THE COLIRGE OFAARONAUTICS

CRAMIITID

Pressure and Boundary Layer Measurements on a Tapered Swept Wing in Flight - by -
D. Hyde, M.Sc.(Eng.), D.I.C., A.C.G.I.
(irepared under Ministry of Aviation Contract No. 6/Aircraft/14002/C.B.6(c).)

SUMWARY

Pressure and boundary layer measurenents were made in flight on a full scale swept half-wing mounted as a dorsal fin on the mid fuselage of an Avro Lancaster aircraf't. A Reynolds Number range of 0.88×10^{6} to 1.86×10^{6} per foot was available. The tapered wing had a semi-span of 102.5 ins. and an aspect ratio of 2.87; the quartor chord sweep was 40° and the symmetrical section was RAE 102 , of 8% thickness/chord ratio along wind.

Comprehensive static pressure measurements were rocorded over a nominal incidence range of 0° to 10°. At mid semi-spen and zero incidence, the measured chordrise pressure distribution compared well with theory. The non-dimensional chordwise and spanwise loadings were in close agreement with Kuchemann's predictions, but the experimental lift curve slope was 6\% greater than the theoretical value.

From the boundary layer results the positions of the transition fironts were deduced. No laminar flow was obtained on either surface at the highest Reynolds number of 1.86×10^{6} per foot, or at incidences of 6° and greater a.t a.ll test Reynolds numbers.

The secondary flow Reynolds number corrosponding to the onset of sweep instability was found to be in the range $80<\mathbb{N}<133$; Owen's predicted oritical value is 125 .

IISSI OT CONTHENTS
Suralary
List of Symbols

1. Introduction 1
2. Experinental Equipnent and. Technique 1
2.1. The Aircrast 1
2.2. The Test Wing 1
2.3. Instrunentation 2
3. The Tests Performed 3
3.1. Pressure Error Correction 3
3.2. Test Ving Zero Incidence Setting 3
3.3. Static Pressure Distribution 4.
3.4. Boundary Layer Neasurements 4
4. The Reduction of Results 4
4.1. Method 4
4.2. Errors 5
5. Discussion or results and Comparisons with Theory 5
5.1. Static Prossure Measurements 5
5.2. Boundary Layer Measurements 8
6. Conclusions 9
7. Acknoviledgenents 10
8. References 11
Iist of Tebles1. Measured Static Pressure Distribution2. Neasured Loading Distribution3. Theoretical Static Pressure Distribution at itidSemi-Span with zero Incidence
9. Mieasuned Local Ifif't Coefficients and Acrodynamic Contre Positions
10. Coeflicients of Total Lift from Pressure Measumements
11. Chordwise Loading (Mid Semi-span)
12. Spanvise Loading
13. Location of the Transition Fronts.
Pigures 1-10

ITST OR SMROTS

x, y, z	Rectangular comordinates; x-axis in airoction of main flow, y-axis spantise, z-axis uprancls, origin at leading edge.
c	Local wing chord
c	Mioan wing chord
b	Span
η	$=\frac{2 y}{b}$. Mon-dimensional spanvise position
ϕ	Angle or swreep
a	Geometric angle of incidence
V	Velocity of undisturbed stroam
p	Local static pressure
p	Free strean static prossure
ρ	Air density
C_{p}	$=\frac{p-p_{0}}{\frac{1}{2} \rho V_{0}^{2}} \text {. Pressure coefficient }$
$\Delta \mathrm{C}_{p}$	Difference of pressure coefficients on trpeer and lower surface
$\mathrm{C}_{\text {L }}$	Local lift coefficient
C_{L}	Total lift coefficient
R_{e}	Reynolds number
x	Secondary flow Reynolds number
h	x-coordinate of local acrodynamic centre

1. Introduction

The work described in this report constitutes a continuation of the programe of flight testing on swept wings which is being carried out in the Departmont of Flight at the College of Aeronautics. Bxperiments on a 45° swept back wing of elliptical cross-section have been made by Burrows (Ref. 1). These were follored by some check tests, using a V-section trailing edge fitted to the sane wing (Ref. 2), with the object oif verifying that the conclusions of Burrows work would still be applicable to wings of conventional section. However, these checks were of limited extent and, consequently, the present procrame was established.

The test acrofoil omployed was a Folland Midge production wing of aspect ratio 2.87, mounted, as in the previous tests, as a dorsal fin on the mid-fuselage of an Avro Lancaster Mark 7 aircraft. A boundary layer fence was located 17.5 ins, above the fuselage top skin. This fence helped to isolate the test section from the effects of the fuselage boundary layer and the wake gonerated along the top of the fuselage by the aircraft's cockpit.

The test programe was restricted to a comprohensive investigation of the static pregsure distribution on the wing, over a nominal incidence range of 0° to 10°, and to qualitative boundary layer measurements. To obtain the boundary layer data, a two dimensional technique using fixed combs attached to the aerofoil surface was employed.

The aerodynamic loads on the wing were also to have been measured using an A.C. strain gauge systom, but the method was abandoned due to difficulties arising from the imperfect adhesion of the gauges to the beryllium copper surfaces of the loading links attached to the spar post extension.

Flight tests were started in larch 1959 and completed by the following June, a total of $14 \frac{1}{2}$ hours being flown. The statice pressure measurements wero comploted in 4 flying hours and the boundary layor tests in $6 \frac{1}{2}$ hours; calibration work and equipnent faults accounted for the remaining time.

2. Exporimental Equinnent and Technique

2.1. The Aircraft

The test vehicle was the Liancaster Mik. 7, PA 474, used in the previous suries of flight tests (Refs. 1 and 2).

2.2. The Test Wing

The only major change in the test wing installation from the previous arrangement was the addition of an electrically operated wing incidence actuator. This was controlled by the pilot for safety reasons, final incidence adjustments being made manually by the observer if necessary.

Ijmit switches proventod the actuator from over-riding the maximum incidence range of $\pm 10^{\circ}$.

The test section was a standard Folland Midge halis ving, the semispan being 102.5 ins. measumed above the boundary layer fence, the root chord 92.9 ins, at the fence and the projected tio chord 50.0 ins. This gave an aspect retio of 2.87 for the whole wing, the section along wind was an 8% thick RAE 102, with a quarter chord sweep of 40 . Figure 1 illustrates the geometry of the boundary layer fence in relation to the wing, showing that it is approximately two aerofoil thiclmesses wide on eanh side of the test wing.

Most of the flush pressure plotting holes were fitted without the removal of the wing skin. Each pressure tap consisted of two mating components. The iemale part was introduced, with the pressuro lead attached, from inside the wing and the male part extomally through a countersunk location hole in the skin, the two being connected by soft iron wire. Finally, the components were screwed together, the wire was removed to roveal the static pressure hole, and the male part of the comector was made flush with the surrounding skin.

The wing was then preparod, the surface finish boing polished black cellulnse lacquer. It was noted that, although the scetion was nominally RA, 102, 'Ilats' could be detected on the surface corresponding to the front and rear spar datum positions.

2.3. Instrumentation

The manometer, camera installation and sideslip incication system arc described in detail in Refs. 1 and 2.

On the 50-tube manometor bank there vere two datums, and a U-tube for use in the pressure error correction tosts. As the manomoter had 46 vacont tubes and 128 pressure plotting holes were available, \& changeover block' system was incorporated. This system consited of a fixed pressure pad equipped with a quick-release lock which was connected via 46 separate tubes to the menometer; three other interchangeable pads with the same number of protruaing tubes on each were courled to the tappings in the test wing. Thus, un to 46 pressures covid be recorded at cone instant and the next group quickly registered on the manometer by unlocking and removing the first pad, and then locking into position the second prossure block. A short period ensued when the fluid levels in the manometer stabilised, but the total 'chonge-over' time vas reduced to about five seconds with practice. Both water and caribon tetrachloride were used as manometric fluids, depending on the magnitude of the pressures being measured.

The boundary layer investigation vas rostricted to an aroa between 5% and 40% local chord and away from the extreme winc tip. Consequently the two dimensional technique employed previously was uscd, as the deviation of the streamlines from the freestrean direction in this area was small (see for example, Rof. 3). The 13-tube combs and 3-tube "transition indicators" are fully described in Ref. 4.

With a view to using in-flight chemicul transition indication methods, a G.S.A.P. 16 mm . cine canera was mounted on top of the port wing tip of the aircraft. Good quality photographic records of the test wing were obtained using a camera spoed of 32 frames por second, despito wing tip vibration.

