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ADDENDA AND CORRIGENDA

= dt dT

Fage 3. Ineq. 11 =-2A i should read -\ _El?r

Fage 6. Eq. 28 should read -G = é o HLe - 1)TA g
C, dy dy

n
.

Page 11.  The phrase following eq.45 should read "where hW = CpTw
o

It is important to note that § is the rate at which energy is
transported relative to a surface moving with the mass average or
flow velocity. Thus -qw is not the rate at which energy is transferred
into the wall at y = The latter quantity, written as -q say, i
given by :-

dTb
Ay ~mhy = -9, = (kb dy )w S

The second form of -q follows from the energy balan e at the interface
and is the energy flux “within the body. Since -—q (Zxﬂ' + m hw -m hi

dy
d w
(for any Lewis No. value) it follows that (7\ d_;D is always equal to
dT w
(lb -a?b> in the case of gas injection, i.e. the conduction in gas

and solid ‘E’)alance at the interface.



With these definiticns eq. 45 is modified so as to read :-

" o_e = o = = ! . '
Gg &1 u (hro hwo) h oD (hro +hw)b /2 (45a)

where h = 5, M
WO P w

The second sentence in the paragraph foliowing eq. 45 should be
modified to read: ''Since b’ can be written as th 8§ /T approximately
the last term in eq. 45a gives a reduction in -t'}s equal to (hml + hw}r'n fa"
Further on in this same paragraph the words '"..... lead to an
increase in heat transfer rate if ....." should be modified to read

M. .... lead to an increase in -{':lw . PR

The last sentence in the same paragraph should be deleted and
replaced by : "Even though -g_ may be increased by injection of the
'wrong' gas, it can readily be shown that injection always decreases
-(_. The amount of this decrease becomes smaller as C ., decreases,
however", pi

It is worth pointing out that Stanton number is in fact more con-
veniently defined in terms of -i_ than in terms of -q_. Also that
W . '
recovery enthalpy refers to the zero of ~d,, and not to the zero of Qg

Page 14. The paragraph following eq. 56 should be deleted, as should
eq. 57, and the following substituted.

"The energy transfer rates at the interface must now be matched,
taking account of the fact that the solid material absorbs an amount of
latent heat L, per unit mass during sublimation, and also accounting for
convection of energy in both the solid and the gas. Thus:

- - mh = 2 ot ~-mC, T +mL,
W w b dy =0 b w
y,_‘ —
or, using eqs. 45a and 56,
-, = m (L - CbTb) = m L', (57)

say.



n "

In the line following eq. 57, change —Eqw" to read ”—E:{S and

"eq.(45)" to read "eq.(45a)"". Then eq. 58 should read :-

no_: =il . o 7 5 gy
a, «( -h )7/8 - [hwo,& +(hr0+hwo)/zJ (58)

Fage 15, Eq.59 should now read :-

[T = - - Y I =] "
h (h_ hwo)(u/f))(L +h A +(hro+hw0)/2) (59)

In paragraph following eq. 59, -9, should be altered to read
11

[ 2
Qs
Eq. €0 should read :-

(1 = o s ! Fl 3 2 -1 "
4y = (h -h Nu /8L (L' +4a'h (b +h )/2) (60)

The section starting 3 lines above eq. 61 and ending 3 lines below
eq. 62 should be deleted and the foilowing substituted :-

"However, -4 _ is not of primary importance here, Father are we
concerned with the heat flux into the wall, which eq. 56 and 57 show to
be given by :-

dT . , o TP o
(3% as;ly:a- m Cb(l‘W - 'lb) Gy - m L+ CyT,, (61)
It follows that :
| ﬂl _ (hro - hwo)(u/o)cb(Tw - I‘b) e
bdyloso- L' +a'h +(h_+h_)/2
wo ro  wo

Clearly Kb dT/dy ‘ 50~ reduces suhstantially in magnitude as L

(and hence Il ) rises. As L » o, L d’I‘/dy'ygn_ + 0; note that

although th * 0 as L. * o the product L. remains finite".

Page 17. In line 4, replace pme/RT by ;‘Jmelk’.[‘.

