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CORRIGENDA 

Summary - Line 8 	 Replace 4.6 Cf  by 3.1 Ci, 

17age 3 	- Equation (10) 	Replace X2  by x2  

Page 5 	Equation (19) 	Replace ei bcY2 by ei i2  Y2  

Page 6 	Equation (25) 	the variable of integration is K2 
-Z).31 y/6 /  

Page 7 	- Equation (29) 	Replace e-°31Y by e 

	

Line 17 	 Replace p = 0.31 by 1381  = 0,31 

:Page C 	- Line 17 	 Insert 'wave number' before spectrum function 

:'2..:;e 9 	Lines 9 to 11 	Delete and replace by, 

`Since 

f:2 
cc  2 e  

d1 
= -3.27367 

we see that 
2  

a 

po ue 

3.1 Cf  

 

( 3 7 ) 

  

* T
he author wishes to thank Dr. N. Curlc for pointing out the error in 

the text, and showing tha4-  the integral can be evaluated from the tabulated 
values of a similar integral by Goodwin, E. T. and Sta.ton, J. , 	J. 	M. 
Vol. 1, 1948, p.319. 
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SIMARY 

In a recent paper by Lilley and Hodgson an approximate analysis 
is given of the pressure fluctuations on a rigid wall under a turbulent 
boundary layer. One of the approximate results given in that paper was 

that  '\) 7 	P 0 11: 	5  Cf., 
? 	u 

e  
2 	c  1/4  iu f ,\147  

although strictly the analysis gave 

The present paper presents a more exact analysis by using the 
re shod of generalised Fourier transforms. The final result is that 

NI - 
thickness, except in so far as this is a function of the mall shear stress. 

152 A po 	e 2  srs if. 6 Cf and is independent of the boundary layer 
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NOTATION 

constant in Coles' 'Law of the unix' 
T 

Cf 	W po e  local skin friction coefficient -  

f longitudinal velocity correlat'..m coefficient 

Ii 	von Karmnn constant 

1 	transverse sc:le of turbulence 
2 

wave number vector in the pline (xi , x3) 

pressure covariance 

fluctuating pressure 

✓ separation vector 

R22 	velocity covariance 

Tkaplace transforla operator 

time 

x 	co-ordinates 

X 	co-ordinates in plane (xi, x3) 

tz 	rean velocity 

uo 	velocity outside boundary layer 

u turbulent velocity corlpoent 
T 

uT 	1"/J0
o 

shear velocity 

OZ 	Fourier coefficient of velocity 

moan shear parauoter 

boundary layer thickness 

8 	displacement thicIaies 

K 	throe-dimensional wave number vector 

vo 	kinematic viscosity 

inverse turbulent scale 

p 	density 



Notation ( C ont lamed)  

T 	 mean shear 

T
o 	

moan soar parac.,.-=e ter 

T 	wall she ar stross 

a W 	 Fourior coofficiont of pressure 

7r 	 pressure spectrum function 

energy spectrum function 

Other symbols, not listed above, are dafinod whero they appear 
ire the text. 



1. 	IntroducV on 

In a recent paper(1 ) a brief review is given of the theoretical 
and experimental re se_krch on the pressiirt: fluctuations in inc copra ssible 
turbulent shear flays. On the theoretical side the methods used by 

Kraichnan(2) arc discussed, although the analysis in that paper depended 
u2on a slightly diffe-'cost model of the turbulent flea than that used by 
Kraichnan. In order to obtain numerical results a curtain integral had 
to be evaluated approximately and the accuracy of the resulting expression 

for p2  as a function of the skin friction coefficient cannot therefore 
be easily established. The urosont paper employs a different method 
of approach and thereby avoids this difficult integral. It is shown that 
the final results show good agreement with the earlier approximate 
results. 

2 	tigAzsis 

The equAion for the fluctuating pressure in an incompressible 

turbulent shear flow.  is(2)  

02  p(x, t) 
au2  (x t) 

---- 2 p (1) 

where x 	Ix 
2 3 
I x ), pc) is the constant 

density, r is the mean shear 

au 

ax 
	with ill  a function of x2  only, and u2  is the turbulent velocity 
2 cornoncnt in the direction x2. 

