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ADDENDA AND CORRIGENDA  

E age 3. 
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eq. 	-X dy 	should read 

X 

- 	.-Eci.  

- dh 	 dc Eq. 28 should read -4 = 
j 

P 

The phrase following eq. 45 should 

+(Le - 1)TA — 
dy dy  

1 

read "where h
w 

= C 
o 

It is important to note that 4 is the rate at which energy is 
transported relative to a surface moving with the mass average or 
flow velocity. Thus -ciw  is not the rate at which energy is transferred 
into the wall at y 0. 	The latter quantity, written as -14s  say, is 
given by :- 

dT
b -nih 

's 	

( d 

	
- h. . 

y 

dT\ 
(for any Lewis No. value) it follows that X T

jw 

d 	

is always equal to 
dTh  

(Xb --=' 	in the case of gas injection, i.e. the conduction in gas 
y 

and solid talance at the interface. 

The second form of 	
) 

-4s  follows from the energy balan9e at the interface 
and is the energy flux within the body. Since -4w  = f xdT + in hw-rh hi  

\ dy w 
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With these definitions eq. 45 is modified so as to read :- 

11 8/ u = (h 	- h ) - h 	b' (h 	+ h )b'/2 	(45a) 
ro wo wo 	ro w 

where h 	= C T" 
wo 	p w 

The second sentence in the paragraph following eq. 45 should be 
modified to read: "Since b' can be written as en 8 ra approximately 
the last term in eq. 45a gives a reduction in -48  equal to (hro  + hw)rh /2 " 

Further on in this same paragraph the words " 	 lead to an 
increase  in heat transfer rate if 	" should be modified to read 
	 lead to an increase in -Ciw  if 	 

The last sentence in the same paragraph should be deleted and 
replaced by : "Even though 	may be increased by injection of the 
'wrong' gas, it can readily be shown that injection always decreases 
-4

s
. The amount of this decrease becomes smaller as C . decreases, 

however". 	
pi 

 

It is worth pointing out that Stanton number is in fact more con-
veniently defined in terms of -4w  than in terms of -c) . Also that 
recovery enthalpy refers to the zero of -11w  and not go the zero of -iis. 

Page 14. The paragraph following eq.56 should be deleted, as should 
eq. 57, and the following substituted. 

"The energy transfer rates at the interface must now be matched, 
taking account of the fact that the solid material absorbs an amount of 
latent heat L per unit mass during sublimation, and also accounting for 
convection of energy in both the solid and the gas. Thus: 

- 	h 
w 

or, using eqs. 45a and 56, 

= 	iii (L 

7% 

CbTb) 

dT 
-  Cb 

'1'
w 

+ en L , 
y=0- 

m L', (517) 

d y 

= 

say." 



(and hence ) rises. As L 	a , Xb  dT/dyl y=0- 
H

although fn -  0 as L, - 0, the product AIL remains finite". 

0; note that 

3 

In the line following eq. 57, change if -4w" to read "-Els" and 

"eq. (45)" to read "eq.(45a)". Then eq. 58 should read :- 

" 	(11 	h 	7 /6 - m 	h 	+ (h 	+ h )/2 j 	(58)" ro wo 	 wo 	ro wo 

'age 15. Eq. 59 should now read :- 

" m 	= (h 	h 	) (77/ 5) (L' + h 	+ (h 	+ h 	)12 )
--1 
	(59)" ro wo 	 wo ro wo 

In paragraph following eq. 59, 
11 -.C1 

• 	11 
• 

s 
 

11 

-41,V 
" should be altered to read 

Eq. 60 should read :- 

11 
	

(hro  hwe)(7 /5)L' 	h wo  + 
ro 

 + h 
wo

1/2) 	(60)" 

The section starting 3 lines above eq. 61 and ending 3 lines below 
eq. 62 should be deleted and the following substituted :- 

"However, -4 is not of primary importance here. Father are we 
concerned witE. the heat flux into the wall, which eq. 56 and 57 show to 
be given by 

dT I = m C (11  - 1' ) = -(!i 	r11L + ii1 Cl' 	(51) 
y.0- b dy I 	 b w 	b s 	 b w 

It follows that : 

X 
b 	dy I y=0- 	L' + A' h 	(h +h )/2 

dT I 
	(hro - h wo  )(17/8)C13(Tw,  - 

wo ro wo 
	 (62) 

Clearly Ab  dT/dy y.0 _ reduces substantially in magnitude as L 

Page 17.  In line 4, replace pme/RT by prne /kT. 

