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Abstract

The main aim of this paper is to present an improved algorithm of “Branch and
Bound” method for control structure screening. The new algorithm uses a best-first
search approach, which is more efficient than other algorithms based on depth-
first search approaches. Detailed explanation of the algorithms is provided in this
paper along with a case study on Tennessee-Eastman process to justify the theory
of Branch and Bound method. The case study uses the Hankel Singular Value to
screen control structure for stabilization. The branch and bound method provides a
global ranking to all possible input and output combinations. Based on this ranking
an efficient control structure with least complexity for stabilizing control is detected
which leads to a decentralized proportional controller.
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1 INTRODUCTION

Control structure screening has been a challenging research topic among con-
trol engineers during the last decade (Heath et al., 2000; Kookos and Perkins,
2001). It is more difficult than synthesizing a controller, specially for large
sets of measurements and actuators, because design of control structure is a
combinatorial problem. With a large number of candidate measurements and
manipulations the number of possible combinations of inputs and outputs have
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a combinatorial growth. Thus, an approach consisting of performing a control-
lability analysis for each possible combination becomes time consuming (Havre
and Skogestad, 1996). Tennessee-Eastman test-bed problem (Downs and Vo-
gel, 1993) can be referred as an exemplary process due to its umpteen I/O
combinations (41 measurements out of which 22 are potential outputs; 12 ma-
nipulated variables). In this case, the total number of possible input-output
combinations is

∑12
j=1 C12

j

∑22
i=1 C22

i = (212 − 1)(222 − 1) = 17, 175, 670, 785.
Suppose it takes only 0.01 sec to evaluate one I/O combination, it would still
take more than 5 years for an exhaustive search to reach a global conclu-
sion. Therefore an efficient algorithm is essential to tackle the combinatorial
problem.

Before discussing the importance of control structure screening, it is necessary
to recapitulate the basics of control structure selection problem. Figure 1 shows
the general structure of a feedback process. For a set of exogenous inputs (w)
to the process, a set of inputs (u) and outputs (y) are to be selected such
that a compensator K can be designed to achieve cost function z within a
specified limit. It is understandable that more number of u and y selected
will generally yield better performance. However, it is intended to minimize
the number of u and y (only necessary ones to be selected) to restrict the
complexity of the feedback controller. In this perspective, control structure
screening is important because of the following issues:

• Usually control structure selection is a multiobjective problem.
• Some objectives may not be suitable to be considered together mathemati-

cally
• Even a mixed cost function can be formulated, but it may not be compu-

tationally tractable.

A possible solution to the above problems is to separate the objectives into two
groups: firstly only use computationally tractable indices suitable for control
structure screening to reduce the candidate set, and then perform exhaustive
search in the reduced set for the rest objectives.

Branch and Bound (BAB) as a general approach to solve combinatorial prob-
lem is well-known. It has been widely used in numerical algorithms for solv-
ing Mixed-Integer Linear and Nonlinear Programming (MILP and MINLP)
problems (e.g. Luyben and Floudas, 1994a,b; Braatz et al., 1996) and global
optimization softwares such as BARON computational system for solving non-
convex optimization problems to global optimality (Gutierrez and Sahinidis,
1996; Ryoo and Sahinidis, 1996). Several researchers have demonstrated ap-
plications of BAB algorithm in Chemical Engineering and Process Control as
well as in Control Structure Selection (Raman and Grossmann, 1991; Skrifvars
et al., 1996). However, most of the available BAB methods are integrated in
general MINLP and MILP software, and therefore is difficult to be tailored
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for control structure screening.

A particular BAB method for subset selection was proposed by Narendra
and Fukunaga (1977) in the context of pattern recognition. Roberts (1984)
presented a FORTRAN code for the algorithm. Over the years, the algorithm
was improved by several authors (Ridout, 1988; Yu and Yuan, 1993). Search
speed has been considerably increased through the Improved BAB method by
Chen (2003). Basically, it is based on an asymmetrical solution tree, whose
leaves represent target subsets of optimal features, while the root represents
the set of all features. The algorithm is based on the assumption that the
adopted criterion function fulfills the monotonicity condition to simplify the
bound estimation. Thus, any subset screening problem, with criterion that
satisfies monotonicity property, can be efficiently solved using this method. In
other words, this method is particularly suitable for control structure screening
based on simple controllability indices. Cao et al. (1998) modified this method
to use with the minimum singular value for control structure selection. This
work extends this method to address the following screening issues:

