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SU: WIRY 

Thin aerofoil theory is used. to obtain, in integral fora the 
aerodynamic derivatives of an aerofoil oscillating in an infinite cascade. 
The theory allows for arbitrary stagger angle and phase difference between 
adjacent blades of the cascade. The excressions obtained reduce, for zero 
stagger and for in rase and antiphase oscillations, to known results, 
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1. Introduction 

The flexure-torsion flutter of aerofoils in unstaggerod cascade has 
been the subject of theoretical studies by Lilley (1) and Mendelson and 
Carroll (2). These authors use thin aerofoil theory to derive the lift and 
moment equations for an aerofoil moving in phase or in antiphase with its 
neighbour. Lilley includes structural stiffness terms and deteryinus the 
conditions 'for flutter to occur. Sisto (3) finds a general expression for 
the vorticity at any point on the oscillating aerofoil in the fore of an 
integral equation which is solved approximately for the case of zero stagger 
angle. The numerical results for the derivatives agree with the exact 
calculations of Mendelson and Carroll and the approximate values found by 
Lilley. 

Logendre (1+), using a conformal transformation methods  has considered 
the general case of flutter in a cascade with stagger. This is an extorsion 
of the work of Timman (5) for zero stagger. Expressions are given for 
the velocity potential and circulation from which tlIn pressure distributicm 
can be calculated. Eichelbrenner (6) gives details of calculations based 
on Legendrets method for one gap/chord ratio and one stagger angle. He 
simplifies Legendret s integral expressions by the extended use of theta :and 
zeta functions. 

The present paper uses thin aerofoil theory to extend the work of 
Mendelson and Carroll to include arbitrary stagger angle and. phase (11-rfurenee 
between adjacent blades. An integral equation relating local velocity and 
vorticity is solved and the aerodynamic derivatives are found in integral 
form. 

2. The Lift and Moment Equations 
.r=k 

Consider an infinite cascade of oseillatin4 aerofoils of unit g..eml- 

chord at zero incidences  set at a stagger angle t; and having a i-.;z,o s (1aL,. 1 ) • 
The uniform velocity far upstream of the cascade is U. We shall assume 
that the oscillations are of small amplitude so that velocity perturl_atiens 
arc small compared with the free stream velocity. 

The equations of motion for the perturbed motion reduce to 

au 
"al 

	

- 	21-2 

	

-- 	8x 

A ay 

Defining a perturbation velocity potential O such that 

u 	= ax  ; 	v - ^ y 
	 (3) 



02 0 

Dx2  

2  0 	1 	12 
ay0t 	u , -3xc3y  = 	

2 
P Dy 

!al (70 

(5) 

equations (1) c.nd (2) bocone respectively 

	

Adding (4) and (5) we have, if the operator d 	x dx yy. 4Y, 

at 	a,!) 
dp 	= p d 	u 1  ax 

The difference in velocity above (u n)and belaJ (u1) an aerofoil is 

11, 
u 	1 	( /)11 - (0 

and, from thin aerofoil theory, this velocity difference can be represented 
by a distribution of vorticity along the chordline of the aerofoil and its 
wake, 

uu 	u = y (x, t) 
	

(8) 

Thus substituting (7) and (8) in (6) 

P = Pu 	P1 	P cuy + -67 
IX y 

Y 

..2 

c) (9) 

•-•1 

and since there can be no pressure difference across the wake 

(6)  

(7)  

a x 	 a 
U y (x,t) + 	y (x,t) dx + at 	 Dt J 

y (x, t)dx = o (10) 

—1 

whore Y (x, t) is the vorticity in the wake. 

If r(t) is the total circulation about the aerofoil 

rl 

r(t) = J i  y(x,t) dx 

and (10) becomes 

tT yw(x,t) + dt 

rx  

I 	y 
w
(xst) ax + g4:-0  0 	(11) 

1  



If the oscillation is simple harmonic all quantities have a time variation 

proportional to eiwt and we can express our equations in terns of the 

reduced frequency k defined by k = 2U(whom is the secs--chord and is 

taken as unity). Equation (11) becomes 

y (x) 	1k 	y (x) dx 	ikr (12)  

where 	yv(x) and r 	are navy the amplitu.des of the wake vorticity and circulation 
resi,,:cti-v-ely and are thus complex qurntitios indepen6.'ent of time. 