In the paragraph beginning just before eq.69 the condition 
should be "L >> hw 	+(hro  +h  wo)/2  CbTb* " 
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LIST OF S1150LS 

bl  b' 	Defined in oils. 30 and 33 

c 	 Forcipa gas concentration (mass fraction) 

Cb 
	 Specific heat of wall material 

C, 	 Friction coefficient 

C 	 Specific heat of external gas 

C. 	Specific heat of injected gas 
PI 

D Diffuzion coefficient 

h Enthalpy per unit mass 

k 	 Boltsm-nnis Constant 

L Latent heat of sublimation 

Le 	 Lewis Number 

rfi 	 Mass injection rate per unit surface area 

Pressure 

Pr 	 Prandtl number 

Energy flux 

Sc 	 Schmidt number 

T 	 Temperature 

u Velocity parallel to walls 

✓ Velocity perpendiculLtr to walls 

Co-ordi nate perpendicular to walls 

Distance between walls 

Ls, /A' 	 Defined in eqs. 12 and 33 

p 	 Density 

u Viscosity 

X 

 

Conductivity 

✓ Shear stress 



List of Symbols Continued 
aun- Amm 

Suffixes 

Lover wall material value 

e External gas 

Injected gas 

o Zero-injection rate value 

✓ lac:cowry value 

rr 	 Evalun  ted at y = 0 

5 	 Evaluated at y = 5 



i. Introduction 

There is a great deal of current interest -2:a the --)rocesses of 
ablation into kipersonic boundary layers cu-id. several rigorous 
theoretical treat-runts have appeared in the published literature. 
Notable amongst those 1:0 may mention the work of Lees (1958) and Scral. 
The latter has given a stumary of a great volume of hisvork in this 
field (Scala, 1960). 

The processes involved are quite complex and. the number of variables 
which can affect them is large. The follaviL.L; represents an ultra-
simplified treatment of gas injection and gaseous ablation into a simple 
shear layer (Couette flow) in an attempt to eIaphasise some of the concepts 
and parameters involved. 

First the injection of a perfect gas into another perfect gas is 
discussed and. later on these results are used to establish ablation, and 
the corresponding heat transfer rates. Homogeneous uhernical reactions are 
not considered. The variations of sublimation te::rferature with pressure 
are examined briefly, via the kinetic theory. An atte:apt is made to 
confine the treatment to the barest essentials, and no attempt road.e to 
give a copious list of references. As far as possible the .work concerns 
the general situation. 

2. Gas In4,ection At. the Lq.,-ey Wall 

The assumption is made that both gases, naaely that of the external 
flow and the injected_ gas, are ideal. Then the res?ective specific 
enthalpies, he  and hi  can be written as 

h 	= 	Cp  T 	: 	h = 	T 
	

( 1 ) 

where the specific heats at constant pressure C and C.L33.$ are both 
constants. T is the absolute temporature, Oixice we exclude the possibility 
of chemical reactions bets en the two species there is no need to refer 
energies to a cozamon zero level. If the injected gas is present at 
concentration (mass fraction) a, the specific enthalpy of the mixture, h, 
is given by 

h = (1 - Ohe  c hi  ro [Cp  (C,pi 	 (2) 

For plane parallel Couette flow with no )C-;',1i;.0 pressure gradient, 
the usual conservation equations become 



dh 	:In 	121 pv  — • V 
7 

- 
4 	ctr 

+ Ely 3 ay 

(adyv)2  12(cd:))  

0 

GI 
4  
.- 

4Y  

r 	u and p are the Lixture d-msity, viscosity and theruodynamic pressure 
respectively, and u ana v are the gas velocities parallel and perpendicular 
to the plates. A in tllo y-component of the energy flux vector which, 
in the presence of liZcerdiffusion of the external and injected gases, 
must be written 

2 
 

+ PO Vi  hi  + p(1c)ve  he  . 
	

(7) 

vi  and ve aro the appropriate diffusion velocities and % is the coefficient 
of thermal conductivity. The diffusion velocities in the simple binary 
mixture under consideration are simply related to the concentration 
gradients ; 

c v. = a 	D dc = 	(1 - c ) v e 	 ( ) 

-here D is the binary diffusion coefficient for the particular mixture. 

In addition to the overall mass conservation eeuation (eq. 3), 
continuity equations for each separate species can be written don. 
These are 

d do 
Y 

[ P a v . 	
d 

i 	0 , .. A D --, 	 (9) 

d rall -) wy- 	L  p(1 .- 	A- C)V p D --.- ▪ y- 	= 0 * 	 (10) 
.., 

for the injected and external gases respectively, and use has been made 
of eqs. (8) to eliminate the diffusion velocities. 