(1) The screening procedure involves multiobjective search, some objectives
may not satisfy monotonicity required by BAB algorithm, for example,
the right-half-plane zeros. To reduce the search space for these objectives,
BAB based on a particular criterion which satisfies monotonicity should
have the screening feature, viz.,
(a) searching all subsets that satisfies φ ≥ a, where φ is the criterion

function and a is a bound (Braatz et al., 1996)
(b) ranking all possible subsets to find a certain number of best subsets.

(2) There should not be any restriction over either the subset-size or number
of input(s) and/or output(s), i.e., searching algorithm should be able to
identify the best possible subset(s) for any series of pre-selected subset-
sizes irrespective of whether it is square system or nonsquare.

(3) There should be a provision for joint I/O screening.

The paper is organized as follows. The theoretical details of Branch and Bound
method are discussed in the next section. It includes the basic principle of
the theory, newly improved algorithm and the discussions about the special
requirements of control structure screening, which are met by the new al-
gorithm. Section 3 presents the focused criteria function, viz. the minimum
Hankel singular value, which is used for controllability analysis for unstable
plants. Application of Branch and Bound method is shown in section 4 through
a case study on Tennessee-Eastman test bed process. A brief conclusion on
the research finding is presented in section 5.
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2 BRANCH AND BOUND METHOD

2.1 Principle

Let XN = {x1, . . . , xN} be an N -element set and Xn be an n-element subset
selected from XN . There are Cn

N = N !/(N−n)!n! candidate n-element subsets
Xn ∈ XN for screening with criterion cost function φ. The objective is to find
an n-element subset, X∗

n, which satisfies

φ(X∗
n) = max

Xn⊆XN

φ(Xn) (1)

Let φ(XN) be an upper bound estimation of the cost function over all possible
subsets of XN , i.e.,

φ(XN) ≥ max
Xn⊆XN

φ(Xn) (2)

Therefore,

φ(Xs) ≤ φ(Xt) if Xs ⊆ Xt (3)

Particularly, if φ satisfies monotonicity property, i.e.,

φ(Xs) ≤ φ(Xt) if Xs ⊆ Xt (4)

then estimation can be simplified as,

φ(XN) = φ(XN) (5)

Let B be a lower bound on the optimal value of φ(X∗
n), i.e.,

B ≤ φ(X∗
n) (6)

If a k-element subset, Xk, with k > n satisfies

φ(Xk) < B (7)

then, it can be shown by (3),

φ(X ′
n) < B, ∀X ′

n ⊆ Xk (8)

This means that none of the subsets of Xk can be the optimal solution, thus
they can be discarded without any further evaluation. By applying this prin-
ciple properly, the computational load can be reduced considerably.

The above BAB principle can be applied to any criterion, where an algorithm
is required to generate an upper-bound estimation of the criterion over all
possible subsets of the given set, i.e. (2). The simplest case is where the criteria
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satisfy monotonicity (4). Hence, no upper-bound estimation is required in this
case. For simplicity, the monotonicity condition is presumed in the rest of the
section.

2.2 Branch rule

An efficient BAB algorithm requires a proper branching strategy. In a tradi-
tional BAB algorithm, branching is represented as a solution tree where each
subset belongs to one and only one branch (Figure 2). However, structure of
the solution tree is depend on the target subset-size. Thus, it is not suitable
for a varying subset-size problem. By introducing the concepts of fixed-set and
candidate-set, a new branching rule, which suitable for both fixed and variable
subset-size problems, is proposed.

Consider a simple example with X2 = {x1, x2}, X3,1 = {x1, x2, x3} and X3,2 =
{x1, x2, x4}. Clearly, X2 can be generated from both X3,1 and X3,2. If X2 can
only be generated from X3,1, then, x4 cannot be eliminated from X3,2 (fixed
element), whilst x3 must be removable from X3,1 (candidate element). More
generally, for an n-element set X, the fixed-set and candidate-set of X are
defined as follows.

Definition 1 (Fixed set F ) The fixed set, F ⊆ X is the smallest subset of
X, whose elements are always included in all subsets generated from X. It has
number of nf elements.