3. The Tests Performed

3.1. Pressure Error Correction

The prossure error correction to the Lancaster's pitot-.static system was established using the trailing static mothod in conjunction with a venturi pitot mounted on a boom protruding from the starboard side of the aircraft's nose. The trailing static was controlled from the door in the rear fusclage, and it remained steady up to a speed of 160 knots. Pressure error correction curves for Lancaster PA 474 are illustrated in Ifg. 2.

The pilots A.S.I. was also calibrated in the laboratory and found to have an instrument error of one knot or less over the range of test speeds. When processing the flight test data, the pressure ermor and instrument error on the A.S.I. Wre both teken into account.

3.2. Test Wing Zoro Incidence Setting

In order to find the aerodynanic zero incidence setting, three pairs of static tubes wore positioned at 15\% local chord on opposite surfaces of the wing at the spanvise stations B, D and G (soe Fig. 1). These were comected to the manometer and the aireraft was flown at various sideslip settings, at each of the three test speeds.

From a plot of the differential pressure in each pair of static tubes against the sideslip indicator roading, the aerodynamic "zoro" incidence setting was read off as that corresponaing to zero differential pressure. The datum was found to be slightly different at each of the three test spoeds. However, this tochnique was apparently inadequate as the $\overline{\mathrm{C}}_{\mathrm{I}}-\mathrm{a}$ plot (Fig. 8) indicated a no-lift angle of incidence of -0.3°; thus, all incidences are nominal and subject to a comection of $\alpha=-0.3^{\circ}$.

The required datum could be consistently reproduced in flight to within $\pm \frac{1}{4}$ of sideslip, which can be considered as the maxinum repeatability error for the wing incidence setting.

3.3. Static Pressure Distribution

The static pressure and boundary layer measunements were carried out at an altitude of $10,000 \mathrm{ft}$. and speeds of 90,140 and 190 knots, corresponding to nominal Reynolds numbers of $0.88,1.37$ and 1.86×10^{6} per foot (altimeter pressure error and non-standard tomperature corrections not applied).

As the bores of the pressure tubes were easily blocked by water, cloud flying, or even passing through cloud on the climb, was strictly avoided. This particularly applied to the tests described in section 3.4, owing to the extremely small dianeter of the boundary layer combs.

Comprehensive static pressure distributions on the wing were recorded over an incidence range of 0° to 10°, in 2° increments. Tight spanwise stations were available, with sixteen chordwise pressure tappings at each station. The tappings were all located on one surface, lowor surface distributions being obtained by using the appropriate negative incidence.

3.4. Boundary Leyer Measurements

Using throe 13-tube combs and four 3-tube combs, alternately spaced, boundary layer measurements were recorded at seven spanise stations (Fig. 10). Five flights wero made with the combs looated along 40\%, $30 \%, 20 \%, 10 \%$ and 5% local chord lines.

On the first flight the combs were positioned at 4% local chord, and on subsequent flights they wore moved progrossively nearer the leading edge. This obviated the possibility of the surface finish deteriorating forward of the combs, due to the repeated removal of the sellotape fixing straps when repositioning the combs and pressure leads after each flight. The wing was cleaned and polished with a chanois leather and soft cloth just prior to each test.

4. The Reduction of Results

4.1. Method

In previous work of a similar nature (Refs. 1, 2), the analysis of the flight test data was a long and tedious task. The tendency for unprocessed experimental records to accumulate was alleviated in the present tests by the use of a Benson-Lehner Oscar E data reduction system.

The manometer film records wore projected on to the screen of the Oscar E and, after the scales had been suitably set, prossure coofficients wero calculated directly and typed out by a coupled. I.B.If. electric typewriter. For conversion of the information from prossure coefficient fom to force coefficients, it was reconverted into a punched data tape for input to a Ferranti 'Mercury' digital computer. However, it should be
noted that this additional process was only necessery bocause no punching facility W_{2} s linkod to the Benson-Icher decimal converter at the time the exporiments wore conducted; thus, the roadout process of the film rocords on the Bonson-Lehner equipment could produco a punched tape output immdiately available for imput into a high speed digital cormuter.

To obtain a list of pressure coefficient values in tabulated form from the basic filn record of the 50-tube manometer took approxinately five rinutes, including the time taken in setting the appropriate scales. In addition to a saving in time, this deta reduction process also minimised the possibility of mistakes in read-out and calculation.

4.2. Turors

The 'internal' error in the Benson-Lehner systen resulted in a meximan error in pressure coefficient of .001. In addition, an orror arose due to the imperfect alignment on the projection screen of the cursor line, with the manonetric fluid level. This optical orror could be limited to $\pm .003$ inches, as the definition on the film records was good, the resultant orror in C_{p} being dependent on the magnification of the film and the absolute value or C_{p}. However, the screen on Oscar II was large (12 inches by 25 inches), and this was usod to full advantage when projecting the film records.

Consequently, it is thought that errors due to manometer vibrations and response, together with slight instabilities in the test conditions, predomineted over those due to the read-out of the fill records, and that the maximua overall orror was of the ordor of ± 0.05 inches of manomotric fluid.

5. Discussion of results and Comparisons with Theory

5.1. St tic Ercssuro Messuroments

5.1.1. Chordvise prossure distribution and loading

INo definite trend with Roynolds number could be established from the prossure distribution curves; as the shift of the curves at different Reynolds nuwbors for a given incidence and spanwise station was very small, and as the chordvise loading curves under these condibions wore virtually identicol, it was considered in ordor to use the avorage values of pressure cocficicient over the tost Reynolds number range (soe Ilig. 3).

The f'low conditions existing near mid semi-span on a swopt back wing of finite aspect ratio are sinilar to those on a shoared ving of inf inite span, provided that the aspect ratio is not extremelir small. As the aspect ratio of the tost wing was 2.87 it was considered that root and tip offects at mid semi-span would still be negligible, and that the experimental
chordwise pressure distribution at the mid semi-span station could be compered with that prodictod by \#ober's mothod (Ref. 5). The distribution Was also calsulated using the Goldstein Approximation III (Refs. 6, 7) as a further cheok.

From Fig. 4 it is evident that the theoretical results are in good agroement with the exporimental values at zero incidence, tho latter being slichtly more negative around the mid-chord region. Recent tumnel tests and calculations have indicated that the static pressuro field above the micmuper fuseloge of the Lancastor to be virtually ambient; the results कn the charactecistics of the flow ileld in this vicinity, quoted in Ref. 8, are subject to an intoricronce correction caused by the substantial nature of the ressure plotting mast. Thus, it would appear that the localised dev tion of the pressure distribution from the theoretical prodiction w.. הue to slight profile differences of the tost wing from a true RAE 102 section and to small local perturbations of prossure in the ficild. The appearance of 'flats' on the wing surface, as noted in section 2.2, also indicaiod small profile inaccuracies.

The develoment of the chordvise pressure distribution with incidence wac mal ($\mathrm{F} 1,3$). There was evidence of separation at the higher incilionces noas the tip, and the rosultant increase of lift at the rear of those sections can bo seen in lig. 8, which illustrates the distribution of local lift.
1.0 tendency for a forvard movement of the peak pressurs near the tip could be detected. This effect, which is undesirable at high spoeds, was prosunably obviated by the curved leading edge noar the tip, which substantially straightonod the isobars in that region (Rof. 9).

The non-dimensional chordwise loadings are plottodin Fig. 5, which indicates close agreement, at the mid semi-span station, betioen the experimental results and theoretical values based on Iouchermm's technique (Rof. 10)

5.1.2. Spanrise londing

The sponwise distribution or local lift coefficiont throughout the incidence renge investigated is shown in Fig. 6. After yradually increasing from the vane at the centre-section, C_{L} reached a mavimum betwen the nondimonsional spanvise positions $\eta=0.6$ and $\eta=0.7$ and thon decreased; hovever, an increase in C_{L} neer the tip, due to the formation of the tip-vortex, becanc proninent at an incidence of 8°.

The spanvise load distribution was calculated using Kuchemann's mothod (Ref. 10), which gives the lift at small incidencos only as it is based on linear thoory. By treating the tip-vortex as an effective ondplate (Ref. 11), the influence of this vortex, wich is responsible for
the non-linear effects, was ostimatod. According to \#. Mangler, the height of the tip-vortex i.s given by

$$
\frac{h}{\vec{b}}=\frac{\alpha}{2} \cdot \frac{c_{t}}{\bar{c}} \cdot \frac{1}{A}
$$

where c_{t} is the tip chord (in the present calculations the projected tip chord was used).

