RTPORT NO. 131
liays 1960.
THE COIIEGEOFARROMAUTICS

## CRANPIRLD


#### Abstract

An Experimental Study of the Lift and Drag of Single Wedge Sections in Two Dimensional Transonic Flow using the Hydraulic Analogy


\author{

- by - <br> J. W. Bugler, B.Sc., D.I.C., D.C.Ae. <br> and
}
N. C. Hanslip, M.Sc., D.C.Ae.


## SUMARY

The similarity of the differential equations of the trensonic flow of a gas in two dimensions and of the flow of shallow water led to the choice of the latter as an experimental method to detornine the prgssure distribution, lift and drag on wedges with total angles of $10^{\circ}, 15^{\circ}$ and $20^{\circ}$. The wedges were towed through shallow wator and the wave pattorm was determined by the measuroment of water depth using a photographic technique, The results have been compared with theory and with wind tumel experiments. For the $10^{\circ}$ and $15^{\circ}$ wedges the trends for a range of angles of incidence agree with the predictions from transonic small disturbance theory, whereas those for the largest wedge of $10^{\circ}$ semi-angle indicate that this angle is too large to expect satisfactory experimental results. The trends are also similar to those obtained by other workers in a vind tunnel.

## *

Based on an experimental thesis submitted in partial fulfilment of the requirements for the Diploma of The College of Acronatics. The thesis was edited and the final report prepared by IT. J. .Naylor.

## CONTENTS

SuimaryList of Symbols

1. Introduction ..... 1
2. Hyoraulic Analogy ..... 2
3. Apparatus ..... 5
4. Test Procedure ..... 7
5. Results ..... 8
6. Discussion ..... 8
6.1. Elfects of bottom clearance ..... 8
6.2. The lift results ..... 9
6.3. The drag results ..... 9
6.4. The generalised ressure distributions ..... 10
6.5. General ..... 11
7. Conclusions ..... 13
Acknowledgement ..... 13
8. References ..... 14
Appendix 1. Reduction of Results ..... 17
Apperidix 2. (1) Conversion of TWater ..... 18Mach Nuribors' to the corresponding'Air Mach Numbers'(2) Variation of thickness factorwith Mach Number
Appendix 3. Experimental Accuracy ..... 20
Tables 1 - 6Figures

## ITST OF SHBOLS

| a | Speed of sound |
| :---: | :---: |
| $c$ | Wedge chord length |
| $\mathrm{C}_{\text {Do }}$ | Pressure drag coefficient |
| $\mathrm{C}_{\text {I }}$ | Lift coefficient |
| $C_{P}$ | Pressure coefficient $=\left(\mathrm{P}_{\mathrm{L}}-\mathrm{P}_{\mathrm{U}}\right) / \frac{1}{2} \rho_{\infty} \mathrm{V}_{\infty}^{2}$ |
| $\Delta c_{p}$ | increase in pressure coefficient due to incidonce |
| $\mathrm{CPO}_{0}$ | Stagnation pressure coefficient |
| $\mathrm{C}_{\text {PL }}$ | Lower surfacc prossure coefficient $=\left(p_{L}-p_{\infty}\right) / \frac{1}{2} \rho_{\infty} V_{\infty}^{2}$ |
| $\mathrm{C}_{\text {PU }}$ | Upper surface pressure coefficient $=\left(p_{u}-p_{\infty}\right) / \frac{1}{2} \rho_{\infty} V_{\infty}^{2}$ |
| d | Local wator dopth at model surface |
| $\mathrm{d}_{\infty}$ | Undisturbed wator dopth |
| $\mathrm{Ma}_{\mathrm{a}}$ | Local Mach Nunbor in air |
| $M_{W}$ | Local "water Mach Number", i.e. when $y=2$ |
| $M_{W_{\infty}}$ | Freestriom "wator Mach Number" |
| $\mathrm{M}_{\infty}$ | Freestream Mach Nu:ber |
| $\mathrm{N}_{2,0}$ | Froestream Mach Number when a clear distinction is needed that $y=1.4$ |
| $p$ | Local pressure |
| $\mathrm{P}_{5}$ | Iocal pressure on lower surface |
| P | Local pressure on upper surface |
| $p$ | Wroootroan prussume |
| $p_{0}$ | Stagnation pressure |
| t | Semi-thickness of wedge section at the shoulder |
| V | Carriage speed, or model speed |
| $\mathrm{V}_{6}$ | Freestroam air volocity |
| X | Wedge chordwise co-ordinate |
| y | Vertical distance on model side betwen vator surface and apparent bottom of model |

## List of Symbols (Continued)

$\alpha \quad$ Wedge angle of incidence
$y$ Ratio of the specific heats
$\xi_{\infty} \quad$ Transonic similarity parameter (see below)
$\theta \quad$ Wedge semi-angle, approx. equal to $t / c$
$\phi \quad$ Perturbation velocity potential
$\rho_{\infty} \quad$ Froestream air density

## Generalized coefficients in Transonic similarity form

$$
\begin{aligned}
& \tilde{\alpha}=\frac{\alpha}{t / c} \\
& \tilde{C}_{D O}=\frac{\left[V_{\infty}^{2}(y+1)\right]^{\frac{1}{3}}}{(t / c)^{5 / 3}} C_{D o} \\
& \tilde{C}_{L}=\frac{\left[M_{\infty}^{2}(y+1)\right]^{\frac{t}{F}}}{(t / c)^{2 / 3}} C_{L} \\
& \tilde{c}_{p}=\frac{\left[M_{\infty}^{2}(y+1)\right]^{\frac{1}{3}}}{(t / c)^{2 / 3}} a_{p} \\
& \left(\frac{\tilde{\tilde{C}}_{L}}{d \alpha}\right)=\left[M_{\infty}^{2}(\gamma+1)(/ / c)\right]^{\frac{1}{3}}\left(\frac{d C_{L}}{d \alpha}\right)_{\alpha=0} \\
& \left(\frac{\Delta \tilde{C}_{P}}{\alpha}\right)=\frac{\tilde{C_{P L}}-\tilde{C_{P u}}}{\alpha} \\
& \xi_{\infty}=\frac{M_{\infty}^{2}-1}{\left[M_{\infty}^{2}(\gamma+1)(t / c)\right]^{2 / 3}}
\end{aligned}
$$

## 1. Introduction

The similarity between the differontial equations of the transonic flow of a gas in two dimensions and for the flow of shallow wator has lod to the investigation of the lattor as a cheap altornative to transonic wind tunnels. The original suggestion came from Jouguet(1) (1920) and much work has been donc in this connection since about 1940.

The wrork of a number of other investigators has boen drawn upon to decide the following conditions for this experimental procrarme :-
(i) Single wedge sections have beon used, as the front halves of diamond sections, on the assurption that the sonic line leaves the surface of the latter at the shoulder, so that conditions in front of and bohind the shoulder can be taken as independent, there being moreover a favourable prossure gradient on the front wedgo. Hence boundary layer, and therefore Reynolds number, effects will be small and boundary layer separations will bo avoided. Furthemore, much theoretical and experimental data are availablo for wedge sections, single and double.
(ii) A depth of one quartor inch is used on the basis of the papers of Laitone ${ }^{(2)(3)}$, We jors $(4)$ and others, to the effect that this depth gives the best approximation of the group velocit. to the wavo velocity, which, in turn, tends to the value (ccd $)^{\frac{1}{2}}$ indepondent of wave length, except for very small copillary wavos, where $d$ is the undisturbed water depth.
(iii) The model size of 6 inch chprd was chosen to generate waves of the longest convenient length (2) (5) for the tank which was 4 feet vide.
(iv) The effect of bottom clearance between model and tank has been kept to a minimum consistent with the froe movement of the carriage and was checked by tests on the $20^{\circ}$ wredge at $7^{\circ}$ incidonco.

The present programe follows various exploratory investigetions carried out over the last forr yerrs, by students, at the College of Acronautics, on aerofoil shapes and wedges $(6)(7)(8)$. This report aims to give a systematic account of the apparatus, test tochnique, reduction of results, and the overoll accuracy of the College of Acronautics apparatus and method, together with a comparison with theory and with other existing experimental results.

The final results for wedges of total nose angle $10^{\circ}, 15^{\circ}$ and $20^{\circ}$ include the variation of the lift and drag coofficients with angle of incidence and with Mach Numbor, plotted in the generalized transonic forms of these quantities.

Errors of the order of $100 \%$ on the smallest quantities are possible with thjis apparatus, although the integrated results do not appear to have been greatly in error. The question of experinental error is dealt with in Appendix 3. A number of readings which showed considerable departures from the best curves through the experimental points were rejected.

The analogy on which the experimental work was based has the draviback that a gas having $y=2.0$ is inplied by the hydrodynanic equations. The change to $y=1.4$ can be carried out by applying von Doenhoff's method developed for Freon-12, but, perhaps, more accurately by the use of transonic similarity forms.

## 2. Hydraulic Analogy

The water analogy on which this investigation is based can be brielly described as follows. The full form of the equations for the transonic flow of a gas are intractable and the usual assumption is made that there are only snall perturbations of velocity from the froe stream value.

Neglecting terms higher than the second order, the potential equation of motion roduces to

$$
\begin{align*}
\left(1-M_{c \infty}^{2}\right) \phi_{x x}+\phi_{y y}+\phi_{z Z} & =M_{\infty}^{2}\left[\frac{y+1}{V_{\infty}} \phi_{x} \phi_{x x}+\frac{y-1}{V_{\infty}} \cdot \phi_{x}\left(\phi_{y y}+\phi_{z Z}\right)\right. \\
& \left.+\frac{2}{V_{\infty}}\left(\phi_{y} \phi_{x y}+\phi_{z} \phi_{x z}\right)\right] \tag{1}
\end{align*}
$$

where $\phi$ is the perturbation velocity potential; the subscripts refer to differentiation with respect to $\mathrm{x}, \mathrm{y}, \mathrm{z} ; \mathrm{V}_{\infty}$ is the free stream air velocity; and $M_{\infty}$ is the froe streara Mach nuriber. When $\phi_{X}, \phi_{y^{\prime}}, \phi_{Z}$ are small compared with $V_{\infty}$ and $M_{\infty}^{2} \ll 1$, this equation (1) reduces to the Prondtl-Glauert equation

$$
\begin{equation*}
\left(1-M_{\infty}^{2}\right) \phi_{z X}+\phi_{y y}+\phi_{z Z}=0 \tag{2}
\end{equation*}
$$

This, however, is not sufficiently accurate for transonic flow analysis. As $M_{\infty}$ tends to unity $\frac{M_{\infty}^{2}(y+1) \phi_{x}}{V_{\infty}}$ and $\left(1-\mathbb{N}_{\infty}^{2}\right)$ are of a similar order of magnitude, so the first non-lincar tem of equation (1) must be retained to give

$$
\begin{equation*}
\left(1-M_{\infty}^{2}\right) \phi_{x X}+\phi_{y y}+\phi_{z Z}=\frac{M_{\infty}^{2}}{\stackrel{V}{V}_{\infty}^{3}}(y+1) \phi_{x} \phi_{z X X} \tag{3}
\end{equation*}
$$

an equation which is tractable at $\mathbb{M}_{\infty}=1$.

Vow Karman (9) introduced, (10) transonic similarity parameter, called here $\xi_{\infty}$, used since by Kaplan ${ }^{(10)}$ and Spreiter ${ }^{(11)}$. The form proposed by the latter, using the form of eq.(3) as here derived,

$$
\begin{equation*}
\xi_{\infty}=\frac{M_{\infty}^{2}-1}{\left[M_{\infty}^{2}(y+1)(t / c)\right]^{3}} \tag{4}
\end{equation*}
$$

has been found to give the best correlation between theory and existing experimental data and has received widespread support since its inception. Here $t$ is the semi-thickness of the wedge at the shoulder and $c$ is the wedge chord length.

Kaplan ${ }^{(10)}$ writes as follows :
"If a series of bodies having the same distribution function $g(x / c)$ for the slope, but different thickness ratios ( $t / \mathrm{c}$ ), are placed in flows of different freestrean Mach Numbers $\mathrm{N}_{\infty}$ and different values of $y$, such that the paranoter $\xi_{c \infty}$ (as defined above) remains constant, then the flow patterns are similar in the sense that the sane function $f(x / c, y / c)$ describes the flow".

We now look at the direct hydraulic analogy which forms the basis of the experimental work described in this paper. Tho diagrams (a) and (b) are for a two dimensional gas flow and for a heavy inviscid liquid.

(a) xy-plane for a twodimensional gas flow

(b) xz-plane for a heavy inviscid liquid

The equations for two-dimensional isentropic flow of a gas are

$$
\begin{align*}
& \frac{\partial}{\partial x}(\rho u)+\frac{\partial}{\partial y}(\rho v)+\frac{\partial \rho}{\partial t}=0 \\
& u \frac{\partial u}{\partial x}+v \frac{\partial u}{\partial y}+\frac{\partial u}{\partial t}=-\frac{1}{\rho} \frac{\partial p}{\partial x}=-\frac{1}{y-1} \frac{\partial}{\partial x}\left(a^{2}\right)  \tag{5}\\
& u \frac{\partial v}{\partial x}+v \frac{\partial v}{\partial y}+\frac{\partial v}{\partial t}=-\frac{1}{\rho} \frac{\partial p}{\partial y}=-\frac{1}{\gamma-1} \frac{\partial}{\partial y}\left(a^{2}\right)
\end{align*}
$$

It can be showm $(6)(13)$ that the equations for long surface waves in shallow heavy inviscid liquid, over a plane horizontal botton, bounded by vertical walls, and in which vertical accelerations and surface tension are negligible, are

$$
\begin{align*}
& \frac{\partial}{\partial x^{\prime}}\left(u^{\prime} d\right)+\frac{\partial}{\partial y^{\prime}}\left(v^{\prime} d\right)+\frac{\partial d}{\partial t}=0 \\
& u^{\prime} \frac{\partial u^{\prime}}{\partial x^{\prime}}+v^{\prime} \frac{\partial u^{\prime}}{\partial y^{\prime}}+\frac{\partial u^{\prime}}{\partial t}=-\frac{\partial}{\partial x^{\prime}}(g d)  \tag{6}\\
& u^{\prime} \frac{\partial v^{\prime}}{\partial x^{\prime}}+v^{\prime} \frac{\partial v^{\prime}}{\partial y^{\prime}}+\frac{\partial v^{\prime}}{\partial t}=-\frac{\partial}{\partial y^{\prime}}(g d)
\end{align*}
$$

The two sets of equations (5) and (6) represent the same type of flow, provided that there is simultaneous correspondence between $d$ and $\rho$; gd and $a^{2} ; \gamma$ and. 2.