Definition 2 (Candidate set C) The candidate set is the set of elements
which are elements of X, but not elements of F , i.e. C = X − F . It has
nc = n− nf number of elements.

According to the definitions, a set X can be represented by a three-tuple,

X = (φ, F, C)

The following branch rule, illustrated in Figure 3, determines how F and C
are propagated into subsets.

Definition 3 (Branch rule) Assume X = (φ, F, C) and C = {x1, x2, . . . , xnc}.
Let Xk = X − {xk}. Then,

Xk = (φk, F
k, Ck), F k := F ∪ {x1, . . . , xk−1}, Ck := {xk+1, . . . , xnc} (9)

Starting from the full set, XN = (φ(XN), {}, XN) and repeatedly applying the
branch rule, all subsets are properly branched.
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Lemma 4 (Branch completeness) The branch rule of (9) is complete with-
out any redundancy,i.e. each subset belongs to one and only one branch.

PROOF. Let S(X) denote all subsets generated by X. Consider, 1 ≤ i <
j ≤ nc. Then, according to the branch rule, xi ∈ Xs if Xs ⊆ S(Xj). However,
xi 6∈ Xt if Xt ⊆ S(X i). Thus, S(X i) ∩ S(Xj) = 0, i.e. no subset belongs to
more than one branch. On the other hand, the total number of second-level
subsets of X is (nc−1)+(nc−2)+ · · ·+1+0 = nc(nc−1)/2 = C2

nc
. Thus, the

second-level subsets of X are complete and without any redundancy. It infers
that all subsets of X are complete without redundancy. 2

Lemma 5 For an m-element subset selection problem, let nb be the number
of expandable branches of X. Then,

nb = m− nf + 1 (10)

PROOF. Any set with more than m elements fixed cannot generate an m-
element subset, thus can be discarded. Hence, the number of branches of a
set is equal to the number of its subsets, which has their fixed-set sizes less or
equal to m. If a set has nb branches, then, according to (9), the size of F nb is
m, i.e. m = nf + nb − 1, which leads to nb = m− nf + 1. 2

Remark 6 If a node has only one branch, there is no need to evaluate inter-
mediate nodes one by one until the terminal node. Based on this observation,
Yu and Yuan (1993) developed their BB+ algorithm, which has been shown to
be faster than the basic BAB algorithm. To implement the same strategy with
the above branch rule, a subset with nf = m should be directly converted to
the terminal subset by eliminating C.

Remark 7 The branch rule (9) is based on the element-index of C. In theory,
the index-sequence is local (only relevant to the first-level subsets) and can be
arbitrary. For efficiency (Ridout, 1988), the sequence of subset is ordered as
φ(X1) ≤ φ(X2) ≤ · · · ≤ φ(Xnc) so that the set with least criterion value has
the largest candidate set, which are more likely to be discarded although this
will increase the number of criterion evaluations (number of subsets evaluated
more than number of branches). For some problems, where the first-level subset
criterion functions can be efficiently evaluated using an iterative formulation,
subset criterion sorting will significantly reduce computational load.

Remark 8 In the data structure of a three-tuple (φ, F, C), F and C are fixed-
length integers, where each bit represents an element in the set (bit=1) or not
in the set (bit=0). Thus, the branch rule can be efficiently programmed using
integer operations.
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2.3 Pool of subsets

To solve a variable subset-size selection problem, the concept of pool of subset
is adopted from Yu and Yuan (1992). The pool, P is a dynamic queue, which
consists of all active subsets to be visited. All subsets are stored in the three-
tuple structure and sorted according to their criterion values. Initially, P0 =
{XN}. Assume at k-th iteration,

Pk = {X1, X2, . . . , Xn}, (11)

X i = (φi, F
i, Ci) for i = 1, . . . , n,

φ1 = max(φ1, . . . , φn).

Then, the pool is dynamically updated by the following expanding and con-
tracting rules.