Togother with the exporinental values, the thooretical spanwise loadings are plotted in Fig. 7. The non-dimensional plot exhibits very close agreement betweon exporinent and theory, the experimental loading boing very slightly less at the contre and slightly greater at the tip than the theory predicts. These slight discrepancies were reduced when the tip-vortex effect was considered. Hovever, the dinonsional loading curve indicated that, in genoral, the experimontal points are greator than the theoretical values. The tip-vortex effect again tended to bring the two curves into closor agroement, but it is almost cortain that the difforence was not due solely to an underestimation of this eifect, as it would have to be approximately three times as strong to make the two loadings identical.

5.1.3. Ovoral1 aorodynamic charactoristics

From Pig. 8 the initial overa 17 lift curve slope was found to be 3.14, compared with the value of 2.97 given by Kuchomann's method. The increased magnitude of the experinental span-wise loading (Fig. 7), and the resultent increase in the lift curve slope, could be due to the following effects :
(i) the finito size of the end-plate might not produce conplete reflection; the downwash from the image wing would then be reducod, rosulting in an increase in lift cocfficient on the half wing compared with the corplete wing.
(ii) the body effoct of the airoraft's fuselage vould tond to increase the lift on the wing

Horrever, these effects would cause an incroase in the lift near the centre of the ving, whoreas the most significant difference botwoen experiment and theory occumed woll away from tho centre, as illustratod in Fig. 7. Thus, it is possible that although Kuchemann's mothod prodicts the nondinonsional chordwise and spanwise loadings accurately, the absolute value of the lift curve slope might be less than the exporinental volue when considering srept acrofoils of small aspect ratio that also have a large topor ratio.

The sparmise variation of the corodynonic centre position is show in Pig. 9, from which the measured values of h / c are seen to be in good agreement with theory. There was the usual tendency for the acrodynamic contre to move forverds in going from the contre of the wing to the tip, but a marked backward shift of the experimental positions near the tip was cousud by the tip-vortex effoct.

5.2. Boundary Iayor Measuroments

5.2.1. Transition fronts

As the boundary layer readings were obtained by a fixed comb two dimensional method, and as the rosults exhibited the usual trends - namoly thickor boundary layers on the uppor surface and a gradual thickening along the trailing edge towards the tip - only the tronsition data was considered in detail.

The transition fronts were talen to correspond to the end of the transition region, and were deduced from the rate of growth of the boundary layor and the total head rise indicated by the combs when passing from a lominar to a turbulent zone. Where transition was illuderined by these techniques, shape paranetors were calculated and transition taken to correspond to the point where the shape parameter attained a unifom value corresponding to the turbulent state.

The location of the transition fronts at incicence increments of 2° is indicated in Table 8 and Fig. 10. No laninar flow occurred at the highest test Regnolds number of 1.86×10^{6} per foot or at incidences of 6° and greater at all speeds. The flow appoared to be most stable at zero incidence, about twice as much laminar flow occurring at $R_{e}=0.88 \times 10^{6}$ por foot as at $R_{e}=1.37 \times 10^{6}$ per foot. On the lowor surface the transition fronts moved rapidly towards the leading eage with increasing incidence, especially at the higher Renolds numbor where transition was forward of 5% local chord at 6° incidence.

On the unper surface the transition front also moves formard with inoreasing incidence, but, at the higher Reynolds numbor, this movement is less rapid than on the lower surface. Thus, the fomation of a suction peak and the rosultant primary instability appear to mask the increaso in sweep stability, compared with the zero incidence case, which was predicted by Owen and Randall (Ref. 12) at small values of lift coefficient for an aerofoil of similor section but of 10% thichess/chord ratio.

Howver, it should be noted that slight 'flats' which could be dotected on the wing surface corrcsponded to the spor positions. The front spar datuan was located at 25% local chord and the rear spar datum was well aft of this - hence results where transition occurred oft of 25% locol chord should be treated with reserve.

5.2.2. Secondry Reynolds number

Fron Owen and Randall's calculations (Fig. 5 of Ref. 13), for the test section employed, the socondary flow Reynolds number has a maximum given by :

$$
\frac{x_{\text {max }}}{R^{\frac{1}{2}}}=0.035
$$

Wote that the thickness/chord ratio normal to the leading edge and the hali-chord sweep were used for this estimation.

Let

$$
\frac{x_{\max }}{R^{\frac{1}{2}}}=\frac{\ldots N}{R_{\text {cxit }}} \frac{1}{2}=0.035
$$

Where $\mathrm{R}_{\text {crit }}$ is the maximun Reynolds number for which the boundary layer near tho leading edge is stable. As the secondory flow instability procedes trensition, an upper linit on N may be placed as no laminar flow occurred at the test R_{e} of 1.86×10^{6} por foot. Thus, by substitution in the above equation, N < 133. Also by considering the maximum extent of lowinar flow at zero incidence and the lowest Reynolds number, the less rigorous condition that $N>80$ may be deduced by assuming that secondary flow instability has not yet occurred under these circunstonces.

Hence, $\quad 80<N<133$

Own's criterion for the onset of secondary flow instability is x approximately equal to 125 , which is in the rango estimatod above by a small margin.

6. Conclusions

Comprohonsive static prossure mensurnonts on a full scole oswept and tapored wing were rocorded ovor a nominal incidence range of 0° to 10°, at Reynolas numbers betwen 0.88×10^{6} and 1.86×10^{6} por foot. At mid somi-span and zoro incidence, the measurod chordwiso prossure distribution compared favourably with that given by Weberts method (Rof. 5) and also the third Goldstein approximation (Ref. 6).

The non-dimensional chordwise and spanwise loadings were in close agreement with Kuchemann's predictions, but the experinental lift curve slope was 6% greater than the theoretical value.

At incidence of 6° and above, separation noar the wing tip, with the resultant local lift increase, manifested itself in the pressure distribution curves and caused a rearword shift of the local acrodynanic centro position,

Boundory layor neasurements wore rocorded at 2° incidence increments and indicated that no laminar flow existed on either surface at a Reynolds number of 1.86×10^{6} per foot, or at incidences of 6° and groater under all tost conditions. At 0 incidence the flow appeared to be most stable, and, in a.ll cases, more laminar flow occurred at an R of 0.88×10^{6} than at 1.37×10^{6} per foot. Tho forvard movement of transition with incroasing incidence was, in goneral, more rapid on the lowor surface than on the upper surface.

The secondary flow Reynolds number corresponding to the onset of swoop instability was found to bo in the range $80<\mathbb{N}<133$; Owen's predicted critical value is 125.

7. Acknowledgements

The test programe was sponsorod by a linistry of Aviation contract, and full comoporation was received from a.ll members of tho Department of Nlight associated with the project.

The author acknowledges the discussions held with lro. G. N. Lilley, Doputy Head of the Aerodynanics Departanent. Dr. S. Kjrikby, of the Mathematics Department, gave involuable assistance during the preparation of the computor prograrme for the reduction of the tost data, and the theorotical computations were poriomed by Mrs. J. II. Tuckor of the Aorodynamics Deportment.

8.	References	
1.	Burrows, I. ${ }^{\text {a }}$.	A theoretical and experimental study of the boundary layer flow on a 4.5 swept back wing. C. of A. Report No. 109, 1956
2.	Waiton, J.	Addendurn to a theoretical and experimental study of the boundary layer flow on a 4.5° swept back wing. C. of A. Report ivo. 109, Addendum 1957.
3.	Jmslie, K., Hosking, I. , Marshall, W S.D.	Some experiments on the flow in the boundary layer of a 4.5° swept back untapered wing of aspect ratio 4 . C. of A. Report No. 69, Feb. 1953.
4.	Burrows, P, M.	Equipment used for boundary layer measurements in flight. C. of A. Note No. 49, 1956.
5.	Weber, J.	The calculation of the pressure distribution over the surface of twodimensional and swept wings with symmetrical aerofoil sections. R. \& M. 2918, 1956.
6.	Goldstein, S.	Approximate two-dinensional aerofoil theory Part 1. Velocity distributions for symmetrical acrofoils. C.P. No. 68, 1952.
7.	```Pankhurst, R.C., Squire, H.B.```	CaIculated pressure distributions for the RAE 100 - 104 Aerofoil sections. C.P. No. 80, 1952.
8.	Burrows, $\mathrm{T}_{0} \mathrm{~N}$.	Characteristics of the flov field over the mid-upper fuselace of Ioncaster PA. 474. C. of A. Note No. 36, 1956.
9.	Weber, J.	Low speed measurements oif pressure distribution near tips of swept back wings at no lift. R.A.E. Report Aero.2318, March 1949.
10.	Kuchemarn, D.	A sinple method for calculating the span and chordwise loading on straight and swept wings of any given aspect ratio at subsonic speeds. R. \& M. 29351956.

