 

mo is here the n
th term in the cardinal spectrum. 

4. To obtain theResponse of a Linear. System to a General  

Input. (Pclymultiplication) 

17e shall now describe how the response G(t) of a linear 

system, having a known pulse admit-Eu.1.3e M(t), --to an input F(t) can 
be determined. 

F(t) = (fo, fi , f2,......) 
--k=n 

F(t) 	 f1 . 6“t) 
k=0 

Ao  produces the response spectrum (D M(t) = 
Hence the impulse f m produces the response spectrum (f m f m 0 0 	 0 0' 0 1' 
f0  2, 	) (assuming the system is linear). 

Similarly, f1  m1 produces the response spectrum 

(0' f1m0' f1m1' f1 	) and, in general, the impulse f A 

produces t:le response spectrum 
(0,0,0, 	

'0, f  im0' fim 	) beginning at t = k 5. 
The superposition of these partial response spectra at 

t = k 5 is the sum 

gk = 	f mk-i 370  

Thus, the calculation of C G(t) = (g0, Ey  g2, 	
 

can be tabulated up to t=k 8  as follows:- 

k 

n S) = (0, 0, 0, 	m , m , in , 	 
0 	1 	2 

n
th 

term in the cardinal spectrum. 

) 
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to denote the pulse admittance of a given system and, where necessary, 

we shall represent it by its cardinal spectrum. We use the notation 

(9) M(t) = (m , m , m , m , 
0 	 2 	3 

 

) 	If the instant cf application 

 

of the input pulse occurs at t n5 , the response of the system is 

the 'displaced pulse admittance' denoted by M(t - n5 ) 

In this case 

(C) M(t - 

m is here the 
O 

4. To obtain the Response of a Linear System to a General  
Input. (pclymultiplication) 

V,re shall now describe how the response G(t) of a linear 
system, having a known pulse admittLthae M(t),"to an input F(t) can 
be determined. 

o F(t) (f0, f l , f2,......) 
--k=n 

F(t) 	 f,. t.1?_..(t) 
k=0 

0 produces the response spectrum (D M(t) = (m0,m1,m2...). 
A 	 / 

Hence the impulse f m produces the respcnse spectrum (f m f m 0 0 	 0 0' 0 l' 
fOma' 	) (assuming the system is linear). 

Similarly,  f1  m1 produces the response spectrum 
(0' fm0' m1, 

 f
1
a
2' 	) and, in general, the impulse f A i i produces the response spectrum 

(0,0,0, 	,O,f i ra0' fIm 	) beginning at t = k 5. 
The superposition of these partial response spectra at 

t = k 5 is the sum 

gk = 1 	f. mk-i 
3:70 

Thus, the calculation of U.) G(t) = (g0, g1, g2, 	 
can be tabulated up to t=k 8 as follows:- 

k 



(?! 	G (t) = fomo 	f0m1 	f1mo 

t1 

f 	. 

M(t) 	m0 	 2 

(Z117(t) f0 	1 	f2 	fk  

fo (16) 	f0m. 
U 

f1   © M(t) 

f2 
	m(t) 

f0m 1 	f0m2 	fOrnk 

f1m0 	firni  - 	f imk_i  . • . 

f 2m0 °°°"'f 2mk-2 — 

fk 	M(t)  • • • 

.L1 0 

80 	 gl 	 gk 

This tabulated process is rather analogous to the multiplication 

of two polynomials since 

/ 

(f0 	fix 
I

2X

,2 	fkxk  ) km0 + mI x + m2  + 	m xk) 

= fro  (f i mo  fm1)x 	
fl It-1 

x  

i=o 
For this reason we call the process by which O M(L) is combined 

with(F(t) to yield (:)G(t), polymultiplication, and we describe 

the process s7-rlolical3.y thus : - 

Qp.) G(t) = 	F(t) X (E) M(t). 

5. To Obtain the  Puls3 Admitt7,,nce  of a System from its 

Pesponse to a kno4 Input. (77olyd.3vtsion)  

i.e. Knooring G(t) and F(t) 1,e require to find M(t). 

7L have 	G(t) 46) F(t) X J M(t) 

M(t) m
0  

(-61 F(t) f
1 

f0  

py.po 

f,, 	 fk Op no0C 

f 0  (16) M( t ) 	f _m 	f 	f m 	 u 	0
m 
 1 	0 - 2 	Ornk 	" 

f (,-(D 14(t) 	 f
1 
m
0

f1m1 " 	f 	. 

f2 	111(t)  f2m0 ''''''f2mk-2''' 

fk 	M(t) 	fkmO 
 

k 
(?, G (t) = f0m3  f0m1 

+ flmo f 	. 
-J. 

T1 
	 i=o 

g0 	 g1 	 gx  

This tabulated process is rather analogous to the multiplication 

of two polynomials since 

, 2 	k 	/ (f
0 	

f
1
x - 	 f

k
x ) un0 + mI + //1„: + 	m ,jc) 2 	

k 

f 
o  mo 	1 

(f 
 0  f0

)x 

 

fimk-i 3.1c 

 

For this reason we call the process by which 0 M(t) is combined 

with 	F(t) to yield ©C G(t), polymultipl&caticn, and we describe 

the process s77:bolically thus :- 

@) G(t) = 	s F(t) x (D M(t). 

5. To Obtain the Pulse Admitt-,nce of a System from its 

Posponse to a kmow.,! Input. (7olydivtsion) 

i.e. iir. .ving a(t) and r(t) .6e require to find M(t). 

WL have c G(t) =(6) F(t) X CD M(t) 



Let us define Ftlydivision from the equation 

O M(t) 	C8')  ()  
F(t) 

	i denotes polydivisicn, as usual 	denotes 

ordinary division). Hence polydivision moans the process 

tabulated below ; - 

mo  m1  m2 	 = M(t) 
C F(t) = f0,f1 ,f2  yomo, fomi +fimo, fom2+f1m1+f2m0 	G(t) 

f1m0  

f0m
1 
 f

C
m

2
4f

1 11 

f
0

m1 	f1m1 

f
0

m
2 

f0m2 

Of course, in any realistic problem 0 G(t) will not 

be given in the obvious form (fomo, fomi+fimo 	 

but in the form (g0, g1, g2 	) and the process of 

polydivision must then be tabulated as follows :- 

	

g0 	crf — '1 0 	0 1 
	 = 	 m( t ) 

e) F(t) = fc, f1, 
	0 	102 
	• • • • 

1 	g2 

gO 	 gO.  f 	 gO.  f 

2 1 f0 	j-0 
• • • 

g°  f 	g°  f 
(g1 	fo '1' 'g2 fo

•  -2' 

f2m0 

	ETC. ETC. 