Definition 9 (Pool expanding) Let S(X1) be the set of all first-level sub-
sets of X1 generated by eliminating one element from C1 using the branch rule
(9). Then, the pool is expanded as

Pk+1 = S(X1) ∪ (Pk − {X1}) (12)

Definition 10 (Pool contracting) Assume the target subset size is m. Let
nf,i be the size of F i, D = {X i|nf,i ≥ m} and T = {(φ(F i), F i, {})|nf,i = m}.
Then, the pool is contracted as

Pk+1 = T ∪ (Pk −D) (13)

The optimal subset of a pool is determined by the following theorem.

Theorem 11 (Global optimum) For Pk in (11), let ni be the size of X i,
for i = 1, . . . , n. Then X1 is globally optimal among all n1-element subsets if
n1 = min(n1, n2, . . . , nn).

PROOF. Since Pk consists all active subsets and n1 is the minimum subset
size among all pool members, any n1-element subset will be a subset of one
of the pool members. However, X1 has the largest criterion among all pool
members. Hence, it is globally optimal among all n1-element subsets. 2

Remark 12 The pool algorithm can be applied to both fixed and variable
subset-size selection problems. For a fixed-size problem, the size of the first
subset, n1 in the current pool is compared with the target size, m. The pool
will be continuously updated until n1 = m. For a variable-size problem, the
multiple target sizes, m1, m2, . . . ,mk are sorted in descending order. Then,
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the pool is dynamically updated to find n1 matching m1, then m2, until all
target sizes being matched.

Remark 13 The pool algorithm can also be applied to find l best m-element
subsets. In this case, when the first member of a pool is size of m, it will be
fixed. The pool is continuously updated to find the second member with size
m. And so on, until the first l members are all of size m. Alternatively, if the
screening problem is to find all m-element subsets which have criterion value
larger than a given threshold, then any pool members whose criterion value
less than the threshold will be removed from the pool and only subsets with size
larger than m will be expanded. The final pool contains the solution sets.

Remark 14 The pool algorithm described above is a best-first-search approach.
It is normally more efficient than traditional BAB algorithms, which are based
on a depth-first-search solution tree (e.g. Cao et al., 1998) in terms of the
number of subsets expanded. In a depth-first-search algorithm, to determine
if a subset should be expanded, the criterion value of the subset is compared
with the current best bound of the optimal solution, B in (6). However, in the
best-first-search algorithm, the subset criterion value is compared with those of
all pool members (including B). Hence, the subset is less likely to be expanded
than in a depth-first-search algorithm.

Remark 15 Recently, Chen (2003) spotted some redundant evaluations in
BAB algorithms, which can be removed to improve efficiency. That is, when
a non-terminal subset, X is discarded (φ(X) ≤ B), all natural subsets of X,
which may not belong to the branch of X, can also be discarded. In the pool-
based BAB algorithm, this is implemented by checking the first pool-set, X1

before expanding. If C1 has an element, xk, which, when eliminated, will make
the generated subset be a natural subset of a pool member ranked after B, then
xk will be moved from C1 to F 1.

The pool-based branch and bound algorithm is summarized in the following
procedures.

Step 1 Define XN = (φ, {}, XN), a target-size array, M = {m1, m2, . . . ,mk}
sorted in descending order, and the number of best subsets required, l.
Initialize a subset pool, P = {XN} and a pointer of the target-size array,
I = 1.

Step 2 If I > k stop. Otherwise, get current target size m = M(I), I =
I + 1, and initialize a pointer, L = 0 to indicate the number of best subsets
obtained.

Step 3 Let P = {Xp1 , . . . , Xpn} be the current pool. Sort φ(Xpi
) for i =

L + 1, . . . , n in descending order.
Step 4 If pL+1 = m, then XpL+1

is a new best-subset, L = L+1. If L = l, then
all best-subsets required have been found, goto Step 2. Otherwise, continue.
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Step 5 Check XpL+1
and adjust its F and C according to Remark 15.

Step 6 Perform pool expanding using (12).
Step 7 Perform pool contracting using (13).
Step 8 Return to Step 3.