The energy flux is better expressed in toms of concentration 
gradients, namely, (using es.(7), (8) and (1)), 



4 = —x •A'  do 
dY $ 

where we have written 

C 
PI  
. - C

p 
 = A 	 (12) 

The species continuity eou-tions (9 and 10) can be integrated at once 
to give 

dc v 	P D 	= th 	 (13) dy 

do p(1 	o)v + P I) = 0 • 

Hero we have made use of the boundary condition at the lower wall to 
evaluate the integration constants. The left hand side of eq.13 is equal 
to pc(v + v.)i  and is therefore equal to the mass flow rate of injected 
gas per unit area, which is -,sitter_ an ;In at t;_e lower wall. Similarly 
the left hand side of eq. 14 is p(1 	c)(v + vo)2  and since no external 

gas is allowed to enter the lower wall the appropriate value for this 
quantity at y = 0 is zero. It immediately folloJs that 

	

PV = 	, 	 (15) 

(a result which could also be deduced directly from eq. 3.)2  and the 
equation satisfied by c now becomes 

P D 	= 	(1 —c) . 	 (16) 

The mor.lentura equation parallel to the wall can also be integrated directly 
and using the condition p(du/dy) = T when y = 0 (r = shear stress 

at tie wall), wu have 

u 
du 7---y  = 	U + T 

rr (17)  

Using eq. 17, all d/dy derivatives can now be writton in terms of 
c]/du derivatives, (this is the Couette flow version of Grocco's laminar 
boundary layer txunsformation). In particular this transformation 
applied to eq.16 yields 

°1c - Sc 1 - c) 
du - trh u T 

lr 

w7 	 rT 

(18)  



for the relation between c and u. The quantity Sc is the Schmidt number, 

Sc = 	/P D s 	 (19) 

and in what follows yore shall assume it to be a constant throughout the 
gas layer. It is not likely to vary too much for most gas mixtures of 
interest and, in any cases  we can assume it to have sono suitable mean 
value for the purposes of the present, heuristic, analysis. This being 
sos  eq. 18 integrates to give 

So 
1 - c = (1 - c)(1 	Aultip,} 	 (20) 

whom c is the foreign gas concentration at the lower wall. Note that 

if A .., 0, c = qVT everywhere; if A > 0 (injection) then c < qW everywhere 
and vice versa if el < 0 (suction). Some simplification will result 
later if we take co , the foreign gas concentration at the upper walls  

to approach zero. This is consistent with the A. > 0 requirement for 
injection and also corresponds most closely with the practical, boundary 
lgyers  problem. The assumption 08  4 0 precludes consideration of the 

suction case however. It can be seen from eq.8 that as c8 4 0 the product 
(o vi)8  must remain finite and non-zero (in other words the diffusion 

velocity vi  at y = 3 increases without limit). The mean vertical velocity 

of the injected gas is v vi  and its mass flaa rate per unit area is 

therefore pc(v + vi) s  as remarked previously. The limiting case ce, 40 

then implies that the injected gas is carried away through the upeer wall 
purely by diffusion (since pv = m = const, and pcv 4  0 as c 4 0). 

Eq 20 shows that qv  is directly related to el once cc)  is fixed, because, 

cw 	(1 ••• 	 il/T  ) 
$.0SC 	 (21) 

77 

Furthermore, even though v,e lot 08 -. 0, Ow  0 as long as A > 0. The 

injected gas therefore enters into the flaw region by a mixture of diffusion 
and convection. 

The transport of foreign gas across the shear layer by a mixture of 
convection and diffusion is precisely what hal?pens in the practical case 
of a boundary layer flow, and it is for this reason that vte study it here. 
As is already apparent the inclusion of diffusion introduces the Schmidt 
number into the analysis, a number which must be imeortant also in boundary 
layer flows since it determines the relative thic.:mess of the momentum and 
concentration layers (i.e. Se = v /I)). 