Furthermore, for long waves in shallow water, where $\alpha_{\infty}$ is the undisturbed depth, Wave group velocity $\rightarrow$ Wave velocity $\rightarrow\left(\varepsilon \delta_{\infty}\right)^{\frac{1}{2}}$

There is, then, a correspondence between

$$
\frac{\mathrm{V}}{\left(\mathrm{~g} \mathrm{c}_{0}\right)^{\frac{1}{2}}} \text { and } \mathrm{in}_{\infty}
$$

where $M_{\infty}$ is the free strcan Mach nurber.
Laitone (2) has showm that, with a judicious choice of water depth (about $\frac{1}{4}$ inch), this analogy is still applicable when the wavelength is as small as one inch.

We have, then the following table of correspanding quantities on which the hydraulic analogy to the isentropic flow oi a gas is based :-

| Isentropic Gas Flow | Long Waves in Sho |
| :---: | :---: |
| $\stackrel{\rho}{\rho_{\infty}}$ | $\frac{d}{d}$ |
| $\frac{T}{T_{\infty}}$ | $\frac{d}{d_{\infty}}$ |
| $\frac{p}{P_{\infty}}$ | $\left(\frac{d}{\text { a.co }}\right.$ ( ${ }^{\text {col }}$ |
| $a^{2}$ | gd |
| $\underset{\mathrm{a}}{\mathrm{u}}$ | $\frac{u}{(g d)^{\frac{1}{2}}}$ |

The above analysis makes tro assumptions which are, in rractice, quite justified, namely, that vertical accelerations in the water can be neglected and that surface tension is negligible. The analogy can also not be extended to deal with viscous effects in the fluid, which effects occur in the present experiments only in the boundary laver of the model and are known to be small. There is the additional restriction that $\gamma$ is assumed to have the value 2 which differs from that of most gases, air being 1.4.

## 3. Apparatus

Photographs of the apparatus are given in Figs. 1 and 2 This consisted of arrangements for towing the wedge-shaped modols in a water table, 4 feet wide and 6 feet long with a slate botton that was checked to be horizontal to within 0.001 inch along the contre line before the commencement of this scrios of tests. The depth of water used throughout the tosts yas 0.25 inch; this has beon shown to bo the optimum by Laitone $(2)(3)$, and others. At each filling a calculated volune of wator was dispensed from two marked buckets. It was consistently found that the water depth obtained by this method was always 0.25 inch to within the degree of accuracy of the photographic depth measuring technique (see Appendix 3).

The model was movod through the water by means of a cantilever carriage, running on accurately aligned rails, to which it was attached by means of a contral spigot and two vertical studs, the latter enabling clearance adjustments to be made. The carriage was activatod through a chain drive by an A.C electric motor, and its spect adjusted by varying the brush positions within the motor. The incidence of the model was set by the angular positioning of the central spigot whilst the side of the model was aligned, by means of a throe-foot straight edge, with marks scribed on the table; this cnabled the incidence to be set to $\pm \frac{1}{10}$ degree.

In the depth measuring technique a photograph was taken of the model in the course of its passage through the water, by a conora moving vith the model and an analysis of the apparent depth of the model bottom below a scribed datum line was made at selected chordwise stations. The camera, a Voigtlander Vito 35 mm . fitted with a supplementary lons, was mounted on a platform on an extension of the model carriage in one of the altomative positions shom in Fig. 1, it being necessary always to ensurc that the film and the model surface being photographed were parallel in tho horizontal plane. In practice, it was found possible to use unique values of the horizontal distance from model side to cancra of 13.6 inches and vertical distance of 4.70 inches from tank botton to centre of camera lens without any significant loss of accuracy.

The film used in the early stages of this work was Pan。X, but it was found that the inproved grain properties of Pan. 17 enabled the projected film to be analysed more easily and that tie lowror emulsion speed presented no difficulty. With an illumination of $9 \times 275$ watt Photolita bulbs at approxinatcly 5 feet, and using Pan. 1 film, an exposure of $1 / 50$ th second at f8 gave good results and was used for most of the tests.

The models, each of 6 inches chord, wore made of wood wi.th a thin coating of white enamel paint. As can be seen in Fig. 3 (and others) a thin horizontal linc is scribed noar the top of cach mode? and the chordvise stations are sinifarlyomarked. The throe models used mere single wodge sections of $10^{\circ}, 15^{\circ}$ and $20^{\circ}$ included angle. The model leading edges wore made as sharp as the use of wood allowed, and the painting of the surfaces rounded off any initial bluntness to an indefinite radius. The loading odgo thicknesses wore weasured with a micrometer gauge and found to be

$$
\begin{aligned}
& 0.020 \text { inch for the } 20^{\circ} \text { wedge } \\
& 0.012 \text { inch " " } 15^{\circ} \text { wedge } \\
& \text { and } 0.005 \text { inch " " } 10^{\circ} \text { wedge, }
\end{aligned}
$$

and this limjtation on "sharp leading edge" must bo bome in mind when assessing the results.

The speed of the carriage driven through chains and sprocket wheels was recorded during each run by a revolution counting tachoneter (see Fig. 1).

## 4. Test Procodure

After mounting the model on the carriage, the angle of incidence was set and the botton clearance was adjusted to the amropriate value ( 0.010 inch in the main tests) by means of the vortical adjusting scrows. From the photographs such as Pig. 3 the amount of the canera tilt was obtained and was found to be invariant writh respect to model, incidence, and camera position, within the linits of the accuracy of measuroment from the projected photograph. A still phorograph was taton at the start of a series of runs to provide a poriodical cheok of the water depth of a quarter of an inch.

Bomelburg ${ }^{(16)}$ and $\operatorname{Bryant}{ }^{(17)}$ have dravm attontion to the difficulties arising from dust on the wator surface, the lattor having overcone the problem by mechanical surface sveeping, whoreas the fomer finally adopted kerosene as the wrorking fluid. Water was retained for the experiments described in this report, and great care was continually exercised to reduce the effect of dust contamination to a minimm; moreover, no given filling of water was evor used for longer than one hour, whilst at each quarter hour the water surface was stropt by a three-foot metal straight edge.

One of the weaknesses of the apparatus used was the mothod of speed regulation which was by the adjustment of the brush positions in the electric motor. The chain wheel by which the brush positions were adjusted (sce Fig. 1) did not lend itself to accurate calibration; thus each tost run was carricd out at a speed which was only approximately knowm until the reading of the tachometor was takon. This meant in particular that, without extending the tests to a vury lorge number of runs for each setting of the models, it was not possible to ensure that the upper and lowor surfaces of a model at a given incidence wore photographed at the identical set of Mach Nunbers, thus nocessitating the plots such as Fig. 4 for the $15^{\circ}$ wedge. However, with a given estimated spoed setting, the modol was photpgraphed in its ruin at the optimum position as detomined by Willmer ${ }^{8)}$, and the tachometer roading taken, from which the true carriage speed and Mach Nuwber wore derived.

After the develoment of the film, on cach one of which some 36 runs vere recorded, it was projected onto a screen of white drawing paper to give a magnification of 5 x model full size, the magnification being kept constant so that its factor could be incorporated in the reduction formlae. From the projocted inage of each run the values of the apparent depth of the nodel bottom below the datum line mare measured at the eleven marked chordrise stations and subsequently analysed.

## 5. Results

(1) The effect of botton clearance on the integral of the niessure coofficiont $\int_{0}^{1} C_{p} d\left(\frac{x}{c}\right)($ sce Appendix 1) is depicted in Mig. 5, from which it can be suen that, ovur the complote incidonco range of the tosts, thore is no decisive trena. As a rosult of this it :as considered that no extrapolation to zero clearance was nocessary in tho subsequent work.
(2) Figs. 6 and 7 give typical results for the Gonerolized Drog Coofficients plotted against the Iransonic Similarity Prameter for constant valuos of the Generalized Angle of Incidence, The best curves through these and similar plots for othor values of a are colleoted together in Fig. 8.
(3) Figs. 9 to 11 give the Genoralized Lift Coofficionts plotted against the Transonic Sinilarity Paramoter for constant values of the Generalized Angle of Incidence. The best curvos through these plots are collected together in Fig. 12.
(4) Pig. 13 shows the variation of Lift Curve Slope at Zoro Incidence in Genoralized Form with the Transonic Sinilarity Paramoton, together with the curve given by Transonic Small Disturbance Theory.
(5) Fig. 14 gives the Generalized Prossure Cocfificiont distribution along the chordline at Zero Incidence.
(6) Iig. 15 gives the Generalized Pressure Coefficiont distribution along the chordline due to Incidence.
(7) The overall accuracy of the apparatus is analysed in tho figuros of Table 6 and in Appendix 3.
6. Discussion

### 6.1. Iffects of bottorn clearance

In view of the work of Weijers (14) on the effect of bottom clearance using a static model, the main test programe was proceded by a similar invostigation for our casc with a moving model. Since the integral of the pressure $\int_{0}^{1} c_{p} d\left(\frac{x}{c}\right)$ is the basis of all suosequant collculations it Was considered a suitable criterion for this test. Further, due to the pressure difference induced across the model by incidence, it was thought that the effect of clearance world be most maried at inazirum incidence.

The rosults for the $20^{\circ}$ wodec at $7^{\circ}$ incidence and zero incidonce, as plottod in Fi.g. 5, show no decisive trend on which an oxtrapolation to zero clearance could be based. A conveniont voriting clearance of 0.010 inch was, therefore, adopted for the remainder of the programe,

### 6.2. The lift rosults

The goneralized lift curve slopes (sce Fig. 13) differ substantially from the theoretical curve of Trensonic theory, ITot only are the experimental points markedly lower than theory predicts, but there is also no tondency for the values to increase with increase of Nach Iumbor.

The results for the $20^{\circ}$ wrodge differ most widely from the theoretical curve, but tend to increase with the transonic simil rity parancter. The results for the other two wedges show a reasonable agreenent for values of the transonic similarity parametor less thain 0.6.

Upon examination of Figs. 9 to 11 it is agoin apparent that the results for the $20^{\circ}$ wedge depart most widely from the inean.

### 6.3. The dras results

The zero incidence generalized drag coefficient results for the $10^{\circ}$ and $15^{\circ}$ wedges agrce well with the curve for transonic theory (sue Fig. 6), but those for the $20^{\circ}$ wedge are all somerhat high, contrary to the findings of Willner ${ }^{(8)}$. The effuct of incidence on drag is shorm in Fig. 8, and it is notevorthy that the curves for $\tilde{C}_{D}$ acainst $\xi_{\infty}$ for increasing values of $\tilde{\alpha}$ have precisely the sane shape as that 100 zoro inciaence given by theory and that they accord well witli it. The poak values for drag, it will be noted, occur at progressively lowor values of transonic similarity paranotor as the generalized incidence increases. At the prosent time there are no published results showing the variation of the goneralized drag curve with incidence with wisch to corpare these curves, and, rogarding those curves it must be remenbered that they are derived from rather scattered evidence such as Fig. 7.

The wind tumnol study of Iiepmann and Bryson (24) is of considerable inturest in relation to Fig. 8. Their results given in 17 g . 14 of the above reference havo boen meaned for plotting in Pig. 16 for $\mathcal{E}_{D}$ against $\xi_{\infty}$ over a range for the latter variable from -1.0 to nearly 3.0, together with the thooretical curves for shock expansion and linear theories. Over the range of the College of Acronautics exporinents up to just past Mach 1, the agreenent in trend with the former thoory is good. The rosults for linear thoory are also givon in Fig. 16 for the higher Mach numbers showing a trend over that range - manly beyond the College experiments - of the same nature as that for shock expansion theory.

### 6.4. The goner lized prossure distributions

The zoro incidence generalized prossure distribution, as plotted in Fig. 14, shows the some goneral shape as the theoretical curves given by Cincenti and Wagoncr(19) and Guderley and Yoshihora(20). Coreful study of the experimental points shows thet $\tilde{\mathbb{C}}_{p}$ at a given chordwise station inereases with tronsonic similarity arawtor, but not to the extent predicted. This, no doviot, explains the discrepancy between the experimental and theoretical values of $\binom{d_{~}}{d \alpha}$ at the approach of shock attachment.

Also given in Fig. 14 is an exporimental eurve of goneralized pressure distribution for $\xi_{c o}=0.74$ obtained by Fledarman and Stancil (21) using a siriler apparetus to the onc under discussion but moasuring water depth by means of surface contact probes. This curve is included for the purposes of comparison - it will be noticed. tiant the fom of pressure variation doparts significantly from the theoretical, although, broadly spoaking, a closor approximation in magnitude is achieved compared with thsi present investigation.

The distribution of the loading per unit angle of incitence over the chord is shown in generalized form in Fig. 15. Also included in this figure are curves given by transonic shall disturbance theory as calculated by Vincenti and Wagoner (22) and Guderloy and Yoshihara (23) for particular values of the similarity parameter. Only qualitative agreoment with the theoretical curvos can be claimed for the experimental points, in that the values of $\left(\frac{\Delta C_{P}}{\alpha}\right)$ are high at the leading edge and
Iow at the shoulder, and are of the same order around mid-chord; the oxperimental points tend to be low at the loading odge and high at the trailing odgc. It is possible to detect a tondency for the local values of $\left(\frac{\Delta C_{p}}{\alpha}\right)$ to increase with $\xi_{\infty}$ (as preaicted by the theory) but with insufficiont consistoncy to cnable a set oil exporimental curves to be drawn.

In assessing the results show in Fi.c. 15 it shovld be bome in mind that, due to the large possible errors of this apparatus (see Appendix 3), the pressure distributions for the higher angles of incidence for each wodge wre chosen for reduction in the hope of mininising their possible effects.

### 6.5. General

Because of the method of measument no depth recdines could be obtained near the nose and shoulder of tho wodges; the exto $t$ of both those regions is of the order of $10 \%$ of the chord, aIthouch at the higher Mach Nunbers and angles of incidence up to 20, of the chord at the leading edge nay be affected. Thus, in order to obtain
$\int_{0}^{1} c_{\substack{\mathcal{P}_{1} \\(u)}}^{c_{0}\left(\frac{x}{c}\right)}$ it was necossary to assune that :-
(a) The stagnation prossure coofficient was that given by theory (sec Fig. 17), and that the stagnation point was at the leading edge.
(b) A leading edge separation bubble was proäuced on the upper surfaces of the wedges at incidonce, and that when no clear indication was given in the readings, the wrossure cocificient was token as constant from the leading odeo to the first reliable value.
(c) There is always a Mach Number of unity at the shoulder.