In the paragraph beginning just before eq.69 the condition

i £ = (2 bl 4]
should be "L >» hw N +(hr0 +hwo)/:1 Cblb'
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LIST OF SYMBOLS

Defined in egs., 30 and 33

Foreign gas concentration (mass fraction)
Specific heat of wall material
Priction coefficient

Specific heat of external gas
Specific heat of injected gas
Diffusion coefficient

Enthalpy per unit mass

Boltzmorn's Constant

Latent heat of sublimation

Lewis Nunber

Mass injeetion rate per wnit surface area
Pressure

Prandtl number

Energy flux

Schmidt number

Temperature

Velocity parallel to walls
Veloeity perpendicular to walls
Co-ordinate perpendicular to walls
Distance between walls

Defined in eqs. 12 and 33

Density

Viscosity

Conductivity

Shear stress



List of Syzbols Continued

b Lower wall material value
c External ges

i Injected gas

o Zero=injection rate wvalue
iy Recovery value

w Evaluated at y = O

8 Evaluated at y = 0



1. Introduction

There is a great deal of current intcrest in the -rocesses of
ablation into hypersonic boundary layers and several rigorous
theoretical treatments have appeared in the published literature.
Notable amongst these ve may mention the work of Iees (1958) and Seala,
The latter has given a sumary ofa great volume of hiswvork in this
field (Scala, 1960),

The processes involved are quite complex and the nurber of variables
which can affect them is large. The following represents an ultra-
simplified treatient of gas injection and gaseous ablation into a simmle
shear layer (Couette flow) in an attempt to emphasise some of the concepts
and parameters involved,

Pirst the injection of a perfect gas into another perfect gas is
discussed and later on these results arce uscd to establish ablation, and
the corresponding heat transfoer rates, Iomogeneous chemical reactions are
not considered, The variations of sublinmation termerature with pressure
are examined briefly, via the kinetic theory. An atteipt is made to
confine the treatment to the barest essentials, and no atterpt made to
give a copious list of references. As far as nossible the work concerns
the general situation,

2. Gas Injection at the Lover Wall

The agsumption is made that both gases, nacly that of the extermal
flow and the injected gas, are ideal. Then the resnective specific

enthalpies, h - and hi can be written as

b‘
"
Q
3
=
1}
Q
=]
-

(1)

vhere the specific heats at constant pressure, C-.—, and G*:ai’ are both
& =

constants, T is the absolute temperature, OUince we exclude the possibility
of chemical reactions betireen the two species there is no need to refer i
encrgies to a common zero level, If the injected gas is present at
concentration (mass frection) ¢, the specific enthalpy of the mixture, h,

is given by

h=(1-6)h, +ch = 0, (cpi - Gp)c_f I (2)

Por plane parallel Couctte flow with no x-wise pressurc gradient,
the usual conservation equations become



g‘a%’;"')‘ T (3)
v = %—,(u %) ’ (%)
~§ %5548, “
o BREE R NURECNEE

P 4 4 and p are the mixture density, viscosity and thermodynamic pressure
respectively, and u and v ave the gas velocities parallel and perpendicular
to the plates, § is the y-component of the energy flux vector which,

in the presence of interdiffusion of the extermal and injected gases,

must be written

§ = -1% +,oovihi+ p(‘l—c)vehe. (7)

vy and v, are the appropriate diffusion velocities and N is the coefficient
of thermal conductivity, The diffusion velocities in the simple binary

mixture under consideration are simply related to the concentration
gradients ;

ovy = =g = - -0y, (8)

where D is the binary diffusion coefficient for the particular mixture,

In addition to the overall mass conservation eguation (eq. 3),
continuity equations for each separate species con be written down,
These are

%[OGV-JOD%}=03 9)
%\; {p(1—c)v+pn%]= 0, (10)

for the injected and external gases respectively, and use has been made
of egs. (8) to eliminate the diffusion velocities.

