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ABSTRACT 

Formaldehyde is a volatile organic compound that exists as a gas at room temperature. It is hazardous to human health 

causing irritation of the eyes, nose and throat, headaches, limited pulmonary function and is a potential human 

carcinogen. Sources include incomplete combustion, numerous modern building materials and vehicle fumes. Here we 

describe a simple method for detecting formaldehyde using low resolution non-dispersive UV absorption spectroscopy 

for the first time. A two channel system has been developed, making use of a strong absorption peak at 339nm and a 

neighbouring region of negligible absorption at 336nm as a reference. Using a modulated UV LED as a light source and 

narrowband filters to select the desired spectral bands, a simple detection system was constructed that was specifically 

targeted at formaldehyde. A minimum detectable absorbance of 4.5 × 10
-5

 AU was estimated (as ∆I/I0), corresponding to 

a limit of detection of approximately 6.6 ppm for a 195mm gas cell, with a response time of 20s. However, thermally-

induced drift in the LED spectral output caused this to deteriorate over longer time periods to around 30 ppm or 

2 × 10
-4

 AU.  
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1. INTRODUCTION 

 

Formaldehyde (CH2O) is a colourless gas under standard conditions which is toxic, allergenic and a potential human 

carcinogen
[1,2,3,4]

. The World Health Organisation (WHO) has set a guideline maximum level for prolonged or acute 

formaldehyde exposure at 80ppb (parts per billion), and many countries have set theirs in line with this
[1,5]

. However, 

formaldehyde is also a valuable industrial chemical with limited alternatives
[1,4]

. Formaldehyde based resin is used as an 

adhesive in plywood and medium density fibre board, in carpeting, and in the production of paints and wallpapers. It is 

also a by-product of incomplete combustion
[1]

 and is present in various cleaning products
[1]

. Many of these materials emit 

low concentrations of formaldehyde over time. Emission levels are highest when materials are new, generally decreasing 

exponentially, but can take multiple years to reach safe levels
[1,5]

. Formaldehyde gas can therefore build up in enclosed 

areas, particularly when new furnishings or carpeting have been installed and where premises are not adequately 

ventilated. 

 

At the time of writing, sensors for formaldehyde that are compact and low cost are extremely limited. One 

electrochemical formaldehyde detector has been produced (PPM Technology Formaldemeter)
[6]

. It has a response time of 

one minute and can measure formaldehyde concentrations at or below the WHO limit. However, electrochemical sensors 

generally suffer from limited lifetimes and their response can be compromised by cross-sensitivity to other species, 

including humidity. 

 

High resolution optical techniques employing tunable diode laser spectroscopy (TDLS) have previously shown good 

sensitivity. For example, Rehle et al.
[7]

 reported formaldehyde detection at 0.32 ppb using a 353 nm laser, and Richter et 

al.
[8]

 achieved a limit of detection of 74 ppt at 3.5 µm, but with a longer response time (1 minute rather than a few 

seconds). TDLS systems demonstrate good gas selectivity and signal–to-noise ratios, but are relatively expensive and 

complex to manufacture.  
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Here, we assess the potential for formaldehyde measurement using a non-dispersive ultra-violet technique, taking 

advantage of the chemical’s absorption profile in the UV and new developments in UV light emitting diodes (LEDs). 

Part of our motivation derives from the high degree of uptake of non-dispersive infra-red (NDIR) sensors in real 

applications, owing to their relative simplicity and, using the strong infra-red absorption of certain gases such as carbon 

dioxide, compact size
[9]

. Such sensors are stable, field-proven, and show negligible cross-sensitivity to other species as 

long as the absorption bands used are chosen with care. 

 

2. NON-DISPERSIVE ULTRA-VIOLET SPECTROSCOPY 

 

Optical gas detection using absorption spectroscopy is based on application of the Beer Lambert Law
 [10]

; 

 0 ( )I I exp    (1) 

Where I is the light transmitted through the gas cell, Io is the light incident on the gas cell, α is the absorption coefficient 

of the sample (typically with units of cm
-1

) and ℓ is the cell’s optical pathlength (typically with units of cm). α is the 

product of the gas concentration (for example in atm – the partial pressure in atmospheres) and the specific absorptivity 

of the gas ε (for example in cm
-1

atm
-1

). The dimensionless quantity ℓ is known as the absorbance, in units known as 

absorbance units (AU). The UV absorption spectrum of formaldehyde is shown in Figure 1. 

 

 

Figure 1. Graph of the formaldehyde UV absorption spectrum, re-plotted using data from Meller and Moortgat[11].  

 

In non-dispersive spectroscopy, light from a broadband source (in this case, a UV LED) is transmitted through a sample 

and optically filtered using an interference filter matched to an absorption band of the target gas (the active channel). A 

second reference channel, using a filter matched to a region of negligible absorption, compensates for changes in the 

intensity of the light source. This principle is illustrated for formaldehyde in the 340nm region in Figure 2.  

 

Transmission through the active channel comprises the integrated gas absorption: 

      0 dS AI I E T exp         (2) 

Where Es is the emission envelope of the source and TA is the transmission of the active channel filter. For low αℓ, 

equation (2) is linear with α, and therefore with gas concentration. In the region of linear operation, we can adapt 

equation (2) to give; 
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where the subscript A denotes the active channel, and α’ is a pseudo absorption coefficient that follows from equation 

(2). Assuming that, in the absence of gas, the light transmitted through the reference channel is proportional to that 

transmitted through the active channel, we have; 

 0

0

1 R A

A R

I I

I I
    (4) 

Where the subscript R denotes the reference channel. The value of I0R/I0A may be determined by flushing the sample cell 

with clean air. 