Reforences (Continued)
11. Kuchemann, D., Kettle, D.J.
12. Oven, P.R., Randall, D.G.
13. Owen, P.R., Randall, D.G.

The effect of endplates on swept wings. C.P. 110. 104, 1952.

Boundary layer transition on a swept back wing: Effect of incidence. R.A.E. IM No, Aero.375, Oct. 1953.

Boundary layer transition on a swept back wing.
R.A.E. TM No, Aero 277, liay 1952.

TABIEI
lieasured Static Pressure Distribution
C_{p} at Station $A, \eta=0.1255$

$\frac{x}{c}$	$\alpha=0^{\circ}$	$\alpha=2^{\circ}$		$\alpha=4^{\circ}$		$\alpha=6^{\circ}$		$\alpha=8^{\circ}$		$\alpha=10^{\circ}$	
	$\mathrm{C}_{p_{4}}$	${ }^{\mathrm{C}_{\mathrm{p}_{u}}}$	${ }^{C_{p_{L}}}$	${ }^{6} p_{u}$	${ }^{C_{p_{L}}}$	${ }^{c_{p_{u}}}$	${ }^{C p_{I}}$	C_{pu}	$\mathrm{C}_{\mathrm{P}_{\mathrm{L}}}$	$\frac{\alpha}{c_{u}}$	$\overline{C l}^{\text {PI }}$
0	+0.522	+0.147	+0.528	-0.3<2	+0.428	-0.834	+0.198	-1.555	-0.107	-2.516	-0.557
0.005	$+0.017$	-0.573	+C.231	-1.075	$+0.404$	-1. 2.493	$+0.503$	-2.328	+0.54	-3.191	+6.530
6.010	-0.030	-0.515	+0.134	-0.926	$+0.328$	-1.252	$+0.437$	-1.870	$+6.510$	-2.497	$+0.530$
0.015	-0.064	-0.457	+0.076	-0.776	$+0.253$	-1.011	+C. 372	-1.412	+6.472	-1.802	$+C .529$
0.020	-0.082	-0.441	$+0.044$	-0.726	+0.216	-0.931	+6.335	-1.273	+C.4/44	-1.629	+C. 214
c. 040	-0.210	-0.382	- 0.020	-0.598	+0.127	-0.735	+0.235	-0.963	$+0.344$	-1.224	+C.416
0.100	-0.153	-0.326	-0.065	-0.439	$+0.022$	- -.565	+0.201	-0.690	+0.193	-0.709	+0.272
0.150	-0.164	-0.306	-0.087	-0.309	-0.023	-0.486	$+0.041$	-0.591	$+0.125$	-0.645	+C. 191
0.200	-0.231	-0.352	-0.160	-0.423	-0.097	-0.503	-0.034	-0.599	$+0.043$	-0.638	+C.208
0.319	-0.220	-0.311	-0.166	-0.363	-0.123	-0.413	-6.074	-0.484	-0.016	-c. 506	$+6.037$
0.410	-0.219	-0.285	- 0.166	-0.325	-0.131	-0.374	-0.084	-0.422	-0.034	-0.438	$+0.007$
0.505	-0.202	-0.230	-0.143	-0.261	-0.110	-0.302	-0.081	-0.337	-0.038	-0.348	-0.007
0.594	-0.140	-0.174	-0.105	-0.19s	-0.079	-0.230	-0.056	-0.255	-0.013	-0.268	$+6.027$
0.685	-0.038	-0.114	-0.066	-0.137	-0.041	-0.161	-0.020	-0.179	+0.017	-0.192	$+0.040$
0.804	-0.030	-0.047	-0.012	-0.055	+0.002	-0.078	+ +. 016	-0.093	$+0.043$	-0.039	+0.062
0.900	+0.002	-0.014	+0.010	-0.020	+6.017	-0.030	+0.024	-0.036	+0.041	-0.038	$+0.054$

TABLE 1 - continued
C_{p} at Station $B, \eta \doteq 0.251$

	$\frac{\alpha=0^{\circ}}{C D}$	$\alpha=2^{\circ}$		$\alpha=4^{\circ}$				$\alpha=8^{\circ}$		$\alpha=10^{\circ}$	
	${ }^{C} \mathrm{p}_{u}$	pu	${ }^{\text {b }} \mathrm{L}$	$\mathrm{C}_{p_{u}}$	${ }^{\text {c }}{ }_{\underline{L}}$	$\bar{C}_{D_{u}}$	${ }^{\mathrm{P}_{\text {L }}}$	${ }^{\mathrm{C}_{\mathrm{pu}}}$	${ }^{c_{p_{L}}}$	$\overline{c_{p_{u}}}$	$\overline{C_{P_{L}}}$
0	+0.540	+0.067	+0.532	-0.506	$+0.354$	-1.179	+0.005	-2.356	-0.602	-3.393	-1.c10
0.005	+0.136	-. .497	+0.305	-1.079	+0.490	-1.603	$+0.553$	-2.492	+0.530	-3.360	$+0.458$
0.010	+0.015	-0.532	+0.176	-1.010	+0.381	-1.417	+0.490	-2.011	+0.558	-2.559	+0.567
0.015	-0.031	-0.519	+0.115	-0.920	+0.310	-1.219	+0.436	-1.686	+ 0.533	-2.161	+0.576
0.020	-0.072	-0.507	+0.067	-0.864	+0.256	-1.116	+0.382	-1.546	+0.495	-1.951	+0.550
0.040	-0.128	-0.4.48	-0.010	-0.685	+0.136	-0.861	+0.257	-1.153	+0.376	-1.436	+0.451
0.100	-0.297	-0.390	-0.094	-. .516	$+0.001$	-0.667	+0.092	-0.037	+し. 195	-0.930	+0.270
0.140	-..200	- 0.350	-0.103	-0.454	-0.023	-0.566	+0.053	-0.702	+0.141	-. .775	+6.216
0.194	-0.245	-0.300	-0. 265	-0.458	-0.098	-0.552	-0.032	-0.651	+0.051	-0.695	+0.119
0.3085	-0.210	-0.308	-0.151	-0.367	-0.105	-0.426	-0.055	-0.502	+0.011	-0.531	+6.662
0.4175	-0.220	-0.285	-0.166	-0.328	-0.129	-0.330	-0.0.21	-0.427	-0.038	-.. 446	+0.006
C. 512	-0.173	-0.221	-0.130	-0.253	-0.101	-0.295	-0.063	-0.323	-0.023	-0.342	+0.012
0.6065	-0.157	-0.165	-0.101	-0.183	-0.079	-0.199	-0.059	-0.232	-0.017	-0.244	$+0.007$
0.700	-0.06I	-0.036	-0.039	-0.106	-0.018	-0.129	-0.001	-0.145	+0.030	-0.157	+0.053
0.784	-0.017	-0.039	-0.003	-0.055	+0.014	-0.069	+0.027	-0.083	+0.053	-0.090	+0.071
0.910	+0.045	$+0.032$	+0.052	+0.024	$+0.062$	+0.015	$+0.069$	$+0.008$	+0.085	+0.011	$+0.035$

