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SUMMARY

In a recent paper by Lilley and Hodgson an approximate analysis
is given of the pressure fluctuations on a rigid wall under a turbulent
boundary layer. One of the approximate results given in that paper was
that \ff)z /= s u: & 5 Cp,y although strictly the analysis gave

= 1 2, /4 §
,\{Pz /2 po u, Cf ,\II.;E.. .

The present paper presents a more exact analysis by using the
rethod of generalised Fourier transforms. The final result is that

Jﬁz /% Py ‘I.1e2 R U6 Cp ond is independent of the boundary layer

thickness, except in so far as this is a function of the wall shear stress.
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NOTTION

constoant in Colest 'Law of the woke!

5
w e T rps
= /= I u; local gkin friction coefficient

longitudinal velocity correlation cociTicicnt
von Karmon constant

tronsverse scole of turbulence

wave number vector in the plane (%, x,)
pressure covariance

fluctuating pressurc

separation vectoxr

velocity covariance

Loplace tronsform cpcrator

time

co—ordinates

co=ordinates in plane (x1, xz)

mean velocity

velocity outside boundaxy loyecr
turbulent veleeity component
T .

=\ /ﬁo sheor velocity

Fourier coefficient of velocity
meen shear parancter

boundary layer thiclkness
displocement thiclmess
three—-dimensional wave number vector
kinematic viscosity

inverse turbulent scale

density



Notation (Continued)

T ; mean shear
L mean shear paroeter

T wall sheor stress

adw Fouricr cocfficient of pressure
T pressure spectrum function

& energy spectrum function

Other synibols, not listed above, arc defincd wherc they appear
in the text,



1. Introduction

In a recent p::per( ) a brief review is given of the theoretical
and, cxperimental rescarch on the presswre fluctuations in incampressible
turbulent shear flows, On the theoretical side the methods uscd by

1&':|:‘a_1'.r::hna.n(d arc discussed, although the analysis in that papcr depended
wpon a slightly dirferent model of the turbulent flowr than that used by
Kraichnan, In ordcr to obtain numerical results a ccrtein integral had
to be evaluated approximetely and the accuracy of the resulting expression

for 55 as a function of the skin friction coelfficient cannot therefore
be eusily established, The prescnt paper employs o different method

of approach =nd thercby avoids this difficult integral, It is shown that
the final results show good cgrecment with the esrlier approximate
rcsults,

2, dnolysis

The equition for the fluctuating pressurc in an incompressible
£
turbulent sheoar flow is(")

Ve p(x, £) = =2 p Te—ym—— (1)

vhere x=(x , x , x), o, is the constont density,r is the mean shear
i~
il
sk with W a function of x, only, and u, is the turbulent velocity
2 " 4 ’
commoncnt in the dircetion x,,

Let us consider the specisl case where the sheayx flow is the
boundary laycr flowing over the surface ot x, = 0 with co-ordinates
(x,, x,) in the plene of the surface, Then, if X #x , x,) in the plene
parallel to the surface and distrace x| from it we can warite 3 the
threc-dimensional Fouricr-Sticltjes transforms of p(x , t) and uz(gg y H)

reghectively as

ik o X + wt)
[ Lo 2

p(xa; X 4% =/ o cl?(xz; k ,w) (2)
and i(k « X + wt)
uz(xa; X 5 %) =] e c'iZa(:{ﬂ; k,w) (3)

vhere k is the wave nuber in the pline and w is the frequency.
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If we substitute for p and u, in equation (1) in terms of the
Fourier coefficients dw and &% defined in (2) ond (3) we obtain
2

S (@Y -1k(a) = -120 7(x) k (&) (%)
dxa

2

vhere ¥ = k‘: i ki 3

The boundoxry conditions for p axe p = O as X, T

and %E = 0 as x_ - O, Thus by means of the Laplace transform
2
method, writing Iim (dw) = (dw)_ and Lim a9 =(aw) =0
o dx 1
® 580 x =0 2
2 2
end A® = j’ (40) e™*2 ax , wo fiad
o]
s 5 —_— ~ = "sz
(s =) (@ = o) - [ 2o mr@)e Cax (5)
& .
— (aw) (aw) 1o k, [ —sX
) e e D ot FEas s o B 7 =
o () = gpesty & wroy ey | T(&)e e (6)
0