2.4 Joint I/O screening

In most cases, due to lack of suitable tools, the importance of inputs and
outputs have to be assessed separately i.e., inputs have to be screened with a
output set fixed, whilst to screen outputs, an input set has to be presumed.
Obviously, such a way to screen inputs and outputs cannot reveal the effect
of cross-combination between inputs and outputs. As a result, global solution
of the best I/O combination is not guaranteed. To solve this problem, input
and output variables are considered together in the Branch and Bound search
procedure via an index translation scheme. More specifically, the k-th input is
the k-th variable of the joint I/O set, whilst the k-th output is the M + k-th
variable in the I/O set (where M is the total number of inputs). In this way,
any input-output combination can be translated as a subset of the total I/O
set. To avoid a subset with pure inputs or pure output being selected, the
criterion function of such a subset is defined as zero. Therefore, such a subset
will never be selected by the Branch and Bound algorithm.

Finally the screening result can be represented graphically for criterion func-
tion vs. I/O subset-size. In this way, the screening is done both vertically (a
group of subsets with the same size) as well as horizontally (subsets with dif-
ferent size). Wherein the best I/O combination could be determined at the
point where the increase of criterion value against the increase of subset-size
becomes negligible, or at the point where the controllability criterion is at a
satisfactory level but the I/O subset-size is minimum.

3 STABILIZING CONTROL STRUCTURE SELECTION

Stabilization of an unstable plant is mandatory before designing higher level
control structure of the system. Therefore, as argued by Havre and Skogestad
(2003), stabilizing control usually belongs to a secondary control layer, where
output performance is not an important issue because the output setpoint is
normally determined by a higher level controller. Instead, the input usage is
more important for stabilizing control because it directly relates to possible
input saturation, which may lead to instability. Glover (1986) has proven that
the minimum input usage to stabilize an unstable plant can be quantified by
the minimum Hankel Singular Value (HSV) of the anti-stable projection of the
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plant. This result has been applied to stabilizing control structure selection
Cao and Saha (2003). However, global optimality is not guaranteed in the
direct application of the minimum HSV because of the combinatorial nature
of the evaluation.

In this section, an algorithm is proposed to evaluate the minimum HSV based
on the BAB approach described in Section 2. This algorithm gives global
ranking of minimum HSV for all possible I/O combinations without exhaustive
evaluation of the index.

3.1 Hankel Singular Value

Consider a linear system with nx states, ny outputs and nu inputs, denoted
by G = {A, B, C}, where A, B and C are state, input and output matrices of
the state space equations.

The controllability and observability gramians, Lc and Lo of the system are
symmetric matrices and satisfy the following Lyapunov equations:

ALc + LcA
T + BBT = 0 (14)

AT Lo + LoA + CT C = 0 (15)

The Hankel Singular Value, σ = σ1 ≤ σ2 . . . ≤ σnx = σ of the system is defined
as the square roots of the eigenvalues of LoLc, i.e.,

σk(G) =
√

λk(LoLc); k = 1, 2, . . . , nx (16)

For a subsystem with the i-th output and j-th input, its controllability and
observability gramians and HSV are denoted as Lcj, Loi and σij

k , respectively.
Then according to (14) and (15) the following equations can be obtained:

Lc =
nu∑
j=1

Lcj Lo =
ny∑
i=1

Loi (17)

If the system, G possesses unstable poles, then it is possible to decompose the
system into stable (Gs ) and anti-stable (Ga) projections, i.e., G = Gs + Ga

(Safanov et al., 1987). Glover (1986) studied the robust stabilization problem
of a linear multivariable open-loop unstable system G. The task for a controller
K to stabilize (G+∆) for all allowable perturbations ∆ with minimum control
effort is to minimize ‖KS‖∞, where S := (I−GK)−1 is the sensitivity matrix.
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It has been proved by Glover (1986) that

min ‖KS‖∞ =
1

σ([Ga(−s)]∗)
(18)

According to Glover’s theorem, it is desired to select an input and output com-
bination which has the largest minimum HSV. Understandably, it is possible
to extract subsystems with m selected inputs and n selected outputs from G.
Suppose the selected inputs and outputs have index sets, J = {j1, j2, . . . , jm}
and I = {i1, i2, . . . , in}, respectively. Controllability and observability grami-
ans for any such subsystem will be

LcJ =
∑
j∈J

Lcj LoI =
∑
i∈I

Loi (19)

The HSV can be calculated in a similar manner as in (16). Hence, the best
combination of inputs and outputs are to be detected by comparing the min-
imum HSV.