TABLE 1 - continuea
c_{p} at Station $C, \eta=0.3765$

	$\alpha=0^{\circ}$	$\bar{\alpha}=2^{0}$		$\alpha=4^{\circ}$		$\alpha=6^{\circ}$		$\alpha=8^{\circ}$		$\alpha=10^{\circ}$	
	${ }^{\mathrm{C}} \mathrm{p}_{u}$	${ }^{C} \underline{p u}^{\text {u }}$	${ }^{\mathrm{CP}_{\mathrm{p}}}$	${ }^{C} p_{u}$	${ }^{C p^{2}}$	${ }^{C} p_{u}$	${ }^{\mathrm{C}_{\mathrm{p}}}$	Cp_{u}	${ }^{C} p_{L}$	${ }^{C} p_{u}$	$\mathrm{C}_{\mathrm{p}_{\mathrm{L}}}$
0	+0.553	+0.230	+0.471	-0.313	+0.138	-0.964	-0.379	-2.129	-1.188	-3.400	-2.010
0.005	+0.219	-0.580	+0.307	-1.255	$+0.496$	-1.888	$+0.541$	-3.049	$+0.494$	-4.081	$+0.372$
0.010	-0.017	-0.605	+0.169	-1.149	+0.388	-1. 602	+0.494	-2.302	+0.555	-3.004	+0.542
0.015	-0.051	-0.568	$+0.113$	-1.037	$+0.323$	-1.374	+0.449	-1.942	$+0.540$	-2.507	$+0.567$
0.020	-0.096	-0.569	+0.063	-0.985	+0.269	-1.257	+0.401	-1.780	+0.510	-2.288	$+0.561$
0.025	-0.117	-0.535	+0.026	-0.887	$+0.217$	-1.127	$+0.346$	-1.566	+0.467	-2.008	$+0.487$
0.075	-0.189	-0.423	-0.063	-0.599	+0.053	-0.788	+0.152	-1.021	+0.267	-1.161	+C.351
0.130	-0.210	-0.389	-0.109	-0.512	-0.022	-0.643	+0.063	-0.803	+0.159	-0.889	+C.236
0.215	-0.204	-0.336	-0.127	-0.420	-0.063	-0.511	+0.003	-0.615	+0.079	-0.668	+0.145
0.312	-0.210	-0.311	-0.150	-0.377	-0.100	-0.439	-0.047	-0.518	+0.017	-0.548	+0.071
0.371	-0.201	-0.282	-0.141	-0.339	-0.100	-0.388	-0.057	-0.455	-0.002	-0.478	+0.042
0.4705	-0.190	-0.251	-0.143	-0.287	-0.207	-0.334	-0.071	-0.365	-0.025	-0.388	+0.009
0.5715	-0.134	-0.167	-0.096	-0.195	-0.071	-0.225	-0.045	-0.251	+0.001	-0.270	$+0.030$
0.6915	-0.055	-0.083	-0.033	-0.102	-0.013	-0.124	+0.006	-0.140	+0.035	-0.151	+0.057
0.800	-0.014	-0.028	0.000	-0.045	+0.016	-0.057	+0.029	-0.070	+0.053	-0.073	+0.070
0.900	+0.042	+0.028	+0.048	+0.018	+0.056	+0.012	+0.064	$+0.004$	+0.080	+0.012	+0.091

TABEE 1 - continued
C_{p} at Station $D, \eta=0.502$

$\frac{\pi}{c}$	$\alpha=0^{\circ}$	$\alpha=2^{0}$		$\alpha=4^{\circ}$		$\alpha=6^{\circ}$		$\alpha=8^{\circ}$		$\alpha=10^{\circ}$	
	${ }^{\text {c } p_{u}}$	${ }^{C} p_{0}$	${ }^{\mathrm{P}_{\mathrm{L}}}$	${ }^{\mathrm{C}_{\mathrm{p}}{ }^{\text {a }}}$	$\mathrm{C}_{\mathrm{PL}_{L}}$	${ }^{\text {c }}{ }^{\text {du }}$	${ }^{\mathrm{c}_{p_{L}}}$	${ }^{C_{p u}}$	${ }^{\text {c }} \mathrm{p}_{\mathrm{L}}$	${ }^{\mathrm{p}_{\mathrm{pu}}}$	${ }^{\text {c }} \mathrm{p}_{\mathrm{L}}$
0	$+0.562$	+0.231	+0.476	-0.352	$+0.137$	-1.053	-0.394	-2.294	-1.225	-3.600	-2.083
0.005	$+0.167$	-0.678	$+0.305$	-1.449	$+0.502$	-2.185	+0.528	-3.393	+0.444	-4.454	+0.274
0.010	$+0.054$	-0.656	$+0.179$	-1.269	+0.408	-3.771	+0.509	-2.466	+0.553	-3.235	+0.512
0.015	-0.070	-0.695	+0.067	-1.218	+0.309	-1.654	$+0.443$	-2.356	+0.530	-3.009	+0.549
0.020	-0.086	-0.638	$+0.044$	-1.108	$+0.264$	-1.435	+0.403	-2.018	+0.510	-2.569	+0.549
0.040	-0.128	-0.511	-0.025	-0.822	+0.157	-1.040	+0.282	-1.404	+0.398	-1.752	+0.467
0.100	-0.187	-0.422	-0.085	-0.576	+0.022	-0.746	+0.116	-0.956	+0.224	-1.078	+0.307
Q. 158	-0.196	-0.381	-0. 215	-0.494	-0.031	-0.605	+0.044	-0.762	+0.138	-0.841	$+0.210$
0.212	-0.209	-0.353	-0.129	-0.442	-0.061	-0.531	+0.004	-0.650.	+0.086	-0.710	+0.153
0.310	-0.220	-0.335	-0.167	-0.401	-0.213	-0.473	-0.060	-0.552	+0.005	-0.587	+0.063
0.369	-0.218	-0.308	-0.163	-0.363	-0.121	-0.411	-0.073	-0.489	-0.013	-0.511	+0.035
0.4775	-0.191	-0.255	-0.149	-0.294	-0.117	-0.336	-0.079	-0.376	-0.030	-0.394	+0.002
0.600	-0.115	-0.155	-0.089	-0.176	-0.063	-0.207	-0.040	-0.233	0.000	-0.248	$+0.028$
0.700	-0.051	-0.078	-0.032	-0.097	-0.013	-0.116	$+0.004$	-0.131	+0.036	-0.140	+0.055
0.800	-0.020	-0.040	-0.007	-0.052	+0.004	-0.064	+0.012	-0.072	+0.039	-0.075	+0.051
0.910	+0.033	+0.018	+0.040	+0.014	+0.046	+0.010	+0.051	+0.003	+0.065	+0.011	+0.075

TABIE 1 - continued
C_{p} at Station $E, \quad \eta=0.6275$

$\frac{\pi}{\text { a }}$	$\alpha=0^{\circ}$	$\alpha=2^{\circ}$		$\alpha=4^{\circ}$		$\alpha=6^{\circ}$		$\alpha=8^{\circ}$		$\alpha=10^{\circ}$	
	${ }^{C} p_{u}$	${ }^{\text {c }} \mathrm{p}_{\text {u }}$	${ }^{\mathrm{P}_{\mathrm{P}_{L}}}$	${ }^{\mathrm{C}} \mathrm{p}_{u}$	${ }^{0} \underline{D}_{\text {L }}$	Cp_{p}	${ }^{6} p_{L}$	${ }^{p_{p u}}$	${ }^{\text {C }} \mathrm{p}_{\text {L }}$	$\mathrm{C}_{\mathrm{O}_{u}}$	${ }^{C} p_{\text {PI }}$
0	+0.540	+0.058	+0.481	-0.689	+0.149	-1.569	-0.422	-3.136	-1.333	-4.446	-2.302
0.005	+0.215	-0.643	+0.319	-1.413	$+0.505$	-2.150	+0.518	-3.421	+0.419	-4.275	+0.635
Q.010	-0.019	-0.661	+0.186	-1.300	+0.411	-1.829	+0.501	-2.655	$+\mathrm{c} .517$	-3.487	+0.453
0.015	-0.080	-0.673	$+0.115$	-1.228	$+0.344$	-1.677	$+0.467$	-2.386	$+0.540$	-3.077	$+0.535$
0.020	-0.136	-0.657	+0.054	-1.153	+0.283	-1.534	$+0.417$	-2.165	$+0.512$	-2.759	+0.541
0.040	-0.170	-0.560	-0.040	-0.891	+0.151	-1.138	+C. 283	-1.530	$+0.404$	-1.911	+0.472
0.100	-0.190	-0.409	-0.067	-0.572	$+0.041$	-0.753	$+0.134$	-0.977	$+0.243$	-1.218	$+0.3<3$
0.150	-0.210	-0.388	-0.110	-0.513	-0.022	-0.640	+0.063	-0.007	$+0.157$	-0.901	$+0.231$
0.210	-0.218	-0.360	-0.136	-0.455	-0.064	-0.543	$+0.003$	-0.675	$+0.086$	-0.738	$+0.154$
0.3035	-0.247	-0.351	-0.177	-0.417	-0.121	-0.430	-0.067	-0.574	$+0.002$	-0.610	+ +. 660
0.368	-0.201	-0.282	-0.143	-0.328	-0.101	-0.373	-0.060	-0.449	-0.003	-C. 486	$+0.043$
0.486	-0.150	-0.213	-0.109	-0.238	-0.081	-0.255	-0.053	-0.324	-0.008	-0.361	$+0.025$
0.600	-0.109	-0.143	- . . 077	-0.164	-0.054	-0.194	-0.036	-0.219	0.000	-0.235	+0.025
0.681	-0.055	-0.077	-0.030	-0.097	-0.015	-0.119	$+0.003$	-0.136	$+0.030$	-0.145	$+0.051$
0.800	-0.008	-0.024	+0.003	-0.037	+0.013	-0.048	+0.021	-0.060	$+0.040$	-0.062	$+C .055$
0.900	+0.045	+0.029	+0.051	+0.024	+0.057	+0.014	+0.067	$+0.006$	+..076	+0.610	+c.088