The energy flux is better expressed in terms of concentration
gredients, namely, (using ecs.(7), (8) and (1)),



qz_zg_ ppA?E | (11)

wvhere we have vritten

O, =8 ® B 12
it s (12)

The species continuity equations (9 and 10) can be integrated at once
to give

pe v - pn%g = & , (13)
(1 =c)ver P = 0, C(1m)

Here we have made use of the boundary condition at the lower wall to
evaluate the integration constants. The left hand side of eq,13 is equal
to po(v + v,) and is therofore equal to the mass flow rate of injected
gas per unitlarea, which is written as m at the lower wall, Similarly
the left hand side of eq. 14 is p(1 = c)(v + v_), and since no external

gas is allowed to enter the lower wall the appropriate value for this
quantity at y = O is zero., It immediately follows that

ov = Hh |, (15)

(2 result which could also be deduced directly from eq. 3.), and the
equation satisfied by ¢ now becomes

m% = wh(1-0). (16)

The momentum equation parallel to the wall can also be integrated dircetly
and, using the condition #(dw/dy) = T when y = 0 (TW shear stress

at the wall), we have

du

T = hu+T, . , (17)

Using eq. 17, all d/dy derivatives can now be vritter in terms of
d/du derivatives, (this is the Couette flow version of Crocco's laminar
boundary layer transformation), In particular this trensformation
applied to eq.16 yields

'(Flu+r;'i_
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for the relation between ¢ and u, The quantity Sc is the Schmidt number,
Se = u/pD , (19)

and in what follows we shall assume it to be a constant throughout the
gas layer, It is not likely to wary too much for most gas mixtures of
interest and, in any case, we can assume it to have some suitable mean
value for the purposes of the present, heuristic, analysis, This being
so, eq. 18 integrates to give

Sc
¥ ’

1e-c = (1-—0\_{)(1+ﬂm/7‘7)

where 7% is the foreign ges concentration at the lower wall, Note that

(20)

ifm=0,c= c, everywhere; if h > O (injection) then ¢ < o, everywhere

and vice versa if th < O (suction)., Some s:'l.mplifica'bj:On will result
later if we take cg , the foreign gas concentration at the upper wall,

to approach zero., This is consistent with the th > O requirement for
injection and also corresponds most closely with the practical, boundary
lgyer, problem, The assumption cg + O precludes eonsideration of the

suction case however. It can be seen from eq,8 that as cg » O the product
(e v;) 5 must remain finite and nonezero (in other words the diffusion
velocity v, at y = 8 increnses without 1imit). The mean vertical velocity
of the injected gas is v + Vi and its mass flow rate per unit area is
therefore  po(v + vi) » as remarked previously. The limiting case cg =0

then implies that the injected gas is carried awsy through the upper wall
purely by diffusion (since pv =m = const, and pov , O as c » 0),

Eq 20 shows that ¢ is directly related to th once cg is fixed, because,

1mcp= (1 =og)(1 481, )™, (21)

Furthermore, even though we lot cg + 0, c_ # O as long as h > O, The

injected gas therefore enters into the flow region by a mixture of diffusion
and convection,

The transport of foreign gas across the shear layer by a mixture of
convection and diffusion is precisely what havpens in the practical case
of a boundary layer flow, and it is for this reason that we study it here,
As is already apparent the inclusion of diffusion introduces the Schmidt
number into the analysis, a number which muct be important also in boundaxy
layer flows since it determines the relative thiclmess of the momentum and
concentration layers (i.e, Sc = v /D),



—5lll

We must now turn to a consideration of the energy equation (eq. 6).
With eq, 11 for the energy flux, this can be written

dh __dp 4 (& do ),k fav\® | (au)
mdy"vdy+dy<ldy+pDTdy)+3<dy +“ay>’ (22)

where pv has been written as i, With the result given in eq. 11 the
term p(du/dy)? can be vritten as v (dw/dy) + (%/2)au?/dy, so that the
only hindrance to a dircct integration of eq,22 is the appearance of the
terms in v, Eliminating v dp/dy from eq. 22 with the aid of eq. 5 we

have
a _.a (@ b av/2) @) (.ga)"
mdy(h+v;2)"+dy<ldy+3dy +’°D'&Tdy +“\dy ;
and vriting
Ep = cIJ + (G_Di = Gp)c s (23)

eq, 2 shows that

dr

. & £
&y 5§ & g & °
B
The energy, equation can now be written as
a _afafa Ex _ gy A2, (re - w2 ]
f (h+‘v’/2)-dy[_ "‘dy(h+vz/2)+(3 e - + (Le = 1)T dyh
+”%yu> . _ (211-)