There are a couple of issues involved with the HSV which are discussed below:

• Pure integrator: One particular issue with the HSV is that it is not well-
defined for systems which have pure integrators, i.e., poles at zero. Presence
of pure integrators in the system will invalidate the above theory as the ma-
trix A in (14) and (15) will be singular. To counter this problem, a diagonal
matrix, having a small constant as elements, can be added to the system ma-
trix A before decomposing it into stable and anti-stable parts. Through this
operation, the poles will be shifted slightly towards right without disturb-
ing overall characteristics of the process. However, the pure integrators will
move to the right-half-plane (RHP) of imaginary axis and will be converted
into small positive poles which can later be extracted in Ga.

• Combinatorial problem: The selection of inputs and outputs by using the
HSV is a combinatorial problem. This problem can be tackled by using the
BAB algorithm described previously.

The following theorem shows that the minimum HSV satisfies the monotonic-
ity condition (4). Therefore the BAB approach can be simplified to take this
advantage as explained in Sec 2.

Theorem 16 If I1 ⊆ I2 and J1 ⊆ J2 then σI1J1 ≤ σI2J2

PROOF. If σI2J2 = 0, then σI1J1 = 0. For the case σI2J2 6= 0, LoI2 and LcJ2

are symmetric and positive definite. Let J1 ⊆ J2 and I1 = I2 = I, then LcJ2 =

LcJ1 + Lc(J2−J1). Thus, λ(LoILcJ2) = λ(L
1/2
oI LoJ2L

1/2
oI ) = λ(L

1/2
oI LcJ1L

1/2
oI +

L
1/2
oI Lc(J2−J1)L

1/2
oI ). As L

1/2
oI LcJ1L

1/2
oI and L

1/2
oI Lc(J2−J1)L

1/2
oI are both symmetric,
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according to Wilkinson (1965), λ(LoILcJ2) ≥ λ(L
1/2
oI LcJ1L

1/2
oI ) = λ(LoILcJ1).

Similarly, it can be proved that λ(LoI2LcJ) ≥ λ(LoI1LcJ), if I1 ⊆ I2. Hence
σI2J2 ≥ σI2J1 ≥ σI1J1 . 2

3.2 I/O Screening Procedure

In spite of these advantages, BAB method with the HSV does have a demerit,
because only part of effect of RHP Zeros is identified with this method. If an
RHP zero is close to an RHP pole then the HSV will be very small indicating
the system to be either uncontrollable or unobservable. However, RHP zeros
at other locations have little effect on the Hankel SV. Such RHP zeros do cause
difficulty in stabilization of system. According to the principle of Root Locus,
closed-loop poles start from open-loop poles and finish at open-loop zeros as
the closed-loop gain varying. Therefore, RHP zeros will normally cause an
unstable plant not possible to be stabilized by proportional-only controllers
because extra poles and zeros from the controller are required to shape the
Root Locus. Thus, RHP zeros should be avoided in control structure selection,
if possible. However, RHP zeros cannot be directly handled by Branch and
Bound method. Nevertheless, we can use Branch and Bound method to secure
an overall ranking on the Hankel SV and then examine the existence of RHP
zeros in those ranked structures starting from top towards bottom (considering
the fact that the “mathematically” best structure is at the top) until the most
top structure without any RHP zeros is found. Thus the following is the step
by step procedure of control structure screening with BAB method using the
minimum HSV as controllability criterion:

Step 1: Input and output scaling is essential for reliable analysis. Here inputs
and outputs should be scaled to their possible range, e.g. inputs could be
scaled to their nearest bound (Cao et al., 1996) whilst output might be
scaled to their noise level (Skogestad and Postlethwaite, 1996).

Step 2: Shift poles to convert pure integrator(s) to small RHP pole(s).
Step 3: All unstable poles are extracted out of the process through projection

method.
Step 4: BAB method is applied to the anti-stable sub-system to screen the

best possible subsets of I/O base on the minimum HSV.
Step 5: The top ranked subsets are examined for possible existence of RHP

zeros.
Step 6: A decision is reached about the best I/O combination.
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4 APPLICATION OF BRANCH AND BOUND ALGORITHM

The Branch and Bound technique is applied to a highly-integrated chemical
plant, viz. Tennessee-Eastman (TE) process. This process has been chosen
with an intention of demonstrating usage of controllability measure discussed
in the previous section, i.e., the minimum Hankel singular values.