The validity of those assumptions is doubtful, but they are essential in the absence of information about flov conditions in the rogion of the base of single wedge soctions. From the majority of $C_{p}$ values derived it would appecr that tho full theorctical stagnation pressure coefficient is not developed, possibly due to the wator slopo neer the leading odge. The theoretical stagantion pressure is assumed to bo correct so that, in general, the experimental values must be too low, which rould help to explain the deffeiencies in the final results. The low values nay woll be due to the effect of wator suriace slope, as suagested in Appendix 3, as the water surface is cortainly depressed along tie side of the model and has to regain the value $\mathrm{d}_{\infty}$ in all directions, in varticular, laterally, albeit slowly for $\mathrm{M}_{\infty}$ of the ordor unity.

The presence of a leading odge separation bubble on the upper surface of the wedges at incidence is woll show by Pic. 13, and appoars to cover about $10 \%$ of tise chord.

The most doubtiful assumption is (c) above. Borhomarartor and Butlor (7) have discussed this at some length and conclude, as we have found, that the true sonic point moves forward on the upper sumface with increasing incidonce and Mach Nuriber, but there is no definito information regarding the actual shoulder and base prossures. Vincenti, Dugon and Phelps(14) also confirm this forward movement of the sonic point for dianond sections.

The most important errors in this work arise from the technique of dopth measurement (sce Appendix 3). Even assuming an horizontal water surface at the point through which the canera views the model bottom, interpretation errors can give rise to pressure cocificiont errors of up to 0.2 ; taking a constant error in $C_{P}$ of 0.1 the resulting errors in $C_{L}$ and $C_{D}$ can approach $100 \%$ of the calculated values (see Table 6). As there is some lateral water surface slope at the side of the model, the errors may be even greator (sce Appendix 3). An alternative method of depth measurement is essential if the existing apparatus is to be used for more accurate experiments. The writers have been advisod that no film exists with a finer groin and yet with sufficient ormulsion speed for this type of work; it would appear that the only possiblo means of improving the existing technique is the use of a larger camera, implying, of course, a larger initial photographic inage. This would improve the reading accuracy. Two methods of depth measurement using vortical probes, due to Laitone and Nielson (15) and Fleadermann and Stencil (21), are alternatives; the accuracies of their methods is unlonorm to the writers.

Bryant ${ }^{(5)}$ has suggested that, in order to establish a cormplete affinity betweon the model wedge and the prototype, account should be taken of the prosumed boundary layer development. It is possible to approximate to the effect of the boundary layor on the model in the water by carrying out a laminar flow calculation for the displacement thickness at the shoulder, and assuming a linear bouncary layor growth from the leading odge. It is approciated that this is only very approxinate; hovever, following Bryant (18), it is found that, at $M=1$, the boundary layer has the effect of increasing the wodge semi-angle by about $0.5^{\circ}$. It should prove worth while introducing this boundery laycr modification into the analysis of further experiments, but it has not been done in this investigation.

Some photographs have been selected from the numorous test runs. Fig. 19 with the model at rost, illustrates the difficulty of obtaining a uniform meniscus, particularly at the leading and trailing edges and the application of a thin film of weak detergent solution to the model surface before each run gave some improvement. Fig. 20 shows the irpossibility of obtaining results near the leading odge, both because of the bow wave effect on the photography and because of the provable broakdown of the analogy due to the appreciable vertical accelerations of the water particles. Capillary waves ahead of the bow wave are also clearly visible. Figs. 3 and 18 show the characteristics depression of the water at the troiling edge which precludes the toking of any readings at the shoulder of the wedge.

Although the possibility of large exrors has been shom to oxist, there is evidence from the final curves that the effect on the results has been kept within reasonable limits by the extensive range of tests and the effective smoothing of the roadings, such as in Fig. 4.

The value of the results rests on the success or failure of the various smoothing operations.

## 7. Conclusions

(1) Given an accurate depth measuring technique the hydraulic analogy provides a useful method of obtaining data in transonic ges dynamics at low cost, particularly in problems of unstoady flow, provided shock waves arc absent.
(2) The College of Aeronautics apparatus, in its presont form, is not recommended for the continuance of serious resoarch work, although it would still be useful for routine studen experiments, and for demonstration purposes. The following modifications to the apparatus would, however, make it suitable for further nescarch work :-
(i) The provision of a systern of probes for dopth moasurement to replace the presont photographic method.
(ii) The provision of an eccurate speed control.
(iii) The stiffening of the model mounting.
(iv) The provision of a drain in a remote comer of the water table to allow the use of altormative working fluids, such as kerosenc.
(3) Within the degree of accuracy of these exporinents it is concluded that :-
(i) The generalized rosults for the $10^{\circ}$ and $15^{\circ}$ wedges follow the trends prodictod by trensonic small disturbcince theory, although the absolute values at incidence tend to be low and agree with the trends obtainod by other workers in wind turnel tests.
(ii) The rosults for the $20^{\circ}$ vedge indicate that a semi-nose angle of $10^{\circ}$ is too large for the application oither of transonic small disturbence theory or of the hydraulic analogy, as might be expected at high lift coofficients.

## Ackno leagement

The authors ish to expess their thanks for the assistance of their supervisors, Mr.G.M.Lilley and Mr. W.J.Rainbird.

8．References

| 1. | Jouguet，E． | Some Froblems in General Trowodynamics． Joumal de Piathomaticues Pures et Appliquees，（Series 8）Vol．3．1．，1920． |
| :---: | :---: | :---: |
| 2. | Iaitone，\＃V | A Study of Transonic Gus Dymamjes by tine Mydraulic Analogy． <br> Joum．Aero．Sci．Vol．19，IIO． 4 April， 1952. |
| 3. | Laitone， $\mathrm{H}_{\text {。 }} \mathrm{V}$ 。 | A Jational Discussion of the Hydraulic Analogy． <br> Jour．Aero．Sci．Vol．20，Io． 1 Jan． 1953. |
| 4. | Weijers，P．F．R． | The Use of a Shallor Vater Channel for Quantitative Investigation of Coipressible Gas Flow。 <br> Aero．Res．Labs．（Aust．），hero．Note No．123． |
| 5. | Bryant，R．A．A． | The Hycraulic Analogy as a Distorted <br> Dissimilar iodel． <br> Jour．Aero．Sci．Vol．23，ITo．3，Miarch 1956. |
| 6. | Sondford，J． | The Determination of the Pressure Distribution Round ain Aoroioil in Transonic Gas Flow Using the Hycraulic Analogy． <br> College of heronautics Thesis，June 1954. |
| 7. | Butler，D．C．， Bonhan－Carter，G。I．D． | ```Transonic Flow Past Wcage Zrofiles by Hydraulic Analogy. College of Aeronautios Thesis, June 1955.``` |
| 8. | Willmer，Mi．A．P． | Transonic Results for Tifting and Non－ Ififting Wedges using the IYylraulic Analogy． College of Acronautios Mnesis，June 1956. |
| 9. | Von Kamman，T． | Supersonic Aerodynamios－Principles and Apolications． <br> Jour．fero．Sci．Vol． 11 ，IYo， 7 July 1947. |
| 10. | Kaplan，C． | On Similarity Rules for Transonic Flows． M．A．C．A．Report NO．894， 1948. |
| 11. | Spreiter，J．R． | On the Application of Tronsonic Similarity Rules to Wings of Finite suan． N．A．C．A．Report No．1153， 1953. |

References (Continued)

| 12. | Von Doenhoff, A.E., <br> Braslow, A.L., <br> Schwartzberg, M.A. | Studies of the Use of Freon-12 as a Testing liediun in the Langley Low Thurbulence Tunnel. N.A.C.A. T.N. 3000 , Aurust, 1953. |
| :---: | :---: | :---: |
| 13. | Lamb, Sir Horace | Hyc̄rodynami.cs. <br> 6th Edition C.U.P., Chap. 9, 1932. |
| 14. | Vincenti, W.G., Dugan, D.W., Phelps, E.R. | An Experimental study of the Tifft and Pressure Distribution o: a Double-Wedge Proifile at Mach ITumbers near Shock Attachment. <br> M.A.C.A. T.N. 3225 , July, 1954. |
| 15. | Laitone, E.V., Nielson, H. | Transonic Flow Past Weage Profiles by Hydraulic Analogy. <br> Jour. Aero. Sci. Vol.21, No.7, July 1954. |
| 16. | Bomelburg, H.J. | Comment on "iledge Pressure Coefficients in Transonic Flow by Ilydraulic Analosy". Jour. Aero. Sci., Vol. 22 i.o. 10, October,1955. |
| 17. | Bryant, R.A.A. | Some Conments on Suriace Contamination <br> in Hydraulic Analogy Research. <br> Jour. Aero. Sci. Vol.23, TIo.11, November,1956. |
| 18. | Bryant, RoA.A. | The Size of Aerofoil Modcls for Quantitative Hydraulic Analogy Research. <br> Jour. Royal Aero. Soc. Vol.60, Nio. 54,3, Farch, 1956. |
| 19. | Vincenti, W.G., Wagoner, C.B. | Transonic Flow Past a Todge Profile with Detached Bow Wave - General Analytical Method and Final Calculated Results. NoA.C.A. Ti.N. 2339 , hpril. 1951. |
| 20 | $\begin{aligned} & \text { Guderley, G., } \\ & \text { Yoshihara, } \end{aligned}$ | The Flow Over a Wedge Profile at Mach Number 1. <br> Jour. Aero. Sci. Vol.17, No.11, November,1950. |
| 21. | Fleddermann, R.G., Stancil, R.'T. | Wedge Pressure Coefificients in Transonic Flow by Hydraulic Analogy. <br> Jour, Lero. Sci., Vol.22, Mo. 4 April, 1954. |
| 22. | Vincenti, V.G., Wagoner, C.B. | Theoretical Study oir the Transonic Lirt of a Double-Wodge Profile with Detached Bow Wave. <br> IT.A.C.A. Report Ho.1180, 1954. |

References (Continued)
23. Guderley, G., Two-Dimensional Unsymatrical F-ow Yoshihara, H .
24. Liepmann, H.W., Bryson, A.E. Patterns at Mach Numiocr 1.
Jour. Lero. Sci. Vol.20, No.11, NTov. 1953.
Transonic Flow Past Teage Sections. Jour. Lero. Sci.Vol.17, īo.12, Dec, 1950.

## APPENDIX 1

## REDUCITON OF RRSUTMS

The water depths $d$ and $d_{\infty}$ and the vertical distance $D$ between the model bottom and model datum were calculated from lanowi data and from measurements of the photographic film. A chart was prepared for determining local values of $\mathrm{M}_{\mathrm{W}}(y=2)$ from local depth ratios and free stream $M_{W_{c o s}}$ and another for determining local pressure coeficicients from local Mach numbers and freestream Nach numbers in air ( $\gamma=1.4$ ). The realtionship between local water Mach number $\mathbb{M}_{W}$ and local air Mach number $M_{a}$ for the variation of thickness/chord ratio with the freestream Mach number $M_{a \infty}(y=1.4)$ was plotted. Tables were then constructed for the three wedges of $10^{\circ}, 15^{\circ}$ and $20^{\circ}$ as shown in the sample tables for the $15^{\circ}$ wedge. Thus the integral of the pressure measured along the wedge was obtained in Tlable 1. Fig. 17 gives the variation of stagnation pressure coefficient with freestrean Mach number. The results of the calculation of transonic similarity parameter factors are given in Table 2. These last lead to the calculation of lift and drag and thus to the parameters $\tilde{C}_{\text {Do }}$ and $\tilde{C}_{L}$, again show in tabulated form in Table 3 for the $15^{\circ}$ wedge. Typical results of $\tilde{\mathrm{C}}_{\mathrm{D}}$ for this wedge angle are given in Table 4 and in Figs. 6 and 7 for all three wedge angles at zero incidence and at $\tilde{\alpha}=0.1$ to show the experimental scatter; the faired curves in Fig. 8 are for the complete range of angle. Figs. 9-12 give the results for the generalised lift coefficient $\widetilde{C}_{I}$ plotted against the transonic similarity parameter $\xi_{\infty}$. The calculations of the lif't slope lead to Fig. 13, where a comparison is made with theory. The values of $\tilde{\mathrm{C}}_{\mathrm{P}(\mathrm{L})}$, the zero incidence chordrise generalised pressure cocifficient distribution along the chord are calculated in Table 8 for the wedge of $15^{\circ}$ and are compared with theory in Pig. 14 for a range of values of the parameter $\xi_{\infty}$. This is followed by the chordwise lift distribution in Fig. 15

## APPIMIX 2


(2) VARIATION OF THICKNESS FICTOR WITH MACH NUMBR
(1) For streamline-similarity, that is for the ratio of stream tube aroas to be the same in both water and air at corresponding points it is show by von Doenhoff (N.A.C.A.T.N. 3000) that

$$
M_{W}\left[\left.\frac{1+\frac{\gamma_{W}-1}{2} M_{W}^{2}}{\frac{\gamma_{W}+1}{2}}\right|^{-\frac{\gamma_{W}+1}{2\left(\gamma_{w}^{-1}\right)}}=M_{a}\left|\begin{array}{c}
\gamma_{a-1}  \tag{1}\\
\frac{\gamma_{2}+1}{2} M_{a}^{2} \\
\frac{y_{2}}{2}
\end{array}\right|^{-\frac{y_{a}+1}{2\left(y_{a}-1\right)}}\right.
$$

Where suffixes w and a refer to water and air respeotively.
Substitute $y_{w}=2 \quad y_{a}=1.4$ whence

$$
M_{W}\left(\frac{2+M_{W}^{2}}{3}\right)^{-\frac{3}{2}}=M_{a}\left(\frac{5+M_{a}^{2}}{6}\right)^{-3}
$$

Square both sides and invert, whence

$$
\begin{equation*}
\frac{\left[\left.12\left(2+M_{W}^{2}\right)\right|^{3}\right.}{M_{W}^{2}}=\frac{\left[5+M_{2}^{2}\right]^{6}}{M_{a}^{2}} \tag{2}
\end{equation*}
$$

(2) Equating corresponding values of $\xi_{\infty}$ for air and water

$$
\frac{M_{a c e}^{2}-1}{\left|\left(y_{a}+1\right)\binom{t}{c}_{a} M_{a \infty}^{2}\right|^{\frac{3}{3}}}=\frac{M_{W \infty}^{2}-1}{\left[\left(y_{w}+1\right)\binom{t}{0}_{W} M_{W \infty}^{2}\right]^{\frac{3}{3}}}
$$

$$
\begin{aligned}
\frac{\left(\frac{t}{c}\right)_{a}}{\left(\frac{t}{c}\right)_{W}} & =\left(\frac{M_{2 \infty}^{2}-1}{M_{W \infty}^{2}-1}\right)^{\frac{3}{2}}\left(\frac{y_{W}+1}{\gamma_{a}+1}\right)\left(\frac{M_{W \infty}}{M_{a \infty}}\right)^{2} \\
& =1.25\left(\frac{M_{a \infty 0}^{2}-1}{M_{W \infty}^{2}-1}\right)^{\frac{3}{2}}\left(\frac{M_{W \infty}}{M_{a \infty}}\right)^{2} \\
& =1.25 f\left(M_{a \infty}\right)
\end{aligned}
$$

using the relation between $M_{a \infty}$ and $M_{w \infty}$ in equation (2) above.
It is not possible to evaluate $f\left(M_{a_{\infty}}\right)$ between the values of $M_{a, 0}=0.95$ and $M_{a_{\infty}}=1.05$ owing to the rapid changes in (2). The functions are too complicated to carry out a limiting process by de 1'Hopital's rule $^{1}$. around $M_{a \infty}=1$ so values have been interpolated.