The quantities Pr and Le are the Prandtl and Lewis nuibers respectively,
defined here as

o] C. D
- B = P
Pr _‘;\B ? Te ___%_ (25)

Eq, 24 only contains terms in v2/2 and for small amoumts of injection
these may plausibly be neglected in relation $o the enthalpy terms,
With this approximation eq. 24 becomes

& . & (A |& do du, h af
oyl La.v "‘(Le-”“-"“ay“* ™ &3 a0 (%)

having made use of eq, 17 to eliminate pdw/dy.



Bq, 26 can now be integrated to give

A dh do ™
ﬂl(h—hw) -~ -é'_ ['a*& +(L0—1)Tﬂ§-l +'LITW+‘E“ + ('JW (27)
P

Suffix w refers to quantitics evaluated ot the lower wall, y = O and in
obtaining eq, 27 we have made use of the fact that

-&:%—%+(Le—1)m%§;‘. (28)

P
This cen be seen from egs, 11, 1, 23 and 25, = éw is the encrgy
transfer rate into the lover wall, '

The Crocco=type transformation is now applied to eq, 27 with the
result that

dh o .
(ftu + TW) {EE + (Le - 1)’1‘(‘:-5,?-1 ] - th Pr (h - h) +.Pr(u'rw + /2 + ?w) =0
lao'ﬂ(29

e
The term invelving T in this equation can be eliminated via egs. 1 and 20,
1.8,

(1s ~ )80 e )1 < o)t « B/e) >

(Le_.l)Ta‘dﬁH—mm“m-u“ .h ,

a C, + A [1 ~(1 =c )1 + r!m/rw)fjc]

and if we now write

BT _ =D (30)

— . A R e A A W BE ESE e SRR S ST LR AR RS S ik R A RS am

* It is assumed from here on that Le and Pr axc constant across
the layer. Since Sc = Pr/Le this is consistent with the
previous assumption that Se is also constant. In practice all
of these dimensionless groups will vary to some cxtent with
composition and we rust regard the values used here as
appropriate mean values,



for brevity, eq. 29, can be written M

Scw]

5o Le = 1) A(1 - cw)bSc(u'b +1)

%l - [m +m—“-‘?“‘“'“"“’“’**""‘*+‘s;b“j-“ }. h
C‘P+Atl (1 = ¢ )(w + 1) ] |
= «Pr(u+ -1/1:)"1 [ (u+1/b)?/2 = 1/2b% &+ qw/zﬁ + hW] (31)

Eg. 31 can be integrated to yield ,

£(u) h - £(0) h = -FPr ju (a\/xﬁ +h_+ g(u)) £(u) (u+ 1/0) Tau (32)

where

- ~1
£(u) =57 (ub + 1)'*’1‘{ O, + 0 [1 1 = og)(wo + 15/ (b + 1)°° | }lf

. 2 (32ag
g(u) = (1/26%) | (wb+ 1)* =1 ] . (32b

(BEq. 21 has been used to eliminate 1-c_ in terms of cg, U and b in eq. 322,
and £(o) in eq. 32 is f(u) evaluated whon u = 0),



3. Recovery Enthalpy and Heat Trensfer Rate

e s Sl At EIEE s e A

Some general results can now be derived froa eq. 32. First we note
that vher u = U, h = hg and if, in addition, Elw_ = 0 then hw = hr’ the

recovery enthalpy, It follows thercfore that

h =[ f(ﬁ)hS 4 Prj’U g(u) £(u) (u‘_-i- 1/‘13)"1 duy

iz
0

£(0) =Pr | £(u)(u+ 1/6) &
[0 - [ }

and in terms of this quantity,

-

v :
-y = (1/fr) { (:E‘(o)/ jo f(u)(u + ‘I/"b)""I du)- 1 J(hr - hW')bTW

These two quantities can be revritten in a more convenient form by
defining dimensionless functions £ and g’ which are related to f and
g in egs, 32a and 32b, Thus we write

o f(u) /.bPI‘ CPLO—1 (33&)