Lot us consider the special case -,vhere the shear flow 	the 
boundary layer flowing over the surface at x2  = 0 with co-ordinates 

(x I, x 3) in the -elan() of the surface. Then, if X = (x I 2  x ) in the plane 3 ( ) 
parallel to the surface and distcam 	

2 
e x free it we can TJT'itO‘ the 

three-dimension;11 Fourier-Stieltjes transforms of p( x. t) and u (x t) 2 ^, 
res-)ectively as 

f i(k . X + wt) 
p(x ; X p 	t ) = ° 

e 
(17-eX ; k ,e) 	(2) 

2 	j 	 2 

and 

	

	

e 

i(k . X + et) 

2 2P 
 , u (x • X 	t) 	 az

2 P.  
(x ; k, w} 	(3) 

J   

where k is the wave nuL'her in the plane and w is the freouehoy. 



If we substitute for p ana u in equation (1) in terms of the 
Fourier coefficients du) and cr. 	fined in (2) and (3) vie obtain 

2 

C12 `•-• (d.L/ .-, k2 (d(:)) 
aX 2  2 

uhoro k2  = k2  + k2  . 
1 	3 

i 2 po r (x 	k (d7, 

The boundary conditions for p 2.re p = 0 as x2 4 M 

axed LE = 0 as x2 4 0. Thus by means of the Laplace transform 
am2 

method, writing Lim (a._) = (d70 )0 and Lim 4-.P - (diZi  = 0 
x .. 0 	 DC -0 0 	

u.A. 2  
2 

and 	d c.) = I t°  ( a ;:I e•-•SX 2  ') 	2, r, find 

2 

(s2 	k2) (a7) 
s ( a wo) 

- I-

.•SX 2  
2i P0  ki r(dE 

2
)o 	dx2  (5) 

0 

or 	(3.711) 
(Q0  ( aZ) f 	-sx i Po k i T;;17- j r("2)0dx, (6) 

0 
i p o k 1  

s+kr 

1..SX )e 	2 ax  

2 

0 

which on interpreting gives 

( 	kx2 o  ( e  
2  

 

.z 
f ▪  k(x2g) -x 
j 
0 

  

	

ip 	k 	x2  -k (x -x) 

	

0 	 2 2 

k
▪  m. 

T(  2} axe ( 7 ) 
0 

But dw - 0 as x2  . = so that 

k Co 
(d Z)0  =P 	e-1°  r (x2 ) aZ2(4) 42 2 ( ) 
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Hence from (7) and (8) after saaa rearrangement 

i p  ki 	.4.c(x 2-E 4 dw(x) = 	 e 	r(OZ 2 ) (Ix'  
JJ 
0 

i 00  k 	°"-k lx2— x/2  I 
+ --- 

l  

k 	e 	 T ( al 2 ) dux 
 

0 
(9) 

a result previously derived by Kraichnan. 

The pressure spectrum function 72-(x 2 ; k I  co) in the plane x2  is 
therefore related to p by(4) 

= 

81r 
ifiTX2Tk 

  

: tip a 	r t t 

—i(k . r 	cot') . e 	 dr at , 
r611,1 

C14X
2-  .• k co) dui ( x •• k to) 

2 
so 

dk aka aW 

and similarly the energy spectra i function is 

(iC) 

(X y  X 
22 2 2 

cd) ( X 2 2 •  X 	 2 2  
t t' 

—i(k r cat') . dr dt' 

clZ ( x ; k (A) c17. ( x • lc. 
-^"' , 

N.,. •—• 

dk 	dk 2  d ra  

Hence on the surface x2 = 0 the three—dinensicnal pressure spectrum function is 
00 

p2 	—k(x 	x2 
 rx 

r(xl) r(x") '11-  (0 ; 	.) 	0 = 	
j 

e 	
2 

k 2 

	

	
2 	2 

0 0 

/ 
X 0 ; /C 0, 4.) th: dX 

• 22 2 2 	 2 2 
( 1 2 ) 



and the We-dimensional Dressl.a.c spectrum function is (if t is the time 
delay) 