Let us define Polydivision  from the equation 

® M(t) = tr iC 	()  
F(t) 

	i denotes polydivision, as usual 	denotes 

ordinary division). Hence polydivision means the process 

tabulated below - 

m0 
	m1 
	m2 	 = @ M(t) 

	

C F(t) = f0,f1lf2  yomo
, 
f0m1+f1m0,  f0m2+f1u1 i.f2m0 	()) G(t) 

f
1
m
0 	 f2m0  

f0m11 
fCm2

+f
1n11 

f
0
m
1 
	f1m1  

f0m2 

f0m2 

Of course, in any realistic problem 0 G(t) will not 

be given in the obvious form (fomo, f0m1+f1m0 	 

but in the form (go, gi, g2 	) and the process of 

polydivision must then be tabulated as follows :- 

f 
g0 , 	

cr 
'1 0 

- g 
0
f 
 

f0 	f
o
2 

(C) F(t) = f0, f1, f2... 

• • • • 

®M(t) 

	

YO 	g1 	82 

	

g0 	gO. f 	gn f  
1 f0 	f0  

	

g° 	g° 	1 (g1 	
p)( 

fo 
	(g2  f • -2'0  

(F 

	ETC. ETC. 
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The polydivision process is continued until the required number 

of terms in C M(t) has been obtained. 

6. Addition and Subtractirn of Cardinal Spectra, 

Simply add (or subtract) the corresponding terms 

Thus, if (51) F(t) = (fo, f1, f2 	 

and 	(C1) H(t) , (h0, h1, 

then 	C (F(t) ±H(t)) = (f0 th0' 
 f th

I'  f2 th2— ..) 

Note that the commutative, associative and distributive laws hold 

for the polymultiplication, polydivision, addition and subtraction 

of cardinal spectra. 

e.g. (Z) M(t) X (D(F(t) H(t)) = (C) M(t) X () F(t) 

(D1A(t) X (C) H(t) 

7, Inte!Tat' - and Differentiation of Cardinal Spectra. 

It may be shown that the cardinal spectrum operation 
5 (11+1) 

(h0, 11.4 . h2, ....) 	7. 	A 	1111 f 2P 	 

is an arproximation to t ie integration operation 

H(t) = 	F(t),dt 

The cardinal spectrum operation 

2  (1'-lc(h  h 
(f0,  f1, f2,...) = 6' 1(1,1-1)t . \--0' 

h1, h2, 

may similarly be shown to bo an approximation to the differentiation 



operation 

F(t) = 
dt 

Repeated integration and differentiation may be performed by the 

use of such expressions as 

-43 - 

d H(t) 

d2 	 22  (1,-1)2 	4 
D2 = 

dt2 	82 (1,+1)2 	82 

 

-2, +1) 

(1, +2, +1) 

or with greater accuracy by the following expressions 

6 	(1,  _1)2 

— 
62 	(1, +2+, +1)

1 

e 	24 	(1, -1)3  

826 	/(1, +11, +11, +1) 

The appropriate reciprocal may be used for repeated integration. 

CHAPTER 5. 5.1. THE APPLICATION OF CARDINAL SPECTRUM 

ANALYSIS TO THE OPTIMIZATION PROEEDURE  

If the desired response is specified as an exponentlF0 

function of time ;:,<e autostalilizer system is most conveniently 

optimized by the procedure illustrated in the previous examples, 

in which the effort function was in the form of an infinite integral. 

Becaul„, of uhe rapid attenuation of the integrand (due to the high 

damping of the desired response) the unrealism of such an effort 

function was not objectionable. However, snould it be desired to 

employ an effort function hating the form of a finite integral it 

will generally be found to be more convenient to perform the 

optimization by means of Cardinal Spectrum Analysis. Should the 

operation 

F(t) = 
dt 

Repeated integration and differentiation may be performed by the 

use of such expressions as 

d2 	 22  (1,-1)2 	4 	(1, -2, +1) 
— ' D2  53 	 - l''"'`'''' 	= -. 	, 	  
dt2

 	
82  (1,+1)2 	82 	(1, +2, +1) 

or with greater accuracy by the following expressions 

D2 	6 	(1,  _1)
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62 	(1, +4, +1)
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e 	24 	(1, -1)3  
82• 	/(l, +11, +11, +1) 

The appropriate reciprocal may be used for repeated integration. 

CHAPTER 5. 5.1. THE APPLICATION OF CARDINAL SPECTRUM 

ANALYSIS TO THE OPTIMIZATION PROEEDURE  

If the desired response is specified as an exponentlF0 

function of time ;:,<e autostalilizer system is most conveniently 

optimized by the procedure illustrated in the previous examples, 

in which the effort function was in the form of an infinite integral. 

Becaul„, of uhe rapid attenuation of the integrand (due to the high 

damping of the desired response) the unrealism of such an effort 

function was not objectionable. However, snould it be desired to 

employ an effort function hating the form of a finite integral it 

will generally be found to be more convenient to perform the 

optimization by means of Cardinal Spectrum Analysis. Should the 
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desired response not be given in a convenient analytical form, Cardinal 

SpectrumAnalysis must be employed in the optimization procedure, and 

in such cases the effort function must have the form of a finite 

integral. 

The following example illustrates how a lateral autostabilizdr 

system may 	optimized. Effort functions for lateral response may 

be more complicated than those appropriate to longitudinal response 

since the aircraft maybe controlled by independent deflections of 

ailerons and rudder, and a lateral, rather than a longitudinal, 

autostabilizer is selected so that this consideration maybe 

examined. The Cardinal Spectrum technique used in this example 

is however, equally applicable to longitudinal response. 

5.2. EXAMPLE 7. LATERAL RESPONSE TO A SELRF-EDCED SIDEGUST  

With tl?e portmanteau notation of Ref. 2 the non-dimensionalized 

equations of motion can be written as, 

D Try 	-k 	 1 

JL 	D 	11D 	_ D2 lx  

n 
2 

77(T) 

0 (T) 

x ( T ) 

Gy 
(r) 

C
l 
(T) 

C
n (T) 

(5.1) 

-)4 	er,D + nD 	D i  

To obtain tho basic response to a sharp-edged sidegust we assume 

that at r-0, 0= i^ mD0= 0,= 77 with ;= = 0 forTc 0 0   

Applying the Laplace transform to Equation 5.1 we obtain 



—45— 

        

        

        

        

s yv 

f 
d. 
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0 

 

8
2 

.1. 1 S 	€s+1 
2 

es2 	n s 	s + n 1 	 2 
1 

 

0 

 

  

0 

 

(5.2) 

      

      

      

where v(s) = v [(s2 
 

1 8) ( S 	n 2 ) — (C,S + 1 )(e,s2 + n s)l  
2 	 (5.3) 

  

A (3) 

where A (s) is the determinant of the s -matrix. 