, 
n 	(h + v2/2) 	[ dY cp  

	

+ v2 / 2 ) 3 	 (3,Y — 1) 	+ (Le — 	-d—c  

dt-1)2  
/I ay 	• (24) 

We must now-  turn to a consideration of the energy equation (eq. 6). 
With eq. 11 for the energy flux, this can be written 

fh. 	= v1 
ay + 
-2  -a-- ( dY 
	dY 	3 ay 

+ p D T 	+ 	0'7)2  + — 
au 

 

)

2 	

(22) 

where pv has been 1Tritten as rill. With the result given in eq. 11 the 
term p(du/dy)2  can be written as r (clu/dy) + W2)d.u2/dy, so that the 
only hindrance to a direct int.egraVion of eq.22 is the appearance of the 
terms in v. Eliminating v dp/dy from eq. 22 with the aid of eq. 5 we 
have 

do (auy fy  (1, 4. v2. 	+ 	Aiva /2)  +  D /2 	A  dY + 3 cV 

and writing 

CP 	= C + (C p3.  . - or)c 
	 (23) 

eq. 2 shoi.7s that 

aT 1 dh 
dY (31Y 	 dy • 

p 	p 

The energy, equation can now be written as 

The quantities Pr and Le are the Prandtl and Le-.-ris nucabers respeotively, 
defined here as 

Pr p D Le = p  
X ' 

(25) 

Eq. 21+  only contains terms in v2/2  end for small a counts of injection 
these may plausibly be neglected in relation to the enthalpy terms. 
With this approidmation eq. 24. 'becomes 

ah 	d 	X dh !I du2  m 	 + (Le - 1)TL 4-; 	+ 	du r 	
$ (26) 

dY 	 7 ay + 2 dy 1  

having made use of eq. 17 to eliminate pdu/dy. 



(Le - 1)TA dc --- dU 	a + A [1 -(l 	cv,r)(1 + rtuir i) jc  

The term involving T in this equation can 
i.e. 

(Le - 1)(L03o WT)(1 - 

be eliminn. ted via eqs. 1 and 20, 

OTT) ( 1 + Igh..1/7) 
Sc-1 

Eq. 26 can now be integrated to give 

Itua 
[-ct- 	+ (Le — 1)Tts trc- I 	UT + 	+ w 2 	117 	(27) ( h — hw) 	A- 

ID  

Suffix w refers to quantities evaluated at the lower wall, y = 0 and in 
obtaining eq. 27 we have made use of the fact that 

This can be 
i

- 1) TA t . 

25.a 
.". 17 

= 	+ (Le 
Cp 

seen from eqs. 11, 1 2  23 and 

(28) 

is the energy 

transfer rate into the laLur wall. 

The Crocco-type tr:ms-formation is now apiaied to eq. 27 with the 
result that 

L

dh 
du (Le - 1) TA --Lc 	Pr (h h + Pr( UT + 1'1112/2  + a ) = du 

.....(29) 

and if we now write 

T 	b 
	

(30) 

It is assumed from here on that Le and Pr am constant across 
the layer. Since Sc = Pr/Le this is consistent I.ith the 
previous assumption that Sc is also constant, In practice all 
of these dimensionless groups will vary to some extent with 
composition and we must regard the values used here as 
appropriate mean values . 



for brevity, eq. 29, can be written. 

1)Sc-1 ("Le - 1) (1 .,c )bSc(ub 
Mit • ••=• Ain .M.L 	

-117 
au 

 
ru?I+ 1/ ' b7 + 	-(1 - c i)(ub + 1)s 1 

h 

- Pr (u + 1/b)-1 	(u + 1/b)72 1/2b2  + 	/I"; h 

Eq. 31 can be integrated to yield. 

f(u) h - f( o) htr  = Pr I ( Vi; + hVi + E,(u)) f(u) (u + 1/b) -1  du ( 32) 

o 

where 

(31) 

f(u) = bFr  (ub + 1) 
	

+ A 
	

(-( 1 - c ) ub + 1)Sc/(ta, 	1) `'o 

g(u) = (1/2b2 ) [ (ub + 1) 2  - 1 	• 

	
( 321 (32b 

(Eq. 21 has ben used to elimin,, to 1-c in terms of co, U and b in eq. 32a, 
TT 

and f( o) in eq. 32 is f(u) evaluated when u = 0). 



3. Recover. : Enthalay:and Hcat Transfer Rate 

Some general results can now be derived fro. co, 32. First -6a) notu 
that vthen u = U, h = h8 and if, in addition, ct = 0 then hw  = hr, the 

recovery enthalpy. It follows therefore that 

hr = [ f(U)h8  4 Pri g(u) f(u) (u + 	dui 

o 

f(o) - Pr 	f(u)(u + 1/b)-1  du] 

and in tenor, of this quantity, 

p 
= (1/Er) 