. i.Oo k1 co ,,)stz
* ey f raz )e  “ax,
[s]

which on interpreting gives

=
. (ad) kx, kx, ik [ 7 K(x,-x) f
o e PR T | 7 A=
dw = 5 (e +e ) o T(d?z)ma
o
ip ey i x, -x ,
n ml.;mj 6 r(az) ax (7)
(o]
But dw =+ O asx, * « so that
2i0_ k o -k o
(a8, = —p2=t [ o T(x)) a(x) & (8)
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Hence from (7) and (8) after soue rearrangement

i @ B Y kx4 x.}
o . . c '
duw (3:2) B S f ¢ T(de) ax
o)
iop k1 e |x - x2| ;
4 emmnaal f e r(dz,) &, (9)
0

a rcsult previously derived by Kraichnen,

The pressure spectrum function @ (x,; k ,) in the plane x, is
therefore relatcd to p byuL

] !
X e-l(li . T+ wt')

ar at’

L = S S

ey

~ < 10
ax,s & 9 @ (e k) e

e T e N e T

ik
0.11 d.k3 dw
and similarly the energy spcetrum function is
" k. £: ML - aa -.r.a—.-:u. s e e f.w;_: o e
@22(32, x,5 k y6) = - ff uzfxz, X, ) J;(xa, L+r, t+ t)

o !
gl(lf..'{.*'wt) dgdt’

e S o e T SHE )

e - LA H . L
| Blxp ke @ (5 k.0 (11)

dk1 c]k2 aw

Hence on the surface x

5 = 0 the three-dinensional pressurc spectrum
function is

2.2 R v ! "
L ok, f ek(x2+x2)

(0 5k, = —2-L

k2 J
O O

r(x/) 7(x)

.8, (xa", x:; X 54 dx; dx: (12)



and the two-dimensional pressure spectrum function is (if + is the time
delay)

_ b ,oo2 kf oo -Ek_x; © <ky,
(0 3k, t) = === e T(x!) ax’ [ e 7(x'+y)
) ka 2 2 J 3 2 2
o -,
@22(3:;, 5k t) dy, (13)

Ve note in passing thot the velocity covariance

B T e

w(x.; X, t) u(x,; X+, t+ 1) =R, (x, %51, £)
[ ik . ¢+ ot/
=j/@2(zx2,x;;1£,m)e(~ P ) dk, dw
1 ! err e s aa amm T A e s s
=,,'[f e:n..(lx, e T+ wh!) dza(xz; lf, ,"'j“w é'z“: (sz; ) (14)

Mso the two-dimensional encrgy spectrum function is

= 1)
. mliv sk, t) = f @22(}:;, ysk S € dw (15)

=G0

and so the more convcntional thrcec-~dimensional cnergy snectrum function(BJ ie

— — i i
1 X =%,
Baalmas b, 8) = 5o fm t (xs73k;t)e ay,
s 00
= d ulx, thu (x+ r, '+ t) e i(k . E)dﬁ
84’
s0eee (16)
or o o === urzkz
2 (537,58, ) = j e, (xig,t)e oA,  (17)
1-}'1‘101‘0 ﬂ}\c‘ = ( K1, KZ’ KS) {‘-1'16 1{15 i ; kz = Ka; k3 = KJ'



From (13) and (17)

I}

_ L[_pi)kf ® bk ¥
7 (05 k , t) fe

*rlw) & f 2, (x5 K, ax,

2

5 o =0

- g daly eeal18)
" j Ie c azr(x;_-i-yz) dy,

-

and for zero time delay the spectrum function of the surface pressure
fluctuations is

" [ @22(:{;; K) dk, (19)
= =Ky, 1KY,
‘ f e e w(x +v,) &,

which can be c:vuluut(,d when the turbulent energy spectrum function is

given as well as the distribution of the mean veloclty u as a function
of x ,
2

Ve see, following Kraichnan, that (19) is simplified

when the mean
shear, T, is exprecssed as

7(x,) =T, o | 2 (20)

vhere T, and B are constant,



3. A simple relation for &,

ot

Let ¢ = (r,, r,, r,) then if £(r) is the conventional longitudinal

velocity correlation cocfficicnt in isotropic turbulence a possible form
for R, is given by

. _; i f rf * : 7 f

Roal¥o5 rrv) = uz(xz) £+ “or T (21)
with -

= u?(x.f)