TABLE 3 - continued
C_{p} at station $F, \eta=0.753$

$\frac{x}{c}$	$\frac{\alpha=0^{0}}{\mathrm{C}_{\mathrm{p}}}$	$\frac{\alpha}{C_{p_{u}}}=$	$2^{0}{ }_{C_{p_{L}}}$	$c_{p_{u}}^{\alpha}=$	$4^{\circ}{ }^{\circ}{ }_{p_{\mathrm{L}}}$						10°
				${ }^{\circ} \mathrm{p}_{u}$		${ }^{\mathrm{PP}_{\text {u }}}$	${ }^{\text {c }} \mathrm{p}_{\text {L }}$	${ }^{\mathrm{p}_{4}}$	$\bar{C}_{p_{L}}$	${ }^{C}{ }_{p}$	${ }^{\text {C }} \mathrm{p}_{\text {L }}$
0	+0.549	+0.145	+0.461	-0.553	+0.094	-1.404	-0.505	-2.910		-4.412	
0.005	$+0.038$	-0.773	+0.273	-1.590	+0.493	-2.358					
0.010	-0.049	-0.703	+0.160	-1.361	$+0.493$	-2.358	+0.531	-3.579	+0.457	-4.498	+0.287
	-0.04	0.703	+0.160	-1.361	+0.393	-1.904	+0.491	-2.694	+0.518	-3.494	+0.466
0.015	-0.080	-0.631	+0.111	-1.157	+0.336	-1.554	+0.453	-2.275	+0.524	6	
0.020	-0.156	-0.640	+0.036	-1.163	+0.274	-1. 555	+0.406	-2.147			+0.524
0.040	-0.165	-0.537	-0.022	-0.865				-2.147	+0.502	-2.696	+0.530
Q. 100			. 022	-0.865	+0.	-1.	+0.297	-1.502	+0.417	-1.885	+0.490
0.100	-0.209	-0.435	-0.086	-0.598	$+0.024$	-0.782	+0.121	-1.012	+0.228	-1.150	+0.314
0.150	-0.222	-0.399	-0.120	-0.527	-0.031	-0.647	+0.050	-0.818	+0.143	-0.912	+0.314
0.200	-0.231	-0.375	-0.139	-0.473	-0.070	-0.567			+0.143	-0.912	+0.219
0.3065	-0.219	-0.					-0.003	-0.695	+0.080	-0.761	+0.150
. 3675			-	-0.382	-0.109	-0.443	-0.059	-0.525	+0.005	-0.563	+0.059
0.3675	-0.208	-0.285	-0.149	-0.335	-0.111	-0.387	-0.070	-0.455	-0.017	-0.401	+0.028
0.500	-0.146	-0.194	-0.109	-0.220	-0.086	-0.264	-0.060	-0.296		.	+0.028
0.600	-0.099	-0.127	-0.073	-0.14				-0.296	-0.020	-0.315	+0.005
		0.127		-0.144	-0.057	-0.171	-0.041	-0.186	-0.007	-0.208	+0.013
0.6945	-0.038	-0.060	-0.023	-0.075	-0.011	-0.090	+0.001	-0.111	+0.024	-0.122	
0.800	-0.007	-0.021	$+0.001$	-0.031	$+0.007$	-0.048	+0.014			-0.122	+0.039
0.900	+0.049	+0.036	$+0.054$				+0.014	-0.064	+0.029	-0.072	+0.036
	+0.049	+0.036	+0.054	+0.027	+0.055	+0.015	$+0.063$	+0.002	$+0.071$	-0.002	+0.076

TABLE 1 - continued
C_{p} at station $G, \eta=0.8785$

$\frac{x}{c}$	$\frac{\alpha=0^{0}}{C_{p_{u}}}$	$\frac{\alpha}{c_{p_{u}}}=$	$\overline{\mathrm{c}}_{\mathrm{p}_{\mathrm{L}}}$	$\mathrm{c}_{\mathrm{p}_{u}}$	$\overline{c_{p_{I}}}$	$\alpha=$	C_{PI}	C_{n}			
							${ }^{\text {c }}{ }_{\text {P }}$	${ }^{C_{p u}}$	${ }^{C}{ }_{p_{L}}$	${ }^{C} p_{u}$	${ }^{c_{p_{L}}}$
\bigcirc	+0.538	+0.238	+0.417	-0.352	+0.002	-1.089	-0.604	-2.404	-1.543	-3.665	-2.491
0.005	+0.011	-0.736	+0.233	-1.481	+0.452	-2.234	$+0.507$	-3.486	+0.469	-4.373	+0.336
0.010	-0.114	-0.741	+0.101	-1.325	+0.347	-1.836	+0.462	-2.697	+0. 513	-3.421	+0.484
0.015	-0.129	-0.663	+0.061	-1.182	+0.288	-1.568	+0.411	-2.232	+0.488	-2.828	+0.501
0.020	-0.178	-0.650	+0.002	-1.120	+0.226	-1.483	+0.359	-2.064	+0.460	-2.564	+0.496
0.040	-0.202	-0. 343	-0.019	-0.823	+0.129	-1.096	+0.252	-1.486	+0.366	-1.739	+0.436
0.087	-0. 192	-0.410	-0.076	-0.573	+0.029	-0.744	+0.119	-0.970	+0.216	-1.111	+0.290
0.150	-0.214	-0.365	-0.124	-0.473	-0.049	-0.585	+0.015	-0.730	+0.098	-0.812	+0.157
0.200	-0.196	-0.316	-0.124	-0.399	-0.068	-0.485	-0.014	-0.598	+0.049	-0.662	+C. 101
0.300	-0.197	-0.274	-0.142	-0.328	-0.102	-0.392	-0.066	-0.469	-0.018	-0.508	+0.021
0.400	-0.236	-0.284	-0.187	-0.310	-0.163	-0.365	-0.137	-0.406	-0.092	-0.446	-0.061
0.505	-0.136	-0.169	-0.096	-0.192	-0.090	-0.230	-6.075	-0.265	-0.043	-0.297	-0.026
0.581	-0.081	-0.107	-0.063	-0.129	-0.050	-0.160	-0.041	-0.192	-c.010	- -.223	-0.009
0.662	-0.046	-0.065	-0.039	-0.081	-0.031	-0.112	-0.028	-0.142	-0.014	-0.167	-6.003
0.7905	-0.007	-0.022	-0.006	-0.033	-0.005	-0.063	-0.011	-0.091	-0.001	-0.112	+0.011
0.900	+0.043	+2.024	+0.043	+0.013	+0.040	-0.013	+0.038	-0.041	+0.040	-0.052	+0.039

TABLE 1 - continued
C_{p} at station $H, \hat{Y}=0.9605$

TABLE 2
Measured Loading Distribution
ΔC_{p} at station $A, \eta=0.1255$

Δc_{p} at Station $A, \eta=0.1255$					
$\frac{x}{c}$	$\alpha=2^{0}$	$\alpha=4^{\circ}$	$\alpha=6^{\circ}$	$\alpha=8^{0}$	$\alpha=10^{\circ}$
0	-0.381	-0.750	-1.032	-1.368	-1.959
0.005	-0.764	-1.479	-1.996	-2.876	-3.721
0.010	-0.649	-1.254	-1.689	-2.380	-3.027
0.015	-0.533	-1.029	-1.383	-1.884	-2.331
0.020	-0.485	-0.942	-1.266	-1.717	-2.143
0.040	-0.362	-0.725	-0.970	-1.307	-1.642
0.100	-0.261	-0.461	-0.666	-0.883	-1.061
0.150	-0.219	-0.366	-0.527	-0.716	-0.836
0.200	-0.192	-0.326	-0.469	-0.642	-0.746
0.319	-0.145	-0.240	-0.339	-0.468	-0.543
0.410	-0.119	-0.194	-0.294	-0.388	-0.445
0.505	-0.087	-0.151	-0.221	-0.299	-0.341
0.594	-0.069	-0.119	-0.174	-0.242	-0.285
0.685	-0.048	-0.096	-0.141	-0.196	-0.232
0.804	-0.035	-0.057	-0.094	-0.136	-0.161
0.900	-0.024	-0.037	-0.054	-0.077	-0.092