The maximum value of the thickness factor in the range $0,9 \leqslant M_{\infty} \leqslant 1.25$ is 1.025 so this factor was not included in the caloulations.

## APPFDIX 3

WH. RTMYPAL ACOUNACY

Error may arise in this experiment from any of the following :-
(1) measurement of carriage speed
(2) incidence sutting
(3) bottom clearance
(4) canera position relative to model
(5) vertical alignnent of the model
(6) inaccuracy of carriage track and/or non-horizoital tank-bottom
(7) reading errors
(8) incorrect assunptions of the depth measuring technique.
(1) Measuremont of carciage spoed

It wa.s found that the tachometor gave lower readings for the same power setting when the carriage was engaged than when the chain was ruming froely. Furthermore, the tachometer needed a longor time to register than the actual runs allowed. Bearing in mind these facts, the repeatability gave an error of up to three in the tachometor r.p.m. which corresponas to an error of 0.01 in the 'wator Mach numbor'。
(2) Incidence setting

The method of incidence sotting had an accuracy of $\pm \frac{1^{\circ}}{10}$ with the mothod used.

## (3) Bottom clearance

Several different bottom clearances were tricd with the $20^{\circ}$ vedge at several incidences and no decisive trend was discovored (see Fi.g. 7). It was thorefore concluded that no small departures from the setting 0.01 in. used throughout the main body of the testis had any erfect.
(4) Camera position relative to model

It was found that variation in camera position over the restrictod range necessary gave only vory small percentage dinforences in the constants used in the dopth measuroment.

## (5) Vertical alignment of the model

It was found difficult to assure that the botton clearance was the same at both sides of the model. This part of the apparatus could definitely be made more rigid as even when the correct adjustment had been made there was still a fair amount of spring.

## (6) Inaccuracy of carriage track andor non-horizontal tank-bottom

The tank-bottom had been checked as being horizontal to within $0.001^{\text {" }}$ along the contre line, but an exhaustive check of bottom, drive rails, etc. was not made.

## (7) Reading errors

It was found that the error in the reading of hoight on the 5 x full size screen picture was $\pm 0.02^{\prime \prime}$, whether the roading was ropeated by the same or another person. Six cases were troatod covoring the usable range and at extreme Mach numbers. The whole calculation was carried through to the end-results of $C_{L}$ and $C_{D_{0}}$ and is tabulated in
Table 6 .
(8) The photographic depth measuring technique relied explicitly on the water surface being horizontal at the point of incidence. No attempt has heretofore been made to assess the possible error in this assumption. The crror variation for deviations of $\theta$ from zoro is tabulated below. It may be show that lateral pressure recovery is extrenely slow and that the watermslope should be comespondingly low. This is a point which could bcar experimontal investigation.


TMBIE 1 (a)
10 THOU. BOTTIOM CIRARANGE $20^{\circ}$ WHEDES, $a_{p}$ DISTRIBUTION

| \% 0 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 95 | $\begin{aligned} & \text { INCIDENCIE } \\ & \text { (DEGRKESS) } \end{aligned}$ | TIPFER <br> IOWIER <br> SURFAC | $\mathrm{H}_{\mathrm{a}_{0}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d/am | 0.86 | 0.94 | 0.95 | 0.98 | 1.09 | 1.00 | 0.98 | 0.96 | 0.94 | 0.90 | 0.90 | 0 | - | 0.96 |
| $c_{p}$ | -0.27 | -0.07 | -0.04 | -0.02 | 0.11 | 0.00 | -0.04 | -0.02 | -0.07 | -0.15 | -0.15 | A | -0.046 | ( 20 THOU.) |
| d/d. | 1.38 | 1.57 | 1.36 | 1.31 | 1.29 | 1.26 | 1.26 | 1.25 | 1.24 | 1.24 | 1.14 | 0 | - | 1.22 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.53 | 0.61 | 0.60 | 0.52 | 0.47 | 0.41 | 0.41 | 0.40 | 0.38 | 0.38 | 0.22 | $A=$ | 0.390 |  |
| ${ }^{\text {d }} \mathrm{d}_{\infty}$ | 1.36 | 1.35 | 1.31 | 1.28 | 1.26 | 1.24 | 1.23 | 1.22 | 1.19 | 1.16 | 1.10 | 0 | - | 1,17 |
| $c_{p}$ | 0.65 | 0.62 | 0.56 | 0.49 | 0.46 | 0.43 | 0.40 | 0.38 | 0.32 | 0.27 | 0.19 | A | 0.370 |  |
| $\mathrm{d}^{\prime} \mathrm{a}_{\infty}$ | 1.29 | 1.29 | 1.26 | 1.25 | 1.24 | 1.22 | 1.20 | 1.19 | 1.14 | 1.13 | 1.07 | 0 | - | 1.12 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.55 | 0.55 | 0.49 | 0.47 | 0.46 | 0.40 | 0.37 | 0.35 | 0.24 | 0.23 | 0.14 | A $=$ | 0.347 |  |
| $\mathrm{d} / \mathrm{a}$ | 1.29 | 1.26 | 1.25 | 1.23 | 1.20 | 1.19 | 1.17 | 1.14 | 1.12 | 1.09 | 1.04 | 0 | - | 1.05 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.62 | 0.54 | 0.53 | 0.46 | 0.39 | 0.38 | 0.32 | 0.27 | 0.22 | 0.15 | 0.02 | A | 0.304 |  |
| $\mathrm{d} / \mathrm{d}_{\infty}$ | 1.25 | 1.24 | 1.22 | 1.19 | 1.16 | 1.14 | 1.14 | 4.12 | 1.09 | 1.0\% | 1.01 | 0 | - | 1.00 |
| $c_{P}$ | 0.61 | 0.58 | 0.52 | 0.46 | 0.36 | 0.33 | 0.33 | 0.28 | 0.24 | 0.08 | 0.02 | A | 0.273 |  |
| d/d. | 1.18 | 1.18 | 1.18 | 1.16 | 1.14 | 1.14 | 1.12 | 1.08 | 1.04 | 1.02 | 0.97 | 0 | - | 0.96 |
| $a_{p}$ | 0.58 | 0.58 | 0.58 | 0.53 | 0.45 | 0.45 | 0.40 | 0.29 | 0.20 | 0.14 | -0.02 | A | 0.380 |  |
| d/as | 1.25 | 1.25 | 1.23 | 1.19 | 1.17 | 1.14 | 1.13 | 1.08 | 1.04 | 1.02 | 0.98 | 1 | L | 1.21 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.66 | 0.66 | 0.61 | 0.52 | 0.47 | 0.38 | 0.35 | 0.19 | 0.10 | 0.06 | -0.05 | A | 0.415 |  |
| d/a ${ }_{\text {c }}$ | 1.29 | 1.26 | 1.24 | 1.20 | 1.19 | 1.17 | 1.14 | 1.13 | 1.10 | 1.03 | 0.98 | 1 | L | 1.15 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.71 | 0.67 | 0.61 | 0.48 | 0.46 | 0.41 | 0.34 | 0.30 | 0.23 | 0.05 | -0.07 | A | 0.392 |  |
| d/a | 1.24 | 1.22 | 1.18 | 1.16 | 1.16 | 1.13 | 1.13 | 1.12 | 1.10 | 1.06 | 1.00 | 1 | L | 1.00 |
| $c_{p}$ | 0.58 | 0.52 | 0.44 | 0.36 | 0.33 | 0.30 | 0.30 | 0.26 | 0.24 | 0.13 | 0.00 | A | 0.294 |  |
| d/a | 1.28 | 1.26 | 1.24 | 1.24 | 1.23 | 1.20 | 1.19 | 1.16 | 1.13 | 1.12 | 1.06 | 1 | L | 1.09 |
| $a_{p}$ | 0.59 | 0.54 | 0.49 | 0.49 | 0.47 | 0.40 | 0.37 | 0.32 | 0.25 | 0.23 | 0.10 |  | 0.352 |  |
| d/a | 1.14 | 1.14 | 1.12 | 1.10 | 1.10 | 1.10 | 1.06 | 1.04 | 1.03 | 1.02 | 0.98 | 1 | \% | 0.97 |
| $c_{p}$ | 0.36 | 0.36 | 0.30 | 0.27 | 0.27 | 0.27 | 0.16 | 0.11 | 0.07 | 0.05 | -0.04 | A | 0.200 |  |
| d/ $\mathrm{d}_{\infty}$ | 1.13 | 1.13 | 1.13 | 1.13 | 1.12 | 1.10 | 1.10 | 1.06 | 1.04 | 1.02 | 1.00 | 1 | v | 1.00 |
| $\mathrm{C}_{\mathrm{p}}$ | 0.27 | 0.27 | 0.27 | 0.27 | 0.26 | 0.23 | 0.23 | 0.12 | 0.07 | 0.03 | 0.00 | A | 0.231 |  |
| $\stackrel{p}{d / a_{\infty}}$ | 1.20 | 1.19 | 1.18 | 1.16 | 1.16 | 1.13 | 1.12 | 1.12 | 1.10 | 1.06 | 1.02 | 1 | U | 1.0 |
| $c_{P}$ | 0.39 | 0.36 | 0.35 | 0.32 | 0.32 | 0.25 | 0.22 | 0.22 | 0.18 | 0,11 | 0.03 | $A=$ | 0.280 | 1 |
| $d / \mathrm{d}_{\infty}$ | 1.24 | 1.24 | 1.24 | 1.24 | 1.22 | 1.20 | 1.20 | 1.18 | 1.14 | 1.12 | 1.08 |  | \% | 1.17 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.41 | 0.41 | 0.41 | 0.41 | 0.38 | 0.34 | 0.34 | 0.30 | 0.23 | 0.20 | 0.15 | $A=$ | 0.326 |  |
| d/dm | 1.31 | 1.29 | 1.26 | 1.25 | 1.25 | 1.25 | 1.25 | 1.24 | 1.24 | 1.22 | 1.14 | 1 | J | 1.23 |
| $c_{p}$ | 0.50 | 0.46 | 0.40 | 0.39 | 0.39 | 0.39 | 0.39 | 0.37 | 0.37 | 0.33 | 0.22 | $\mathrm{A}=$ | 0.352 |  |
| $\mathrm{d}^{\text {d }} \mathrm{d}_{\infty}$ | 1.20 | 1.20 | 1.20 | 1.14 | 1.14 | 1.14 | 1.12 | 1.09 | 1.07 | 1.03 | 1.0 | 2 | 1 | 0.96 |
| $\mathrm{C}_{9}$ | 0.53 | 0.53 | 0.53 | 0.36 | 0.36 | 0.36 | 0.31 | 0.22 | 0.18 | 0.07 | 0.02 | A | 0.297 |  |
| $\frac{1}{\text { P/ }}$ | 1.18 | 1.18 | 1.23 | 1.16 | 1.16 | 1.16 | 1.12 | 1.10 | 1.08 | 1.03 | 1.01 | 2 | L | 1.00 |
| $c_{p}$ | 0.44 | 0.44 | 0.38 | 0.36 | 0.36 | 0.36 | 0.28 | 0.24 | 0.19 | 0.05 | 0.02 | $\mathrm{A}=$ | 0.318 |  |
| $\mathrm{d} / \mathrm{d}_{\infty}$ | 1.29 | 1.26 | 1.25 | 1.24 | 1.22 | 1.22 | 1.19 | 1.16 | 1.13 | 1.08 | 1.02 | 2 | L | 1.0 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.59 | 0.53 | 0.51 | 0.48 | 0.43 | 0.43 | 0.38 | 0.31 | 0.25 | 0.15 | 0.05 | A $=$ | 0.3 |  |
| $\underline{\mathrm{d}} / \mathrm{d}_{\infty}$ | 1.35 | 1.31 | 1.30 | 1.25 | 1.25 | 1.25 | 1.23 | 1.18 | 1.17 | 1.14 | 1.08 | 2 | L | 1.15 |
| $c_{p}$ | 0.66 | 0.58 | 0.55 | 0.46 | 0.46 | 0.46 | 0.41 | 0.31 | 0.30 | 0.25 | 0.15 | $A=$ | 0.414 |  |
| d/d | 1.57 | 1.37 | 1.34 | 1.31 | 1.30 | 1.28 | 1.26 | 1.24 | 1.23 | 1.22 | 1.16 | 2 | L | 1.21 |
| c | 0.61 | 0.61 | 0.55 | 0.52 | 0.50 | 0.46 | 0.43 | 0.38 | 0.37 | 0.34 | 0.25 | A | 0.449 |  |
| a/d. | 1.25 | 1.25 | 1.23 | 1.19 | 1.17 | 1.14 | 1.13 | 1.08 | 1.04 | 1.02 | 0.98 | 2 | U | 1.25 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.66 | 0.66 | 0.61 | 0.52 | 0.47 | 0.38 | 0.35 | 0.19 | 0.10 | 0.06 | -0.05 | A $=$ | 0.415 |  |
| $\underline{d} /{ }_{\infty}$ | 1.30 | 1.26 | 1.26 | 1.24 | 1.23 | 1.22 | 1.17 | 1.17 | 1.14 | 1.13 | 1.07 | 2 | 0 | 1.20 |
| $\mathrm{C}_{\mathrm{p}}$ | 0.51 | 0.43 | 0.43 | 0.40 | 0.37 | 0.36 | 0.28 | 0.28 | 0.24 | 0.23 | 0.11 | A | 0.291 |  |
| d/ $\mathrm{d}_{\infty}$ | 1.26 | 1.25 | 1.23 | 1.20 | 1.19 | 1.18 | 1.17 | 1.14 | 1.09 | 1.10 | 1.03 | 2 | U | 1.13 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.48 | 0.47 | 0.42 | 0.37 | 0.35 | 0.33 | 0.30 | 0.24 | 0.17 | 0.19 | 0.05 | A | 0.266 |  |
| d/d | 1.23 | 1.22 | 1.20 | 1.18 | 1.17 | 1.16 | 1.13 | 1.12 | 1.10 | 1.07 | 1.04 | 2 | U | 1.08 |
| $c_{p}$ | 0.45 | 0.43 | 0.40 | 0.36 | 0.33 | 0.32 | 0.24 | 0.23 | 0.18 | 0.14 | 0.02 | A $=$ | 0.240 |  |
| $d / \mathrm{d}_{\infty}$ | 1.20 | 1.18 | 1.16 | 1.13 | 1.13 | 1.09 | 1.09 | 1.06 | 1.02 | 0.98 | 0.96 | 2 | J | 0.99 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.48 | 0.42 | 0.37 | 0.30 | 0.30 | 0.21 | 0.21 | 0.14 | 0.03 | -0.06 | -0.10 | A | 0.205 |  |