The time history of -7,;(r) may be obtained by means of a 

partial fraction expansion or, more easily, by use of Interpretation 

Formulae such as those listed in Ref. 9. The basic response in 1; is 

graphed in Pig. 29. 	It will be seen that the response is lightly 

damped with a large initial overshoot. The desired response in ; 

is graphed in Fig.29. The desired response may be obtained by means 

of rudder and aileron deflections 4.1)  and D, where 

qyD 	v . ) = e Pulse Admittance of v to basic 

	

+ (.10 Pulse Admittance of v to 	igE D  

The Pulse Admittances are those appropriate to the basic 

aircraft and are conveniently evaluated by use of the Lapla-e 

tralyiform. Note that if the spectrum interval 8 is small the 

form of the impulsive admittance closely approximates to that of 

the pulse admittance, which may be deduced therefrom by multiplication 

by a factor of 5 . 

It is now necessary to select the effort function. Three 

+ n s 

	

-k 	 1 

	

+ 1 	s 	' 	1 
I 	 2 

1 	
s 	I. n2 

..1 	- 	

A(s ) r 

7-(s) 

0 (s) 

_I 

 0 

0 

0 
s + yv  

f 2 
5 

0.L. 

[ ''')\( 	

ecs
2 

J 
	(5.2) 
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where v(s) = vo [t,
/ 
s
2 
 + 1 s) ( s 	na  ) - (E

s + 1 2U  
)(e,s2 	n s)] 

	 (503) 

A (s) 

where A (s) is the determinant of the s -matrix. 

The time history of -1-7-(r) may be obtained by means of a 

partial fraction expansion or, more easily, by use of Interpretation 

Formulae such as those listed in Ref. 9. The basic response in 7r is 

graphed in Fig. 29. 	It will be seen that the response is lightly 

damped with a large initial overshoot. The desired response in v 

is graphed in Fig.29. The desired response may be obtained by means 

of rudder and aileron deflections 41)  and eDI where 

(!)(vD.71basic) 	
CC Pulse Admittance of v to 	(g4D  

(.0 

	

Pulse Admittance of 17.  to 	iC1 D  

The Pulse Admittances are those appropriate to the basic 

aircraft and are conveniently evaluated by use of the Lapla-le 

tramform. Note that if the spectrum interval 8 is small the 

form of the impulsive admittance closely approximates to that of 

the pulse admittance, which may be deduced therefrom by multiplication 

by a factor of 8 . 

It is now necessary to select the effort function. Three 
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possible effort functions are, 
T 
	

T 

(i) 	f 	13,3)2 dT 	( ii) f p.D2 	 (iii) 

where T is a convenient time 

+
P )2 

dr 

and q is a constant 

The most realistic of these is (iii), but there is difficulty in 

assigning a value to q which, in effect, describes the relative 

preference of the pilot for aileron and rudder movements. For well 

chosen autostabilization we may expect to be able to reduce the 

magnitudes of the control deflections demanded of the pilot to very 

small values, so in these circumstances a less realistic effort function 

may be tolerated. 	In this example we shall, therefore, employ (ii). 

E is then assumed to be zero throughout the motion, when from Equation 

5.4 we obtain, 

(5.5) 
C 	QT) . (0, -23.162, -11-36, 19.70, 14'128, 5'496, -3.033, 

-5'355, -1.737, 2.3384, 2.794, 1.009, -0.782,...) 

with a 8 of (:)1 airsec., 

From the time vector polygons of Fig. 32 we see that the increased 

damping of the oscillatory mode that characterises the desired response 

is likely to be achieved by an autostabilizer system Which provides a 

rudder deflection of such phasing that the derivatives n
r 

and n are 

effectively changed as follows. 

(a) nr  is multiplied by 
	

E> 1 

or 	(b) n is multiplied by -H, H> 



2 
I (z 

r 
	4 ) dr pD 

r 

nr 	(o) nr and np  are multiplied by K' 	with n -n 2 <:c' n 	n r p 	r 	p r 

Solving for the optimum I in (a), we have, 

(2) rp(r) = 	Basic response inc.:: @Admittance of to to t X  (5)  D 

(5.6) 

whence 

0 n2 D(T) = (0, 5.95, 3'445, —1-18, —3,32, —1.184_, 0.409, 
	(5.7) 

1.208, -0.506, -0.452, -0.727, -0.368, 0.0536,...) 

Since 

1.1
2  n

s 	 n r i
- 1 OC 	) 	 A 

D r  
if  

(5.8) 

where 	is the rudder deflection due to the autnstabilizer. 

n4 	4 	,_ 2 /I, _, ___ n4 

	

. 	el (K - 1) nr 	
A 
rD ./ 	PD 	 D 

+ 
--J 	 =t- . i

c 	 i 	 i 	 (5.9) 
c c 

T 

The effort function f ( u,  n 4  . r Y  
) 

dr 	is evaluated by 

if 	PD n c 
souaring each element of the right-hand side of Equation 5.9. 

, 

(approximate) integration being performed by summing the elements 

of the resulting Cardinal Spectrum, 

For a T of 1.2 airsecs, 
T 

	

( 	)2  , 1.(-236162 	5.95 K-1 )2  , 	(5.10)  

(-11.36 	3•445 K-1 )2    A.MO 

	  .. 	 K-1 )2  

	

= -534'51(K-1) 	63'932(K-1) 2 	a constant term 	 (5.11) 
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1.2 
f g 

	 = 4e  1 8 , 
2 G 	2 aT op K-1 	53051 Therefore, for a 

looD 
.5 71-1)  7 	

2x63.932 i / 

Thus the optimum value of K is 5.18. 

As the effort function is admittedly unrealistic Step 7 may be omitted. 

The response in v to the specified input with no pilot action and 

with the optimum adjustment of the autostabilizer is graphed in Fig.30. 