; 	• t) 

p 

 0 
2 k  2 

1 
al 

k 2  C 
-2kx 	 c 

2 
r(x/) dx' 	e r (x' + y 

2 	2e 1 	 2 	2 

2 

••• 

(X1,1 Y ; k p t) di; 
22 - 2  

Te note in passing that the velocity covariance 

u (x • X , t) u2 2  (x1; 	t + -0 R 
2 2/ 22(x2I  

,f  
+ 	) 

= If 2(2 	
' 

c.) X 2 1̂C, 1; 	(°) 	I 
r 	wt 	ak d 

osti) az (x 	W)(xj ; k 6.) 
.11 	 2 	2 	 2 	2 

Also the two-dimensional energy spectrum function is 

X
2
; 

(i 3) 

( X / 
22 	2,  

• k , 
00 
	Wt 

(x', Y 	k 	e 	dw 
22 2 2 

( 15) 

00 

and so the more conventional three-dinensional energy srectrum function(5 ) 1 E 

=_• 

22(X2 t) 
27-1- 

-00 

(XI' 
22 	2,  Y2; 12 

2-d3r k2 
e aye  

2 	 2 ^,•
„..) u (x' tOu (xi+ • ti+ t) e 	dr_ 

871-3  
40..00 (i6) 

or 
22 (Y 2  ; Y 2, k • t) 

=== 

22 	

tr2k2 
(x

2
'; K 	t) e 	dk 2 	(17) 

Vihere 1 	 fi 	) 	 k rt 	 K . 
1 2 3 	 1 1 2 2 3 3 



From (13) and (17) 

/7 (0; Lc 	t) 

0 

-2k x'  
2 

e T (XI  ) dx' 
2 	2 

422  (x' ; 	t)dK 
2 	 2 

-ky2  i ic2  y2 	 .•...(18) 
co  e T (x' + 

2 -r  2 
dzi-2 

—42 

and for zero time delay the spectrua function of the surface pressure 
fluctuations is 

Po  i  f 	2 
-2 k x i  

7ri-  (0; s) 	 T( x') dX)  
2 

2  le 

k2 
0 

CC = 

• (x' ; K) dK 
22 2 	 2 

ilcY2 
e 
	

T( Xi  + y2 ) dy2  
2 

2 

which can be evaluated when the turbulent energy spectrpja function is 
given as well as the distribution of the mean velocity u as a function 
of x . 

2 

We see, following Kraichnan, that (19) is simplified when the mean 
shear, r j  is expressed as 

T (x2) = TO  0 	
2 

where ro and j9 are constant. 

(19) 

•-•1:372  

•• 13X 
(20) 



3, A simple relation for 122 

Let r •••- (r1 , r2  s  r3 ) then if f(r) is the conventional longitudinal 

velocity correlation coefficient in isotropic turbulence a possible form 
for R 22iS given by 

R 22(x 12; r) 

with = 

( x ' ; K) 22 	2 

Hence if 	f( r) 	= 

.-_ ..,. 	

1 22(x 2;•C') 

and 

X I  P• 22 

WI+ 

= 	112(x2)  

7122( x ') 

r 2 + r 2 

	

1 	3 	f l  f 
2r 

/ 
• r)e -k R 22 ( x 2, 

f 

2) 

'-'''' 

	

."7 	
r` 
	s, k e 

dr 

0-  .*13Y2 
2 

(21) 

( 22)  

( 23)  

24) 

(25) 

then
l'21g2 

877-3 

exp( -452  r 

u22(x2')  ic2e- 
.-- 	'32  7:3/2-;-  

i y2  K2  
0 	a 16 7T OA  

Thus with T( x ) given by (20) and 1 by (24) we find from (19) that 

	

2 	 22 

	

7r ( 0; X) = 	

T2 

-0-1 	
_ f 0-2(k-re) X 

p 	k2  -k2/14- 
v 	Co 2 

4 	 0 
	 2 ‘12  (x i) ax  

2 	2 	2 

f

04k+My2 e 
a2y2 dye  (26) 