TABLE 1 ( a )
10 THOU. BOTTOM CLEARANCE $20^{\circ}$ WEDGR, $\mathrm{c}_{\mathrm{p}}$ DISTRIBUTION

| \% 。 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 95 |  | UPPER OR LOWIER <br> SURFACE | $M_{a \infty}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{d} / \mathrm{d}_{\infty}$ | 1.20 | 1.17 | 1.14 | 1.13 | 1.12 | 1.10 | 1.09 | 1.07 | 1.03 | 1.01 | 0.98 | 2 | , | 0.94 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.54 | 0.47 | 0.38 | 0.35 | 0.32 | 0.26 | 0.23 | 0.17 | 0.08 | 0.02 | -0.05 | $\mathrm{A}=$ | 0.155 |  |
| $\stackrel{\mathrm{p}}{\mathrm{d}} \mathrm{d}^{\text {c }}$ | 1.40 | 1.38 | 1.35 | 1.34 | 1.31 | 1.30 | 1.25 | 1.24 | 1.24 | 1.20 | 1.16 | 3 | L | 1.18 |
| $\mathrm{CP}_{\mathrm{P}}$ | 0.72 | 0.69 | 0.63 | 0.62 | 0.55 | 0.54 | 0.44 | 0.43 | 0.43 | 0.35 | 0.27 | A | 0.475 |  |
| $\mathrm{d} / \mathrm{d}_{\infty}$ | 1.34 | 1.32 | 1.30 | 1.28 | 1.26 | 1.25 | 1.24 | 1.20 | 1.17 | 1.13 | 1.09 | 3 | L | 1.12 |
| $\mathrm{C}_{\mathrm{P}}$ | 0.66 | 0.62 | 0.58 | 0.53 | 0.49 | 0.47 | 0.44 | 0.37 | 0.30 | 0.23 | 0.17 | A | 0.431 |  |
| d/d ${ }_{\infty}$ | 1.25 | 1.25 | 1.24 | 1.24 | 1.24 | 1.22 | 1.22 | 1.14 | 1.12 | 1.04 | 1.03 | 3 | I | 1.04 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.55 | 0.55 | 0.53 | 0.53 | 0.53 | 0.48 | 0.48 | 0.31 | 0.26 | 0.07 | 0.06 | A | 0.381 |  |
| $\mathrm{d} / \mathrm{d}$ 。 | 1.24 | 1.24 | 1.22 | 1.19 | 1.18 | 1.14 | 1.13 | 1.09 | 4.08 | 1.04 | 1.00 | 3 | L | 0.98 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.59 | 0.59 | 0.54 | 0.46 | 0.43 | 0.32 | 0.30 | 0.19 | 0.17 | 0.07 | 0.00 | A | 0.336 |  |
| d/d ${ }_{\text {d }}$ | 1.14 | 1.14 | 1.13 | 1.13 | 1.12 | 1.10 | 1.09 | 1.04 | 1.09 | 1.01 | 0.97 | 3 | U | . 98 |
| ${ }_{\text {c }}$ | 0.35 | 0.35 | 0.32 | 0.32 | 0.30 | 0.25 | 0.21 | 0.10 | 0.02 | 0.02 | -0.07 | A | 0.148 |  |
| d/d | 1.14 | 1.14 | 1.14 | 1.12 | 1.12 | 1.10 | 1.09 | 1.07 | 1.03 | 1.01 | 0.98 | 3 | U | 1.00 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.33 | 0.33 | 0.33 | 0.28 | 0.28 | 0.24 | 0.21 | 0.14 | 0.07 | 0.03 | -0.05 | A | 0.165 |  |
| d/a. | 1.17 | 1.17 | 1.16 | 1.14 | 1.14 | 1.12 | 1.12 | 1.10 | 1.06 | 1.03 | 1.00 | 3 | U | 1.03 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.35 | 0.35 | 0.33 | 0.29 | 0.29 | 0.24 | 0.24 | 0.19 | 0.11 | 0.04 | 0.00 | A | 0.171 |  |
| d/a | 1.19 | 1.19 | 1.18 | 1.17 | 1.16 | 1.13 | 1.13 | 1.10 | 1.08 | . 6 | 1.01 | 3 | U | 1.12 |
| $c_{p}$ | 0.35 | 0.35 | 0.34 | 0.30 | 0.29 | 0.24 | 0.24 | 0.18 | 0.14 | 0.10 | 0.03 | A $=$ | 0.226 |  |
| d/d ${ }_{\infty}$ | 1.25 | 1.25 | 1.25 | 1.24 | 1.23 | 1.20 | 1.19 | 1.16 | 1.13 | 1.10 | 1.10 | 3 | U | 18 |
| $c_{p}$ | 0.42 | 0.42 | 0.42 | 0.39 | 0.38 | 0.33 | 0.30 | 0.27 | 0.22 | 0.18 | 0.18 | $=$ | 0.155 |  |
| d/d ${ }_{\text {c }}$ | 1.26 | 1.26 | 1.25 | 1.23 | 1.23 | 1.19 | 1.17 | 1.14 | 1.13 | 1. | 1.09 | 3 | , | . 23 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.42 | 0.42 | 0.40 | 0.36 | 0.36 | 0.30 | 0.27 | 0.23 | 0.21 | 0.19 | 0.15 | A $=$ | 0.283 |  |
| d/am | 1.25 | 1.24 | 1.23 | 1.20 | 1.19 | 1.14 | 1.13 | 1.12 | 1.10 | 1.07 | . 04 | 4 | $L$ | . 95 |
| ${ }^{\text {P }}$ | 0.08 | 0.66 | 0.65 | 0.56 | 0.54 | 0.40 | 0.36 | 0.34 | 0.27 | 0.22 | 0.13 | A $=$ | 0.3 |  |
| a/des | 1.29 | 1.26 | 1.26 | 1.24 | 1.22 | 1.16 | 1.14 | 1.13 | 1.10 | 1.06 | 1.02 | 4 | L | . 99 |
| $c_{P}$ | 0.70 | 0.65 | 0.65 | 0.60 | 0.53 | 0.37 | 0.32 | 0.30 | 0.23 | 0.12 | 0.03 | A | 0.388 |  |
| d/d. | 1.35 | 1.34 | 1.29 | 1.28 | 1.25 | 1.24 | 1.22 | 1.19 | 1.18 | 1.14 | 1.09 | 4 | L | 1.04 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.78 | 0.76 | 0.66 | 0.62 | 0.55 | 0.51 | 0.46 | 0.39 | 0.38 | 0.29 | 0.14 | A | 0.429 |  |
| d/d | 1.36 | 1.35 | 1.34 | 1.34 | 1.28 | 1.26 | 1.25 | 1.24 | 1.23 | 1.17 | 1.12 | 4 | L | 1.12 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.71 | 0.70 | 0.68 | 0.61 | 0.53 | 0.50 | 0.47 | 0.16 | 0.42 | 0.30 | 0.23 | $\mathrm{A}=$ | 0.473 |  |
| d/d. | 1.45 | 1.41 | 1.42 | 1.38 | 1.36 | 1.344 | 1.32 | 1.28 | 1.26 | 1.23 | 1.19 | 4 | L | . 21 |
| $c_{p}$ | 0.78 | 0.70 | 0.72 | 0.65 | 0.60 | 0.57 | 0.54 | 0.47 | 0.43 | 0.37 | 0.31 | A | 0.554 |  |
| d/d ${ }_{\text {c }}$ | 1.47 | 1.47 | 1.46 | 1.43 | 1.42 | 1.38 | 1.36 | 1.32 | 1.28 | 1.25 | 1.22 | 4 | L | 1.24 |
| ${ }_{\text {c }}$ | 0.75 | 0.75 | 0.74 | 0.69 | 0.67 | 0.60 | 0.55 | 0.51 | 0.43 | 0.38 | 0.34 | A |  |  |
| d/ $\mathrm{d}_{\infty}$ | 1.19 | 1.18 | 1.19 | 1.17 | 1.14 | 1.14 | 1.13 | 1.12 | 1.07 | 1.03 | 1.01 | 4 | U | 1.18 |
| $c_{p}$ | 0.32 | 0.30 | 0.32 | 0.29 | 0.23 | 0.23 | 0.22 | 0.20 | 0.12 | 0.05 | 0,02 | A $=$ | 0. |  |
| ${ }^{1} / \mathrm{d}_{\infty}$ | 1.25 | 1.20 | 1.20 | 1.20 | 1.18 | 1.14 | 1.14 | 1.13 | 1.09 | 1.06 | 1.03 | 4 | U | 23 |
| $\mathrm{c}_{0}$ | 0.39 | 0.32 | 0.32 | 0.32 | 0.27 | 0.22 | 0.22 | 0.21 | 0.15 | 0.08 | 0.04 | A | 0.233 |  |
| $\mathrm{d}^{1} \mathrm{~d}_{\infty}$ | 1.17 | 1.16 | 1.18 | 1.18 | 1.16 | 1.13 | 1.13 | 1.13 | 1.08 | 1.04 | 1.02 | 4 | U | 1.12 |
| $\mathrm{o}_{\mathrm{p}}$ | 0.30 | 0.29 | 0.34 | 0.34 | 0.29 | 0.23 | 0.23 | 0.23 | 0.14 | 0.08 | 0.03 | A | 0.177 |  |
| $\mathrm{d} / \mathrm{am}_{0}$ | 1.10 | 1.14 | 1.14 | 1.14 | 1.12 | 1.12 | 1.08 | 1.06 | 1.02 | 1.00 | 1.00 | 4 | U | 1.06 |
| $\mathrm{C}_{\mathrm{p}}$ | 0.19 | 0.27 | 0.27 | 0.27 | 0.21 | 0.21 | 0.14 | 0.10 | 0.03 | 0.00 | 0.00 | A | 0.143 |  |
| d/ $\mathrm{d}_{\infty}$ | 1.08 | 1.13 | 1.10 | 1.10 | 1.10 | 1.08 | 1.04 | 1.02 | 0.98 | 0.97 | 0.95 | 14 | U | 1.01 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.16 | 0.29 | 0.24 | 0.24 | 0.24 | 0.16 | 0.08 | 0.05 | -0.05 | -0.07 | -0.11 | A | 0.102 |  |
| ${ }^{1} / a^{\circ}$ | 1.09 | 1.09 | 1.08 | 1.08 | 1.08 | 1.04 | 1.04 | 1.02 | 1.00 | 0.98 | 0.94 | 4 | U | 0.98 |
| $\mathrm{C}_{\mathrm{p}}$ | 0.23 | 0.23 | 0.19 | 0.19 | 0.19 | 0.17 | 0.17 | 0.05 | 0.00 | -0.05 | -0.13 | A | 0.085 |  |
| $\mathrm{a}^{1} \mathrm{~d}_{\infty}$ | 1.57 | 1.54 | 1.50 | 1.46 | 1.45 | 1.45 | 1.41 | 1.40 | 1.36 | 1.29 | 1.28 | 5 | L | 1.26 |
| C | 0.91 | 0.85 | 0.76 | 0.71 | 0.70 | 0.70 | 0.63 | 0.62 | 0.56 | 0.44 | 0.42 | A | 0.574 |  |
| d/do | 1.46 | 1.46 | 1.43 | 1.38 | 1.37 | 1.34 | 1.31 | 1.29 | 1.25 | 1.23 | 1,19 | 5 | ${ }_{\text {L }}$ | 1.19 |
|  | 0.82 | 0.82 | 0.77 | 0.67 | 0.64 | 0.59 | 0.53 | 0.48 | 0.42 | 0.37 | 0.31 | A | 0.587 |  |
| d/ $\alpha_{\infty}$ | 1.38 | 1.38 | 1.36 | 1.32 | 1.29 | 1.26 | 1.25 | 1.23 | 1.20 | 1.14 | 1.10 | 5 | L | 1.10 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.78 | 0.78 | 0.73 | 0.65 | 0.57 | 0.50 | 0.47 | 0. 12.2 | 0.38 | 0.26 | 0.18 | $A=$ | 0.514 |  |
| $\mathrm{a}^{1} \mathrm{a}_{\infty}$ | 1.31 | 1.28 | 1.26 | 1.25 | 1.25 | 1.22 | 1.18 | 1.14 | 1.13 | 1.08 | 1.07 | 5 |  | 1.00 |
| $c^{\text {p }}$ | 0.74 | 0.69 | 0.63 | 0.59 | 0.59 | 0.50 | 0.42 | 0.31 | 0.29 | 0.17 | 0.15 | $\mathrm{A}=$ | 0.435 |  |