It closely approximates to the desired response and the optimum 

autostabilization may, therefore, be regarded as satisfactory. A 

similar procedure may be employed to obtain the optimum value of H 

for n autostabilization. 

For combined n and n
r autostabilization (which can be 

produced by canting the axis of the autostabilizer rate gyro) the 

rudder deflection demanded of the pilot is given by: 

Q1) 	  
112 

el • 	
x 	1 n 22 . -3.21 	(K1  -1) r 	f1;., 	(H' -1) :s 

DO 
nV  

i' 	 i i I c 	 c 	 c  

(5.12) 

The optimum H' and 17,! arc obtained by solving the simultaneous 

equations for H' and K' which result from equating to zero the 

appropriate partial derivatives of the effort function. 

It is more difficult to formulate a realistic effort function 

for lateral response than for short-period longitudinal response, 

since both aileron and rudder control is available to the pilot. 

The effort function selected should, therefore, be of the 'integrated 

displacement-squared' type so that the effect of the pilot failing to 

provide the demanded control surface deflections will be to induce 
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only a slight divergence from the desired response. 

5.3. OPTIMIZATION OF NOTT-LflEAR SYSTT'S 137. 1.12ANS OF CARDINAL 

.70PECTRIJM  

Cardinal Spectrum Analysis may be employed to optimize non-

linear autostabilizer systems by a similar procedure to that of 

Blvimp]es4, 5 and 6. Thus, for example, in Example 5 Equation 

3.23 would be replaced by:- 

rn 	T 12 
L PD 

0.13) 

= n F 2  (23'3695 y_ir.tr P 2  — 1 V3-2968 V6 r 4  + ... i
I: 

.... + 54.9029  OD Pea ) 

+ 7)F  (-1'158493 \--ID P
I  2 
 + 	  

	-0.0250995 
F17 e-0.4-324-T sin  T) 

/  
(f) 

+ terms net involving np  

where E 	denotes the sum of successive ordinates of the 
appropriate cardinal spectrum. 

The procedure for minimization of the effort function is thonof.forwnrd 

similar to that illustrated in Example 7. 

acT.6 6.1. THE OPTIMIZATION OF AUTOSTABILIzER SYSTEMS  

FOR PI[C,ITESS AIRCRAFT  

Let the desired response to a specified input of a pilotless 

aircraft be RD(T). We may regard the optimum values of the 

adjustable parameters of the autostabilizer system as having been 

attained when the actual response R(T) mist closely approaches 

P (T) Hence a suitable criterion for optimization would be, 

I 	
=ir 	

1 RD(T) - II( T) 1 dT - a minimum 0  
(6.1) 

only a slight divergence from the desired response. 

5.3. OPTIMIZATION OF YOF-LflEAR SYSTS IfflaANS OF CARDINAL 

::PECTI1M ts.TLLYSIS  

Cardinal Spectrum Analysis may be employed to optimize non-

linear autostabilizer systems by a similar procedure to that of 

Blvimp]es4, 5 and 6. Thus, for example, in Example 5 Equation 

3.23 would be replaced by:- 

(x.13) 

brnPD (T) 12  = nF (23'3695 	P 2  138'2968 Vid) r 4  + 

....+ 54'9029 	Pea ) 

n
F (-1'158493 7i-ktD P a 	 

	-0.0250995 	
p17 0-0•4324-T sin  T) 

+ terms net involving np  

where E 	denotes the sum of successive ordinates of the 
appropriate cardinal spectrum. 

The procedure for minimization of the effort function is thenof.forwnrd 

similar to that illustrated in Example 7. 

acT.6 6.1. THE OPTIMIZATION OF AUTOSTABILIZER  SYSTEMS  

FOR PI[,OTTESS AIRCRAFT  

Let the desired response to a specified input of a pilotless 

aircraft be RD(T). We may regard the optimum values of the 

adjustable parameters of the autostabilizer system as having been 

attained when the actual response R(T) mist closely approaches 

D
(r). 	Hence a suitable criterion for optimization would be, 

I = f 	I RD( 	R( 	I dT -7, a minimum 
	

(6.1) 
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or, alternatively 

I 	
Ir  

[nD(T) 	R(T) ]a  

where 

dT= a minimum 

T 	is any convenient time 

(6.2) 

It will generally be found that R(T) is a function of the adjustable 

parameters of the autostabilizer k , k , etc., of such a nature 
1 	2 

that differentiation of Equation 6.2 yields complicated expressions 

fmr ak 	etc., the zeros of which are difficult to ak 	2  
obtain. A simpler meth'd of optimization, employing an approximate 

firm of the criterion of Equation 6.1, has therefore been developed 

and is presented below. The method is, strictly, only valid for 

completely linear systems (i.e. linear aircraft and autostabilizer 

dynamics) but, as we shall explain, it appears that it may often be 

applied to non-linear systems with success. 

Consider (for example) the llngitudinal motion of an aircraft 

fitted with mq  autostabilization. For a specified input A M(T) 

we have in Car3inal Spectrum Analysis notation, 

('D g , C Admittance of q to n (j_D + © Admittance of li 

to A NIX06, 

GI) qD  = ® Admittanoe of 4 to 11-y, 0 77 D+ 0 Admittance of 

to o ACK(D 0 M(T) 

Valence, with n  = ka 

0 cap 	= 	Admittance of q to t7X ep op  - 14) 	(6.5) 

Adopting the criteiiion of Equation 6.1, the optimum k is that 

(6.3) 

(6.4) 

which minimizes 

A A 
The Cardinal spectrum If qp  - q may be written as: 
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or, alternatively 
T 

I u f [ P (r) R(T) 	d 	a minimum 
`1.) 

(6.2) 

o 	 where T is any convenient time 

It will generally be found that R(T) is a function of the adjustable 

parameters of the autostabilizer k , k , etc., of such a nature 
2 

that differentiation of Equation 6.2 yields complicated expressions 

k 
a i etc. the zeros of which are difficult to ak 	a 

2 

obtain. A simpler meth'd of optimization, employing an approximate 

firm of the criterion of Equation 6.1, has therefore been developed 

and is presented below. The method is, strictly, only valid for 

completely linear systems (i.e. linear aircraft and autostabilizer 

dynamics) but, as we shall explain, it appears that it may often be 

applied to nen-linear systems with success. 