L 
f( 0)/ 	f( 11) ( U 	1/b).4  

0  

These tuo quantities can be revritt,en in a Dore convenient form by 
defining dini.msionless functions f and g' 	are related to f and 
g in cgs. 32a and 32b, Thus we trite 

fi(ul ) = (u' b' + 1 )."Pr i ± 6'1 1 41 .-c5)(ul b" + 1)S°/(b' 4. )Sc 

= f(u)/b2rC Lo.-1 	(33a) 

(ui) = (ul  b' + 2 - 1 = 2b2 g(u) / 2 	 33b) 

there u  = LIATI 	= bit, 	= 6/C . Thence it follows that 

hr f'(1)1$ + (Pr e /2) 	( f' )131-1(1 + 111131)-1 dal ! 

o 1 
I L. 
	

f ' ( o) - Pr -ID'0 f.'„ 	+ u'bi  ri  du' i L  (31k) 

(1/pr) [ (14  (0)/ fl  f (1 + 11'1)1  yi au) - 	(hr  h)(1-T/u) (35) 

wj -1 (hr  -1k)brw  



These expressions for h and qw  are very unwieldy and little can be 
gained from an examination 

hr 
them as they Aand. Consequently we must 

resort to approximation in order to gain sore insight into the physical 
picture and it seems natural to attempt solutions for b' « 1. Referring 
to the definition of b' , this assumption is ecuivalent to setting 

« 1. Physically this group of variables has a simple interpretation 
1,1/ 

since AU is proportional to the flux of x-vise momentum induced in a 
direction away from the wall by the act of blowing into the shear layer, 
whilst T indicates the magnitude of the saris flux taking place towards 

y = 0 as a result of the microscopic, molecular motions. Setting 
b' e<1 is equivalent to assuming that the amount of blowing is such as to 
cause only small decreases of skin friction. 

It is worth noting that 11 is almost always multiplied by u in the 
integrals where is creates difficulties, so that a reasonable approximation 
should be found for quite large values of b'; at least the physics of the 
situation should be preserved in ouch circupstances. 

After a certain amount of algebra it can be shown that 

hr 	
hro 	(Le 	1)Sc Li  hi s + (Pr U2/6)(2(Le 	1)Sc 	1 — Pr)] 

	 (36) 

eiw  UPrir 	= (hro  - hw) [1 -(b+  /2) 	- 1) Se L' 	:Pr)! 	(37) 

(Le - 1)Sc L'h + (Pr 112/6) (1 -;Dr -(Le-1)Sc L'11  

where hro  is the recovery enthalpy with zero mass injection rate, 

hro 	= h6  + Pr U2/2. 
	

( Y1) 

When both Pr and Le (and hence Sc also) are coual to unity the 
results 37 and 38 simplify to 

hr 	
= h ro 	 ( 39) 

-qrr 112r = (h 	h ) T 

	

ro 	w w • 

In this case then; injection of a foreign gas through the lower wall has 
no influence on the recovery enthalpy (since 06  = 0) and the form of 
the "Reynolds analogy" expression in eq. 40 is exactly like the no-
injection one. However, it is clear from eq. 2 that at a given wall 
temperature, h will becoJoe greater or less than -Lie no-injection value 
of 0p TT/  depenffingonl.rhetherC. PI 

>C or <C o  (i.e. whether 	> 0 or <0). 



- 1 0 - 

Eq. 21 shows thLt an approximation to O,which is equivalent to those 

made in deriving eqs. 36 and 37 is 

mt 	Sc. b / 
	

( a) 

Then it follows that 

hTI 	c C
P 
 T (1 + 411  . So b' ), 	 (43) 

or, in the case of Le = Pr = So = 1, the fractional increment in the 
wall enthalpy as a result of foreign gas injection is Al  . 

A further modification to the heat trmsfor rate arises via the 
reductions in T

17 
brought about by gas injection. Assuming that i in 

eq. 17 can be replaced by a properly weighted eonstant mean value, 5 
say, it follows that 

T = 
ra 

exp(r.i8/ ) 

 

(4-)*  

 

to a reasonable degree of approximation. Aside from any variations 
which may arise in the value of g duo to the j?resence of the foreign 
gas, the term TAJA is the zero injection skin friction. Eq. 44 shows 
that injection reduces shin friction by an amount equal to the mean rate 
of upwards trmsport of x-wise mancmtum which results from blowing, a 
plausible-looking first estimate. 

Eq. 44 shows that significant skin friction reductions occur when 

r!1 is comparable with 1778 . Simple kinetic theory gives T 	pal/3, 

m mean molecular speed ( = a, speed of sound) end 6 = mean free 

path, whence condition is ^}/GU where ii = U/a = Mach number 

at outer edge of shear layer. This illustrates how very small el/rU 

values are effective in reducing Tw, since Z/8 << 9 at reasonable 

altitudes (pressures). It also suggests that bluing is more effective 

at higher Mach numbers. The present theory is only valid if 0/ u <<1, 

although this condition mod not be too strictly observed, see the remarks 
-proceeding eq. 36. 