PF(d) = (uD + 1)-Pr{ 1 4+ l"1 {1 - o5 (Y + 1)30/(13" . 1)30 }Le'—d
i ! ¥+7 2 2 2
vhere W =u/U, b’ =bU, & = 0/C .Whence it follows thut

h, = { £ (1) + (Pr ¢ /2) f(g’ £ )0 (1 + w'p)™ du']/
1

o

{ £ (o) - Pr b‘/f’.(*l +u'v )"1du'J (34)

-3 = (1/Pr) [ (f’ (o)/f £, (1 + u’b')“1au'> - b } (b, - B )(7_/U) (35)



These expressions for h. and are veyy umrieldy and little can be
gained from an examination &f them as they stand, Consequently we nust
resort to approximation in order to gain some insight into the physical
picture and it seems natural to attempt solutions for ¥ << 1. Referring
to the definition of V' , this assumption is ecuivalent to setting

buid) Ty << 1. Physically this group of varicbles has a simple intcrpretation

since mU is proportional to the flux of x-wise momentum induced in a
direction away from the wall by the act of blowing into the shear layer,
whilst e indicates the magnitude of the same flux taking place towards

¥y = 0 as a result of the microscopic, molecular motions, Setting
b’ <<1 is equivalent to assuming that the amount of blowing is such as to
cause only small decreases of skin friction,

It is worth noting that V¥ is almost alwoys multiplied by v in the
integrals where is crcates difficulties, so that a reasonable approximation
should be found for quite large values of b ; at least the physics of the
situation should be prescrved in such circumstences,

After a certain amount of algebra it can be showm that

h, = hro"'b’ l (Tie = 1)Sc &' hy + (Pr U /6)(2(Le = 1)sc &+ 1 -Pr)\ ‘
susmss Kb

- g, Wr/r, = (b, =) [1 LV /2)((Te = 1)S0 &7+ 1 - Pr)| (37)

-b | (Le - 1)3¢ &'+ (Pr U?/6)(1 Pr =(Le~1)Sc A )J

where hro is the recovery enthalpy with zero mass injection rate,

h, = hy +Pr v /2. (38)

When both Pr and Le (and hence Sc also) are cqual to unity the
results 37 and 38 simplify to

h = h : (39)

F o Iro

. ér.rUPr (hro

1

-h)T_. (40)

In this case then/ injection of a foreign gas through the lower wall has
no influence on the recovery enthalpy (since cg = 0) and the form of

the "Reynolds analogy" cxpression in eq. 40 is cxactly like the no-
injection one., However, it is clear from eq. 2 that at a given wall
temperature, h_ will becoic greater or less than the no-injection value

of CP T, depending on whether Cpi > GP or <GP (i.e, whether &' > 0 or <0),



- 10 =

. Eq. 21 shows thut an epproximation to c., which is equivalent to those
made in deriving eqs. 36 and 37 is

!
o, = Sc, b (%2)
Then it follows that

he * O, T4, Bo¥b), (43)

or, in the case of Le = Pr = Sc = 1, the fractional increment in the
wall enthalpy as a result of foreign gas injection is &'Vb’,

A further modification to the heat tronsfer rate arises via the
reductions in 7 brought about by gas injection, Assuming that# in_
eg., 17 can be réplaced by a properly weighted eonstant mean value, M
say, it follows that

ry = —AL o« 7§ _al, )’

to a reasonable degree of approximation, Aside from eny variations
which may arise in the value of I due to the presence of the foreign
gas, the term QUM is the zero injection skin friction. Eq. L4 shows
that injection reduces skin friction by an amount equal to the mean rate
of upwards transport of x-wise momentum which results from blowing, a
plausible-~looking first cstimate,

e ra— . re - s R

* Eq. 44 shows that significant skin friction rcductions occur when
h is comparable with £/ , simple kinctic theory gives u ~ p Y3,

Q = mean molecular spced ( * a, speed of sound) and £. = mean free
path, whence condition is fy/pU ~ (8/5)}.1-1 vhere M = U/a = Mach number
at outer edge of shear leyer, This illustrates how very small fy/pU
values are effective in reducing Tw, since ¢ /0 << 1 at recsonable
altitudes (pressures)., It also suggests that blowing is more cffective
at higher Mach numbers, The present theory is only valid if md/ @ <<,

although this condition nced not be too strictly observed, see the remarks
sprecceding eq. 36,



Still considering the simple case where Le and Pr are unity, we
can now write

- £
T ..9
-51'5 6/ 0 (by=-h,) -h &V -(h =h)3 (45)

f{_‘ ¢ & af . &

where by =0, T, .