Consider (for example) the lmngitudinal motion of an aircraft 

fitted with mq  autostabilization. For a specified input A M(T) 

we have in Cardinal Spectrum Analysis notation, 

Admittance of q to n 	7] + © Admittance of #4 	(6.3) 

to A m)(06, M(T) 

	

CO /CID  ® Admittance of to to 17T, 0 np+ (*) Admittance of q 	(6.) 

to 0 A .0 M(T) 

Valence, with n = ka 
0 cap  A) _© Admittance of q to 71-Y. g OD  - kq) 

Adopting the criteiiion of Equation 6.1, the optimum k is that 

which minimizes
.
111, - qldT 
o 	' 

The Cardinal Spectrum If qi)  - fi may be written as: 

(6.5) 
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- ) = (6  

hcce 2no  

5 , ... • • • 	) 	 (6.6) 

          

       

+ 	C 
2n 

 

        

(6.7) 

In Equation 6.5, we put 

fTh Admittance of q to 77 = (a0 , a1 , a2 ,  	 (6.8) 

and 

C 	(T1D  - 	„ (h 
	

h 
I 	2 
, h 	 (6.9) 

Then 

	) 1K  (ho 
 , h , h2  , ...) 	(6.10) 

and 

a h 
0 	* 0 

C =ah+ a h 	 (6.11) 
• 1 	Q 	I 	1 

n • a 	n ▪  a hn-1  	 + an ho 

an hn 2n 

+, .+ 2n ! ' 	I 	(1110 1 + 11111412 1 +....+ Ihn i ) 

+I all( 1110 1 	+ I hi' +I h2 1 +...+ 1 hn i ) 

• 
an 	( I ho  I + 	I hi 	+ 	h2  I +....+I hn  I 	) 

A (I 110 1 + 1111 1 + I h2( +.....+ I hn l 	) 

where A . 	l  a
n t + lal  I + 	+ Ian I 

T 2r8 
ts. 	A 

Hence 	
J IqD q  ! 	is minimized when k 4s chosen so as 

to minimize 	1110 1 4- 1h11 4. 1 h2 l +••••+ I hn  I I nD -k al dT 

For well-chosen autostabilization with the adjustable parameter k 

T= 2,8 
A 

Hence 	 Ia — 	C'T  

to minimize 11101 + lhi  1 + 

is minimized when k no  is chosen so as 

f +....+ 1 hn  I n
D
-kql dr 

(6) (% ''' (C1) 	'''' 	(C o  5 C 	5 	.: 	, • c • . • 	C • ) 	 (6.6) 

	

I 	2 

whence n  8 

f I 
A 	A 
CI.D — q  ICIT  :;::::: l e0 1 -6  le1 I +  

+ 	+ .. — +1 e 	I 2n 
o 	 (6.7) 

In Equation 6.5, we put 

(972) Admittance of CI to '7 = (a 0  1  a 1  , a2, 	) 	 (6.8) 

and 

Then 

- kci.) 	(ho  • h P  h 	 (6.9) 

	

2 		 

- 4) = (a0, al P  a2 P 	) 	h 	h , ham, ...) 	(6.10) 

	

0 	2 
and 

e
a 
= a h 

0 

e = a h 	h 
• 1 	0 	1 	1 	0 

n 	a hn  + al  hn  "1 + an ho  

(6.11 ) 

. an hn 2n 

1 0 , 1 	C 	1 2 n = 	(11101 + ih g 2 	
+..+ Ihn 1 ) 

+ 1 ail( 	1h01 	+ 1 hi l +1 h2 1 +...+ 1 hn l ) 

+1 ar l (1 hid + 	(hi l + I  h21 +....+1 hn l 	) 

A (1 ha l + 	1h11 + 1 h21 +.....+ 1 ha l 	) 

where A = 	1 3'0 + las 	+ 
	

+ Ian I 

0 

For well-chosen autostabilization with the adjustable parameter k 
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close to its optimum value, 17D  k 	k qD  

Therefore, by choosing k such that 1 1 77- k ic)13  Idr is minimized, 

an approximate value for the optimum k (as def3.ned by Equation 6.1) 

is obtained. It is interesting to note that for a piloted aircraft 

we should have nilan  = 71D - k cip  and k would then Le chosen to minimize n6 

	 A 

Jr 	1
%, 

1 
dT (or some other effort function). 

0 

The optimization procedures for piloted and pilotless aircraft are 

therefore similarl  in many respects, although the procedure for pilotless 

aircraft is essentially approximate, and Step 7 is supLrfluous. 

As an example, let us consider a pilotless aircraft having similar 

characteristics to that of Example 7 with nr  autostabilization. 

From Equations 5.5 and 5.9, we have, 

(5) 	(4D  - 	= (0, -23°162 + 5.95 J, -11.36 + 3.445 J,...‘) 
	

(6.12) 

c 	 where J = K 

and 
1.2 

0 

	

i ' 	ppny,  

ic' 
	

%.1 dT  = 14-23•162 + 5.95 J1 

....+ 1-0.782 - 0.0536 J 

Each term on the right-hand side of Equation 6.13 is of the form 

	

l ar 	br j  I • 	It can be shown that 	iar  + br 
J I is stationary 

when J = ax where i is a particulaer to be found. Thus the 
b. 1 

possible optimum values of J are,  

3.8927, 3.2975, 16.695, 4.2554, 4.642, 7.416, 4,433, "-3.432, 5.173, 

3-8432, 2.731, 14.5896, 

+ 1-11.36 + 3'445 JI +... 
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A. 	A 
close to its optimum value, nil 	q - k 	:...:...-7 - k qp  

Or 

Therefore, by choosing k such that Is  I n -
i. 1 

k qp  'dr is minimized, 

an approximate value for the optimum k (as deftned by Equation 6.1) 

is obtained.. It is interesting to note that for a piloted aircraft 

A 
we should have n . nD -k qp  and k 

would then be chosen to minimize 
n6 	 PD 

ir r
p.111  1 dT (or some other effort function). 

of 
 optimization procedures for piloted and pilotless aircraft are 

therefore similarl  in many respects, although the procedure for pilotless 

aircraft is essentially approximate, and Step 7 is superfluous. 

As an example, let us consider a pilotless aircraft having similar 

characteristics to that of Example 7 with nr 
autostabilization. 