TABLE 2 - continued
Δ_{p} at Station $B, \eta=0.251$

$\frac{x}{c}$	$\alpha=2^{0}$	$\alpha=4^{0}$	$\alpha=6^{0}$	$\alpha=8^{0}$	$\alpha=10^{0}$
0	-0.445	-0.860	-1.184	-1.756	-2.175
0.005	-0.802	-1.569	-2.156	-3.030	-3.818
0.010	-0.708	-1.391	-1.907	-2.669	-3.126
0.015	-0.634	-1.230	-1.655	-1.219	-2.737
0.020	-0.574	-1.120	-1.498	-2.041	-2.501
0.040	-0.430	-0.823	-1.118	-1.529	-1.889
0.100	-0.296	-0.517	-0.758	-1.032	-1.200
0.140	-0.247	-0.431	-0.619	-0.343	-0.991
0.194	-0.215	-0.360	-0.520	-0.702	-0.814
0.3085	-0.157	-0.262	-0.371	-0.513	-0.593
0.4175	-0.119	-0.199	-0.289	-0.389	-0.452
0.512	-0.091	-0.152	-0.232	-0.300	-0.354
0.6065	-0.064	-0.104	-0.140	-0.215	-0.251
0.700	-0.047	-0.088	-0.128	-0.175	-0.210
0.784	-0.036	-0.069	-0.096	-0.136	-0.161
0.910	-0.020	-0.038	-0.054	-0.077	-0.084

TABLE 2 - continued
$\Delta \mathrm{c}_{\mathrm{p}}$ at station $\mathrm{c}, \eta=0.3765$

Δc_{p} at Stationc, $\boldsymbol{\eta}=0.3765$						
$\frac{x}{c}$	$\alpha=2^{\circ}$	$\alpha=4^{0}$	$\alpha=6^{\circ}$	$\alpha=8^{0}$	$\alpha=10^{\circ}$	
0	-0.241	-0.451	-0.585	-0.941	-1.390	
0.005	-0.887	-1.751	-2.429	-3.543	-4.453	
0.010	-0.774	-1.537	-2.096	-2.857	-3.546	
0.015	-0.681	-1.360	-1.823	-2.482	-3.074	
0.020	-0.632	-1.254	-1.658	-2.290	-2.849	
0.025	-0.561	-1.104	-1.473	-2.033	-2.495	
0.075	-0.360	-0.652	-0.940	-2.288	-1.512	
0.130	-0.280	-0.490	-0.706	-0.962	-1.125	
0.215	-0.209	-0.357	-0.514	-0.694	-0.813	
0.312	-0.161	-0.277	-0.392	-0.535	-0.619	
0.371	-0.141	-0.239	-0.331	-0.453	-0.520	
0.4705	-0.108	-0.180	-0.263	-0.340	-0.397	
0.5715	-0.071	-0.124	-0.180	-0.252	-0.300	
0.6915	-0.050	-0.089	-0.130	-0.175	-0.208	
0.800	-0.028	-0.061	-0.086	-0.123	-0.143	
0.900	-0.020	-0.038	-0.052	-0.076	-0.079	

TABLE 2 - continued
ΔC_{p} at station $D, \eta=0.502$

ΔC_{p} at Station $D, \eta=0.502$						
$\frac{x}{c}$	$\alpha=2^{0}$	$\alpha=4^{0}$	$\alpha=6^{\circ}$	$\alpha=8^{0}$	$\alpha=10^{\circ}$	
0	-0.245	-0.489	-0.659	-1.069	-1.517	
0.005	-0.983	-1.951	-2.713	-3.837	-4.728	
0.010	-0.835	-1.677	-4.280	-3.019	-3.747	
0.015	-0.762	-1.527	-2.097	-2.886	-3.558	
0.020	-0.682	-1.372	-1.838	-2.528	-3.118	
0.040	-0.486	-0.979	-1.322	-1.802	-2.219	
0.100	-0.337	-0.598	-0.862	-1.180	-1.385	
0.158	-0.266	-0.463	-0.649	-0.900	-1.051	
0.212	-0.224	-0.381	-0.535	-0.736	-0.863	
0.310	-0.168	-0.288	-0.413	-0.557	-0.650	
0.369	-0.145	-0.242	-0.338	-0.476	-0.546	
0.4775	-0.106	-0.177	-0.257	-0.346	-0.396	
0.600	-0.066	-0.113	-0.167	-0.233	-0.276	
0.700	-0.047	-0.084	-0.120	-0.167	-0.195	
0.800	-0.033	-0.056	-0.076	-0.111	-0.126	
0.910	-0.022	-0.032	-0.041	-0.062	-0.064	

TABLE 2 - continued
ΔC_{p} at station $E, \eta=0.6275$

$\frac{x}{c}$	$\alpha=2^{0}$	$\alpha=4^{0}$	$\alpha=6^{0}$	$\alpha=8^{0}$	$\alpha=10^{\circ}$
0	-0.423	-0.838	-1.147	-1.803	-2.144
0.005	-0.962	-1.918	-2.668	-3.840	-4.510
0.010	-0.847	-1.711	-2.330	-3.172	-3.940
0.015	-0.788	-1.572	-2.144	-2.926	-3.612
0.020	-0.711	-1.436	-1.951	-2.677	-3.300
0.040	-0.520	-1.042	-1.421	-1.934	-2.382
0.100	-0.342	-0.613	-0.887	-1.220	-1.441
0.150	-0.278	-0.491	-0.703	-0.964	-1.132
0.210	-0.224	-0.391	-0.546	-0.761	-0.892
0.3035	-0.174	-0.296	-0.423	-0.576	-0.670
0.368	-0.139	-0.227	-0.313	-0.446	-0.529
0.486	-0.104	-0.157	-0.202	-0.316	-0.386
0.600	-0.066	-0.110	-0.158	-0.219	-0.260
0.681	-0.047	-0.082	-0.122	-0.166	-0.196
0.800	-0.027	-0.050	-0.069	-0.100	-0.117
0.900	-0.022	-0.033	-0.053	-0.070	-0.078

TABLE 2 - continued
ΔC_{p} at Station $F, \eta=0.753$

$\frac{x}{c}$	$\alpha=2^{0}$	$\alpha=4^{0}$	$\alpha=6^{0}$	$\alpha=8^{0}$	$\alpha=10^{0}$
0	-0.316	-0.647	-0.899	-1.445	-2.004
0.005	-1.046	-2.083	-2.889	-4.036	-4.785
0.010	-0.863	-1.754	-2.395	-3.212	-3.960
0.015	-0.742	-1.493	-2.007	-2.799	-3.420
0.020	-0.676	-1.437	-1.961	-2.649	-3.226
0.040	-0.515	-1.030	-1.409	-1.919	-2.375
0.100	-0.349	-0.622	-0.903	-1.240	-1.464
0.150	-0.279	-0.496	-0.697	-0.961	-1.131
0.200	-0.236	-0.403	-0.564	-0.775	-0.911
0.3065	-0.164	-0.273	-0.384	-0.530	-0.622
0.3675	-0.136	-0.224	-0.317	-0.438	-0.509
0.500	-0.085	-0.134	-0.204	-0.276	-0.320
0.600	-0.054	-0.087	-0.130	-0.179	-0.221
0.6945	-0.037	-0.064	-0.091	-0.135	-0.161
0.800	-0.022	-0.038	-0.062	-0.093	-0.108
0.900	-0.018	-0.028	-0.048	-0.069	-0.078

TABLE 2 - continued

ΔC_{p} at Station G, $=0.8785$						
$\frac{\pi}{C}$	$\alpha=2^{\circ}$	$\alpha=4^{\circ}$	$\alpha=6^{\circ}$	$\alpha=8^{\circ}$	$\alpha=10^{\circ}$	
0	-0.179	-0.354	-0.485	-0.861	-1.174	
0.005	-0.969	-1.932	-2.741	-3.955	-4.709	
0.010	-0.842	-1.672	-2.298	-3.210	-3.905	
0.015	-0.724	-1.470	-1.979	-2.720	-3.329	
0.020	-0.652	-1.346	-1.842	-2.524	-3.060	
0.040	-0.524	-0.952	-1.348	-1.852	-2.175	
0.087	-0.334	-0.602	-0.863	-1.186	-1.401	
0.150	-0.241	-0.424	-0.600	-0.828	-0.969	
0.200	-0.192	-0.331	-0.471	-0.647	-0.763	
0.300	-0.133	-0.226	-0.326	-0.451	-0.529	
0.400	-0.097	-0.147	-0.228	-0.314	-0.385	
0.505	-0.073	-0.102	-0.155	-0.222	-0.271	
0.581	-0.044	-0.079	-0.119	-0.174	-0.214	
0.682	-0.026	-0.050	-0.084	-0.127	-0.164	
0.7905	-0.016	-0.028	-0.052	-0.090	-0.123	
0.900	-0.019	-0.027	-0.051	-0.081	-0.091	

TABLE 4
Measured Local Lift Coefficients and Aerodynamic Centre Positions.