CO 

-x  





is 

-k2/14. 0-2  -y
2 
 /1 

= u2  (x2)e 	2  k2  e 
2  y2; k)  22 

( 
2; 

(31) 

If 	k 	 then the two-dimensional energy spectrum function 

16 ir c  

'which is similar to (25) except for the inclusion of 0-Y2/12 
_v2 02  

exclusion of e " 	• 

and the 

The surface pressure spectrum function is novr (after integration 
with respect to y2) 

	

P k2 T 2 k2 	.-0/40.2c 	1 	-(k 	fi6 1/12)x2 
 

0 	
l  u22,x2)e 

	

1 	 2 
(0; IT 

4 

and -when 	U2 	and 1 	are: constants, 
2 

Po
2 

72 	-0/402  k2  e 
7r 	( 0 ; 

172 
 

k +fi ac-41=M-11 

1 ( 
2 	2 

1/12) 

; 	/381= 

(32)  

(33)  

0.31 

44r 	(k -1-13 	1/a.2)(k 

If ve now insert the values 

2  8 T
1 O 	 2 

3.7 

+ 

0.8 

0.31 

= 	 ; 

	

u 	 u 

	

65 	= 1/2 	81/1 	= 
2 

-there the first is found following (29), the second from the results of 

Laufer(7) the third and fourth from the results of Grant(8) and the last 
from (29) also, (8, is the displacement thickness) than the surface 
pressure spectrum function becomes 

2 
114.7riu

ei
4   ( k  8 

I/  
N2  e-(k 81) 

- 
 (1100  U

2  8 )2 	(k 81)
2 

4. 0.62 (k 81) 
(314.) 

uhere ( u vu )
2 

=
f/2 

and o
f 
is the local skin friction coefficient. 



2 
) 

5.9 

= 	350; 

±. 

0 

i 

(2 

> 

-17  dE 

(35)  

(36)  
+ 0.62) 

0.5 
+ 0.62 

J r  2 p 	
2 

-°1  0 Ue 

or, 

= 

Since 

0.72 > 
0 

6. 	The men_ square :inlue of the fluctuatingsurp, 

If we write 

P(o) = p2  and 2 = 

then on integration of (34) in the plane over all wave numbers ue find 
that 

72  

vae see that 

P 
4.6  C 	 (37) f   

P U 
e 

in agreement with the results given in Ref. 1. This suggests that the 
pressure fluctuations under a turbulent boundary layer aro proportional 
to the external dynamic pressure, and the skin friction coefficient 
and are independent of the boundary layer thickness except in so far as 
the skin friction coefficient is a function of boundary layer thickness. 
Equation (37) is based on the assumptions (a) that equilibrium conditions 
prevail in the turbulent boundary layer, and (b) that the external 
velocity to the layer is constant. 



.. 10 — 

7. 

1.  

References 

Lilloy, G.M., 
Hodgson, T.H. 

On surface pressure fluctuations in 
turbulent boundary layers. 

2.  Kraichnan, R.H. 

College of Aeronautics Note No, 101, 1960, 

Pressure fluctuations in turbulent floe 
aver a flat plate. 
Journal Acoust, Soc. Amer., Vol.26, 
1956, pp.378. 

3.  Phillips, 0,m, On the generation of waves by turbulent 
wind. 
Journal Fluid Mech. Vol .2 , 1957, 

PP 41 7-445 . 

Lighthill, iui,J. Fourier Analysis and Generalised Functions. 
C.U.P., 1958. 

5.  Batchelor, G.K. The theory of homogeneous turbulence. 
C.U.P., 1956. 

6.  Coles, D. The law of the wake in the turbulent 
boundary layer. 
Journal Fluid Mech., Vol.1 , 1956, p.191. 

7.  Laufer, J. The structure of turbulence in fully 
developed pipe flow. 

, 	C 	„ Report 1174.1  1955. 

8.  Grant, H.L. The large eddies of turbulent flow. 
Journal Fluid Mech., Ve1.4, 1958, p.149. 