8 ~

Hence if f£(r) = cxp(-c?1r? (23)
‘then — ;{2

= e E(x)) ke /4T

e 1 Dl o (22)

?T -
s 2 2

e ik EDe s XATeT

f Ax,50e 4 = P -

=
Thus with T(xz) given by (20) and ¢, by (24) we £ind from (19) that
2
s s k2 e_k /11'02 ® [
T - BRI [Temel 3 e

o

f ey, =9, @&, (20)
x|
2
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In the case of a boundeyy layer in zero pressure gradient the mean
velocity distribution in both the inner and outer regions is given by

(6

Coles' / as (replacing u, by 4 and x, by y )

- u, ¥y . X

vhere the last term is Coles 'lLaw of the wake', and K is the von Karman
constant, If we choosc the values of K and 7 to be rcspectively, O.4 and
0.55, then

u u
;1_3 i_.{uﬁ = 2a2 L,33 cos;g (%X—‘I) (28)
a’/s

where u, a d u, arc respeetively the external velocity and the shear

. T : ’ «
velocity, N W;,p s ond the mean shear, 7, as defincd above, is given by
0
aq A
Y 4y

If therefore we define Tas given by (20), we find that a rcasonable
f£it with (28) is obtaincd if

307 ur 6—0,51 y

— T )
T

1

(29)
3.7 u

provided y is outside the laminar sub-layer, so that Ty & ek

S

1

and £ = 0,31,

9. Ihe surface prossurc spectiw: function

In order to have a value of the velocity covariance R .p Which can
be compared with experiment wo will modify slightly the value of R .
iy ¥ 7 1,

as given by (21)., The modification is to replace e by e

by w bl
whore 1 (x,) is the scole of the energy conteining cddies in the

direction normal to the surface, Thus we will put

i A . -
R, (x5 7,5 r) = @ (x) e2/Le =0T (4 _o? 27 (30)

vhere here o = \frf -



If k= ‘/‘k2 + k2 then the two-dimensional energy spectrum function
is

5 (/ ) -2.(1) _yz/l?_kz -2/l o
X sy s k) =2 W (k£ je €
&8 e T R N S (31)
16 7 o*
which is similar to (25) excent for the inclusion of e Va/1 and the
cxclusion of e T2 9 2

The surface pressure spectrum function is now (after integration
with respect to yz)

~(k + p=1/1 )xa ax!

f
®x,)e s

W(O;@ = 2

a2 a mm

ol e"ka/l"czf

3 (=)
R S B
and when u: and l2 arc constants,
P 2 o
2 72 2 k/ho® T2
(0; ¥) = o o lx:1 e u,
e (33)
ya o (k+g+ 1/1)(k +g-1/1)
If we now inscrt the values
5 7 u \&-1'7?
1 0 o 2
= = Blp p w=— w 0B
e e
o8 = 1/2 ; 51/12 e ,6’61= 0,31

vherc the first is found following (29), the second from the results of

L"Ufor(7), the third and fourth from the results of Grun'b(a) and the last
from (29) also, (O, is the displacement thickness) then the surface
pressure spectrun Punction becomes

e & W Co) Gepf o 00

- e S - (5)

(%6, u28)" (x 8)* + 0,62 (x 8,)

2 - - L3
where (uT/u*) = Cp /2 end Cp is the local skin friotion coefficient,



6., The mean square 'mlue of the fluctuating press

If wie write

P(o) = p° and k = k61

then on integration of (34) in the plane over all wave nunbcrs we f£ind
that

-~
® 2 ;K g2
P /L oy u ) = 35 G f e (35)
5.9 ® (E + 0,62)
o
or, \f '_2 T
P i oo -
- = 5.9 o, E ol dF, (36)
% po u; A (E + 0.62)
Since - -1?
0.72 > f Eeto.& | o5
E + 0,62
we sce that
J7
Teeees= = A6 0, (37)

2
L0
2 "o Y%

in agreement with the results given in Ref, 1. This suggests that the
pressure fluctuations under a turbulent boundary layer are proporticnal
to the external dynamic pressure, and the skin friction coefficient

and arc independent of the boundary laycr thickness except in so far as
the skin friction coefficient is a function of boundary layer thickness.
Equation (37) is based on the assumptions (2) that equilibrium conditions
prevail in the turbulent boundory layer, and (b) that the external
velocity to the layer is constant, '
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