 

 

Figure 2. Intensity spectra of the detection and reference channels of the two filter system. The absorbance spectrum for 10 ppb of 

formaldehyde with a 100 mm path length was calculated from data from Meller and Moortgat[11]. 

 

3. EXPERIMENTAL 

 

A diagram of the optical setup is shown in Figure 7.3. Light from a 340nm UV LED was collimated into a 195 mm long 

gas cell, and divided into two detection channels using a beamsplitter. Light from each channel then passed through a 

narrowband filter and focused onto a photodiode for detection. 

 
 

Figure 3. Configuration for formaldehyde detection using a two channel non-dispersive ultra-violet measurement. 
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The LED (SETi UVTOP335TO39BL) had a central wavelength of 340 nm and an FWHM of 9 nm. It came with an 

internal parabolic mirror and a front ball lens with a 3.18 mm radius. The LED was driven using a signal generator 

(Hewlett-Packard 33120a) combined with a low noise laser diode driver (Thorlabs LDC200CV) to give a square wave 

modulated current, set to 9.41 mA p-p at a frequency of 6.5 kHz. Temperature was initially controlled by an externally 

mounted Peltier module and thermistor, but it was found that this did not give sufficient temperature stability. Therefore 

the system was placed in a sealed room with a stable temperature, and allowed to reach thermal equilibrium. 

Two custom built laser-line filters were obtained, with a central wavelength of 339nm, a FWHM of 3.5nm and a peak 

transmission of 51%. These were angled at 0° to the optic axis for the detection channel and 14° for the reference 

channel, giving the transmission spectra shown in Figure 2. After passing through the filter, the collimated beam in each 

channel was focused onto a 5.8 mm
2
, UV-enhanced silicon photodiode (RS Components OSD5.8-7Q). The signal from 

the photodiodes was amplified by variable gain transimpedance amplifiers (FEMTO DLPCA-200). Signals were then 

input to a matched pair of lock-in amplifiers (Stanford SR850, time constant 10 ms). Their outputs were fed to a 

computer-based data acquisition system implemented in Labview, which performed further signal averaging over a total 

measurement integration period of 20s, and calculated the absorbance according to equation (4).  

 

4. RESULTS 

 

The two filter system was tested using formaldehyde from a vapour generator (Owlstone OVG-4) using a calibrated 

permeation tube filled with para-formaldehyde. The permeation tube yielded formaldehyde gas when heated to 100ºC, 

which could be mixed with clean air to vary the concentration. Initially the air flow was switched between 500 and 

50 cm
3
 min

-1
 to give concentration step changes between 44 and 4.4 ppm, giving a step difference of 40 ± 7 ppm. The air 

flow was switched over multiple times during, in the manner of a modulated signal. The results are shown in Figure 7.27. 

Using this data, the short-term limit of detection was estimated to be approximately 6.6 ppm, corresponding to a 

minimum detectable absorbance of 4.5 × 10
-5

 AU (as ∆I / I0).  

 

 

Figure 4. Graph of absorbance measured by the system (solid line) caused by a periodic steps in formaldehyde concentration between 

4.4ppm and 44ppm (dashed line). A long-term drift in the baseline can be seen. 

 

Secondly, the air flow through the vapour generator was altered over the range 500-50 cm
3
 min

-1
 to produce a calibration 

plot. We found that over longer time periods, baseline drifts (visible in Figure 4) caused the limit of detection to 

deteriorate to 30 ppm or 2  10
4
 AU, as shown in Figure 5.  
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Figure 5. Calibration plot for absorbance measurement (as I/I0) versus formaldehyde concentration, showing the long-term limit of 

detection. The latter was dominated by unwanted, thermally induced spectral drifts in the LED output. 

 

5. DISCUSSION AND CONCLUSIONS 

 

Our tests have shown an estimated short-term (20s) limit of detection for formaldehyde of 6.6 ppm, corresponding to an 

absorbance of 4.5 × 10
-5

 AU, which for over longer time periods (several minutes) deteriorated to 30 ppm or 2  10
4
 AU. 

Clearly, this is not good enough to detect formaldehyde at the WHO recommended limit of 80 ppb, therefore it is worth 

discussing whether this performance could be improved. 

 

Our long-term performance was limited by unwanted spectral variation of the LED with temperature, which affected the 

active and reference channels disproportionately, leading to spurious absorption measurements (either positive or 

negative). Several studies have shown a variation in LED output with temperature
[12,13,14]

, finding a decrease in intensity 

with increasing temperature as well as a shift in peak wavelength. If the temperature control of the LED could be 

improved (for example, by using a Peltier and thermistor internal to the device package, as it the case with many infrared 

laser diodes), there is potential to reduce the limit of detection. For a system using this LED, with a specified typical 

emission of 400 W, the ultimate performance would be dictated by detector noise at a level corresponding to 

2.4 × 10
-5

 AU or 3.5 ppm. At this level, an increase in optical pathlength from 195 mm to approximately 7 m would be 

required to give a limit of detection of 100 ppb. Even using folded optical paths, this would be difficult to achieve in a 

compact, eg hand-portable instrument, suggesting that a higher source intensity would be needed. We therefore conclude 

that improvements in both UV LED output intensity and thermal control are required before they can be used in this 

manner for measurements at the action limits for indoor formaldehyde concentration. 

 

To conclude, we have developed a formaldehyde sensor based on a non-dispersive ultra-violet measurement principle 

that makes use of the absorption band at 340 nm and recent advances in UV LEDs, for the first time. A short-term limit 

of detection of 6.6 ppm was estimated. This deteriorated to 30 ppm for longer term measurement made over several 

minutes, owing to thermally-induced spectral change in the LED’s output over time. The work demonstrates that this 

approach can be used in principle, and points towards a need for UV LEDs with higher output intensity and superior 

thermal control.  
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