Still consider-111g the simple case where Le and 2r are unity, we 
can now write 

(h 	h ) 	
1 
	L' 	- 	by 

ro 	wo 	vio 	 r' 2 

	

( ifYY 	So' 

(45) 

`the re h 	C
p 
 T. . 

wo  

The first term on the right-hand side corresponds to zero-injection 
heat transfer, the remaining terms express the effect of injection. 
Since 14 can be written as i 8/ u approximately, the last term in eq. 45 
gives a reduction in - 5  equIll  to (hro  - hd6/2. This term is wholly 

analogous to the term erU/2 in eq. h4, and represents the mean upwards 
transport of enthalpy as a result of injection. The second term in eq. 45 
represents a potentially significant source of heat transfer rate reduction 
by C  injection. The reduction in - C from this source is (C 	)T 

P1  P w 
a quantity which expresses the loss of enthalpy difference across the layer 
which results from the injection of a gas with a large heat capacity, C . 

Pi 
It is interesting to observe that this quantity my be negative and it 
follows from eq. 45 that the effect of injection as summarised in the 
right-hand side of this equation may lead to a increase in 	 r 
rate if 2(1 - C

P1  
./C ) > (Tr 

'V7 
- 1), where Cp r =1).ro • (For example, 

if 	
o  

CPi /CP 
 = 1/2 the heat transfer rate is increased if Tro/TW < 2). 

That is to say, it seems quite possible that the incvease in heat flux 
driving 'ei-ce arising from injection of the twrongt gas can more than 
counterbalance the effects of convection of energy away from the surface 
by blowing. !la 	C.I'1rr 	ads. 

For this reason it seems advisable to choose a light gas for heat 
transfer reduction. Within limits the molar heats of gases do not vary 
a great deal and a large C is perhaps more easily obtained by selecting 

Pi 
a gas of small molecular weight, rather than one of corm_ lax structure with 
many modes of communicable energy storage. 

So far we haw overlooked the possibility that 77 may be favourably 
or unfavourably affected by injection. So long as the amounts of 
injection are small, so that c remains small throughout the layer it 
is .possible that p is not much affected, although it is difficult to 
generalise here. Suffice it to say that light gases have lower viscosities 
than the heavier ones in the main. 

A further point of son importance when attempting an appraisal of 
boundary layer behaviour via the predictions of the present ultra-
simplified analysis is that here the thickness 8 remains constant. In 
a boundary layer 3 will increase with increasing fa and will result in 
reductions of - (tivr  and Tvr over and above those considered to date. 



- 12 - 

We note from eqs. 39 and 21_0 that defining Stanton number and friction 
coefficient in the usual nay, namely 

St = 
- A 2 rw  

= 
p8 U(hro  - hu) p U 2  

results in the relation 

St = 	Cf 	 (47) 

One may expect a simple Reynolds analog expression of this type to 
hpld also in bcundar.- 	flows for which Le = Pr = 1. Since 

= laT/7-  it follows from these results that 
Ci 

(z8) 
Pis  U .St 

and this group of variables nay be expected to correlate boundary layer 
flows too. It should be noted that St is the Stanton nucler with 
injection, see, for oxal (plc , Lees (1958) ) . 	

••=0•Al. 

Eel, 35 shows that eq. 1F7 can Le generalised to include the effects 
of Le and Pr different 

and Cf as in eq. 

1 St = 2 it 

fro_: unity. 	With 

st 

yields 

. 	Cf. 

(49)  

(50)  

	

p 8 	U(111, 	) 

46, the approximate form of ec. 35 

	

1 + b/2 	Sc(ho - 1) + Pr - 1)1 

The factor multiplying C in eq. 50 is the modified Reynolds .,2,nalogy 
factor according to CouAte flow theory. Eq. 50 can be rewritten as 