From Equations 5.5 and 5.9, we have, 

(?;.51  - 	) = (0, -23.162 + 5.95 J, -11'36 + 3.445 J.,...) 	(6.12) 

c where J = K - 1 

and 

1.2 

14D  - 	dr = I..23.162 + 5'95 JI + I-11.36 + 3'445 JI +... 

oc
/ 	1 

....+ 1-0.782 - 0.0536 J 1 

Each term on the right-hand side of Equation 6.13 is of the form 
n 

tar  br  J 1 	It can be shown that 	kir  br  J 	is stationary 

when J = ai where i is a particular r to be found. Thus the 
b. 

possible optimum values of J are, 

3.8927, 3.2975, 16.695, 4.2554, 4.642, 7'416, 4.433, -3.432, 5'173, 

3.8432, 2.731, 14.5896, 

I g2.n 



J 

a = 

a 1 
12 
-a 
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1.2 

For brevity we put f m,Ai;  14 - 	dr = E 
0 

ID 	si 

Equation 6.13 may then be written in the form 

E = 	+ bc  J1 +I ai  + bi  J1 + 

 

+ I a12 + b
12 

J1 
(6 . 14) 

  

= fi 	1.7  - u 1+0 1.1  - a I + 	+Q 	I 
1 	 12 

with LI' = 1b1 , 

Rearranging the terms of the right-hand side of Equation 6.13 in 

order of decreasing a we obtain 

E = 1.181 J - 16.6951 I. 0.05361 J - 14.58961 +...+0.05061 J + 3.4321 
dE The minimum of E is found by examining the sign of --17 for successive 

values of 	J 

Thus for 	J > 16.695, 

E 	= 	J (1.18 + 0.0536 +.:.+ 0.0506) 

dE = 	18-8304,> 0 

For 	16.695 ›J> 	14'5896 

dJ
dE  = 	18.8304 	- 	2 x 1-180. 	0 

For 	14. 5896 > 	J > 7' 416 

dE = 	18'8304 - 2(1.18 	+ 	0.0536), 

- (1.18 x16.695 +... 	-0.506 x 3.432) 

> 0 
dE Continuing this process we find that To.- becomes negative 

at J = 3.8927. 

This is the ov...imum J within the accuracy of the calculation; for 

greater accuracy a smaller spectrum interval should be employed. The 

corresponding optimum K-1 in Example 7 is 4.18. 
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1.2 

For brevity we put f 	 1 4, - s  

Equation 6.13 may then be written in the form 

E = 1 ao  + bc  J1 +I al  +b
1 
 JI + 	I ai2 	1312 

J 
 I 

= fi,  1J - 	1+0 1J - a I 4" 	+ 0 	1.1- al 
0 	0 	1 	 12 	 12 

with p = IbI , a =1 

( 6.14) 

Rearranging the terms of the right-hand side of Equation 6.13 in 

order of decreasing a we obtain 

= 1.181 J - 16.6951 + 0.05361 J 	14.58961 +...+0.0506I J + 3.4321 

The minimum of E is found by examining the sign of -ari_ for successive 

values of 	J 

Thus for 	J > 16'695, 

E 	= 	J (1.18 + 0.0536 	0.0506) 

dE = 	18-8304,> 0 
dJ 

For 	16.695 >J> 	14'5896 

dE = 	18083014- 	- 	2 X 1.18, > 	0 

For 	1)4_. 5896 > 	J > 7'416 

dE = 	18'8304 - 2(1.18 	+ 	0*(3536), 
dJ 

- (1.18 x16.695 	-0.506 x 3.432) 

> 	0 

Continuing this process we find that 	. becomes negative 

at J = 3.8927. 

This is the onamum J within the accuracy of the calculation; for 

greater accuracy a smaller spectrum interval should be employed. The 

corresponding optimum K-1 in Example 7 is 4-18. 



6.2. A SUGGESTED PROC DIP • FOR THE OPTIMIZATION OF ITTOSTABILIZER 

SYSTEMS FOR PILOTLESS AIRCRAFT WITH NON-LINEARITIES. 

It will be observed that in Examples 1 to 7, the use of effort 

functions which are functions of displacement only yields optimum 

values of the adjustable constants of the autostabilizer system such 

that the stick-fixed response (with the optimum adjustment) is close 

to the desired response. The analysis of Chapter 6.1 indicates why 

this should be so for linear systems, since it has been shown that 

the approximate optimization procedure for pilotless aircraft is 

formally similar to the optimization procedure for piloted aircraft 

with a certain choice of effort function. 

For non-linear systems the above-mentioned analysis is 

inapplicable: nevertheless the stick-fixed responses obtained in 

Step 8 of the Non-linear examples (Examples 4, 5 and 6) were in each 

example close to the desired response, and it appears likely that 

this will frequently be the case for practical non-linear systems. 

In view of the redicus and complicated nature of non-linear response 

calculations starting from the equations of motion, and the possibility 

that these calculations mtv have to be repeated many times to locate 

the optimum values of the adjustable parameters a simple (even if 

approximate) method of optimization for non-linear pilotless systems 

is highly desirable. It is therefore suggested that before attempting 

a rigourous optimization przcedure for a non-linear pilotless system 

the procedure for piloted aircraft should be applied (omitting Step 7) 

with a suitable choice of effort function. Despite the basic 
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unrealism of this artifice, the relative simplicity of the calculations 

involved make this procedure one of considerable utility. It must 

be clearly understood however, that this procedure is at best approximate, 

and thac for ill-chosen autostabilization (i.e. autostabilization that 

is inherently incapable of providing a response close to the desired 

response even when at its optimum adjustment) the approximation may 

be pnfNr. 

CHAFTM 7.  
7.1. SOT ALTF21\ITIVE METHODS OF OITIMIZLTION 

In this report we have treated piloted and pilotless aircraft 

separately. In most published work cm aircraft autostabilization no 

subh clear distinction is drawn between the two - generally it is 

tacitly assumed that the aircraft discussed is piloted, although the 

presence of the pilot is not explicitly taken into account in the 

calculations. Some difficulty-therefore exists in drawing a comparison 

between the optimization procedures developed herein and relevant published work. 

It is, howdver, desirable that some such comparison should be made, and 

in order to provide a basis for comparison it is assumed throughout 

this section that the aircraft referred to are piloted. 

Vie give below a brief assessment of relative merits and demerits 

of some published methods of optimizing aircraft autostabilizer systems 

vis-a-vis the procedure of the present work. The alternative methods 

are described only briefly, in order to avoid lengthy digressions: 

reference should be made to the works cited for a fuller description 

'of each method. 
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7.2. THE NETHOD OF VARIATION OF DERIVLTIVES 

This is probably the most widely used method of optimization. 

The type of autostabilization to be employed is first selected 

( 	nr' A m etc.) and the optimization is performed by trial 

and error - repeated response or stability calculations being carried 

out with varying values of the adjustable parameters of the auto-

stabilizer until the desired response is most closely approached. 