4.1 Tennessee-Eastman process

The Tennessee-Eastman test-bed problem (Downs and Vogel, 1993) involves
the control of five unit operations: an exothermic two-phase reactor, a water-
cooled condenser, a centrifugal compressor, a flash drum and a product strip-
per. The simulated plant has 41 process variables and 12 manipulated variables
which are modelled with 50 state variables. The twelve manipulated variables
are the four feed rates, the purge rate, the agitation rate, steam rate, condenser
coolant rate, reactor coolant rate, compressor recycle, flash drum discharge
rate and the stripper production rate. Out of 41 process variables there are 22
controllable outputs including level, pressure, temperature, flow and 19 com-
position indicators. Complete lists of input and output variables are shown in
Tables 1 and 2 respectively.

Details of the process are available elsewhere (Downs and Vogel, 1993). A
model of the process is generated by Ricker (2002) in Simulink software. Open
loop simulation of the model indicates that the process is unstable in nature.
The objective is to select the inputs and outputs in order to stabilize the
complete system.

4.2 Input-output selection

The entire analysis has been carried out through MATLAB software. The step-
by-step procedure, described in sec 3.2, is followed while doing the analysis.
Scaling factors for each I/O subset-size are obtained from the model itself.
Inputs are already scaled in the model within 0 to 100% range. However,
an extra scaling factor, viz. the maximum possible deviation from its steady
state value for each input variable, is incorporated. More specifically, scaling =
min(x, 100−x), where x is the base case value, as shown in Table 1. Whereas,
the output variables are scaled using noise level found from the model, as
shown in Tables 2.

The scaled process is decomposed into stable and anti-stable subsystems using
STABPROJ subroutine of the Robust Control Toolbox (Safanov et al., 1987).
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The anti-stable subsystem has two pairs of positive complex poles, 3.0648 ±
5.0837i and 0.024973± 0.15521i and two pure integrators (numerical value is
of the order of 10−9).

Using the Branch and Bound method, 10 sets of best I/O combinations are
computed as in Figure 4. The figure shows the minimum HSV against the
subset-size. Although the calculation is performed for subset-sizes from 1
through 34, HSV does not increase notably over subset-size of 20. It can be
noted from Figure 4 that the minimum HSV for up to a subset-size of 4 is
nearly zero. By mathematical derivation, it can be proved that it is actually
zero. The significance of this result is a conclusion that, it is impossible to sta-
bilize the plant with any combination of a total number of inputs and outputs
less than 4. That means a minimum total of 5 inputs and outputs are neces-
sary to achieve that stabilization. However, in terms of decentralized control
a 3× 2 or 2× 3 system has no advantage at all compared to a 3× 3 system as
far as the complexity of controller design is concerned. Hence, the minimum
HSVs for subset-size 6 are ranked for the best 10 sets in Table 3.

Based on the discussions about RHP zeros in section 3.1, it is observed (Ta-
ble 3) that best control structure without the presence of RHP zeros is the
4th structure in Table 3, i.e., with liquid levels in stripper and the separator
(outputs 12 and 15), reactor temperature (output 9), separator and strip-
per outflows (inputs 7 and 8) and reactor cooling water flow (input 10). The
observation is identical with the results obtained by (Cao and Saha, 2003)
and similar to those suggested by Havre and Skogestad (1998) and McAvoy
(1998). However, the guarantee for best I/O combination is obtained in this
work through BAB technique. Moreover, this guarantee is obtained with only
16160 computations instead of possible 17175670785 in an exhaustive search.
The efficiency of the improved Branch and Bound algorithm is compared with
a depth-first search based algorithm (Cao et al., 1998) in Figure 5. The main
advantage of the new algorithm is for a variable subset-size selection problem,
where the total number of evaluations is significantly reduced due to the reuse
of the pool of subsets. However, even for a fixed subset-size problems, the new
algorithm is still more efficient than depth-first search approaches due to the
reason explained in Remark 14. This is also shown in the comparison figure,
where the total number of evaluations of the pool-based algorithm using in-
dependent pools (every time performing a fixed subset-size selection, a new
pool is initialized) is still less than depth-first search algorithm.