Equation (12) can be solved for the vorticity in the wake in terns 
of the circulation round the wing in the forra 

y 

 NI 

( 	

e

ik( -x) (13)  

and equation (9) becomes 

A 	= 	-PUlY(x) 	ik 	Ix  Y (x) cad (10 

-1 

Integrating (14), the lift on the aerofoil 
1 	 1 

L 	= 	-PU y 	ax 
Y  

cx (15) 
-1 	 -1 	-1 

and, if the moment is measured about the elastic, axis x = 

In 	
r 

N 	IOU 
[J 
 (x-a) Y ( x) dx ik f (x-a) 

 J 
y(C)dE dx 



3. 	The vorticity distribution in the cascade 

For the infinite cascade the induced complex velocity 

clan  = dun  - i d vn  at any point x on the reference blade 

(zeroth blade) due 	to the vorticity yriM at the point zn  = 	+ inse
-i3  

on the nth  aerofoil and its wake is given by 

I  YnW l'  

a qn(x) = - 2-,7(x - ,11) 

or uriting 	% 

It is real for p = 0 and imaginary for # = i 

	

d r1 (x} 
	

Yn(  	 (17) 

2/T2 

The complex velocity induced by the complete cascade is 

39 

2 (with -- = 1) where % 	is complex. 

q (.x) 27,-2  (I8} 

= If the phase difference between taro adjacent blades is 5 21rm  

(0 6 m < 1) then the phase difference 8ri between the nth  blade and the 

reference (n=0) blade is 

8 	= 2ir m n 

and 	
) = yo()e2inmn 	

(19) 

where 	yo() = y(0 is the vorticity distribution on the 

reference blade. 
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COFFIGENDUM 

Professor Sisto has pointed out that equation (19) 

(c) = y( /e
2iIrmn 

o   

is valid only if m = 0 or 4-, and that arbitrary phase 

difference can be included only if different complex 

operators are used for harmonic time dependence and 

for the complex velocities. 

The appropriate sentences of the summary, 

introduction and conclusion should be amended to: 

"the theory allows for arbitrary stagger angle and 

for phase differences of 0 and /r between adjacent 

blades" 
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Thus from (18) and (19) 
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(20) 27i2  
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iw.e (1-.2m)(E-x) 
(Ref.7) 

  

and t3,....as (20) becomes 

fL;1!,._?"(:1-2.111X-x) 
27! 	sink 

-1 
 

We can now use (13) to express q(x) in terms of the local vorticity 
and total circulation on the aerofoil. We obtain 

(21) 

as the integlal equation which must be solved for the local vorticity y(x) 
on the aerofoil in terms of the perturbation velocity q(x) . 

If we put 	
tank Ax = g/e 

tank 'NZ = 	
( 23) 

tank X = 1/e 

where g, Ti, e are complex, 

then (22) becomes 

kr ik 
'27r  e 

e+ 
€ 

ik mm-11-2x 

 

C
2

/2X 	Al77 Lk 	- 
(c+77}. 
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271- 
 • (e-g)I f 	(e+n)m  P 	

24) 
—n 



nk NC where the contour Ci  is the path of n ta 	in the range 	< E ' 

and C2  is the path of n in the iange i < < W , Fig. 2 shoes the contour 

C for the case X =e1T/14  

Equation (24) can be simplified by writing 

Q(u) = q(u) . 
(e g)m  

k reik  
2 1T 
	I 
	

2 X 	r 

2 (e+.07-H- 	

id-77 

and the integral equation reduces to 

(2(-1) = 7'  I 
C1  

IS22).111E L--ZILL1  . a n 
(e+70m,i (62_,n2 )  M-77 (25) 

= 	corresponds to the point C = c and hence does not lie on the 

contour C . Thus the kernel of equation 25 

.11:)  (6-71)m  
2( e-ER)12-1  ( 62  -772) 

has no singularitieu an C. 