Complete linearity is usually assumed. 

Variation of derivatives has the following advantages over our 

proceftre: 

(i) 'Stability' (i.e. free motion) calculations maybe used, 

rather than the more complicated 'response' calculations. 

(ii) In finding the optimum autostabilization by trial and error 

the off-optimum performunce of the autostabilizer has been investigated. 

The disadvantages relative to our procedure are as follows: 

(i) The procedure is one of trial and error, and is therefore 

likely to be tedious, particularly for complicated autostabilizers with 

several adjustable parameters. 

(ii) Non-linearities can only be taken into account by means of 

calculaticns starting from the equations of motion. Such calculations 

are tedious and complicated even for quite simple non-linear Fystems. 

For non-linear systems advantage (i) also disa:pears. 

(iii) The presence of the pilot is igiorod. 

It is also possible to estimate the effects of variation of 

derivatives on the free motion of the aircraft by 
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(a) constructing relative damping diagrams (Ref. 12) and 

(b) The approximate method of Mitchell (Ref. 17) 

Both these techniques are applicable only to linear systems and would 

appear to demand rather more tedious calculations than t§-e procedure 

of this report. 

(Disadvantage (iii) also applies). 

7.3. OPTIMIZATION OF FREWENCY REMO= 

This procedure consists of adjusting the aircraft frequency 

response by means of trial and error variations in one or more 

derivatives until i satisfactorily close approximation to the desired 

frequency response is attained. Compared with our procedure, this 

has the advantage that the result of the procedure is in graphical 

form, which consideration will assist rapid convergence on the 

optimum values of the autostabilizer adjustable parameters. 

The disadvantages are 

(i) The method is applicable only to frequency response. 

Since we an-Jprirnari3y concerned with transient response it would 

seem to be more simple and realistic to work in terms of transient 

response throughout rather than in terms of the frequency response: 

associated with the desired transient response. 

(ii) it is difficult to include non-linear effects in the 

analysis. 

(iii) The presence of the pilot can only be taken into account 

by assuming a form of transfer function for the pilot. This is, in 

fact, attempted in Ref. 13. However, it appears that the human pilot 
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is sufficiently adaptable to be able to vary his transfer function 

to suit the demands made upon him; the choice of transfer function 

is, therefore, somewhat arbitrary and possibly unrealistic. Whilst 

(as has been shown) it is quite possible to choose an unrealistic 

effort function (within reason) and. yet achieve a satisfactory 

autostabilizer system by straightforward application of our procedure, 

an unrealistic choice of transfer function may lead to unrealistic 

values for the optimum adjustable parameters. 

(In this connection, it appears to the writer that although 

the human pilot is able to vary his transfer function considerably, 

the possible variation of effort function would be less marked and 

it might be possible to successfully determine the true effort 

function experimentally. A possible experimcntal procedure would 

be to measure some ph3siological parameter of mental and physical 

effort, such as, perhaps, blink rate, while the pilot is piloting 

a flight simulator under carefully controlled and repeatable conditions. 

Extraneous disturbances would be simulated and the control deflections 

supplied by the pilot recd- pled and correlated with the selected 

physiological parameter.) 

7.4. THE flElDiaD OF ST LNDARD FORMS  

A full discussion of this technique is given in Ref.10 

In the present context, a standard form is a particular numerical 

form of a given aircraft transfer function. Thus in :xamplc. 7, 

from Equation 5.3, 
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Aircraft Transfer Funation 7-(s)0(s) 
- 6 ) v

o 
where 	Q(s) is a quadratic expression in s 

is a guar-Lie expression in s 

Since each possible form of response is associated with a given form 

for Q(s)/  A(8)  it follows that the /optimum' response is associated 

with a certain standard form of the aircraft transfer function. in 

this context the 'optimum' response is that for which a certain 

specified response parameter (for example r ;2  d r ) is a minimum. 

Lists of coefficients of Q(s) and A(s) for various 'optimum' forms 

of response are available, and are usually referred to as 'standard 

form coefficients'. 

Compared with our technique the method of standard forms has 

the advantage of greater simplicity and ease of working. 

The relative disadvantages are:- 

(i) A prohibitively complicated autostabilizer system may be 

demanded to attain the standard form exactly, e.g. simultaneous 

variation of a large number cf derivatives may be demanded. With a 

practical autostabilizer system it nay well be impossible to attain 

the stanaard form exactly; in such circumstances it is difficult to 

formulate a systematic procedure for optimizing the available auto-

stabilizer system, since the relation between the standard form 

coefficients and the time history of the response is generally 

complicated. 

(ii) The desired response must be a (published) 'optimum' form. 

(iii) The method is not applicable to non-linear systems. 
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(iv) The presence of the pilot can only be taken into account 

by assuming a pilot's transfer function. The disadvantages of 

such an assumption are similar to those discussed in Section 7.3. 

7.5. OTT 7R METHODS. 

It will be found that (with two exceptions) most of the 

remaining published methods of optimization are variants of one 

of the methods described above. The exceptions are:- 

(i) Phase-plane methods of optimization 

and 

(ii) Methods appropriate to statistically-described inputs. 

Neither of these methods are readily comparable with the procedure 

of this report. Phase-plane methods of optimization are at present 

virtually restricted to systems of one degree of freedom. 	Small- 

perturbation aircraft motions usually possess two or three degrees 

of freedom and the representation resulting from removal of one or 

more degrees of freedom is generally of too limited realism to be 

suitable for optimization purposes. Optimization for statistically 

described inputs has not been attempted in the present work and no 

comparison can therefore be made. 

From the foregoing comparisons, the procedure of this report 

is seen to possess some important advantages over those hitherto 

available, and the author believes that it will be found to be of 

considerable utility in practical calculations. 



E. co7curam's 

1. A novel procedure for the optimization of aircraft autestabilizer 

systems has been developed. 

2. The -procedure is straightforward and its application does not 

result in danands for autostabilizer systms of prohibitive complexity. 

3. any important non-linear effects mlly be taken into account, with 

only slight extra corrplication in the calculation required. 

4 The procedure is applicable to piloted aircraft, but may be 

modified to form an approximate optimization procedure of good 

accuracy for pilotless aircraft without non-lincaritius. 