The closed loop simulation results are shown in Figure 6. It is observed that
stabilization of the process is achieved with three unit-gain proportional con-
trollers. Simulation results are obtained without any disturbance but with
measurement noise.
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5 CONCLUSION

An improved Branch and Bound algorithm based on the best-first search ap-
proach is proposed. The new algorithm is more efficient than other depth-
first search based algorithms. Application of the improved Branch and Bound
method is demonstrated in this work for I/O screening using a controllabil-
ity criterion, viz., the minimum Hankel singular value. The results, obtained
through simulation, show that the proposed method inherits all the advantages
of the original branch and bound method. Nevertheless, it demonstrates a few
more merits than the original in terms of efficiency and subset-size screening.
A screened set of I/O combinations is more useful than a single set of best
combination because the screened set provides more options for control struc-
ture selection if the mathematically best combination leads to RHP zeros. A
case study with Tennessee-Eastman test bed problem shows that it is possible
to stabilize the open-loop unstable plant with minimum control effort, by us-
ing three decentralized P-controllers with unit gains. It has also been proved
that it is impossible to stabilize the plant with total number of inputs and
outputs less than four.
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Table 1
Tennessee-Eastman process manipulated variables

Variable Variable Base case Scaling

description number value (%) (%)

D feed flow XMV 1 63.053 36.947

E feed flow XMV 2 53.980 46.020

A feed flow XMV 3 24.644 24.644

A and C feed flow XMV 4 61.302 38.698

Compressor recycle valve XMV 5 22.210 22.210

Purge valve XMV 6 40.064 40.064

Separator pot liquid flow XMV 7 38.100 38.100

Stripper liquid product flow XMV 8 46.534 46.534

Stripper steam valve XMV 9 47.446 47.446

Reactor cooling water flow XMV 10 41.106 41.106

Condenser cooling water flow XMV 11 18.114 18.114

Agitator speed XMV 12 50.000 50.000
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Table 2
Tennessee-Eastman process output variables

Variable Variable Base Scaling Unit

description number case (noise

value level)

A feed XMEAS 1 0.2502 0.0012 Kscm/h

D feed XMEAS 2 3664 18 Kg/h

E feed XMEAS 3 4509.3 22 Kg/h

A and C feed XMEAS 4 9.3477 0.05 Kscm/h

Recycle flow XMEAS 5 26.902 0.2 Kscm/h

Reactor feed rate XMEAS 6 42.339 0.21 Kscm/h

Reactor pressure XMEAS 7 2705 0.3 KPa gauge

Reactor level XMEAS 8 75 0.5 %

Reactor temperature XMEAS 9 120.4 0.01 ◦C

Purge rate XMEAS 10 0.33712 0.0017 Kscm/h

Product separator temperature XMEAS 11 80.109 0.01 ◦C

Product separator level XMEAS 12 50 1 %

Product separator pressure XMEAS 13 2633.7 0.3 KPa gauge

Product separator underflow XMEAS 14 25.16 0.125 M3/h

Stripper level XMEAS 15 50 1 %

Stripper pressure XMEAS 16 3102.2 0.3 KPa gauge

Stripper underflow XMEAS 17 22.949 0.115 M3/h

Stripper temperature XMEAS 18 65.731 0.01 ◦C

Stripper steam flow XMEAS 19 230.31 1.15 Kg/h

Compressor work XMEAS 20 341.43 0.2 KW

Reactor cooling water outlet temp XMEAS 21 94.599 0.01 ◦C

Separator cooling water outlet temp XMEAS 22 77.297 0.01 ◦C
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Table 3
Controllability indices of 10 best I/O set of size 6

Set Input No. Output No. σ RHP zeros

1 1, 8, 10 9, 12, 15 926.65 0.152 and 109.522

2 4, 8, 10 9, 12, 15 878.57 0.1103 and 5.6057± 10.5721i

3 2, 8, 10 9, 12, 15 868.89 0.1571 and 29.2248

4 7, 8, 10 9, 12, 15 721.47 None

5 4, 8, 10 11, 12, 15 688.34

6 2, 8, 10 11, 12, 15 681.30

7 7, 8, 10 11, 12, 15 673.45

8 2, 4, 10 11, 12, 15 660.25

9 2, 4, 10 9, 12, 15 658.35

10 1, 8, 10 12, 15, 21 610.55
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