2 St Pr [ 1 - 1 2 . 	 ) 
2-71. --- 	[ ,Y (1 - Lo-1) + 1 - Pr-1  i -I = Cf ( 1 ) 

P tr St 

and it seems that the group rivi  pa ll St will still be useful in the more 

complicated cases there Le Pr 1. 
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Returnin to eqs 49 and 50 we find that 

h h 	

2 

C
f r 

C
fo 

( 1 + --b-( Al Sc(Le -1)+ Pr - 1)) • (Iwo 	h ro h wo •  

where suffix o indicates zero injection value. A reasonable estimate 
for C.../Cfo is 1 - /2 and using the results in eqs. 36 and 37 we find 

r  
after some 1.1.1nip-ulation that 

Pr 	hti~ 4-(Pr U2/6)(1 - it -.(Le - 1) Al Sc) 
1 - b' 

h - h ro 	wo 

(2 - Pr + 	Sc(Le - 1)) . 	 (52) 

This result rednoes to the equivali-nt of eq. 24.5 when Le = Pr = 1 . 
The effects of Le and Pr different from unity are difficult to assess 
in general, certainly the last term in eq. 52 is favourably affected by 
the situation Le > 1, Pr < 1 provided 	> 0 . (Note Sc(Le - 1) 
= Pr - So and Pr > So in this case). This does not follow in the case 
of the second term however and the situation depends on the relative 
magnitudes of all the par-zacters present. 
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4. Sublimation 

If the conditions arc right, it nay harpen that the lower wall 
reaches a temerature at which sublimation of the wall material takes 
place, resulting in the "injection" of a foreign gas into the shear 
layer. In this event the quantity r is no longer a free, or independent, 
variable but must be related in some way to the heat transfer rate and 
the latent heat of the subliming material. 

To illustrate this effect in as simple a fashion as possible we will 
assume that Pr and Le for the resulting gas mixture are unity and use 
eqs. 39 and 40. To achieve a steady state it is necessary to allow the 
lower wall material to move upwards at a rate just sufficient to keep 
the subliming interface at the position y = 0. Allowing for this 
"convection" of solid material up-,-L.r.ls towards y = 0, the energy balance 
for the solid is 

dT leT 
1i1 Cb 	

=
b 

(Specific heat Cb  and conductivity 1.b  are assumed constant). Then 

t'L; = 	Cb (T Tb) 

where T1, is the solid's te7,perature at a position so far inside the wall 
that dT7dy is sensibly zero. It follows at once that 

T 	lb  = (Tyr - Tb)exp(Al Cb  y/ Xb) 

and the heat transfer rate LI-to the solid just below the subliming 
interface is 

b  ($) 
y 0 - 
	Cb (Tw 

Tb) 
	

(56) 

This rate must be matched to the value of -(l at y = 0+, taking 

account of the fact that the material absorbs en aDount of latent heat L 
whilst undergoing the change of phase from solid to gas. In other words 

elw  = 	(L Cb  (Tw  - Tb)) = ALL', 	 (57) 

say. 

With the constant mean viscosity assumption - 41,7  can be written 
(see eq. 45) as 

- 4ff  = (hTO  - hWO 	 ro )17/5 	n 	
w0 

h Al  (h 	h )/2] . 	(58) wo 

(53)  

(54)  

(55)  
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It follows at once from eq. 57 that 

h 	h )/'2)-1 . 	(59) - h 	)(1_ + h 
ro wo 	 wo 	ro 

This result exerplifies the self-regulating character of the sublimation 
process. The mass lost through sublimation is seen to decrease as t 
and A' increase, other things being equal. Prom a structural viewpoint 
then, it is best to choose an ablating material :hose latent heat of 
sublimation is high and which degrades into a gas with as high a specific 
heat as possible. This would suggest that the reductions in - 4,7  
arising from ablation may be come small, since el itself is small. 
Putting 59 into 58 gives 

, 
4irr  = (hro 	pro)  h 	g/8)L 	we (L + h A'+(hro hwe  )/12) (60) 

So long as LI > 0 this value is alwys loss than the no-ablation value, 
but it will not be much below it if L becomes very large. 

However, - kr  is not of primary importance here. Rather are we 
concerned with the heat flux into the wall, which ecis. 56 and 57 show 
to be given by 

i 7 	rn L = 	Cis 	 (6i) 

say. Thus 

— = (h ro 11wo) 	[ 1 

L + h A' + (h
r0 

h
vie 
)/2 

 

(62) 
L' 	+ h 	+ (hro  ham  )/2 we  

Clearly - 4s  reduces substantially in magnitude as L rises. 
(As L 	- 4s -. 0 ; note that although A 4  0 as L 	the 

product AL remains finite and non--zero). 

ItseemsreasonabletosuggestthatahighLard a high 	l PI wil 

result in the nest effective and least wasteful tyre of surface sublimation. 