5. The results of some examples presented herein support a suggestion 

that this approximate procedure may frequently be applied with success 

to pilotless aircraft having certain non-linearitius, either in the 

autofAatilizer, or in tho aircraft dynamics. 
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NOTES ON OTILITI:R3  

CBAPTER  

1. (Page 3). For a full discussion of some of the problems of 

simulator presentation see Eof.16. 

2. (Page 3). See (for example) Ref.3. 

CHLP1719 2 

1. (Page 13). Simultaneous variation of m , mw and zw so that the 

manoeuvre margin is kept constant whilst the damping of the 

longitudinal oscill'Aien is increased is possible, but hardly 

practicable. 

CHAPTER  3. 

1. (Page28) Note that ulthcugh, in this example, the maximum 

value of the desired response (in 14) occurs at r = 0, this 

A 
will not generally be the case. In general (I max may be 

assigned a value slightly higher than the true value with 

negligible loss of accuracy. No special significance 

attaches to the value of 1.4 chosen here. 

2. (Page 3L) This was, in fact, necessary in Examples 5 and 6 

due to the largeP and a of the desired response. 

CHAPTER  6 

1. (Page 52) Although the demonstration of this fact has been 

effected by means of Cardinal Spectrum Analysis it is 

generally true for linear systems since the approximation 
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inherent in C=ardinal Spectrum Analysis can be removed by allowing 

the spectrum interval to tend to zero. 

CHAY2t2 7. 
1. 	(Page 60) Our authority for this statement is Ref.11. 
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APP2NDIX 1 - LIST OF MRIWITIVES. 

The derivatives are calculated for a Light Fighter type of 

aircraft, flying at M = 0.9, 50,000'. 

Span = 22.0' 	 Wing Area = 136.6 

Tail Moment Arm = 10-39' 	 A.U.7. 	= 6,000 lb. 

miff  = -.108 	w m. -, -.0895 	m = -.2263 	IE  = .298 

z
w  =-2-3'i 	

m.= —205 	M E W 	= 365.0 77  

v = -.0783 	/Iv  = 	.0825 	yv  ,• -.393 	CL  = 0.32 

= -.40 	 -.0148 	y = 0 (assumed) 

r = +.1085 

.6
4 
= + .0128 

..e, 

I' - +.0446 .i. 	_ 

n
r 
= -.214 

n 	= -.071 

ic  , , +.284 

y
r 
= 0 (assumed) 

5r4  = 0 (assumed) 

i„, , -.0164 
1, 42 = 343.5 



TABLE I. TABULAT/J //GLUES OF 'TIE COEFFICIENTS Fo,P2, ......S6,S8. 

Coefficient Fractional Decimal Coefficient Fractional Decimal 
value value value value 

Po  +35.45.2 + 5.3833 R +9.99.13 + 30.7925 
32.64 32.64 

F2 -25.49,9 R2 -15,63.143 -263.9355 
i6.32 16.32 

P
4 +49.81.11 42.6357 R

4 +49.121.117 +677.4346 
32.32 32.32 

PG  -15.99,13 -37.7031 R6 -686.2324 
16.32 

P8 +5.143.35 
32.44-- 

412.2192 R 8 +21.121.13.15 +241.9409 
32.64 

E P 

00  

Q2 

Q4 

Q6 

Q8 

EQ 

+1 + 0.9999 

-19.7388 

+142.1191 

-334.9951 

+322.5879 

-109.9731 

0.0000 

So 

S2 

S
4 

S6 

38 

E S 

0 

70115.4.2 

+ 	0.0001 

- 15.7104 

+146.6309 

-395.9033 

+414.7559 

-149.7729 

0.0002 

32.64 

+15.49..99 

32.64 

-14:32 

-35.81.121 

16.32 

-21.135,143 
32.32 

+35.39.121 

32.32 

+121.117.12 
16.32 

-35..33.13).15 

1 7.32 

-121.169.15 
32.64 

0 

32.64 

0 

TABLE I. TABULATED VALUES OF THE COEFFICIENTS Fo,P2, ......S6,S8. 

Coefficient Fractional Decimal Coefficient Fractional Decimal 

value value value value 

Po  +35.45.2 + 5.3833 R +9.99.13 + 30.7925 
32.64 32.64 

F2 
-21.5vi2 R

2 
-15,63.143 -263.9355 

16.32 16.32 

P
4 

+49.81.11 42.6357 R +49.121.117 +677.4346 
32.32 32.32 

P6 -15.99,13 -37.7031 R6 
-686.2324 

16.32 

P
8 +5.143.35 +12.2192 8 +21.121.13.15 +241.9409 

32.64 

E P +1 + 0.9999 0 + 	0.0001 

00  -19.7388 S - 15.7104 
32.64 

o 

Q2 +15.49..99 +142.1191 s2 +35.143.15 +146.6309 
-16.32 16.32 

Q4 
-35.81.121 -334.9951 S

4 
-21.135,143 -395.9033 

32.32 32.32 

Q6 +35.39.121 +322.5879 S6 
+121 .117712 +414.7559 

16.32 1;-.32 

Q8 -35..33,13/.15 -109.9731 S8 
-121.169.15 -149.7729 

32.64 32.64 

E Q 0 0. 0000 E S 0 + 	0.0002 



TABLE TT 

001EFFICINN1liah h2 

h2 h3 h4 h5 h6 h7 ha (=natant h 

z2 28.97992 -231.83936 922.72022 -2,242.12204 3,573.18507 -3,741.40362 .2,463.62287 -921.45232 149.30885 

z4  -212.51976 2,380.21910 -11,410.47/36 31,507.40934 -54,641.85154 60,978.87828 -4.1,890.72252 16,176.62560 -2,657.56660 

26 
721.15077 -9,778.33106 54,708.74390 -169,344.67 318,835./8010 -373,860.44870 266,678.83201 -105,967.21632 ¶8,006.73/22 

Z 8 -1,364.7160 21,427.25150 -134,311.76210 462,2/1.16/08 -900,211.96170 1,098,909.44662 -807,561.14910 326,458.99734 -56,874-19162 

210 
1,568.38754 -26,508.59960 179,214.98722 -637,144.34688 1,323,171.37802 -1,665,600.43308 1,253,727.45165 -519,909.20492 91,477.37931 

242 -967.52498 17,323.32854 -123,069.44164 454,756.27416 -973,406.26854 1,255,316.13220 -963,730.96396 406,250.66470 -72,472.36044 

y14 246.81667 -4,607.260.18 33,940.21923 -129,135.27656 283,077.46909 -372,329.12924 290,613.62730 -124,238.38768 22,431.92157 
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