| \% 0 | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 95 | (DNCIDRENERS: | $\begin{aligned} & \text { UPPRE OR OR } \\ & \text { LONIKR } \\ & \text { SURPACE } \end{aligned}$ | $\mathrm{m}_{\mathrm{a}_{\infty}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d/as | 1.32 | 1.31 | 1.30 | 1.25 | 1.24 | 1.23 | 1.22 | 1.19 | 1.17 | 1.13 | 1.09 | 5 | 1 | 0.98 |
| ${ }^{9}$ | 0.83 | 0.75 | 0.72 | 0,64 | 0.60 | 0.57 | 0.54 | 0.46 | 0.41 | 0.30 | 0.21 | $A=0$ | . 422 |  |
| d/a | 1.10 | 1.10 | 1.12 | 1.12 | 1.13 | 1.13 | 1.12 | 1.10 | 1.08 | 1.07 | 1.03 | 5 | . 0 | 1.25 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.15 | 0.15 | 0.17 | 0.17 | 0.18 | 0.18 | 0.17 | 0.15 | 0.11 | 0.10 | 0.03 | $\mathrm{A}=$ | 0.158 |  |
| d/d | 1.08 | 1.09 | 1.13 | 1.13 | 1.13 | 1.13 | 1.12 | 1.10 | 1.08 | 1.06 | 1.03 | 5 | V | 1.15 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.15 | 0.18 | 0.24 | 0.24 | 0.24 | 0.24 | 0.23 | 0.18 | 0.15 | 0.11 | 0.05 | $A=$ | 0.136 |  |
| a/d | 1.02 | 1.10 | 1.12 | 1.10 | 1.08 | 1.07 | 1.07 | 1.04 | 1.03 | 1.00 | 0.98 | 5 | ] | 1.09 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.02 | 0.18 | 0.22 | 0.18 | 0.14 | 0.13 | 0.13 | 0.08 | 0.05 | 0.00 | -0.04 | $\mathrm{A}=$ | 0.102 |  |
| d/a | 1.00 | 1.06 | 1.08 | 1.08 | 1.07 | 1.06 | 1.03 | 1.03 | 1.02 | 0.97 | 0.96 | 5 | U | 1.02 |
| $c^{9}$ | 0.00 | 0.13 | 0.18 | 0.18 | 0.14 | 0.13 | 0.06 | 0.06 | 0.05 | -0.07 | -0.08 | $A=$ | 0.054 |  |
| d/d | 1.60 | 1.54 | 1.52 | 1.50 | 1.46 | 1.43 | 1.42 | 1.38 | 1.35 | 1.29 | 1.23 | 6 | L | 1.26 |
| $a_{p}$ | 0.98 | 0.86 | 0.84 | 0.78 | 0.72 | 0.68 | 0.65 | 0.59 | 0.54 | 0.46 | 0,35 | $A=$ | 0.615 |  |
| d/de | 1.53 | 1.52 | 1.50 | 1.46 | 1.42 | 1.37 | 1.34 | 1.30 | 1.28 | 1.23 | 1.17 | 6 | L | 1.21 |
| $c_{p}$ | 0.93 | 0.92 | 0.87 | 0.80 | 0.73 | 0.63 | 0.57 | 0.50 | 0.47 | 0.44 | 0.28 | $A=$ | 0.637 |  |
| d/des | 1.41 | 1.38 | 1.36 | 1.36 | 1.31 | 1.28 | 1.25 | 1.23 | 1.18 | 1.13 | 1.08 | 6 | L | 1.08 |
| $\mathrm{C}_{\mathrm{p}}$ | 0.85 | 0.81 | 0.77 | 0.77 | 0.65 | 0.56 | 0.50 | 0.46 | 0.39 | 0.26 | 0.18 | $\mathrm{A}=$ | 0.602 |  |
| d/d | 1.47 | 1.47 | 1.47 | 1.43 | 1.36 | 1.35 | 1.32 | 1.29 | 1.25 | 1.23 | 1.19 | 6 | 1 | 1.13 |
| $c_{p}$ | 0.90 | 0.90 | 0.90 | 0.83 | 0.67 | 0.64 | 0.59 | 0.53 | 0.45 | 0.42 | 0.33 | $A=$ | 0.550 |  |
| d/dem | 1.38 | 1.37 | 1.35 | 1.34 | 1.31 | 1.25 | 1.25 | 1.23 | 1.18 | 1.13 | 1.08 | 6 | L | 1.02 |
| $c_{p}$ | 0.90 | 0.89 | 0.82 | 0.77 | 0.74 | 0.56 | 0.56 | 0.51 | 0.39 | 0.28 | 0.16 | A | 0.494 |  |
| $\mathrm{d} / \mathrm{d}_{\infty}$ | 1.34 | 1.34 | 1.32 | 1.28 | 1.25 | i. 24 | 1.23 | 1.18 | 1.14 | 1.09 | 1.04 | 6 | L | 0.99 |
| ${ }^{\text {P }}$ | 0.87 | 0.87 | 0.81 | 0.70 | 0.64 | 0.60 | 0.57 | 0.44 | 0.33 | 0.21 | 0.08 | A $=$ | 0.470 |  |
| d/ ${ }^{\text {a }}$ | 0.87 | 0.98 | 1.03 | 1.03 | 1.03 | 1.02 | 1.01 | 1.02 | 1.09 | 0.98 | 0.91 | 6 | U | 0.96 |
| $\mathrm{c}_{\mathrm{p}}$ | -0.30 | -0.04 | 0.07 | 0.07 | 0.07 | 0.05 | 0.02 | 0.05 | 0.02 | -0.04 | -0.22 |  | -0.028 |  |
| d/a ${ }_{\text {e }}$ | 0.88 | 0.98 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.01 | 0.98 | 0.94 | 6 | U | 0.99 |
| $c_{p}$ | -0.27 | -0.05 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.02 | -0.05 | -0.13 | $A=$ | -0.011 |  |
| $d^{\text {/ }}{ }_{\text {e }}$ | 0.90 | 0.97 | 1.03 | 1.04 | 1.04 | 1.04 | 1.04 | 1.03 | 1.03 | 1.01 | 0.97 | 6 | U | 1.06 |
| $0^{\circ}$ | -0.20 | -0.09 | 0,04 | 0.08 | 0.08 | 0.08 | 0.08 | 0.04 | 0.04 | 0.01 | -0.09 | $\mathrm{A}=$ | 0.019 |  |
| $\mathrm{d} / \mathrm{d}_{\infty}$ | 0.98 | 1.04 | 1.06 | 1.07 | 1.06 | 1.07 | 1.07 | 1.06 | 1.03 | 1.03 | 1.01 | 6 | 0 | 1.14 |
| $c_{p}$ | -0.05 | 0.03 | 0.11 | 0.14 | 0.11 | 0.14 | 0.14 | 0.11 | 0.05 | 0.05 | 0.03 | $A=$ | 0.077 |  |
| d/dm | 1.01 | 1.02 | 1.06 | 1.07 | 1.06 | 1.07 | 1.08 | 1.07 | 1.04 | 1.03 | 1.02 | A | 0.098 | 1.21 |
| $\alpha_{p}$ | 0.02 | 0.03 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.10 | 0.06 | 0.04 | 0.03 | A | 0.098 |  |
| $\mathrm{d}^{1} \mathrm{a}_{\infty}$ | 1.08 | 1.04 | 1.09 | 1.09 | 1.10 | 1.10 | 1.09 | 1.0 | 1.06 | 1. | 1.02 | 6 | 0 | 1.25 |
| $\mathrm{C}_{\mathrm{p}}$ | 0.11 | 0.11 | 0.14 | 0.14 | 0.15 | 0.15 | 0.14 | 0.14 | 0.08 | 0. | 0.02 | A $=$ | 0.1 |  |
| d/ $\mathrm{d}_{\infty}$ | 1.31 | 1.31 | 1.26 | 1.25 | 1.24 | 1.23 | 1.16 | 1.13 | 1.10 | 1.06 | 1.02 | 7 | ${ }_{\text {L }}$ | 0.95 |
| $c_{p}$ | 0.86 | 0.86 | 0.70 | 0.67 | 0.65 | 0.62 | 0.42 | 0.33 | 0.26 | 0.16 | 0.04 | A | 0.509 |  |
| $\mathrm{d} / \mathrm{d}_{\infty}$ | 1.57 | 1.36 | 1.36 | 1.32 | 1.28 | 1.26 | 1.23 | 1.22 | 1.19 | 1.13 | 1.07 | 7 | 4 | 1.91 |
| $c_{p}$ | 0.92 | 0.88 | 0.88 | 0.80 | 0.67 | 0.62 | 0.53 | 0.51 | 0.43 | 0.29 | 0.15 | A $=$ | 0.559 |  |
| $\mathrm{d} / \mathrm{d}_{\infty}$ | 1.38 | 1.40 | 1.37 | 1.35 | 1.30 | 1.26 | 1.24 | 1.22 | 1.19 | 1.14 | 10 | 7 |  | 1.07 |
| $c_{p}$ | 0.83 | 0.83 | 0.80 | 0.75 | 0.64 | 0.54 | 0.49 | 0.44 | 0.37 | 0.28 | 0.19 | $A=$ | 0.563 |  |
| $\stackrel{\mathrm{c}}{ } / \mathrm{d}_{\infty}$ | 1.45 | 1.42 | 1.40 | 1.36 | 1.34 | 1.31 | 1.26 | 1.24 | 1.22 | 1.16 | 1.10 | 7 | L | 1.13 |
| $c_{p}$ | 0.87 | 0.83 | 0.77 | 0.71 | 0.65 | 0.59 | 0.48 | 0.43 | 0.40 | 0.29 | 0.19 | A | 0.628 |  |
| $\mathrm{d} / \mathrm{d}_{\infty}$ | 1.53 | 1.51 | 1.50 | 1.47 | 1.43 | 1.38 | 1.37 | 1.34 | 1.30 | 1.22 | 19 | 7 | ${ }_{\text {L }}$ | . 21 |
| $\mathrm{c}_{\mathrm{p}}$ | 0.93 | 0,89 | 0.87 | 0.81 | 0.73 | 0.65 | 0.58 | 0.54 | 0.50 | 0.35 | 0.31 | $1=$ | 0.672 |  |
| $\mathrm{d}^{\text {d }}$ ¢ | 1.58 | 1.54 | 1.52 | 1.48 | 1.47 | 1.42 | 1.37 | 1.35 | 1.32 | 1.25 | 1.22 | 7 | ${ }_{\text {L }}$ | 1.25 |
| $c_{p}$ | 0.97 | 0.88 | 0.84 | 0.76 | 0.75 | 0.66 | 0.58 | 0.54 | 0.50 | 0.39 | 0.34 | A $=$ | 0.689 |  |
| d/a | 0.98 | 1.00 | 1.04 | 1.06 | 1.06 | 1.07 | 1.06 | 1.03 | 1.03 | 1.03 | 1.01 | 7 | U | 1.19 |
| $\mathrm{c}_{\mathrm{p}}$ | $\bigcirc 0.025$ | 0.00 | 0.04 | 0.10 | 0.10 | 0.11 | 0.10 | 0.04 | 0.04 | 0.04 | 0.02 | A | 0.059 |  |
| $\stackrel{\text { d/a }}{\text { a }}$ | 0.88 | 0.90 | 0.98 | 1.00 | 1.00 | 1.00 | 1.00 | 0.98 | 1.00 | 0.98 | 0.95 | 7 | U | 1.13 |
| $\mathrm{O}_{\mathrm{p}}$ | -0.21 | 0.17 | -0,04 | 0.00 | 0.00 | 0.00 | 0.00 | -0.044 | 0.00 | -0.04 | -0.09 | $A=$ | -0.125 |  |
| a/deo | 0. 87 | 0.91 | 0.97 | 1.02 | 1.02 | 1.02 | 1.02 | 1.02 | 1.01 | 0.98 | 0.95 | 7 | U | 1.06 |
|  | -0.26 | -..918 | -0.09 | 0.03 | 0.03 | 0.03 | 0.03 | 0.03 | 0.01 | -0.05 | -0.11 | A | -0.043 |  |
| $\stackrel{\mathrm{d}}{ } / \mathrm{d}_{\infty}$ | 0.85 | 0.92 | 0.98 | 1.00 | 1.01 | 1.00 | 1.00 | 1.00 | 0.98 | 0.96 | 0.93 | 7 | 0 | 1.01 |
| $c_{\text {p }}$ | -0.33 | -0.18 | -0.04 | 0.00 | 0,02 | 0.00 | 0.00 | 0.00 | -0.04 | -0.08 | -0.17 | A | -0.059 |  |