The simple results just presented are not the whole story, however, 
because it has been tacitly assura;d throughout that Tu  is known. In 
order to find -

s for example it is, of course, necessary to know T IFT 

and this must be a function of the pressure in the shear layer. 



mass, it fellows that the rate of 

( xs/kT s- ) 	• 

(s 	1)! 

sublimation, At, 

/kT 

is given by 

❑ 
- g n 

(63) 
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In other words, the final solution of the ablation problem .nest depend 
on a knowledEe of the variation of the vapour Lressure and latent heat 
of the wall ;:aterial with tcDperaturo, as we shall see. 

The kinetic theory of the vapour pressure assullas (i) that the 
process of condensation requires no activation energy (so that every 
molecule of the condensing substance which strikes the wall returns to 
the solid phase) and, (ii) that the molecules in the solid phase behave 
as a number of multiple oscillators, no  per unit area of surface, 

vibrating -with a frequency V.  The number of molecules vapourisinr 
(or subliming) from the solid phase is then given by the product of no'v 

and the probability that they posses sufficient energy, Xs. If 2s 

is the number of quadratic morrentuyt or displacement co-ordinates which 
contribute to this energy, this latter probability is given -Ly Berthoud's 
relation 

4  -X 
(Ns/kT)s-1  e (s 	1)! 

( see lioe lwyn 	Ighe  s loc . t) . Then if we write n for the number of 
molecul  P  S of the subliming mater -al which exist in unit volume of the 
vapour phase at the interface, II for their moan velocity and m for their 

The velocity is given by 

1_ 
= 	krOr m ) 

or, since the vapour pressure pv  is given by n k T, r.e 0,7m write 

-ri_  = 	(2.71• m kT) 

1-jv 

At esullibritzl Pi = 0 an the equilibrium va0our ).,rossure pvcq 
follows directly from eqs. 63 and 65. If n q  is the corresponding 

number density in the equilibrium state, the exi:rossion for rh can be 
written simply as 

0 
= 	(n 	n) = p-- (0 	c) eq 	4 ocl 

-4r-••• 	 •usr..m.-c .cra 	..•mlimak -cm 	m. • 	414•—• 

* The treatment presented here is a nrecis of the account given by 
MbelwynHuEhes (1957) of vapourisation from the licluid phase. 

(64)  

(65)  

(66)  
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where ceq and c are the corresponding nass fractions. A relation like 

eq. 66 has been given by Scala (1958). It shou1d be noted that P 
is itself a function of e at given p and T, but if c« 1 we may reasonably 
estimate P as pm T where me  is the mass of an external gas molecule. 

Specialising the result 66 to apply at the lower wall, we know that 
w b (when Sc = 10  sue eq. 22) and for present pur?oses we can write 

bi 	61JA  = AN U Sto  , 
wo 

(suffix o = no-injection case). Then 

(P mete'  (Q 1/4) c 6 	 N' 	Ifcq____,  
1 + (p me/kTmr)(0m/24n8USto) 

One can now equate 68 and 59, yielding a relation for Tw in terms 
of p, cweil  (which is a function of p and Tm) and the latent heats etc. 
(Clearly As must be related to the latent heat Ti at the temperature T,). 

The resulting equation is obviously not one for which an analytical 
solution can be obtained, but by stripping it down to the essentials some 
estimate of the trend of T with p can be made. 

Assuming that As  = L mg  very roughly, and that L >> Cb(Tv  - Tb)+ 

h 	A' + (h - h )/2 (which is consistent Lith the ana4sis taking 
170 	 ro wo 
bi  « 1) we can write via eqs. 68 and 59 etc. 

-.Ety
kT 	 s - 3/, 

Yr A e 	= ( h o  - C TN7)T17 	
/- 0  + Bp  2 

17

-9 	 (69) r  

where A and B are constants which depend on the materials involved. 
Then ary rise in p can be counterbalanced by a relatively small rise in 
Tw  in general (via the exponential tem). The number of oscillators in 
each molecule which take part in the vapourisation processes is usually 
greater than 3, the value for monatomic moleanir's (i.e. s 3 3). 

In practice eq. 69 implies that T 	increase (at a stagnation 
point, say) with increasing Mach numbd

v, 
 r and decreasing altitude. By 

how much must depend on the particular material which is involved. 

Finally, it must be remembered that a wide group of materials pass through 
the liquid phase before vapourising, and that a liquid layer will exist 
between gas and solid. It goes without sayinc; that the presence of the 
liquid film will influence the final heat transfer rate to the interior 
of the wall, the rate of mass loss, etc. However a number of the broad 
conclusions reached above will apply to this typo of vapourisation process too. 

(67)  

(68)  
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