The first term on the right-hand side corresponds to zero-injection
heat transfer, the remaining terms express the effect of injection,
Since ¥ can be written as 0/ I approximately, the last term in eq, 45
gives a reduction in =~ E]wseq_ual to e h‘w)rh/z. This term is wholly

anzlogous to the term MU/2 in eq. L4, and represents the mean upvards
transport of enthalpy as a result of injcction, The second term in eq. 45
represents a potentially significant source of heat transfer rate reduction
by injection. The reduction in - § from this source is (cpi - GP)TW i,

a quantity which expresses the loss of enthalpy difference across the lgyer
which results from the injection of a gas with a large heat capacity, Cpi'

It is interesting to observe that this quantity may be negative and it
follows from eq., 45 that the effect of injection as summarised in the
right-hand side of this cquation may lead to an increase in M
rate if 2(1 - Gpi/GP) > (im/ﬂ."ﬁr - 1), where GP Too = Brgr (For example,

if GPi/CP = 1/2 the heat transfer rate is increased if Tr o/ TW < 2

That is to g8y, it dcems quite possible that the incyease in heat flux
driving fetce arising froem injection of the ‘wrong' gag Can more ihon
counterbalonce the effécts of convection of enefpy away from the surface
by blowing. Cee COVY' g0 e

For this reason it seems advisable to choose a light gas for heat
tronsfer reduction. Within limits the molar heats of gases do not vary
a great deal and a large OP‘ is pcrhaps more casily obtained by selecting

4

a gas of small molecular weight, rather than one of complex structure with
many modes of commmicable encrgy storage,

So far we have overlooked the possibility that I may be favourably
or unfavourably affected by injection., So long as the amounts of
injection are small, so that c¢ remains small throughout the layer it
is possible that g is not much affccted, although it is difficult to
generalise here. Suffice it to say that light goses have lower viscosities
than the heavier ones in the main,

A further point of some importonce when attempting an appraisal of
boundary loyer behaviour via the predictions of the present ultra-
simplified analysis is thut here the thickness § remains constant, In
a boundary layer 8§ will increase with increasing @ and will result in
reductions of = q'w and 7, over and above those considered to date.



We note from egs, 39 and 40 that defining Stanton number and frietion
coefficient in the usual way, namcly

= 2 Toe
e =t e S (16)
s U(hro - hw) ng

results in the relation

2t =

i
s Cp (47)

One may expcet a simplc Reynolds analogy expression of this tyvme to
hpld also in boundary loyer flows for which Le =Pr =1, Since

P = lﬁU/TW it follows from these results that
" .
b m e (48)
p& U.S‘b

and this group of variablcs may be expected to correlate boundary layer
flows too, It should be noted that St is the Stenton number vdth
injection, (see, for exarple, Lees (1958)).

Eq., 35 shows that eq. 47 can be generalised to include the effects
of Le and Pr different from unity, With

st = e - (49)

s U(hr - hw)

and Cp as in eq. 46, the approximate form of eq. 35 yiclds

*‘:-—‘1'-“ f r i
8t o g I..1 + b (& Se(le - 1) +Px‘-'i)]. - W (50)

The factor rultiplying C,. in eq, 50 is the modified Reynolds analogy
factor according to Coue:g‘be flow theory. Eg. 50 can be rewritten as

2 St Pr [ 13, - | a4 - 1™ + 1 -Pz-""] } =0, (51)
psU St "

and it seems that the group iy pgU 5t will still be useful in the more
 complicated cases where Le #£ Pr £ 1,
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Returning to eqs, 49 and 50 we find that

: h =-h o ' '
....E;";._ = I E (14 B (4 SelTe - 1)+ Pr = 1))
e hI‘O_h‘WO fo

where suffix o indicates zero injection value, A reasonable estimate
for cf./cfo is 1 = b /2 and using the results in eqs. 36 and 37 we find

after some monipulation that

Pra'h_ +(Pr U3/6)(1 - Pr ~{Le =~ 1) &' Sc)
1 - b" miﬁm =

Lvo Bo = Ao

!