Thus we have to invert the equation 

	

f 	 dn 
Q02) 

	

j 	n—m 

01  

which is a special case of the general Cauchy equation 

a 0 (t) 	
J 

ds = t) 
Tri 

0 

with a = C and b = I and C an unclosed continuous contour. 

The solution of this equation is (Ref. 8) 

¢(t)
a  

 = 	f(t)  a - b2  

b 	ft -a 7 

( 
:17:7rd) 

a2  'b2  )Di 
f(-s.:4147  f( 4) AR

tj 	s-t 
C 

(26)  

(27)  

(28)  

(29) 	. 



1 in  a + b p = 2,ri 	a - b 

and 	„3 the first and last points of the contour C. 

In the special case considered hero 

.17  . in(-I) 2/Ji 

a = # 	= 

and 	= 1 

1 
2 

thus the soiuion of equation (27) is 

2 

(7
-1 i 

K(n) = 771 	f, ,:---T f(7,7-70 Q(P )  M.7,7 

Ci 

(3o) 

Cr, substituting back the actual vorticity and velocity distributions 
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6
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- 	
21T 	C2 ( e+nr 
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"-k12X 
1 
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01 

krbik 	.f 	 ( 3 ) 

-1 

thus, using the substitution of equation (23), the circulation on the reference 
blade can be expressed as 

r f YiTi)  

0 	e! n2  
an 	 (32) 

Thus, from (31), putting p = m+ik/2x  
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which con be manipulated to give the circizl motion in terms of the velocity 
over the blade and the cascade geometry in the form 

mi 	I _ r 	 ra—i 	i 
r , Lq / Lej-aL 	(I:Li- 77) 
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(31) 

then ( 33) becomes 

r J F 	Ti) 	[ 	P ( g, 71) d 	d 
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1 E keik 
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F1(n) 1113 (n) an 

(35) 

a i  

and substituting into ( 31) we h•_. ve the vorticity distribution on the 
reference birZe given in terms of the velocity distribution ci (II) by 
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4. 	The velocity of flow over the reference blade 

Tne vertical displacement of a point x on the aerofoil at time 
t is 

y (x, t) = h + (x-a)6 
	

(37) 

where h and 0 ere functions of t and a is the position of the elastic axis 
measured from mid chord. 

We assume that the induced perturbation velocity in the stre:11 
direction is small enough, compared with the free stream velocity, to be 
neglected. The velocity normal to the surface must be zero (relative to 
the surface) at all points of the surface. 

Thus 
u(x0 t) = U 	

( 3 ) 
v(x,t) = U ax 	at 

or v(pst) = 	+ U0 a0 + 	lo +11  2x  g E  -g 

• . 	. 	e 	,e4.1.! 1 	
(39) and 	 q(p, t) = U - i [ h + U0 •- ae + - 1 (:)g e-g j 

Now q, h and 0 all have a time variation proportional to eiurt'. Therefore, 
considering the amplitude of the time dependent terms, we have 

j
1.1) 	w 	- 0 [a 	rc "" 	°g 

	
( 0 ) 

and substituting for 11(P) in (36) from (40) we obtain the vorticity 
distribution on the reference blade in torus of the blade motion in the form 

62 772 
(n) [(h —e 	+ 	) .TF2(110)(31 ir 
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where - 	P (n) 
f 

F2  ( 	aga 
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2 	r 
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.44.1 
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3 

5. 	.P.Azamic 

5.1. The lift derivatives 

From (.i5) the lift per unit span is given by 

C 

L = pU iii 1 y(4)d. Eck 

    

or using the transformations defined in (23) 

where C' (n) is the part of the contour C be 	Lwt..en -1 and n 

From (41)1  using the G functions defined by (42) 
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f 
2(A) 

te
2 
 -ri

2  
h - 0(a i/k)] G + 74- G 

i 4X 2 

ke e
ik r(h-Oa.012)G -4-GY 

	

k 	2A. 2 

772% 	31 6kelk  G 
.77.A. 	3  

(45) 