10 Thou. Bortorl ciaarance $15^{\circ}$ INDGE, $\mathrm{c}_{\mathrm{p}}$ DISTRIBUTION

| \% c | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 95 | $\begin{aligned} & \text { MICIDE:CE UPPZR OR } \\ & \text { (DERREES) LOMRR } \\ & \text { SURFACE } \end{aligned}$ | $M_{a_{\infty}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| d/a ${ }_{\infty}$ | 1.16 | 1.14 | 1.10 | 1.10 | 1.08 | 1.04 | 1.00 | 1.00 | 1.00 | 0.92 | 0.87 | 0 | 0.95 |
| $\mathrm{C}_{P}$ | 0.42 | 0.37 | 0.26 | 0.26 | 0.18 | 0.11 | 0.00 | 0.00 | 0.00 | -0.19 | -0.30 | $\int_{0} c_{p} d\left(\frac{x}{c}\right)=0.132$ |  |
| $\alpha / d_{\infty}$ | 1.27 | 1.19 | 1.16 | 1.16 | 1.11 | 1.10 | 1.10 | 1.08 | 1.08 | 1.02 | 0.91 | 0 | 1.01 |
| $\mathrm{C}_{\mathrm{p}}$ | 0.64 | 0.43 | 0.36 | 0.36 | 0.24 | 0.22 | 0.22 | 0.17 | 0.17 | 0.04 | -0.19 | $\int_{0} c_{2} d\left(\frac{x}{c}\right)=0.162$ |  |
| $d / d_{\infty}$ | 1.25 | 1.23 | 1.15 | 1.13 | 1.11 | 1.10 | 1.04 | 1.04 | 1.00 | 0.97 | 0.93 | 0 | 1.06 |
| ${ }_{P}$ | 0.56 | 0.48 | 0.30 | 0.26 | 0.21 | 0.19 | 0.06 | 0.06 | 0.00 | -0.08 | -0.15 | $\int_{0} c_{2} d\left(\frac{x}{c}\right)=0.207$ |  |
| $d / d_{\infty}$ | 1.23 | 1.25 | 1.24 | 1.19 | 1.18 | 1.14 | 1.11 | 1.11 | 1.10 | 1.08 | 1.04 | 0 | 1.14 |
| ${ }_{\text {c }}$ | 0.52 | 0.48 | 0.41 | 0.35 | 0.32 | 0.26 | 0.20 | 0.20 | 0.19 | 0.08 | 0.03 | $\int_{0} c_{2} d\left(\frac{x}{c}\right)=0.271$ |  |
| $d / d_{\infty}$ | 1.38 | 1.27 | 1.21 | 1.19 | 1.18 | 1.14 | 1.13 | 1.13 | 1.10 | 1.08 | 1.05 | - | 1.20 |
| $\mathrm{C}_{\mathrm{p}}$ | 0.65 | 0.45 | 0.34 | 0.31 | 0.30 | 0.23 | 0.21 | 0.21 | 0.17 | 0.11 | 0.09 | $\int_{0} C_{p} d\left(\frac{x}{c}\right)=0.272$ |  |
| $\mathrm{d} / \mathrm{d}_{\infty}$ | 1.19 | 1.15 | 1.13 | 1.10 | 1.10 | 1.06 | 1.04 | 1.04 | 1.02 | 0.99 | 0.91 | 0 | 1.00 |
| $\alpha / \mathrm{a}_{\infty}$ | 1.24 | 1.21 | 1.20 | 1.16 | 1.16 | 1.16 | 1.12 | 1.11 | 1.11 | 1.05 | 1.00 | 5 L | 0.94 |
| ${ }_{\text {c }}$ | 0.67 | 0.58 | 0.55 | 0.44 | 0.44 | 0.44 | 0.31 | 0.29 | 0.29 | 0.13 | 0.00 | $\lambda=0.402$ |  |
| $\mathrm{d} / \mathrm{d}_{\infty}$ | 1.25 | 1.24 | 1.22 | 1.19 | 1.18 | 1.16 | 1.14 | 1.13 | 1.11 | 1.05 | 1.00 | 5 L | 0.98 |
| $\mathrm{C}_{P}$ | 0.64 | 0.60 | 0.56 | 0.46 | 0.45 | 0.39 | 0.35 | 0.30 | 0.25 | 0.10 | 0.00 | $A=0.438$ |  |
| $\mathrm{d} / \mathrm{d}_{\infty}$ | 1.30 | 1.29 | 1.28 | 1.26 | 1.25 | 1.25 | 1.18 | 1.10 | 1.19 | 1.15 | 1.09 | 5 L | 1.03 |
| $\mathrm{c}_{\mathrm{P}}$ | 0.69 | 0.66 | 0.64 | 0.61 | 0.56 | 0.56 | 0.40 | 0.40 | 0.41 | 0.32 | 0.17 | $\mathrm{A}=0.502$ |  |
| $a / a_{\infty}$ | 1.35 | 1.35 | 1.31 | 1.30 | 1.29 | 1.27 | 1.23 | 1.23 | 1.23 | 1.19 | 1.15 | 5 I | 1.13 |
| $\mathrm{C}_{\mathrm{P}}$ | 0.69 | 0.69 | 0.61 | 0.58 | 0.56 | 0.51 | 0.43 | 0.43 | 0.43 | 0.37 | 0.27 | $A=0.528$ |  |
| d/ $\mathrm{a}_{\infty}$ | 1.41 | 1.39 | 1.36 | 1.35 | 1.33 | 1.30 | 1.27 | 1.27 | 1.24 | 1.23 | 1.23 | 5 L | 1.22 |
| $a_{P}$ | 0.68 | 0.64 | 0.59 | 0.57 | 0.54 | 0.49 | 0.43 | 0.13 | 0.37 | 0.35 | 0.35 | $A=0.518$ |  |
| $\mathrm{d} / \mathrm{d}_{\infty}$ | 1.28 | 1.26 | 1.25 | 1.21 | 1.19 | 1.15 | 1.14 | 1.14 | 1.12 | 1.05 | 1.02 | 5 L | 1.00 |
| $\mathrm{C}_{P}$ | 0.69 | 0.65 | 0.61 | 0.50 | 0.46 | 0.35 | 0.33 | 0.33 | 0.28 | 0.10 | 0.05 | $\mathrm{A}=0.469$ |  |
| $a / d_{\infty}$ | 0.96 | 0.97 | 0.95 | 0.97 | 0.96 | 0.98 | 0.98 | 0.98 | 0.95 | 0.88 | 0.88 | $5 \nu$ | 0.96 |
| $\mathrm{c}_{P}$ | -0.08 | 0.07 | -0.12 | -0.07 | -0.08 | -0.03 | -0.03 | 0.03 | -0.12 | -0.27 | -0.27 | $A=-0.083$ |  |
| $d / d_{\infty}$ | 0.98 | 0.98 | 0.98 | 0.98 | 0.47 | 0.97 | 0.97 | 0.97 | 0.98 | 0.90 | 0.89 | U | 1.01 |
| $\mathrm{C}_{3}$ | -0.03 | -0.03 | -0.03 | -0.03 | -0.07 | -. 0.07 | -0.07 | $\sim .07$ | -0.03 | -0.23 | -0.26 | $A=-0.080$ |  |
| d/d ${ }_{\infty}$ | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 1.00 | 0.97 | 1.00 | 0.98 | 0.92 | 0.90 | 5 U | 1.07 |
| ${ }_{p}$ | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | 0.00 | -0.07 | 0.00 | -0.05 | -0.16 | -0.20 | $\mathrm{A}=-0.050$ |  |
| $\alpha^{1} \mathrm{~d}_{\infty}$ | 1.00 | 1.01 | 1.01 | 1.01 | 1.01 | 1.00 | 0.98 | 1.00 | 0.98 | 0.90 | 0.88 | U | 1.12 |
| ${ }_{P}$ | 0.00 | 0.02 | 0.02 | 0.02 | 0.02 | 0.00 | $\sim .04$ | 0.00 | -0.04 | -0.23 | -0.23 | $A=-0.019$ |  |
| ${ }^{1} /{ }_{\infty}$ | 1.08 | 1.03 | 1.02 | 1.02 | 1.02 | 1.01 | 0.98 | 1.00 | 0.98 | 0.92 | 0.90 | 5 U | 1.18 |
| ${ }^{\text {P }}$ | 0.14 | 0.05 | 0.03 | 0.03 | 0.03 | 0.01 | $-0.05$ | 0.00 | -0.05 | -0.14 | -0.19 | $A=-0.005$ |  |
| $\mathrm{d} / \mathrm{d}_{\infty}$ | 1.12 | 1.04 | 1.00 | 1.02 | 1.00 | 1.00 | 0.96 | 0.97 | 0.97 | 0.93 | 0.88 | 5 - | 1.23 |
| $a_{p}$ | 0.19 | 0.07 | 0.00 | 0.03 | 0.00 | 0.00 | -0.06 | -2.04 | -0.04 | -0.10 | -0.17 | $\mathrm{A}=-0.008$ |  |

VAIURS of $\mathrm{o}_{\mathrm{D}}$ AND $\mathrm{a}_{\mathrm{L}}\left(\mathrm{o}_{\mathrm{P}}\right)$
TRANSONIC STMITARTTY PARAMIETER FACTORS


TABTE 3 (a)


| ${ }^{4}{ }_{40}$ | 0.95 | 1.00 | 1.05 | 1.10 | 1.15 | 1.20 | 1.25 | (DTBCRISES) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\int_{0}^{4} a_{p} d\left(\frac{z}{0}\right)$ | 0.230 | 0.263 | 0.299 | 0.328 | 0.355 | 0.380 | 0.390 | 0 |
| $C_{D}$ | 0,080 | 0.091 | 0.104 | 0.114 | 0.123 | 0.132 | 0.136 |  |
| ${\tilde{a_{D}}}^{D_{0}}$ | 1.86 | 2.20 | 2.60 | 2.93 | 3.26 | 3.60 | 3.81 |  |
| $\int_{0}^{1} a_{S_{L}} d\left(\frac{x}{0}\right)$ | 0.257 | 0.292 | 0.326 | 0.358 | 0.390 | 0.412 | 0.430 | 1 |
| $\int_{0}^{1} a_{P_{u}} d\left(\frac{x}{0}\right)$ | 0.198 | 0.227 | 0.260 | 0.290 | 0.320 | 0.341 | 0.353 |  |
|  | 0.080 | 0.091 | 0.103 | 0.113 | 0.124 | 0.132 | 0.137 |  |
| a, | 0.057 | 0.063 | 0.063 | 0.065 | 0.067 | 0.068 | 0.073 |  |
|  | 1.86 | 2.20 | 2.57 | 2.91 | 3.29 | 3.60 | 3.83 |  |
| $a_{L}$ | 0.23 | 0.27 | 0.28 | 0.29 | 0.31 | 0.33 | 0.36 |  |
| $\int_{0}^{1} a_{P_{L}} d\left(\frac{z}{0}\right)$ | 0.282 | 0.320 | 0.353 | 0.386 | 0.416 | 0.447 | 0.470 | 2 |
| $\int^{1} a_{p_{u}} d\left(\frac{x}{0}\right)$ | 0.161 | 0.193 | 0.223 | 0.252 | 0.277 | 0.300 | 0.310 |  |
|  | 0.081 | 0.094 | 0.104 | 0.115 | 0.126 | 0.135 | 0.141 |  |
| $a_{L}$ | 0.117 | 0.122 | 0.124 | 0.128 | 0.133 | 0.140 | 0.153 |  |
|  | 1.88 | 2.27 | 2.60 | 2.96 | 3.34 | 3.68 | 3.95 |  |
| $\tilde{a}_{\text {a }}$ | 0.48 | 0.52 | 0.55 | 0.58 | 0.62 | 0.68 | 0.76 |  |


| 1 |  |  |  |  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\int_{0} a_{P_{L}} a\left(\frac{\pi}{0}\right)$ | 0.310 | 0.350 | 0.386 | 0.421 | 0.452 | 0.488 | 0.505 |
| $\int_{0}^{1} a_{P_{u}} a\left(\frac{\pi}{0}\right)$ | 0.127 | 0.158 | 0.187 | 0.213 | 0.240 | 0.260 | 0.268 |
| $a_{D_{0}}$ | 0.083 | 0.096 | 0.108 | 0.118 | 0.128 | 0.139 | 0.144 |
| $a_{L}$ | 0.176 | 0.189 | 0.191 | 0.199 | 0.202 | 0.217 | 0.226 |
| $\tilde{o}_{D_{0}}$ | 1.93 | 2.32 | 2.70 | 3.04 | 3.39 | 3.79 | 4.03 |
| $\tilde{a}_{L}$ | 0.72 | 0.81 | 0.84 | 0.90 | 0.95 | 1.05 | 1.11 |

10 THOU. BOTTOM CLEARANCB $20^{\circ}$ WEDCE, $a_{D_{0}}, \tilde{C}_{D_{Q}}, c_{L}, \tilde{c}_{L} \sim H_{\infty}$

| ${ }^{\mathrm{K}_{\mathrm{a}}}$ | 0.95 | 1.00 | 1.05 | 1.10 | 1.15 | 1.20 | 1.25 | INCIDENCB <br> (DECRERES) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\int_{0}^{0} c_{P_{L}} d\left(\frac{z}{0}\right)$ | 0.350 | 0.386 | 0.425 | 0.465 | 0.502 | 0.537 | 0.545 | 4 |
| $\int^{1} c_{p} d\left(\frac{\pi}{c}\right)$ | 0.065 | 0.098 | 0.128 | 0.158 | 0.182 | 0.205 | 0.220 |  |
|  | 0.092 | 0.104 | 0.116 | 0.128 | 0.140 | 0.151 | 0.155 |  |
|  | 0.274 | 0.277 | 0.285 | 0.294 | 0.306 | 0.317 | 0.311 |  |
|  | 2.14 | 2.51 | 2.90 | 3.29 | 3.71 | 4.12 | 4.34 |  |
|  | 1.13 | 1.18 | 1.26 | 1.33 | 1.43 | 1.53 | 1.54 |  |
| $\int_{0}^{1} c_{p_{L}} d\left(\frac{z}{c}\right)$ | 0.396 | 0.440 | 0.480 | 0.507 | 0.553 | 0.588 | 0.590 | 5 |
| $\mathrm{c}_{\mathrm{s}} \mathrm{d}\left(\frac{\mathrm{I}}{0}\right)$ | 0.020 | 0.045 | 0.073 | 0.100 | 0.126 | 0.150 | 0.172 |  |
|  | 0.104 | 0.118 | 0.130 | 0.140 | 0.154 | 0.165 | 0.168 |  |
| ${ }^{\text {c }}$ | 0.362 | 0.380 | 0.390 | 0.390 | 0.408 | 0.416 | 0.398 |  |
|  | 2.42 | 2.85 | 3.25 | 3.60 | 4.05 | 4.50 | 4.70 |  |
|  | 1.48 | 1.62 | 1.72 | 1.76 | 1.91 | 2.00 | 1.96 |  |
| $\int_{0}^{1} C_{P_{L}} d\left(\frac{z}{0}\right)$ | 0.440 | 0.483 | 0.525 | 0.568 | 0.610 | 0.640 | 0.628 | 6 |
| ${ }^{1} c_{p} d\left(\frac{Z}{0}\right)$ | -0.028 | -0.012 | +0.017 | 0.042 | 0.070 | 0.100 | 0.123 |  |
|  | 0.119 | 0.132 | 0.146 | 0.159 | 0.173 | 0.183 | 0.182 |  |
| $\mathrm{G}_{\text {, }}$ | 0.450 | 0.476 | 0.487 | 0.503 | 0.516 | 0.515 | 0.480 |  |
|  | 2.78 | 3.19 | 3.65 | 4.10 | 4.59 | 5.00 | 5.10 |  |
| $\tilde{\mathrm{c}}_{\mathrm{L}}$ | 1.85 | 2.03 | 2.15 | 2.28 | 2.42 | 2.48 | 2.37 |  |
| $\int_{0}^{1} c_{P_{L}} d\left(\frac{x}{0}\right)$ | 0.506 | 0.545 | 0.584 | 0.623 | 0.662 | 0.690 | 0.668 | 7 |
| c ${ }^{\text {a }}$ a ( $\underline{\text { I }}$ ) | -0.080 | -0.065 | -0.037 | -0.010 | 0.015 | 0.041 | 0.068 |  |
|  | 0.144 | 0.156 | 0.169 | 0.181 | 0.194 | 0.204 | 0.199 |  |
| $\mathrm{c}_{\mathrm{L}}$ | 0.564 | 0.586 | 0.595 | 0.605 | 0.618 | 0.619 | 0.571 |  |
|  | 3.36 | 3.76 | 4.22 | 4.66 | 5.14 | 5.57 | 5.57 |  |
| $\tilde{c}_{\text {L }}$ | 2.31 | 2.50 | 2.62 | 2.74 | 2.89 | 2.98 | 2.82 |  |