(2 = Pr +4' So(le - 1)) . (52)

e .

1
(%] fod

This result recduces to the equivalent of eq, 45 wiien e =Pr =1,
The effects of Le and Pr different from unity are difficult to assess
in general, ccrtainly the last term in eq. 52 is favourcbly affected by
the situation Le > 1, Pr < 1 provided &’ > 0, (Note Sc(Le - 1)
= Pr - Sc and Pr >Sc in this case). This does not follow in the case
of the second term however and the situation depends on the relative
moagnitudes of all the parameters present.
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L4, BSublimation

If the conditions arc right, it mey happen that the lower wall
reaches a temperature at which sublimation of the wall material takes
place, resulting in the "injection" of a foreign gas into the shear
layer, In this cwvent the quantity @ is no longer a free, or independent,
variable but must be related in some way to the heat transfor rate and
the latent heat of the subliming material,

To illustrate this effect in assimple a fashion as possible we will
assune that Pr and Le for the resulting gas mixture ere unity and use
eqs. 39 and 40. To achieve a stcady state it is necessary to allow the
lower wall material to move upwards at a rate just sufficient Yo keep
the publiming interface at the position y = 0., Allowing for this
"oonvection" of solid material upverds towards y = 0, the energy balance
for the solid is

2 aT ao
n (_',‘..b e ?\.b ——— (53)
= &
(Specific heat C, end conductivity A arc assuned constant). Then
d[.f.

hE " h 0, (T = T,) (54)
where T, is the solid's temperature at a position so far inside the wall
that di“yc“ly is sensibly zero., It follows at once that

T-T = (TW - b)exp{ﬂn Cy, v/ lb) 3 (55)

and the heat transfer rate into the solid Jjust below the subliming
interface is

y * 0 -

This rate must be matched to the value of —dw at y = O+, taking

account of the fact that the material absorbs an amount of latent heat L
whilst undergoing the change of phase from solid te gas., In other words

- = #(L+c (2 -17)) = AL, (57)
58Y .

With the constant mean viscosity assumption - :‘;W can be written
(sce eq. 45) as

“ 8y = (ng =B /8 = [ Bt s (- no/2]e  (59)



-

It follows at once from eq, 57 that

m = (h

o -h JE/SNE +n &+ (h_-h )/2)7 . (59)

This result exerplifics the self-regulating character of the sublimation
process, The mass lost through sublimation is scen to decrcaose as T

and A’ increase, other things being equal. From a structural viewpoint
then, it is best to choose an ablating material vhose latent heat of
sublimation is high and which degrades into a gas with as high a specific
heat as possible, This would suggest that the reductions in - EJW

srising from eblation may be come smell, since th itself is smell,
Putting 59 into 58 gives

. o —p N\ ! ; A
-4, = (b, =h JEA)L (L +h o +(h,  ~h )/2) (60)
So long as A/ > 0 this value is always less than the no-sblation value,

but it will not be much below it if Ii becomes very large,

Hovever, - c';w is not of primory importance here, Rather are we

concermed with the heat flux into the wall, wiiich egs. 56 and 57 show
to be given by

_qw -ml = --c']_S (61)

(62)

Clearly = qs reduccs substantially in magnitude as L rises,
(As L, © 4= (’13 + 0 ; note that althoughh * Oas L = o the

product il remains finite and non-zcro).