C_{I}								
α^{0}	0.1255	0.251	0.3765	0.502	-275	0.753	0.8785	0.9605
2	0.125	0.135	0.142	0.149	0.150	0.145	0.126	0.111
4	0.221	0.240	0.256	0.268	0.270	0.261	0.223	0.198
6	0.314	0.340	0.361	0.386	0.377	0.370	0.323	0.297
8	0.429	0.462	0.496	0.519	0.528	0.512	0.455	0.453
10	0.513	0.552	0.587	0.616	0.631	0.611	0.544	0.572

α	0.251	0.3765	0.502	0.6725	0.753	0.8785	0.9605	
	0.1255	0.267	0.249	0.247	0.239	0.227	0.214	0.271
4	0.269	0.257	0.261	0.251	0.244	0.235	0.225	0.213
6	0.269	0.254	0.247	0.231	0.227	0.219	0.212	0.304
8	0.271	0.258	0.247	0.239	0.229	0.222	0.219	0.323
10	0.266	0.252	0.243	0.234	0.227	0.219	0.222	0.344

TABLE 5
Coefficients of Total Lift from Pressure Measurements

α°	$\overline{\mathrm{C}}_{\mathrm{L}}$
2	0.134
4	0.244
6	0.343
8	0.474
10	0.565

T ABLE 6
Chordwise Loading (Mid semi-span)
(a) ${ }^{\top}$ perimental

$\frac{\mathrm{x}}{\mathrm{c}}$	$-\frac{\Delta^{C_{p}}}{C_{T}}$		
	$\alpha=2^{\circ}$	$\alpha=4$	$x-6^{0}$
0	1.64	1.83	1.71
0.005	6.60	7.28	7.03
0.010	5.61	6.26	11.09
0.015	5.12	5.70	5.44
0.020	4.58	5.12	4.76
0.040	3.27	3.65	3.43
0.100	2.26	2.23	2.24
0.158	1.79	1.73	1. 58
0.212	1.50	1.42	1.39
0.310	1.13	1.07	1.07
0.369	0.97	0.90	0.88
0.4775	0.71	0.66	0.67
0.600	0.44	0.42	0.43
0.700	0.32	0.31	0.31
0.800	0.22	0.21	0.20
0.910	0.15	0.12	0.11

(b) Theoretical

$\frac{x}{e}$	$\frac{-\Delta_{p}^{C}}{C_{p}}$
0	C_{L}
0.005	9.78
0.010	6.77
0.015	5.46
0.020	4.68
0.050	2.84
0.100	1.92
0.200	1.25
0.300	0.94
0.400	0.75
0.500	0.60
0.600	0.49
0.700	0.39
0.800	0.29
0.900	0.19
1.000	0

TABLE 7

Spanwise Loading
(a) Experimental

η	dC_{L}	${ }^{C_{L}{ }^{c} / \bar{C}_{L} \overline{\mathrm{c}}}$		
	$\overline{\mathrm{d} \alpha}$	$\alpha=2^{0}$	$\alpha=4^{0}$	$\alpha=6^{0}$
0.1255	2.84	1.14	1.11	1.12
0.251	3.07	1.16	1.13	1.14
0.3765	3.27	1.14	1.12	1.13
0.502	3.44	1.11	1.10	1.12
0.6275	3.47	1.04	1.02	1.02
0.753	3.32	0.92	0.91	0.92
0.8785	2.90	0.73	0.71	0.73
0.9605	2.61	0.56	0.55	0.58

(b) Theoretical

η	${ }^{C} L / \alpha$		${ }^{\mathrm{C}} L^{c} /{\overline{C_{L}}{ }^{\text {c }}}$	
	Linear Theory	With tipvortex effect	Linear Theory	With tipvortex effect
0	2.73	2.74	1.20	1.18
0.1951	3.00	3.01	1.20	1.18
0.3827	3.18	3.19	1.15	1.13
0.5556	3.24	3.27	1.05	1.04
0.7071	3.18	3.25	0.94	0.94
0.8315	2.90	3.01	0.78	0.80
0.9239	2.33	2.57	0.59	0.63
0.9808	1.61	2.22	0.32	0.44
1.0000	0	2.18	0	0.30

TABLE 8
Location of the Transition Fronts

SPANWISE STATION	η	END OF TRANSITION REGION AS A PERCENTAGE OF THE LOCAL CHORD									
		$\mathrm{R}_{e}=0.88 \times 10^{6} / \mathrm{it}$.					$\mathrm{R}_{\mathrm{e}}=1.37 \times 10^{6} / \mathrm{ft}$.				
		$\alpha=0^{\circ}$	$\alpha=2^{\circ}$		$\alpha=4^{\circ}$		$\alpha=0^{\circ}$	$\chi=2^{0}$		$\alpha=4^{\circ}$	
		U.S.	U.S.	L.S.	U.S.	L.S.	U.S.	U.S.	L.S.	U.S.	L.S.
A	0.1255	38	23	21	11	5	18	20	5	< 5	<5
B	0.251	19	12	16	10	<5	7	8	<5	5	<5
C	0.3765	20	23	20	15	13	13	16	10	11	<5
D	0.502	45	29	42	20	20	19	22	16	16	<5
E	0.6275	50	30	33	17	19	26	20	16	10	<5
F	0.753	46	28	41	10	12	26	18	5	5	<5
G	0.8785	33	29	29	12	20	21	20	<5	12	<5
H	0.9605	-	-	-	-	-	-	-	-	-	-

FIG. I. GEOMETRY OF WING AND BOUNDARY LAYER FENCE.

FIG.2. PRESSURE ERROR CORRECTION CURVES FOR LANCASTER PA474.

FIG. 3a. STATIC PRESSURE DISTRIBUTION FOR $R_{e}=0.88 \times 10^{6}-1.86 \times 10^{6}$ PER FT. STATION A $-\eta=0.1255$.

FIG. 3b. STATIC PRESSURE DISTRIBUTION FOR $R_{e}=0.88 \times 10^{6}-1.86 \times 10^{6}$ PER FT.
STATION $B-\eta=0.251$

FIG. 3c. STATIC PRESSURE DISTRIBUTION FOR $R_{e}=0 \cdot 88 \times 10^{6}-186 \times 10^{6}$ PER FT. STATION C- $\eta=0.3765$

FIG. 3d. STATIC PRESSURE DISTRIBUTION FOR $R_{Q}=0.88 \times 10^{6}-1.86 \times 10^{6}$ PER FT. STATION D - $\eta=0.502$

FIG. 3g. STATIC PRESSURE DISTRIBUTION FOR $R_{e}=0.88 \times 10^{6}-1.86 \times 10^{6}$ PER FT. STATION G $-\eta=0.8785$.

FIG. 3h. STATIC PRESSURE DISTRIBUTION FOR $R_{e}=0.88 \times 10^{6}-1.86 \times 10^{6}$ PER FT. STATION H- $\quad=0.9605$

FIG. 4. CHORDWISE PRESSURE DISTRIBUTION AT MID SEMI-SPAN WITH ZERO INCIDENCE

FIG. 5. CHORDWISE LOADING AT MID SEMI-SPAN

FIG. 6. DISTRIBUTION OF LOCAL LIFT COEFFICIENT

FIG.7. MEASURED AND CALCULATED SPANWISE LOAD DISTRIBUTIONS.

FIG. 8. TOTAL LIFT COEFFICIENT.

FIG.9. POSITION OF LOCAL AERODYNAMIC CENTRE.
$\longrightarrow R_{e}=0.88 \times 10^{6}$ PER FOOT
$\longrightarrow R_{e}=1.37 \times 10^{6}$ PER FOOT

FIG. IO. LOCATION OF TRANSITION FRONTS.