TABLE 3 (b)


| $M_{80}$ | 0.95 | 1.00 | 1.05 | 1.10 | 1.15 | 1.20 | 1.25 | INCIDENCE (DEGREISS) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\int_{0}^{1} c_{p} d\left(\frac{x}{0}\right)$ | 0.120 | 0.170 | 0.210 | 0.240 | 0.258 | 0.268 | 0.272 | 0 |
| $\tilde{c}_{\text {d }}$ | 0.031 | 0.045 | 0.055 | 0.063 | 0.068 | 0.070 | 0.071 |  |
| $\tilde{c}_{D_{0}}$ | 1.18 | 1.77 | 2.23 | 2.63 | 2.93 | 3.11 | 3.24 |  |
| $\int^{1} c_{P_{L}} d\left(\frac{\pi}{o}\right)$ | 0.198 | 0.244 | 0.285 | 0.317 | 0.338 | 0.348 | 0.342 | 1 |
| $\int_{0}^{1} C_{P_{u}} d\left(\frac{X}{C}\right)$ | 0.077 | 0.118 | 0.158 | 0.195 | 0.222 | 0.238 | 0.243 |  |
| $c_{D_{0}}$ | 0.038 | 0.049 | 0.060 | 0.069 | 0.075 | 0.079 | 0.078 |  |
| $\mathrm{c}_{\text {L }}$ | 0.119 | 0.124 | 0.125 | 0.121 | 0.115 | 0.108 | 0.096 |  |
| $\tilde{c}_{D_{0}}$ | 1.44 | 1.93 | 2.43 | 2.89 | 3.23 | 3.50 | 3.55 |  |
| $\tilde{c}_{L}$ | 0.59 | 0.64 | 0.67 | 0.67 | 0.65 | 0.63 | 0.58 |  |
| $\int_{0}^{1} c_{P_{L}} d\left(\frac{x}{0}\right)$ | 0.271 | 0.320 | 0.360 | 0.391 | 0.411 | 0.418 | 0.410 | 2 |
| $0_{0} c_{p_{u}} d\left(\frac{x}{c}\right)$ | 0.034 | 0.075 | 0.118 | 0.155 | 0.181 | 0.197 | 0.203 |  |
| $C_{D_{0}}$ | 0.048 | 0.060 | 0.070 | 0.080 | 0.085 | 0.088 | 0.087 |  |
| $\mathrm{c}_{\text {L }}$ | 0.233 | 0.240 | 0.238 | 0.231 | 0.215 | 0.216 | 0.202 |  |
|  | 1.82 | 2.36 | 2.84 | 3.35 | 3.66 | 3.90 | 3.96 |  |
| L | 1.16 | 1.24 | 1.27 | 1.27 | 1.22 | 1.26 | 1.21 |  |
| $\int_{0}^{1} G_{P_{L}} d\left(\frac{x_{0}}{c}\right)$ | 0.329 | 0.384 | 0.430 | 0.458 | 0.470 | 0.466 | 0.445 | 3 |
| ' | -0.006 | +0.026 | 0.065 | 0.105 | 0.137 | 0.154 | 0.160 |  |
| ${ }^{C} D_{0}$ | 0.060 | 0.072 | 0.083 | 0.091 | 0.097 | 0.097 | 0.094 |  |
| $c_{L}$ | 0.329 | 0.351 | 0.357 | 0.345 | 0.325 | 0.304 | 0.277 |  |
| $\tilde{C}_{D_{0}}$ | 2.28 | 2.73 | 3.37 | 3.81 | 4.18 | 4.30 | 4.28 |  |
| $\tilde{c}_{L}$ | 1.65 | 1.82 | 1.91 | 1.90 | 1.84 | 1.78 | 1.66 |  |
| $M_{a_{\infty}}$ | 0.95 | 1.00 | 1.05 | 1.10 | 1.15 | 1.20 | 1.25 | (DECDREESS) |
| $\int_{0}^{1} c_{P_{L}} d\left(\frac{x}{c}\right)$ | 0.375 | 0.430 | 0.475 | 0.502 | 0.510 | 0.500 | 0.475 | 4 |
| $\int_{0}^{1} \mathrm{c}_{\mathrm{u}} \mathrm{~d}\left(\frac{\mathrm{x}}{\mathrm{c}}\right)$ | 0.039 | -0.026 | 0.000 | 0.033 | 0.065 | 0.090 | 0.100 |  |
| $D_{0}$ | 0.073 | 0.084 | 0.095 | 0.102 | 0.106 | 0.105 | 0.109 |  |
| ${ }_{\text {c }}$ | 0.406 | 0.448 | 0.465 | 0.459 | 0.435 | 0.400 | 0.365 |  |
| $\widetilde{C}_{D}$ | 2.77 | 3.30 | 3.85 | 4.27 | 4.57 | 4.66 | 4.60 |  |
| $\widetilde{c}_{\text {L }}$ | 2.03 | 2.32 | 2.49 | 2.53 | 2.46 | 2.34 | 2.19 |  |
| $\int_{0}^{1} c_{P_{L}} d\left(\frac{x}{c}\right)$ | 0.420 | 0.470 | 0.508 | 0.530 | 0.532 | 0.520 | 0.502 | 5 |
| $\int_{0}^{1} c_{p} d\left(\frac{x}{c}\right)$ | -0.085 | -0.085 | -0.062 | -0.031 | -0.012 | -0.002 | -0.002 |  |
| $C_{D_{0}}$ | 0.095 | 0.103 | 0.110 | 0.111 | 0.111 | 0,110 | 0.106 |  |
| $\mathrm{c}_{\mathrm{L}}$ | 0.495 | 0.544 | 0.557 | 0.548 | 0.531 | 0.509 | 0.491 |  |
| $\tau_{\text {d }}$ | 3.61 | 4.05 | 4.4.6 | 4.64 | 4.79 | 4.88 | 4.83 |  |
| $\tilde{c}_{\text {L }}$ | 2.48 | 2.81 | 2.98 | 3.02 | 3.01 | 2.97 | 2.94 |  |

TABLE 4 (a)


| $\tilde{\mathrm{c}}_{\mathrm{D}_{0}}$ | $\alpha^{\circ}$ | 0.75 | 1.50 | 2.25 | 3.00 | 3.75 | 4.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ${ }_{4 \infty}$ |  |  |  |  |  |  |  | $\varepsilon_{\infty}$ |
| 0.95 |  | 1.37 | 1.62 | 1.93 | 2.29 | 2.72 | 3.20 | -0.23 |
| 1.00 |  | 1.87 | 2.08 | 2.38 | 2.74 | 3.17 | 3.65 | 0.00 |
| 1.05 |  | 2.37 | 2.62 | 2.97 | 3.36 | 3.74 | 4.13 | 0.21 |
| 1.10 |  | 2.80 | 3.10 | 3.47 | 3.84 | 4.17 | 4.46 | 0.40 |
| 1.15 |  | 3.13 | 3.43 | 3.80 | 4.19 | 4.49 | 4.69 | 0.58 |
| 1.20 |  | 3.39 | 3.70 | 4.01 | 4.30 | 4.57 | 4.77 | 0.74 |
| 1.25 |  | 3.47 | 3.75 | 4.04 | 4.30 | 4.53 | 4.72 | 0.90 |
| $\tilde{c}_{L}$ | $a^{\circ}$ | 0.75 | 1.50 | 2.25 | 3.00 | 3.75 | 4.5 |  |
| ${ }_{4}$ |  |  |  |  |  |  |  | $\xi_{\infty}$ |
| 0.95 |  | 0.44 | 0.87 | 1.27 | 1.65 | 2.00 | 2.30 | -0.23 |
| 1.00 |  | 0.48 | 0.93 | 1.38 | 1.81 | 2.22 | 2.58 | 0.00 |
| 1.05 |  | 0.49 | 0.97 | 1.45 | 1.91 | 2.34 | 2.73 | 0.21 |
| 1.10 |  | 0.49 | 0.97 | 1.45 | 1.92 | 2.37 | 2.79 | 0.40 |
| 1.15 |  | 0.46 | 0.92 | 1.37 | 1.84 | 2.29 | 2.73 | 0.58 |
| 1.20 |  | 0.44 | 0.88 | 1.32 | 1.76 | 2.21 | 2.65 | 0.74 |
| 1.25 |  | 0.40 | 0.81 | 1.22 | 1.63 | 2.05 | 2.52 | 0.90 |
| $\frac{t}{0 \alpha}$ |  | 10.00 | 5.00 | 3.33 | 2.50 | 2.00 | 1.67 |  |
| - |  | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 |  |

TABTE 4 (b)


| $\tilde{c}_{D_{0}}$ | $\varepsilon^{\circ}$ | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 | 7.00 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  | $5_{\infty}$ |
| 0.95 |  | 1.86 | 1.88 | 1.93 | 2.14 | 2.42 | 2.78 | 3.36 | -0.18 |
|  |  | 2.20 | 2.27 | 2.32 | 2.51 | 2.85 | 3.19 | 3.76 | 0.00 |
|  |  |  |  |  |  |  | 3.65 | 4.22 | 0.17 |
| 1.05 |  | 2.57 | 2.60 | 2.70 | 2.90 | 3.25 |  |  |  |
| 1.10 |  | 2.91 | 2.96 | 3.04 | 3.29 | 3.60 | 4.10 | 4.66 | 0.33 |
| 1.15 |  | 3.29 | 3.34 | 3.39 | 3.71 | 4.05 | 4.59 | 5.14 | 0.48 |
| 1.20 |  | 3.60 | 3.68 | 3.79 | 4.12 | 4.50 | 5.00 | 5.57 | 0.61 |
| 1.25 |  | 3.83 | 3.95 | 4.03 | 4.34 | 4.70 | 5.10 | 5.57 | 0.74 |
| $\tilde{c}_{L}$ | $a^{\circ}$ | 1.00 | 2.00 | 3.00 | 4.00 | 5.00 | 6.00 | 7.00 |  |
| ${ }^{\text {m }}$ |  |  |  |  |  |  | 1.85 | 2.31 | -0.18 |
| 0.95 |  | 0.23 | 0.48 | 0.72 | 1.13 | 1.48 | 1.85 |  |  |
| 1.00 |  | 0.27 | 0.52 | 0.81 | 1.18 | 1.62 | 2.03 | 2.50 | 0.00 |
| 1.05 |  | 0.28 | 0.55 | 0.84 | 1.26 | 1.72 | 2.15 | 2.62 | 0.17 |
|  |  |  |  |  | 1.33 | 1.76 | 2.28 | 2.74 | 0.33 |
| 1.10 |  | 0.29 | 0.58 | 0.90 | 1.33 |  |  |  |  |
| 1.15 |  | 0.31 | 0.62 | 0.95 | 1.43 | 1.91 | 2.42 | 2.89 | 0.48 |
| 1.20 |  | 0.33 | 0.68 | 1.05 | 1.53 | 2.00 | 2.48 | 2.98 | 0.61 |
| 1.25 |  | 0.36 | 0.76 | 1.14 | 1.54 | 1.96 | 2.37 | 2.82 | 0.74 |
| $\frac{t}{0}$ |  | 10.00 | 5.00 | 3.33 | 2.50 | 2.00 | 1.67 | 1.43 |  |
|  |  | 0.1 | 0.2 | 0.3 | 0.4 | 0.5 | 0.6 | 0.7 |  |

TABLE 5


| \% c | 5 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 95 | $\mathrm{M}_{\infty}$ | $\xi_{\infty}$ | WEDGE |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 2.10 | 1.85 | 1.30 | 1.30 | 0.90 | 0.54 | 0.00 | 0.00 | 0.00 | -0.93 | -1.50 | 0.95 | -0.22 | $15^{\circ}$ |
|  | 3.32 | 2.24 | 1.87 | 1.87 | 1.25 | 1.15 | 1.15 | 0.87 | 0.87 | 0.18 | -0.97 | 1.01 | 0.04 | $15^{\circ}$ |
|  | 3.03 | 2.59 | 1.59 | 1.40 | 1.11 | 1.02 | 0.34 | 0.34 | 0.00 | -0.43 | -0.82 | 1.06 | 0.24 | $15^{\circ}$ |
|  | 2.95 | 2.69 | 2.30 | 1.94 | 1.78 | 1.44 | 1.13 | 1.13 | 1.05 | 0.19 | 0.45 | 1.14 | 0.56 | $15^{\circ}$ |
|  | 3.79 | 2.64 | 1.99 | 1.80 | 1.73 | 1.31 | 1.23 | 1.15 | 1.01 | 0.66 | 0.49 | 1.20 | 0.74 | $15^{\circ}$ |
|  | 2.34 | 1.79 | 1.51 | 1.24 | 1.16 | 0.69 | 0.42 | 0.42 | 0.24 | -0.17 | -1.08 | 1.00 | 0.00 | $15^{\circ}$ |

TABIE 6
GRRORS IN RESULIS DUR TO INITTIAL RRADING ERROR OF $0,02^{\prime \prime}$



FIG. 1. GENERAL VIEW OF APPARATUS SHOWING DRIVE MECHANISM


FIG. 2. GENERAL VIEW OF APPARATUS SHOWING MODEL MOUNTING AND CAMERA PLATFORM


FIG. 3. $15^{\circ}$ WEDGE $\alpha=0^{\circ}$, CLEARANCE $0.010^{\prime \prime}, M_{\infty}=0.98$


FIG. 4. VARIATION OF THE INTECNATED PRESSURE DESTRIEUTION WITH FREESTREAM MACH NLMBER. $15^{\circ}$ WEDGE


FIG.5. THE EFFECT OF BOTTOM CLEARANCE. $20^{\circ}$ WEDGE


FIG.6. THE ZERO INCIDENCE DRAG COEFFICIENTS IN TRANSONIC SIMILARITY FORM


FIG.7. GENERALISED DRAG COEFFICIENT VERSUS TRANSONIC SMMLARTY PARAMETER POR $\approx=01$


FIG. a. THE DRAG COEFFICIENTS OF SINGLE WEDGE SECTIONS IN TRANSONIC SIMILARITY FORM


FIG. 9. GENERALISED LIFT COEFFICIENT VERSUS TRAMSONIC SIMILARITY PARAMETER FOR $\widetilde{\propto}=0.1$


FIG.IO. GENERALIZED LIFT COEFFICIENT VERSUS TRANSONIC SIMILARITY PARAMETER FOR © =0.2


FIG.II. GENERALIZED LIFT COEFFICIENT VERSUS TRANSONIC SIMILARITY PARAMETER FOR $\tilde{\alpha}=0.3$


FIG. I2. THE LIFT COEFFICIENTS OF SINGLE WEDGE SECTIONS IN TRANSONIC SIMILARITY FORM


FIG I2a GENERALIZED LIFT COEFFICIENT VERSUS GENERALIZED ANGLE OF INCIDENCE


FIG. I3. THE LIFT CURVE SLOPE AT ZERO INCIDENCE IN TRANSONIC SIMILARITY FORM


FIG. 14. THE ZERO INCIDENCE CHORDWISE GENERALISED PRESSURE COEFFICIENT DISTRIBUTION


FIG.I5. CHORDWISE LIFT DISTRIBUTION IN TRANSONIC SIMILARITY FORM


FIG. I6. COMPARISON OF THEORIES WITH EXPERIMENT


FIG. 17. VARIATION OF THE STAGNATION PRESSURE COEFFICIENT
WITH FREESTREAM MACH. NUMBER


FIG. 18. $20^{\circ}$ WEDGE, $\alpha=5^{\circ}$, UPPER SURFACE, CLEARANCE $0.010^{\prime \prime}, M_{\infty}=1.09$


FIG. 19. $20^{\circ}$ WEDGE, $\alpha=0^{\circ}$, CLEARANCE $0.018^{\prime \prime}$, STILL


FIG. 20. $20^{\circ}$ WEDGE, $\alpha=3^{\circ}$, UPPER SURFACE, CLEARANCE $0.010^{\prime \prime}, M_{\infty}=1.28$