It scems reasonable to suggest that a high T and a high Gpi will

result in the most effective and lcast wasteful type of surface sublimation,
¢

The simple rcsults Just presented are not the whole story, however,
because it has been tacitly assuncd throughout that T-;;r is kmown., In

order to find - QS for example it is, of course, necessory to know TW

and this must be a function of the pressure in the shear layer,



- 16 -

In other words, the final solution of the ablation problem rmst depend
on a knowledge of the variation of the vopour vressure and latent heat
of the wall material with terporature, as we shall sce,

#

The kinctic theory of the vapour pressure asswwes, (i) that the
process of condensation requires no activation encrgy (so that every
molecule of the condensing substance which strikes the wall returns to
the s0lid phase) and, (ii) that the molecules in the solid phase behave
as a number of multiple oscillators, n_ per mit ares of surface,

vibrating with a frequency V. The numbcr of molecules vapourising
(or subliming) from the solid phase is then given by the product of n sV
and the probability that they posses sufficient cnergy, 7\-5. If 2a
is the numbcer of quadratic momentum or displacement co~ordinates which
contribute to this energy, this latter probability is given by Berthoud's
relation
-1
(/) o 7 - 1)

(see Moelwyn - Hughes, loo.oi‘t) . Then if we write n for the number of
molecules of the subliming mabtericl which exist in unit volume of the
vapour phase ot the interface, 0 for their mean wvelocity and mg for their

moss, it follows that the rate of sublimation, th, is given by
1 s~1 m
(n s‘/1;1) 'J\S/ki

Q
I?I ] I'Tlr‘ n w e s L&) = W - T (63)
&% (5= g™ k&

The velocity € is given by
5

Q0 = (8 lcT/frmg)" 5 (6L)

or, sinece the vapour pressure P, is given by n k T, we can write

5
s

14
= P, (2@ m, 1 A ’ (65)

At equilibrium th = 0 and the cquilibriuwm vopouwr pressurc pch

follows dircetly from egs, 63 and 65, If neq is the corrvesponding
nunber density in the cquilibrium state, the expression for h can be
vritten simply as

Q 9]
B = I:lg Z(neq-n) = p‘}: ((‘.Oq-—- G) (66)

= e S SRS S A W N e PE— - -

* The treatment presented heie is a precis of the account given by
Moelwyn«Hughes (1957) of vapourisation from the licuid phese,
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where ceq and ¢ are the corresponding mass fractions. A relation like

eq. 66 has becen given by Seala (1958), It should be noted that o
is itself a function of ¢ at given p and T, but if ¢ << 1 we may reasonably
estimate 0 as pm e/RT where m is the mass of on external gas molecule,

Specialising the result 66 to apply at the lower wall, we know that
oo b (when Sc = 1, sce eq. 42) and for present purposes we con write

/

b = ﬁJU/T = Ih/pa u Sto ) (67)
wo

(suffix o = no-injcction case), Then

/MO Moy (68)
1+ (p m /&l )(Q /hogUSt )

One can now equate 68 and 59, yielding = rclation for T in terms
of p, Ly (which is a function of p and Tvx) and the latent heats cio,
(Clearly 13 must be relatcd to the latent heat I at the temperature Tw) .

The resulting equation is obviously not one for which an analytical
solution can be obtained, but by stripping it down to the essentials some
estimate of the trend of Tw with p can be made,

Assuming that A = L m very roughly, and that L >> cb(Tw - Tb)+
h AN + (hro - hwo)/z (which is consistent with the analysis taking
b << 1) we can write via egs, 68 and 59 ete,

Im /xT s =3 £
ie N (n, = C 2T, /2 (4 + Bp L") (69)

where A and B arc constants which depend on the materials involved,
Then any rise in p can be counterbalonced by a relatively small rise in
T, in general (via the exponential term), The nurber of oseillators in

each molecule which tcke part in the vapourisation processes is usually
greater than 3, the value for monatomic molecules (i.e. s > 3),

In proctice eq, 69 irplies that T will increase (at a stagnation
point, say) with increasing Mach nunbeér and decreasing altitude, By
how much must depend on the particular material wvhich is involved.

Finally, it must be rcmenmbered that a wide group of moterials pass through
the liquid phase before vapourising, and that a liquid layer will exist
between gos and solid, It goes without saying that the presence of the
liquid £ilm will influence the final heat tronsfer rate to the interior
of the wall, the rate of mass loss, etec, However a number of the broad
conclusions reached cbove will apply ‘o this type of vapourisation process too,
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