Ci  



-where 	G'(n) 	 F1(E) f F2(11;-,E)dildE 
Cy(n)

ct  

G:( Ti) = 	
j
r 	F (r.;) f F2( y, )dud 

c'(7)) 

(46) 

G13( n) 	f 	F3(E) 
J C'(n) 

and furthermore 

f 	f 
2 7/

2 

r7) 1 

 

	

41(117 = 	W[ [h -S( a + j/k) E 1  + .2.- H ir 	 2X 2 
- 

k ee ik 	- ( h- Oa - 2---) G i ` + -9-- G2  ii   

	

_ 	_ k 	2:?...1 	
(47) 

772  X 	3  i 4.  .s key  G 

7.- X 	3 

2 e 

G i( 
where H1  = -do ; H 2  

•I 	2 	2 
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Substituting from (44) and (47) into (43) 
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The two dimensional lift derivatives are found by collecting the coefficients 

of 	and 1 in (49). We write z for h to conform with the usual 
k2  

notation for such derivatives. 

Thus, remembering that the chord length is 2 
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5.2. The moment derivatives 

From (16) the moment is given by 
1 	 1 

M = « pU [ Jr (x-a)Y(x)dx ik f (xwa).(c Y Molg dx 
-d 	-1 

or, using the transformatiuns of (23) 
e+77 
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ik E 2f log 	-a e-n 
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e- 77 	 e2 	n2 	eL F,2  
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Substituting for the vorticity from (4) and (45) and. using the functions 

	

II  , 12  ; and J1 	2 3-3  defined by 
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the moment equation ( 53) ix; comes 
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1 Collecting the coefficients of - - 	, 1 we obtain the moment derivatives 
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5.3. amarison with previous results 

The basic equations of this paper (15, 16 and 24) are in agreement, 
for the special case of zero stagger and antiphase oscillation, with those 
of Lilley (Ref. 1, eqns. 2.100  2.11 and 2.27) and the solution of the 
integral equation also agrees. Lilley expresses the aerodynamic derivatives 
directly in elliptic functions and further comparison of the two papers is 
not possible except that the present author also finds that lz  = mz  = 0 

and 1. = le  and m. = me. 

Mendelson and Carroll (Ref. 2) present their results for the 
unstaggered cascade oscillating in phase or in antiphase in the form of 
functions Lh, La, Mho  Ma, which show the dependence of the lift L and 

moment M on flexural displacement h and angular displacement eS such that 

L = TrPui2 

 

Lhh -( + a)L 1 a 

+Lh  I h + 1 Ma  -( + a) (Iix  + Mh)-F( -14- a)2  LT., a] 

(Ref. 2 ecin.B.37) 
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In corresponding form the results of the present paper for the special 
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with m = 0 or 1, A real and the intoix,ls along Ci  becoming integrals 
along the n--axis between -1 and 1, the integrals along 02  becoming 

integrals along the V-axis between 1 and e and C1(77) becoming that 
of the Th-axis between -1 and 	e—n 

If we substitute fog the G, H, I and J integrals in (60) we obtain results 
which Shaw sUbstanlal agreement with equations B.38, 39, 40 and 4.1 of 
reference 2. Howevr Ubndelson and Carroll have been able to sinrolify 
the integrals 

x 

f ),(0 c1g ax and 
	

(x ) 	y(Q c ax 
-1 -1 	 -1 

further than the present author and hence the H and J integrals of this 
paper are more complicated than the corresponding integrals of reference 2. 

6. 	Conclusion 

Thin aerofoil theory can be used to find the aerodynamic derivatives 
of an aerofoil oscillating in an infinite cascade. The theory tal:es account 
of stagger angle and phase difference between adjacent blades of the cascade, 
The derivatives are expressed in terms of complex integrals (except fo/ 
the degenerate case of zero stagger and entiphase oscillation when the 
integrals are real) which have to be evaluated along the aerofoil and its 
wake. 
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FIG. I . CASCADE GEOMETRY 

FIG. 2. THE TRANSFORMED AEROFOIL 
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